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Binary trees provide an ideal framework for many decision problems due
to their logical, understandable structures and the computational advantages of the
“divide and conquer” paradigm. They can be particularly advantageous for
classification applications, which involve categorization of information into
groups that are in some sense homogeneous. Algorithms used in construction of
decision trees used in classfication problems are typically greedy. A new
algorithm was developed in this study which incorporates Tabu Search (TS) in the
feature selection aspect of hierarchical classification trees. Specificaly, it is
implemented within the hierarchical classification problem framework of the
Binary Hierarchical Classifier (BHC) which has been shown to be advantageous
for classification problems with a large number of output classes. The agorithm

incorporates feature selection as a means for input space and classifier complexity
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reduction for a static tree; the algorithm was also extended and coupled with the
BHC to allow TS feature selection to aid in building the class hierarchy. Finadly,
a new algorithm was developed which uses TS in the rearrangement of the nodes
of abinary classification tree. Since the use of highly accurate classification
algorithms is vital in fields such as medica diagnoses, character recognition,
target detection, and land cover mapping, the primary goa of this research is to

attain improved classification accuracies.
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Chapter 1

I ntroduction

Data acquisition is often an expensive undertaking; therefore, many
organizations acquire all data possible because it is never known when the data
may become useful. Advances in technology have made data storage relatively
inexpensive, thereby resulting in enormous increases in the quantity of data being
acquired and stored. Unfortunately, the acquisition and storage rates far exceed
the current capabilities to process and extract useful information from this data.
Thus, large amounts of stored data exist that may never be examined. When data
exist in large quantities, it is imperative that computer technologies be used to
examine the data and to extract useful information. Even using modern
computing capabilities, this task can be extremely difficult. Classification
involves categorization of information into groups that are in some sense
homogeneous. Classification thus achieves both information extraction and
compression, and its methods are widely used to perform such diverse actions as
labeling and tracking of land cover, making medical diagnoses, target detection,
and assessing credit-risks and detecting fraud. The field of datigtica
classification has been an active area of research for over forty years. Supervised
classification is performed in the following manner: out of a set of C known
classes, data observations are examined and assigned, or recognized as belonging
to one of the known classes. Thisisaccomplished by examining the pattern of the

features belonging to each observation and assigning labels to individual
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observations based on this pattern. Features are also known as attributes or
properties, and each observation may possess an associated vector of feature
values. In a perfect world, this vector of values would completely determine the
correct classification for each observation, but this is a rarity. Typicaly,
observations from classes are random variables with associated probability
distributions; often there is substantial overlap between distributions of different
classes.

The number of features (attributes) that describe each observation can
range from only a few to thousands. This is problematic both because of
computational complexity and because the resulting high dimensional input
observation space is typically quite sparse. Further, when features are redundant,
covariance based classification methods encounter numerical problems. The two
general approaches to input space dimensionality reduction involve feature
extraction or feature subset selection. The goal of techniques developed under
either strategy is to construct a simpler classification algorithm that is more
reliable, i.e., possesses greater accuracy and executes faster. Feature extraction is
the process of extracting features from the original set to form a lower-
dimensional set of potentially different features. This is accomplished through
some type of mapping or transformation. For example, principal component
analysis is commonly used to project the original feature space onto alower
dimensional feature space. Feature selection reduces the feature space by
choosing a subset of the original features to represent the entire set. The goa of

feature selection is to find the optima feature subset such that when the



classification algorithm is applied to observations, the resulting labels have the
highest accuracy. This selection of the optimal subset out of all possible subsets
isan NP-hard problem [1]. Performing an exhaustive search of the solution space
of al possible subsets would be required to ensure that the optimal feature subset
had been identified. For a very large number of features, exhaustive search is
intractable. For a problem with n features, the number of all possible feature
subsets is 2". A few caculatiors show how the number of possible subsets
becomes unmanagesble: 2* = 16, 2 = 4,096, 2¥ = 1,073,741,824, and
2?0 = 1.809x10™. Current feature selection techniques, which include greedy
algorithms and the use of heuristics, do not guarantee optimality but often obtain
near-optimal solutions more quickly than an exhaustive search.

The classification algorithm, or classifier, is that function which examines
the observations and maps them into the set of C known classes. Research has
shown thet it is very rare when a single classifier can be considered as the best
classifier for al of the classes when multiple classes are involved. This
realization led to an area of research known as multiclassifier systemswhereby
results from multiple classifiers are combined in such a way as to improve the
accuracy of classification relative to that of the single classifier.

This research involves investigation of Tabu Search (TS), a well-known
metaheuristic that is able to adaptively and reactively guide its own search
through the solution space, coupled with the multiclassifier system known as the
Binary Hierarchical Classifier (BHC) [2, 3]. The current BHC agorithm utilizes

a deterministic annealing-type algorithm which employs Fisher projection based



feature extraction to partition the classes and produces a binary hierarchical tree
structure that is used to classify al unknown observations. The primary goal in
development of this approach was output decomposition for problems with a
medium to large number of classes. While the classification accuracies obtained
from the BHC are typically good, problems are encountered if the number of
inputs is extremely large and the amount of training data is limited. Further, the
Fisher weights are not typically stable, and the tree is not necessarily robust to
problems where the inputs are perturbed, as would be the case if the classifier
were applied to a dightly different problem. A preliminary investigation of a
simple greedy based feature selection approach [4] was promising, but inflexible.
In this study, new models are developed which incorporate the use of TS in the
feature selection aspect of the hierarchical classification trees within the
hierarchical problem framework of the BHC. Improved classification accuracies
are increasingly more important as the use of classification algorithms becomes
more prevalent.

In addition, the combined use of TS for feature selection coupled with tree
rearrangement is investigated as a means for input space and classifier complexity
reduction. The goals of this research are to extend knowledge and understanding
in the areas of classfication and to introduce metaheuristics within the
hierarchical classification framework. This methodology is applied in the
analysis of several datasets, including a standard character set and remotely
sensed data acquired by multispectral and hyperspectral sensors, which acquire

data simultaneously in hundreds of spectral bands.



Chapter 2

Background and Related Work

This section contains an overview of the characteristics of supervised
classification problems and solution approaches, with a focus on the problem of
selecting optimal inputs for large data mining problems. It contains a more in-
depth discussion of the BHC algorithm and TS as a method for attacking

combinatoria problems.
2.1 CLASSIFICATION AND FEATURES

Supervised classification methods derive a set of rules for labeling a
(typically) vector-valued observation of features as members of one of C known
classes. Features can have discrete, continuous or complex values. Discrete
features can possess only a finite number of values; ordinal and nominal scale
values are of the discrete type. Continuous features possess an infinite number of
values within the domain of real numbers. Complex features possess an infinite
number of values within the domain of complex numbers, i.e., x+iy. Figure 2.1

shows the hierarchy of these feature types.
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Figure 2.1: Hierarchy of feature types|[5].

The vector of feature values that describes each observation forms a
pattern that, when examined and compared to known patterns of classes that exist
within the dataset, can be used to assign labels to unclassified observations.
When there are no clear distinctions between the patterns of different classes,
some observations may be misclassified; thus, classification algorithms seek to
minimize the expected error rate of classification or maximize some measure of

goodness for classification.
2.2 M EASURES OF GOODNESS

Measures of goodness seek to maximize the classifier’s ability to
discriminate between the known classes. There are five different types of
measures that are commonly used within the area of classification: accuracy,
information, distance, dependence and consistency. Accuracy measures directly
depend on the classifier used and reflect the predictive accuracy of the classifier
by either maximizing the accuracy rate or minimizing the error rate of
classification. Accuracy measures are widely used by researchers as the primary

measure for evaluation. The other types are measures of class separability which



are maximized to yield the greatest potential for distinguishing between the
classes. Class separability can be further characterized in terms of consistency
and the classic measures of information, distance and dependence. Consistency
measures reward consistent classification of an observation into the same class as
the classifier is iteratively refined. An information measure monitors the
likelihood of an observation being classified into its true class by the use of an
uncertainty function such as Shannon’'s entropy, - é_ P(c)log, P(c,) [6].
Distance measures attempt to separate the classes as mucih as possible and label
an observation as belonging to its closest class. Typica distance measures
include the Mahalanobis distance [7], the Battacharyya distance [7], the Jeffries-
Matusita distance [8] and the Patrick-Fisher distance [9]. Finally, dependence
measures quantify the association or correlations between features and the classes
involved. Figure 2.2 shows the hierarchy of measures typically used in

classification.
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Figure 2.2: Hierarchy of types of measures [5].



