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Binary trees provide an ideal framework for many decision problems due 

to their logical, understandable structures and the computational advantages of the 

“divide and conquer” paradigm.  They can be particularly advantageous for 

classification applications, which involve categorization of information into 

groups that are in some sense homogeneous.  Algorithms used in construction of 

decision trees used in classification problems are typically greedy.  A new 

algorithm was developed in this study which incorporates Tabu Search (TS) in the 

feature selection aspect of hierarchical classification trees.  Specifically, it is 

implemented within the hierarchical classification problem framework of the 

Binary Hierarchical Classifier (BHC) which has been shown to be advantageous 

for classification problems with a large number of output classes.  The algorithm 

incorporates feature selection as a means for input space and classifier complexity 
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reduction for a static tree; the algorithm was also extended and coupled with the 

BHC to allow TS feature selection to aid in building the class hierarchy.  Finally, 

a new algorithm was developed which uses TS in the rearrangement of the nodes 

of a binary classification tree.  Since the use of highly accurate classification 

algorithms is vital in fields such as medical diagnoses, character recognition, 

target detection, and land cover mapping, the primary goal of this research is to 

attain improved classification accuracies. 
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Chapter 1 

Introduction 

Data acquisition is often an expensive undertaking; therefore, many 

organizations acquire all data possible because it is never known when the data 

may become useful.  Advances in technology have made data storage relatively 

inexpensive, thereby resulting in enormous increases in the quantity of data being 

acquired and stored.  Unfortunately, the acquisition and storage rates far exceed 

the current capabilities to process and extract useful information from this data.  

Thus, large amounts of stored data exist that may never be examined.  When data 

exist in large quantities, it is imperative that computer technologies be used to 

examine the data and to extract useful information.  Even using modern 

computing capabilities, this task can be extremely difficult.  Classification 

involves categorization of information into groups that are in some sense 

homogeneous.  Classification thus achieves both information extraction and 

compression, and its methods are widely used to perform such diverse actions as 

labeling and tracking of land cover, making medical diagnoses, target detection, 

and assessing credit-risks and detecting fraud.  The field of statistical 

classification has been an active area of research for over forty years.  Supervised 

classification is performed in the following manner:  out of a set of C known 

classes, data observations are examined and assigned, or recognized as belonging 

to one of the known classes.  This is accomplished by examining the pattern of the 

features belonging to each observation and assigning labels to individual 
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observations based on this pattern.  Features are also known as attributes or 

properties, and each observation may possess an associated vector of feature 

values.  In a perfect world, this vector of values would completely determine the 

correct classification for each observation, but this is a rarity.  Typically, 

observations from classes are random variables with associated probability 

distributions; often there is substantial overlap between distributions of different 

classes. 

The number of features (attributes) that describe each observation can 

range from only a few to thousands.  This is problematic both because of 

computational complexity and because the resulting high dimensional input 

observation space is typically quite sparse.  Further, when features are redundant, 

covariance based classification methods encounter numerical problems.  The two 

general approaches to input space dimensionality reduction involve feature 

extraction or feature subset selection.  The goal of techniques developed under 

either strategy is to construct a simpler classification algorithm that is more 

reliable, i.e., possesses greater accuracy and executes faster.  Feature extraction is 

the process of extracting features from the original set to form a lower-

dimensional set of potentially different features.  This is accomplished through 

some type of mapping or transformation.  For example, principal component 

analysis is commonly used to project the original feature space onto a lower 

dimensional feature space.  Feature selection reduces the feature space by 

choosing a subset of the original features to represent the entire set.  The goal of 

feature selection is to find the optimal feature subset such that when the 
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classification algorithm is applied to observations, the resulting labels have the 

highest accuracy.  This selection of the optimal subset out of all possible subsets 

is an NP-hard problem [1].  Performing an exhaustive search of the solution space 

of all possible subsets would be required to ensure that the optimal feature subset 

had been identified.  For a very large number of features, exhaustive search is 

intractable.  For a problem with n features, the number of all possible feature 

subsets is 2n.  A few calculations show how the number of possible subsets 

becomes unmanageable:  24 = 16, 212 = 4,096, 230 = 1,073,741,824, and             

2250 = 1.809x1075.  Current feature selection techniques, which include greedy 

algorithms and the use of heuristics, do not guarantee optimality but often obtain 

near-optimal solutions more quickly than an exhaustive search. 

The classification algorithm, or classifier, is that function which examines 

the observations and maps them into the set of C known classes.  Research has 

shown that it is very rare when a single classifier can be considered as the best 

classifier for all of the classes when multiple classes are involved.  This 

realization led to an area of research known as multiclassifier systems whereby 

results from multiple classifiers are combined in such a way as to improve the 

accuracy of classification relative to that of the single classifier.   

This research involves investigation of Tabu Search (TS), a well-known 

metaheuristic that is able to adaptively and reactively guide its own search 

through the solution space, coupled with the multiclassifier system known as the 

Binary Hierarchical Classifier (BHC) [2, 3].  The current BHC algorithm utilizes 

a deterministic annealing-type algorithm which employs Fisher projection based 
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feature extraction to partition the classes and produces a binary hierarchical tree 

structure that is used to classify all unknown observations.  The primary goal in 

development of this approach was output decomposition for problems with a 

medium to large number of classes.  While the classification accuracies obtained 

from the BHC are typically good, problems are encountered if the number of 

inputs is extremely large and the amount of training data is limited.  Further, the 

Fisher weights are not typically stable, and the tree is not necessarily robust to 

problems where the inputs are perturbed, as would be the case if the classifier 

were applied to a slightly different problem.  A preliminary investigation of a 

simple greedy based feature selection approach [4] was promising, but inflexible.  

In this study, new models are developed which incorporate the use of TS in the 

feature selection aspect of the hierarchical classification trees within the 

hierarchical problem framework of the BHC.  Improved classification accuracies 

are increasingly more important as the use of classification algorithms becomes 

more prevalent. 

In addition, the combined use of TS for feature selection coupled with tree 

rearrangement is investigated as a means for input space and classifier complexity 

reduction.  The goals of this research are to extend knowledge and understanding 

in the areas of classification and to introduce metaheuristics within the 

hierarchical classification framework.  This methodology is applied in the 

analysis of several datasets, including a standard character set and remotely 

sensed data acquired by multispectral and hyperspectral sensors, which acquire 

data simultaneously in hundreds of spectral bands. 
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Chapter 2 

Background and Related Work 

This section contains an overview of the characteristics of supervised 

classification problems and solution approaches, with a focus on the problem of 

selecting optimal inputs for large data mining problems.  It contains a more in-

depth discussion of the BHC algorithm and TS as a method for attacking 

combinatorial problems. 

2.1  CLASSIFICATION AND FEATURES  

Supervised classification methods derive a set of rules for labeling a 

(typically) vector-valued observation of features as members of one of C known 

classes.  Features can have discrete, continuous or complex values.  Discrete 

features can possess only a finite number of values; ordinal and nominal scale 

values are of the discrete type.  Continuous features possess an infinite number of 

values within the domain of real numbers.  Complex features possess an infinite 

number of values within the domain of complex numbers, i.e., x+iy.  Figure 2.1 

shows the hierarchy of these feature types. 
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Figure 2.1:  Hierarchy of feature types [5]. 

The vector of feature values that describes each observation forms a 

pattern that, when examined and compared to known patterns of classes that exist 

within the dataset, can be used to assign labels to unclassified observations.  

When there are no clear distinctions between the patterns of different classes, 

some observations may be misclassified; thus, classification algorithms seek to 

minimize the expected error rate of classification or maximize some measure of 

goodness for classification. 

2.2  MEASURES OF GOODNESS 

Measures of goodness seek to maximize the classifier’s ability to 

discriminate between the known classes.  There are five different types of 

measures that are commonly used within the area of classification:  accuracy, 

information, distance, dependence and consistency.  Accuracy measures directly 

depend on the classifier used and reflect the predictive accuracy of the classifier 

by either maximizing the accuracy rate or minimizing the error rate of 

classification.  Accuracy measures are widely used by researchers as the primary 

measure for evaluation.  The other types are measures of class separability which 
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are maximized to yield the greatest potential for distinguishing between the 

classes.  Class separability can be further characterized in terms of consistency 

and the classic measures of information, distance and dependence.  Consistency 

measures reward consistent classification of an observation into the same class as 

the classifier is iteratively refined.  An information measure monitors the 

likelihood of an observation being classified into its true class by the use of an 

uncertainty function such as Shannon’s entropy, ∑−
i

ii cPcP )(log)( 2  [6].  

Distance measures attempt to separate the classes as much as possible and label 

an observation as belonging to its closest class.  Typical distance measures 

include the Mahalanobis distance [7], the Battacharyya distance [7], the Jeffries-

Matusita distance [8] and the Patrick-Fisher distance [9].  Finally, dependence 

measures quantify the association or correlations between features and the classes 

involved.  Figure 2.2 shows the hierarchy of measures typically used in 

classification. 

Figure 2.2: Hierarchy of types of measures [5]. 

 

Measure 

Accuracy Class Separability 

Classic Measure 

Information Distance Dependence 

Consistency 
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2.3 THE CLASSIFIER 

A supervised classification procedure takes each unclassified observation 

and maps it into the set of C known classes, assigning the observation a class 

label.  This process consists of the following steps: (1) determine the set of classes 

that exists within the dataset, (2) select representative observations that are known 

to reside in each class (subsequently these will be divided into the set of training 

data and the set of testing data), (3) use the training data to estimate the 

parameters of the probability density functions of the individual classes, (4) train 

the classifier with the training data and evaluate the classifier with the testing 

data, iterating as necessary, (5) label all unclassified observations using the 

trained classifier and (6) summarize the results of the classification.  This type of 

classification depends on the ability to model the classes, typically using 

parametric probability distributions.  The classifier can be viewed as a conjecture 

of the true mapping from a data observation to the correct class. Given new 

unclassified observations, the classifier predicts the observation’s class.  Typical 

classifiers include Bayesian classifiers [10], maximum likelihood classifiers [11] 

and minimum distance classifiers [12].  During classification, problems can arise 

when the set of inputs includes features that are irrelevant (do not affect the 

structure of the data in any way), and/or redundant (do not add any new 

information to the description of the data structure).  These issues are greatly 

exacerbated when the input space is quite large.  This is problematic both because 

of computational complexity and the resulting high dimensional input observation 

space is typically quite sparse. 
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2.4 FEATURE SELECTION 

Methods which overcome the problems of irrelevant or redundant features 

are “input space reduction techniques.”  The motivation for input space reduction 

is three-fold:  (1) to improve the accuracy of the chosen classifier, (2) to reduce 

the data dimensionality, while simultaneously reducing the number of 

observations required to appropriately train the classifier (to estimate the class 

parameters), and (3) to simplify the classifier by reducing the search space that the 

classifier must traverse.  A welcomed side-effect is the possible reduction of the 

effort required for the classifier to learn an accurate classification function       

[13, 14].  Feature extraction and feature subset selection are two general 

approaches to input space reduc tion.  Feature extraction is the process of 

extracting a set of new features from the original set of features through a 

mapping or transformation, for example, the projection of the original feature 

space onto a lower dimensional feature space (as in principal component 

analysis).  It has been shown that a classifier using irrelevant or redundant 

features does not perform as well as a classifier that excludes the irrelevant or 

redundant features [7].  Subset selection is an optimization problem which 

involves searching the solution space of all possible subsets for an optimal or 

near-optimal subset of features.  Feature selection is usually directed at one of two 

goals:  (1) minimize the number of features selected while satisfying some 

minimal level of classification capability or (2) maximize classification ability for 

a subset of prescribed cardinality.  Additionally, feature selection potentially 

provides valuable domain knowledge about the process. 
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Feature selection can be visualized as a search in a discrete binary space 

(or Boolean hypercube) where each point depicts a feature subset whose vector of 

D components identifies the members of the feature subset.  For example, a 1 in 

the vector’s jth position indicates the jth feature’s inclusion in the subset while a 0 

in the jth position indicates its exclusion.  This space can be depicted in a lattice 

structure as depicted in Figure 2.3, where the top node includes all features and 

the bottom node is the empty set; all other nodes within the lattice are the result of 

a removal of a feature if the lattice is traversed top-down or the addition of a 

feature if the lattice is traversed bottom-up.  For example, if D = 4, the binary 

vector (1, 0, 1, 0) depicts the feature subset which includes features one and three, 

i.e. {1, 3} and is highlighted in Figure 2.3. 

 

 

Figure 2.3: Four-dimensional feature selection lattice. 
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An example of a greedy heuristic search of the feature selection lattice 

used in classification is implemented as the Steepest Ascent Algorithm discussed 

in [15].  This algorithm uses the Jeffries-Matusita (JM) distance as its objective 

function (maximization) and assumes Gaussian class distributions to simplify 

computation.  In this algorithm, an initial subset is selected and evaluated; all 

possible one-feature changes are considered; if an improvement can be made, the 

best improvement is accepted, and the algorithm then considers all one-feature 

changes from the current subset.  These iterations terminate when no 

improvements can be made, indicating that the process has reached a local 

optimum, and return the best subset found.  This type of algorithm is sensitive to 

the initial subset.  This weakness can be lessened by executing the algorithm 

several times and comparing the resulting subsets.   

Feature selection techniques are characterized either as filters, which 

ignore the classifier to be used, or wrappers, which base selection directly on the 

classifier. 

2.4.1 Filters  

Computationally more efficient than wrappers, a filter approach performs 

subset selection based only on the feature qualities within the training data.  Since 

the classifier is ignored, there is no interaction between the biases of the feature 

selector and the classifier.  The quality of the best filter subset is typically not as 

effective as a subset selected using a wrapper model.  Two well-known filter 

approaches are embodied in the RELIEF and FOCUS algorithms described in 

[16].  Figure 2.4 depicts a flowchart of a filter model for feature selection. 
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Figure 2.4:  A filter model of feature selection [5]. 

2.4.2 Wrappers  

Wrappers select a feature subset based directly on the classifier.  The 

training data are used to train the classifier using different feature subsets; each is 

then evaluated using the testing data to find the best subset.  In this way, the 

biases inherent in the feature selection algorithm and the classifier strongly 

interact, and the feature selection is described as being “wrapped around” the 

classification algorithm.  The feature subset with the highest evaluation score is 

subsequently passed to the classifier to label the remaining unclassified 
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observations.  Selecting better subsets can improve the accuracy of a classifier 

[17], and this is one reason that wrapper models are often preferred over filter 

models.  Unfortunately, depending on the computational intensity of the classifier 

used and the number of original features, wrapper models can be computationally 

burdensome and may be intractable for problems having a very large number of 

features.  Another problem associated with wrappers is that they may actually 

overfit the data [17] by placing undue emphasis on random variations in training 

data which yields a model that does not generalize well for new data.  Figure 2.5 

depicts a flowchart of a wrapper model for feature selection. 

 

  

Figure 2.5: A wrapper model of feature selection [5]. 
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2.4.3 Optimal methods  

Optimal feature selection methods identify the optimal feature subset 

which yields the highest possible accuracy for a set of known data.  Identification 

of the optimal subset is guaranteed by an exhaustive search of the solution space 

of all possible subsets [1].  For a very large number of features, exhaustive search 

is computationally intractable. 

The branch and bound (B&B) method also produces optimal features [18].  

A limitation of B&B is that it guarantees the optimal subset only if the 

performance measure is known to be monotonic, where the addition of features 

does not deteriorate the performance measure.  This condition often cannot be 

satisfied.  In addition, in many situations the effort associated with B&B may still 

be prohibitive.  Other forms of the B&B, automatic B&B and backward automatic 

B&B [19], have been proposed, but still require the monotonicity property.  

Approximate B&B [20] is a heuristic B&B which does not require a monotonic 

performance measure but is computationally more demanding than B&B [5]. 

2.4.4 Sub-optimal methods  

The computational complexities of optimal feature selection methods have 

resulted in the acceptance of heuristic techniques that find good, near-optimal 

subsets in relatively short computational times.  A comparative study of several of 

the well-known optimal and sub-optimal feature selection algorithms is contained 

in [21].  Specifically, the authors contrasted results obtained from the following 

methods: Sequential Forward/Backward Selection (SFS/SBS), their generalized 

versions (GSFS(g)/GSBS(g)) and their floating point versions (SFFS/SBFS); Plus  
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l take away r (PTA(l, r)) and its generalized version (GPTA(l, r)); versions of 

B&B and relaxed B&B; a genetic algorithm; and a parallel algorithm.  Genetic 

algorithms were introduced for the selection of features in [22].  Simulated 

annealing was used as a feature selector in [20], and the use of the TS 

metaheuristic was shown as a promising approach in [23]. 

