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Co-Supervisors: Mark O‟Reilly and Susan (Tasha) Beretvas 

 

 Multilevel modeling represents a potentially viable method for meta-analyzing single-

subject research, but questions remain concerning its methodological properties with regard to 

characteristics of single-subject data. For this dissertation, Monte Carlo methods were used to 

investigate the properties of a 3 level model (i.e., with a quadratic equation at level 1), and three 

different level 1 error specifications (i.e., different variance components and covariances of 0, 

lag-1 autoregressive covariance structures, and separate error terms for each phase, with different 

variance components and covariances of 0). Data for simulated subjects were generated to have 

characteristics typical of published single-subject data (e.g., typical variances and magnitudes of 

effect). Samples were simulated for conditions which varied in number of data points per phase, 

number of subjects per study, number of studies meta-analyzed, level of autocorrelation in 

residuals, and continuity of variance across phases. Outcome variables examined included rates of 

convergence of analyses, power for statistical tests of fixed effects, and relative parameter bias of 

estimates of fixed effects, random effects‟ variance components, and autocorrelation estimates. 
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Convergence rates were found to be 100% for all level 1 error specifications and data conditions. 

Power for statistical tests of fixed effects was observed to be adequate when 10 or more data 

points were generated per phase and 60 or more total subjects were included in meta-analyses. 

The relative biases of estimates of fixed effects were found to have limited associations with 

numbers of data points per phase, levels of autocorrelation, and the continuity/discontinuity of 

variance across phases. Random effects‟ variance components were observed to be frequently 

biased. Associations between relative bias and data conditions were found to vary by random 

effect. Finally, autocorrelation estimates were found to be biased in all conditions for which 

autocorrelation was generated. Results are discussed with regard to study strengths and 

limitations, and their implications for the meta-analysis of single subject data and primary single 

subject research.  
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CHAPTER 1 

Introduction 

Evidence-Based Practice 

In the past two decades, special educators have become increasingly attentive to the 

presence or absence of research support for classroom practices. The growing concern for 

evidence has shaped special education-related legislation (e.g., No Child Left Behind Act 

[NCLB], 2001; Individuals with Disabilities Education Improvement Act [IDEIA], 2004), teacher 

education curricula (Eren & Brucker, 2011; Kutash, Duchnowski, & Lynn, 2009), and practices at 

the school and classroom levels (Burns & Ysseldyke, 2009). While many in the field agree that 

evidence on educational practices should be carefully considered prior to making curricular 

decisions, dialogue on how to conduct such consideration is on-going (Gersten, Fuchs, Compton, 

Coyne, Greenwood, & Innocenti 2005; Horner, Carr, Halle, McGee, Odom, & Wolery, 2005; 

Mayton, Wheeler, Menendez, & Zhang 2010; Odom, Brantlinger, Gersten, Horner, Thompson, & 

Harris, 2005; Shadish, Rindskopf, & Hedges, 2008). 

Much research on special education populations is performed using single-subject 

experimental designs (SSED). At present, consensus does not exist regarding how to summarize 

and synthesize data from multiple single-subject experiments. SSEDs make use of an inductive 

experimental method. Consequently, findings only provide insight on the single individual 

studied. In order to make inferences about what effects educational practices will have on other 

students in the population, SSED results must be synthesized (Van den Noortgate & Onghena, 

2003a). Various authors have proposed procedures for synthesizing research findings (e.g., 

Beretvas & Chung, 2008b; Center, Skiba, & Casey, 1985–1986; Faith, Allison, & Gorman, 1996; 

Lundervold, & Bourland, 1988; Parker & Vannest, 2009; Scotti, Evans, & Meyer, 1991; Scruggs, 

Mastropieri, & Casto, 1987; Van den Noortgate & Onghena, 2003a). However, the synthesis 
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procedures possess a number of limitations (e.g., conditional applicability; Allison & Gorman, 

1994; Beretvas & Chung, 2008b) and, in certain instances, flaws (e.g., loss or misrepresentation 

of information; Salzberg, Strain, & Baer, 1987; White, 1987). In order to continue to improve 

special education programs, the limitations and flaws must be overcome. Researchers must 

develop robust synthesis techniques that produce accurate and nuanced understandings of the 

efficacy of educational practices. 

Importance of evidence-based practice. Knowledge of the efficacy of educational 

practices is of critical importance to the field of special education. For one, schools and special 

education departments have limited resources and limited time with students. To best serve 

students with special needs, resources should be spent on practices confirmed to be most effective 

(NCLB, 2001). Unfortunately, many invalid, as well as dubious and untested educational 

practices are commonly employed (Jacobson, Foxx, & Mulick, 2005; Green, 2007; Green, Pituch, 

Itchon, Choi, O'Reilly, & Sigafoos, 2006). Knowledge of evidence-based practice (EBP) should 

be expanded and disseminated to avoid squandering resources on ineffective methods. 

Further, the growth trajectories of students with special needs can be greatly enhanced by 

early, effective intervention. Infants, toddlers, and preschoolers who are at risk for developmental 

delay and receive high quality early intervention services typically attain higher levels of 

functionality later in life than their peers who do not (Brown, Odom, & Conroy, 2001; Guralnick, 

2004; Shonkoff & Phillips, 2000). In the early years of children‟s development, the brain‟s rapid 

growth and ability to self-correct offers a window of opportunity to reverse or minimize the 

effects of such conditions as brain injury, chromosomal anomalies, and environmental stress 

(Diamond & Hopson, 1999; McCain & Mustard, 1999). To maximize the impact of early 

intervention, educators must understand which practices are most effective, for whom they work 
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best, and what types of additional supports or variations on the practice are necessary for different 

categories of students.  

The established methods of summarizing and synthesizing single-subject research data 

are limited in their ability to compare interventions, explain variations across studies, and 

accurately represent data phenomena. To best serve students with special needs, researchers must 

continue to explore and test various ways of summarizing and synthesizing single-subject 

research data.  

 History of evidence-based practice. Despite the logical appeal of grounding important 

decisions in research data, the consultation of evidence is a relatively recent development. The 

EBP movement in special education traces its roots to the field of medicine and the scourge of 

scurvy in the mid-18th century (Singh & Ernst, 2008).  

In 1747, a Scottish naval surgeon, James Lind, performed the first controlled clinical trial 

as part of his effort to treat scurvy in sailors under his care (ibid). In those days, the cause of 

scurvy was still unknown. Lind had the bright idea to give different sailors different treatments 

and compare the results. The surgeon gathered 12 sailors who had similar symptoms and arranged 

identical sleeping and diet conditions for each. Then Lind divided the sailors into 6 pairs, gave 

each pair a different treatment, and made daily observations of their health. On a hunch, he 

included lemons and oranges as a treatment alongside five in vogue, but ultimately ineffective 

treatments. After just 6 days, the results were clear. The lemons and oranges had relieved the 

symptoms of a pair of sailors, while the other 10 remained in poor health. Lind‟s novel exercise 

of experimental control over symptoms, sleeping arrangements, diet, and treatment type allowed 

him to confidently conclude that the difference in health outcomes was due to the treatments.  

A half century later, in 1809, a Scottish military surgeon, Alexander Hamilton, advanced 

Lind‟s method and performed the first randomized clinical trial (ibid). Hamilton was stationed in 
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a battlefield medical tent and cared for wounded soldiers. At the time, bloodletting was a popular 

panacea endorsed by many reputable physicians. Hamilton doubted the efficacy of bloodletting 

and sought to prove his position. To do so, he devised a plan to assign new patients 

indiscriminately and alternately to treatment involving bloodletting and treatment not involving 

bloodletting. Hamilton then made efforts to otherwise standardize the care and comforts provided 

to all patients. Since bloodletting was touted as a panacea, Hamilton included patients with all 

forms of medical need in his study. Over the next several months, the surgeon kept records of the 

death rate of the hundred or so soldiers assigned to each condition. Hamilton eventually obtained 

the proof he sought. Bloodletting was associated with roughly ten times as many deaths as 

treatment not involving bloodletting. Hamilton‟s novel use of random assignment to treatment 

conditions, in addition to his exercise of control over other aspects of patient care, allowed him to 

conclude, with greater confidence than Lind, that the difference in death rates was attributable to 

bloodletting. Random assignment represented an improvement in that it prevented the existence 

of systematic differences between and within treatment groups (Kazdin, 2003).  

Over the next 150 years, research methods and scientific knowledge developed 

considerably. Several generations of scientists elaborated and improved upon Lind and 

Hamilton‟s methodologies, and used them to produce new understandings. Beginning in the mid-

1900s, a movement for evidence-based medicine began to coalesce (ibid). Physicians and 

researchers united in an effort to close the gap between research knowledge and common practice 

(Odom et al., 2005). The medical professionals had much success over the next several decades in 

reforming both medical education and practice. Then, in 1992, the term “evidence-based 

medicine” was coined and first appeared in print (Guyatt, Cairns, Churchill, Cook, Haynes, Hirsh, 

et al., 1992). 
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Developments in the field of medicine, as well as parallel progress made in psychology, 

educational psychology, sociology, and anthropology, stimulated developments in the field of 

special education (Odom et al., 2005). The medical and social sciences established the concern 

for evidence, as well as generated a number of research designs and analysis techniques, which 

were gradually adopted by special education researchers. These adopted methodologies included 

experimental and quasi-experimental group designs, SSED, qualitative designs, univariate and 

multivariate statistical procedures, and meta-analysis. 

Around the mid-1990s, special education researchers began a focused campaign to 

identify evidence-based practices for use with students with disabilities (Kutash, Duchnowski, & 

Lynn, 2009). Academics and research institutes performed many syntheses and meta-analyses on 

a variety of topics (e.g., Forness, Kavale, Blum, & Lloyd, 1997; Gersten, Schiller, & Vaughn, 

2000; Odom & Wolery, 2003). Such efforts are on-going today (e.g., National Autism Center, 

2009). As in medicine, the goal of identifying EBP has been part of a larger effort to close the gap 

between research and practice (Greenwood, 2001). 

The term “evidence-based practice” first appeared in an education-related journal in 1999 

(Richman, Reese, & Daniels, 1999). The phrase was introduced by a team of researchers from a 

medical school with expertise in both developmental pediatrics and applied behavior analysis. As 

such, the team served as one of many conduits for philosophy and practice from the field of 

medicine to the field of education. Over the next several years, the field of special education 

embraced the term EBP and worked toward establishing an operational definition. One general 

version was offered by Dunst, Trivette, and Cutspec in 2002. Their definition states evidence-

based practices are “informed by research, in which the characteristics and consequences of 

environmental variables are empirically established and the relationship directly informs what a 

practitioner can do to produce the desired outcome” (p. 3). 
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 The movement for EBP in education was substantially accelerated by the No Child Left 

Behind Act of 2001 (NCLB, 2001). The law mandated that public schools must use scientifically 

validated educational practices. In the act, the term “evidence-based practice” is used 110 times in 

discussions of how to improve the education offered to students (Slavin, 2002). 

Today, EBP constitutes a “buzz word” and a priority for teachers, administrators, teacher 

educators, and researchers alike (Burns & Ysseldyke, 2009).  Policy makers regularly invest large 

amounts of time and money in efforts to determine and support the use of EBP (Kutash, 

Duchnowski, & Lynn, 2009). Additionally, various organizations now exist for the explicit 

purpose of furthering the EBP movement (e.g., Center for Evidence-Based Practice, Campbell 

Collaborative, What Works Clearinghouse). Together, the organizations and education 

professionals have created a framework for engendering and implementing EBP. The process is 

now understood to involve (a) primary research, (b) synthesis of primary research, (c) model 

building for translation of research knowledge to practice, and (d) information dissemination and 

training (Pucketts Institute, 2009). 

Determining Evidence-Based Practice from Single-Subject Research 

 Determining EBP from single-subject research involves the phases of primary research 

and synthesis of primary research. In response to the EBP movement, a number of authors and 

organizations have recently defined quality indicators for primary research using SSED. Across 

the authors and organizations, much agreement exists regarding how to best structure SSED. 

However, as stated above, little to no consensus exists regarding how to best synthesize data from 

SSED. 

 Standards for primary research. Representatives of the American Psychological 

Association (APA) and Council for Exceptional Children have defined standards for primary 

research using SSED (Kratochwill & Stoiber, 2002; Smith, Strain, Snyder, Sandall, McLean, 
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Boudy-Ramsey, et al., 2002; Horner et al., 2005). The authors and their organizations commonly 

identify a set of 5 standards that primary research must meet in order for research findings to 

inform notions of EBP. In brief, these standards require (a) definition of dependent and 

independent variables, participants, and settings with sufficient precision to allow replication, (b) 

repeated measurement of dependent variables with quantifiable indices, (c) assessment of the 

reliability of dependent variable measurements and fidelity of implementation of independent 

variables, (d) experimental control over threats to interval validity, and (e) replication of results 

within and/or across participants, settings, and/or materials.  

While data from SSED may be interpreted with statistical analyses (e.g., randomization 

tests; Edgington, 1996), researchers traditionally analyze data visually (Horner, 2005; Kennedy, 

2005). Such analysis involves systematic visual comparison of levels, trend, and variability in 

performance during baseline and intervention conditions. Researchers also visually judge the 

immediacy of effects following implementation or withdrawal of interventions, the proportion of 

overlap of data in adjacent phases, the magnitude of changes in the dependent variable, and the 

consistency of data patterns across multiple baseline and/or intervention phases. The main goal of 

analysis is to appraise whether or not change in the dependent variable is a function of the 

independent variable. Additional information is gleaned from data phenomena, when possible. 

Due to the singular focus of SSED, results of single subjects do not generalize to populations. 

Consequently, the synthesis of individual outcomes constitutes an important step in the process of 

determining EBP. 

 Narrative review as a synthesis method. Until roughly twenty years ago, findings from 

single-subject research were always synthesized in narrative reviews (Salzberg, Strain, & Baer, 

1987). Use of the review method remains popular today (e.g., Chan, Lang, Rispoli, O‟Reilly, 

Sigafoos, & Cole 2009; Schreiber, 2011). Narrative reviews involve descriptions of primary 
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research outcomes, based on visual analysis, and discussions of the patterns and exceptions in 

outcomes across studies. Frequently, research outcomes are systematically extracted and pooled 

using qualitative methodology. When doing so, researchers often make use of coding tables, in 

which features of studies and their outcomes are categorized or summarized descriptively. 

However, analysis and synthesis techniques vary widely across researchers.  

 Narrative review methods tend to work well when synthesizing small numbers of data 

sets that have fairly clear and undifferentiated patterns. In these conditions, the procedures can 

produce accurate and nuanced understandings of the efficacy of educational practices (Salzberg, 

Strain, & Baer, 1987). However, as the number of subjects grows and/ or data patterns become 

less clear and differentiated, visual analysis and descriptive synthesis become inadequate tools. 

The limitations of our working memory and the crudeness of eye-balling techniques can lead to 

inaccurate and unreliable conclusions, omission of relevant information, and/or obscuring of 

systematic relationships between outcomes and participant or study variables. 

 Meta-analysis as a synthesis method. Meta-analysis of data from SSED can provide 

unique opportunities to develop knowledge when reviewing evidence on educational practices 

(Beretvas & Chung, 2008a; Jenson, Clark, Kircher, & Kristjansson, 2007). In contrast to 

traditional narrative review methods, meta-analysis‟ reliance on quantitative metrics can allow for 

the drawing of more firm and definitive conclusions. Quantitative synthesis offers enhanced 

objectivity via aggregation of individual summary statistics, statistical testing, and lack of 

opportunities for authors‟ possible biases to wield influence. In ideal circumstances, meta-

analysis allows researchers to (a) estimate an overall treatment effect, (b) establish confidence 

intervals for the estimate, (c) test the estimate for statistical significance, (d) compare the estimate 

to those for other treatments, and (e) answer questions related to variability across studies and 

moderators of effect (Cooper & Hedges, 1994).  
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During the previous 20 years, meta-analysis of SSED has represented a point of 

controversy among researchers. Arguments abound concerning which of the variety of methods 

to use, the extent of the methods‟ respective validities, and if quantitative synthesis is appropriate 

at all (e.g., Allison & Gorman, 1993; Beretvas & Chung, 2008a; Ferron, 2002; Salzberg, Strain, 

& Baer, 1987; Scruggs, Mastropieri, & Casto, 1987). 

At present, the typical SSED meta-analysis (e.g., Shogren, Faggella-Luby, Bae, & 

Wehmeyer, 2004) involves use of one or more of a variety of flawed non-parametric summary 

statistics (Beretvas & Chung, 2008a; e.g., Percentage of Non-Overlapping Data [PND; Scruggs, 

Mastropieri, & Casto, 1987], Percentage of Zero Data [PZD; Scotti, Evans, & Meyer, 1991], 

Standardized Mean Difference [SMD; Busk & Serlin, 1992], Nonoverlap of All Pairs [NAP; 

Parker & Vannest, 2009]). The statistics‟ flaws pertain to their susceptibility to bias and inability 

to account for common single-subject data phenomena.  

For example, the PND and NAP statistics have inverse relationships with the number of 

baseline data points, such that higher PND and NAP values are probabilistically associated with 

lower numbers of baseline data points (Allison & Gorman, 1994). The PZD statistic has an 

inverse relationship with the length of treatment phases past the first zero data point, such that 

longer treatment phases are probabilistically associated with lower PZD scores. Slow acquisition 

rates can lead to low PND, NAP, and PZD scores, despite eventual success of treatments in 

changing or eliminating behaviors (Allison & Gorman, 1994; Scotti, Evans, & Meyer, 1991; 

White, 1987). Trends in data confound SMD values by creating error in variance estimates and 

skewing means (Marquis, Horner, & Carr, 2000). Further, PND, NAP, PZD, and SMD statistics 

only describe level change. Their use brings about a loss of all information related to incremental 

change and variability. 
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Additional limitations of the summary statistics concern (a) error resulting from 

combining statistics across subjects and studies, (b) error resulting from comparing statistics for 

different treatments or subject groups, and (c) summary statistics lack of utility in moderator 

analyses. When confounding variables, such as variations in numbers of baseline data points, 

auto-correlation, or learning curves or other trends are present, accuracy in combining statistics 

can only be achieved when the individual statistics result from cases with identical circumstances 

(e.g., same number of baseline data points, same number of treatment data points; Allison & 

Gorman, 1994; Salzberg, Strain, & Baer, 1987). Similarly, comparing statistics for different 

treatments or subject groups requires that all cases from which individual statistics are drawn 

have identical circumstances. In moderator analyses, assessment of parametric and non-

parametric correlations between summary statistics and values for hypothesized moderator 

variables is highly tenuous, and in many cases inappropriate due to (a) the unknown, and likely 

not normal, underlying distributions of the statistics (Beretvas & Chung, 2008a; Clark-Carter, 

2004), (b) auto-correlation, which can be present in single-subject data (Busk & Marascuilo, 

1988), and (c) confounding variables, such as those mentioned above.  

Despite the popularity of SSED summary statistics, their tendencies to misrepresent and 

obscure data phenomena make their use in synthesizing research and identifying evidence-based 

practices inappropriate. The statistics‟ limitations regarding their combining, comparison, and use 

in moderator analysis render them inadequate tools for extracting additional insights from a body 

of research. Pursuit of more sound alternatives is imperative to valid and fruitful practice of 

SSED meta-analysis. 

Multilevel Modeling in Meta-Analysis of Single-Subject Research 

Recently, authors have proposed use of multi-level modeling (MLM) techniques in the 

meta-analysis of SSED (e.g., Van den Noortgate & Onghena, 2003, 2008). The techniques 



11 

 

potentially offer solutions to problems encountered with other methods (Beretvas & Chung, 

2008b). For example, MLM estimation is not biased by differences across subjects in numbers of 

data points collected in each phase, and it can model learning curves and other meaningful 

fluctuations in time-series data (Raudenbush & Bryk, 2002; Singer & Willet, 2003). Initial 

inspections of MLM‟s properties with regard to SSED suggest it is robust to the presence of auto-

correlation with regards to type I and type II errors (Jenson et al., 2007). If need be, terms for 

auto-correlation can be added to models to attenuate the error induced in estimations 

(Raudenbush, Bryk, Cheong, & Congdon, 2004). 

Many of the advantages of MLM result from the procedures‟ sensitivity to differential 

effects (Raudenbush & Bryk, 2002). Multilevel models comprise a number of regression 

equations, which are organized into hierarchical levels and nested within each other to create an 

overall model. The multiple levels and nesting of equations can allow for modeling of the within-

subgroup similarities and between subgroup differences that occur in research contexts. At the 

lowest level of a model, regression equations calculate the expected dependent variable scores for 

subjects. At higher levels, the regression equations estimate expected values for regression 

coefficients from lower levels. Via opportunities to include random effects and predictor 

variables at each level of a model, dependencies and variation can be accounted for within and 

between subgroups (e.g., students of the same teacher or school, persons with the same disability 

diagnosis). 

With regard to single-subject data, regression equations at the lowest level can be used to 

describe changes in subjects‟ dependent measurements across time (e.g., slopes, curves, and level 

changes seen in graphs of data). Higher level equations can then be used to describe differences 

in such changes across subjects, disability groups, and/ or treatments. Due to MLM‟s sensitivity 

to variation within and between groups, the procedure has the potential to achieve accuracy in 
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estimation of treatment effects and impacts of moderators. Additionally, MLM allows 

determination of how well the model, at each level, adequately describes the phenomena captured 

in the data, thus providing a check of its precision of analysis. In contrast to the crude lumping 

and averaging, and lack of statistical accountability inherent in non-parametric SSED summary 

statistics, MLM could represent an elegant solution to data synthesis, should it stand up to tests of 

its validity. 

To assess the validity of MLM meta-analyses, researchers must (a) apply the techniques 

to published data and inspect models‟ fit to the data, (b) explore properties of models across 

various data conditions with large, simulated samples of data (i.e., Monte Carlo methods), and (c) 

compare various MLM approaches with each other, and to other means of data synthesis. At 

present, 7 studies have applied MLM techniques to SSED data (Adams, 2009; Hurwitz, 2008; 

Miller, 2006; Morgan & Sideridis, 2006; Terrazas Arellanes, 2009; Wade, Ortiz, & Gorman, 

2007; Wang, Cui, & Parrila, 2011). However, only Adams (2009) critically assessed models‟ fit 

to the data (i.e., all others did not mention considering alternative model structures or assessing 

multiple models for their quality of fit). Six studies have examined MLM‟s methodological 

properties with regard to single-subject data using Monte Carlo methods (Beretvas & Wang, 

2011; Ferron et al., 2009; Ferron, Farmer, & Owens, 2010; Jenson et al., 2007; Van den 

Noortgate & Onghena, 2011). However, the studies have explored a limited number of models 

and data conditions. Much remains to be examined. No studies systematically compared MLM 

meta-analysis to other means of data synthesis.  