2.3 THE CLASSIFIER

A supervised classification procedure takes each unclassified observation
and maps it into the set of C known classes, assigning the observation a class
label. This process consists of the following steps. (1) determine the set of classes
that exists within the dataset, (2) select representative observations that are known
to reside in each class (subsequently these will be divided into the set of training
data and the set of testing data), (3) use the training data to estimate the
parameters of the probability density functions of the individual classes, (4) train
the classifier with the training data and evauate the classifier with the testing
data, iterating as necessary, (5) label al unclassified observations using the
trained classifier and (6) summarize the results of the classification. This type of
classification depends on the ability to model the classes, typically using
parametric probability distributions. The classifier can be viewed as a conjecture
of the true mapping from a data observation to the correct class. Given new
unclassified observations, the classifier predicts the observation’s class. Typical
classifiers include Bayesian classifiers [10], maximum likelihood classifiers [11]
and minimum distance classifiers [12]. During classification, problems can arise
when the set of inputs includes features that are irrelevant (do not affect the
structure of the data in any way), and/or redundant (do not add any new
information to the description of the data structure). These issues are greatly
exacerbated when the input space is quite large. Thisis problematic both because
of computational complexity and the resulting high dimensional input observation

space is typicaly quite sparse.



2.4 FEATURE SELECTION

Methods which overcome the problems of irrelevant or redundant features
are “input space reduction techniques.” The motivation for input space reduction
is three-fold: (1) to improve the accuracy of the chosen classifier, (2) to reduce
the data dimensionality, while simultaneously reducing the number of
observations required to appropriately train the classifier (to estimate the class
parameters), and (3) to simplify the classifier by reducing the search space that the
classifier must traverse. A welcomed side-effect is the possible reduction of the
effort required for the classifier to learn an accurate classification function
[13, 14]. Feature extraction and feature subset selection are two generd
approaches to input space reduction. Feature extraction is the process of
extracting a set of new features from the original set of features through a
mapping or transformation, for example, the projection of the original feature
space onto a lower dimensional feature space (as in principa component
anaysis). It has been shown that a classifier using irrelevant or redundant
features does not perform as well as a classifier that excludes the irrelevant or
redundant features [7]. Subset selection is an optimization problem which
involves searching the solution space of all possible subsets for an optimal or
near-optimal subset of features. Feature selection is usually directed at one of two
gods. (1) minimize the number of features selected while satisfying some
minimal level of classification capability or (2) maximize classification ability for
a subset of prescribed cardinality. Additionally, feature selection potentialy

provides valuable domain knowledge about the process.



Feature selection can be visualized as a search in a discrete binary space
(or Boolean hypercube) where each point depicts a feature subset whose vector of
D components identifies the members of the feature subset. For example, alin
the vector’s j position indicates the | feature's inclusion in the subset while a 0
in the | position indicates its exclusion. This space can be depicted in a lattice
structure as depicted in Figure 2.3, where the top node includes all features and
the bottom node is the empty set; all other nodes within the lattice are the result of
a removal of a feature if the lattice is traversed top-down or the addition of a
feature if the lattice is traversed bottomup. For example, if D = 4, the binary
vector (1, O, 1, 0) depicts the feature subset which includes features one and tiree,

i.e. {1, 3} andishighlighted in Figure 2.3.

Figure 2.3 Four-dimensional feature selection lattice.
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An example of a greedy heuristic search of the feature selection lattice
used in classification is implemented as the Seepest Ascent Algorithm discussed
in [15]. This algorithm uses the Jeffries-Matusita (JM) distance as its objective
function (maximization) and assumes Gaussian class distributions to simplify
computation. In this algorithm, an initial subset is selected and evaluated; all
possible one-feature changes are considered; if an improvement can be made, the
best improvement is accepted, and the algorithm then considers all one-feature
changes from the current subset. These iterations terminate when no
improvements can be made, indicating that the process has reached a local
optimum, and return the best subset found. This type of algorithm is sensitive to
the initial subset. This weakness can be lessened by executing the agorithm
several times and comparing the resulting subsets.

Feature selection techniques are characterized either as filters, which
ignore the classifier to be used, or wrappers, which base selection directly on the
classifier.

24.1 Filters

Computationally more efficient than wrappers, a filter approach performs
subset selection based only on the feature qualities within the training data. Since
the classifier is ignored, there is no interaction between the biases of the feature
selector and the classifier. The quality of the best filter subset is typically not as
effective as a subset selected using a wrapper model. Two well-known filter
approaches are embodied in the RELIEF and FOCUS algorithms described in
[16]. Figure 2.4 depicts a flowchart of a filter model for feature selection.

11
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Figure 2.4. A filter model of feature selection [5].

242 Wrappers

Wrappers select a feature subset based directly on the classifier. The
training data are used to train the classifier using different feature subsets; each is
then evaluated using the testing data to find the best subset. In this way, the
biases inherent in the feature selection algorithm and the classifier strongly
interact, and the feature selection is described as being “wrapped around” the
classification agorithm. The feature subset with the highest evaluation score is
subsequently passed to the classifier to label the remaining unclassified

12



observations. Selecting better subsets can improve the accuracy of a classifier
[17], and this is one reason that wrapper models are often preferred over filter
models. Unfortunately, depending on the computational intensity of the classifier
used and the number of original features, wrapper models can be computationally
burdensome and may be intractable for problems having a very large number of
features Another problem associated with wrappers is that they may actually
overfit the data [17] by placing undue emphasis on random variations in training
data which yields a model that does not generalize well for new data. Figure 2.5

depicts aflowchart of a wrapper model for feature selection.
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Figure 2.5: A wrapper model of feature selection [5].
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2.4.3 Optimal methods

Optimal feature selection methods identify the optima feature subset
which yields the highest possible accuracy for a set of known data. 1dentification
of the optimal subset is guaranteed by an exhaustive search of the solution space
of all possible subsets [1]. For avery large number of features, exhaustive search
is computationally intractable.

The branch and bound (B& B) method also produces optimal features [18].
A limitation of B&B is that it guarantees the optima subset only if the
performance measure is known to be monotonic, where the addition of features
does not deteriorate the performance measure. This condition often cannot be
satisfied. In addition, in many situations the effort associated with B& B may still
be prohibitive. Other forms of the B&B, automatic B& B and backward automatic
B&B [19], have been proposed, but still require the monotonicity property.
Approximate B& B [20] is a heuristic B& B which does not require a monotonic

performance measure but is computationally more demanding than B& B [5].
2.4.4 Sub-optimal methods

The computational complexities of optimal feature selection methods have
resulted in the acceptance of heuristic techniques that find good, near-optimal
subsetsin relatively short computational times. A comparative study of several of
the well-known optimal and sub-optimal feature selection algorithms is contained
in [21]. Specifically, the authors contrasted results obtained from the following
methods. Sequential Forward/Backward Selection (SFS/SBS), their generalized
versions (GSFS(g)/GSBS(g)) and their floating point versions (SFFS/SBFS); Plus

14



| take away r (PTA(l, r)) and its generaized version (GPTA(, r)); versions of
B&B and relaxed B& B; a genetic algorithm; and a parallel algorithm. Genetic
algorithms were introduced for the selection of features in [22]. Simulated
annealing was used as a feature selector in [20], and the use of the TS

metaheuristic was shown as a promising approach in [23].
2.5 TABU SEARCH

Tabu Search (TS) is a metaheuristic method for solving combinatorial
optimization problems. Its first modern formulation is attributed to Glover [24].
TS differs from other search techniques in that modern versions of TS are able to
adaptively and reactively guide their search through the solution space while
allowing infeasible areas of the solution space to be traversed in its search for the
optimal solution. TS uses specialized memory structures to maintain its search
history and to avoid becoming trapped in local optima. Its popularity has grown
due to its ability to find near-optimal solutions in a short amount of time and its
adaptability to many combinatorial optimization problems, including pb shop
scheduling problems [25], pickup and delivery problems [26], and communication
network problems [27, 28]. Group Theoretic TS, a verson of TS that makes
extensive use of group theory has recently been developed [29, 30] and has been
successfully implemented in the aerial fleet refueling problem [31, 32], the theater
deployment vehicle routing and scheduling problem [33, 34] and the general crew
scheduling problem [35]. Another version known as Extreme Point TS [36] has

been proposed to optimize decision trees by representing the tree as a set of
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digunctive linear inequalities and optimizing over these inequalities; the results
are considered promising.

TS explores from its incumbent solution, looks at neighboring solutions,
i.e., those solutions that can be reached by a single move within the specified
move-neighborhood, and moves to the neighboring solution with the best non
tabu solution. It avoids cycling and escapes from local optima by using a tabu
list, which incorporates solution attribues of recent solutions that are forbidden
for tabu tenure future moves. An aspiration criterion may be introduced to allow
TS to make a tabu move if stipulated conditions are satisfied. TS can include
intensification and diversification elements. intensification allows a deeper
search into promising areas of the solution space, and diversification encourages
movement to yet unexplored or less explored areas of the solution space. Finaly,
the search will halt and return the best solution found when a stopping criterion is
satisfied. Aswith all heuristic methods, the solution returned is not guaranteed to
be optimal.