2.5 TABU SEARCH 

Tabu Search (TS) is a metaheuristic method for solving combinatorial 

optimization problems.  Its first modern formulation is attributed to Glover [24].  

TS differs from other search techniques in that modern versions of TS are able to 

adaptively and reactively guide their search through the solution space while 

allowing infeasible areas of the solution space to be traversed in its search for the 

optimal solution.  TS uses specialized memory structures to maintain its search 

history and to avoid becoming trapped in local optima.  Its popularity has grown 

due to its ability to find near-optimal solutions in a short amount of time and its 

adaptability to many combinatorial optimization problems, including job shop 

scheduling problems [25], pickup and delivery problems [26], and communication 

network problems [27, 28].  Group Theoretic TS, a version of TS that makes 

extensive use of group theory has recently been developed [29, 30] and has been 

successfully implemented in the aerial fleet refueling problem [31, 32], the theater 

deployment vehicle routing and scheduling problem [33, 34] and the general crew 

scheduling problem [35].  Another version known as Extreme Point TS [36] has 

been proposed to optimize decision trees by representing the tree as a set of 
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disjunctive linear inequalities and optimizing over these inequalities; the results 

are considered promising.    

TS explores from its incumbent solution, looks at neighboring solutions, 

i.e., those solutions that can be reached by a single move within the specified 

move-neighborhood, and moves to the neighboring solution with the best non-

tabu solution.  It avoids cycling and escapes from local optima by using a tabu 

list, which incorporates solution attributes of recent solutions that are forbidden 

for tabu tenure future moves.  An aspiration criterion may be introduced to allow 

TS to make a tabu move if stipulated conditions are satisfied.  TS can include 

intensification and diversification elements:  intensification allows a deeper 

search into promising areas of the solution space, and diversification encourages 

movement to yet unexplored or less explored areas of the solution space.  Finally, 

the search will halt and return the best solution found when a stopping criterion is 

satisfied.  As with all heuristic methods, the solution returned is not guaranteed to 

be optimal. 

To facilitate the visualization of the TS principles, its application to one of 

the most researched problems in scientific literature, the combinatorial 

optimization problem known as the Traveling Salesman Problem (TSP), is 

discussed here.  Simply stated, a single salesman is to travel to several cities, 

starting from and returning to his home city.  Knowing the exact distance between 

each pair of cities, the salesman desires to plan his route minimizing his entire 

travel-distance.  The simplicity of the problem description is deceiving, as all 

permutations of the cities must be implicitly examined to identify the tour of 
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minimum length, and thus, the TSP is NP-complete [37].  When the number of 

cities is large, the TSP becomes intractable.  To clarify the general TS approach, a 

general description of a TS implementation for the TSP is now described. 

The TSP, as in all applications of TS, starts with an initial tour (solution).  

The move-neighborhood is all other solutions in the solution space that are 

reachable by a single move.  While moves can be defined in a number of ways, 

two common types of moves are known as swap-moves and insert-moves.  In the 

TSP, a swap-move identifies two cities within the tour and exchanges their 

positions.  For example, suppose for a 6 city TSP that city 1 is the salesman’s 

home.  Given incumbent tour 1-2-4-3-6-5, swapping cities 2 and 6 yields            

1-6-4-3-2-5.  An insert-move removes a single city from its current position and 

inserts it in a different position.  Given incumbent tour 1-2-4-3-6-5 with city 2 

selected for insertion, the neighborhood tours are 1-4-2-3-6-5, 1-4-3-2-6-5,         

1-4-3-6-2-5 and 1-4-3-6-5-2. 

TS is aggressive and will generally choose the best non-tabu move 

available within its present move neighborhood (characterized by the greatest 

decrease or smallest increase in the tour length).  It differs from simple classical 

descent methods in that it can escape being trapped in local optima by its ability 

to learn.  An attribute of the new solution is identified and labeled as tabu (not 

repeatable for a given number of iterations known as tabu tenure).  The tabu 

architecture eliminates cycling, repeatedly returning to and not being able to 

escape from a local optimum, and allows the search to move away from recently 

searched areas.  Pure TS, a simple but cumbersome and ineffective tabu strategy 
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memorizes all solutions (tours) visited thus far and forbids return to any such 

solution; an alternative to remembering entire tours is to select an attribute, such 

as the city just inserted, and then to forbid it from being moved within its tabu 

tenure.  Tabu status can be overridden by a move meeting the aspiration criterion. 

The simplest such criterion is to allow the move when it leads to a new best 

solution for the TSP.  Diversification may be introduced by counting the number 

of times the cities have been in particular tour positions and choosing to penalize 

moves that cause higher counts to be repeated.  This drives the search into 

possibly new unexplored areas of the solution space.  Intensification may be 

implemented by returning to good solutions and searching within the vicinities of 

such solutions in the hope of finding even better solutions.  The stopping criterion 

is often a specified number of iterations performed or number of iterations 

performed with no improvement to the tour length.  These strategies presented for 

the TSP are only representative and in no way exhaust the great number of the 

strategies that may be applied to the TSP and similar problems when using TS. 

2.6 MULTIPLE CLASSIFIER SYSTEMS 

In classification, it is very rare when a single classifier can be considered 

the best classifier when multiple classes are present [38].  This led to the 

development of a research area which focuses on developing methods that 

combine a group of classifiers in such a way as to improve the accuracy of 

classification relative to that of the single classifier and with greater classification 

accuracy than any of the individuals within the ensemble [39].  These types of 

classifiers are said to “divide and conquer” the solution space.  Instead of learning 
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one complex classifier, this family of classifiers combines many smaller, easier 

classifiers into a multiclassifier system.  Many multiclassifier systems have been 

developed and continue to be refined; a brief history is presented in [40].  

Examples of multiclassifier systems include the Bayesian Pairwise Classifier 

(BPC) [2], the Bayesian Pairwise Classifier with the Fisher Discriminant (BPC-

FD) [2], and the Best-Bases Binary Hierarchical Classifier (B-B BHC) [41, 42].  

Much research has been devoted to the exploitation of these multiclassifier-

improvements to overall system accuracy in an effort to develop higher quality, 

more robust classifiers that can contribute to knowledge reuse and transferability 

of the classifier. 
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Chapter 3 

The Binary Hierarchical Classifier 

The focus of this research is multiclassifier problems with large input and 

output spaces.  Large input spaces require input space reduction techniques, while 

large output spaces are often handled by various output space decomposition 

techniques.  An example of a classifier framework that transforms the feature 

space and the output space simultaneously is the BHC.  The BHC is studied as a 

means of developing models that attain better overall classification accuracies.  In 

addition, the use of class dependent feature selection within the hierarchical tree 

schemes is investigated for its impact on retention of domain knowledge.  The 

remainder of this chapter contains a discussion of the current implementation of 

the BHC and an introduction to the research conducted in this study. 

3.1 BINARY HIERARCHICAL CLASSIFIER FOR CLASSIFICATION 

The BHC, as developed by Kumar et al. [3] for a C-class problem, forms a 

binary tree-type hierarchical classifier (at each node of the tree, only two branches 

are created).  Sets containing more than one class are known as metaclasses and 

are the internal nodes of the tree structure; sets containing individual classes are 

the leaf nodes of the tree which are the final nodes of the branches.  The metaclass 

at the top of the tree structure includes all original classes.  The internal nodes of 

the tree, to include the top node, depict a two-metaclass problem that partitions 

the classes at each internal node nΩ  into two child nodes, 2nΩ  and 2 1n+Ω , where 
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2 2 1n n n+Ω ∪ Ω = Ω ; this is accomplished recursively at each internal node until the 

leaves of the tree structure contain the individual classes and no more partitioning 

can be executed.  Ultimately, this framework yields a hierarchical tree structure of 

C-1 internal nodes (two-metaclass problems) and C leaf nodes.  Figure 3.1 depicts 

an example of a BHC tree structure with 5 classes.   

 
Figure 3.1:  Example of a BHC with 5 classes [2]. 

In its current implementation, a feature extractor at each internal node 

extracts those features that best discriminate child node pairs in a reduced input 

space.  Kumar et al. apply the Fisher discriminant as the feature extractor.  

Additionally, it is often easier for a classifier to distinguish between two subsets 

of classes than it is for the classifier to distinguish between all classes 

simultaneously, thus decomposing (and reducing) the output space.  Therefore, 

the best child node pair which is that pair with the strongest associations based on 
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a posterior probability based criterion, is chosen and the parent node branches on 

those child nodes. 

Based solely on the training data, the construction of the BHC tree can be 

accomplished in two ways: a top-down approach or a bottom-up approach.  The 

top-down version of the BHC tends to be less greedy than the bottom-up version, 

and the two versions often yield different results.  The top-down approach starts 

with all of the classes in a single metaclass which is partitioned into two child 

nodes (subsets) that can be depicted as having three possible combinations of 

child nodes:  leaves only, i.e. two single class child nodes if the parent metaclass 

is comprised of only two classes; smaller metaclasses, i.e. child nodes made up of 

more than one class but fewer classes than the metaclass that serves as its parent, 

so that 2 2 1n n n+Ω ∪ Ω = Ω  if the parent metaclass is made up of four or more 

classes; or some combination of a leaf and metaclass if the parent metaclass is 

comprised of three or more classes.  The bottom-up version of tree construction is 

initiated with all the individual classes as leaf nodes and successively combines 

those leaves, metaclasses, or combination of leaf and metaclasses determined to 

be the least distinguishable from each other.  This agglomeration is continued 

until the single metaclass containing all the classes is attained.  Once the tree is 

built, the classifier uses the structure for classification of unlabeled observations.  

Refer to [2, 3] for more information on the BHC. 

3.1.1 Top-down BHC 

The top-down BHC framework uses the Generalized Associative Modular 

Learning System (GAMLS) [43], a deterministic annealing-type algorithm.  
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GAMLS is used to partition each metaclass into two child nodes until each branch 

of the tree is reduced to a single class at the  leaves.  This process decomposes the 

output space at each branching of the tree by reducing the number of possible 

allocations of an observation to two choices at each branch of the tree.   

Each individual class contained in a metaclass is ultimately assigned to 

one, and only one, of the two child nodes.  This allocation is accomplished by 

computing the posterior probabilities of each class ϖ ∈Ω  belonging to either 

child node.  This requires allocating the classes to nodes and estimating the 

parameters for the child nodes.  Each partition needs to be explored to ensure that 

the best partition was found.  Instead of allocating classes directly, GAMLS 

“softly associates” classes with child nodes by associating one class with one of 

the subordinate metaclasses with probability 1 while all other classes are equally 

associated with each subordinate metaclass with probability .5.  The algorithm 

updates these associations at each step until the associations are clear, i.e., close to 

1 for “associated with” and close to 0 for “not associated with”.  For the metaclass 

with C > 2, GAMLS execution can be summarized as:  (1)  the Fisher feature 

extractor reduces the feature space to that which maximally discriminates between 

the two “soft” metaclasses using the current associations; (2) the mean log-

likelihoods of classes in the feature space are computed, (a univariate or 

multivariate Gaussian distribution is assumed); (3) associations are updated by 

maximizing the weighted sum of the log- likelihoods subject to an annealing 

constraint;  (4)  Steps 1 through 3 are repeated until the incremental increase in 

the defined gain is insignificant; (5) the stopping threshold is reached then the 
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execution halts returning the current associations, else the temperature is cooled 

and execution returns to the Fisher feature extractor.  (These steps are displayed in 

Figure 3.2.)  As the temperature cools, the associations (posterior probabilities) 

approach 0 or 1.  When the algorithm terminates, the partition is realized and the 

metaclass is split between those classes that most closely associate with αΩ  and 

those that most closely associate with βΩ .  This splitting is continued at all 

internal nodes until only leaf nodes remain.  Unclassified observations are 

ultimately classified using the resulting binary hierarchical classifier. 

 

 

Figure 3.2:  Flowchart of GAMLS execution. 
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3.1.2 Best Bases BHC 

An approach referred to as “best bases feature extraction”, was developed 

by Kumar et al. [41] for a Bayesian Pairwise Classifier (BPC) to reduce the input 

candidates in high dimensional remote sensing data.  Many of the original 

features of hyperspectral data, which are comprised of potentially hundreds of 

narrow, contiguous windows of the electromagnetic spectrum, are highly 

correlated and provide redundant information.  Implemented in both a bottom up 

band aggregation mode and a top down splitting mode, the method seeks to 

reduce the number of highly correlated features while maintaining good 

discrimination between pairs of classes in the BPC.  The approach was modified 

by Morgan et al. [42, 44] and incorporated in the BHC.  In this bottom up 

implementation of best bases feature extraction, the features which are contiguous 

in the spectrum and are highly correlated are combined to form a class dependent  

feature “group” at every node of the BHC.  Spectrally adjacent feature groups are 

successively combined until some user defined threshold is satisfied.  The 

resulting best bases features then replace the original features, thereby reducing 

the dimensionality of the input space while exploiting the correlation structure 

inherent in the data. 

3.2 RESEARCH 

In this study, Tabu Search (TS) was investigated as a means of improving 

classification accuracies within the BHC and Best-Bases BHC frameworks.  TS 

was first implemented as a means of generalizing the greedy feature selection 

within a specified tree structure obtained by the original BHC and Best Bases 
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BHC.  Feature selection extracts the most useful bands/band groups from the 

feature vector and presents them to the classifier as a vector of lower dimension 

whose elements retain only the most significant characteristics of the original 

input space.  Feature selection also attempts to remove any redundant and/or 

irrelevant features.  TS uses the greedy feature selection results as an initial 

solution and searches the solution space for subsets of features (original features 

for the BHC and combined features for the Best Bases BHC) which yield higher 

classification accuracies while leaving the hierarchical tree unchanged. 

 TS is then investigated as the feature selector at each internal node as the 

hierarchy is being constructed.  In this configuration, TS aides in the construction 

of the binary hierarchical structure and can be applied when using either the 

original features or the best bases combined features. 

While class hierarchies such as those resulting from the BHC generally 

achieve good classification accuracies, leaf nodes that are statistically close to 

each other can reside in two unrelated branches.  The BHC algorithms do not 

have the ability to examine the resulting tree structure and to rebuild/rearrange the 

branches and leaf nodes when the algorithm is unable to effectively 

partition/merge the metaclasses.  The hierarchy, once built, is fixed without any 

possibility of recourse.  This second application of TS provides a method that 

allows hierarchical classification algorithms to rearrange the resulting class 

hierarchies through the application of a combinatorial search through the solution 

space containing all possible class hierarchies.  For this component of the study, 

the tree structure from a hierarchical classifier like the BHC becomes the initial 
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incumbent solution for the TS algorithm and is stored as the “best solution found 

thus far”.   

The primary goals of this research were to extend knowledge and 

understanding in the areas of classification and to implement TS within the 

hierarchical classification framework in the quest for increased classification 

accuracies.  A secondary goal is to select a meaningful set of features that provide 

domain knowledge.  Finally, robustness of classifiers is important as values of the 

inputs used to train and test the classifier may not be representative of the 

population, or the classifier may need to be applied to a similar dataset for which 

no training data are available.  This work should contribute to that longer term 

goal. 
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Chapter 4 

The BHC with Tabu Search Feature Selection (TS-FS) 

The output of the BHC is a binary hierarchical tree that is used to assign a 

class label to observations whose class is unknown.  A typical BHC class 

hierarchy is displayed in Figure 4.1 for a dataset with five classes where the root 

node includes all C classes, the leaf nodes are the individual classes, and the 

internal nodes are metaclasses or subsets of the original set of classes.  Starting at 

the root node, each internal node is partitioned into two child nodes, two mutually 

exclusive subsets of the classes at that node, where 2 2 1n n n+Ω ∪ Ω = Ω .  The 

partitioning continues until the destination node for each branch of the tree results 

in a leaf node, yielding a binary class hierarchy with 2C-1 nodes (C leaf nodes 

and C-1 internal nodes). 

 

Figure 4.1:  Typical BHC hierarchical tree for a dataset with five classes. 
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Once the BHC class hierarchy is constructed using the entire feature set, 

an option using feature selection then iteratively examines each internal node, 

selecting that subset of features which is most useful for discriminating between 

each internal node’s child nodes.  This feature selection option is currently 

accomplished in the operational code [4] by a greedy forward feature selection 

algorithm.  Considering the particular classes present in the current metaclass, the 

first feature included is the feature that individually yields the highest 

classification accuracy.  The second feature that is considered for inclusion in the 

feature subset is that feature which, when included, maximizes a log-odds  

relevance function; the feature is subsequently selected if the classification 

accuracy at the current node is increased more than an arbitrarily selected 

threshold (.01).  This process continues until the increase in accuracy is less than 

the defined threshold.  Here, features are only added to the subset, never removed.  