Research Questions 

 This dissertation seeks to answer the following research questions: 

When MLM is used to meta-analyze single-subject research,  

1. What levels of power are achieved for statistical tests of fixed effects? 
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2. How accurate are estimates of fixed and random effects, and autocorrelation levels in 

terms of relative parameter bias across conditions examined?  

3. What patterns of differences exist in convergence rates, power rates, and relative bias in 

estimates of fixed effects and random effects‟ variance components across (a) 

specifications for model errors at level 1, (b) numbers of data points per experimental 

phase, (c) numbers of participants per study, (d) numbers of studies meta-analyzed, (e) 

degrees of autocorrelation in individuals‟ data, and (f) continuity of level 1 variance 

across phases? 
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CHAPTER 2 

Review of Literature on Use of Multilevel Modeling with Single-Subject Experimental Data 

 To ensure that this study builds upon and is situated in the context of prior research, a 

literature review was first conducted on use of MLM with SSED. A number of authors have 

explored and/or commented on methodological issues related to using MLM with SSED (Bell, 

Morgan, Zhu, & Schoeneberger, 2011, Beretvas, 2011; Beretvas & Wang, 2011; Ferron, Bell, 

Hess, Rendina-Gobioff, & Hibbard, 2009; Ferron, Farmer, & Owens, 2010; Jenson et al., 2007; 

Nugent, 1996; Van den Noortgate & Onghena, 2003a, 2003b, 2007, 2008, 2011). These authors 

have delineated procedures for using MLM with SSED and determined various methodological 

properties of the procedures. This study extends the work of these authors by exploring research 

questions beyond the scope of their articles, but within the same line of reasoning/inquiry. A 

separate group of authors have employed MLM with SSED (Adams, 2009; Hurwitz, 2008; 

Miller, 2006; Morgan & Sideridis, 2006; Terrazas Arellanes, 2009; Wade, Ortiz, & Gorman, 

2007; Wang, Cui, & Parrila, 2011). The work of these authors illustrates the pertinent 

methodological issues and provides a rationale for pursuit of related research. This study seeks to 

identify best practice (or at least better practice) with regard to the many (potential, yet probable) 

methodological flaws in these applied studies. 

 This chapter is organized into several sections. First, in the Methods section, the literature 

search and coding processes are explained. Next, in the Results section, the results of the 

literature search and coding processes are described. Results are offered separately for articles 

which comment on the use of MLM with SSED and those that apply MLM to SSED. Finally, in 

the Discussion section, a critique of the use of MLM with SSED is made and future research 

questions are identified. 
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Methods 

 Search procedures. Systematic searches were conducted in three electronic databases: 

PsycINFO, Psychology and Behavioral Sciences Collection, and Educational Resources 

Information Clearing House (ERIC). On all three databases, the Boolean term “([single case] or 

[single subject]) and ([multilevel] or [multi-level] or [hierarchical linear])” was typed in the 

search field without specification of a search domain (e.g., keywords, abstract, title). No 

additional restrictions were placed on search results (e.g., publication year, language, peer-

reviewed). The abstracts of the resulting 28 articles were reviewed to identify studies for 

inclusion (see Selection Criteria below). Following this initial search, ancestry searches were 

performed to identify additional articles for possible inclusion. First, the electronic databases 

were searched for other papers by authors of selected articles. Abstracts of the resulting papers 

were reviewed for inclusion. Then, reference lists of all articles meeting the selection criteria 

were reviewed. Finally, for all relevant citations, abstracts were reviewed for inclusion. 

 Additionally, conference proceedings for the most recent meeting of the American 

Educational Research Association (i.e., April, 2011) were searched for relevant presentations. 

Four additional posters and papers were identified, the contents of which had yet to be published 

in journals. Reports were requested and obtained from study authors. 

 Selection criteria. To be included in the review, an article had to meet one of three 

criteria. Included articles (a) described procedures for applying MLM to SSED, (b) examined the 

methodological properties of MLM with regard to SSED, or (c) applied MLM to data from 

SSED. 

 Coding and summary of selected articles. Coding of the selected articles pertained to 

methodological assertions and procedures applied. Each article was summarized in terms of (a) 
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model specifications, (b) unit counts at each level, (c) data extraction, (d) data standardization 

method, (e) treatment of autocorrelation, and (f) analysis process. 

Results 

 Methodological commentary. The literature search yielded 12 articles that comment on 

methodological issues related to using MLM with SSED (Bell, Morgan, Zhu, & Schoeneberger, 

2011, Beretvas, 2011; Beretvas & Wang, 2011; Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 

2009; Ferron, Farmer, & Owens, 2010; Jenson et al., 2007; Nugent, 1996; Van den Noortgate & 

Onghena, 2003a, 2003b, 2007, 2008, 2011). Six articles described procedures for applying MLM 

to SSED (Beretvas, 2011; Nugent, 1996; Van den Noortgate & Onghena, 2003a, 2003b, 2007, 

2008). The other six studies examined the methodological properties of MLM with regard to 

SSED (Beretvas & Wang, 2011; Ferron et al., 2009; Ferron, Farmer, & Owens, 2010; Jenson et 

al., 2007; Van den Noortgate & Onghena, 2011). Table 1 presents summaries of the articles‟ 

methodological assertions. Below, the assertions are described. 

 Model specifications. As mentioned above, multilevel models comprise several nested 

regression equations. The specifications of models are important because components of the 

equations determine which data phenomena can be summarized and how accurately and precisely 

the phenomena are represented. Authors of the reviewed articles suggested use of a variety of 

models. In all cases, authors noted that the choice of specifications should be based on patterns 

observed in the data and/or results of analyses (e.g., statistical tests of variance components). In 

the following sub-sections, the varieties of specifications suggested by authors are reviewed. 

Mean change model. The model most often commented upon was the mean change 

model (Ferron et al., 2009; Ferron, Farmer, & Owens, 2010; Jenson et al., 2007; Van den 

Noortgate & Onghena, 2003a, 2003b, 2007, 2008). In this model, repeated measurements for 

subjects are organized and analyzed at level 1. Means are calculated for each phase and 
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contrasted. The resulting effect measure is the difference between phase means. Van den 

Noortgate & Onghena (2003a, 2008) clarified that the mean change model should only be used 

when linear or curvilinear trends are not present in data. 

The authors suggested use of the following regression equation at level 1: 

Yijk = π0jk + π1jk(phase)ijk + eijk                                            (1) 

where Yijk is the dependent score at time i, for subject j, from study k; π0jk is a regression 

coefficient which represents the mean of the subject‟s baseline data; π1jk is a regression 

coefficient which serves as the treatment effect measure for the subject; (phase)ijk is a dummy 

variable that indicates whether the dependent measurement occurred (i.e., phase = 1) or did not 

occur (i.e., phase = 0) during the treatment phase; and eijk is a random effect that accounts for the 

deviation of measurement i from its expected value in the model. For a two level model, that 

excludes studies as a clustering variable, the subscript k is dropped from the regression equations‟ 

notation. Should a researcher wish to analyze data from more than two phases, additional 

regression coefficients and dummy variables can be added to the model (Van den Noortgate & 

Onghena, 2007). For example, a regression equation for the analysis of a baseline phase followed 

by two different treatments could take the form: 

Yijk = π0jk + π1jk(phase2)ijk + π2jk(phase3)ijk + eijk                               (2) 

where π2jk is a regression coefficient that represents the difference in means between treatment 1 

(i.e., phase 2) and treatment 2 (i.e., phase 3), and symbols previously defined have the same 

meaning.  

 Linear growth model. Four articles described use of a linear growth model (Bell et al., 

2011; Van den Noortgate & Onghena, 2003a, 2008, 2011). Additional articles alluded to their 

utility, but did not describe how to structure linear growth models (Ferron et al., 2009; Jenson et 

al., 2007; Van den Noortgate & Onghena, 2003b, 2007). In these models, as above, repeated 
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measurements for subjects are organized and analyzed at level 1. Intercepts and slopes of 

regression lines are estimated for each phase. The effect measures that result from the model 

describe the immediate effect (i.e., the difference between expected dependent scores at the end 

of baseline phases and the beginning of treatment phases) and the gradual effect (i.e., the 

difference between slopes of baseline and treatment phase regression lines).  

 The authors suggested use of the following regression equation at level 1: 

Yijk = π0jk + π1jk(phase)ijk + π2jk(time)ijk + π3jk(phase)ijk(time in treatment)ijk + eijk            (3) 

where Yijk, (phase)ijk, and eijk have the same meanings as before;  π0jk is a regression coefficient 

that represents the intercept of the baseline regression line; π1jk is a regression coefficient that 

serves as a measure of the immediate effect; π2jk is a regression coefficient that represents the 

slope of the baseline regression line; (time)ijk is a numeric variable that denotes the number of 

dependent measurements that have been taken at time i (i.e., if session number = 4, then time = 

4); π3jk is a regression coefficient that serves as a measure of the gradual effect; and (time in 

treatment)ijk is a numeric variable, centered at the final baseline time point, that charts how many 

dependent measurements have been taken during the treatment phase (i.e., the total number of 

baseline sessions plus one, subtracted from the session number). As above, for a two level model, 

that excludes studies as a clustering variable, the subscript k is dropped from the regression 

equations‟ notation. The authors did not comment on how to structure linear growth models for 

the analysis of more than two phases. However, the models can easily be extended to include 

additional regression coefficients, dummy variables, and time variables for additional phases, as 

in equation 2. 

 Polynomial growth models. One article described use of polynomial growth models 

(Nugent, 1996). Additional articles briefly mentioned their utility, but did not explicitly state how 

to structure such models (Jenson et al., 2007; Van den Noortgate & Onghena, 2003b). In these 
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models, as above, repeated measurements for subjects are organized and analyzed at level 1. 

Polynomial growth models extend linear growth models by adding curvilinear elements, such as 

squared or cubed terms. As such, polynomial growth models allow the fitting of curved 

regression lines to subjects‟ data that have one or more prominent bends. The effect measures that 

result describe the immediate effect (i.e., the difference between expected dependent scores at the 

end of baseline phases and the beginning of treatment phases) and components of the gradual 

effect (e.g., the instantaneous linear slope, acceleration).  

 Nugent (1996) suggested use of regression equations of the following format at level 1: 

Yij = π0j + π1j(time)ij +  π2j(time)ij
2 + … + πpj(time)ij

p
 + eij                               (4) 

where Yij, (time)ij, and eij have the same meanings as before; π0j is a regression coefficient that 

represents the intercept of the treatment phase regression line; π1j is a regression coefficient that 

serves as a first measure of the gradual effect (i.e., the instantaneous linear slope); π2j is a 

regression coefficient that serves as a second measure of the gradual effect (i.e., the acceleration); 

πpj is a generic form of a regression coefficient that could serve as an additional measure of the 

gradual effect (i.e., the rate at which dependent scores increase when time, raised to the power of 

p, increases by 1). Nugent (1996) recommended assessing models‟ fit to data before committing 

to the use of a particular level 1 regression equation. He suggested visually inspecting subjects‟ 

data for apparent patterns, estimation of several models that seem to be appropriate for the data, 

and testing of obtained values (e.g., autocorrelation, fixed effects). 

 The approach suggested by Nugent (1996) only involves analysis of treatment phase data. 

To include baseline data in a polynomial model, a regression equation, such as the following, 

could be used: 

Yijk = π0jk + π1jk(phase)ijk + π2jk(time)ijk + π3jk(phase)ijk(time in treatment)ijk + 

π4jk(phase)ijk(time in treatment)ijk
2 + eijk                                          (5) 
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SMD-based models. One article described use of SMD-based models (Van den Noortgate 

& Onghena, 2003a). The authors suggested calculating SMDs from subjects‟ repeated 

measurements using the formula presented by Cohen (1969). The effect measures equal the 

difference between treatment and baseline means, divided by the standard deviation of baseline 

data. Van den Noortgate and Onghena (2003a) state the statistics should then be incorporated in 

multilevel models as dependent outcomes in level 1 regression equations.  

The authors suggested use of the following regression equation at level 1: 

dj = δj + ej                                                               (6) 

where dj is the SMD value for subject j; δj is the “true” SMD value for subject j (i.e., an estimate 

of an unbiased statistic); and ej is the deviation of dj from δj. Should a researcher wish to include 

data from more than two experimental phases, the additional information can be (a) included in 

SMD calculations via aggregation of data from like-phases or (b) used to calculate additional 

SMD statistics, which would then be combined within-participants in an additional level of 

analysis. Van den Noortgate & Onghena (2003a) stated this model should only be used when 

linear and curvilinear trends are not present in data. 

 OLS regression coefficient-based models. Three articles described use of ordinary least 

squares (OLS) regression coefficient-based models (Van den Noortgate & Onghena, 2003a, 2008, 

2011). An additional article briefly mentioned their utility, but did not explicitly state how to 

structure such models (Van den Noortgate & Onghena, 2003b). The authors suggest first 

analyzing subjects‟ repeated measurements using OLS regression techniques. Next, the resulting 

regression coefficients should be standardized (see Standardization of data on different metrics 

below). The new values should then be used as dependent outcomes in level 1 regression 

equations. The resulting effect measures are the same as those of the mean change, linear, and 

polynomial models, depending on the format of the OLS regression equation.  
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 The authors suggested use of the following regression equations at level 1, when using 

equation 3 for the OLS regression analysis: 

  1j = π1j + e1j                                                               (7) 

  3j = π3j + e3j                                                               (8) 

where   1j and   3j are OLS regression coefficients representing level and slope change; π1j and π3j 

are the “true” coefficient values for subject j; and e1j and e3j are the deviation of   1j and   3j from 

π1j and π3j. Should a researcher wish to include data from more than two experimental phases, the 

additional information can be included in OLS regression analyses via additional regression 

coefficients and variables. Comparable phases‟ regression coefficients could then be combined 

within-participants in an additional level of analysis, or additional equations would be employed 

at levels 1 and above to separately synthesize coefficients across participants. 

 Nonlinear logistic models. One article described use of a nonlinear logistic model 

(Beretvas, 2011). The author suggested use of a nonlinear logistic models when data appears to 

form asymptotes or is subject to floor or ceiling levels (e.g., at y = 0 or y = 100). The following 

two models allow the fitting of S-like curves to data that form asymptotes at user defined levels. 

Beretvas (2011) suggests use of the following model when baseline data does not contain trends: 

Yij = (1 – phase)ij(π0j) + (phase)ij     
     

    π         π                          
  π     + eij   (9) 

where Yij is the outcome measure at time i for subject j, “phase” is a dummy variable indicating a 

measurement took place during the treatment phase, α1 and α2 are the lower and upper 

asymptotes, respectively, π0j represents the baseline intercept, and π1j and π2j determine the 

horizontal position and rate of vertical rise of the logistic function, respectively. When baseline 

data is linearly trended, Beretvas (2011) suggests use of the following model: 
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Yij = (1 – phase)ij[π0j + π1j(time)ij] + 

 (phase)ij     
     

                                         
                                  + eij  

(10) 

where symbols defined immediately above have the same meaning, except π1j now represents the 

slope fit to baseline data, and π2j and π3j determine the horizontal position and rate of vertical rise 

of the logistic function, respectively. 

Models employing log-link functions. One article described use of a model employing a 

log-link function (Beretvas & Chung, 2011). Due to the logarithmic character of models 

employing log-link functions, these models match single-subject data well due to the 

impossibility of prediction of negative values. Beretvas & Chung (2011) suggest use of the 

following model, in place of the previously described linear model: 

Log (Yij) = π0j + π1j(time)ij + π2j(phase)ij + π3j(phase)ij(time in treatment)ij             (11) 

where symbols defined for the linear model have the same meaning, except coefficients are 

interpreted in terms of log(Y), instead of simply Y.  

When data are collected on multiple dependent variables for each subject, the authors 

recommend the following expansion of the previous model: 

Log (Yij) = π0j + π1j(time)ij + π2j(phase)ij + π3j(phase)ij(time in treatment)ij +  

π4j(setting2)j + π5j(setting3)j + π6j(setting2)j(phase)ij +  

π7j(setting3)j(phase)ij + π8j(setting2)j(time in treatment)ij + 

π9j(setting3)j(time in treatment)ij                                             (12) 

where “setting2” is a dummy variable indicating a measurement took place in setting 2, as 

opposed to setting 1; “setting3” is also a dummy variable indicating a measurement took place in 

setting 3; π4j and π5j represent the difference between baseline intercepts in setting 1 and settings 2 

and 3, respectively; π6j and π7j represent the difference between immediate treatment effects in 
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setting 1 and settings 2 and 3, respectively; and π8j and π9j represent the difference between 

gradual treatment effects in setting 1 and settings 2 and 3, respectively. 

 Multiple error terms at level 1. One article described use of multiple error terms at level 1 

(Van den Noortgate & Onghena, 2003b). An additional article briefly mentioned the feasibility of 

the practice, but did not go into detail of how to include the multiple terms (Van den Noortgate & 

Onghena, 2007). The authors stated error variance may not be the same across phases (i.e., 

heteroscedastic variance). Should this be true, inclusion of a single error term can introduce bias 

into estimates of level 1 variance and other parameters. To avoid bias, Van den Noortgate & 

Onghena (2003b) recommend including separate error terms for each phase. 

The authors suggested use of regression equations of the following format at level 1: 

Yij = π0j + π1j(phase)ij + e1ij(phase1)ij + e2ij(phase2)ij                                 (13) 

where Yij, π0j, π1j, and (phase)ij have the same meanings as symbols defined for the mean change 

model; e1ij is the error term for baseline measurements; (phase1)ij is a dummy variable indicating 

a measurement did (i.e., phase1 = 1) or did not (i.e., phase1 = 0) take place during the baseline 

phase; e2ij is the error term for treatment phase measurements; and (phase2)ij is a dummy variable 

indicating a measurement did (i.e., phase2 = 1) or did not (i.e., phase2 = 0) take place during the 

treatment phase. Should a researcher wish to analyze data from more than two experimental 

phases, additional error terms and dummy variables can be added to level 1 equations. 

 Higher levels of models. In higher levels of models, results of level 1 analyses are 

synthesized. All authors were in agreement on how to structure regression equations at higher 

levels. They suggested using coefficients from lower levels (e.g., π0j, π1j) as the dependent 

outcomes of higher level equations. Specifically, the authors recommended use of equations of 

the following formats at levels 2 and 3, respectively: 

πpjk = βpk + rpjk                                                             (14) 
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βpk = γp0 + upk                                                                                                    (15) 

where πpjk is the pth regression coefficient from the level 1 equation for subject j from study k; βpk 

is the average of πp parameters from study k; rpjk is the deviation of πpjk from βpk; γp0 is the overall 

average of βp parameters; and upk is the deviation of βpk from γp0. If the model only comprises two 

levels, the k subscripts are excluded and βp becomes the overall average of πp parameters. 

Inclusion of predictor variables. To assess the role of potential mediators of effect, 

predictor variables can be added to models. All authors agree on how to include predictor 

variables in models. They suggested including variables in level 2 and 3 equations according to 

the following format: 

πpjk = βp0jk + βp1jk(X1)jk +…+ βpqjk(Xq)jk + rpjk                                     (16) 

βpqk = γp0 + γp1(Z1)k +…+ γpq(Zq)k + upqk                                         (17) 

where symbols defined immediately above have the same meanings; the subscript q is a label that 

differentiates parameters and variables at a given level; X1 through Xq are person-level variables; 

and Z1 through Zq are study-level variables. As before, if the model comprises only two levels, 

the k subscripts are excluded. 

 Unit counts. A second issue related to the use of MLM with SSED regards the number of 

units analyzed at each level of a model. In the models suggested by the authors, and described 

above, level 1 units are dependent variable measurements or measures of effect, level 2 units are 

subjects, and level 3 units are studies. The sample sizes of these units have a direct relationship 

with the precision and reliability of parameter estimates (Raudenbush & Bryk, 2002). Larger 

samples of measurements and subjects are associated with greater precision and reliability of 

parameter estimates.  
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A variety of variables influence what constitutes an optimal sample size (Spybrook, 

Raudenbush, Congdon, & Martinez, 2009). These include the magnitude of effects, intra-class 

correlation, proportion of variance explained by level 2 predictor variables, and the power of 

analysis procedures. Optimal sample sizes can be determined using mathematical formulae 

(Raudenbush, 1997; Raudenbush & Liu, 2000). 

 Six articles commented on unit counts (Bell et al., 2011; Beretvas & Wang, 2011; Ferron, 

Farmer, & Owens, 2010; Jenson et al., 2007; Van den Noortgate & Onghena, 2003b, 2007). Van 

den Noortgate and Onghena (2003b) asserted that 30 or more units should be included at each 

level to obtain precise parameter estimates. The authors added that the number of measurements 

within subjects may be very small, as long as the analysis includes an adequate number of 

subjects. In their 2007 paper, Van den Noortgate and Onghena stated that “at least about 20” units 

at level 2 should be included, or more if predictor variables are added at level 2. In both papers, 

the authors do not provide justification or references for their claims.  

 Jenson et al. (2007) inspected the rates of type I error and power for various sample sizes 

at level 1 and 2 in a Monte Carlo simulation study. Using a computer program, the researchers 

simulated 1,000 samples of data sets for 90 conditions. Each condition was a unique combination 

of (a) numbers subjects (i.e., 15, 40, or 80), (b) numbers of baseline and treatment data points 

(i.e., 5/10 or 10/20), (c) levels of autocorrelation (i.e., high, low, none), and (e) effect size (1 

standard deviation, 0.5 standard deviations, or no effect). Data was not simulated to contain 

trends. Samples of data sets were then analyzed using the mean change model described above. 

Jenson and colleagues produced results that show small numbers of level 2 units (i.e., n = 15 and 

40) can interact with high autocorrelation to decrease power to undesirable levels (i.e., .20 ≤ β ≤ 

.73). The researchers also found that small samples of data points (i.e., n = 15 data points) are 

associated with low power (i.e., .20 ≤ β ≤ .76), except when subject samples are large (i.e., n = 
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80; β = .82). It should be noted that the results of Jenson and colleagues‟ study do not necessarily 

generalize to meta-analyses of data with trends or those that employ models other than the mean 

change variety.   

 Other simulation studies showed similar relationships between MLM performance and 

unit counts (Bell et al., 2011; Beretvas & Wang, 2011; Ferron, Farmer, & Owens, 2010). 

Generally, as the numbers of data points per phase and subjects per study increased, MLM 

performance improved. Bell et al. (2011) provided data that showed large samples of subjects 

(i.e., ≥ 16) were necessary to achieve adequate power for gradual treatment effects in a linear 

model when effects were small (i.e., 0.5 SD). However, when gradual treatment effects were large 

(i.e., ≥ 1.0 SD), smaller samples of subjects (i.e.,  ≥ 8) were also associated with adequate power. 