To facilitate the visualization of the TS principles, its application to one of
the most researched problems in scientific literature, the combinatorial
optimization problem known as the Traveling Salesman Problem (TSP), is
discussed here. Simply stated, a single salesman is to travel to severa cities,
starting from and returning to his home city. Knowing the exact distance between
each pair of cities, the salesman desires to plan his route minimizing his entire
travel-distance. The simplicity of the problem description is deceiving, as al

permutations of the cities must be implicitly examined to identify the tour of
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minimum length, and thus, the TSP is NP-complete [37]. When the number of
citiesislarge, the TSP becomes intractable. To clarify the general TS approach, a
general description of a TS implementation for the TSP is now described.

The TSP, asin al applications of TS, starts with an initia tour (solution).
The move-neighborhood is all other solutions in the solution space that are
reachable by a single move. While moves can be defined in a number of ways,
two common types of moves are known as swap-moves and insert-moves. In the
TSP, a swap-move identifies two cities within the tour and exchanges their
positions. For example, suppose for a 6 city TSP that city 1 is the salesman’s
home. Given incumbent tour 1-2-4-3-6-5, swapping cities 2 and 6 yields
1-6-4-3-2-5. An insert-move removes a single city from its current position and
inserts it in a different position. Given incumbent tour 1-2-4-3-6-5 with city 2
selected for insertion, the neighborhood tours are 1-4-2-3-6-5, 1-4-3-2-6-5,
1-4-3-6-2-5and 1-4-3-6-5-2.

TS is aggressive and will generally choose the best nontabu move
available within its present move neighborhood (characterized by the greatest
decrease or smallest increase in the tour length). It differs from ssimple classical
descent methods in that it can escape being trapped in local optima by its ability
to learn. An attribute of the new solution is identified and labeled as tabu (not
repeatable for a given number of iterations known as tabu tenure). The tabu
architecture eliminates cycling, repeatedly returning to and not being able to
escape from a local optimum, and allows the search to move away from recently

searched areas. Pure TS, a simple but cumbersome and ineffective tabu strategy
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memorizes all solutions (tours) visited thus far and forbids return to any such
solution; an aternative to remembering entire tours is to select an attribute, such
as the city just inserted, and then to forbid it from being moved within its tabu
tenure. Tabu status can be overridden by a move meeting the aspiration criterion.
The smplest such criterion is to alow the move when it leads to a new best
solution for the TSP. Diversification may be introduced by counting the number
of times the cities have been in particular tour positions and choosing to penalize
moves that cause higher counts to be repeated. This drives the search into
possibly new unexplored areas of the solution space. Intensification may be
implemented by returning to good solutions and searching within the vicinities of
such solutions in the hope of finding even better solutions. The stopping criterion
is often a specified number of iterations performed or number of iterations
performed with no improvement to the tour length. These strategies presented for
the TSP are only representative and in no way exhaust the great number of the

strategies that may be applied to the TSP and similar problems when using TS.
2.6 MULTIPLE CLASSIFIER SYSTEMS

In classification, it is very rare when a single classifier can be considered
the best classifier when multiple classes are present [38]. This led to the
development of a research area which focuses on developing methods that
combine a group of classifiers in such a way as to improve the accuracy of
classification relative to that of the single classifier and with greater classification
accuracy than any of the individuals within the ensemble [39]. These types of

classifiers are said to “divide and conquer” the solution space. Instead of learning
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one complex classifier, this family of classifiers combines many smaller, easier
classifiers into a multiclassifier system. Many multiclassifier systems have been
developed and continue to be refined; a brief history is presented in [40].
Examples of multiclassifier systems include the Bayesian Pairwise Classifier
(BPC) [2], the Bayesian Pairwise Classifier with the Fisher Discriminant (BPC-
FD) [2], and the Best-Bases Binary Hierarchical Classifier (B-B BHC) [41, 42].
Much research has been devoted to the exploitation of these multiclassifier-
improvements to overall system accuracy in an effort to develop higher quality,
more robust classifiers that can contribute to knowledge reuse and transferability

of the classifier.
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Chapter 3

TheBinary Hierarchical Classifier

The focus of this research is multiclassifier problems with large input and
output spaces. Large input spaces require input space reduction techniques, while
large output spaces are often handled by various output space decomposition
techniques. An example of a classifier framework that transforms the feature
space and the output space simultaneoudly is the BHC. The BHC is studied as a
means of developing models that attain better overall classification accuracies. In
addition, the use of class dependent feature selection within the hierarchical tree
schemes is investigated for its impact on retention of domain knowledge. The
remainder of this chapter contains a discussion of the current implementation of

the BHC and an introduction to the research conducted in this study.
3.1 BINARY HIERARCHICAL CLASSIFIER FOR CLASSIFICATION

The BHC, as developed by Kumar et al. [3] for a C-class problem, forms a
binary tree-type hierarchical classifier (at each node of the tree, only two branches
are created). Sets containing more than one class are known as metaclasses and
are the internal nodes of the tree structure; sets containing individual classes are
the leaf nodes of the tree which are the final nodes of the branches. The metaclass
at the top of the tree structure includes al original classes. The interna rodes of

the tree, to include the top node, depict a two-metaclass problem that partitions

the classes at each internal node W, into two child nodes, W, and W,,,,, where
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W, E W, ., =W,; this is accomplished recursively at each internal node until the

leaves of the tree structure contain the individual classes and no more partitioning
can be executed. Ultimately, this framework yields a hierarchical tree structure of
C-1linterna nodes (two- metaclass problems) and C leaf nodes. Figure 3.1 depicts
an example of aBHC tree structure with 5 classes.

l Feature
0 _{1 234, 5.}. Vs Extractor

,:' Classifier
-{3)/ S pezd”

—{J/
L eaf node
Q,={3} QS?E Q,={2}

Q=1 Qu=4}
Figure 3.1: Example of aBHC with 5 classes [2].

In its current implementation, a feature extractor at each interna node
extracts those features that best discriminate child node pairs in a reduced input
space.  Kumar et al. apply the Fisher discriminant as the feature extractor.
Additionally, it is often easier for a classifier to distinguish between two subsets
of classes than it is for the classifier to distinguish between all classes
simultaneously, thus decomposing (and reducing) the output space. Therefore,

the best child node pair which is that pair with the strongest associations based on
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a posterior probability based criterion, is chosen and the parent node branches on
those child nodes.

Based solely on the training data, the construction of the BHC tree can be
accomplished in two ways:. a top-down approach or a bottom up approach. The
top-down version of the BHC tends to be less greedy than the bottom up version,
and the two versions often yield different results. The top-down approach starts
with all of the classes in a single metaclass which is partitioned into two child
nodes (subsets) that can be depicted as having three possible combinations of
child nodes: leaves only, i.e. two single class child nodes if the parent metaclass
is comprised of only two classes; smaller metaclasses, i.e. child nodes made up of
more than one class but fewer classes than the metaclass that serves as its parent,
so that W, EW,,, =W, if the parent metaclass is made up of four or more
classes; or some combination of a leaf and metaclass if the parent metaclass is
comprised of three or more classes. The bottom up version of tree construction is
initiated with al the individual classes as leaf nodes and successively combines
those leaves, metaclasses, or combination of leaf and metaclasses determined to
be the least distinguishable from each other. This agglomeration is continued
until the single metaclass containing all the classes is attained. Once the tree is
built, the classifier uses the structure for classification of unlabeled observations.

Refer to [2, 3] for more information on the BHC.
3.1.1 Top-down BHC

The top-down BHC framework uses the Generalized Associative Modular

Learning System (GAMLS) [43], a deterministic annealing-type algorithm.
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GAMLS is used to partition each metaclass into two child nodes until each branch
of the tree is reduced to a single class at the leaves. This process decomposes the
output space at each branching of the tree by reducing the number of possible
allocations of an observation to two choices at each branch of the tree.