Once the hierarchy is constructed and all metaclass features selected, unclassified 

observations are labeled as described in Section 3.1.1. 

4.1 TABU SEARCH FEATURE SELECTION 

A feature subset selection algorithm attempts to find an optimal or near-

optimal subset of features.  In its simplest implementation, Tabu Search Feature 

Selection (TS-FS) is a post-processing algorithm that operates on, but does not 

change the class hierarchy developed by the original BHC.  It can add or remove 

features from the feature subset during the search. 

The new TS based feature selection algorithm developed in this study 

starts with the root node and travels down the hierarchical tree, iteratively 
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considering each internal node for feature subset selection.  At the root node, the 

TS-FS is initiated using the BHC feature subset as an incumbent solution.  The 

objective is to maximize the classification accuracy, i.e., the percentage of correct 

labels of classes that are members of the metaclass at the current node.  This 

accuracy is computed using the same classification scheme as the original BHC 

and the same training data.  If the classification accuracy for any node is perfect 

(100%), the node is skipped.  The move neighborhood selected for the TS 

procedure consists of the union of all possible swaps and inserts of features that 

can be achieved from the current incumbent solution.  The swap neighborhood 

considers all possible single-feature swaps between the sets of used and unused 

features.  This neighborhood does not change the current number of features used.  

The insert neighborhood considers all single-feature insertions both from the set 

of selected features into the set of unused features and from the set of unused 

features into the set of currently selected features.  This neighborhood is either 

incrementing or decrementing a feature from the current set of features selected at 

the current node.  If a feature to be included in the feature subset is highly 

correlated with any features already present (exceeds a user defined correlation 

threshold), the move is not allowed.  This prohibition, which was included for 

analysis of remotely sensed hyperspectral data, ensures that features being 

considered for inclusion are not redundant.  The maximum number of features 

allowed at any node is also user-defined.  It can be unrestricted allowing greater 

search flexibility, or the user may define a maximum number of features based on 

knowledge of the problem.  Other user-defined parameters include the maximum 
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tabu tenure, the minimum tabu tenure, the initial tabu tenure (a number between 

the maximum and minimum defined tabu tenures), the number of iterations 

allowed with no improvements before halting the execution, and the maximum 

allowable number of iterations.  The tabu list is initialized as a column vector of 

zeros with a row for each feature.  When a feature is selected for movement either 

into or out of the subset of features, that feature is marked as tabu and the tabu list 

records the iteration number of that feature’s entry into or exit from the list.  That 

feature cannot be moved again until it has been on the tabu list for the number of 

iterations specified by the tabu tenure.  An exception to this rule is made when 

moving the feature results in a classification accuracy that is higher than any other 

accuracy previously achieved.  In this case, the tabu status is overruled, and the 

move is allowed. 

  The user defined maximum and minimum tabu tenure are employed to 

determine an adaptive tabu tenure strategy.  The tabu tenure is never allowed 

outside of the boundaries defined by maximum and minimum tabu tenures.  An 

improving classification accuracy decrements (if possible) the tabu tenure to 

allow an intensified search in the current area of the solution space.  If no 

improving classification accuracies are found, the tabu tenure is incremented (if 

possible) to encourage the search to leave the current area of the solution space 

and diversify into other unexplored areas of the solution space. 

  Given an incumbent solution, the best non-tabu move within the move 

neighborhood is selected.  (Since the best non-tabu move is not necessarily an 

improving move, TS can escape from local optima.)  If the current classification 
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accuracy is the highest value yet achieved, the new subset is recorded as the best 

yet found.  The next iteration is performed.  Iterations continue until either the 

user-defined number of iterations has been completed or no improvements have 

been found within the specified maximum-number-of- iterations-with-no-

improvement.  When the TS terminates for the current node, the best subset of 

features is recorded for that node, and the algorithm progresses to the next node 

for feature selection unt il all of the nodes have been processed.  A flowchart of 

the algorithm is displayed in Figure 4.2.   

   

Figure 4.2:   Flowchart of TS-FS Algorithm. 

When the TS-FS is completed for each node, novel observations are 

classified using the binary hierarchical tree with feature subsets selected by TS.  
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All algorithms were executed using MATLAB® student version 6.0.0.42a, release 

12 dated 13 November 2000 with the Pentium IV patch applied and implemented 

on a personal computer with an Intel® Pentium® IV, 2.66GHz and 512 Mb of 

RAM;  all execution times reported are in reference to this system. 

4.2 APPLICATION  OF TS-FS ALGORITHM TO STATIC TREES 

The TS-FS algorithm was applied to the BHC tree obtained from three 

datasets: multispectral and hyperspectral remotely sensed data acquired over 

Botswana and a standard character recognition dataset.   

4.2.1 Botswana Advanced Land Imager (ALI) Dataset 

The Botswana multispectral data were acquired by the Advanced Land 

Imager (ALI) aboard the Earth Observer 1 (EO1) satellite on 31 May 2001.  The 

mission is being flown to evaluate experimental sensor technology for future 

space missions.  For example, ALI is a prototype sensor for the Landsat Data 

Continuity Mission (LDCM).  The array of data can be displayed as an image 

where each pixel represents a vector-valued observation.  The data cover a subset 

of the Okavango Delta of Botswana that is undergoing change due to 

anthropogenic and natural processes such as seasonal flooding.  A small subset of 

the data is displayed in Figure 4.3 to illustrate the difficulty of land cover 

classification in this particular area.   
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Figure 4.3:   False color RGB composite (bands 4p, 5 and 3) of subset of 

Botswana ALI data. 

Data were pre-processed by the UT Center for Space Research (CSR) 

prior to analysis in this study [45].  The ALI data consist of observations from 23 

identified classes representing the land cover types in the area, each with 9 integer 

features which represent the spectral reflectance of the land cover types within 

contiguous bands of the visible and near infrared spectrum.  The class numbers, 

names and number of ground truth observations are listed in Table 4.1.  In 

addition to vegetation, soils and water, three types of floodplain are identified:  

floodplain1 (class 17) is the primary floodplain, floodplain2 (class 18) represents 

the seasonal floodplain, and floodplain3 (class 19) is considered to be a secondary 

floodplain.  In addition, two fire scar classes are identified:  firescar1 (class 22) 



 35 

was recently burned, whereas firescar2 (class 23) was previously burned and 

exhibits some patches of new vegetation growth.  CSR provided ten partitions of 

the data, where each class was randomly sampled and the data partitioned such 

that 50% of the data were identified for the training of the classifiers and the 

remaining 50% identified for the subsequent testing of the classifiers.  These ten 

datasets were maintained, and the same testing/training data utilized for each of 

the experiments labeled ALI1-ALI10.  Appendix A contains selected results 

(class hierarchies and confusion matrices) for this dataset.  Because the training 

and test data are spatially co- located in regions of known classes, accuracies can 

be inflated in remote sensing applications.  For this reason, an additional 

independent test set was also provided, and data were classified as novel 

observations. 
Class # Class Name  Training Sample Size 

1 north riparian 157 
2 south riparian 193 
3 short mopane 303 
4 mopane (dense) 249 
5 acacia mix 254 
6 woodland mix 201 
7 acacia woodlands 149 
8 acacia shrublands 134 
9 acacia grasslands 171 
10 mopane/pechuel/grass mix 164 
11 grass/pechuel mix 170 
12 dry grasses 252 
13 island interior 166 
14 exposed soil 118 
15 reeds1 192 
16 backswamp 233 
17 floodplain1 202 
18 floodplain2 193 
19 floodplain3 340 
20 water 241 
21 aquatic vegetation 151 
22 firescar1 248 
23 firescar2 156 

Table 4.1:   Class information for the Botswana ALI dataset. 
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4.2.2 Botswana Hyperion Dataset 

The Hyperion sensor on EO-1 is the first hyperspectral sensor successfully 

flown in space.  It acquires data simultaneously with ALI, but over a smaller area 

(7.5 km vs. 37 km strip width)  that is shifted slightly to the west as the telescopes 

for the sensors are not co-aligned.  The width of the Hyperion strip is smaller 

because the number of bands is more than 20 times that of ALI, thereby resulting 

in a dramatic increase in the amount of data recorded.  ALI and Hyperion cover 

the same range of the electromagnetic spectrum [46].  The data were provided to 

the study after extensive pre-processing was completed by CSR.  The Hyperion 

dataset consists of observations from 14 identified classes representing the land 

cover types in the area studied, each with 242 candidate features.  Uncalibrated 

and noisy bands that cover water absorption features are removed, and the 

remaining 145 bands are included as candidate features:  [10-55, 82-97, 102-119, 

134-164, 187-220].  The class numbers, names and number of ground truth 

observations are presented in Table 4.2.  As with the ALI, CSR provided ten 

randomly sampled partitions of the data, which were subdivided into 50% for 

training and 50% for testing the classifiers, and an independent test set.  These 

data splits were maintained throughout the study and are labeled HYP11-HYP20.  

Selected results (class hierarchies and confusion matrices) for this dataset are 

contained in Appendices B and C. 

 

 

 



 37 

 
Class code Class Training sample size 

1 water 270 
2 hippo grass 101 
3 floodplain grasses1 251 
4 floodplain grasses2 215 
5 reeds1 269 
6 riparian 269 
7 firescar2 259 
8 island interior 203 
9 acacia woodlands 314 
10 acacia shrublands 248 
11 acacia grasslands 305 
12 short mopane 181 
13 mixed mopane 268 
14 exposed soils  95 

Table 4.2:   Class information for the Botswana Hyperion dataset. 

4.2.3 Letter Recognition Dataset 

The letter recognition data were obtained from the University of 

California, Irvine (UCI) [47] Machine Learning Repository with the title, Letter 

Image Recognition Data.  This dataset consists of 20,000 instances, where 

typically the first 16,000 are used for training and the last 4,000 for testing; this 

partition was followed for this study.  The class labels are contained in Table 4.3. 
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Class # Class Name Training Sample Size Testing Sample Size 
1 A 633 156 
2 B 630 136 
3 C 594 142 
4 D 638 167 
5 E 616 152 
6 F 622 153 
7 G 609 164 
8 H 583 151 
9 I 590 165 
10 J 599 148 
11 K 593 146 
12 L 604 157 
13 M 648 144 
14 N 617 166 
15 O 614 139 
16 P 635 168 
17 Q 615 168 
18 R 597 161 
19 S 587 161 
20 T 645 151 
21 U 645 168 
22 V 628 136 
23 W 613 139 
24 X 628 159 
25 Y 641 145 
26 Z 576 158 

Table 4.3:   Class information for the letter recognition dataset. 

Each instance is a black-and-white rectangular pixel display of one of the 

26 capital letters of the English alphabet (see Figure 4.4 for example letters which 

yielded individual data observations) and is described by 16 integer-valued 

numerical attributes (statistical moments and edge counts), or features (see Table 

4.4).  The best accuracy obtained for this dataset is reported in the literature as “a 

little over 80%” [47].  Confusion matrices for this dataset can be found in 

Appendix D. 
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Figure 4.4:   Examples of letters which yielded individual data observations for 

the letter recognition dataset [2]. 

 
Feature # Feature Name Description 

1 x-box horizontal position of box 
2 y-box vertical position of box 
3 width width of box 
4 high height of box 
5 onpix total # on pixels  
6 x-bar mean x of on pixels in box 
7 y-bar mean y of on pixels in box 
8 x2bar mean x variance 
9 y2bar mean y variance 
10 xybar mean x y correlation 
11 x2ybr mean of x*x*y 
12 xy2br mean of x*y*y 
13 x-ege mean edge count left to right 
14 xegvy correlation of x-ege with y 
15 y-ege mean edge count bottom to top 
16 yegvx correlation of y-ege with x 

Table 4.4:   Feature information for the letter recognition dataset. 
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4.3 IMPLEMENTATION OF TS-FS  ALGORITHM AND RESULTS 

The TS parameters were tuned using the first experiment for the ALI and 

Hyperion datasets.  The parameters were then used for the remainder of the 

experiments.  For the letter recognition dataset, the parameters were tuned with 

the single data partition. 

4.3.1 Feature Selection Results for ALI Remotely Sensed Data 

Each of the ten datasets (experiments) was analyzed by the BHC, both 

with and without the original feature selection (FS) method.  The TS-FS was then 

performed on the static tree structures output by this algorithm using the features 

selected by the greedy algorithm as the TS starting solutions.  The overall 

classification accuracies for each of the algorithms are displayed in Table 4.5.  

Tabu tenure was set at 3.  Because this dataset has only 9 features, neither the 

correlation check for inclusion of new features nor the adaptive tabu tenure was 

utilized.  The stopping criterion was set at 30 iterations, and the maximum 

number of iterations to continue with no improvements was set at 10. 
Experiment BHC BHC FS BHC TS-FS 

ALI1 88.72 / 72.82 86.38 / 69.18 88.59 / 72.74 
ALI 2 87.20 / 71.71 85.30 / 64.92 89.71 / 72.20 
ALI 3 86.29 / 69.69 86.64 / 68.16 89.88 / 71.20 
ALI 4 86.60 / 70.96 85.99 / 68.62 90.01 / 71.69 
ALI 5 88.33 / 73.33 86.34 / 67.73 90.06 / 73.36 
ALI 6 87.64 / 73.63 85.82 / 66.97 89.32 / 72.66 
ALI 7 86.86 / 70.96 87.68 / 67.48 90.06 / 71.90 
ALI 8 85.82 / 75.03 84.48 / 71.82 88.28 / 75.16 
ALI 9 87.25 / 69.61 86.73 / 71.39 89.67 / 70.64 

ALI 10 88.98 / 72.68 87.42 / 69.37 89.75 / 72.09 
Average 87.37 / 72.04 86.28 / 68.56 89.53 / 72.36 

Standard Deviation 1.05 / 1.76 0.95 / 2.04 0.62 / 1.25 
Table 4.5:   BHC, BHC FS and BHC TS-FS overall experiment classification 

accuracies (%) for Botswana ALI testing/independent test data. 
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The original BHC utilizes the full set of features (weighted according to 

the Fisher projection) and consistently yields higher accuracies than the BHC with 

greedy feature selection.  The goal of both the original FS and TS-FS are to 

reduce the number of features, both to improve interpretability and increase 

robustness of the classifier.  In every experiment (using the test data), the class 

hierarchy utilizing the TS-FS resulted in higher overall classification accuracies 

than the BHC with the greedy feature selection by an average of 3.26% per 

experiment, and in 9 out of the 10 experiments it yielded higher overall 

classification accuracies than the BHC by an average of 2.16% per experiment 

(only experiment ALI1 resulted in a lower overall accuracy).  Even more 

significantly, standard deviation of the classification accuracies was also reduced 

relative to both the BHC and BHC FS.  For the testing data, the standard deviation 

of the accuracies for the TS-FS was only ~60% of that of the BHC and ~65% of 

that of the BHC-FS.  For the independent test data it was ~70% of that obtained 

by the BHC and ~60% of that for BHC-FS.  Thus, TS-FS method yielded a more 

stable set of features.  The tree structures had 22 internal nodes consisting of 

metaclasses where the feature selection was implemented.  On average per class 

hierarchy, compared to the results of the greedy feature selection: no feature 

selection was performed at 4 of the metaclass nodes because the classification 

accuracy at the nodes was 100%; feature selection was performed on 18 of the 

metaclass nodes, and of these the classification accuracy at 16.3 of the metaclass 

nodes was improved by an average of 1.65% per metaclass with 3.8 of the nodes 

improving to 100%; and the classification accuracy at 1.7 of the metaclass nodes 
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could not be improved upon using tabu search feature selection.  Of a total 198 

possible features per hierarchy (9 features per metaclass node), the greedy feature 

selection chose an average of 70 per hierarchy while the TS-FS (starting with the 

features selected by the greedy algorithm) chose an average of 103.7 features per 

hierarchy and maintained an average of 55.7 of the greedy features per hierarchy.  

The first feature selected by the greedy algorithm at each metaclass is that feature 

which is individually the most significant contributor to classification accuracy; 

these first-chosen features were discarded by the TS feature selector an average of 

4.8 times per tree in order to find better feature subsets and to attain better 

classification accuracies at the metaclasses.  Given that these features are 

considered to be the “most important” in one sense, this clearly illustrates the 

value of eliminating features subsequent to their initial selection.  Using the 

independent test data, the BHC TS-FS resulted in the highest overall average 

accuracy of 72.36%.  Figure 4.5 is an example of the classification of the data 

subset from Figure 4.3. 
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Figure 4.5:   Example of a classified subset using the BHC TS-FS classifier 

(experiment ALI7: test set accuracy 90.06%, independent test set 
accuracy 71.90%). 