Bell et al. (2011) also showed that adequate power for tests of immediate effects in the linear 

model could only be achieved when effects were very large (i.e., 1.75 SD; increases in sample 

sizes did not improve power). Beretvas & Wang‟s (2011) obtained conflicting findings regarding 

subject sample sizes, although their results should be received with caution. They found increases 

in numbers of subjects were not associated with reductions in relative bias in estimates of fixed 

effects and random effects‟ variance components. The researchers only generated samples with 3 

and 5 subjects and thus may have obtained their conflicting results due to the restriction of the 

range of numbers of subjects. Beretvas & Wang (2011) also found that relative biases of 

estimates of fixed effects, but not variance components, were less when measure sample sizes 

numbered 30 than when they numbered 10. Ferron, Farmer, & Owens (2010) found that increases 

in numbers of data points were associated with reductions in bias of fixed effect estimates. Their 

results suggest that when OLS procedures are used to estimate fixed effects and 30 data points 

were collected for each subject, fixed effects are accurate.  
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 Data extraction. When conducting a meta-analysis, researchers must decide which data 

from primary research to include. SSED designs often comprise multiple phases in which the 

experimental conditions vary. Typically, data collection begins with baseline measurements and 

is followed by one or more treatment phases, and possibly additional baseline phases (Kennedy, 

2005). At a minimum, a meta-analysis must draw on data from one baseline and one treatment 

phase (i.e., AB pair) for each subject. However, data from all phases can be incorporated in 

multilevel models.   

 Each author or author group gave different suggestions regarding data extraction. Nugent 

(1996) implied in his example analyses that data should be extracted only from treatment phases 

and aggregated prior to analysis. However, Nugent did not explicitly recommend this practice or 

offer guidelines for how to combine data from multiple treatment phases. Jenson et al. (2007) 

simulated data sets with only one baseline and one treatment phase in their Monte Carlo study. 

The authors commented that they viewed inclusion of single and/or multiple AB pairs in meta-

analyses as viable practices. Van den Noortgate and Onghena (2003a, 2003b, 2007, 2008) offer 

several recommendations for extraction. They state that data can be extracted from single AB 

pairs or longer strings of phases. When data from like-phases is similar in terms of level, trend, 

and variability, the authors recommend aggregating the data prior to modeling. Alternatively, 

when data from like-phases is not similar, Van den Noortgate and Onghena recommend modeling 

each phase separately. To illustrate, the authors offered the following example in their 2003a 

paper of a level 1 model for an ABAB design: 

Yij = π0j(pair 1)ij+ π1j(phase)ij(pair 1)ij+ π2j(pair 2)ij + π3j(phase)ij(pair 2)ij + eij             (18) 

where Yij and eij have the same meanings as before, π0j and π2j are regression coefficients which 

represent the means from the first and second baseline phases, respectively; π1j and π3j are 
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regression coefficients which represents the differences between treatment and baseline phase 

means for the first and second AB pairs, respectively. 

Standardization of data on different metrics. Synthesis of SSED study results often 

involves data on different metrics. SSED typically make use of one of a variety of methods for 

assessing dependent variables (Kennedy, 2005). Such methods include, but are not limited to, 

frequency counts, partial interval recording with continuous intervals, and partial interval 

recording with interrupted intervals. Further variation in partial interval recording systems 

pertains to lengths of intervals (e.g., 5 seconds, 10 seconds, 15 seconds). Each method for 

assessing dependent variables results in data on different metrics that is not directly comparable. 

Additionally, time scales used for measuring independent variables may vary across studies. 

While most researchers use session number as the time scale, some use other scales (e.g., time of 

day). In order to synthesize data on different metrics, meta-analysts must first standardize the 

data.  

Three articles suggested procedures for standardizing data (Van den Noortgate & 

Onghena, 2003a, 2003b, 2008). In the articles, the authors recommended several methods.  

Standardization of time scales. The first method involves standardization of time 

variables (Van den Noortgate & Onghena, 2003a). The authors suggested converting time 

variables to the same scale. Such conversions consist of simple algebraic transformations. 

Reliance on OLS regression coefficients. The second method addresses diversity in 

dependent variable metrics. Van den Noortgate and Onghena (2003a, 2003b) recommend using 

standardized OLS regression coefficients as the unit of analysis at level 1. According to their 

prescriptions, subjects‟ data sets are first analyzed using OLS regression procedures. The 

resulting coefficients are then divided by the root mean square error (RMSE) of the regression 

model. Finally, the corresponding covariance matrices are made comparable with division by the 
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mean square error (MSE). Alternatively, in their 2011 work, Van den Noortgate & Onghena 

suggest inputting OLS regression coefficients as level 1 data without first dividing coefficients 

and covariance matrices by the RMSE and MSE. Their 2011 work provides data that shows this 

method is associated with unbiased estimates of fixed effects and accurate confidence intervals. 

Division of scores by RMSE. Van den Noortgate & Onghena (2008) recommend a 

mathematically equivalent process to the use of standardized coefficients described above. They 

assert that division of all dependent scores by the RMSE of an OLS regression analysis, followed 

by synthesis of the standardized data with MLM, gives the same synthesis outcomes as above. 

However, in their 2011 work, the authors showed this method is associated with biased estimates 

of fixed effects and inaccurate confidence intervals. 

Approximations of z-scores. A final method, suggested by Van den Noortgate & Onghena 

(2003b), involves an adaptation of the formula for z-scores. The authors suggest subtracting the 

baseline mean from all dependent scores, and dividing the difference by the within-phase 

standard deviation. 

 Treatment of autocorrelation. Repeated measurements, and their residuals in regression 

models, are autocorrelated, or serially dependent, if the value of one figure depends on the value 

of one or more of the immediately preceding figures (Verbeke & Molenberghs, 1997). 

Autocorrelation represents a problem because MLM procedures are based on the assumptions that 

residuals of the model are uncorrelated (Raudenbush & Bryk, 2002). Violations of this 

independence assumption can lead to biased estimates of standard errors and variances, and thus 

biased tests of parameters (ibid). In group design research, the assumption of independence is 

often met. For example, in a study of a pain medication, the pain ratings given by subject A likely 

do not depend on the pain ratings given by subject B. Should the pain ratings depend on each 

other somehow (e.g., via common influence of a variable or the communication of expectations 
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from one subject to another) researchers can implement experimental controls to prevent 

systematic dependence. In single-subject research, measurements are theoretically serially 

dependent (Borckardt, Nash, Murphy, Moore, Shaw, & Neil, 2008). For example, an individual‟s 

pain rating at three o‟clock is dependent on his pain rating from two o‟clock, if for no other 

reason because it proceeds from the two o‟clock experience of pain. Similarly, repeated 

measurements of the weather and stock market are dependent upon previous measurements due to 

their continuity and gradualism (ibid). Additional factors that can contribute to dependence and 

autocorrelation of measurements include cyclical and random context variables that influence 

successive observations (Van den Noortgate & Onghena, 2003b). 

 Assessment of the problem of autocorrelation. Although SSED data is theoretically 

autocorrelated, observed levels of autocorrelation may not result in biased estimates and 

statistical tests. In the reviewed articles, the authors mention three strategies for determining 

when autocorrelation is present or represents a problem. 

As described above, Jenson and colleagues (2007) performed a simulation study which 

assessed the relationship between autocorrelation and type I error and power. Simulation of an 

extremely large number of data sets allowed the authors to empirically identify conditions in 

which various levels of autocorrelation in data may induce substantial bias and confound 

statistical tests. When researchers wish to assess the impact of autocorrelation on the modeling of 

data with specific characteristics, simulation studies are viable strategy. 

Van den Noortgate and Onghena (2003a, 2003b, 2007, 2008) describe a different 

approach useful for applied meta-analysts. When preparing an analysis of raw data, researchers 

can request for software packages to model a first-order autocorrelation of residuals within 

subjects. The software then uses all data to estimate an autocorrelation coefficient. The 

coefficient can be tested to determine if the level of autocorrelation is statistically significant. In 
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contrast to the method employed by Jenson et al. (2007), identification of a significant level of 

autocorrelation does not provide information regarding if and how estimates of standard error and 

variance, as well as statistical tests, are substantially biased. 

Nugent (1996) and Van den Noortgate and Onghena (2003a) comment on a third 

approach. The authors assert that individual data sets can be tested for significant levels of 

autocorrelation of successive residuals resulting from a regression model using Durbin-Watson 

statistics. Similar to above, identification of significant levels of autocorrelation with Durbin-

Watson statistics does not provide information on if and how MLM results may be biased. 

Solutions for problematic levels of autocorrelation. Nugent (1996) and Van den 

Noortgate & Onghena (2003a, 2003b, 2007) recommended solutions for problematic levels of 

autocorrelation. Nugent (1996) suggested use of a more complex model (e.g., quadratic model, as 

opposed to mean change) when residuals are found to be autocorrelated. He notes that 

misspecification of models are consistently associated with autocorrelated residuals (Greene, 

1990; Harvey, 1990). Van den Noortgate and Onghena (2003a, 2003b, 2007) recommend 

specification of an autoregressive covariance structure, as opposed to the default, simple 

covariance structure, when significant autocorrelation is identified. They claim autoregressive 

covariance structures attenuate or eliminate bias induced by autocorrelation. Ferron et al. (2009) 

found that when errors at level 1 are autocorrelated, specification of an autoregressive covariance 

structure and use of the Kenward-Rogers method for approximating degrees of freedom is 

associated with accurate estimation of confidence intervals. However, Ferron et al. (2009) also 

found that the practice did not reduce relative bias levels below the threshold of acceptability. 

 Analysis process. When performing a multilevel meta-analysis, researchers should 

proceed systematically through a series of steps (Raudenbush & Bryk, 2002). Generally, the 

process involves (a) preliminary analyses that assess how well a data sample meets the 
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assumptions of MLM, (b) recursive estimation of models and statistical testing of parameters that 

allow gradual determination of appropriate model specifications, and (c) estimation and testing of 

a final model. Omission of steps in the process risks model misspecification and/or biased results 

(ibid). Collectively, the reviewed articles addressed all aspects of the systematic analysis process. 

However, the guidelines offered by authors were limited in detail and no single article addressed 

all aspects of the process. 

 Preliminary analyses and the checking of assumptions. Four assumptions of MLM should 

be checked prior to meta-analysis of SSED data. The modeling procedures are based on 

assumptions that (a) outcomes are linear functions of the regression coefficients, (b) residuals are 

normally distributed, (c) residuals are independent, and (d) variance is homoscedastic 

(Raudenbush & Bryk, 2002). Also, analysts should examine the frequency distribution of each 

variable with attention to the shape, scale, existence of outliers, and possible needs for variable 

transformations (ibid).  

Three articles addressed preliminary analyses (Nugent, 1996; Van den Noortgate & 

Onghena, 2003a, 2003b). Nugent (1996) noted the assumptions of MLM, but did not discuss how 

or why to check assumptions. Van den Noortgate and Onghena (2003a, 2003b) addressed the 

importance of checking assumptions and suggested procedures for doing so. With regard to the 

assumption of normally distributed residuals, the authors recommended making normal 

probability plots of residuals and inspecting for outliers (2003b). To assess the independence of 

residuals, the authors recommended modeling a first-order autocorrelation within subjects and 

testing the resulting autocorrelation parameter for significance (2003a, 2003b). For the 

assumption of homoscedasticity, the authors recommended estimation of separate error terms for 

each experimental phase and comparing outcomes (2003b). Van den Noortgate and Onghena, and 
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Nugent did not comment on the assumption that outcomes are a linear function of regression 

coefficients, nor the need to examine the distributions of each variable. 

 Recursive model estimation. All articles reviewed commented to some degree on the 

process of building an appropriate model. Authors of each article stated that unconditional 

models, which do not contain any predictor variables, should be estimated first. Nugent (1996) 

additionally stated that unconditional models should be evaluated for their goodness of fit to the 

data. He suggested that researchers visually analyze the quality of models‟ representation of 

patterns in individual data sets. Should the model appear inappropriate, Nugent (1996) 

recommended alteration of the model (e.g., inclusion of linear or curvilinear parameters), re-

estimation, and visual analysis of the new model‟s goodness of fit to the data. 

 Each article similarly stated that predictor variables can be added to level 2 equations 

following estimation of an unconditional model. Van den Noortgate & Onghena (2003a, 2003b, 

2007) and Jenson et al. (2007) noted that predictor variables should be included when, and only 

when, significant variance in parameters exists across cases. 

As described above, Van den Noortgate and Onghena (2003a, 2003b, 2007) discussed 

inclusion of multiple error terms and specification of an autoregressive covariance structure. The 

authors recommended that researchers explore the need for and impact of including these 

elements during the recursive process of model building. 

Additionally, Van den Noortgate and Onghena (2003a, 2003b, 2007) state that when 

more than one dependent variable is analyzed, multivariate MLM methods should be employed.  

 Analysis with a final model. All articles reviewed commented on the estimation and 

testing of a final model. Each author or author group suggested that estimation of a final model 

should include statistical tests of the fixed and random effects at the highest level of the model. 

Van den Noortgate and Onghena (2003b) mentioned an alternative to the typical χ2 test for the 
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variance of random effects. They recommended testing the difference between fit statistics for 

models with and without random effects. 

  In addition to analysis with statistical tests, Nugent (1996) and Van den Noortgate (2007) 

recommend visual analysis of individual data sets. The authors mention visual analysis can 

qualify and supplement the findings of statistical tests. 

 Application of MLM to single-subject experimental data. A separate group of authors 

have conducted studies in which they applied MLM to single-subject experimental data. The 

literature search yielded 7 such studies (Adams, 2009; Hurwitz, 2008; Miller, 2006; Morgan & 

Sideridis, 2006; Terrazas Arellanes, 2009; Wade, Ortiz, & Gorman, 2007; Wang, Cui, & Parrila, 

2011). Three studies were peer-reviewed journal articles (Morgan & Sideridis, 2006; Wade, 

Ortiz, & Gorman, 2007; Wang, Cui, & Parrila, 2011) and the remaining 4 were dissertations 

(Adams, 2009; Hurwitz, 2008; Miller, 2006; Terrazas Arellanes, 2009). Four of the studies were 

meta-analyses (Hurwitz, 2008; Miller, 2006; Morgan & Sideridis, 2006; Wang, Cui, & Parrila, 

2011) and 3 were primary studies which aggregated and statistically tested results from individual 

participants using MLM (Adams, 2009; Terrazas Arellanes, 2009; Wade, Ortiz, & Gorman, 

2007). Table 2 presents summaries of the articles‟ methods. Below, the methods are described. 

Model specifications. The applied researchers made use of a variety of models at level 1 

and higher.  

Level 1 models. Generally, three types of models were specified at level 1: mean change 

models (Adams, 2009; Miller, 2006; Morgan & Sideridis, 2006; Wang, Cui, & Parrila, 2011), the 

SMD-based model (Hurwitz, 2008), and linear growth models (Terrazas Arellanes, 2009; Wade, 

Ortiz, & Gorman, 2007).  
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Researchers who used mean change models structured level 1 equations in several 

different ways. Miller (2006) and Wang, Cui, and Parrila (2011) employed simple mean change 

models. The researchers specified the following equation at level 1: 

Yij = πj(phase)ij + eij                                                      (19) 

where Yij and eij have similar meanings as before; (phase)ij is a dummy variable indicating a 

measurement took place during a treatment phase (i.e., phase = 1) or baseline phase (i.e., phase = 

0); and πj is a regression coefficient which serves as the treatment effect measure (i.e., the 

difference between phase means). The model used by Wang, Cui, and Parrila (2011) consisted of 

3 levels, and thus each term in the level 1 equation included a k subscript. Neither Miller (2006) 

nor Wang, Cui, and Parrila (2011) included an intercept in their level 1 models. The omissions 

were feasible due to their standardization methods, which set the mean of baseline measurements 

to zero (see Standardization of data on different metrics below). 

 The mean change model employed by Adams (2009) included a linear slope, continuous 

across all phases, and predictor variables. Adams (2009) specified the following equation at level 

1: 

Yij = π0j + π1j(wear duration)ij + π2j(day of week)ij + π3j(time)ij + π4j(phase)ij + eij         (20) 

where Yij and eij have similar meanings as before; π0j is the overall mean of the baseline and 

withdrawal (i.e., second baseline) phases, when controlling for trend; π1j is a regression 

coefficient that serves as a measure for the incremental effect associated with an increase of 1 in 

wear duration; (wear duration)ij is the number of hours the independent variable was implemented 

on a given day, centered on the grand mean; π2j is a regression coefficient that represents the 

difference between means of the dependent variable on weekdays and weekends during 

intervention, when wear duration equals the overall average and trend is controlled; (day of 

week)ij is a dummy variable indicating the measurement took place on a weekday (i.e., day of 
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week = 1) or weekend (i.e., day of week = 0); π3j is a regression coefficient that represents the 

linear slope, continuous across all phases; (time)ij is the number of days lapsed since the 

beginning of data collection; π4j is a regression coefficient which represents the difference 

between phase means, when wear duration equals the overall average, day of the week equals 

weekend, and trend is controlled; and (phase)ij is a dummy variable indicating the measurement 

took place during baseline or withdrawal (i.e., phase = 0), or during treatment (i.e., phase = 1). 

 Morgan and Sideridis (2006) structured their model to depict the percent change between 

phase means. Their model additionally included a linear slope, continuous across phases. The 

researchers specified the following equation at level 1: 

Yij = π0j + π1j(time)ij + π2j(baseline   )ij + eij                                    (21) 

where Yij and eij have similar meanings as before; π0j is the model intercept, which represents the 

mean of baseline measurements when controlling for trend; π1j is a regression coefficient that 

represents the continuous linear slope; (time)ij is the session number; π2j is a regression coefficient 

that serves as the treatment effect measure (i.e., the percent change between baseline and 

treatment phase means, after controlling for trend, expressed as a decimal); and (baseline   )ij is 

the mean of baseline measurements. 

 The SMD-based model employed by Hurwitz (2008) seemed to be identical to that 

suggested by Van den Noortgate and Onghena (2003a). Hurwitz did not explicitly define the 

equations she used in her model. Based on descriptions of her methods and results, she appeared 

to use the following equation at level 1: 

         
j = βk + rj                                                              (22) 

where          
j is an effect size for subject j; βk is the average effect size for consultant k; and rj is 

the deviation of          
j from βk. 
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The final model type specified at level 1 was the linear growth model. Terrazas Arellanes 

(2009) and Wade, Ortiz, and Gorman (2007) made use of models that accounted for differences 

between phases in means and slopes. 

Terrazas Arellanes (2009) employed the following equation at level 1: 

Yij = π0j + π1j(time)ij + π2j(phase)ij + π3j(phase)ij(time in treatment)ij + eij                  (22) 

where Yij and eij have similar meanings as before; π0j is the model intercept which represents the 

expected value of the first baseline measurement; π1j is a regression coefficient that represents the 

slope of a regression line for baseline data; (time)ij is the session number; π2j is a regression 

coefficient that represents the difference between the expected y-values for the final baseline 

measurement and the intercept of the treatment regression line, which has an x-value equal to the 

final baseline session number (i.e. the immediate effect, specified to take place at the end of the 

baseline phase); (phase)ij is a dummy variable that indicates a measurement took place during the 

treatment phase (i.e., phase = 1) or baseline phase (i.e., phase = 0); π3j is a regression coefficient 

that represents the difference between slopes of the baseline and treatment regression lines; (time 

in treatment)ij is the session number minus the number of baseline sessions.  

Wade, Ortiz, & Gorman (2007) employed the following equation at level 1: 

Yij = π1j(baseline)ij + π2j(treatment)ij + π3j(follow-up)ij + π4j(baseline time)ij + 

π5j(treatment time)ij+ π6j(follow-up time)ij+ eij                                      (23) 

where Yij and eij have similar meanings as before; π1j, π2j, and π3j are regression coefficients that 

represent the mean of baseline, treatment, and follow-up phase measurements, respectively; 

(baseline)ij, (treatment)ij, and (follow-up)ij are dummy variables that indicate a measurement took 

place during the phase (i.e., variable = 1) or not (i.e., variable = 0); π4j, π5j, and π6j are regression 

coefficients that were meant to represent the slopes of regression lines for baseline, treatment, and 

follow-up phases, respectively (however, since the coefficients are not selectively “turned off” by 



38 

 

phase designating dummy variables, they do not serve as accurate estimates of within-phase 

slopes); and (baseline time)ij, (treatment time)ij, and (follow-up time)ij are variables that indicate 

the number days that have passed since the phase began (i.e., day 1 = 0, day 2 = 1, etc). 

Higher level models. Final models estimated by authors were both unconditional (i.e., did 

not include predictor variables at the highest level) and conditional (i.e., did include predictor 

variables at the highest level).  

Adams (2009), Miller (2006), Terrazas Arellanes (2009), and Wade, Ortiz, and Gorman 

(2007) estimated final models without predictor variables at the highest level. Miller (2006) 

explored inclusion of a number of predictor variables at level 2, but found each to be 

insignificant. Adams (2009) tested the variance at level 2 and found that subjects‟ level 1 

parameters did not vary significantly. Consequently, Adams decided not to add level 2 predictors 

to his model. Terrazas Arellanes (2009) and Wade, Ortiz, and Gorman (2007) did not report 

considering or testing predictor variables.  

Hurwitz (2008), Morgan and Sideridis (2006), and Wang, Cui, and Parrila (2011) 

estimated final models with predictor variables at the highest level. Hurwitz (2008) stated that she 

tested parameters for a number of level 2 predictor variables and only retained those that were 

statistically significant. Morgan and Sideridis (2006) and Wang, Cui, and Parrila (2011) did not 

report estimating an unconditional model or testing the variance at level 2 in preparation of 

adding predictor variables. Further, the authors did not remove insignificant predictors from their 

final model. 

Hurwitz (2008) added two predictor variables to her model‟s second level. Although she 

didn‟t define her level 2 equation, her methods and results suggested she used the following 

model: 

βk = γ0 + γ1(study)k + γ2(# of completed cases)k + uk                            (24) 



39 

 

where βk is the average SMD produced by consultant k; γ0 is a regression coefficient that 

represents the hypothetical overall average SMD for subjects from study 1, whose consultant 

completed 0 cases; γ1 is a regression coefficient that represents the hypothetical difference in 

effects associated with study 1 and 2, when (# of completed cases)k = 0; (study2)k is a dummy 

variable that indicates a consultant was a member of a study 1(i.e. study = 0) or study 2 (i.e. study 

= 1); γ2 is a regression coefficient that represents the incremental effect associated with an 

increase of 1 in the number of cases completed by a consultant, when controlling for study; (# of 

completed cases)k is the number of cases completed by a consultant; and uk is the deviation of 

expected values for βk from the values estimated at level 1.  