Each individua class contained in a metaclass is ultimately assigned to
one, and only one, of the two child nodes. This allocation is accomplished by
computing the posterior probabilities of each class v 1 W belonging to either
child node. This requires alocating the classes to nodes and estimating the
parameters for the child nodes. Each partition needs to be explored to ensure that
the best partition was found. Instead of allocating classes directly, GAMLS
“softly associates’ classes with child nodes by associating one class with one of
the subordinate metaclasses with probability 1 while all other classes are equally
associated with each subordinate metaclass with probability .5. The algorithm
updates these associations at each step until the associations are clear, i.e., closeto
1 for “associated with” and close to O for “not associated with”. For the metaclass
with C > 2, GAMLS execution can be summarized as. (1) the Fisher feature
extractor reduces the feature space to that which maximally discriminates between
the two “soft” metaclasses using the current associations, (2) the mean log
likelihoods of classes in the feature space are computed, (a univariate or
multivariate Gaussian distribution is assumed); (3) associations are updated by
maximizing the weighted sum of the log likelihoods subject to an annealing
condraint; (4) Steps 1 through 3 are repeated until the incremental increase in
the defined gain is insignificant; (5) the stopping threshold is reached then the
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execution halts returning the current associations, else the temperature is cooled
and execution returns to the Fisher feature extractor. (These steps are displayed in
Figure 3.2.) As the temperature cools, the associations (posterior probabilities)

approach 0 or 1. When the algorithm terminates, the partition is realized and the

metaclass is split between those classes that most closely associate with W, and

those that most closely associate with W, . This splitting is continued at all

internal nodes until only leaf nodes remain. Unclassified observations are

ultimately classified using the resulting binary hierarchical classifier.
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Figure 3.2: Flowchart of GAMLS execution.
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3.1.2 BestBasesBHC

An approach referred to as “best bases feature extraction”, was developed
by Kumar et al. [41] for a Bayesian Pairwise Classifier (BPC) to reduce the input
candidates in high dimensiona remote sensing data. Many of the original
features of hyperspectral data, which are comprised of potentially hundreds of
narrow, contiguous windows of the electromagnetic spectrum, are highly
correlated and provide redundant information Implemented in both a bottom up
band aggregation mode and a top down splitting mode, the method seeks to
reduce the number of highly correlated features while maintaining good
discrimination between pairs of classes in the BPC. The approach was modified
by Morgan et al. [42, 44] and incorporated in the BHC. In this bottom up
implementation of best bases feature extraction, the features which are contiguous
in the spectrum and are highly correlated are combined to form a class dependent
feature “group” at every node of the BHC. Spectrally adjacent feature groups are
successively combined until some user defined threshold is satisfied. The
resulting best bases features then replace the original features, thereby reducing
the dimensionality of the input space while exploiting the correlation structure

inherent in the data.
3.2 RESEARCH

In this study, Tabu Search (TS) was investigated as a means of improving
classification accuracies within the BHC and Best-Bases BHC frameworks. TS
was first implemented as a means of generalizing the greedy feature selection

within a specified tree structure obtained by the origina BHC and Best Bases
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BHC. Feature selection extracts the most useful bands/band groups from the
feature vector and presents them to the classifier as a vector of lower dimension
whose elements retain only the most significant characteristics of the original
input space. Feature selection also attempts to remove any redundant and/or
irrelevant features. TS uses the greedy feature selection results as an initial
solution and searches the solution space for subsets of features (original features
for the BHC and combined features for the Best Bases BHC) which yield higher
classification accuracies while leaving the hierarchical tree unchanged.

TS is then investigated as the feature selector at each internal node as the
hierarchy is being constructed. In this configuration, TS aides in the construction
of the binary hierarchical structure and can be applied when using either the
original features or the best bases combined features.

While class hierarchies such as those resulting from the BHC generally
achieve good classification accuracies, leaf nodes that are statistically close to
each other can reside in two unrelated branches. The BHC algorithms do not
have the ability to examine the resulting tree structure and to rebuild/rearrange the
branches and leaf nodes when the agorithm is unable to effectively
partition/merge the metaclasses. The hierarchy, once built, is fixed without any
possibility of recourse. This second application of TS provides a method that
allows hierarchical classification algorithms to rearrange the resulting class
hierarchies through the application of a combinatoria search through the solution
space containing all possible class hierarchies. For this component of the study,

the tree structure from a hierarchical classifier like the BHC becomes the initial
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incumbent solution for the TS algorithm and is stored as the “best solution found
thus far”.

The primary goals of this research were to extend knowledge and
understanding in the areas of classification and to implement TS within the
hierarchical classification framework in the quest for increased classification
accuracies. A secondary goal isto select a meaningful set of features that provide
domain knowledge. Finally, robustness of classifiersisimportant as values of the
inputs used to train and test the classifier may not be representative of the
population, or the classifier may need to be applied to a similar dataset for which
no training data are available. This work should contribute to that longer term

goal.

27



Chapter 4

The BHC with Tabu Search Feature Selection (TS-FS)

The output of the BHC isabinary hierarchical tree that is used to assign a
class label to observations whose class is unknown. A typical BHC class
hierarchy is displayed in Figure 4.1 for a dataset with five classes where the root
node includes all C classes, the leaf nodes are the individual classes, and the
internal nodes are metaclasses or subsets of the original set of classes. Starting at
the root node, each internal node is partitioned into two child nodes, two mutually
exclusive subsets of the classes at that node, where W, EW, ., =W.. The
partitioning continues until the destination node for each branch of the tree results
in a leaf node, yielding a binary class hierarchy with 2C-1 nodes (C leaf nodes

and C-1 interna nodes).
Q ={1 2,3,4,5}
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Figure4.1: Typica BHC hierarchical tree for a dataset with five classes.
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Once the BHC class hierarchy is constructed using the entire feature set,
an option using feature selection then iteratively examines each internal node,
selecting that subset of features which is most useful for discriminating between
each internal node's child nodes. This feature selection option is currently
accomplished in the operational code [4] by a greedy forward feature selection
algorithm. Considering the particular classes present in the current metaclass, the
first feature included is the feature that individually yields the highest
classification accuracy. The second feature that is considered for inclusion in the
feature subset is that feature which, when included, maximizes a log-odds
relevance function; the feature is subsequently selected if the classification
accuracy at the current node is increased more than an arbitrarily selected
threshold (.01). This process continues until the increase in accuracy is less than
the defined threshold. Here, features are only added to the subset, never removed.
Once the hierarchy is constructed and all metaclass features selected, unclassified

observations are labeled as described in Section 3.1.1.
4.1 TABU SEARCH FEATURE SELECTION

A feature subset selection agorithm attempts to find an optimal or near-
optimal subset of features. In its simplest implementation, Tabu Search Feature
Selection (TS-FS) is a post-processing algorithm that operates on, but does not
change the class hierarchy developed by the original BHC. It can add or remove
features from the feature subset during the search.

The new TS based feature selection algorithm developed in this study

starts with the root node and travels down the hierarchical tree, iteratively
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considering each internal node for feature subset selection. At the root node, the
TS-FS is initiated using the BHC feature subset as an incumbent solution. The
objective is to maximize the classification accuracy, i.e., the percentage of correct
labels of classes that are members of the metaclass at the current node. This
accuracy is computed using the same classification scheme as the original BHC
and the same training data. If the classification accuracy for any node is perfect
(100%), the node is skipped. The move neighborhood selected for the TS
procedure consists of the union of all possible swaps and inserts of features that
can be achieved from the current incumbent solution. The swap neighborhood
considers all possible single-feature swaps between the sets of used and unused
features. This neighborhood does not change the current number of features used.
The insert neighborhood considers all single-feature insertions both from the set
of selected features into the set of unused features and from the set of unused
features into the set of currently selected features. This neighborhood is either
incrementing or decrementing a feature from the current set of features selected at
the current node. If a feature to be included in the feature subset is highly
correlated with any features already present (exceeds a user defined correlation
threshold), the move is not alowed. This prohibition, which was included for
analysis of remotely sensed hyperspectral data, ensures that features being
considered for inclusion are not redundant. The maximum number of features
allowed at any node is also user-defined. It can be unrestricted allowing greater
search flexibility, or the user may define a maximum number of features based on

knowledge of the problem Other user-defined parameters include the maximum
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tabu tenure, the minimum tabu tenure, the initial tabu tenure (a number between
the maximum and minimum defined tabu tenures), the number of iterations
allowed with no improvements before halting the execution, and the maximum
allowable number of iterations. The tabu list is initialized as a column vector of
zeros with arow for each feature. When a feature is selected for movement either
into or out of the subset of features, that feature is marked as tabu and the tabu list
records the iteration number of that feature' s entry into or exit from the list. That
feature cannot be moved again until it has been on the tabu list for the number of
iterations specified by the tabu tenure. An exception to this rule is made when
moving the feature results in a classification accuracy that is higher than any other
accuracy previoudly achieved. In this case, the tabu status is overruled, and the
move is alowed.

The user defined maximum and minimum tabu tenure are employed to
determine an adaptive tabu tenure strategy. The tabu tenure is never alowed
outside of the boundaries defined by maximum and minimum tabu tenures. An
improving classification accuracy decrements (if possible) the tabu tenure to
allow an intensified search in the current area of the solution space. If no
improving classification accuracies are found, the tabu tenure is incremented (if
possible) to encourage the search to leave the current area of the solution space
and diversify into other unexplored areas of the solution space.