The average classification accuracies for each class for each algorithm are 

displayed in Table 4.6 highlighting the highest average accuracy per class.  Each 

of the algorithms performs well in classifying selected classes, but the TS-FS is 

able to classify a majority of the classes more consistently for this dataset using 

both the test and independent test data.  While the standard deviations of the class 

classification accuracies are comparable for the BHC and the BHC TS-FS, there 

was a reduction relative to the BHC FS.  For the test data, the standard deviation 
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of the class accuracies for the TS-FS was ~70% of that of the BHC FS, and for the 

independent test data, it was ~65% of that for the BHC FS, again indicating that 

the TS-FS yielded a more stable set of features than the BHC FS.  Class 8, which 

is consistently classified with low accuracy by all algorithms, is a mixed class.   

 
Class # Class BHC BHC FS BHC TS-FS 

1 north riparian 76.93 / 54.05 72.81 / 56.49 75.38 / 60.54 
2 south riparian 88.12 / 85.08 88.23 / 69.59 89.38 / 72.18 
3 short mopane 95.76 / 88.48 91.52 / 87.63 95.25 / 88.53 
4 mopane (dense) 82.59 / 77.88 82.41 / 75.96 87.49 / 75.05 
5 acacia mix 87.96 / 92.82 87.24 / 87.39 88.67 / 90.48 
6 woodland mix 96.00 / 87.50 96.10 / 98.08 97.10 / 98.42 
7 acacia woodlands 84.98 / 38.54 84.19 / 51.58 87.15 / 46.32 
8 acacia shrublands 66.26 / 40.17 65.23 / 36.39 69.69 / 41.37 
9 acacia grasslands 84.95 / 16.84 72.71 / 18.51 78.00 / 17.59 
10 mopane/pechuel/grass mix 94.02 / 93.06 90.36 / 92.50 92.79 / 93.06 
11 grass/pechuel mix 88.71 / 85.71 90.95 / 94.70 91.41 / 93.34 
12 dry grasses 81.74 / 88.43 76.68 / 77.36 82.13 / 83.72 
13 island interior 87.47 / 76.15 87.48 / 76.80 87.48 / 75.60 
14 exposed soil 79.67 / 63.63 94.56 / 79.84 92.86 / 75.97 
15 reeds1 93.34 / 95.03 89.38 / 87.89 93.87 / 91.64 
16 backswamp  84.83 / 70.00 77.66 / 55.00 84.84 / 75.04 
17 floodplain1 81.98 / 34.70 87.71 / 27.07 94.43 / 37.38 
18 floodplain2 85.20 / 69.92 77.82 / 59.84 92.20 / 77.34 
19 floodplain3 80.14 / 59.43 83.00 / 52.20 86.81 / 55.69 
20 water 96.93 / 90.51 97.84 / 86.87 96.92 / 88.82 
21 aquatic vegetation 82.67 / 82.22 96.94 / 90.15 89.48 / 86.26 
22 firescar1 99.28 / 65.13 98.80 / 61.91 98.96 / 54.47 
23 firescar2 98.31 / 99.20 89.35 / 64.63 97.44 / 90.37 
 Average 86.86 / 71.93 86.04 / 69.06 89.12 / 72.57 
 Standard Deviation 4.27 / 5.27 5.33 / 8.34 3.86 / 5.36 

Table 4.6:   BHC, BHC FS and BHC TS-FS average testing/independent test 
classification accuracies (%) by class for Botswana ALI data. 

For the 10 experiments, the BHC constructed 7 different class hierarchies, 

and no hierarchy was duplicated more than twice.  A representative class 

hierarchy is displayed in Figure 4.6.  The partition of the root node is identical for 

all of the experiments; subtle differences in the structure become apparent at and 
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below the third level of the trees.  Closer inspection of the trees reveals that the 

acacia shrublands (class 8) was paired with four different classes; this result is not 

unexpected, as accuracies listed in Table 4.6 reflect that this class is the most 

difficult for each of the algorithms to classify using the test data.  Exposed soil 

(class 14), which is not closely related phenologically to any other class, was 

assigned to two different major branches of the class hierarchies in different 

experiments.  While the BHC class hierarchies differ with respect to the exposed 

soil class, the feature selection is able to isolate those features that are useful for 

labeling the class and to improve the accuracies for this class.  Interestingly, when 

class signatures are quite similar (e.g. acacia grasslands (class 9) and the dry 

grasses (class 12)), feature selection may tend to exacerbate the problem of 

misclassification.  This problem is illustrated in Figure 4.7, which contains plots 

of the training data for experiment ALI8.  For illustration of the overall within-

class variation, all class 9 training observations are plotted with the class means 

for classes 9 and 12.  Classes 9 and 12 are paired on 9 of the 10 hierarchies, with 

the acacia grasslands most often misclassified as dry grasses for both test and 

independent test data due to their similar patterns and variations in the 

observations sampled for training and test data.  When distinguishing between 

classes 9 and 12, the greedy feature selection generally tended to choose the 

features 2, 4, 8 and 9 while the TS-FS most often chose features 1, 4, 5, 6 and 9.  

This difference is significant for such a small number of total features. 
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Figure 4.6:   Representative BHC tree structure for the Botswana ALI dataset. 
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Figure 4.7:   Plot of experiment ALI8 training data:  class 9 Observations and 

mean, class 12 mean. 

4.3.2 Feature Selection Results for Hyperion Remotely Sensed Data 

The Hyperion experiments were also analyzed with the BHC, with and 

without feature selection.  As with the ALI data, the TS-FS was then performed 
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on the static tree structure utilizing the features output by the greedy feature 

selection algorithm as its starting solution.  The overall classification accuracies 

for each of the experiments are contained in Table 4.7.  Dynamic tabu tenure was 

initialized at 5 and allowed to range from 3 to 10.  Because this dataset has 145 

total candidate features, the correlation check for inclusion of new features was 

utilized.  The TS stopping criterion was set at 30 iterations and the maximum 

number of iterations to continue with no improvements was set at 10. 

 
Experiment BHC BHC FS BHC TS-FS 

HYP11 92.71 / 61.23 89.13 / 66.32 93.51 / 60.87 
HYP12 88.76 / 56.87 86.53 / 63.44 89.75 / 67.52 
HYP13 88.08 / 69.36 90.30 / 69.36 92.77 / 64.08 
HYP14 91.91 / 60.07 86.72 / 62.88 92.59 / 58.35 
HYP15 89.99 / 58.55 85.98 / 59.47 90.67 / 62.07 
HYP16 91.85 / 60.63 87.34 / 64.04 92.16 / 66.92 
HYP17 91.60 / 59.43 86.29 / 62.15 92.90 / 61.35 
HYP18 91.91 / 60.59 90.80 / 68.88 92.34 / 63.88 
HYP19 89.19 / 63.52 85.05 / 68.92 89.13 / 63.40 
HYP20 90.67 / 62.07 85.55 / 63.04 91.54 / 62.15 

Average 90.67 / 61.23 87.37 / 64.85 91.74 / 63.06 
Standard Deviation 1.58 / 3.39 2.01 / 3.36 1.44 / 2.75 

Table 4.7:   BHC, BHC FS and BHC TS-FS overall experiment classification 
accuracies (%) for Botswana Hyperion testing/independent test 
data. 

In every experiment using the test data, the tree structure utilizing the TS-

FS resulted in higher overall classification accuracies than the BHC with the 

greedy feature selection by an average of 4.33% per experiment, and in 9 out of 

the 10 experiments it resulted in higher overall classification accuracies than the 

BHC by an average of 1.07% per experiment (only experiment HYP19 resulted in 

a lower overall accuracy).  In addition, the standard deviation of the classification 

accuracies was reduced relative to the other algorithms: for the test data, the 
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standard deviation of the accuracies for the TS-FS was ~90% of that of the BHC 

and ~70% of that of the BHC FS, and for the independent test data, the standard 

deviation was ~80% of both the BHC and BHC FS.  The class hierarchies had 13 

metaclasses where feature selection was implemented.  On average per hierarchy, 

when compared with the results of the greedy feature selection: no feature 

selection was performed at 3.6 of the metaclass nodes because the classification 

accuracy was 100%; feature selection was performed on 9.4 of the metaclass 

nodes and of these the classification accuracy at all of the metaclass nodes was 

improved by an average of 2.03% per metaclass (with 2.7 of the nodes improving 

to 100% with the test data).  With a maximum of 1885 features per tree (145 

features per metaclass node), the greedy feature selection chose an average of 

40.6 per tree while the TS-FS chose an average of 62.5 features per tree, 

maintaining an average of 22.7 of the greedy features per class hierarchy.  The 

greedy first-chosen features at each metaclass were discarded by the TS-FS an 

average of 6.6 metaclasses per tree.   

The average classification accuracies for each class for each algorithm are 

listed in Table 4.8 highlighting the highest average accuracy per class.  The BHC 

and the BHC with TS-FS both outperform the BHC with greedy feature selection.  

The BHC is able to classify a majority of the classes more consistently than the 

BHC with TS-FS for this dataset; however, when the BHC using TS classifies an 

individual class with higher average accuracy, it is able to do so with greater 

improvements in the accuracies (for example, class 14 BHC accuracy: 76.16% 

and BHC TS-FS accuracy: 98.73%).  When the BHC results in higher class 
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accuracy than the BHC TS-FS, it averages 1.56% improvement, while the BHC 

TS-FS averages 5.10% better than the BHC for individual average class 

accuracies.  The standard deviations of the class classification accuracies are 

somewhat elevated due to the large differences in the capabilities of individual 

experiments to classify some individual classes.  For example, for the BHC, 

experiment HYP13 classifies exposed soil (class 14) with an accuracy of 25.5% 

while experiment HYP18 is able to classify it with an accuracy of 89.4%.  Using 

the same class hierarchy and the same training/testing data, the TS-FS is able to 

increase the exposed soil classification accuracies for these experiments to 97.9% 

and 100% respectively, while greatly reducing the standard deviation for this 

particular class from 20.41 (BHC) to 2.67 (TS-FS).  Particularly significant, were 

the reductions in standard deviations for the testing data, where the average 

standard deviation of the accuracies for TS-FS was ~78% of that of the BHC and 

~50% of that of the BHC FS. 
Class # Class BHC BHC FS BHC TS-FS 

1 water 100.00 / 99.92 99.41 / 98.81 99.41 / 99.53 
2 hippo grass 87.60 / 15.68 96.80 / 51.29 97.60 / 40.12 
3 floodplain grasses1 95.12 / 81.39 88.16 / 51.58 96.08 / 53.93 
4 floodplain grasses2 96.92 / 72.00 96.34 / 81.88 96.37 / 66.61 
5 reeds1 86.03 / 48.93 72.25 / 43.39 84.71 / 58.69 
6 riparian 80.09 / 60.76 67.69 / 56.87 83.43 / 63.56 
7 firescar2 98.96 / 82.27 93.55 / 88.58 97.20 / 88.01 
8 island interior 95.05 / 84.90 93.75 / 83.06 94.35 / 78.98 
9 acacia woodlands 88.07 / 69.27 87.01 / 69.67 86.56 / 64.50 
10 acacia shrublands 90.86 / 86.74 80.98 / 83.32 87.42 / 85.74 
11 acacia grasslands 93.02 / 18.49 90.31 / 30.61 90.45 / 26.68 
12 short mopane 87.66 / 66.67 91.34 / 72.75 92.68 / 76.80 
13 mixed mopane 84.40 / 57.86 84.34 / 61.20 90.58 / 49.53 
14 exposed soils  76.16 / 77.98 98.30 / 99.89 98.73 / 99.78 
 Average 90.00 / 65.92 88.59 / 69.49 92.54 / 68.03 
 Standard Deviation 4.82 / 8.48 7.39 / 9.51 3.77 / 8.54 

Table 4.8:   BHC, BHC FS and BHC TS-FS average testing/independent test 
classification accuracies (%) by class for Botswana Hyperion 
data. 
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For the 10 experiments, the BHC constructed 8 different class hierarchies, 

and no hierarchy was duplicated more than twice.  A representative class 

hierarchy is displayed in Figure 4.10.  All of the hierarchies do not share the same 

partition of the root node.  Experiments HYP12 and HYP19 place the acacia 

woodlands (class 9) with the left branch while all other experiments place it with 

the right branch.  Experiment HYP12 and HYP19 yield the two lowest overall 

BHC TS-FS classification accuracies while yielding two of the three lowest 

accuracies for the BHC.  Discrimination of acacia shrublands and woodlands is 

greatly improved in the Hyperion data, presumably due to the increased number 

of bands.  Labeling of acacia grasslands (class 11) is still problematic for the 

independent test set, as is hippo grass (class 2).  This may be due to incorrect 

labeling of the independent test data, which have not been field validated, changes 

in signature, or overtraining.  The most difficult class for the Hyperion data to 

discriminate in the test data is the riparian (class 6), which also proved a challenge 

when classifying the ALI data (north riparian was the second most difficult to 

classify).  The firescar and water classes were most consistently classified with a 

high degree of accuracy for both the Hyperion and ALI data.  These results are 

not unexpected as the plots of the class means in Figures 4.8 and 4.9 show that the 

spectra of the most difficult classes to label are clustered toward the centers of 

plots.  
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Figure 4.8:   Plot of Hyperion data class means. 
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Figure 4.10:   Representative BHC tree structure for the Botswana Hyperion 

dataset. 

4.3.3 Feature Selection Results for Hyperion Data using Best Bases 

The best bases method for band aggregation described in Section 3.2.2 

was applied to the Hyperion data.  Since the features are combined differently and 

thereby best bases features subsequently are selected differently for each 

metaclass on each tree, only general results are presented here.  The overall 

classification accuracies for the BHC BB, BHC BB with greedy FS and the BHC 

BB with TS-FS are displayed in Table 4.9.  A dynamic tabu tenure initialized at 5 

was allowed to vary from 3 to 8.  Because the combining of the features is 

implemented to reduce redundant correlated features, the correlation check for 

inclusion of new features was not utilized.  The stopping criterion was set at 30 
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iterations and the maximum number of iterations to continue with no 

improvements was set at 10. 

 
Experiment BHC BB  BHC BB FS  BHC BB TS-FS 

HYP11 89.38 / 56.59 88.94 / 63.84 91.60 / 65.76 
HYP12 91.54 / 61.43 86.66 / 68.00 90.92 / 66.80 
HYP13 91.17 / 58.55 85.36 / 64.84 93.27 / 69.92 
HYP14 92.16 / 61.43 87.77 / 61.51 93.02 / 60.75 
HYP15 92.28 / 59.99 86.35 / 61.71 93.70 / 64.80 
HYP16 91.54 / 60.15 88.14 / 65.48 93.39 / 62.80 
HYP17 91.72 / 61.19 89.31 / 66.84 91.41 / 66.88 
HYP18 92.46 / 61.83 86.41 / 64.60 93.21 / 65.84 
HYP19 90.30 / 66.08 89.19 / 64.80 90.80 / 70.56 
HYP20 92.22 / 62.07 85.55 / 61.67 91.97 / 62.60 

Average 91.48 / 60.93 87.37 / 64.33 92.33 / 65.67 
Standard Deviation 0.98 / 2.48 1.49 / 2.20 1.10 / 3.12 

Table 4.9:   BHC BB, BHC BB FS and BHC BB TS-FS overall experiment 
classification accuracies (%) for Botswana Hyperion 
testing/independent test data. 

The BHC BB reduced the 1885 original features per tree to an average of 

850.7 BB features per tree (averaging 65.44 BB features per metaclass).  The 

greedy feature selection chose an average of 40.10 BB features per tree while the 

TS-FS chose an average of 91.70 BB features.  The TS-FS kept an average of 

25.30 BB greedy features while maintaining an average of 7.70 of the first-chosen 

BB features per tree.  In every experiment using the test data, the tree structure 

utilizing the TS-FS with BB resulted in higher overall classification accuracies 

than the BHC BB with the greedy feature selection by an average of 4.96% per 

experiment.  In 7 of the 10 experiments it achieved higher overall classification 

accuracies than the BHC BB, and it resulted in a higher overall average accuracy.  