Morgan and Sideridis (2006) added 4 predictor variables to 2 of their model‟s second 

level equations. They specified the following 3 equations at level 2: 

π0j = β01(sex)j + β02(age)j + β03(placement)j + β04(treatment1)j + β05(treatment2)j + β06(treatment3)j +                                                                                      

β07(treatment4)j + β08(treatment5)j + β09(treatment6)j + β010(treatment7)j + r0j                      (25) 

π1j = β11(sex)j + β12(age)j + β13(placement)j + β14(treatment1)j + β15(treatment2)j + β16(treatment3)j + 

β17(treatment4)j + β18(treatment5)j + β19(treatment6)j + β110(treatment7)j + r1j                      (26) 

π2j = β20 + r2j                                                                                                                                  (27) 

where π0j, π1j, and π2j are level 1 parameters for subject j; β01 through β010 and β11 through β110 are 

regression coefficients that represent the effects associated with each variable, when controlling 

for other variables; (sex)j is a dummy variable that indicates subject j is male (i.e., sex = 1) or 

female (i.e., sex = 0); (age)j is a dummy variable that indicates the subject is in grades K – 4 (i.e., 

age = 0) or 5 – 12 (i.e., age = 1); (placement)j is a dummy variable that indicates the subject 

receives special education services (i.e. placement = 0) or general education services (i.e., 

placement = 1); (treatment1)j through (treatment7)j are dummy variables that comprise a single 
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categorical variable and indicate a subject received a type of treatment (treatment# = 1) or did not 

(treatment# = 0); β20 is the average of π2 parameters across subjects; and r0j, r1j, and r2j are 

random effects that represent the deviation of expected values from the estimates of level 1 

equations. Morgan and Sideridis (2006) stated they omitted intercepts from the level 2 equations 

in order to make the β parameters directly comparable. 

 Wang, Cui, and Parrila (2011) added 2 variables and an interaction term to their model‟s 

third level equation. They specified the following equation at level 3: 

βk = γ0 + γ1(treatment)k + γ2(age)k + γ3(age*treatment)k + uk                        (28) 

where βk is the average treatment effect measure for subject k (i.e., βk is the outcome of level 2 

equations, which synthesize the j multiple effect measures for a single participant); γ0 is a 

regression coefficient that represents the hypothetical, overall average effect measure for subjects 

who received treatment 1 (i.e. treatment = 0), and had an age of 0; γ1 is a regression coefficient 

that represents the difference in effects associated with treatment 1 and treatment 2, when 

controlling for age and the interaction of age and treatment type; (treatment)k is a dummy variable 

that indicates a subject received treatment 1 or treatment 2 (i.e., treatment = 1); γ2 is a regression 

coefficient that represents the incremental effect associated with an increase of 1 in age, when 

treatment equals 0; (age)k is the age of subject k in years; γ3 is a regression coefficient that was 

meant to represent the incremental effect associated with the interaction of age and treatment 

(however, it only represents the interaction effect when (treatment)k = 1; when (treatment)k = 0, 

the interaction term equals zero and γ3 is “turned off”); (age*treatment)k is the product of a 

subject‟s age and the dummy code for the treatment they received; and uk is the deviation of 

expected values for βk from those estimated at level 1. 
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 Unit counts. Among the reviewed studies, only the meta-analyses (i.e., Hurwitz, 2008; 

Miller, 2006; Morgan & Sideridis, 2006; Wang, Cui, & Parrila, 2011) appeared to have adequate 

unit counts at each level. The studies involved between 43 and 202 units at the highest levels of 

models, and between 650 and 1796 units at level 1. The primary studies, in which MLM was used 

to synthesize and test results from multiple participants (i.e., Adams, 2009; Terrazas Arellanes, 

2009; Wade, Ortiz, & Gorman, 2007), consistently involved inadequate numbers of units at level 

2. The studies analyzed data for 5, 5, and 12 cases, respectively. Evaluation of the adequacy of 

unit counts is based on the rough estimates offered by Van den Noortgate and Onghena (i.e., 20+ 

or 30+ units at each level; 2003b, 2007).  

Data extraction. Authors of the reviewed articles employed a variety of data extraction 

procedures. Morgan and Sideridis (2006) and Wang, Cui, and Parrila (2011) limited data 

collection to subjects‟ first baseline and treatment phase pairs only (i.e. AB pairs). All other 

authors extracted all data available. In the cases of Hurwitz (2008) and Terrazas Arellanes (2009), 

this involved extraction of one AB pair per subject. Adams (2009) collected data from all phases 

of an ABA design. For Wade, Ortiz, and Gorman (2007), extraction involved data from one 

baseline, treatment, and follow-up phase for each subject. Miller (2006) collected data from 

various numbers of phases per subject. She extracted data from AB pairs and withdrawal designs 

(i.e. ABA, ABAB). Authors who collected data from more than one baseline and/or treatment 

phase (i.e., Adams, 2009; Miller, 2006) aggregated the data for like-phases prior to analysis 

without first examining the consistency of data phenomena. 

For several studies, authors extracted data on multiple dependent variables (Adams, 

2009; Morgan & Sideridis, 2006; Terrazas Arellanes, 2009; Wade, Ortiz, & Gorman, 2007; 

Wang, Cui, and Parrila, 2011). Adams (2009), Terrazas Arellanes (2009), and Wade, Ortiz, and 

Gorman (2007) analyzed data for multiple dependent variables separately, in different multilevel 
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models. Morgan and Sideridis (2006) treated the multiple dependent variables as different cases 

at level 2, the highest level of their model. The authors made use of weights to equalize the 

influence of subjects who contributed multiple data sets with subjects who contributed 1 data set. 

In contrast, Wang, Cui, and Parrila (2011) combined effect measures for multiple dependent 

variables by subject in the second level of their 3 level model. Consequently, the authors did not 

use weights in their analysis. 

Standardization of data on different metrics. Two studies standardized data on different 

metrics prior to analysis (Miller, 2006; Wang, Cui, & Parrila, 2011). Morgan and Sideridis (2006) 

meta-analyzed data on different metrics, but did not standardize the data. The remaining authors 

did not need to standardize data, because their data were on consistent metrics. 

 Miller (2006) standardized her data by transforming dependent measurements into z-

scores. In contrast to the recommendations of Van den Noortgate and Onghena (2003b), Miller 

(2006) calculated z-scores by subtracting subjects‟ within-phase means from measurements and 

dividing the differences by the within-phase standard deviations. Subsequently, Miller (2006) 

subtracted subjects‟ mean baseline z-scores from all standardized scores. 

 Wang, Cui, and Parrila (2011) also standardized their data by transforming dependent 

measurements into z-scores. In contrast to both the recommendations of Van den Noortgate and 

Onghena (2003b) and the technique of Miller (2006), the researchers calculated z-scores by 

subtracting subjects‟ overall means from measurements and dividing the differences by overall 

standard deviations. Wang, Cui, and Parrila (2011) also subtracted the mean baseline z-score 

from all standardized scores. 

 Treatment of autocorrelation. One study involved treatment of autocorrelation (Adams, 

2009). Adams (2009) assessed the level of autocorrelation by modeling a first-order 

autocorrelation of residuals within-subjects in an unconditional model. After finding a statistically 
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significant level of autocorrelation in his sample, Adams specified a heterogeneous autoregressive 

covariance structure for subsequent models. No other studies reported attending to autocorrelation 

issues. 

Analysis process. Generally, authors of the reviewed articles did not proceed 

systematically through analyses according to the standards for MLM (Raudenbush & Bryk, 

2002). Often, processes that were undertaken were conducted in a flawed or limited manner. In 

most papers, analysis choices were not explained or justified with rationale or references.  

 Preliminary analyses and the checking of assumptions. Only 1 study involved a 

preliminary analysis (Adams, 2009). As described above, Adams (2009) assessed the level of 

autocorrelation in his sample. No other preliminary analyses were performed by Adams (2009) or 

other authors. 

Recursive model estimation. Authors of the reviewed articles based very few decisions of 

model specifications on data. As mentioned above, only one author referenced data in his 

consideration of level 1 models (Adams, 2009). Adams (2009) estimated several models, assessed 

their fit to the data with statistical and visual analyses, and selected the best fitting model. 

Authors who chose level 1 models that ignored trend (i.e., Hurwitz, 2008; Miller, 2006; Wang, 

Cui, and Parrila, 2011) did not report inspecting data for an absence of trends. With regard to 

level 2 models, only 3 authors based their selection on data (Adams, 2009; Hurwitz, 2008; Miller, 

2006). As described above, Adams (2009) decided not to include predictor variables at level 2 

after finding level 1 parameters did not significantly vary across subjects (i.e., level 1 variance 

components were not significant). Hurwitz (2008) and Miller (2006) tested the significance of 

predictor variables included at level 2. After finding some or all of the variables were 

insignificant, the authors omitted the insignificant predictors from their final models. 
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Analysis with a final model. Authors committed a number of errors in their final models 

and analyses. Ideally, the final model should only include significant parameters and the 

associated variables (Raudenbush & Bryk, 2002). Also, final analyses should involve statistical 

tests of both fixed and random effects (ibid). For applications of MLM in primary research, final 

analyses should additionally incorporate visual analyses (Nugent, 1996; Van den Noortgate & 

Onghena, 2007). Only the analyses by Adams (2009), Hurwitz (2008), and Miller (2006) met 

these ideals. Several authors omitted tests of random effects (i.e., Morgan & Sideridis, 2006; 

Terrazas Arellanes, 2009; Wang, Cui, & Parrila, 2011). Also, several authors failed to remove 

insignificant predictors from final models (Morgan & Sideridis, 2006; Wade, Ortiz, & Gorman, 

2007; Wang, Cui, & Parrila, 2011). On a positive note, all applications of MLM in primary 

research did incorporate visual analyses along with statistical analyses (Adams, 2009; Terrazas 

Arellanes, 2009; Wade, Ortiz, & Gorman, 2007). 

Discussion 

 This literature review summarizes the methodological content of 6 commentary, 6 

experimental, and 7 applied articles. Review of the articles suggests the use of MLM with SSED 

is viable. However, much remains unknown about the methodological properties of MLM with 

regard to SSED. It appears certain practices and data characteristics can invalidate the use of 

MLM. Additional research is needed to clarify when the use of MLM with SSED is and is not 

appropriate. In the sub-sections below, a critique is offered on the use of MLM with SSED and 

the needs for future research are delineated.  

Critique of Application of MLM with SSED. The following critique is organized in 

parallel with the sub-sections of the Results section. The methodological issues of using MLM 

with SSED are discussed with regard to (a) model specifications, (b) unit counts, (c) data 
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extraction, (d) standardization of data on different metrics, (e) treatment of autocorrelation, and 

(f) the analysis process. 

Model specifications. The models used in analyses should represent data phenomena 

with accuracy and precision. Construction of models with good fit to data involves, at a 

minimum, (a) perusing graphs of data with an eye for general patterns, (b) formulation and 

estimation of one or more unconditional models that summarize observed patterns, and (c) 

comparison and evaluation of the fit of each model variety using statistical tests and visual 

analysis, prior to selection of a final model (Nugent , 1996; Raudenbush & Bryk, 2002; Van den 

Noortgate & Onghena, 2003a, 2003b, 2007). Achieving good model fit may also require 

inclusion of predictor variables at level 2 and/or higher (Raudenbush & Bryk, 2002). 

Level 1 specifications. Level 1 models that do not fit data well fail to do so for a number 

of reasons. At times, models may omit necessary elements. For example, when trended data is 

analyzed with mean change and SMD-based models, the trends confound estimates of means and 

standard deviations. Compared to models that incorporate trend, the residuals are exaggerated, 

model fit is diminished, and estimates of fixed effects are less accurate (Van den Noortgate & 

Onghena, 2003a). Similarly, use of single error terms can confound estimation of variance 

components. Treatments regularly induce changes in the variance of measurements from baseline 

levels. When this occurs, and additional error terms are not included, variance components may 

be biased (Van den Noortgate & Onghena, 2003b). Perusing graphs of data with an eye for 

general patterns, as well as evaluation of models‟ fit with statistical tests and visual analyses can 

help analysts recognize omission of necessary elements. 

Also, models may produce error as artifacts. For example, linear and polynomial growth 

models force trend components (e.g., parameters for linear and curvilinear slopes) to have 

constant values within phases. However, trends in single-subject data are at times discontinuous 
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and vary within phases. Implementation of a treatment may be first followed by a sudden 

behavior spike, then a gradual behavior reduction, and, eventually, the leveling off of behavior. 

When such phenomena are summarized with linear or polynomial growth models, the expected 

values of models can deviate greatly from actual observed data. Models may misrepresent some 

or all fluctuations in the data, and they may produce unrealistic values (e.g., expected final 

outcomes in the negative range or beyond ceilings, such as 150% of intervals). Again, perusing 

graphs of data with an eye for general patterns, as well as evaluation of models‟ fit with statistical 

tests and visual analyses can help analysts recognize artifactual error. 

 Incorrect formulation of level 1 equations can also lead to poor model fit. For example, 

Wade, Ortiz, and Gorman (2007) appeared to incorrectly specify the terms for within-phase 

slopes in their model (see Equation 23). In their model, the terms are not “turned off” by dummy 

variables (indicating measurements took place during a particular phase), and thus are formulated 

to be constant across all phases. Visual inspection of the graphs provided in their paper shows the 

slopes did vary across phases, and thus the model fit was likely diminished by the 

misspecification. Similarly, Terrazas Arellanes (2009) likely obtained relatively poorer model fit 

due to her choice of level 1 model formulation (see Equation 22). Terrazas Arellanes (2009) 

specified the term for change in treatment slope (i.e., [phase]ij*[time in treatment]ij) to include the 

difference between the session number and the number of baseline sessions (i.e., time in 

treatment = nt – nb). As a result, for the final baseline and first treatment data points, the term 

equals 0 and 1, respectively. Thus, the gradual effect begins at the end of baseline and first 

registers in the first treatment data point. Visual inspection of the graphs provided in her paper 

suggests that the formulation should have involved adding 1 to the number of baseline sessions 

(i.e., nt – [nb + 1]; Huitema & McKean, 2000). Doing so would have placed the intercept of the 

treatment regression lines at the first treatment data point, causing the gradual effect to first 
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register in the second treatment data point, and avoiding confounding of the immediate effect. In 

each of these cases, estimation and comparison of multiple models may have helped identify the 

possible errors in formulation.  

Models may also fail to fit well due to high variance in data (Adams, 2009; Van den 

Noortgate & Onghena, 2003b). Taking many repeated measurements within-subjects can result in 

increased exposure to the effects of extraneous variables (e.g., history effects, setting events; 

Kennedy, 2005). The presence of extraneous variables is theoretically one source responsible for 

high variance in single-subject data.  

Given the common presence in SSED data of between-phase level changes and within-

phase linear and curvilinear trends, the following model has the potential to fit data well (Nugent, 

1996; Van den Noortgate & Onghena, 2003a, 2008):  

Yij = π0j + π1jTij + π2j(treatment)ij + π3j(Tij – [nt + 1])(treatment)ij + 

π4j(Tij – [nt + 1])2(treatment)ij + eij                                             (29) 

where Tij represents the session number at time i for subject j and nt represents the total number of 

baseline data points (see Figure 1 and the text below for additional clarification). Use of this 

equation allows modeling of deceleration or acceleration of treatment phase behavior, as well as 

changes in direction of behavior trends during treatment phases (e.g., behavior spikes, followed 

by gradual declines of behavior). Both types of phenomena are common in single-subject data. 

Additionally, the model formulates the gradual linear and curvilinear effects of treatment as 

beginning at the start of the treatment phase (as opposed to the end of the baseline phase), which 

is consistent with field-wide expectations for the onset of treatment effects (Kennedy, 2005). 

Should a sample of data not be characterized by particular trends (i.e., linear or curvilinear) or 

changes between phases (i.e., slope change or immediate level change), estimates of the fixed 

effects will approximate zero. In such scenarios, inclusion of the extraneous parameters does not 
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compromise the model‟s fit to data. However, when tests of the fixed effects yield insignificant 

results, analysts may choose to remove the insignificant parameters. Unless visual analyses of 

data samples suggest otherwise, model building should begin with either an assessment of this 

model‟s fit to data, or a variety of this model that includes separate error terms for each phase. 

Figure 1 visually illustrates the meaning of each parameter in Equation 29. The “actual 

data” (in blue, connected with a hatched line) was taken from Turner, et al. (1996). The data 

consist of 5 baseline and 5 treatment phase data points. The “polynomial model” (in green, with a 

solid line) was estimated using OLS regression procedures. Due to the inclusion of the dummy 

variables (treatment)ij, two distinct regression lines were estimated simultaneously during the 

regression analysis. When analyzing the baseline data, the dummy variables equaled 0 and 

effectively “turned off” the third, fourth, and fifth terms in the model. As a result the first two 

terms alone described baseline data, and the last three terms described the changes that take place 

in treatment phase data. In the model, π0j serves as the intercept and represents the expected level 

of behavior during the first baseline session (i.e., the y-value when x=1). The parameter π1j 

describes the linear trend in baseline data (i.e., the slope of the baseline regression line). The 

treatment effects are captured in π2j, π3j, and π4j. The first of these, π2j represents the difference 

between the expected level of behavior in the first treatment session and the expected level of 

behavior  

had the baseline phase continued (i.e., the vertical distance between the intercept of the treatment 

regression line and the baseline regression line, when extended into the treatment phase). The 

parameters π3j and π4j describe the changes between trends in treatment phase and baseline data. 

The difference between the linear slope component of the treatment phase regression line and the 

slope of the baseline regression line is represented by π3j. Due to the fact that π1j remains “on” 

during the treatment phase and is not “turned off” by a dummy variable, the linear slope 
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component of the treatment phase regression line equals π1j plus π3j. The curvilinear slope of the 

regression line is represented by π4j. Together, π1j, π3j, and π4j shape the curvature of the treatment 

phase regression line. Finally, eij serves as the error term or residual of the model (i.e., the vertical 

distance between each “actual data” point and the model‟s expected values). 

 Incorporation of predictor variables. The incorporation of predictor variables can 

improve model fit, as well as parameter accuracy and precision. Although predictor variables may 

be included at any level of the model, typical practice involves including predictors at levels 2 

and higher (Raudenbush & Bryk, 2002).  

 Traditionally, single-subject researchers make efforts to hold all variables constant for the 

duration of each phase (Kennedy, 2005). This exercise of experimental control is important for 

achieving internal validity in SSED. MLM and other statistical modeling procedures create an 

opportunity for a shift in practice. Instead of holding all variables constant, researchers could 

benefit from allowing certain variables to vary across time and measuring their levels during each 

session. After data collection is complete, researchers could then assess the relationships between 

the time-varying variables and dependent scores. Instead of relying on experimental controls, 

statistical control would grant internal validity to findings. The drawback to such an approach is 

the need for large samples of data points and subjects. As predictor variables and their parameters 

are added to models, successful estimation requires increasingly large samples.   

 Several practices may limit the benefit of including predictor variables. For one, 

modeling outcomes simply as the linear sum of effects of predictor variables can confound 

results. Often, variables interact. In such cases, the overall effect of multiple variables can be 

deconstructed into interaction effects and unique effects. To illustrate, Morgan and Sideridis 

(2006) may have confounded their analysis by not including parameters for interaction effects in 

their model. Their level 2 outcome, the percent change in phase means, may not be a linear 
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function of the unique effects of subjects‟ sex, age, educational placement, and treatment 

received. The variables could have interacted in such a way that each combination of conditions 

is uniquely associated with a particular level of percent change. If this was true, Morgan and 

Sideridis‟ (2006) model would have been improved by including several interaction terms. 

Unfortunately, the addition of interaction terms can quickly make estimation of models infeasible, 

due to sample size requirements.  

 Incorrect formulation of models can also limit the benefit of including predictor 

variables. For example, Wang, Cui, and Parrila (2011) may have incorrectly specified the 

interaction term in their conditional model (see Equation 28). The researchers sought to estimate 

the interaction between age and treatment type (i.e., a dummy variable). However, their 

formulation of the interaction involved multiplication of the dummy variable and numeric 

variable. Thus, it appears that when the treatment type equaled the reference category (i.e., 

treatment = 0), the interaction term equaled zero, and the term was effectually deleted from the 

model. Consequently, estimation of the effect of the interaction may have only drawn on data 

involving the comparison treatment (i.e., when treatment = 1 and the interaction term is retained 

in the model). 

 Additionally, not centering numeric variables can complicate interpretation of estimates 

of intercepts and parameters representing level change. parameter estimates. In their models, 

Hurwitz (2008) and Wang, Cui, and Parrila (2011) both left variables associated with level 

change parameters uncentered. As a result, the intercepts and level change parameters in their 

models have no practical meaning. As stated above, certain parameters represent hypothetical, 

average outcomes for subjects whose age is 0 or whose consultant had completed 0 cases. 

Centering the numeric variables on average values would have resulted in practically meaningful 
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estimates (i.e., the average outcome for subjects of the average age or whose consultant had 

completed the average number of cases). 

  Unit counts. While the recommended minimum unit counts of Van den Noortgate and 

Onghena (2003b, 2007) are reasonable rules of thumb, the adequacy of sample sizes depends on a 

variety of variables (Spybrook, Raudenbush, Congdon, & Martinez, 2009; Raudenbush, 1997; 

Raudenbush & Liu, 2000). The magnitude of effects, intra-class correlations, proportions of 

variance explained by level 2 predictor variables, and the power of analysis procedures interact to 

create sample size requirements unique to each analysis. To be confident that sample sizes are 

adequate, additional research will need to be done that clarifies the relationships between SSED 

data characteristics, sample sizes, precision and reliability of parameter estimates, and the validity 

of statistical tests.  

Jenson et al. (2007), Bell et al. (2011), Ferron and colleagues (2009 and 2010), and Van 

den Noortgate & Onghena (2011) have begun the process of clarifying such relationships. 

However, the relationships have not been explored for many common conditions typically 

encountered in single subject research.  

Unfortunately, research conducted on sample size requirements for the analysis of group 

design data cannot provide guidelines for the meta-analysis of SSED. Various common 

characteristics of single-subject data, such as very large effects, high variability, and presence of 

autocorrelation, are typically not shared by group design data.  As a result, the power of MLM 

analyses of single-subject data is likely different than the power achieved with group design data. 

Also, the proportion of variance explained by level 2 predictor variables is likely smaller when 

analyzing SSED data (Adams, 2009; Van den Noortgate & Onghena, 2007). 