Given an incumbent solution, the best non-tabu move within the move
neighborhood is selected. (Since the best nontabu move is not necessarily an

improving move, TS can escape from local optima.) If the current classification
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accuracy is the highest value yet achieved, the new subset is recorded as the best
yet found. The next iteration is performed. Iterations continue until either the
user-defined number of iterations has been completed or no improvements have
been found within the specified maximum number-of-iterations-with-no-
improvement. When the TS terminates for the current node, the best subset of
features is recorded for that node, and the algorithm progresses to the next node
for feature selection until al of the nodes have been processed. A flowchart of

the algorithm is displayed in Figure 4.2.
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Figure4.2: Fowchart of TS-FS Algorithm.

When the TS-FS is completed for each node, novel observations are
classified using the binary hierarchical tree with feature subsets selected by TS.
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All algorithms were executed using MATLAB® student version 6.0.0.42a, release
12 dated 13 November 2000 with the Pentium IV patch applied and implemented
on a personal computer with an Intel® Pentium® 1V, 2.66GHz and 512 Mb of

RAM; all execution times reported are in reference to this system.
4.2 APPLICATION OF TS-FSALGORITHM TO STATIC TREES

The TS-FS agorithm was applied to the BHC tree obtained from three
datasets: multispectral and hyperspectral remotely sensed data acquired over

Botswana and a standard character recognition dataset.
4.2.1 Botswana Advanced Land Imager (ALI) Dataset

The Botswana multispectral data were acquired by the Advanced Land
Imager (ALI) aboard the Earth Observer 1 (EOL) satellite on 31 May 2001. The
mission is being flown to evaluate experimental sensor technology for future
space missions. For example, ALI is a prototype sensor for the Landsat Data
Continuity Mission (LDCM). The array of data can be displayed as an image
where each pixel represents a vector-valued observation. The data cover a subset
of the Okavango Delta of Botswana that is undergoing change due to
anthropogenic and natural processes such as seasonal flooding. A small subset of
the data is displayed in Figure 4.3 to illustrate the difficulty of land cover

classification in this particular area.
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Data were pre-processed by the UT Center for Space Research (CSR)
prior to analysis in this study [45]. The ALI data consist of observations from 23
identified classes representing the land cover typesin the area, each with 9 integer
features which represent the spectral reflectance of the land cover types within
contiguous bands of the visible and near infrared spectrum. The class numbers,
names and number of ground truth observations are listed in Table 4.1. In
addition to vegetation, soils and water, three types of floodplain are identified:
floodplainl (class 17) is the primary floodplain, floodplain2 (class 18) represents
the seasonal floodplain, and floodplain3 (class 19) is considered to be a secondary

floodplain. In addition, two fire scar classes are identified: firescarl (class 22)
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was recently buned, whereas firescar2 (class 23) was previously burned and
exhibits some patches of new vegetation growth. CSR provided ten partitions of
the data, where each class was randomly sampled and the data partitioned such
that 50% of the data were identified for the training of the classifiers and the
remaining 50% identified for the subsequent testing of the classifiers. These ten
datasets were maintained, and the same testing/training data utilized for each of
the experiments labeled ALI1-ALI10. Appendix A contains selected results
(class hierarchies and confusion matrices) for this dataset. Because the training
and test data are spatialy co-located in regions of known classes, accuracies can
be inflated in remote sensing applications. For this reason, an additional

independent test set was also provided, and data were classified as novel

observations.

Class# Class Name Training SampleSize
1 north riparian 157
2 south riparian 193
3 short mopane 303
4 mopane (dense) 249
5 acaciamix 254
6 woodland mix 201
7 acacia woodlands 149
8 acacia shrublands 134
9 accia grasdands 171
10 mopane/pechuel/grass mix 164
11 grass/pechuel mix 170
12 dry grasses 252
13 idand interior 166
14 exposed soil 118
15 reedsl 192
16 backswamp 233
17 floodplainl 202
18 floodplain2 193
19 floodplain3 340

20 water 241
21 aguatic vegetation 151
22 firescarl 248
23 firescar2 156

Table4.1: Classinformation for the Botswana AL dataset.
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4.2.2 Botswana Hyperion Dataset

The Hyperion sensor on EO-1 is the first hyperspectral sensor successfully
flown in space. It acquires data simultaneously with ALI, but over a smaller area
(7.5 km vs. 37 km strip width) that is shifted slightly to the west as the telescopes
for the sensors are not co-aligned. The width of the Hyperion strip is smaller
because the number of bands is more than 20 times that of ALI, thereby resulting
in a dramatic increase in the amount of data recorded. ALI and Hyperion cover
the same range of the electromagnetic spectrum [46]. The data were provided to
the study after extensive pre-processing was completed by CSR. The Hyperion
dataset consists of observations from 14 identified classes representing the land
cover types in the area studied, each with 242 candidate features. Uncalibrated
and noisy bands that cover water absorption features are removed, and the
remaining 145 bands are included as candidate features. [10-55, 82-97, 102-119,
134-164, 187-220]. The class numbers, names and number of ground truth
observations are presented in Table 4.2. As with the ALI, CSR provided ten
randomly sampled partitions of the data, which were subdivided into 50% for
training and 50% for testing the classifiers, and an independent test set. These
data splits were maintained throughout the study and are labeled HY P11-HY P20.
Selected results (class hierarchies and confusion matrices) for this dataset are

contained in Appendices B and C.
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Classcode Class Training samplesize
1 water 270
2 hippo grass 101
3 floodplain grassesl 251
4 floodplain grasses2 215
5 reedsl 269
6 riparian 269
7 firescar2 259
8 island interior 203
9 acaciawoodlands 314
10 acacia shrublands 248
11 acaciagrasslands 305
12 short mopane 181
13 mixed mopane 268
14 exposed soils 95

Table 4.2: Class information for the Botswana Hyperion dataset.

4.2.3 Letter Recognition Dataset

The letter recognition data were obtained from the University of
Cdlifornia, Irvine (UCI) [47] Machine Learning Repository with the title, Letter
Image Recognition Data. This dataset consists of 20,000 instances, where
typically the first 16,000 are used for training and the last 4,000 for testing; this

partition was followed for this study. The class labels are contained in Table 4.3.
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Class# | ClassName | Training Sample Size Testing Sample Size
1 A 633 156
2 B 630 136
3 C 594 142
4 D 638 167
5 E 616 152
6 F 622 153
7 G 609 164
8 H 583 151
9 I 590 165
10 J 599 148
11 K 593 146
12 L 604 157
13 M 648 144
14 N 617 166
15 O 614 139
16 P 635 168
17 Q 615 168
18 R 597 161
19 S 587 161
20 T 645 151
21 U 645 168
2 \Y 628 136
23 W 613 139
24 X 628 159
25 Y 641 145
26 Z 576 158

Table 4.3: Classinformation for the letter recognition dataset.

Each instance is a black-and-white rectangular pixel display of one of the
26 capital letters of the English alphabet (see Figure 4.4 for example letters which
yielded individual data observations) and is described by 16 integer-valued
numerical attributes (statistical moments and edge counts), or features (see Table
4.4). The best accuracy obtained for this dataset is reported in the literature as “a

little over 80%" [47]. Confusion matrices for this dataset can be found in

Appendix D.

38




A AN AM a4 AA
Bl FRBO#RD
el e Yecec O
aFRFF FFR
T K KRK KKK
58S S 355 @
Xx U X xXXar X

Figure4.4: Examples of letters which yielded individual data observations for
the letter recognition dataset [2].

Feature# | FeatureName Description
1 x-box horizontal position of box
2 y-box vertical position of box
3 width width of box
4 high height of box
5 onpix total # on pixels
6 x-bar mean x of on pixelsin box
7 y-bar mean y of on pixelsin box
8 x2bar mean X variance
9 y2bar mean y variance
10 xXybar mean X y correlation
11 x2ybr mean of x*x*y
12 xy2br mean of x*y*y
13 X-ege mean edge count left to right
14 Xegvy correlation of x-egewithy
15 y-ege mean edge count bottom to top
16 yegvx correlation of y-ege with x

Table 4.4: Feature information for the letter recognition dataset.
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4.3 MPLEMENTATION OF TS-FSALGORITHM AND RESULTS

The TS parameters were tuned using the first experiment for the ALI and
Hyperion datasets. The parameters were then used for the remainder of the
experiments. For the letter recognition dataset, the parameters were tuned with

the single data partition.
4.3.1 Feature Selection Resultsfor ALI Remotely Sensed Data

Each of the ten datasets (experiments) was analyzed by the BHC, both
with and without the original feature selection(FS) method. The TS-FS was then
performed on the static tree structures output by this algorithm using the features
selected by the greedy algorithm as the TS starting solutions. The overal
classification accuracies for each of the algorithms are displayed in Table 4.5.
Tabu tenure was set at 3. Because this dataset has only 9 features, neither the
correlation check for inclusion of new features nor the adaptive tabu tenure was

utilized. The stopping criterion was set at 30 iterations, and the maximum

number of iterations to continue with no improvements was set at 10.