The independent test data results were similar with the BHC BB TS-FS having 

the highest average accuracy per experiment.  The standard deviations of the 
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experiments, however, are increased for both the test and independent test data 

when using BB TS-FS over that of the BHC BB.  For the test data, the standard 

deviation of the accuracy for the BHC BB is ~90% of that of the BB TS-FS and 

~80% of that of the BB TS-FS for the independent test data.  The results are 

mixed when comparing the standard deviations of the BHC BB FS and the BHC 

BB TS-FS. 

The average classification accuracies for each class for each BB algorithm 

are displayed in Table 4.10 highlighting the highest average accuracy per class for 

both the test and independent test data.  The BHC BB TS-FS clearly outperforms 

the BHC BB with greedy feature selection, and it exhibits the ability to classify a 

majority of the classes more consistently for this dataset.  While not improving 

the classification accuracies for all individual classes when compared to the prior 

application without BB, the average overall classification accuracies were 

improved. 
Class # BHC BB BHC BB FS  BHC BB TS-FS 

1 100.00 / 100.00 99.40 / 98.49 99.78 / 98.49 
2 94.00 / 15.06 95.60 / 52.90 96.00 / 49.44 
3 95.36 / 86.65 89.12 / 52.98 94.40 / 54.94 
4 96.92 / 74.30 94.77 / 82.12 95.44 / 72.37 
5 89.19 / 50.06 75.15 / 47.26 88.97 / 55.83 
6 80.16 / 60.05 60.81 / 51.09 82.99 / 66.63 
7 98.80 / 80.57 91.77 / 88.01 95.81 / 88.98 
8 96.52 / 87.64 96.41 / 79.30 96.21 / 78.60 
9 86.18 / 70.53 89.09 / 80.66 84.83 / 64.64 
10 90.06 / 87.00 90.72 / 92.11 90.00 / 88.84 
11 92.45 / 17.91 89.08 / 23.13 93.70 / 26.87 
12 89.09 / 66.08 91.90 / 72.16 92.46 / 75.43 
13 88.36 / 49.57 78.27 / 56.91 92.38 / 63.91 
14 81.06 / 77.42 98.44 / 98.99 99.16 / 98.99 

Average 91.30 / 65.92 88.61 / 69.72 93.01 / 70.28 
Standard Deviation 4.37 / 7.03 6.65 / 9.67 3.63 / 7.82 

Table 4.10:   BHC BB, BHC BB FS and BHC BB TS-FS average 
testing/independent test classification accuracies (%) by class for 
Botswana Hyperion data. 
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For the 10 experiments, the BHC BB constructed 7 different tree 

structures, and no tree was duplicated more than twice.  Comparing the BHC BB 

tree structures with the BHC tree structures, again, no tree structures were 

identical; there were 15 different resulting tree structures for 10 partitions of a 

single dataset when the BHC and BHC BB algorithms were implemented.  As 

was noticed with the BHC, acacia woodlands (class 9) branches left 6 times and 

right 4.  When the acacia woodlands were grouped with the first right branch, it 

resulted in the 4 lowest overall average accuracies for the BHC BB TS-FS; the 

results utilizing TS-FS are very sensitive to the tree structures selected by the 

original BHC, indicating the importance of possibly incorporating TS into the 

building of the tree. 

4.3.4 Feature Selection Results for Letter Recognition Data 

Overall classification accuracies for the different BHC algorithms when 

implemented on the letter recognition dataset are:  BHC, 68.82%; BHC with 

greedy feature selection, 62.31%; and BHC with TS-FS, 76.27%.   Tabu tenure 

was initially set at 3 and allowed to range from 3 to 5.  Because this dataset only 

has 16 features, the correlation check for inclusion of new features was disabled.  

The stopping criterion was set at 30 iterations and the maximum number of 

iterations to continue with no improvements was set at 10.  With a total of 400 

possible features for the entire tree (25 internal nodes each with 16 features), the 

greedy feature selection chose 143, and the TS-FS chose 336.  TS-FS was 

implemented at every node because no metaclass was able to classify with 100% 

accuracy with the greedy features, and was able to increase the classification 
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accuracy at all but one metaclass with an average accuracy increase of 4.68% per 

metaclass for this single tree when compared with the greedy feature selection 

tree.  The standard deviations for the algorithms are dramatically different with 

the TS-FS more consistently classifying the individual letters resulting in the 

standard deviation being ~75% of the BHC and ~60% of the BHC FS. 

The single data partition classification accuracies for each class are 

displayed in Table 4.11 highlighting the highest accuracy achieved per class.  The 

BHC with TS-FS outperforms the BHC and BHC with greedy feature selection as 

it is able to classify a majority of the classes more consistently and often with 

markedly improved accuracies.  The BHC resulting tree structure is displayed in 

Figure 4.11.  BHC with feature selection yields consistently poorer results than 

the other two methods. 
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 Class BHC BHC FS BHC TS-FS 

A 85.26 86.54 87.82 
B 43.38 26.47 61.03 
C 71.83 74.65 80.99 
D 80.24 34.13 73.65 
E 52.63 53.29 58.55 
F 71.90 71.90 78.43 
G 39.63 68.29 70.73 
H 47.68 33.77 63.58 
I 73.94 70.30 83.03 
J 77.03 77.70 81.08 
K 60.96 18.49 50.00 
L 73.25 79.62 77.71 
M 85.42 86.81 94.44 
N 87.35 74.10 88.55 
O 43.17 49.64 69.06 
P 70.83 76.79 79.76 
Q 50.60 71.43 67.86 
R 54.66 57.76 56.52 
S 58.39 49.69 73.91 
T 80.79 65.56 78.81 
U 74.40 46.43 81.55 
V 88.97 77.21 86.76 
W 85.61 86.33 89.93 
X 73.58 67.30 76.10 
Y 80.69 55.86 80.69 
Z 77.22 60.13 92.41 

Average 68.82 62.31 76.27 
Standard Deviation 15.26 18.83 11.47 

Table 4.11:   BHC, BHC FS and BHC TS-FS classification accuracies (%) by 
letter for letter recognition data. 
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Figure 4.11:   BHC class hierarchy for the single partition of the letter recognition 

data. 

4.4 CONCLUSIONS 

The algorithms average execution times are displayed in Table 4.12.  The 

BHC and BHC FS algorithms are very fast, averaging a fraction of a minute to 

execute analysis of the ALI data with its small number of 9 features and slightly 

greater execution times for the Hyperion data with its larger set of 145 features.  

The TS-FS average execution times for the ALI and Hyperion data are not 

substantially increased in comparison.  In contrast, the Hyperion BB TS-FS 

average execution time is noticeably increased compared to the other execution 



 59 

times; this is due to matrix multiplication required for the large BB matrices and 

the large feature vectors.  Further investigation may reveal more efficient coding 

methods to execute the TS-FS using the BB. 

 
Algorithm ALI Hyperion Hyperion BB 

BHC 0.07707 0.65949 0.36346 
BHC FS 0.12904 1.06725 0.76155 
BHC TS-FS 1.23707 6.04634 15.38026 

Table 4.12:   Average algorithm execution times in minutes for BHC, BHC FS 
and BHC TS-FS. 

The impact of TS-FS upon the BHC classification accuracies was 

demonstrated to be positive.  When feature selection was conducted, TS’s ability 

to find improved feature subsets significantly improved the overall classification 

accuracies.  TS-FS is aided by searching from a good starting solution, the set of 

greedy selected features, which on average, more than half are found in the TS-FS 

subset of features.  The TS-FS algorithm also significantly increased the total 

number of features used by approximately one-third in most instances, but 

approximately doubling the number of features used in the case of the BB.  These 

improved feature subsets are more beneficial for domain knowledge, overall 

classifier interpretability and possible transportability of the classifiers.  The TS 

implementations are sensitive to the resulting class hierarchy structures; therefore, 

if better hierarchical trees can be constructed, the TS implementations will be 

enhanced and ultimately more useful for increasing classification accuracies.  

Using the TS-FS in the construction of the class hierarchy is one method to 

accomplish this goal. 
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Chapter 5 

Building the Binary Hierarchical Classifier Tree with the Aid of 
Tabu Search Feature Selection 

The top-down Binary Hierarchical Classifier (BHC) builds its class 

hierarchy iteratively starting with all of the classes in a single metaclass at the root 

node.   Subsequently, nodes at each level of the tree are partitioned into two child 

nodes (subsets) until the leaves of the tree, consisting of a single class, are 

reached.  The top-down BHC framework uses the Generalized Associative 

Modular Learning System (GAMLS) [43], described in Section 3.1.1 and Figure 

3.2.  Whereas TS Feature Selection (TS-FS) was implemented initially as a post-

processor after the BHC was built, here it is incorporated into the development of 

the BHC hierarchical tree. 

5.1 TABU SEARCH FEATURE SELECTION 

The TS-FS method in this application is utilized exactly as described in 

Section 4.1.  Now, it reduces the GAMLS input space and is instrumental in 

building the binary classification hierarchy.  The algorithm, TS Build, is initiated 

with all classes in the root node at the top of the class hierarchy.  The first split is 

accomplished using GAMLS (with all of the original features) resulting in two 

child nodes.  As a result of this first partitioning, those features with the greatest 

Fisher weights are identified, and GAMLS is used to make a second binary split 

of the classes at the current node using only the identified highly-weighted 

features.  This new partition becomes the current partition.  Using the set of 
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highly-weighted features as its incumbent solution, TS-FS is then performed at 

the root node to obtain the best subset of the total set of original features to 

discriminate between the two current child nodes.  This resulting subset of 

features is passed to GAMLS which makes a third, and final,  partitioning of the 

classes at the current node using only those features selected by TS-FS.  This final 

partitioning becomes the binary split for the current node.  Subsequent to this final 

partitioning, TS-FS is performed one final time using the current set of features as 

its incumbent solution, and the resulting feature subset becomes the feature subset 

used at the current node for classification.  This partitioning process is then 

repeated at each of the current node’s child nodes that contain more than a single 

class, moving down the tree to perform the partitioning at all multiclass nodes 

until only leaf nodes remain.  The resulting class hierarchy is then used for 

classification exactly as with the BHC.  The flowchart for this algorithm is 

presented in Figure 5.1. 
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Figure 5.1:   Flowchart for building the BHC tree using GAMLS and TS-FS. 

5.2 RESULTS BUILDING THE TREE USING TS FOR ALI DATA 

Tabu tenure was set at 3, and the correlation check was not implemented.  

The maximum number of iterations was defined as 30 with an early termination 

criterion of 10 iterations with no improvement.  Overall accuracies are shown in 

Table 5.1.  Results from Section 4.3.1 are duplicated here for comparison.   
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Experiment BHC BHC FS BHC TS-FS TS Build 
ALI1 88.72 / 72.82 86.38 / 69.18 88.59 / 72.74 89.15 / 73.54 
ALI 2 87.20 / 71.71 85.30 / 64.92 89.71 / 72.20 89.23 / 71.38 
ALI 3 86.29 / 69.69 86.64 / 68.16 89.88 / 71.20 89.93 / 72.84 
ALI 4 86.60 / 70.96 85.99 / 68.62 90.01 / 71.69 90.49 / 72.84 
ALI 5 88.33 / 73.33 86.34 / 67.73 90.06 / 73.36 88.41 / 67.31 
ALI 6 87.64 / 73.63 85.82 / 66.97 89.32 / 72.66 90.36 / 71.14 
ALI 7 86.86 / 70.96 87.68 / 67.48 90.06 / 71.90 90.32 / 70.76 
ALI 8 85.82 / 75.03 84.48 / 71.82 88.28 / 75.16 87.76 / 69.65 
ALI 9 87.25 / 69.61 86.73 / 71.39 89.67 / 70.64 88.37 / 71.32 

ALI 10 88.98 / 72.68 87.42 / 69.37 89.75 / 72.09 90.40 / 72.57 
Average 87.37 / 72.04 86.28 / 68.56 89.53 / 72.36 89.44 / 71.33 

Standard Deviation 1.05 / 1.76 0.95 / 2.04 0.62 / 1.25 1.00 / 1.84 
Table 5.1:   BHC, BHC FS, BHC TS-FS and TS Build overall experiment 

classification accuracies (%) for Botswana ALI 
testing/independent test data. 

Ten different binary tree structures were constructed with TS Build; none 

were identical to the BHC class hierarchies constructed for the same experiments, 

nor were they identical to any drawn by BHC indicating that the TS Build is 

having an effect on the tree-building process.  The most notable differences were 

the TS Build placement of exposed soil (class 14) and floodplain1 (class 17).  

Experiments ALI3 and ALI6 resulted in different root node partitions than the 

BHC, affecting the subset placement of the exposed soil class.  When classifying 

the test data, the TS Build class hierarchy outperformed the BHC and the BHC 

with feature selection in all experiments, and it bested the overall classification 

accuracies of the BHC with TS-FS in 6 of the 10 experiments.  When classifying 

the test data, TS Build resulted in the second highest average overall classification 

accuracy behind the BHC with TS-FS, although by only .09%, and resulted in a 

slightly lower average overall classification accuracy than the BHC and the BHC 

with TS-FS when classifying the independent test set.  In the two experiments 

where the TS Build class hierarchy was least effective in classifying the 
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independent test data (experiments ALI5 and ALI8), the resulting class 

hierarchies had more difficulty than those developed in the other experiments 

classifying the acacia shrublands (class 8) and the acacia grasslands (class 9).  

Both experiments exhibited similar trends by repeatedly classifying acacia 

shrublands as acacia grasslands and acacia grasslands as dry grasses (class 12).  

The similarities of the class signatures for the acacia shrublands, acacia grasslands 

and the dry grasses are illustrated in Figures 5.2 and 5.3.   
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Figure 5.2:  Experiment ALI5 comparison of acacia shrubland independent test 

data observations and acacia grassland training data mean. 
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Experiment ALI5 comparison of acacia grassland independent 
test data observations and dry grasses training data mean

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9

Features

Fe
at

ur
e 

va
lu

es

acacia grassland observations

dry grasses training data mean

 
Figure 5.3:   Experiment ALI5 comparison of acacia grassland independent test 

data observations and dry grasses training data mean. 

Average overall classification accuracies are listed by class in Table 5.2, 

where the highest class accuracies are highlighted.  Each of the algorithms 

exhibits strengths in the classification of individual classes with the TS algorithms 

resulting in the two highest average class accuracies for the test data.  Although 

the maximum number of features can be specified, this implementation of TS-FS 

allowed the algorithm to seek the best cardinality of the feature subset; the TS 

Build trees averaged 141.8 features per tree compared to 103.7 for the BHC TS-

FS.  Figure 5.4 is an example of the classification of the data subset from Figure 

4.3. 
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Class # BHC BHC FS BHC TS-FS TS Build 

1 76.93 / 54.05 72.81 / 56.49 75.38 / 60.54 76.03 / 62.43 
2 88.12 / 85.08 88.23 / 69.59 89.38 / 72.18 89.16 / 73.39 
3 95.76 / 88.48 91.52 / 87.63 95.25 / 88.53 96.23 / 86.90 
4 82.59 / 77.88 82.41 / 75.96 87.49 / 75.05 83.87 / 71.82 
5 87.96 / 92.82 87.24 / 87.39 88.67 / 90.48 89.60 / 89.10 
6 96.00 / 87.50 96.10 / 98.08 97.10 / 98.42 95.60 / 98.42 
7 84.98 / 38.54 84.19 / 51.58 87.15 / 46.32 85.94 / 44.39 
8 66.26 / 40.17 65.23 / 36.39 69.69 / 41.37 70.14 / 34.92 
9 84.95 / 16.84 72.71 / 18.51 78.00 / 17.59 85.42 / 16.44 
10 94.02 / 93.06 90.36 / 92.50 92.79 / 93.06 92.92 / 92.45 
11 88.71 / 85.71 90.95 / 94.70 91.41 / 93.34 93.05 / 95.17 
12 81.74 / 88.43 76.68 / 77.36 82.13 / 83.72 83.57 / 83.29 
13 87.47 / 76.15 87.48 / 76.80 87.48 / 75.60 83.87 / 71.30 
14 79.67 / 63.63 94.56 / 79.84 92.86 / 75.97 93.71 / 72.50 
15 93.34 / 95.03 89.38 / 87.89 93.87 / 91.64 93.34 / 90.64 
16 84.83 / 70.00 77.66 / 55.00 84.84 / 75.04 81.46 / 75.00 
17 81.98 / 34.70 87.71 / 27.07 94.43 / 37.38 91.77 / 37.81 
18 85.20 / 69.92 77.82 / 59.84 92.20 / 77.34 96.77 / 79.19 
19 80.14 / 59.43 83.00 / 52.20 86.81 / 55.69 86.16 / 49.51 
20 96.93 / 90.51 97.84 / 86.87 96.92 / 88.82 98.41 / 88.67 
21 82.67 / 82.22 96.94 / 90.15 89.48 / 86.26 86.81 / 85.27 
22 99.28 / 65.13 98.80 / 61.91 98.96 / 54.47 98.80 / 61.98 
23 98.31 / 99.20 89.35 / 64.63 97.44 / 90.37 95.63 / 84.88 

Average 86.86 / 71.93  86.04 / 69.06  89.12 / 72.57 89.05 / 71.54 
Standard Deviation 4.27 / 5.27 5.33 / 8.34 3.86 / 5.36 4.37 / 7.44 

Table 5.2:   BHC, BHC FS, BHC TS-FS and TS Build average 
testing/independent test classification accuracies (%) by class for 
Botswana ALI data. 
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Figure 5.4:   Example of a classified subset using the TS Build classifier 

(experiment ALI3: test set accuracy 89.93%, independent test set 
accuracy 72.84%). 