In the applied studies reviewed, unit counts likely represented a problem for the primary 

studies. The numbers of subjects included in the analyses (i.e., 5, 5, and 12; Adams, 2009; Wade, 
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Ortiz, & Gorman, 2007; and Terrazas Arellanes, 2009, respectively) are typical for SSEDs 

(Horner et al., 2005). Should research confirm that these sample sizes are associated with poor 

precision, reliability, and validity, MLM should not be regularly used in the analysis of primary 

studies‟ data.  

Data extraction. The choice of which data to extract for analysis should vary from 

sample to sample. Ideally, all data available for each subject would be extracted and incorporated 

in models (Van den Noorgate & Onghena, 2003a, 2007). However, conditions may make this 

undesirable or unfeasible. For example, a sample may contain diverse designs, such as multiple 

baseline designs made up of single AB pairs, withdrawal designs made up of multiple AB pairs, 

and alternating treatment designs in which AB pairs are followed by additional treatment phases 

(e.g., ABCD). In order to extract and make use of all data for subjects, the sample must be limited 

to a single design of consistent format (e.g., withdrawal designs with 2 AB pairs). Unfortunately, 

this option requires exclusion of data sets not meeting the design criteria. Alternatively, extraction 

could be limited to the first AB pairs of all designs (Morgan & Sideridis, 2006; Wang, Cui, & 

Parrila, 2011). With this option, wide samples of data may be collected. Although information 

from later phases is lost, the effect of interest is often captured in the first AB pair, with later 

phases serving to demonstrate experimental control. When making the choice of which data to 

extract, researchers should consider options that maximize the information included in analyses 

and allow them to most comprehensively answer their research questions. 

 Should a researcher extract data from multiple like-phases, the data from each phase 

should be modeled with separate parameters, unless analysis supports doing otherwise (Van den 

Noortgate & Onghena, 2003a). For example, if a researcher extracts data from ABAB designs, 

the level 1 model initially estimated should include distinct parameters for the first and second 

baseline phases, as well as the first and second treatment phases. Estimation of separate 
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parameters will allow researchers to observe if phenomena are consistent or vary across like-

phases. Statistical tests can be then be performed to determine if phenomena differ significantly 

or if like-phase data may be aggregated. Assumption that phenomena are similar across like-

phases and aggregation of data without supporting evidence represents poor practice (e.g., 

Adams, 2009; Miller, 2006). 

Should a researcher extract data on multiple dependent variables, multivariate MLM 

procedures should be used in analyses (Van den Noortgate & Onghena, 2003a, 2003b, 2007). 

However, when dependent variables are theoretically similar, incorporation of multiple effect 

measures per subject in models is feasible via use of weights and/or additional levels in models 

(Morgan & Sideridis, 2006; Wang, Cui, & Parrila, 2011).   

Standardization of data on different metrics. Little is known about the need for 

standardization of single-subject data on different metrics. The various methods of assessing 

dependent variables certainly do produce data on different metrics. However, the degree to which 

data on different metrics is different is not known. For example, data taken on a particular subject 

using partial interval recording with continuous intervals may or may not be significantly 

different than data taken during the same time using partial interval recording with interrupted 

intervals. Further, the difference between using 5 second intervals and 15 second intervals has not 

been empirically tested in large samples. At the moment, standardization represents best practice 

due to the likelihood that data on most metrics is not directly comparable (e.g., frequency counts 

and partial interval recording). However, research will need to be done to clarify which metrics 

are significantly different from each other and which metrics may be synthesized without 

standardization. 

Similarly, little is known about the fidelity of transformations involved in standardization 

of data. For example, single-subject data often contain trends. These trends can be misrepresented 
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by the standardization methods recommended by Van den Noortgate and Onghena (2003a, 

2003b, 2008). The use of OLS regression-based techniques, when an overly simplistic model is 

specified, as well as z-score transformations can vertically or horizontally compress the spread of 

data points, such that trends are exaggerated or attenuated. The z-score calculations used by 

Miller (2006) and Wang, Cui, and Parrila (2011) similarly have the potential to bias trended data. 

Wang, Cui, and Parrila (2011) used a formula that is especially inappropriate for SSED data. 

Their formula incorporated overall means and standard deviations for individuals‟ data sets. Since 

means and standard deviations presumably differ across phases, the use of overall means and 

standard deviations likely introduced error into their standardized scores.  

Extreme data points pose a similar threat as trends to data standardization. Outliers are 

common in single-subject data (Allison & Gorman, 1994). These data points may confound the 

use of z-score standardization methods by skewing means and standard deviations, and inducing 

error in all z-scores. Outliers also threaten to confound the analysis of unstandardized data and 

data standardization using OLS regression-based techniques. However, outliers have the greatest 

potential to bias z-scores, due to the impact they have on all scores. In contrast, outliers may not 

affect all scores when regression-based standardization techniques are used or data is analyzed 

without standardization. Research will need to be done to clarify which methods are appropriate 

for single-subject data and what conditions are associated with poor fidelity of transformations. 

Treatment of autocorrelation. The levels of residuals‟ autocorrelation should be assessed 

during all multilevel analyses of SSED data. Both assessment methods discussed by authors may 

provide useful information to analysts (Nugent, 1996; Van den Noortgate & Onghena, 2003a, 

2003b, 2007, 2008). However, Durbin-Watson statistics are known to contain bias when 

estimated for small data sets (Huitema & McKean, 1998; Riviello & Beretvas, 2008). Modeling 

of first-order autocorrelations within subjects using MLM software allows analysts to estimate the 
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level of autocorrelation in the whole sample (Verbeke & Molenberghs, 1997). This procedure 

may produce less biased results. The present author‟s research has not uncovered findings 

regarding the performance of such estimations. 

As stated above, significant levels of autocorrelation may not confound statistical tests. 

The threshold at which autocorrelation becomes disruptive may be higher than levels identified as 

statistically significant. Currently, little is known about the impact of various levels of 

autocorrelation in SSED data on the tests involved in MLM. The work of Jenson et al. (2007) and 

Ferron et al. (2009) helped to clarify the relationships of type I and II error, confidence interval 

accuracy, various design variables, and levels of autocorrelation. However, the limitations of their 

studies (e.g., use of a mean change model only with data that generated to not contain trends) 

prevent the findings from generalizing to other conditions. Related research on autocorrelation 

and alternative summary procedures for SSED data (e.g., modified R2 indices; Beretvas & Chung, 

2008) suggests that autocorrelation will likely pose a problem for MLM analyses in certain 

conditions. Future research should clarify which combinations of conditions are associated with 

biased standard errors and variance components, and compromised statistical tests. 

If researchers have reason to assume that observed levels of autocorrelation will 

confound statistical tests, an autoregressive covariance structure could be specified for the model 

(Ferron et al., 2009; Van den Noortgate & Onghena, 2003a, 2003b, 2007; Verbeke & 

Molenberghs, 1997). This alternative covariance structure has the potential to attenuate or 

eliminate the impact of autocorrelation on analysis results. However, certain common 

characteristics of single-subject data (e.g., high variability and tendency toward large residuals) 

may interfere with the covariance structure‟s resolution of the problem of autocorrelation. 

Research is needed to confirm that the practice is efficacious with single-subject data across data 

conditions.  
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Analysis process. In both the articles which comment on use of MLM with SSED and 

those that apply the methods, address of the assumptions of MLM and the associated preliminary 

analyses is insufficient. A variety of conditions commonly found in SSED data can violate the 

assumptions and invalidate modeling outcomes and/or statistical tests. Preliminary analyses that 

involve checking the assumptions and distributions of variables are an important and necessary 

piece of the analysis process. Admittedly, the commentary articles are not guidebooks and are not 

responsible for detailing every step of the analysis process. However, all the applied studies 

should have checked the assumptions of MLM and distributions of variables. Authors‟ failure to 

have done so casts doubt on the validity of the studies‟ modeling outcomes and the 

appropriateness of models‟ specifications.  

 In the applied studies, authors‟ use of data in selection of model specifications was 

similarly insufficient. Formulation of an appropriate, good fitting model can lead to valuable 

insights related to best practice. However, use of an inappropriate, poor fitting model can obscure 

insights or produce false findings. As stated above, analysts should peruse graphs of data with an 

eye for general patterns, formulate multiple unconditional models in response to observed 

patterns, and comparatively evaluate the fit of each, in an effort to determine which model 

specifications are most appropriate for the data. Evaluation of models‟ fit should involve both 

statistical tests and visual analyses. 

 Both the commentary and applied articles inadequately addressed the formulation and 

statistical testing of final models. For one, authors of commentary articles did not discuss how to 

approach discovering that predictor variables contribute to final models insignificantly. Removal 

of insignificant predictor variables and the associated parameters can result in shifts in values 

among the retained parameters and greater accuracy of estimates (Raudenbush & Bryk, 2002). 

However, compelling theoretical justifications may exist for retaining insignificant predictors in 
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final models. When statistical insignificance is found for a predictor variable, a choice should be 

made and explained concerning its inclusion or exclusion from the final model. All authors of 

applied articles who found predictor variables to be insignificant retained the variables in their 

final models and did not discuss their decision to do so (i.e., Morgan & Sideridis, 2006; Wade, 

Ortiz, & Gorman, 2007; Wang, Cui, & Parrila, 2011). Features of their data sets provide reasons 

to assume that modeling outcomes were confounded by not removing the insignificant variables 

and associated parameters. For example, in Wade, Ortiz, & Gorman (2007), nearly all model 

slopes were found to be insignificant. Visual analysis of graphed data (all data modeled was 

presented in graphs) revealed behavior patterns differed across experimental phases in terms of 

level only. Thus, it is reasonable to assume that modeling slopes confounded estimates of the 

magnitudes of level changes between phases. On another note, the value of testing random effects 

was adequately described by authors of commentary articles (Nugent, 1996; Van den Noortgate 

& Onghena, 2003a, 2003b, 2007, 2008). Arguably, the examination of variability across subjects 

involved in tests of random effects produces the most interesting results of MLM. Such 

examination generates new information not obtained in primary studies, provides rationale for 

including predictor variables at levels 2 and higher, and indicates how much variance models 

explain. However, several authors of applied studies did not report taking the opportunity to 

examine variability across subjects (i.e., Morgan & Sideridis, 2006; Terrazas Arellanes, 2009; 

Wang, Cui, & Parrila, 2011). Consequently, they were unable to determine the need for and/or 

justify inclusion of predictor variables, and assess the amount of variance explained by their 

models. 

 Complimentary use of visual analysis in applications of MLM to primary research was 

well addressed/executed in both commentary and applied articles. As stated above, all authors of 

primary research employed visual analysis as a supplement to statistical analysis (Adams, 2009; 
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Terrazas Arellanes, 2009; Wade, Ortiz, & Gorman, 2006). Also, authors of 2 commentary articles 

recommended the practice (Nugent, 1996; Van den Noortgate & Onghena, 2007). Use of visual 

analysis may additionally be imformative in meta-analyses. To assess the degree to which final 

models explain data phenomena, researchers can visually analyze graphs of data and fitted 

regression lines for all subjects or a random sample. 

 Implications of the literature review for this study. This literature review identified a 

lack of empirical knowledge on MLM and single-subject data regarding data trended data, use of 

quadratic models at level 1, the impact of discontinuous variances across phases, the relative 

benefit of different level 1 error specifications, and the accuracy of autocorrelation estimates 

produced by statistical software used to estimate multilevel models. Also, the review showed 

little is known about the use of 3 level meta-analytic models with single-subject data and the 

impact of autocorrelation. In an effort to establish best practices for the meta-analysis of single-

subject data, these topics will be addressed in this study. 
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CHAPTER 3 

Methods 

 This dissertation sought to answer the following research questions: 

When MLM is used to meta-analyze single-subject research,  

1. What levels of power are achieved for statistical tests of fixed effects? 

2. How accurate are estimates of fixed and random effects, and autocorrelation levels in 

terms of relative parameter bias across conditions examined?  

3. What patterns of differences exist in convergence rates, power rates, and relative bias 

in estimates of fixed effects and random effects‟ variance components across (a) 

specifications for model errors at level 1, (b) numbers of data points per experimental 

phase, (c) numbers of participants per study, (d) numbers of studies meta-analyzed, 

(e) degrees of autocorrelation in individuals‟ data, and (f) continuity of level 1 

variance across phases? 

To answer the questions, a Monte Carlo simulation study was performed. Five factors were 

manipulated in the simulation of data: (a) number of data points per experimental phase, (b) 

number of participants per study, (c) number of studies meta-analyzed, (d) degree of 

autocorrelation in individuals‟ data, and (e) continuity of level 1 variance across phases. Two or 

three levels were selected for each factor. All factors were fully crossed to create 48 unique 

conditions resemblant of circumstances commonly encountered in the single-subject research 

literature. For each condition, 400 samples of data were generated. The data were generated using 

models and parameter values that produced realistic appearing single-subject data sets, which 

document behavior reduction treatment effects. Each sample was then meta-analyzed with 3 

model varieties including different level 1 error specifications. All together, the simulation study 
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comprised 57,600 meta-analyses. The sections below detail the methods by which the levels of 

factors were selected, how data were generated and analyzed, and how the results were evaluated. 

Collection and Analysis of Representative SSED Data  

 To assure the external validity of the study‟s results, data were generated to have 

characteristics typical of SSED data. Determination of these characteristics involved collection 

and analysis of  

representative single-subject data from peer-reviewed journals. 

 Data collection. A large sample of data was collected from studies of interventions for 

self-injurious behavior in persons with developmental disabilities. These types of interventions 

were selected as the focus of the sample due to the extensive body of single-subject research on 

the topic and their typification of behavior reduction phenomena.  

Search procedures. Individual data sets were identified through systematic searches of 

PsychInfo and ERIC databases. The search was conducted with the single Boolean search phrase 

“([self injur*] or [self harm] or [self destruct*]) and ([disabilit*] or [autis*] and [retard*]).” 

Asterisks included in the search phrase caused any word beginning with the specified root to 

produce a search hit. The search was limited to peer-reviewed articles, written in English, 

published in and between 1960 and 2009. Abstracts of the resulting 1332 articles were reviewed 

for inclusion. 

 Selection criteria. To be included in the sample, data sets had to meet 5 criteria. The data 

sets were required to have (a) a quantitative measure of self-injurious behavior (e.g., head-hitting, 

skin picking) as the dependent variable, (b) treatment of self-injurious behavior as the 

independent variable, (c) a person with a developmental disability (e.g., autistic spectrum 

disorder, intellectual disability) as the subject, (d) a single-subject experimental design (Barlow, 

Nock, & Herson, 2009) that began with baseline measurements, followed by treatment sessions 
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and measurements, and (e) presented data for individual measurement sessions graphically or 

numerically.  

Data sets were excluded if (a) data on challenging behaviors other than SIB (e.g., 

aggression toward others) were collapsed with data on SIB when reporting dependent variable 

outcomes (e.g., Neidert, Iwata, & Dozier, 2005; Volkert, et al., 2009), (b) data for phases were 

collapsed into a single number (e.g., Wachtel et al., 2008; Wachtel et al., 2009), (c) phases 

contained only one treatment and/or measurement session per phase (e.g., Oliver et al., 2006), (d) 

subjects discontinued multiple medications after baseline measurements (i.e., Lyskowski, 

Menditto, & Csernansky, 2009), (e) baseline or treatment conditions varied within phases (e.g., 

multi-element designs [e.g., Roberts, Mace, & Daggett, 1995; Vollmer, et al., 1998], stimulus 

gradation or response fading [e.g., Blindert, Hartridge, & Gwadry, 1995; Kahng, Abt, & Wilder, 

2001]), (f) values along the x-axis of graphs were not discernable (i.e., Arntzen & Werner, 1999), 

or (g) treatment components were incorporated progressively over several phases until the 

treatment package of interest was complete (i.e., Mckenzie et al., 2008). Exclusion criteria 

pertained to data from the first baseline and first treatment sessions only (for rationale, see 

Extraction procedures below). Rationales for the exclusion criteria are as follows, respective to 

above: (a) assuring the internal validity of the data characteristics analysis required sampling only 

data pertaining to SIB, (b) collapsed data omits information required for input in multilevel meta-

analysis, (c) the internal validity of studies involving single data points is low (excepting brief 

experimental designs, none of which were encountered in the literature search), (d) 

discontinuation of medication after baseline measurements diminishes the internal validity of 

findings, (e) changes in the independent variable within phases potentially confound dependent 

measures (f) data coding was not possible when x-values were not discernable, and (g) an intent 

of the studies which progressively incorporated treatment components was to demonstrate the 



62 

 

relative superiority of treatments or treatment packages introduced in subsequent phases; 

synthesis of data from such studies with those that intended to demonstrate the effect of a 

treatment or treatment package in the first treatment phases would have confounded the sample. 

A total of 199 individual data sets, from 122 studies, were selected for the sample. 

 Extraction procedures. Measurement outcomes were extracted from only the first 

baseline and first treatment phases. Data from only the first phases was collected because (a) the 

studies employed a great diversity of research designs (e.g., ABAB, multiple baseline AB, 

ABCBA, ABAC, etc), and therefore collection of a large, consistent sample of data required 

exclusion of data from later phases, and (b) the outcomes observed in the first phases were 

assumed to be representative of the interventions‟ effects. When articles presented multiple data 

sets for a subject (e.g., for generalization probes, or for various experimental conditions, such as 

those commonly seen in functional analyses), one single data set was chosen (e.g., that which 

pertained to the primary function of the behavior, or involved the initial treatment application). 

Measurement outcomes were extracted from graphs using the Windows-based computer 

program Ungraph (Biosoft, 2004). Ungraph facilitates identification of X and Y values of data 

points through a point and click procedure. Digital images of graphs are first imported to an on-

screen workspace. Scale calibrations are set by clicking upon three corners of the graph, and 

typing in known values. Next, each data point is clicked upon, and the program records its 

position along the X and Y axes. Coordinates for data points are then transferred automatically to 

Microsoft Excel files (Microsoft, 2007). 

 Analysis of representative data. The sample was analyzed to determine the ranges and 

central tendencies of numbers of data points per phase, numbers of participants per study, 

magnitudes of effects, and error variance and covariance within and between data sets. SAS 

PROC MEANS was used to compute means, medians, maximums and minimums for the 
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numbers of data points per phase and subjects per study. The magnitudes of effects were assessed 

by analyzing each data set using OLS regression procedures and Equation 29 (listed below and in 

Chapter 2). Coefficients for the baseline intercept, baseline slope, and treatment phase change in 

level, change in linear slope, and curvilinear slope were included in the regression model (i.e., 

Equation 29). Since the data derived from multiple dependent variable metrics (e.g., frequency 

counts, partial 10 second intervals), distributions and central tendencies were estimated separately 

for each metric. Coefficient estimates were not standardized in an effort to protect data from bias 

which may result from standardization procedures. After estimates were obtained for all 

individual data sets, SAS PROC MEANS was used to compute means, medians, maximums, and 

minimums for each coefficient from each dependent variable metric. To assess whether or not 

coefficient estimates were correlated, Pearson correlations were estimated and scatterplots made 

for each pair of coefficients from each metric. Finally, values for the error variances and 

covariances within and between data sets were estimated for each metric using SAS PROC 

MIXED and a 3 level meta-analytic model. 

Data Simulation 

Factors and simulation conditions. As stated above, five factors were manipulated in 

the study: (a) number of data points per phase, (b) number of participants per study, (c) number of 

studies meta-analyzed, (d) degree of autocorrelation in individuals‟ data, and (e) continuity of 

level 1 variance across phases. Two levels were chosen for each of the factors, except the number 

of data points per phase, for which 3 levels were selected (see Table 3 for a summary of factor 

levels). All factors were fully crossed to create 48 simulation conditions. Thus, a 3 x 2 x 2 x 2 x 2 

factorial design, with 48 cells, was employed.   

Results of analysis of the representative sample of single-subject data, previous 

simulation studies, other analyses, and theory guided selection of the levels of factors. In the 
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representative sample, the mean and median numbers of data points were 9.7 and 8, respectively 

for baseline phases, and 11.8 and 8 respectively for treatment phases. These numbers of data 

points ranged from 3 to 58 for baseline phases and 2 to 66 for treatment phases. The 3 levels 

selected for the number of data points per phase represent below average, average, and above 

average counts. The levels chosen were 5 baseline and 5 treatment data points, 10 baseline and 10 

treatment data points, and 20 baseline and 20 treatment data points. In the representative sample, 

the number of participants per study ranged from 1 to 7 and averaged 1.2. To reflect this range, as 

well as maintain consistency with previous simulation studies (i.e., Ferron et al., 2010; Van den 

Noortgate & Onghena, 2011), the levels selected for the number of participants per study were 3 

and 6. Selection of the levels of number of studies meta-analyzed was based on a previous meta-

analytic simulation study (Van den Noortgate & Onghena, 2011) and the present author‟s 

anecdotal observations of typical numbers of studies included in reviews of single-subject 

research. The levels selected for the number of studies were 10 and 30. Levels for the degree of 

autocorrelation in individuals‟ data were also based on previous simulation studies (Bell et al., 

2011; Beretvas & Chung, 2008; Ferron et al., 2010; Van den Noortgate & Onghena, 2011), as 

well as a previous analysis of autocorrelation rates in single subject data (Huitema, 1985). The 

levels chosen for autocorrelation rates were 0.0 and 0.4. The final factor for which levels were 

selected was the continuity of level 1 variance across phases. It‟s theoretically plausible that the 

variance of single-subject data is often not continuous across phases (Van den Noortgate & 

Onghena, 2003b). In the representative sample, this proved to be the case. Baseline variances 

were consistently much larger than treatment phase variances. To examine the performance of 

multilevel meta-analysis when variance is not continuous across phases, the levels selected were 

continuous variance and discontinuous variance. The continuous level provided a set of baseline 

conditions (which were hypothesized to be associated with optimal performance), while the 
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discontinuous level presented contrast conditions to be judged relative to the baseline. In accord 

with results of analysis of the representative sample, continuous variances (i.e., σ2
single) were set at 

150, while discontinuous variances (i.e., σ2
baseline and σ2

treatment) were set at 300 and 70 for baseline 

and treatment phases, respectively. 

Generating equations and parameter values. Data samples were generated using the 

SAS computer program (SAS Institute Inc., 2008). Data were generated to fit the following 

equation in the population at level 1: 

Yijk = π0jk + π1jkTijk + π2jk(treatment)ijk + π3jk(Tijk – [ntjk + 1])(treatment)ijk 

+ π4jk(Tijk – [ntjk + 1])2(treatment)ijk + eijk                                          (29) 

where all symbols defined for Equation 29 in chapter 2 have the same meaning; and at level 2: 

π0jk = β0k + r0jk                                                                                                (30) 

π1jk = β1k + r1jk                                                                                                (31)                                                               

π2jk = β2k + r2jk                                                                                                (32) 

π3jk = β3k + r3jk                                                                                                (33) 

π4jk = β4k + r4jk                                                                                                (34) 

where π parameters are level 1 regression coefficients for subject j from study k, β parameters are 

averages of π parameters within study k, and r parameters are error terms that represent the 

deviation of subject j‟s π parameter from study k‟s average; and, finally, at level 3: 

β0k = γ0 + u0k                                                            (35) 

β1k = γ1 + u1k                                                            (36) 

β2k = γ2 + u2k                                                            (37) 

β3k = γ3 + u3k                                                            (38) 

β4k = γ4 + u4k                                                            (39) 
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where β parameters are level 2 regression coefficients for study k, γ parameters are grand means 

(i.e., averages of β parameters across studies), and u parameters are the deviations of study k‟s 

averages from the grand means.  