Experiment BHC BHC FS BHC TS-FS
ALI1 88.72/ [712.82 86.38/69.18 88.59/72.74
ALI 2 87.20/ 71.71 85.30/ 64.92 89.71/ 72.20
ALI3 86.29 / 69.69 86.64 / 68.16 89.88/ 71.20
ALl 4 86.60 / 70.96 85.99 / 68.62 90.01/ 71.69
ALI5 88.33/73.33 86.34/ 67.73 90.06/ 73.36
ALI 6 87.64/73.63 85.82/66.97 89.32/ 72.66
ALI7 86.86 / 70.96 87.68/ 67.48 90.06/ 71.90
ALI 8 85.82/ 75.03 84.48/71.82 88.28/ 75.16
ALI9 87.25/ 69.61 86.73/71.39 89.67/ 70.64

ALl 10 88.98/ 72.68 87.42 1 69.37 89.75/ 72.09
Average 87.37/72.04 86.28 / 68.56 89.53 /[72.36
Standard Deviation 1.05/1.76 0.95/2.04 0.62/1.25

Table4.5: BHC, BHC FS and BHC TS-FS overall experiment classification
accuracies (%) for Botswana AL testing/independent test data.
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The origina BHC utilizes the full set of features (weighted according to
the Fisher projection) and consistently yields higher accuracies than the BHC with
greedy feature selection. The goa of both the origina FS and TS-FS are to
reduce the number of features, both to improve interpretability and increase
robustness of the classifier. In every experiment (using the test data), the class
hierarchy utilizing the TS-FS resulted in higher overall classification accuracies
than the BHC with the greedy feature selection by an average of 3.26% per
experiment, and in 9 out of the 10 experiments it yielded higher overall
classification accuracies than the BHC by an average of 2.16% per experiment
(only experiment ALI1 resulted in a lower overall accuracy). Even more
significantly, standard deviation of the classification accuracies was aso reduced
relative to both the BHC and BHC FS. For the testing data, the standard deviation
of the accuracies for the TS-FS was only ~60% of that of the BHC and ~65% of
that of the BHC-FS. For the independent test data it was ~70% of that obtained
by the BHC and ~60% of that for BHC-FS. Thus, TS-FS method yielded a more
stable set of features. The tree structures had 22 internal nodes consisting of
metaclasses where the feature selection was implemented. On average per class
hierarchy, compared to the results of the greedy feature selection: no feature
selection was performed at 4 of the metaclass nodes because the classification
accuracy at the nodes was 100%; feature selection was performed on 18 of the
metaclass nodes, and of these the classification accuracy at 16.3 of the metaclass
nodes was improved by an average of 1.65% per metaclass with 3.8 of the nodes

improving to 100%; and the classification accuracy at 1.7 of the metaclass nodes
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could not be improved upon using tabu search feature selection. Of a total 198
possible features per hierarchy (9 features per metaclass node), the greedy feature
selection chose an average of 70 per hierarchy while the TS-FS (starting with the
features selected by the greedy algorithm) chose an average of 103.7 features per
hierarchy and maintained an average of 55.7 of the greedy features per hierarchy.
The first feature selected by the greedy algorithm at each metaclass is that feature
which is individualy the most significant contributor to classification accuracy;
these first-chosen features were discarded by the TS feature selector an average of
4.8 times per tree in order to find better feature subsets and to attain better
classification accuracies at the metaclasses. Given that these features are
considered to be the “most mportant” in one sense, this clearly illustrates the
value of eiminating features subsequent to their initial selection. Using the
independent test data, the BHC TS-FS resulted in the highest overall average
accuracy of 72.36%. Figure 4.5 is an example of the classification of the data

subset from Figure 4.3.
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Figure4.5: Example of aclassified subset using the BHC TS-FS classifier
(experiment ALI7: test set accuracy 90.06%, independent test set
accuracy 71.90%).

The average classification accuracies for each class for each algorithm are
displayed in Table 4.6 highlighting the highest average accuracy per class. Each
of the agorithms performs well in classifying selected classes, but the TS-FS is
able to classify a mgority of the classes more consistently for this dataset using
both the test and independent test data. While the standard deviations of the class
classification accuracies are comparable for the BHC and the BHC TS-FS, there
was a reduction relative to the BHC FS. For the test data, the standard deviation
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of the class accuracies for the TS-FS was ~70% of that of the BHC FS, and for the
independent test data, it was ~65% of that for the BHC FS, again indicating that
the TS-FS yielded a more stable set of features than the BHC FS. Class 8, which

is consistently classified with low accuracy by all algorithms, is a mixed class.

Class# Class BHC BHC FS BHC TS-FS
1 north riparian 76.93/ 54.05 72.81/56.49 75.38/ 60.54
2 south riparian 88.12/ 85.08 88.23 / 69.59 89.38/ 72.18
3 short mopane 95.76/ 88.48 91.52/87.63 95.25/ 88.53
4 mopane (dense) 82.59/ 77.88 82.41/ 75.96 87.49/ 75.05
5 acacia mix 87.96/ 92.82 87.24/ 87.39 88.67/90.48
6 woodland mix 96.00/ 87.50 96.10/ 98.08 97.10/ 98.42
7 acaciawoodlands 84.98/ 38.54 84.19/ 51.58 87.15/ 46.32
8 acacia shrublands 66.26/ 40.17 65.23/ 36.39 69.69/ 41.37
9 acacia grasslands 84.95/ 16.84 72.71/ 1851 78.00/ 17.59
10 mopane/pechuel/grassmix | 94.02/ 93.06 90.36/ 92.50 92.79/ 93.06
11 grass/pechuel mix 88.71/ 85.71 90.95/ 94.70 91.41/93.34
12 dry grasses 81.74/ 88.43 76.68/ 77.36 82.13/ 83.72
13 island interior 87.47/76.15 87.48/ 76.80 87.48/ 75.60
14 exposed soil 79.67/ 63.63 94.56/ 79.84 92.86/ 75.97
15 reedsl 93.34/95.03 89.38/ 87.89 93.87/91.64
16 backswamp 84.83/ 70.00 77.66/ 55.00 84.84/ 75.04
17 floodplainl 81.98/ 34.70 87.71/ 27.07 94.43/ 37.38
18 floodplain2 85.20/ 69.92 77.82/ 59.84 92.20/ 77.34
19 floodplain3 80.14/ 59.43 83.00/ 52.20 86.81/ 55.69
20 water 96.93/ 90.51 97.84/ 86.87 96.92/ 88.82
21 aquatic vegetation 82.67/ 82.22 96.94/ 90.15 89.48/ 86.26
2 firescarl 99.28/ 65.13 98.80/ 61.91 98.96/ 54.47
23 firescar2 98.31/99.20 89.35/ 64.63 97.44/ 90.37

Average 86.86 /71.93 86.04 / 69.06 89.12 / 72.57
Standard Deviation 4.2715.27 5.33/8.34 3.86/5.36

Table4.6: BHC, BHC FS and BHC TS-FS average testing/independent test
classification accuracies (%) by class for Botswana ALI data.

For the 10 experiments, the BHC constructed 7 different class hierarchies,
and no hierarchy was duplicated more than twice. A representative class
hierarchy is displayed in Figure 4.6. The partition of the root node is identical for

all of the experiments; subtle differences in the structure become apparent at and
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below the third level of the trees. Closer inspection of the trees reveals that the
acacia shrublands (class 8) was paired with four different classes; this result is not
unexpected, as accuracies listed in Table 4.6 reflect that this class is the most
difficult for each of the algorithms to classify using the test data. Exposed soil
(class 14), which is not closely related phenologically to any other class, was
assigned to two different mgor branches of the class hierarchies in different
experiments. While the BHC class hierarchies differ with respect to the exposed
soil class, the feature selection is able to isolate those features that are useful for
labeling the class and to improve the accuracies for this class. Interestingly, when
class signatures are quite similar (e.g. acacia grasslands (class 9) and the dry
grasses (class 12)), feature selection may tend to exacerbate the problem of
misclassification. This problem is illustrated in Figure 4.7, which contains plots
of the training data for experiment ALI8. For illustration of the overal within
class variation, al class 9 training observations are plotted with the class means
for classes 9 and 12. Classes 9 and 12 are paired on 9 of the 10 hierarchies, with
the acacia grassands most often misclassified as dry grasses for both test and
independent test data due to their similar patterns and variations in the
observations sampled for training and test data. When distinguishing between
classes 9 and 12, the greedy feature selection generally tended to choose the
features 2, 4, 8 and 9 while the TS-FS most often chose features 1, 4, 5, 6 and 9.

This difference is significant for such a small number of total features.
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Figure 4.6: Representative BHC tree structure for the Botswana AL | dataset.
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Figure4.7: Plot of experiment ALI8 training data: class 9 Observations and
mean, class 12 mean.