5.3 RESULTS BUILDING THE TREE USING TS FOR HYPERION DATA USING 
ORIGINAL FEATURES  

Tabu tenure was initialized at 5 within the allowable range of 3 to 10.  Due 

to the large number of candidate features, the correlation check for feature 

inclusion was used.  The number of iterations was set at 30, but execution was 

halted if 10 iterations were performed without improvement.  Results from 

Section 4.3.2 are included for comparison (see Table 5.3).   

 

 



 68 

 
Experiment BHC BHC with FS  BHC TS-FS TS Build 

HYP11 92.71 / 61.23 89.13 / 66.32 93.51 / 60.87 92.22 / 68.20 
HYP12 88.76 / 56.87 86.53 / 63.44 89.75 / 67.52 92.16 / 65.08 
HYP13 88.08 / 69.36 90.30 / 69.36 92.77 / 64.08 91.48 / 68.92 
HYP14 91.91 / 60.07 86.72 / 62.88 92.59 / 58.35 93.02 / 62.68 
HYP15 89.99 / 58.55 85.98 / 59.47 90.67 / 62.07 91.79 / 73.93 
HYP16 91.85 / 60.63 87.34 / 64.04 92.16 / 66.92 92.40 / 71.89 
HYP17 91.60 / 59.43 86.29 / 62.15 92.90 / 61.35 91.85 / 63.88 
HYP18 91.91 / 60.59 90.80 / 68.88 92.34 / 63.88 92.84 / 64.60 
HYP19 89.19 / 63.52 85.05 / 68.92 89.13 / 63.40 91.48 / 69.16 
HYP20 90.67 / 62.07 85.55 / 63.04 91.54 / 62.15 91.17 / 60.95 

Average 90.67 / 61.23 87.37 / 64.85 91.74 / 63.06 92.04 / 66.93 
Standard Deviation 1.58 / 3.39 2.01 / 3.36 1.44 / 2.75 0.60 / 4.17 

Table 5.3:   BHC, BHC FS, BHC TS-FS and TS Build overall experiment 
classification accuracies (%) for Botswana Hyperion 
testing/independent test data. 

For this particular dataset, the initial partitioning of the root node proves to 

be a very important factor; in 7 of the 10 experiments, TS Build partitioned the 

root node differently than the BHC.  As was noted in Section 4.3.2, in 8/10 

experiments, the BHC grouped riparian (class 6) and acacia woodlands (class 9) 

together at the bottom of the hierarchy, but in experiments HYP12 and HYP19, 

these classes were in different subsets at the root node partition.  In contrast, TS 

Build grouped riparian and acacia woodlands together at the bottom of the class 

hierarchy in all of the experiments.  Using the test data, TS Build outperformed: 

the BHC in 9/10 experiments, the BHC with feature selection in all of the 

experiments, and the BHC with TS-FS in 6/10 of the experiments; in addition, TS 

Build yielded significantly reduced standard deviations of the accuracies for the 

test set relative to the other algorithms (~40% of that of the BHC, ~30% of that of 

the BHC FS and ~40% of that of the BHC TS-FS).  When classifying the 

independent test data, TS Build resulted in higher accuracies in 5/10 experiments 
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and the highest overall average accuracy for all of the algorithms, but resulted in 

the highest standard deviation of the accuracies of the algorithms.  This appears to 

imply that the TS Build may be overtraining, but further investigation is required.  

Average class accuracies are listed in Table 5.4 (where the results from Table 4.8 

are duplicated for comparison and the greatest are highlighted); the TS Build 

resulted in the highest overall average accuracy for both the test and independent 

test data.  It is noteworthy that significant improvement was achieved in 

classification of both hippo grass (class 2) and acacia grasslands (class 11) in the 

independent test set.  There was also substantial improvement in the classification 

accuracy of mixed mopane (class 13) using TS Build.  The TS Build tree 

structures averaged 145.1 features per tree which compares to 62.5 for TS-FS.  

With the present settings, the TS Build does not reduce the input space as 

dramatically as the other algorithms, and the class standard deviations are 

somewhat comparable. 
Class # BHC BHC FS BHC TS-FS TS Build 

1 100.00 / 99.92 99.41 / 98.81 99.41 / 99.53 99.12 / 97.70 
2 87.60 / 15.68 96.80 / 51.29 97.60 / 40.12 94.60 / 52.41 
3 95.12 / 81.39 88.16 / 51.58 96.08 / 53.93 93.60 / 48.67 
4 96.92 / 72.00 96.34 / 81.88 96.37 / 66.61 94.03 / 75.88 
5 86.03 / 48.93 72.25 / 43.39 84.71 / 58.69 80.98 / 55.95 
6 80.09 / 60.76 67.69 / 56.87 83.43 / 63.56 83.74 / 66.30 
7 98.96 / 82.27 93.55 / 88.58 97.20 / 88.01 98.97 / 88.01 
8 95.05 / 84.90 93.75 / 83.06 94.35 / 78.98 91.38 / 69.21 
9 88.07 / 69.27 87.01 / 69.67 86.56 / 64.50 88.61 / 89.37 
10 90.86 / 86.74 80.98 / 83.32 87.42 / 85.74 90.55 / 36.87 
11 93.02 / 18.49 90.31 / 30.61 90.45 / 26.68 93.62 / 78.11 
12 87.66 / 66.67 91.34 / 72.75 92.68 / 76.80 94.57 / 56.61 
13 84.40 / 57.86 84.34 / 61.20 90.58 / 49.53 93.72 / 95.96 
14 76.16 / 77.98 98.30 / 99.89 98.73 / 99.78 98.51 / 82.29 

Average 90.00 / 65.92 88.59 / 69.49 92.54 / 68.03 92.57 / 70.95 
Standard Deviation 4.82 / 8.48 7.39 / 9.51 3.77 / 8.54 3.40 / 8.74 

Table 5.4:   BHC, BHC FS, BHC TS-FS and TS Build average 
testing/independent test classification accuracies (%) by class for 
Botswana Hyperion data. 
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5.4 RESULTS BUILDING THE TREE USING TS AND BEST BASES FOR 
HYPERION DATA 

In this implementation, new BB features are computed for the current 

node, and TS-FS is performed on these new BB features.  Otherwise, the 

algorithm progresses as previously described.  Parameters were defined as:  tabu 

tenure, 3; maximum tabu tenure, 10; minimum tabu tenure, 3; stopping criterion, 

30 iterations; and terminate after 10 iterations with no improvement.  In 8 of the 

10 experiments, TS Build partitioned the root node differently than the BHC.  The 

two classes most affected were the acacia woodlands (class 9) and the exposed 

soil (class 14).  While the classification accuracy of the acacia woodlands is not 

significantly impacted by TS Build, the classification accuracy of the exposed soil 

class is noticeably impacted with an increased average accuracy of 98.30% over 

the 81.06% average accuracy of the BHC (see Table 5.6).  Using the test data, the 

TS Build classifier resulted in higher accuracies in 9/10 experiments than the 

BHC BB, in 10/10 experiments over the BHC BB with feature selection 

(indicating that the TS-FS is outperforming the greedy FS when using BB), and in 

7/10 experiments over the BHC BB with TS-FS (see Table 5.5, results of Table 

4.9 are duplicated for comparison).  The average class accuracies are recorded in 

Table 5.6 (results of Table 4.10 are duplicated for comparison) where the highest 

average accuracy per class is highlighted.  Consistent with earlier results, the BB 

algorithms yielded lower standard deviations of accuracies than when the original 

feature set was used.  Further, the  TS Build BB significantly reduced the standard 

deviations for both the test and independent test data relative to the other BB 

algorithms.  For example, the TS Build BB standard deviation is ~70% of that of 
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the BHC for the test data and ~80% of that of the BHC for the independent test 

data.  Thus, the TS Build BB method yielded the most stable classifier.  This 

result is duplicated in the class standard deviations in Table 5.6.  The TS Build 

class hierarchies averaged 147.7 features per hierarchy compared to 91.70 chosen 

by BB TS-FS. 
Experiment BHC BB BHC BB FS  BHC BB TS-FS TS Build BB 

HYP11 89.38 / 56.59 88.94 / 63.84 91.60 / 65.76 92.90 / 64.64 
HYP12 91.54 / 61.43 86.66 / 68.00 90.92 / 66.80 92.22 / 66.28 
HYP13 91.17 / 58.55 85.36 / 64.84 93.27 / 69.92 93.27 / 60.39 
HYP14 92.16 / 61.43 87.77 / 61.51 93.02 / 60.75 92.09 / 67.20 
HYP15 92.28 / 59.99 86.35 / 61.71 93.70 / 64.80 94.01 / 64.08 
HYP16 91.54 / 60.15 88.14 / 65.48 93.39 / 62.80 93.33 / 64.12 
HYP17 91.72 / 61.19 89.31 / 66.84 91.41 / 66.88 92.46 / 65.04 
HYP18 92.46 / 61.83 86.41 / 64.60 93.21 / 65.84 93.39 / 63.96 
HYP19 90.30 / 66.08 89.19 / 64.80 90.80 / 70.56 91.85 / 66.60 
HYP20 92.22 / 62.07 85.55 / 61.67 91.97 / 62.60 92.84 / 66.48 

Average 91.48 / 60.93  87.37 / 64.33  92.33 / 65.67 92.84 / 64.88 
Standard Deviation 0.98 / 2.48 1.49 / 2.20 1.10 / 3.12 0.68 / 1.98 

Table 5.5:   BHC BB, BHC BB FS, BHC BB TS-FS and TS Build BB overall 
experiment classification accuracies (%) for Botswana Hyperion 
testing/independent test data. 

Class # BHC BB BHC BB FS  BHC BB TS-FS TS Build BB 
1 100.00 / 100.00 99.40 / 98.49 99.78 / 98.49 99.56 / 52.22 
2 94.00 / 15.06 95.60 / 52.90 96.00 / 49.44 96.60 / 62.67 
3 95.36 / 86.65 89.12 / 52.98 94.40 / 54.94 95.92 / 99.21 
4 96.92 / 74.30 94.77 / 82.12 95.44 / 72.37 94.67 / 50.25 
5 89.19 / 50.06 75.15 / 47.26 88.97 / 55.83 88.00 / 59.70 
6 80.16 / 60.05 60.81 / 51.09 82.99 / 66.63 83.27 / 64.74 
7 98.80 / 80.57 91.77 / 88.01 95.81 / 88.98 98.58 / 87.44 
8 96.52 / 87.64 96.41 / 79.30 96.21 / 78.60 96.23 / 77.01 
9 86.18 / 70.53 89.09 / 80.66 84.83 / 64.64 85.99 / 64.50 
10 90.06 / 87.00 90.72 / 92.11 90.00 / 88.84 93.00 / 88.11 
11 92.45 / 17.91 89.08 / 23.13 93.70 / 26.87 94.28 / 33.27 
12 89.09 / 66.08 91.90 / 72.16 92.46 / 75.43 93.34 / 73.20 
13 88.36 / 49.57 78.27 / 56.91 92.38 / 63.91 90.67 / 57.30 
14 81.06/ 77.42 98.44 / 98.99 99.16 / 98.99 98.30 / 97.30 

Average 91.30 / 65.92  88.61 / 69.72  93.01 / 70.28 93.46 / 69.06 
Standard Deviation 4.37 / 7.03 6.65 / 9.67 3.63 / 7.82 2.93 / 7.25 

Table 5.6:   BHC BB, BHC BB FS, BHC BB TS-FS and TS Build BB average 
testing/independent test classification accuracies (%) by class for 
Botswana Hyperion data. 
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5.5 RESULTS BUILDING THE TREE USING TS FOR LETTER RECOGNITION 
DATA 

TS Build overall classification accuracy for the letter recognition dataset is 

76.49% which is .22% greater than the highest accuracy reported in Section 4.3.4.  

Tabu tenure was set at 5 and allowed to range from 3 to 8.  The correlation check 

for inclusion of new features was disabled as it is not appropriate for this data set, 

the stopping criterion was 30 iterations, and the maximum number of iterations to 

continue with no improvements was 10.  The class hierarchy was constructed 

using a total of 323 features.  When compared to the BHC class hierarchy, the 

root node partition is identical to the BHC, but the overall class hierarchy differs.  

For example, TS Build brings the letter U closer to the letters M, N and W and 

also B closer to S and Z (see Figure 5.5).   

 
Figure 5.5:   Building the BHC tree using GAMLS and TS-FS for the letter 

recognition data. 
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The average class accuracies are shown in Table 5.7 where the results 

from Section 4.3.4 are included for comparison, and the greatest accuracies 

achieved from the various methods are highlighted.  The TS algorithms, again, 

were able to classify the individual classes with greater consistency (and with 

smaller standard deviations) than the BHC or BHC with feature selection. 

 
Class BHC BHC FS BHC TS-FS TS Build 

A 85.26 86.54 87.82 90.38 
B 43.38 26.47 61.03 77.94 
C 71.83 74.65 80.99 77.46 
D 80.24 34.13 73.65 79.64 
E 52.63 53.29 58.55 52.63 
F 71.90 71.90 78.43 78.43 
G 39.63 68.29 70.73 73.17 
H 47.68 33.77 63.58 46.36 
I 73.94 70.30 83.03 85.45 
J 77.03 77.70 81.08 80.41 
K 60.96 18.49 50.00 63.01 
L 73.25 79.62 77.71 80.89 
M 85.42 86.81 94.44 93.75 
N 87.35 74.10 88.55 84.94 
O 43.17 49.64 69.06 74.82 
P 70.83 76.79 79.76 76.79 
Q 50.60 71.43 67.86 69.64 
R 54.66 57.76 56.52 59.63 
S 58.39 49.69 73.91 68.94 
T 80.79 65.56 78.81 77.48 
U 74.40 46.43 81.55 76.79 
V 88.97 77.21 86.76 85.29 
W 85.61 86.33 89.93 89.93 
X 73.58 67.30 76.10 72.33 
Y 80.69 55.86 80.69 81.38 
Z 77.22 60.13 92.41 91.14 

Average 68.82 62.31 76.27 76.49 
Standard Deviation 15.26 18.83 11.47 11.44 

Table 5.7:  BHC, BHC FS, BHC TS-FS and TS Build classification accuracies 
(%) by letter for letter recognition data. 

It is interesting to note that there are some dramatic differences.  The use 

of feature selection never degrades the performance dramatically relative to the 
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original set.  However, it can improve results dramatically.  Further, the problems 

with the greedy algorithm are clear – it has dramatically degraded results for D, 

K, U, and Y.  E is difficult for all of the algorithms to classify, but benefits from 

the TS-FS.  The letters B, O and Z benefit from TS relative to using all of the 

features and the greedy feature selection while classification of the letters B and O 

is significantly improved when using the TS Build.  Both TS based algorithms 

have substantially reduced standard deviations of the classification accuracies. 

5.6 CONCLUSIONS 

 Algorithm average execution times are displayed in Table 5.8 for 

comparison.  The TS Build algorithm has increased execution times as related to 

the other algorithms due to its process: GAMLS is executed three times and     

TS-FS is executed twice for each node.  Also, more candidate features lead to 

increased execution times as evidenced by comparing the ALI and Hyperion 

average execution times.  As was noted in Section 4.4, the Hyperion BB TS Build 

suffers from the same matrix multiplication issues associated with the calculation 

of the best basis as the BB TS-FS, and this is reflected in the increased average 

algorithm execution time. 