Results of analysis of the representative sample of single-subject data guided choices of 

parameter values for data generation. The regression analyses of individual data sets led to 

selection of population values for each γ coefficient. All values chosen were selected due to their 

approximation of the average coefficient value for multiple metrics and their facilitation of 

production of realistic appearing data sets which possessed many common single-subject data 

characteristics. The following values were chosen for the γ coefficients: 

γ0 = 60 

γ1 = 0.25 

γ2 =  -25 

γ3 =  -4.5 

γ4 =  -0.075 

Figure 2 graphically depicts the population average model. During the first session, a 

behavior level of 60 is expected, as given by γ0. Across baseline sessions, behavior is expected to 

rise at a rate of 0.25 units per session, as reflected in γ1. When treatment begins, behavior is 

expected to immediately drop 25 units, as seen in γ2. Across the treatment phase, behavior 

decreases with a slope composed of γ1, γ3, and γ4. Together, γ1 and γ3 sum to make the linear 
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component of the slope (0.25 + -4.5 = -4.25). The curvilinear component is determined by γ4, 

which is -0.075.  

Due to the chosen parameter values, simulated data points for individual subjects could 

have y-values of less than zero. This artifactual error results from the nature of quadratic 

functions. Quadratic models do not have the advantage of forming an asymptote at a floor or 

ceiling value, such as 0 in this case. To prevent such unrealistic values during simulation, 

generated data points with y-values of less than zero were changed to have a y-value of 0 prior to 

adding level 1 errors (i.e., eijk) and lag-1 autoregressive processes. 

Selection of values for variances of errors at levels 2 and 3 was guided by results of the 3 

level meta-analyses for data on each metric. Similar to above, all values chosen were selected due 

to their approximation of the error variances for multiple metrics, their consistency with the ICC 

values obtained from the multilevel meta-analyses, and their facilitation of production of realistic 

appearing data sets. Selection of values for covariances was guided by the correlation estimates 

obtained for pairs of coefficients from the regression analyses. Non-zero covariances were chosen 

for r3jk and r4jk, as well as u3k and u4k due to the discovery of significant and substantial 

correlations between the regression coefficients π3 and π4. A correlation of -0.60 was chosen for 

the generation of both pairs of errors, due to its approximation of the average correlation across 

metrics and facilitation of production of realistic appearing data sets. The correlation value was 

converted into covariances, which are included in the matrices below. Because insignificant and 

insubstantial correlations were found for all other pairs of regression coefficients, covariances of 

the remaining errors were generated to be zero. 

The correlation of π3 and π4/ r3jk and r4jk, and u3k and u4k allows the treatment phase 

regression lines to bow in concave and convex manners (see Figure 3 for an illustration). When 

the first and last data points in the treatment phase are fixed, this bowing resembles a 
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reverberating guitar string that makes a downward arch when π3 is low (i.e., is negative and has a 

large magnitude) and π4 is high (i.e. is greater than zero), and makes an upward arch when π3 is 

high (is negative or positive and has a small magnitude) and π4 is low (i.e., is negative and has a 

relatively high magnitude). The downward arch pattern is the quadratic model‟s closest offering 

of an asymptotic curve that plateaus at the floor value of 0. The upward arch pattern models a 

slow, accelerating learning curve. 

All errors were generated to be normally distributed with a mean of 0 and the following 

variances and covariances: 

var rjk = 
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Figures 4 through 6 present three random samples of 10 data sets generated by SAS. In 

Figure 4, data sets are composed of 5 baseline and 5 treatment data points. Figure 5 contains data 

sets that have 10 baseline and 10 treatment data points. In Figure 6, data sets have 20 baseline and 

20 treatment data points. All data were generated to have a baseline variance of 300, a treatment 

variance of 70, a lag-1 autocorrelation of 0.0, and random errors for studies, subjects, and time 

points. The graphs are presented here as confirmation that the simulated data have a realistic 

character and resemble single-subject data commonly encountered in the research literature. 

Confounds introduced and study limitations created by the generated data are addressed in 

Chapters 4 and 5. 
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Analysis of Simulated Data 

Meta-analyses. Simulated data samples were meta-analyzed using SAS PROC MIXED. 

Each sample was meta-analyzed 3 times with 3 different specifications for level 1 errors: (a) by 

defaulting to specification of different variance components and 0 covariances for level 1 errors, 

(b) by specifying lag-1 autoregressive covariance structures for level 1 errors (which allowed 

non-zero covariances), and (c) by specifying separate error terms for each phase in level 1 models 

and defaulting to the specification of different variance components and 0 covariances for each 

error term. Across these 3 analyses, all terms of the level 1 equations were identical, except those 

for the errors. 

When specifying different variance components and 0 covariances, as well as lag-1 

autoregressive covariance structures, the following 3 level model was fit to each sample 

generated:  

 level 1: 

Yijk = π0jk + π1jkTijk + π2jk(treatment)ijk + π3jk(Tijk – [nbjk + 1])(treatment)ijk 

+ π4jk(Tijk – [nbjk + 1])2(treatment)ijk + eijk                                         (25) 

 level 2: 

π0jk = β0k + r0jk                                                                                              (26) 

π1jk = β1k + r1jk                                                                                               (27)                                                               

π2jk = β2k + r2jk                                                                                               (28) 

π3jk = β3k + r3jk                                                                                               (29) 

π4jk = β4k + r4jk                                                                                               (30) 

 level 3: 

β0k = γ0 + u0k                                                             (31) 

β1k = γ1                                                                  (32) 
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β2k = γ2                                                                  (33) 

β3k = γ3                                                                  (34) 

β4k = γ4                                                                  (35) 

 When specifying separate error terms for each phase in level 1 models, the following 

level 1 equation replaced Equation 29 in the above 3 level model. Compared to Equation 29, this 

equation possesses adaptations to the error term. 

 

Yijk = π0jk + π1jk(time)ijk + π2jk(treatment)ijk + π3jk(time – (nbjk + 1))(treatment)ijk 

+ π4jk(time – (nbjk + 1))2(treatment)ijk + eijk(1 – treatment)ijk + eijk(treatment)ijk         (36) 

 

These 3 level models can be termed simplification models. The lack of error terms in 

Equations 36 through 39 forces the study averages of π parameters (i.e., the β parameters) to 

equal the grand averages. While γ parameters were generated to randomly vary across studies, 

they were analyzed with the specification that they do not. A simplification model was chosen for 

analysis due to the fact that fewer units at each level are needed for computation of parameter 

estimates (Hox, 2010). Simplification models have the potential to be of frequent utility in meta-

analyses of single subject research due to the typically small number of data points collected per 

subject (i.e., level 1 units), the small numbers of subjects included in studies (i.e., level 2 units) 

and the small numbers of well matched studies (i.e., whose results are fit for aggregation) that 

typically constitute the samples of published reviews (i.e., level 3 units). Support for the choice of 

a simplification model was also obtained in analysis of the representative sample. Specification of 

models for analysis which matched the generating models frequently did not lead to analysis 

convergence. However, specification of the above simplification model did consistently lead to 

convergence. 
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For level 2 errors, analyses involved specification of different variance components and 

covariances of 0. At level 3, only one variance component was estimated: that for the random 

effect u0k. 

 From each analysis, estimates of fixed effects, p-values resulting from significance tests 

of fixed effects, and variances of error terms at levels 1, 2, and 3 were accumulated. For analyses 

in which lag-1 autoregressive covariance structures were specified, estimates of the lag-1 

autocorrelation were also accumulated. After all 400 replications of a single condition were 

complete, the accumulated figures were analyzed. These analyses yielded values for convergence 

rates, power of statistical tests of each fixed effect, and relative parameter bias for each fixed 

effect, each random effect‟s variance component, and autocorrelation estimates. 

The convergence rate is the frequency with which the iterative computations involved in 

estimating multilevel models successfully identify stable solutions for models‟ fixed effects. A 

stable solution in SAS is obtained when the convergence criterion (i.e., a statistic calculated for 

each iteration of the estimation process) is less than 1E-8. To determine the convergence rate for 

each condition by level 1 error specification, the numbers of accumulated estimates of fixed 

effects were counted and divided by 400. When analyses fail to converge in SAS, the software 

does not output fixed effect estimates. Thus, the convergence rate for a condition is the percent of 

estimates obtained out of the total possible 400. 

The power of statistical tests of fixed effects is the rate at which truly present effects are 

confirmed to exist in a sample (i.e., the effects are estimated to have a 95% probability of having 

a non-zero value). To assess the power of statistical tests of fixed effects, p-values resulting from 

statistical tests of the fixed effects were sorted and counted. Because generating values for all 

fixed effects were non-zero (i.e., effects were generated), tallies were made of falsely 

insignificant test results (p > .05). The tallies were then divided by 400 (i.e., the total number of 
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p-values for a single fixed effect). Finally, the quotients were subtracted from 1 to compute power 

for the condition. Power of less than 0.8 was considered inadequate. 

Relative parameter bias is the degree to which an analysis technique accurately recovers a 

true parameter value. Sampling error, the resulting variance within and between subjects and 

studies, and autocorrelation threaten to obscure true parameter values and bias parameter 

estimates. To evaluate the robustness of the analysis techniques for each condition, relative bias 

statistics will be calculated for all fixed effects, random effects‟ variance components, and 

autocorrelation estimates. The following equation will be used to calculate relative bias 

(Hoogland & Boomsma, 1998): 

 

B(   ) = 
   
    

  
                                                             (31) 

 

where    
  is the average of the 400 estimates of parameter i for a given condition and    is the true 

value of parameter i. According to Hoogland and Boomsma (1998), relative bias values above .05 

in magnitude are considered unacceptable. When the true parameter value is 0, as is the case 

when autocorrelation = 0.0, relative bias cannot be calculated. In this circumstance, estimates will 

be considered biased when the mean absolute value of the sample bias exceeds .05 (i.e., when the 

mean point estimate is outside the range between -.05 and .05).  

Tests of the statistical significance of random effects‟ variance components were not 

evaluated. The focus of interest in this study is limited to convergence rates, the power of 

statistical tests of fixed effects and parameter recovery for fixed effects, random effects‟ variance 

components, and autocorrelation estimates. 
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CHAPTER 4 

Results 

Results of the simulation study are summarized in the sections below. Outcomes are 

reported for convergence rates, power of statistical tests for fixed effects, and relative parameter 

bias for fixed effects, random effects‟ variance components, and autocorrelation estimates. In the 

tables below, results are first grouped by levels of continuity of variance and autocorrelation, and 

next organized by levels of number of data points per phase, number of studies meta-analyzed, 

and number of subjects per study, and finally sorted by level 1 error specifications.  

Convergence Rates 

 For all conditions and error specifications, 100% of analyses met the default convergence 

criteria of SAS. 

Power of Statistical Tests for Fixed Effects 

 Tables 4 through 7 present the power rates observed for statistical tests by fixed effect 

and level 1 error specification. In sequential order, the tables present power rates for conditions 

marked by (a) continuous variance and no autocorrelation, (b) continuous variance and positive 

autocorrelation, (c) discontinuous variance and no autocorrelation, and (d) discontinuous variance 

and positive autocorrelation. Across the 4 groupings of levels of continuity of variance and 

autocorrelation (hereafter referred to as “groupings” and by their order of presentation, i.e., first, 

second, etc), fairly similar results were obtained.  

Below, results are first described by fixed effect. As mentioned in Chapter 3, power was 

considered inadequate if a rate of less than 0.8 was observed. Then, patterns of association 

between relative bias levels, factors, and level 1 error specifications are identified. 



74 

 

Results by fixed effect. For the two large effects, γ0 (i.e., the model intercept) and γ2 

(i.e., the immediate treatment effect), power rates were consistently 1.0 across conditions and 

level 1 error specifications.  

For the relatively moderate effect, γ3 (i.e., the linear component of the treatment phase 

slope change), power rates ranged between 0.8 and 1.0 for all conditions and level 1 error 

specifications, except conditions with the smallest numbers of data points (i.e., 5 baseline and 5 

treatment) and studies meta-analyzed (i.e., 10). Some differences existed between groupings and 

level 1 error specifications in power rates for conditions with 6 participants per study and the 

smallest numbers of data points and studies (i.e., 5 and 5, and 10, respectively). However, these 

differences were slight. Specifically, when autocorrelation wasn‟t generated and either different 

variance components or lag-1 autoregressive covariance structures were specified, power rates 

ranged from 0.715 to 0.803. When autocorrelation was generated and either different variance 

components or lag-1 autoregressive covariance structures were specified, power rates ranged 

from 0.868 to 0.978.  

For the first of the small effects, γ1 (i.e., the baseline slope), power rates were 

characterized by fairly consistent patterns across groupings. Power rates were inadequate for all 

conditions with 5 baseline and 5 treatment or 10 baseline and 10 treatment data points. Some 

differences existed between groupings in power rates for conditions with 20 baseline and 20 

treatment data points. Specifically, when autocorrelation was not generated (i.e., in the first and 

second groupings), power rates were slightly inadequate only when the number of subjects and 

studies were smallest (i.e., 3 and 10, respectively; power ranged from 0.763 to 0.790). This 

pattern had one exception: when the number of subjects and studies were 6 and 10, respectively, 

and separate level 1 error terms were specified, power was observed at 0.748. In contrast, when 
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autocorrelation was generated (i.e., in the third and fourth groupings), power rates were only 

adequate for conditions with the largest numbers of subjects and studies (i.e., 6 and 30, 

respectively). 

 For the second small effect, γ4 (i.e., the curvilinear component of the treatment phase 

slope), power rates followed a very consistent pattern across groupings. Power rates were 

inadequate in all conditions with 5 baseline and 5 treatment data points. Power rates were 

additionally inadequate in all conditions with 10 baseline and 10 treatment data points, when the 

number of subjects and studies were smallest (i.e., 3 and 6, respectively). The one exception to 

this pattern was seen when variance was discontinuous, autocorrelation was generated, 10 data 

points were included in each phase, the number of subjects and studies were 6 and 10, 

respectively, and a lag-1 autoregressive covariance structure was specified. In this instance, the 

power for γ4 was 0.753. 

 Identification of patterns in power rates. Overall, power rates appeared to be most 

closely associated with the magnitude of effects. High power was consistently observed for the 

two large effects (i.e., 1.0). As the magnitude of the effects decreased, increases were observed in 

the number of conditions in which power was found to be inadequate. It should be noted that 

while the generating population value for γ4 (i.e., -0.075) was smaller than that for γ1 (i.e., 0.25), 

the values were not on the same scale. In a sense, the magnitude of γ1 was smaller. The parameter 

γ4 was multiplied by a squared term in the combined model, and consequently influenced the 

outcomes of data generation at a different gradient than did γ1. It thus makes sense that γ1 is 

associated with the largest number of inadequate power rates across conditions. 
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 Factors which dictated the unit counts at level 1, 2, and 3 also appeared to be closely 

associated with power rates. As the numbers of data points per phase, subjects per study, and 

studies meta-analyzed increased, power rates also increased. Given the generating parameter 

values, it appears that when 10 data points are collected for each phase and the number of level 2 

units is 60 or greater (i.e., number of subjects per study x number of studies ≥ 60), power rates are 

adequate for all but very small effects (e.g., γ1). 

 In conditions with discontinuous variance (i.e., the second and fourth groupings), it 

appears specification of separate error terms is associated with slightly improved power relative 

to the other level 1 error specifications. In 4 instances, when one or more of the other level 1 error 

specifications are associated with inadequate power, the power level associated with separate 

error terms is adequate and substantially greater. Also, when power levels are adequate across 

level 1 error specifications, the power associated with separate error terms tends to be greatest 

(i.e., greater by a range of 0.005 to 0.092). 

Power rates did not appear to be associated with continuity of variance or autocorrelation 

level. While a few slight differences existed between power rates for levels of each factor, the 

differences were limited to the comparison of several pairs of conditions and primarily pertained 

to γ1. 

Relative Parameter Bias of Fixed Effects 

 Tables 8 through 11 present the relative bias levels observed for models‟ fixed effects by 

parameter and level 1 error specification. As in the tables of fixed effects‟ power rates, Tables 8 

through 11 sequentially present results for conditions grouped according to factor levels for 

continuity of variance and autocorrelation. Across groupings, relative bias was observed to vary 

systematically for γ1 and γ3. Results for γ0, γ2, and γ4 were consistent across groupings.  
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Below, results are first discussed by fixed effect. As mentioned in Chapter 3, parameters 

were considered biased if the relative bias statistic was greater in magnitude than 0.05. Then, 

patterns of association between relative bias levels, factors, and level 1 error specifications are 

identified. 

 Results by fixed effect. For γ1 (i.e., the baseline slope), bias was observed least often 

when variance was continuous and autocorrelation not generated (i.e., in the first grouping). 

When variance was discontinuous and/or autocorrelation was generated, bias was observed for 

greater numbers of conditions and level 1 error specifications. In the first grouping, bias was 

observed in only one condition: when numbers of data points, subjects, and studies were smallest 

(i.e., 5 and 5, 3, and 6, respectively; magnitudes of relative bias ranged from 0.068 to 0.073). In 

the second grouping, when variance was discontinuous and autocorrelation not generated, bias 

was observed for 5 additional conditions. In these instances, magnitudes of relative bias ranged 

from 0.054 to 0.094. No associations were evident among bias and numbers of data points, 

subjects, or studies across this total of 6 conditions. Bias was observed at all levels of the number 

of data points, number of subjects, and number of studies factors across conditions in the second 

grouping. Compared to the first grouping, the third grouping (i.e., when variance was continuous 

and autocorrelation was modeled) was marked by increased bias among analyses employing 

autoregressive covariance structures. For this third grouping and level 1 error specification, 

relative bias exceeded the cut-off magnitude of 0.05 in 7 conditions (ranging from 0.056 to 

0.170). As in the comparison between the first and second groupings, the fourth grouping (i.e., 

when variance was discontinuous and autocorrelation was generated), as compared to the third 

grouping, was marked by increased bias across all conditions, with no apparent association with 

numbers of data points, subjects, or studies. In the third grouping, bias was observed in 8 

conditions, for a total of 11 level 1 error specifications (magnitudes ranged from 0.054 to 0.170). 
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In the fourth grouping, bias was observed in 10 conditions, for a total of 26 level 1 error 

specifications (magnitudes ranged from 0.051 to 0.129). Between the second and fourth 

groupings, which shared discontinuous variance, more frequent instances of bias were observed 

when autocorrelation was generated (i.e., in the fourth grouping). In the second grouping, when 

autocorrelation was not generated, 16 instances of bias were observed (magnitudes ranged from 

0.054 to 0.094). In the fourth grouping, bias was observed in 26 instances (magnitudes ranged 

from 0.051 to 0.129). 

For γ3 (i.e., the linear component of the change in treatment phase slope), bias was also 

observed least often when variance was continuous and autocorrelation was not generated, and 

more often when variance was discontinuous and/or autocorrelation was generated. In the first 

grouping, bias was only observed when the numbers of data points per phase was 10 (magnitudes 

ranged from 0.186 to 0.193). When variance was discontinuous (i.e., in the second and fourth 

groupings), bias was additionally observed in all conditions with 20 data points per phase, and 

conditions with 5 data points per phase, when the studies numbered 10 (magnitudes ranged from 

0.056 to 0.222 in the second grouping and 0.052 to 0.220 in the fourth grouping). When 

comparing the first and third groupings, which shared continuous variance, additional bias was 

observed in conditions with 5 data points per phase and 90 level 2 units or less, when 

autocorrelation was generated (i.e., in the third grouping; magnitudes ranged from 0.056 to 

0.194). No differences were observed in frequency of biased estimates between the second and 

fourth groupings, which shared discontinuous variance and varied on levels of autocorrelation.  

As stated above, results for γ0, γ2, and γ4 were consistent across groupings. No bias was 

observed in estimates of γ0 or γ2. For all conditions and level 1 error specifications, estimates of 
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γ4 were greatly biased in the negative direction (magnitudes ranged from 0.165 to 3.91 across 

conditions and level 1 error specifications). 

Identification of patterns in relative bias of fixed effect estimates. Overall, bias in 

fixed effects estimates appeared to be most closely associated with the factor levels of continuity 

of variance and autocorrelation. Between levels of continuity of variance, biased estimates were 

observed more often when variance was discontinuous. Most notably, collection of 20 data points 

per phase was generally sufficient to produce unbiased estimates when variance was continuous, 

but insufficient when variance was discontinuous, regardless of level 1 error specification. 

Between levels of autocorrelation, biased estimates were observed more often when 

autocorrelation was generated. 

The type of fixed effect also appeared closely associated with bias. Estimates for the two 

intercepts, γ0 and γ2, were observed to be unbiased across all conditions. However, estimates for 

the three slopes/slope components were frequently biased. Generally, estimates were slightly 

biased for the linear slopes and greatly biased for the curvilinear slope component.  

Relative bias generally appeared to improve as the number of data points per phase 

increased. As noted above, the least bias was observed in conditions with 20 data points per 

phase. Extrapolation of trends in bias statistics for γ1 and γ3 suggests that the effects might be 

estimated without bias when the number of data points per phase reaches 30. However, 

extrapolation of trends in bias for γ4 suggests that the number of data points per phase may have 

to rise to 40 or 50 before unbiased estimates can be obtained. 

The level 1 error specification appeared to have limited associations with relative bias in 

fixed effects. When autocorrelation was generated, specification of an autoregressive covariance 
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structure appeared to be associated with more frequent bias in estimates of γ1, yet also associated 

with lower levels of bias in estimates of γ3. 

No patterns of association with relative bias were observed for numbers of subjects per 

study or numbers of studies meta-analyzed. While some slight differences existed across levels of 

the factors, the differences were not systematic, nor substantial. 

Relative Parameter Bias of Random Effects’ Variance Components 

 Tables 12 through 19 present the relative bias observed in variance components of each 

random effect by factor levels and level 1 error specification. Tables contain results for single 

random effects, except Table 19, which presents results for both σ2
baseline and σ2

treatment together. 

Across random effects, conditions, and level 1 error specifications, relative bias statistics for 

variance components had acceptable magnitudes (i.e., of less than 0.05) very rarely. 