4.3.2 Feature Selection Resultsfor Hyperion Remotely Sensed Data

The Hyperion experiments were also analyzed with the BHC, with and

without feature selection. As with the ALI data, the TS-FS was then performed
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on the satic tree structure utilizing the features output by the greedy feature
selection agorithm as its starting solution. The overal classification accuracies
for each of the experiments are contained in Table 4.7. Dynamic tabu tenure was
initialized at 5 and allowed to range from 3 to 10. Because this dataset has 145
total candidate features, the correlation check for inclusion of new features was
utilized. The TS stopping criterion was set at 30 iterations and the maximum

number of iterations to continue with no improvements was set at 10.

Experiment BHC BHC FS BHC TS-FS
HY P11 92.71/61.23 | 89.13/66.32 93.51/ 60.87
HY P12 88.76/56.87 | 86.53/63.44 89.75/ 67.52
HYP13 88.08/69.36 | 90.30/69.36 92.77/ 64.08
HY P14 91.91/60.07 | 86.72/62.88 92.59/58.35
HY P15 89.99/58.55 | 85.98/59.47 90.67/ 62.07
HY P16 91.85/60.63 | 87.34/64.04 92.16/ 66.92
HYP17 91.60/59.43 | 86.29/62.15 92.90/ 61.35
HY P18 91.91/60.59 [ 90.80/68.88 92.34/ 63.88
HY P19 89.19/ 6352 | 85.05/68.92 89.13/63.40
HY P20 90.67/62.07 | 8555/ 63.04 91.54/ 62.15

Average 90.67/61.23 | 87.37/64.85 91.74 / 63.06
Standard Deviation | 1.58/3.39 2.01/3.36 1.4412.75

Table4.7: BHC, BHC FS and BHC TS-FS overall experiment classification
accuracies (%) for Botswana Hyperion testing/independent test
data.

In every experiment using the test data, the tree structure utilizing the TS-

FS resulted in higher overal classification accuracies than the BHC with the

greedy feature selection by an average of 4.33% per experiment, and in 9 out of

the 10 experiments it resulted in higher overall classification accuracies than the

BHC by an average of 1.07% per experiment (only experiment HY P19 resulted in

alower overall accuracy). In addition, the standard deviation of the classification

accuracies was reduced relative to the other algorithms: for the test data, the
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standard deviation of the accuracies for the TS-FS was ~90% of that of the BHC
and ~70% of that of the BHC FS, and for the independent test data, the standard
deviation was ~80% of both the BHC and BHC FS. The class hierarchies had 13
metaclasses where feature selection was implemented. On average per hierarchy,
when compared with the results of the greedy feature selection: no feature
selection was performed at 3.6 of the metaclass nodes because the classification
accuracy was 100%; feature selection was performed on 9.4 of the metaclass
nodes and of these the classification accuracy at all of the metaclass nodes was
improved by an average of 2.03% per metaclass (with 2.7 of the nodes improving
to 100% with the test data). With a maximum of 1885 features per tree (145
features per metaclass node), the greedy feature selection chose an average of
40.6 per tree while the TS-FS chose an average of 62.5 features per tree,
maintaining an average of 22.7 of the greedy features per class hierarchy. The
greedy first-chosen features at each metaclass were discarded by the TS-FS an
average of 6.6 metaclasses per tree.

The average classification accuracies for each class for each algorithm are
listed in Table 4.8 highlighting the highest average accuracy per class. The BHC
and the BHC with TS-FS both outperform the BHC with greedy feature selection.
The BHC is able to classify a majority of the classes more consistently than the
BHC with TS-FS for this dataset; however, when the BHC using TS classifies an
individual class with higher average accuracy, it is able to do so with greater
improvements in the accuracies (for example, class 14 BHC accuracy: 76.16%

and BHC TS-FS accuracy: 98.73%). When the BHC results in higher class
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accuracy than the BHC TS-FS, it averages 1.56% improvement, while the BHC
TS-FS averages 5.10% better thean the BHC for individual average class
accuracies. The standard deviations of the class classification accuracies are
somewhat elevated due to the large differences in the capabilities of individual
experiments to classify some individual classes. For example, for the BHC,
experiment HY P13 classifies exposed soil (class 14) with an accuracy of 25.5%
while experiment HY P18 is able to classify it with an accuracy of 89.4%. Using
the same class hierarchy and the same training/testing data, the TS-FS is able to
increase the exposed soil classification accuracies for these experiments to 97.9%
and 100% respectively, while greatly reducing the standard deviation for this
particular class from 20.41 (BHC) to 2.67 (TS-FS). Particularly significant, were
the reductions in standard deviations for the testing data, where the average

standard deviation of the accuracies for TS-FS was ~78% of that of the BHC and

~50% of that of the BHC FS.

Class# Class BHC BHC FS BHC TS-FS
1 water 100.00/ 99.92 99.41/98.81 99.41/ 99.53

2 hippo grass 87.60/ 15.68 96.80/ 51.29 97.60/ 40.12

3 floodplain grassesl 95.12/81.39 88.16 / 51.58 96.08/ 53.93

4 floodplain grasses? 96.92/ 72.00 96.34 / 81.88 96.37 / 66.61

5 reedsl 86.03/ 48.93 72.25/ 43.39 84.71/ 58.69

6 riparian 80.09/ 60.76 67.69 / 56.87 83.43/ 63.56

7 firescar2 98.96/ 82.27 93.55/ 88.58 97.20/ 88.01

8 island interior 95.05/ 84.90 93.75/ 83.06 94.35/ 78.98

9 acaciawoodlands 88.07/ 69.27 87.01/ 69.67 86.56 / 64.50

10 acacia shrublands 90.86/ 86.74 80.98/ 83.32 87.42/ 85.74
11 acaciagrasslands 93.02/ 18.49 90.31/ 30.61 90.45 / 26.68
12 short mopane 87.66 / 66.67 91.34/72.75 92.68/ [76.80
13 mixed mopane 84.40 / 57.86 84.34 1 61.20 90.58/ 49.53
14 exposed soils 76.16/ 77.98 98.30/99.89 98.73/ 99.78
Average 90.00/ 65.92 88.59/ 69.49 92.54 / 68.03

Standard Deviation 4.82/8.48 7.39/9.51 3.7718.54

Table 4.8:

BHC, BHC FS and BHC TS-FS average testing/independent test
classification accuracies (%) by class for Botswana Hyperion

data.
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For the 10 experiments, the BHC constructed 8 different class hierarchies,
and no hierarchy was duplicated more than twice. A representative class
hierarchy is displayed in Figure 4.10. All of the hierarchies do not share the same
partition of the root node. Experiments HYP12 and HYP19 place the acacia
woodlands (class 9) with the left branch while all other experiments place it with
the right branch. Experiment HYP12 and HY P19 yield the two lowest overal
BHC TS-FS classification accuracies while yielding two of the three lowest
accuracies for the BHC. Discrimination of acacia shrublands and woodlands is
greatly improved in the Hyperion data, presumably due to the increased number
of bands Labeling of acacia grassands (class 11) is still problematic for the
independent test set, as is hippo grass (class 2). This may be due to incorrect
labeling of the independent test data, which have not been field validated, changes
in signature, or overtraining. The most difficult class for the Hyperion data to
discriminate in the test data is the riparian (class 6), which also proved a challenge
when classifying the ALI data (north riparian was the second most difficult to
classify). The firescar and water classes were most consistently classified with a
high degree of accuracy for both the Hyperion and ALI data. These results are
not unexpected as the plots of the class means in Figures 4.8 and 4.9 show that the
spectra of the most difficult classes to label are clustered toward the centers of

plots.
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Figure4.10: Representative BHC tree structure for the Botswana Hyperion
dataset.