 
Algorithm ALI Hyperion Hyperion BB 

BHC 0.07707 0.65949 0.36346 
BHC FS 0.12904 1.06725 0.76155 
BHC TS-FS 1.23707 6.04634 15.38026 
TS Build 2.68853 10.76789 65.55054 

Table 5.8:   Average algorithm execution times in minutes for BHC, BHC FS, 
BHC TS-FS and TS Build. 
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The TS feature selection was used within the BHC algorithm to reduce the 

feature space in an effort to allow GAMLS to make a better partition at every 

multiclass node.  In addition, parameter estimates used for performing the 

classification may benefit from TS Build.  Its impact was generally positive: 

classification accuracies of many classes were improved, and the standard 

deviations of accuracies were consistently reduced.  Once constructed, the class 

hierarchy is static and has no opportunity for recourse.  The possibility for 

recourse arises by allowing the rearrangement of the nodes (classes) within the 

class hierarchy structure.  In order to investigate this, a new algorithm was 

developed.  This new method, referred to as the Tabu Search Tree Rearrangement 

Algorithm (TSTRA), is discussed in the fo llowing chapter. 
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Chapter 6 

Binary Hierarchical Classifier Tree Rearrangement Using Tabu 
Search 

Once the BHC class hierarchy is constructed, the original BHC framework 

does not provide any possibility of recourse.  No recovery is possible if a bad 

decision was made in the partitioning phase of any of the metaclasses.  The tree 

rearrangement algorithm described in this chapter performs as a post-processor 

that uses the BHC tree output as its incumbent solution. 

6.1 TABU SEARCH TREE REARRANGEMENT 

The tabu search tree arrangement algorithm (TSTRA) uses the same 

classifier as the BHC and the same training data that were used to construct the 

original BHC class hierarchy.  Using the BHC tree as the TSTRA initial solution, 

the TSTRA move neighborhood is defined as any neighboring tree resulting from 

an adjacent insertion of any leaf node to every other nonadjacent leaf node.  For 

example, a BHC tree for a problem with five classes is pictured in Figure 6.1(a).  

Figures 6.1(b), (c), (d) show the alternate trees when Class 1 is inserted in its 

other possible positions.  This complete neighborhood would include the results 

of all insertions of classes 2, 3, 4, and 5.  
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Figure 6.1:   Example of neighboring tree structures. 

In this application of TS methodology, the tabu list begins as a column 

vector of zeros with a row for each class.  Once a class is selected for movement 

within the tree structure, the class is marked as tabu and the tabu list records the 

iteration number of the class into the list.  The class cannot be moved again within 

the tabu tenure number of iterations unless moving the class results in finding a 

classification accuracy that is better than any found thus far, overruling the tabu 

status.  As in the previous implementations of TS, the tabu tenure is adaptive 

between a user-defined maximum and minimum.  Given an incumbent tree, the 

best non-tabu move within the move neighborhood is selected (unless a tabu 
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status is overruled) for that iteration.  The tree with the best accuracy found is 

maintained and updated (nodes merged, metaclass statistics and Fisher projections 

computed) as appropriate when a tree with an improved accuracy is found.  

Iterations continue until a user-specified number of iterations has been completed 

or no improving tree structures have been found within a specified number of 

iterations.  Upon termination, the algorithm returns the best tree structure found 

for classification.  Although a user-specified option exists that allows the tree-

rearrangements to be level-restricted if prior knowledge of the problem suggests 

such a limitation would be beneficial, it was not implemented in this study.  In 

addition, if implemented, this level restriction can be adaptive by adjusting the 

level of the tree considered for change depending on the ability, or inability, of the 

TSTRA to find improving solutions.  Restrictions which prohibit changes to 

major partitions of the classes (for example, at the root node) intensify the search 

in the current solution space while movements allowing such effects diversify the 

search. 

6.2 TSTRA RESULTS FOR ALI DATA 

The Botswana ALI data were analyzed with the TSTRA.  Because 

improving moves were consistently found during the early iterations with no 

improvements in the later iterations, the maximum number of iterations was 

limited to 20.  Tabu tenure was maintained at 3, and execution was halted if 10 

iterations were performed and no improving solution was found.   

The TSTRA considers the current class hierarchy output by the BHC, and 

using the same training data and classifier, rearranges the tree structure to find 
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better classification accuracies.  In every experiment, the TSTRA was able to find 

improved class hierarchy structures and increased classification accuracies using 

the training data, and these improved class hierarchies, while not guaranteed to do 

so, improved or maintained the classification accuracies for the test and 

independent test data, as well.  When compared to the BHC, the TSTRA averaged 

a 1.60% increase in the classification accuracies per experiment using the test data 

and a 2.15% average increase per experiment using the independent test data (see 

Table 6.1).  In 8 of the 10 experiments, the TSTRA maintained the original 

partition of the root node; in the 2 experiments where the original partition is 

altered, the aquatic vegetation (class 21), which is usually grouped with classes   

1, 2, 7 and 15, is moved to the other subset and grouped with the backswamp 

(class 16).   

TS-FS (as described in Section 4.1) was performed as a post processing 

operation on the TSTRA resulting class hierarchies; while 7 of the 10 experiment 

overall accuracies were improved by the TS-FS for the test data (with an average 

increase of 2.43% per experiment), only one was improved using the independent 

test data.  An average of 111.8 features per tree were selected by TS-FS. The 

standard deviation of accuracies is improved for both the TSTRA and the TSTRA 

TS-FS results, relative to the original BHC.   
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Experiment BHC TSTRA TSTRA TS-FS 

ALI1 88.72 / 72.82 89.23 / 74.49 89.06 / 70.39 
ALI 2 87.20 / 71.71 90.27 / 74.92 89.41 / 72.17 
ALI 3 86.29 / 69.69 88.85 / 71.47 90.14 / 72.36 
ALI 4 86.60 / 70.96 87.76 / 74.16 91.53 / 69.69 
ALI 5 88.33 / 73.33 88.80 / 75.40 90.75 / 71.01 
ALI 6 87.64 / 73.63 89.23 / 75.13 89.75 / 69.69 
ALI 7 86.86 / 70.96 87.81 / 74.65 88.93 / 69.56 
ALI 8 85.82 / 75.03 90.10 / 75.03 89.23 / 71.15 
ALI 9 87.25 / 69.61 88.54 / 73.09 89.02 / 71.07 
ALI 10 88.98 / 72.68 89.06 / 73.60 90.14 / 71.34 

Average 87.37 / 72.04 88.97 / 74.19 89.80 / 70.84 
Standard Deviation 1.05 / 1.76 0.83 / 1.20 0.85 / 1.00 

Table 6.1:   BHC, TSTRA and TSTRA TS-FS overall experiment classification 
accuracies (%) for Botswana ALI testing/independent test data. 

A majority of the individual ALI classes benefited from the TSTRA (see 

Table 6.2); 17 of the 23 classes increased in accuracies averaging a 1.80% 

increase in the individual class accuracies for the test data and a 2.24% increase 

for the independent test data.  The south riparian (class 2) class accuracy was 

markedly decreased by the TSTRA.  On 8 of the 10 resulting TSTRA trees, south 

riparian is grouped with acacia woodlands (class 7) whereas on the BHC trees, it 

is only found grouped with acacia woodlands on a single tree.  The goal of the 

TSTRA is to find trees with increased overall classification accuracies; in its 

current implementation, it is not constrained from decreasing some class 

accuracies in its quest to do so, as is the case with the south riparian (class 2).  At 

the same time, it is able to substantially improve the classification accuracies of 

some classes, for example, the island interior (class 13).  Figure 6.2 is an example 

of the classification of the data subset from Figure 4.3. 
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Class # Class BHC TSTRA TSTRA TS-FS  
1 north riparian 76.93 / 54.05 76.92 / 67.84 75.38 / 62.57 
2 south riparian 88.12 / 85.08 87.09 / 72.95 91.98 / 74.01 
3 short mopane 95.76 / 88.48 97.84 / 88.76 98.16 / 87.40 
4 mopane (dense) 82.59 / 77.88 84.69 / 81.01 85.88 / 77.88 
5 acacia mix 87.96 / 92.82 89.38 / 93.83 88.36 / 90.80 
6 woodland mix 96.00 / 87.50 96.40 / 97.34 97.60 / 97.92 
7 acacia woodlands 84.98 / 38.54 83.49 / 48.71 87.15 / 46.20 
8 acacia shrublands 66.26 / 40.17 72.98 / 42.46 68.94 / 38.69 
9 acacia grasslands 84.95 / 16.84 84.47 / 18.05 76.83 / 16.72 
10 mopane/pechuel/grass mix 94.02 / 93.06 93.89 / 95.72 93.54 / 92.96 
11 grass/pechuel mix 88.71 / 85.71 88.82 / 94.08 91.65 / 89.73 
12 dry grasses 81.74 / 88.43 81.81 / 87.29 78.72 / 78.86 
13 island interior 87.47 / 76.15 95.08 / 84.35 91.22 / 79.35 
14 exposed soil 79.67 / 63.63 81.88 / 67.58 92.18 / 71.94 
15 reeds1 93.34 / 95.03 95.31 / 95.97 93.15 / 90.64 
16 backswamp 84.83 / 70.00 85.27 / 72.57 84.12 / 77.92 
17 floodplain1 81.98 / 34.70 88.99 / 39.76 93.86 / 22.32 
18 floodplain2 85.20 / 69.92 88.65 / 74.92 94.06 / 75.00 
19 floodplain3 80.14 / 59.43 81.28 / 57.07 88.31 / 46.26 
20 water 96.93 / 90.51 98.26 / 92.31 98.59 / 90.36 
21 aquatic vegetation 82.67 / 82.22 86.12 / 68.47 90.55 / 82.37 
22 firescar1 99.28 / 65.13 99.76 / 67.76 98.64 / 51.65 
23 firescar2 98.31 / 99.20 98.08 / 97.16 95.90 / 86.30 
 Average 86.86 / 71.93 88.54 / 74.17 89.34 / 70.78 
 Standard Deviation 4.27 / 5.27 3.58 / 5.06 4.17 / 6.22 

Table 6.2:   BHC, TSTRA and TSTRA TS-FS average testing/independent test 
classification accuracies (%) by class for Botswana ALI data. 
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Figure 6.2:   Example of a classified subset using the TSTRA classifier 

(experiment ALI7: test set accuracy 87.81%, independent test set 
accuracy 74.65%). 

6.3 TSTRA RESULTS FOR HYPERION DATA 

Due to the implementation of BB at each individual metaclass, whenever a 

single class is moved during the TSTRA, a new BB must be found at each 

metaclass that is affected by the move of the class.  Because of the time involved 

for doing so, the TSTRA was not implemented for the Hyperion data using BB. 

The parameter settings for the analysis of the Hyperion data were: tabu 

tenure 3, number of iterations 20 and halt execution after 10 iterations with no 

improvement.  For the test data, the TSTRA improved the overall accuracies of 
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the BHC in 8 of the 10 experiments, maintained the same class hierarchy in 

experiment HYP11 (it was unable to find a better hierarchical tree when 

classifying the training data), and decreased the overall accuracy in experiment 

HYP14.  The TSTRA also decreased the standard deviation of the classification 

accuracies relative to the BHC: for the testing data, the TSTRA standard deviation 

was ~35% of that of the BHC, and for the independent test data, the TSTRA 

standard deviation was ~45% of that of the BHC.  In terms of classification 

accuracies, addition of the TS-FS to the resulting TSTRA structures was 

advantageous for this data set, especially when applied to the independent test 

data (see Table 6.3), resulting in the highest average overall accuracy of 64.30% 

and an average increase of 3.06% per experiment relative to the BHC.  The 

standard deviation of the accuracies for TSTRA TS-FS was smaller than that of 

the BHC, but increased relative to the TSTRA.  When executed, the TS-FS chose 

an average of 65.6 features per tree.   

 
Experiment BHC TSTRA TSTRA  TS-FS 

HYP11 92.71 / 61.23 92.71 / 61.23 93.51 / 60.87 
HYP12 88.76 / 56.87 92.53 / 62.07 92.96 / 66.00 
HYP13 88.08 / 69.36 91.54 / 62.11 91.35 / 63.64 
HYP14 91.91 / 60.07 91.66 / 63.64 91.97 / 61.83 
HYP15 89.99 / 58.55 92.16 / 62.96 91.85 / 63.56 
HYP16 91.85 / 60.63 92.90 / 61.19 90.67 / 68.64 
HYP17 91.60 / 59.43 91.85 / 58.31 91.85 / 58.51 
HYP18 91.91 / 60.59 93.14 / 62.76 92.77 / 61.87 
HYP19 89.19 / 63.52 91.91 / 62.88 93.21 / 71.73 
HYP20 90.67 / 62.07 92.09 / 63.52 91.91 / 66.32 

Average 90.67 / 61.23 92.25 / 62.07 92.21 / 64.30 
Standard Deviation 1.58 / 3.39 0.54 / 1.57 0.89 / 3.93 

Table 6.3:   BHC, TSTRA and TSTRA TS-FS overall experiment classification 
accuracies (%) for Botswana Hyperion testing/independent test data. 
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As mentioned in Section 4.3.2 and Section 5.3, in experiments HYP12 and 

HYP19, classes 6 and 9 were not grouped together and resulted in some of the 

lowest overall classification accuracies per experiment.  The TSTRA results for 

these two experiments improved the classification accuracies for the test data, 

partly (as this was not the only change) by changing the partition at the root node 

and grouping classes 6 and 9 together at the bottom of the tree (only experiment 

HYP12 was improved for the independent test data).  Although these changes 

aided the overall classification, they did not result in significant increases in 

individual accuracies for the classes (see Table 6.4).  In addition to classes 6 and 

9, class 14 (exposed soil) also changed subsets at the partition of the root node in 

experiments HYP13 and HYP17; as was noted in Section 4.3.2, feature selection, 

again, significantly increased the class 14 accuracy (see Table 6.4). 

 
Class # Class BHC TSTRA TSTRA TS-FS 

1 water 100.00 / 99.92 99.78 / 99.60 99.41 / 99.13 
2 hippo grass 87.60 / 15.68 97.40 / 28.15 97.40 / 37.66 
3 floodplain grasses1 95.12 / 81.39 96.00 / 87.28 95.44 / 59.94 
4 floodplain grasses2 96.92 / 72.00 96.73 / 63.45 95.25 / 61.94 
5 reeds1 86.03 / 48.93 88.35 / 52.38 86.35 / 59.17 
6 riparian 80.09 / 60.76 82.60 / 60.29 84.85 / 63.18 
7 firescar2 98.96 / 82.27 98.42 / 79.04 96.26 / 84.43 
8 island interior 95.05 / 84.90 97.81 / 84.59 95.34 / 75.61 
9 acacia woodlands 88.07 / 69.27 89.29 / 69.41 83.44 / 58.68 
10 acacia shrublands 90.86 / 86.74 92.55 / 89.21 91.45 / 91.00 
11 acacia grasslands 93.02 / 18.49 94.53 / 16.34 92.82 / 38.41 
12 short mopane 87.66 / 66.67 87.11 / 65.95 92.67 / 77.06 
13 mixed mopane 84.40 / 57.86 85.00 / 62.06 92.17 / 50.73 
14 exposed soils  76.16 / 77.98 86.61 / 79.44 98.72 / 98.43 
 Average 90.00 / 65.92 92.30 / 66.94 92.97 / 68.24 
 Standard Deviation 4.82 / 8.48 3.41 / 6.60 3.28 / 8.67 

Table 6.4:   BHC, TSTRA and TSTRA TS-FS average testing/independent test 
classification accuracies (%) by class for Botswana Hyperion data. 
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6.4 TSTRA RESULTS FOR LETTER RECOGNITION DATA 

The TSTRA was implemented on the BHC output for the letter 

recognition data with a dynamic tabu tenure of 3 to 5 (originally set at 3), a 

stopping criterion of 30 (or 10 iterations without any improvements).  The 

TSTRA maintained the original root node partition, but resulted in an overall 

classification accuracy of 71.91% which was an improvement over the BHC 

accuracy of 68.82%.  Twelve letter moves were made; the most noticeable of 

these involved bringing the letters B and E, the letters D and O, and the letters Q 

and X closer together (see Figure 6.3) increasing the individual class accuracies 

for 5 of these 6 letters (see Table 6.5).  Executing TS-FS on the rearranged 

hierarchy (using the same parameter settings as outlined in Section 4.3.4) resulted 

in an accuracy of 76.01% (compared to 76.27% which was achieved by executing 

TS-FS on the BHC).   
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Class BHC TSTRA TSTRA TS-FS 

A 85.26 85.90 87.18 
B 43.38 66.18 73.53 
C 71.83 73.24 79.58 
D 80.24 83.83 73.65 
E 52.63 79.61 84.87 
F 71.90 77.12 78.43 
G 39.63 53.66 69.51 
H 47.68 51.66 51.66 
I 73.94 80.00 83.03 
J 77.03 75.00 80.41 
K 60.96 53.42 39.73 
L 73.25 75.16 80.25 
M 85.42 87.50 93.75 
N 87.35 79.52 85.54 
O 43.17 59.71 68.35 
P 70.83 67.86 79.17 
Q 50.60 52.98 67.86 
R 54.66 68.94 65.84 
S 58.39 47.83 60.25 
T 80.79 80.13 80.79 
U 74.40 76.19 77.98 
V 88.97 89.71 86.03 
W 85.61 88.49 96.40 
X 73.58 69.18 71.70 
Y 80.69 76.55 77.93 
Z 77.22 70.25 82.91 

Average 68.82 71.91 76.01 
Standard Deviation 15.26 12.25 12.29 

Table 6.5:   BHC, TSTRA and TSTRA TS-FS classification accuracies (%) by 
letter for the letter recognition dataset. 
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Figure 6.3:   TSTRA class hierarchy for the letter recognition data. 