Below, results and patterns of association are discussed for each random effect‟ variance 

component separately. As mentioned in Chapter 3, estimates were considered biased if the 

relative bias statistic was greater in magnitude than 0.05.  

Results for Τγ0. Table 12 presents relative bias statistics for estimates of Τγ0. The 

variance component Τγ0 represents the variability of studies‟ average baseline intercept.  In all but 

3 instances, estimates of Τγ0 were observed to be biased. Magnitudes of the unacceptable levels of 

relative bias ranged from 0.069 to 5.59. Acceptable levels of bias were observed when variance 

was discontinuous, autocorrelation was not generated, data points per phase, subjects, and studies 

numbered 20, 3, and 10, respectively, and either different variance components or separate error 

terms were specified for level 1 errors. Additionally, an acceptable level of bias was observed 

when variance was discontinuous, autocorrelation was generated, data points per phase, subjects, 
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and studies numbered 5, 6, and 30, respectively, and separate error terms were specified for level 

1 errors. In these 3 instances, relative bias magnitudes ranged from 0.019 to 0.043. 

Identification of patterns in relative bias of Τγ0. No patterns were apparent among 

instances of unbiased estimates of Τγ0. Given their inconsistency with the other relative bias 

statistics for Τγ0 estimates, these instances may represent false positives. Despite the lack of 

patterns among unbiased estimates, two patterns among the biased estimates deserve mention. 

When 5 or 10 data points were generated for each phase, increases in the numbers of level 2 units 

(i.e., due to increases in either the number of subjects or studies, or both) was associated with 

decreases in relative bias. However, extrapolation of this decreasing trend suggests that unbiased 

estimates cannot be attained in realistic scenarios. Additionally, when autocorrelation was 

generated, specification of an autoregressive covariance structure was associated with less biased 

estimates than when different variance components or separate error terms were specified. 

However, clear patterns were not apparent across the levels of other factors. Thus, extrapolation 

of the pattern in an effort to theorize factor levels for which estimates were unbiased was not 

possible. 

 Results for Τβ0. Table 13 presents relative bias statistics for estimates of Τβ0. The 

variance component Τβ0 represents the variability in subjects‟ baseline intercepts within studies. 

Compared to the other random effects, estimates of Τβ0 were frequently unbiased. However, for 

the 144 pairs of conditions and level 1 error specifications, acceptable levels of relative bias were 

observed in only 22 instances. The magnitudes of the remaining 122 relative bias statistics ranged 

from 0.054 to 1.78. 

 Most instances of acceptable levels of bias were observed when variance was continuous 

and autocorrelation not generated. Fourteen instances were found across all level 1 error 
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specifications and conditions with 5 and 10 data points per phase, and 60 or more level 2 units.  

Exceptions to this pattern were seen in conditions with 5 data points per phase, 3 subjects per 

study, and 30 studies, across all level 1 error specifications, as well as 5 data points per phase, 6 

subjects per study, and 10 studies, when an autoregressive covariance structure was specified. In 

these exceptions, relative bias ranged from -0.061 to -0.098. 

 When variance was discontinuous and autocorrelation was not generated, acceptable 

levels of bias were observed in 3 instances: in conditions with 5 data points per phase, 6 subjects 

per study, and either 10 or 30 studies, and when the numbers of data points, subjects, and studies 

numbered 10, 3, and 10, respectively. 

When autocorrelation was generated, acceptable bias was observed in 5 instances when 

autoregressive covariance structures were specified. When variance was continuous, acceptable 

levels of bias were found when the numbers of data points, subjects, and studies numbered 5, 3, 

and either 10 or 30, respectively. When variance was discontinuous, acceptable levels of bias 

were observed in conditions with 10 data points per phase and more than 60 level 2 units. 

 Identification of patterns in relative bias of Τβ0. It appears that factors which dictate 

level 1 and level 2 unit counts are most closely associated with the relative bias of Τβ0. More 

instances of acceptable levels of bias were found in conditions with 10 data points compared to 5, 

6 subjects compared to 3, and 30 studies compared to 10. However, this pattern did not maintain 

for conditions with 20 data points per phase, for which no acceptable levels of bias, nor 

systematic decreases in relative bias were observed across levels of numbers of data points per 

phase, subjects per study and studies meta-analyzed. 

 When autocorrelation was generated, it appears specification of an autoregressive 

covariance structure was associated with decreased relative bias. This pattern was consistently 
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observed across levels of continuity of variance, and numbers of data points per phase, subjects 

per study, and studies meta-analyzed. 

 Relative bias appeared to increase across levels of autocorrelation and continuity of 

variance. Between conditions with continuous variance and discontinuous variance, those with 

discontinuous variance tended to be associated with higher levels of relative bias. Similarly, 

conditions in which autocorrelation was generated tended to be associated with higher levels of 

relative bias than those in which autocorrelation was not generated. 

Results for Τβ1. Table 14 presents relative bias statistics for estimates of Τβ1. The 

variance component Τβ1 represents the variability in subjects‟ baseline slopes around the grand 

mean (i.e., γ1). In all but one instance, estimates of Τβ1 were observed to be biased. When 

variance was continuous, autocorrelation was not generated, and the numbers of data points per 

phase, subjects per study, and studies meta-analyzed were 5, 3, and 30, respectively, the estimate 

of Τβ1 was of an acceptable level of bias. Magnitudes of relative bias for the remaining 143 pairs 

of conditions and level 1 error specifications ranged from 0.059 to 21.3. 

Identification of patterns in relative bias of Τβ1. Because only one instance of 

acceptable bias was observed for estimates of Τβ1, patterns among acceptable levels of relative 

bias were not identifiable. Given the inconsistency with the other relative bias statistics for Τβ1 

estimates, this instance may represent a false positive. 

Several patterns in relative bias among the biased estimates deserve mention. Across 

levels of autocorrelation, relative bias appeared to increase. When autocorrelation was not 

generated, relative bias was observed to have magnitudes as large as 1.15. However, when 

autocorrelation was generated, relative bias was found to rise to magnitudes as high as 21.3. Also, 

for many conditions, relative bias levels approximated -1. This was especially the case when 

autocorrelation was not generated and data points per phase numbered 10 or 20, and when 
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autocorrelation was generated and autoregressive covariance structures were specified. Relative 

bias statistics of -1.00 indicate that the variance of baseline slopes was estimated to be 0 for all 

replications of a condition and level 1 error specification pair. When relative bias levels 

approximate -1, it can be assumed that the majority of variance estimates were 0 for the condition 

and level 1 error specification pair. 

Results for Τβ2. Table 15 presents relative bias statistics for estimates of Τβ2. The 

variance component Τβ2 represents the variability around the grand mean (i.e., γ2) of estimates of 

immediate treatment effects for subjects. Estimates for all pairs of conditions and level 1 error 

specification were observed to be biased. Magnitudes of relative bias of the estimates ranged 

from 0.082 to 13.8. 

Identification of patterns in relative bias of Τβ2. Levels of the relative bias of estimates 

of Τβ2 appeared to be associated with factor levels of autocorrelation, and to a limited degree with 

numbers of data points per phase and level 1 error specification. When autocorrelation was not 

generated, relative bias levels were lower (i.e., ranging from 0.082 to 3.39) than when 

autocorrelation was generated (i.e., levels ranged from 1.32 to 13.8). Also, when autocorrelation 

was generated and autoregressive covariance structures were specified, relative bias levels 

decreased as the number of data points per phase increased. Extrapolation of this trend suggests 

that between 40 and 50 data points per phase are required for unbiased estimates of Τβ2, when 

autocorrelation is present and autoregressive covariance structures are specified. However, an 

opposite trend was observed across level 1 error specifications when autocorrelation was not 

generated. In these conditions, as the number of data points increased, relative bias levels also 

increased.  

Results for Τβ3. Table 16 presents relative bias statistics for estimates of Τβ3. The 

variance component Τβ3 represents the variability around the grand mean (i.e., γ3) of estimates of 
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changes in linear components of treatment phase slopes for subjects. In all but one instance, 

estimates of Τβ3 were found to be biased. When variance was discontinuous, autocorrelation 

generated, and the numbers of data points per phase, subjects per study, and studies meta-

analyzed were 5, 3, and 10, respectively, the relative bias observed was less than 0.05. In the 

other 143 instances, the magnitude of relative bias was found to range from 0.053 to 1.00. 

Identification of patterns in relative bias of Τβ3. The one instance of an acceptable 

level of bias appeared to be part of a complex association between relative bias, numbers of data 

points per phase, level 1 error specification, and levels of continuity of variance and 

autocorrelation. When variance was continuous and autocorrelation was generated, or variance 

was discontinuous, and separate level 1 error terms were specified for each phase, relative bias 

was less than when different variance components or autoregressive covariance structures were 

specified. This difference in relative bias statistics between level 1 error specifications increased 

as the numbers of data points per phase decreased. This pattern seems to indicate that bias in Τβ3 

was attenuated by specification of separate error terms for conditions marked by continuous 

variance and autocorrelation, or discontinuous variance. However, the pattern may also be 

explained, in part, by the relationship between numbers of data points per phase and floor effects. 

As floor effects increase and distributions of y-values are more greatly restricted, the slopes of 

treatment phase regression lines are also restricted. The restriction of treatment phase slopes 

reduces the variability in estimates of π3 and increases the frequency at which Τβ3 is estimated to 

be 0 or some very small number. The impact of floor effects on variability in estimates of π3 is 

likely responsible for the manner in which relative bias approaches –1 in the most rows of Table 

16. 

Results for Τβ4. Table 17 presents relative bias statistics for estimates of Τβ4. The 

variance component Τβ4 represents the variability around the grand mean (i.e., γ4) of estimates of 
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the curvilinear component of treatment phase slopes for subjects. For all conditions and level 1 

error specifications, estimates of Τβ4 were found to be biased. Magnitudes of relative bias of 

estimates ranged from 0.087 to 12.4.  

Identification of patterns in relative bias of Τβ4. As for Τβ3, many relative bias statistics 

either equaled or approximated -1. It appeared that estimates of Τβ4 equaled 0 more often as the 

number of data points increased. As for Τβ3, this pattern was likely due, in part, to the increase in 

floor effects that occurred as numbers of data points per phase rose. Whether variance was 

continuous or discontinuous also appeared to be associated with the frequency at which estimates 

of Τβ4 equaled 0, when either different variance components or autoregressive covariance 

structures were specified at level 1. When variance was discontinuous, relative bias approximated 

or equaled -1 more often than when variance was continuous. In contrast, when variance was 

discontinuous, autocorrelation was generated, and separate error terms were specified at level 1, 

relative bias decreased as the number of data points per phase increased. Extrapolation of this 

pattern suggests that acceptable levels of bias may be obtained when roughly 40 to 50 data points 

are included in treatment phases.  

Results for σ
2

single. Table 18 presents relative bias statistics for estimates of σ2
single. The 

variance component σ2
single represents the variability of subjects‟ actual data points around their 

expected values in the model. In other words, σ2
single is the variance of residuals in level 1 models. 

The variance component σ2
single was only estimated when different variance components or 

autoregressive covariance structures were specified at level 1. Estimates of σ2
single were found to 

be of acceptable levels of bias in 16 instances: when variance was continuous and either (a) 

autocorrelation was not generated, 5 data points were generated per phase, and either different 

variance components or autoregressive covariance structures were specified, or (b) 

autocorrelation was generated, 10 or 20 data points were generated per phase, and an 
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autoregressive covariance structure was specified. Magnitudes of relative bias in other instances 

ranged from 0.071 to 0.54. 

 Identification of patterns in relative bias of σ
2

single. As would be expected, estimates of 

σ2
single were only of acceptable levels of bias when data were generated to have a single, 

continuous variance. When autocorrelation was not generated, relative bias levels increased in the 

negative direction as the numbers of data points per phase increased. This pattern probably 

resulted from the manner in which floor levels were imposed on generated data, which likely 

reduced variance by restricting the range of treatment phase data points‟ y-values. In contrast, an 

opposite pattern was found in conditions in which autocorrelation was generated. In these 

instances, relative bias levels appeared to decrease as the numbers of data points increased. 

 Results for σ
2

baseline and σ
2
treatment. Table 19 presents relative bias statistics for estimates 

of σ2
baseline and σ2

treatment. The variance components σ2
baseline and σ2

treatment represent the variability of 

subjects‟ baseline and treatment phase data points, respectively, around their expected values in 

the model. In other words, σ2
baseline and σ2

treatment are the variances of residuals from baseline and 

treatment phases, respectively, in level 1 models. The variance components σ2
baseline and σ2

treatment 

were only estimated when separate error terms were specified at level 1. Estimates of the two 

variance components were only observed to be of acceptable levels of bias when autocorrelation 

was not generated. For σ2
baseline, estimates were of acceptable levels of bias in all instances when 

both variance was continuous and discontinuous. (One potential exception involved a relative 

bias statistic of -0.051. For this instance, the relative bias was regarded as acceptable.) For 

σ2
treatment, estimates were of acceptable levels of bias only when variance was discontinuous and 5 

data points were generated per phase. (Again, one potential exception involved a relative bias 

statistic of -0.051. As before, for this instance, the relative bias was regarded as acceptable.) 

Relative bias statistics for estimates of σ2
treatment in other instances, when autocorrelation was not 
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generated, ranged from -0.083 to -0.229. When autocorrelation was generated, relative bias for 

σ2
baseline ranged from -0.274 to -0.453, and ranged from -0.481 to -0.632 for σ2

treatment. 

Identification of patterns in relative bias of σ
2

baseline and σ
2

treatment. Levels of relative 

bias in σ2
baseline appeared to be associated with the levels of autocorrelation. As stated above, when 

autocorrelation was not generated, estimates of σ2
baseline were of acceptable levels of bias. On the 

other hand, when autocorrelation was generated, estimates of σ2
baseline were biased. Levels of 

relative bias in σ2
treatment appeared to be associated with the levels of autocorrelation, continuity of 

variance, and numbers of data points per phase. When autocorrelation was generated and/or 

variance was continuous, estimates of σ2
treatment were consistently biased. However, when 

autocorrelation was not generated and variance was discontinuous, levels of relative bias 

increased as the number of data points per phase increased. This pattern, and the high levels of 

bias in estimates of σ2
treatment,  were likely due to imposition of floor levels on generated data, 

which probably reduced treatment phase variance by restricting the range of treatment phase data 

points‟ y-values. 

Relative Bias of Autocorrelation Estimates 

Results for ρar(1). Table 20 presents relative bias statistics for estimates of the level of 

autocorrelation in simulated samples by condition. Levels of relative bias were only acceptable 

when autocorrelation was not generated, variance was continuous, and either 5 or 10 data points 

were generated for each phase. In all other conditions, relative bias ranged from 0.055 to 0.719. 

Identification of patterns in relative bias of ρar(1). Levels of relative bias in estimates of 

ρar(1) appear to be associated with levels of continuity of variance, autocorrelation, and numbers of 

data points per phase. As stated above, estimates of ρar(1) were only of acceptable levels of bias 

when autocorrelation was not generated and variance was continuous. Across levels of continuity 

of variance and autocorrelation, the relative bias of estimates increased as the numbers of data 
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points per phase increased. This pattern likely resulted from the relationship between floor effects 

and number of data points per phase. As the number of data points per phase increased and floor 

effects became more frequently present, data points assumedly possessed more similar y-values 

(i.e., all near 0). Thus, when data points per phase were more numerous, the level of 

autocorrelation was probably inflated by floor effects.
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CHAPTER 5 

Discussion 

 This study was driven by several research questions pertaining to the use of MLM in 

meta-analysis of single-subject research data. These questions prompted examination of rates of 

convergence of analyses, levels of power and relative bias for fixed effects, and levels of relative 

bias for random effects and autocorrelation estimates, across (a) specifications for model errors at 

level 1, (b) numbers of data points per experimental phase, (c) numbers of participants per study, 

(d) numbers of studies meta-analyzed, (e) degrees of autocorrelation in individuals‟ data, and (f) 

continuity of level 1 variance across phases.  

This study was inspired by and constitutes an effort to build upon previous theoretical 

and empirical work regarding the use of statistical analyses with single subject data (e.g., 

Beretvas & Chung, 2003b; Ferron et al., 2010; Jenson et al., 2007; Van den Noortgate, 2003b; 

Van den Noortgate & Onghena, 2011). The literature search contained in Chapter 2 identified a 

lack of empirical knowledge on MLM and single-subject data regarding trends within phases, use 

of quadratic models at level 1, the impact of discontinuous variances across phases, the relative 

benefit of different level 1 error specifications, and the accuracy of autocorrelation estimates. 

Also, the search showed little is known about the use of 3 level meta-analytic models with single-

subject data and the impact of autocorrelation. The research questions which guided this study 

were formulated to address these shortcomings of knowledge. 

This chapter presents the strengths and limitations of the simulation study, commentary 

on cut-offs for acceptable levels of relative bias, implications of study findings for meta-analysts, 

implications of study findings for SSED primary researchers, and directions for future research. 
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Strengths of the Simulation Study 

 The main strength of the study is its sourcing of values for generating parameters from a 

representative sample of single-subject data. By referencing outcomes of analyses of the 

representative sample when selecting generating parameter values, the simulated data was assured 

to possess characteristics of actual, published data. Most notably, the simulated data possessed 

high levels of variance within subjects‟ data sets, various degrees of trend, level change, and trend 

plus level change, floor effects, and a larger proportion of variance within studies than between. 

 Another strength of the study is the large number of factors and level 1 error 

specifications included in the design. Properties of single-subject data sets can differ along many 

variables. By manipulating five factors in the generation of data and analyzing samples with 

various level 1 error specifications, study results map a fairly wide swath of parameter space and 

generalize to a fairly large number of data scenarios.  

Limitations of the Simulation Study 

 Unfortunately, as with any study, the results are associated with a number of limitations. 

Collectively, the limitations cast some doubt on the accuracy and stability of certain findings, as 

well as constrain generalization of the results. 

 The problem of floor effects. Unexpected patterns in relative bias of fixed effects were 

observed for estimates of γ3 and γ4, as well as for conditions with 5 data points per phase. Across 

all conditions, relative bias was positive for estimates of γ3 and negative for estimates of γ4. This 

pattern indicates that the magnitudes of both γ3 and γ4 were consistently overestimated. For 

conditions with 5 data points per phase, relative bias statistics for the treatment phase effects (i.e., 

γ2, γ3, and γ4) were consistently lower than for conditions with either 10 or 20 data points per 

phase. However, relative bias was also consistently lower for conditions with 20 data points per 
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phase than those with 10. Given the trends in relative bias in conditions with 10 and 20 data 

points per phase, relative bias in conditions with 5 data points per phase was expected to be 

highest and qualify most frequently as unacceptably biased.  

These unexpected patterns may result from the manner in which data were generated. As 

can be seen above in Figures 4 through 6, the y-values of simulated data for treatment phases with 

5 data points dropped to 0 less frequently than treatment phase y-values of simulated data with 10 

or 20 data points per phase. The short duration of treatment phases with 5 data points likely did 

not provide enough distance along the x-axis for generating values for treatment phase slopes to 

cause y-values to reach 0. This apparent relationship between the number of data points and the 

presence of floor effects (i.e., when generated data is forced to take on the floor level of 0 as 

opposed to the level initially specified by generating equations) represents a confound. The 

improved relative bias of conditions with 5 data points per phase, as well as the degree to which 

γ3 and γ4 were overestimated, may result from this systematic variability in the presence of floor 

effects across levels of numbers of data points per phase. With fewer floor effects present in 

conditions with 5 data points per phase, the shape of data trajectories in these conditions may 

have been more purely representative of the population generating equations. Consequently, the 

estimates of models‟ fixed effects would be as observed: less intensely biased and less often 

characterized by unacceptable levels of bias. Also, patterns in the overestimation of γ3 and γ4 

may be functions of the confounding relationship.  

This relationship between number of data points per phase and frequency of floor effects 

was assessed in a follow-up analysis. Table 21 presents the percentages at which near-zero y-

values were observed in treatment phases of data sets with 5, 10, and 20 data points per phase, 

after truncation of y-values. The sample analyzed contained generated 3000 data sets, with 1000 
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sets for each number of data points per phase. The samples of 1000 were composed of 200 

simulated studies with 5 participants each. 

As can be seen in Table 21, the percentages of near-zero y-values after truncation did, in 

fact, vary substantially across numbers of data points per phase in a near linear fashion. All 

percentages of near-zero data points were greatest when 20 data points were generated per phase, 

and lowest when 5 data points were generated for each phase.  

As a result of imposing a floor level at 0, treatment phase data generally followed 

different trajectories at each level of number of data points per phase, despite constant use of a 

single generating equation. In other words, the floor effects created differences in the actual 

population averages of treatment effect measures across numbers of data points per phase. These 

differences represent a confound to study findings and prevent identification of meaningful 

patterns across levels of number of data points per phase. Additionally, they introduced bias into 

relative bias statistics for fixed and random effects pertaining to treatment phase data. The 

presence of floor effects in treatment data explains, in part, patterns of bias in estimates of γ3, γ4, 

Τβ3, Τβ4, σ
2
treatment, and ρar(1).  

While the rate of near-zero y-values in data sets with 10 measures per phase is as 

intended (see Figure 2), the rates are deflated and inflated for data sets with 5 and 20 measures 

per phase, respectively. Thus, findings for conditions with 10 data points per phase are unaffected 

by the confounding relationship. To make full use of findings for conditions with 5 and 20 data 

points per phase, the study design would need to be expanded to include the percentage of near-

zero y-values in treatment phases as an additional factor. The factor would have 3 levels: those 

observed and reported in Table 21 for data sets with 5, 10, and 20 data points per phase. Such an 

expanded design would involve varying generating values for treatment phase slope parameters 

across the levels of percentage of near-zero y-values in treatment phases. Alternatively, the study 
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could be re-run with either no truncation of treatment phase y-values or an increase in the 

generating value for the baseline intercept, such that initially generated treatment phase y-values 

rarely or never drop below zero. 

The problem of high baseline y-values. As mentioned in Chapter 4, when 

autocorrelation was not generated, as the number of data points increased, relative bias levels also 

increased. Assumedly, this trend resulted from a confounding relationship between the number of 

data points per phase and behavior levels generated at the end of baseline. As the number of data 

points increased, the range of behavior levels generated at the end of baseline phases was likely to 

be larger, due to the increased distance along the x-axis and opportunities for y-values to rise. An 

increase in the range of y-values at the end of baseline phases would lead to an increase in the 

range of y-values of ends of baseline regression lines. This increase would then cause an increase 

in the range of vertical distance between ends of baseline regression lines and treatment intercepts 

(i.e., the variance of immediate treatment effects). This relationship was also assessed in a follow-

up analysis. Table 22 presents the percentages of extreme, high y-values observed in baseline 

phases with 5, 10, and 20 data points. The findings were obtained from the same sample 

described above. 