6.5 CONCLUSIONS 

Average execution times for the BHC and TSTRA are displayed in Table 

6.6.  The average TSTRA execution times are somewhat elevated; in order to 

interface with existing MATLAB code, an additional step was required to 

restructure the tree after every node movement.  This additional step renumbered 

the tree nodes into the sequence that the code expects, but may be unnecessary if 

this inefficiency could be corrected through alternate coding. 

 
Algorithm ALI Hyperion Hyperion BB 

BHC 0.07707 0.65949 0.36346 
TSTRA 9.23284 22.84715 -- 

Table 6.6:   Average algorithm execution times in minutes for BHC and TSTRA. 

The TSTRA was successful in finding better class hierarchies for the 

training data as compared to the BHC when the objective was to increase overall 

classification accuracy.  These TSTRA hierarchies translated into increased 
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classification accuracies for the test data and independent test data in a majority of 

the experiments.  In addition, the TSTRA consistently reduced the standard 

deviations for all of the datasets over that of the BHC.  Upon executing the TS-FS 

on the resulting TSTRA trees, the overall average classification accuracy was 

increased from 88.97% to 89.80% for the ALI data and decreased from 92.25% to 

92.21% for the Hyperion data.   

The move neighborhood selected for and currently implemented in the 

TSTRA is extremely limited.  Further research into the structure of the move 

neighborhoods, the classifiers used and the overall objective of the improvements 

when comparing the hierarchies may enhance the future use of the TSTRA. 
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Chapter 7 

Conclusions 

Classification methods and techniques are becoming increasingly utilized 

as new emerging technologies acquire masses of data and the demand for their 

use in new applications increases.  High levels of accuracy are desirable (and 

often required) to accommodate the varied fields that utilize these methodologies 

in today’s fast-paced data-driven society.  Results obtained from traditional 

classification algorithms can often be improved by integrating new techniques 

within their structures. 

7.1 SUMMARY OF CONTRIBUTIONS 

This research focused on the incorporation of the metaheuristic Tabu 

Search for feature selection within the multiclassifier system of the BHC.  In 

addition, a tree rearrangement algorithm using Tabu Search was developed. 

7.1.1 Tabu Search Feature Selection 

Input space reduction is often a necessity when classification algorithms 

are faced with an input space of high dimensionality.  Feature selection reduces 

the input space by eliminating those features that are useless or redundant (but 

fully exploits the information that the full set of features provides) and allows for 

improved parameter estimation for classification.  In addition, feature selection 

preserves domain knowledge and interpretability of the input space, particularly 

relative to feature extraction methods that project the data into new spaces.  
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Feature selection was explored for use within the framework of the BHC 

supervised classification algorithm in a variety of ways.  The Tabu Search 

metaheuristic was first utilized to solve the combinatorial optimization problem of 

feature selection as a post-processor of the class hierarchy, in place of the greedy 

feature selection that is currently being employed.  The ability of TS to efficiently 

search the solution space and to enhance the performance of the classifiers was 

demonstrated by the reduction of the input space, the increased classification 

accuracies, and the decreased standard deviations of the accuracies that were 

attained. 

An enhancement to the BHC algorithm, which uses TS-FS in the 

construction of the class hierarchy, TS Build, was also developed.  This algorithm 

demonstrated that applying feature selection in the construction of the class 

hierarchy is significantly useful compared to only applying feature selection as a 

post-processing step for classification.  This incorporation of TS-FS in the 

building of the class hierarchies was another novel contribution of the study. 

7.1.2 Classification Tree Rearrangement 

The implementation of the TSTRA demonstrated the potential for recourse 

after a class hierarchy is built.  This algorithm allows for recovery should a less-

than-optimal partition be made at a multiclass node in the hierarchy-building 

process.  Utilizing the same classifier and partition of training and test data, the 

TSTRA constructed alternate class hierarchies whose accuracies were increased 

when classifying the training data.  While not guaranteed to also increase the 

overall classification accuracies of the test data, it achieved increased accuracies 
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when classifying the test data in all but one instance (where the accuracy was not 

significantly degraded). 

7.2 FUTURE WORK 

While research in the field of classification has been ongoing for over 

forty years, it remains a difficult and intensely studied area.  Data with a large 

number of inputs and outputs are now being acquired in multiple application areas 

that will require specialized techniques for classification and information 

extraction in order to utilize the data to their fullest potential.  This current work 

can be extended in a variety of ways to meet this growing need. 

7.2.1 The Classifier and Feature Selection 

The classifier used within the BHC algorithm was not altered in this 

research.  The same classifier was utilized here for comparison purposes to assess 

the effects of the TS-FS on the classification accuracies.  An alternative classifier 

may be more appropriate for use with TS-FS; this approach needs to be 

investigated with other methodologies.  Preliminary results of using TS-FS with 

the Bayesian Pairwise Classifier [48] are promising.  In addition, the investigation 

of more advantageous measures of goodness for inclusion and exclusion of 

features could facilitate the feature selection in the identification of more 

meaningful feature subsets. 

7.2.2 Best Bases 

When aggregating the bands using BB, a correlation threshold of .90 was 

implemented in this study without consideration for the amount of training data 
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that is present to estimate the class parameters.  An alternative threshold presented 

in [49], takes into account the possibility of limited training data, and dictates that 

the (number of training data observations)/(number of features) should be greater 

than 5, thus aggregating the bands until this threshold is reached.  The addition of 

this check and threshold should be considered for use in the algorithms described, 

especially for datasets possessing a great number of features like the Hyperion 

data. 

7.2.3 Tabu Search 

The Tabu Search (TS) metaheuristic is ever evolving; continued research 

has brought about a multitude of new, innovative techniques in its implementation 

and new problems for its application.  The move neighborhoods implemented for 

the feature selection in this study were limited to swaps and inserts, while the tree 

rearrangement was extremely limited in that it only paired classes at the leaf node 

level.  These TS algorithms may benefit from the addition or total replacement of 

the move neighborhoods used.  In addition, further research could provide 

alternative parameters, attributes, adaptive methods, starting solutions, and 

techniques that would aid classification algorithms, especially those with large 

numbers of inputs and outputs, such as hyperspectral data.  The sensitivity of the 

TS starting solution in the TS Build using the Hyperion data was briefly studied 

by randomly choosing a subset of features for the second metaclass partition, as 

opposed to using those features with the highest Fisher weights (see Figure 5.1).  

The resulting classification accuracies were comparable, indicating a lack of 

sensitivity to the incumbent solution and warranting further research in this area.  
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Additionally, further study into the sensitivity of the current TS parameters may 

yield a more extensive search of the solution space.   

Other techniques coupled with TS, such as maintaining ensembles of the 

best feature subsets for each metaclass identified by TS may prove to be helpful.  

Subjective evaluation of the feature subsets by subject matter experts may provide 

better classifiers as opposed to focusing on the classification accuracy of the test 

data as the primary measure of goodness.  Another technique often applied to TS 

is the use of a candidate move list as opposed to searching the entire move 

neighborhood, which can be huge when the number of candidate features (i.e. 

hyperspectral data) is large. 

In the present implementation of TS-FS, a node is “skipped” and TS-FS is 

not performed when the classes at the current node are classified with an accuracy 

of 100%.  While this approach saves computation time, it may miss an 

opportunity to refine a subset of features.  TS-FS could still be implemented to 

search for subsets of decreased cardinality while maintaining (or possibly slightly 

reducing) the classification accuracy at the current node.   

7.2.4 Tree Rearrangement 

The TSTRA can potentially enhance any binary tree structure, and with 

modifications, could be applied to other types of decision trees.  Research into 

different measures of goodness, classifiers and tree structures may, as a 

composite, yield better hierarchies for classification.  Feature selection could also 

be incorporated into the TSTRA. 
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7.2.5 A Grove of Trees 

This research showed that many different class hierarchies are constructed 

from the very same data: the only difference being the way that the data were 

partitioned into training and testing sets.  Each hierarchy has its strengths, but at 

the same time, each has its weaknesses.   Further research could identify a way to 

group these differing hierarchy structures to exploit their strengths collectively 

while limiting the negative effects of their individual weaknesses. 
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APPENDIX A 

Selected ALI Data Class Hierarchies and Confusion Matrices  

A.1  EXPERIMENT ALI2 

 
Figure A.1:  Experiment ALI2 BHC class hierarchy. 

 
Table A.1:  Experiment ALI2 BHC confusion matrix. 
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Table A.2:  Experiment ALI2 BHC FS confusion matrix. 

 
Table A.3:  Experiment ALI2 BHC TS-FS confusion matrix. 
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A.2  EXPERIMENT ALI3 

 
Figure A.2:  Experiment ALI3 BHC class hierarchy. 

 
Table A.4:  Experiment ALI3 BHC confusion matrix. 
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Table A.5:  Experiment ALI3 BHC FS confusion matrix. 

 
Table A.6:  Experiment ALI3 BHC TS-FS confusion matrix. 
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Figure A.3:  Experiment ALI3 TS Build class hierarchy. 

 
Table A.7:  Experiment ALI3 TS Build confusion matrix. 
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A.3  EXPERIMENT ALI4 

 
Figure A.4:  Experiment ALI4 BHC class hierarchy. 

 

 
Table A.8:  Experiment ALI4 BHC confusion matrix. 
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Table A.9:  Experiment ALI4 BHC FS confusion matrix. 

 

 
Table A.10:  Experiment ALI4 BHC TS-FS confusion matrix. 
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Figure A.5:  Experiment ALI4 TSTRA class hierarchy. 

 
Table A.11:  Experiment ALI4 TSTRA confusion matrix. 
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A.4  EXPERIMENT ALI5 

 
Figure A.6:  Experiment ALI5 TS Build class hierarchy. 

 
Table A.12:  Experiment ALI5 TS Build confusion matrix. 
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A.5  EXPERIMENT ALI6 

 
Figure A.7:  Experiment ALI6 TS Build class hierarchy. 

 
Table A.13:  Experiment ALI6 TS Build confusion matrix. 
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A.6  EXPERIMENT ALI7 

 
Figure A.8:  Experiment ALI7 TSTRA class hierarchy. 

 
Table A.14:  Experiment ALI7 TSTRA confusion matrix. 



 106 

A.7  EXPERIMENT ALI8 

 
Figure A.9:  Experiment ALI8 BHC class hierarchy. 

 
Table A.15:  Experiment ALI8 BHC confusion matrix. 
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Table A.16:  Experiment ALI8 BHC FS confusion matrix. 

 
Table A.17:  Experiment ALI8 BHC TS-FS confusion matrix. 
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Figure A.10:  Experiment ALI8 TS Build class hierarchy. 

 
Table A.18:  Experiment ALI8 TS Build confusion matrix. 
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Figure A.11:  Experiment ALI8 TSTRA class hierarchy. 

 
Table A.19:  Experiment ALI8 TSTRA confusion matrix. 
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A.8  EXPERIMENT ALI9 

 
Figure A.12:  Experiment ALI9 BHC class hierarchy. 

 
Table A.20:  Experiment ALI9 BHC confusion matrix. 



 111 

 
Table A.21:  Experiment ALI9 BHC FS confusion matrix. 

Table A.22:  Experiment ALI9 BHC TS-FS confusion matrix. 
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Appendix B 

Selected Hyperion Data Class Hierarchies and Confusion 
Matrices  

B.1  EXPERIMENT HYP12 

 
Figure B.1:  Experiment HYP12 BHC class hierarchy. 

 
Table B.1:  Experiment HYP12 BHC confusion matrix. 
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Table B.2:  Experiment HYP12 BHC FS confusion matrix. 

 
Table B.3:  Experiment HYP12 BHC TS-FS confusion matrix. 
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Figure B.2:  Experiment HYP12 TS Build class hierarchy. 

 

 
Table B.4:  Experiment HYP12 TS Build confusion matrix. 



 115 

 
Figure B.3:  Experiment HYP12 TSTRA class hierarchy. 

 

 
Table B.5:  Experiment HYP12 TSTRA confusion matrix. 



 116 

B.2  EXPERIMENT HYP13 

 
Figure B.4:  Experiment HYP13 BHC class hierarchy. 

 
Table B.6:  Experiment HYP13 BHC confusion matrix. 
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Table B.7:  Experiment HYP13 BHC FS confusion matrix. 

 
Table B.8:  Experiment HYP13 BHC TS-FS confusion matrix. 
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Figure B.5:  Experiment HYP13 TSTRA class hierarchy. 

 

 
Table B.9:  Experiment HYP13 TSTRA confusion matrix. 



 119 

B.3  EXPERIMENT HYP17 

 
Figure B.6:  Experiment HYP17 BHC class hierarchy. 

 

 
Table B.10:  Experiment HYP17 BHC confusion matrix. 
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Table B.11:  Experiment HYP17 BHC FS confusion matrix. 

 
Table B.12:  Experiment HYP17 BHC TS-FS confusion matrix. 
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Figure B.7:  Experiment HYP17 TSTRA class hierarchy. 

 
Table B.13:  Experiment HYP17 TSTRA confusion matrix. 
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B.4  EXPERIMENT HYP18 

 
Figure B.8:  Experiment HYP18 BHC class hierarchy. 

 
Table B.14:  Experiment HYP18 BHC confusion matrix. 
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Table B.15:  Experiment HYP18 BHC FS confusion matrix. 

 
Table B.16:  Experiment HYP18 BHC TS-FS confusion matrix. 
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B.5  EXPERIMENT HYP19 

 
Figure B.9:  Experiment HYP19 BHC class hierarchy. 

 
Table B.17:  Experiment HYP19 BHC confusion matrix. 
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Table B.18:  Experiment HYP19 BHC FS confusion matrix. 

 
Table B.19:  Experiment HYP19 BHC TS-FS confusion matrix. 
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Figure B.10:  Experiment HYP19 TS Build class hierarchy. 

 
Table B.20:  Experiment HYP19 TS Build confus ion matrix. 
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Figure B.11:  Experiment HYP19 TSTRA class hierarchy. 

 
Table B.21:  Experiment HYP19 TSTRA confusion matrix. 
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Appendix C 

Selected Hyperion Best Bases Data Class Hierarchies and 
Confusion Matrices  

C.1  EXPERIMENT HYP12 

 
Figure C.1:  Experiment HYP12 BHC BB class hierarchy. 

 
Table C.1:  Experiment HYP12 BHC BB confusion matrix. 
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Table C.2:  Experiment HYP12 BHC BB FS confusion matrix. 

 
Table C.3:  Experiment HYP12 BHC BB TS-FS confusion matrix. 
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Figure C.2:  Experiment HYP12 TS Build BB class hierarchy. 

 
Table C.4:  Experiment HYP12 TS Build BB confusion matrix. 
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C.2  EXPERIMENT HYP16 

 
Figure C.3:  Experiment HYP16 BHC BB class hierarchy. 

 
Table C.5:  Experiment HYP16 BHC BB confusion matrix. 
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Table C.6:  Experiment HYP16 BHC BB FS confusion matrix. 

 
Table C.7:  Experiment HYP16 BHC BB TS-FS confusion matrix. 
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Figure C.4:  Experiment HYP16 TS Build BB class hierarchy. 

 
Table C.8:  Experiment HYP16 TS Build BB confusion matrix. 
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Appendix D 

Letter Recognition Data Confusion Matrices 

 
Table D.1:  Letter Recognition BHC confusion matrix. 

 
Table D.2:  Letter Recognition BHC FS confusion matrix. 
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Table D.3:  Letter Recognition BHC TS-FS confusion matrix. 

 
Table D.4:  Letter Recognition TS Build confusion matrix. 
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Table D.5:  Letter Recognition TSTRA confusion matrix. 

 
Table D.6:  Letter Recognition TSTRA TS-FS confusion matrix.
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