As can be seen in Table 22, the percentages of extremely high y-values in baseline phases 

did vary across numbers of data point per phase. However, the differences are slight. For the 

analysis, cut-off values of 80 and 90 were chosen due to the impression taken from graphs of data 

(i.e., Figures 4 through 6) that the vast majority of baseline y-values were roughly less than 80. 

The cut-off points do not represent problematically high values, but rather allow a contrast in 

distributions of y-values across numbers of data points per phase.  

While it did appear that relative bias in estimates of Τβ2 covaried with the number of data 

points per phase, the differences in percentages of extremely high y-values may or may not have 
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been large enough to introduce systematic bias in estimates of fixed and random effects. To be 

certain of the import of these differences, the percentages of extremely high baseline y-values 

could be paired with the percentages of near-zero treatment phase y-values to create a combined 

factor, which would then be added to the study design. However, the differences seen in Table 22 

do not strongly suggest that differences across numbers of data points per phase were great 

enough to confound results. 

 The problem of unstable relative bias statistics. On occasion, individual or small 

groupings of relative bias statistics for fixed and random effects did not conform to overarching 

patterns in values. The deviance of these statistics occasionally involved acceptable levels of bias 

when overarching patterns implied all estimates for certain conditions should be biased and vice 

versa. Curiosity about these deviant statistics prompted a follow-up analysis to assess the stability 

of estimates of relative bias. 

 Data for 4 conditions (i.e., those with continuous variance, no autocorrelation, and 5 data 

points per phase) were generated and analyzed in a second, limited run of the SAS simulation 

program. As in the first run of the simulation program, 400 samples were generated and analyzed 

per condition. Relative bias statistics for the fixed effects and Τβ0 obtained from the second 

analysis were compared to those of the first analysis. The variance component Τβ0 was chosen for 

comparison due to the relatively high frequency at which its relative bias was less than 0.05. 

Tables 23 and 24 present relative bias statistics, for Τβ0 and fixed effects, respectively, obtained 

from each run of the simulation program. 

For both Τβ0 and the fixed effects, relative bias statistics were found to deviate 

substantially. In the first run of the 4 conditions, 5 instances of acceptable bias were found for Τβ0 

(for which magnitudes ranged 0.34 to 0.50). In the remaining 7 instances, magnitudes of relative 

bias ranged from 0.080 to 0.163. However, in the second run, no instances of acceptable bias 



96 

 

were observed. Here, magnitudes of relative bias for the 12 figures ranged from 0.253 to 0.385. 

Results for the fixed effects were less differentiated, although important differences were found. 

For 3 instances in which relative biases obtained from the first run were of acceptable levels 

(magnitudes ranged from 0.027 to 0.028), unacceptable levels of bias were instead found in the 

second run (magnitudes ranged from 0.248 to 0.249). For γ0, γ1, γ2, γ3, and γ4, respectively, 

relative bias from the second run deviated from the first by an average magnitude of 0.002, 0.105, 

0.006, 0.027, and 0.306. 

Together, these follow-up findings suggest that 400 replications of each condition were 

insufficient to obtain stable estimates of relative bias for fixed and random effects. Further, 

accuracies of the relative bias statistics reported in Chapter 4 are in question. 

 Other limitations associated with data generation. Several features of the data 

generated for this study limit generalization of study findings. Results only generalize to data 

conditions which match those of the study. In particular, results are only relevant when (a) data 

points per phase number between 5 and 20, (b) subjects per study number between 3 and 6, (c) 

studies meta-analyzed number between 10 and 30, (d) variance is continuous and equals 

approximately 150 or variance is discontinuous and equals approximately 300 in baseline and 70 

in treatment phases, (e) lag-1 autocorrelation in the sample equals approximately 0.0 or 0.4, (f) 

samples contain only 1 baseline and treatment phase pair, (g) subjects‟ data are all on the same 

metric (e.g., percentage of 10 second intervals) and (h) magnitudes of effects in data (e.g., 

baseline intercepts and slopes, treatment intercepts and slopes) approximate those used to 

generate data. With regard to stipulation (h), three points deserve mention. For one, in the 

population generating model, the effect of treatment was both immediate and gradual. On 

occasion, data sets were generated in which treatment effects appeared to be either primarily 

gradual or primarily immediate (see Figures 4 through 6). Therefore, results of this study 
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generalize to samples which include data sets marked by a mix of immediate and gradual 

treatment effects, but only when the effects of treatment are on average both immediate and 

gradual. Second, baseline trends were generated to be linear. Findings of this study do not 

generalize to samples which contain baseline data marked by more complex patterns, such as 

curvilinear trends. Third, extinction spikes were not modeled with generating equations. Thus, 

results do not generalize to meta-analysis of data containing extinction spikes. 

 Limitations due to models and analyses. Several features of the models used to meta-

analyze samples and the analysis conducted create further limitations. Results only generalize to 

conditions in which (a) the 3 level model expressed in Equations 29 through 39 in Chapter 3 is 

employed, and (b) different variance components, an autoregressive covariance structure, or 

separate error terms for each phase are specified for level 1 error. With regard to stipulation (a), 

two points deserve mention. For one, predictor variables were not included in level 2 or 3 

equations. Consequently, study findings do not comment on moderator and mediation analyses. 

Second, the frequent estimates of 0 for the variance of level 2 random effects indicates certain of 

these level 2 random effects should not always or, in some instances, never be included in models 

for data with characteristics similar to those of the generated data. However, study findings do not 

generalize to use of models with one or more level 2 random effects excluded. Finally, the meta-

analyses performed in this study did not involve statistical tests of random effects. Therefore, 

study findings do not comment on the performance of statistical tests of random effects. 

 Additionally, use of analysis models that are different than generating models can result 

in bias in estimates of variance components (Kwok, West, & Green, 2007). Much of the bias 

observed in variance components could have been due to use of a simplification model in 

analyses. As mentioned in Chapter 3, the simplification model used did not include several level 

3 random effects which were included in the generating model. 
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A Challenge to the Face Validity of the Standard Cut-off Point for Acceptable Relative Bias 

 Figure 7 graphically depicts the population average model, two models at the limits of 

acceptable bias, and an extremely biased model observed in the simulation study. The graph is 

presented as a challenge to the face validity of the standard cut-off point of 0.05 for acceptable 

relative parameter bias for fixed effects. The solid black line in the graph represents the 

population average model. The blue line with diamond dots represents one limit of acceptable 

relative bias, when the magnitude of relative bias equals 0.05 for all fixed effects and the 

direction of bias is consistent with the biases observed in the simulation study. The aqua line with 

diamond dots represents another limit of acceptable bias, when the magnitude of relative bias 

equals 0.05 for all fixed effects and the direction of bias is opposite the bias observed in the 

simulation study. Finally, the red line with square dots represents a model observed in the 

simulation study with extremely biased values for γ3 and γ4. Parameter values for this model 

were determined by solving for averages in relative bias formulas (i.e.,    ) after inputting 

observed relative bias statistics. In the condition depicted, variance was discontinuous, 

autocorrelation was generated, the numbers of data points per phase, subjects per study, and 

studies meta-analyzed were 10, 6, and 30, respectively, and an autoregressive covariance 

structure was specified. The relative biases of the fixed effects γ0 through γ4 were, respectively,   

-0.002, 0.007, -0.014, 0.195, and -3.74.  

 As can be seen in the blue line in Figure 7, models composed of acceptably biased 

parameter values can misrepresent data phenomena greatly. In contrast, the red line shows how 

models composed of greatly biased parameter values can approximate data phenomena with a 

moderate degree of fidelity (even when floor effects confound data generation).  
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 Patterns in Figure 7 suggest that use in this study of a magnitude of 0.05 as the cut-off 

point for acceptable levels of relative bias may not have produced clear information on whether 

fixed effect estimates represent data phenomena well or poorly. Fixed effect estimates deemed 

biased, as well as those deemed of acceptable levels of bias, may or may not have depicted 

average data trajectories in samples accurately.  

Implications of Findings for Meta-analysis of Single-subject Data 

 Study findings suggest a number of guidelines for the meta-analysis of single-subject 

data, when employing the model expressed in Equations 29 through 39. These guidelines are 

discussed below as they relate to fixed effects, random effects, and autocorrelation estimates. 

Following discussion of the guidelines, comments are offered on the potential for poor fit 

between single-subject designs and statistical analyses. In the appendix to this paper, readers will 

find several sets of SAS code which can be used to estimate this study‟s meta-analytic models.  

 Fixed effects. To ensure adequate power for statistical tests of models‟ fixed effects, 

meta-analysis should only be performed on samples in which (a) the number of data points per 

phase is 10 or greater and (b) the total number of subjects is 60 or greater. With regard to 

stipulation (a), it is possible that adequate power can be achieved when samples include data sets 

with fewer than 10 points per phase, but the average number of data points per phase in the 

sample is 10 or greater. However, the impact on power of different levels of variance in numbers 

of data points per phase within samples is not known.  

 Findings indicated that power for tests of small effects (i.e., γ1 and γ4) could be low, 

especially when numbers of level 1 and 2 units were small. When performing a meta-analysis, if 

effects which are expected to be small are found to be statistically insignificant, researchers 

should consider retaining parameters for the effects in the model and disregarding statistical test 

results for the fixed effects. This practice should be followed especially when inclusion of the 
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parameters could improve accuracy of estimates for other model parameters (e.g., as inclusion of 

parameters for the baseline slope aids estimation of the immediate treatment effect). 

 To ensure that the relative bias of estimates for model intercepts (i.e., γ0 and γ2) is within 

the acceptable range, meta-analysts only need to follow the above mentioned guidelines for 

obtaining adequate power. However, to ensure that the relative bias of estimates for model slopes 

(i.e., γ1, γ2, and γ4) is within the acceptable range, it appears meta-analysis should be limited to 

samples in which the number of data points per phase is somewhere between 30 and 50, or 

greater. This stipulation should be received with caution, given the confound of floor effects may 

have introduced bias into otherwise unbiased estimates (i.e., unbiased estimates of model slopes 

may be able to be obtained with fewer than 30 data points per phase). 

 Should autocorrelation be present in samples, autoregressive covariance structures should 

be specified for level 1 error to improve the relative bias of estimates of γ3. However, it should be 

recognized that this practice may be associated with increased bias in estimates of γ1. (For 

guidelines on how to assess the level of autocorrelation in samples, see the section below on 

autocorrelation estimates.) 

 When variance is discontinuous across phases, meta-analysts should be aware that 

estimates of γ1 and γ3 may be biased. (However, relative bias rates for estimates of γ3 may have 

been confounded by the floor effects present in generated data.) Unfortunately, no levels of study 

factors were associated with attenuation of these biases and thus, no practice can be 

recommended to reduce the bias in γ1 and γ3. 

 Random effects. When employing the 3 level model examined in this study, meta-

analysts are likely to find that not all level 2 random effects deserve inclusion. In particular, the 
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random effects r1jk, r3jk, and r4jk are likely to be estimated to be 0 and thus warrant exclusion from 

the model. 

 For most conditions examined in this study, estimates of the variance of random effects 

were biased. Presumably, the large degree of sampling error generated in data and commonly 

observed in published single subject data, both within and across subjects, is responsible for the 

inaccuracy of estimates. To attenuate this bias, several efforts can be made. However, the 

following practices may not reduce bias to acceptable levels (i.e., relative bias ≤ 0.05). 

When autocorrelation is found to exist in a sample, specification of autoregressive 

covariance structures at level 1 can help reduce the bias in estimates of Τγ0, Τβ0, and Τβ2. 

Unfortunately though, when autocorrelation is found to exist, no practice can be recommended to 

reduce bias in Τβ1 or, when separate error terms are specified for each phase at level 1, in σ2
baseline 

and σ2
treatment. 

When variance is found to be discontinuous across phases, specification of separate error 

terms for each phase at level 1 can reduce bias in estimates of Τ β3 and Τβ4. However, 

discontinuous variance is associated with bias in Τβ0 and no practice can be recommended to 

improve the bias of this estimate. 

 Increasing the numbers of units at levels 1, 2, and 3 additionally appears to help attenuate 

bias. Limiting samples to data sets with 40 to 50 data points per phase, or greater, may help 

reduce bias to acceptable levels in Τβ2 (i.e., when autoregressive covariance structures are 

specified at level 1) and Τβ4 (i.e., when separate error terms for each phase are specified at level 

1). Also, collecting larger samples of subjects and studies can lower relative bias rates in Τγ0 and 

Τβ0. 
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 Autocorrelation estimates. Findings from this study indicate that estimates of 

autocorrelation resulting from SAS PROC MIXED and specification of an autoregressive 

covariance structure are frequently overestimated and biased. Assessing the presence of 

autocorrelation in samples is necessary prior to conducting a multilevel meta-analysis of single-

subject data. As discussed above, when autocorrelation is found to be present, various practices 

should be undertaken and certain estimates should be regarded as biased. Findings in this study 

indicate that autocorrelation is likely to be absent from data sets when estimates of 

autocorrelation are less than 0.1. Should estimates of greater than 0.1 be obtained, meta-analysts 

can assume autocorrelation does exist and proceed with their analysis accordingly. Given the 

consistency with which autocorrelation levels were overestimated and the large degree to which 

autocorrelation was overestimated when it was generated, meta-analysts can be confident that 

estimates of less than 0.1 indicate autocorrelation is not present in data sets. However, further 

research with additional levels of autocorrelation is necessary for confirmation of these 

assumptions. Alternatively, researchers could instead make use of the test developed by Riviello 

& Beretvas (2008) to check for the presence of autocorrelation in each data set separately.  

 Potential for poor fit between single-subject designs and statistical analyses. Single-

subject research was developed for use with small, special populations (e.g., people with autism 

or intellectual disability) and difficult to safely study behaviors (e.g., self-injurious behavior; 

Kennedy, 2005). In a single geographical area, the number of potential research subjects who 

meet the criteria for inclusion in a study is often low, due to the small size of the overall 

population of interest. Also, when data collection puts subjects in harm‟s way, the number of data 

points that can be collected safely may be very few. As a result, single-subject researchers have 

been forced to accept small samples of subjects and data points, the likelihood of sampling error, 

and the potential for study results to not generalize to other members of the population. To 
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combat these limitations, single-subject researchers have developed a number of methods to 

convincingly demonstrate causal relationships between independent and dependent variables and 

make results relevant to other members of a population. 

 Statistical analyses have been developed for use with group design research. Statistical 

procedures rely on large sample sizes for minimization of sampling error and maximization of 

accuracy. Also, the procedures make use of averages and distributions to increase the precision 

and degree of nuance of claims made for results‟ generalization. 

 The standards for convincing evidence differ in single-subject research and statistical 

analyses. Whereas confirmation of a treatment effect can be accomplished in single-subject 

research with as few as two or three data points and/or subject, many more data points and 

subjects are required for confirmation via statistical analyses. Statistics and single-subject 

research potentially fit together poorly because of their differences in standards for convincing 

evidence. Single-subject researchers are able to satisfy their goals with just a few data points, but 

statistical analysts need more data points to do their job. Should the natural limitations of special 

populations and the behaviors commonly studied in single-subject research prevent the obtaining 

of data fit for statistical analysis, a number of outcomes are possible. For one, the findings of 

single-subject research may be left out of discussions of evidence-based practice (given the 

emphasis on widely generalizable information). Alternatively, the standards for evidence-based 

practice, as determined by single-subject research, may be set to be lower than those for group 

design research. In this sense, the increased potential for sampling error in single-subject research 

findings would be overlooked or accepted. Unfortunately, this outcome would involve occasional 

acceptance of biased information and, consequently, misguided decisions on educational policy. 

In contrast to these disappointing outcomes, researchers will hopefully develop methods of 

statistical analysis that perform adequately despite the small samples collected in single-subject 



104 

 

research. Several methods that have the potential to fit well with single-subject research (and 

better than the analyses examined in this study) are described below in Future Research 

Directions. 

Implications of Findings for SSED Primary Research 

 While the focus of this study was meta-analysis, the findings have several implications 

for SSED primary research. As discussed above and in Chapter 4, levels of power and relative 

parameter bias are dependent on numbers of data points collected per phase and numbers of 

subjects included per study.  

In order to minimize bias in meta-analysis results, SSED primary researchers are 

encouraged to make efforts to collect a minimum of 10 data points in baseline and treatment 

phases, and up to 40 or 50, if feasible. Given that behavior patterns in treatment phases are more 

complex and meaningful (e.g., apparent trends are true trends, as opposed to just variance which 

randomly appears as a trend), primary researchers are especially encouraged to emphasize 

extended data collection in treatment phases. Unfortunately, there are a number of ethical, 

practical, and internal validity problems that can result from extended data collection. For 

example, when studying self-injurious behavior, baseline conditions may place subjects in danger 

of physical harm and thus should be ended as quickly as possible. Also, data collection costs time 

and money. When the goals of a primary researcher are met, it may not seem worth additional 

time and money to collect more data points simply for the sake of improved parameter estimation 

in a meta-analysis that may or may not be conducted years in the future. As a final example, 

extended data collection may open findings to threats of maturation effects or measurement-

induced behavior changes, and thus may compromise a study‟s internal validity. Should ethical, 

practical, or internal validity problems stem from extended data collection, primary researchers 
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are instead encouraged to make efforts to collect as many data points as safely possible in each 

phase, according to their best judgment.  

To aid the securing of adequate levels of power and acceptable levels of bias, and 

facilitate the meta-analysis of narrow bodies of research, SSED primary researchers are 

encouraged to include at least 6 subjects per study, and more if feasible. As above, practical and 

internal validity problems may result from including relatively large numbers of subjects in 

studies (e.g., study costs, heterogeneity of subjects‟ characteristics). When faced with the threat of 

an insurmountable practical or internal validity problem, primary researchers are encouraged to 

include as many subjects as safely possible, according to their best judgment. 

Also, given the need for similarity across all baseline-treatment phase pairs included in a 

meta-analysis, researchers who employ alternating treatment designs or gradation/fading of 

independent variables within treatment phases are encouraged, when feasible, to either begin or 

end a subjects‟ data set with a pair of baseline and treatment phases, in which the treatment given 

is the treatment of greatest interest in the study (and hopefully also to a meta-analyst). 

Future Research Directions 

 Future research should address a variety of topics related to the meta-analysis of single-

subject data. For one, the performance of additional level 1 models should be examined. Research 

should explore models with simple linear treatment phase trajectories, those that make use of log 

link functions (Beretvas & Wang, 2011), logistic models (Beretvas, 2011), and other functions 

whose inclusion of a denominator allow modeling of horizontal asymptotes. Given the tendency 

of the quadratic model examined in this study to predict negative y-values for data points, 

functions which can model horizontal asymptotes may perform better in various ways. Future 

research should also explore the meta-analysis of data sets composed of more than one baseline 

and/or treatment phase. For example, research could look at the meta-analysis of multiple reversal 
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designs, alternating treatment designs, or designs in which treatment components are gradually 

introduced across several phases. To examine the performance of MLM in the meta-analysis of 

multiple baseline studies, future research should examine outcomes associated with different 

degrees of variation in numbers of data points per phase within and across studies. Given the 

diversity of metrics used in data collection in SSED research, future studies should additionally 

explore when standardization of data on different metrics is necessary. 

 The limits of this study provide further directions for future research. Associations with 

power and relative parameter bias should be examined for additional levels of (a) number of data 

points per phase, (b) number of subjects per study, (c) number of studies meta-analyzed, (d) 

variance in each phase, (e) autocorrelation, and (f) magnitudes of effects/shapes and levels of data 

trajectories. Additionally, the percentages of near-zero y-values in treatment phases should be 

included as a factor in the designs of future studies. Also, future research should explore type I 

error, statistical tests of random effects, and moderator and mediation analyses.  
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Table 3  
 

Summary of factor levels 

 

Factors Factor levels 

Number of data points per phase 

 

5 baseline 

5 treatment 

 

10 baseline 

10 treatment 

 

20 baseline 

20 treatment 

 

Number of participants per study 

 

3 

 

6 
 

 

Number of studies meta-analyzed 

 

10 

 

30 
 

 

Degree of autocorrelation in 

individuals‟ data sets 0.0 0.4 

 

 

Continuity of level 1 variance 

across phases 

Continuous 
  

 

σ2
single = 150 

 

Discontinuous 
 

σ2
baseline = 300 

σ2
treatment = 70 
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FIGURES 

 

 

Figure 1 

 

Visual illustration of parameters in Equation 29 
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Figure 2 
 

Population average model for data generation 
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Figure 3 
 

Graphic illustration of potential treatment phase trajectories due to the correlation of π3 and π4/ 

covariance of r3jk and r4jk, and u3k and u4k 
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Figure 7 
 

Graphic depiction of the population average model, examples of the limits of acceptable bias, and 

an extremely biased model observed in the simulation study 

 

 

 

Black line represents the population average model; blue line with diamond dots represents one 

limit of acceptable bias (when the direction of bias is consistent with the bias observed in the 

simulation study); aqua line with diamond dots represents another limit of acceptable bias (when 

the direction of bias is opposite the bias observed in the simulation study; and the red line with 

square dots represents an extremely biased model observed in the simulation study 
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APPENDIX 

 

The lines of SAS code below can be used to estimate the 3 level models examined in this study.  

 

When specifying different variance components and covariances of 0 for level 1 error, the 

following code can be used: 

 

proc mixed covtest;          

class subject study; 

model DV=session_number trmt term term2/solution ddfm=kr notest; 

random intercept/subject=study; 

random intercept session_number trmt term term2/subject=subject(study); 

run; 

 

where “subject” is the subject identifier; “study” is the study identifier; “DV” is Yijk; 

“session_number” is Tijk; “trmt” is (treatment)ijk; “term” is (Tijk – [nbjk + 1])(treatment)ijk; and 

term2 is (Tijk – [nbjk + 1])2(treatment)ijk. 

 

When specifying autoregressive covariance structures at level 1, the following code can be used: 

 

proc mixed covtest;          

class subject study; 

model DV=session_number trmt term term2/solution ddfm=kr notest; 

random intercept/subject=study; 

random intercept session_number trmt term term2/subject=subject(study); 

repeated/ type=ar(1) subject=subject(study); 

run;  

 

When specifying separate error terms for each phase at level 1, the following code can be used: 

 

proc mixed covtest;          

class subject study trmtcl; 

model DV=session_number trmt term term2/solution ddfm=kr notest; 

random intercept/subject=study; 

random intercept session_number trmt term term2/subject=subject(study); 

repeated trmtcl/type=un; 

run; 

 

where “trmtcl” is identical to “trmt.” 

 

To exclude a level 2 random effect, simply delete the variable name from the 5th line of code 

(e.g., to exclude r1jk, delete “session_number.”) 
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