4.3.3 Feature Selection Resultsfor Hyperion Data using Best Bases

The best bases method for band aggregation described in Section 3.2.2
was applied to the Hyperion data. Since the features are combined differently and
thereby best bases features subsequently are selected differently for each
metaclass on each tree, only genera results are presented here. The overall
classification accuracies for the BHC BB, BHC BB with greedy FS and the BHC
BB with TS-FS are displayed in Table 4.9. A dynamic tabu tenureinitialized at 5
was alowed to vary from 3 to 8. Because the combining of the features is
implemented to reduce redundant correlated features, the correlation check for

inclusion of new features was not utilized. The stopping criterion was set at 30
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iterations and the maximum number

improvements was set at 10.

of iterations to continue with no

Experiment BHC BB BHC BB FS BHC BB TS-FS
HYP11 89.38/ 56.59 88.94/ 63.84 91.60/ 65.76
HYP12 91.54/ 61.43 86.66/ 68.00 90.92/ 66.80
HYP13 91.17/ 58.55 85.36/ 64.84 93.27/ 69.92
HY P14 92.16/ 61.43 87.77/ 61.51 93.02/ 60.75
HYP15 92.28/ 59.99 86.35/ 61.71 93.70/ 64.80
HYP16 91.54/ 60.15 88.14/ 65.48 93.39/ 62.80
HYP17 91.72/ 61.19 89.31/ 66.84 91.41/ 66.88
HY P18 92.46/ 61.83 86.41/ 64.60 93.21/ 65.84
HYP19 90.30/ 66.08 89.19/ 64.80 90.80/ 70.56
HY P20 92.22/ 62.07 85.55/ 61.67 91.97/ 62.60

Average 91.48/60.93 87.37/64.33 92.33 /65.67
Standard Deviation 0.98/2.48 1.49/2.20 1.10/3.12
Table4.9: BHC BB, BHC BB FS and BHC BB TS-FS overall experiment

classification accuracies (%) for Botswara Hyperion
testing/independent test data.
The BHC BB reduced the 1885 origina features per tree to an average of
850.7 BB features per tree (averaging 65.44 BB features per metaclass). The
greedy feature selection chose an average of 40.10 BB features per tree while the
TS-FS chose an average of 91.70 BB features. The TS-FS kept an average of
25.30 BB greedy features while maintaining an average of 7.70 of the first-chosen
BB features per tree. In every experiment using the test data, the tree structure
utilizing the TS-FS with BB resulted in higher overall classification accuracies
than the BHC BB with the greedy feature selection by an average of 4.96% per
experiment. In 7 of the 10 experiments it achieved higher overall classification
accuracies thanthe BHC BB, and it resulted in a higher overall average accuracy.
The independent test data results were similar with the BHC BB TS-FS having

the highest average accuracy per experiment. The standard deviations of the
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experiments, however, are increased for both the test and independent test data
when using BB TS-FS over that of the BHC BB. For the test data, the standard
deviation of the accuracy for the BHC BB is ~90% of that of the BB TS-FS and
~80% of that of the BB TS-FS for the independent test data. The results are
mixed when comparing the standard deviations of the BHC BB FS and the BHC
BB TS-FS.

The average classification accuracies for each class for each BB algorithm
are displayed in Table 4.10 highlighting the highest average accuracy per class for
both the test and independent test data. The BHC BB TS-FS clearly outperforms
the BHC BB with greedy feature selection, and it exhibits the ability to classify a
majority of the classes more consistently for this dataset. While not improving
the classification accuracies for all individual classes when compared to the prior

application without BB, the average overal classification accuracies were

improved.

Class# BHC BB BHCBBFS | BHC BB TS-FS
1 100.00/ 100.00 | 99.40/ 98.49 99,78/ 98.49
2 94,00/ 15.06 95.60/ 52.90 96.00/ 49.44
3 95.36/ 86.65 89.12/ 52.98 94.40/ 54.94
4 96.92/ 74.30 94.77/ 82.12 05.44/ 72.37
5 89.19/ 50.06 75.15/ 47.26 88.97/ 55.83
6 80.16/ 60.05 60.81/ 51.09 82.99/ 66.63
7 98.80/ 80.57 91.77/ 88.01 95.81/ 88.98
8 96.52/ 87.64 96.41/ 79.30 96.21/ 78.60
9 86.18/ 70.53 89.09/ 80.66 84.83/ 64.64
10 90.06/ 87.00 90.72/ 92.11 90.00/ 88.84
11 92.45/ 17.91 89.08/ 23.13 93.70/ 26.87
12 89.09/ 66.08 91.90/ 72.16 92.46/ 75.43
13 88.36/ 49.57 78.27 | 56.91 92.38/ 63.91
14 81.06/ 77.42 98.44/ 98.99 99.16/ 98.99

Average 91.30/65.92 88.61/69.72 93.01/70.28

Standard Deviation 4.37/7.03 6.65/9.67 3.63/7.82

Table4.10: BHC BB, BHC BB FSand BHC BB TS-FS average

testing/independent test classification accuracies (%) by class for
Botswana Hyperion data.
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For the 10 experiments, the BHC BB constructed 7 different tree
structures, and no tree was duplicated more than twice. Comparing the BHC BB
tree structures with the BHC tree structues, again, no tree structures were
identical; there were 15 different resulting tree structures for 10 partitions of a
single dataset when the BHC and BHC BB algorithms were implemented. As
was noticed with the BHC, acacia woodlands (class 9) branches left 6 times and
right 4. When the acacia woodlands were grouped with the first right branch, it
resulted in the 4 lowest overall average accuracies for the BHC BB TS-FS; the
results utilizing TS-FS are very sensitive to the tree structures selected by the
original BHC, indicating the importance of possibly incorporating TS into the

building of the tree.
4.3.4 Feature Selection Resultsfor Letter Recognition Data

Overall classification accuracies for the different BHC agorithms when
implemented on the letter recognition dataset are: BHC, 68.82%; BHC with
greedy feature selection, 62.31%; and BHC with TS-FS, 76.27%. Tabu tenure
was initially set at 3 and allowed to range from 3 to 5. Because this dataset only
has 16 features, the correlation check for inclusion of new features was disabled.
The stopping criterion was set at 30 iterations and the maximum number of
iterations to continue with no improvements was set at 10. With a total of 400
possible features for the entire tree (25 internal nodes each with 16 features), the
greedy feature selection chose 143, and the TS-FS chose 336. TS-FS was
implemented at every node because no metaclass was able to classify with 100%

accuracy with the greedy features, and was able to increase the classification
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accuracy at all but one metaclass with an average accuracy increase of 4.68% per
metaclass for this single tree when compared with the greedy feature selection
tree. The standard deviations for the algorithms are dramaticaly different with
the TS-FS more consistently classifying the individual letters resulting in the
standard deviation being ~75% of the BHC and ~60% of the BHC FS.

The single data partition classification accuracies for each class are
displayed in Table 4.11 highlighting the highest accuracy achieved per class. The
BHC with TS-FS outperforms the BHC and BHC with greedy feature selection as
it is able to classify a mgjority of the classes more consistently and often with
markedly improved accuracies. The BHC resulting tree structure is displayed in
Figure 4.11. BHC with feature selection yields consistently poorer results than
the other two methods.
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Class BHC BHC FS BHC TS-FS
A 85.26 86.54 87.82
B 43.38 26.47 61.03
C 71.83 74.65 80.99
D 80.24 34.13 73.65
E 52.63 53.29 58.55
F 71.90 71.90 78.43
G 39.63 68.29 70.73
H 47.68 33.77 63.58
| 73.94 70.30 83.03
J 77.03 77.70 81.08
K 60.96 18.49 50.00
L 73.25 79.62 77.71
M 85.42 86.81 94.44
N 87.35 74.10 88.55
(@) 43.17 49.64 69.06
P 70.83 76.79 79.76
Q 50.60 71.43 67.86
R 54.66 57.76 56.52
S 58.39 49.69 73.91
T 80.79 65.56 78.81
U 74.40 46.43 81.55
\ 88.97 77.21 86.76
W 85.61 86.33 89.93
X 73.58 67.30 76.10
Y 80.69 55.86 80.69
Z 77.22 60.13 92.41

Average 68.82 62.31 76.27
Standard Deviation 15.26 18.83 11.47

Table4.11: BHC, BHC FS and BHC TS-FS classification accuracies (%) by
letter for letter recognition data.
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Figure4.11: BHC class hierarchy for the single partition of the letter recognition
data

4.4 CONCLUSIONS

The algorithms average execution times are displayed in Table 4.12. The
BHC and BHC FS agorithms are very fast, averaging a fraction of a minute to
execute analysis of the ALI data with its small number of 9 features and dightly
greater execution times for the Hyperion data with its larger set of 145 features.
The TS-FS average execution times for the ALl and Hyperion data are not
substantially increased in comparison. In contrast, the Hyperion BB TS-FS

average execution time is noticeably increased compared to the other execution
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times; this is due to matrix multiplication required for the large BB matrices and
the large feature vectors. Further investigation may reveal more efficient coding

methods to execute the TS-FS using the BB.

Algorithm ALl Hyperion Hyperion BB
BHC 0.07707 0.65949 0.36346
BHCFS 0.12904 1.06725 0.76155
BHC TS-FS 1.23707 6.04634 15.38026
Table 4.12: Average algorithm execution times in minutes for BHC, BHC FS
and BHC TS-FS.

The impact of TS-FS upon the BHC classification accuracies was
demonstrated to be positive. When feature selection was conducted, TS's ability
to find improved feature subsets significantly improved the overal classification
accuracies. TS-FSis aided by searching from a good starting solution, the set of
greedy selected features, which on average, more than half are found in the TS-FS
subset of features. The TS-FS algorithm aso significantly increased the total
number of features used by approximately one-third in most instances, but
approximately doubling the number of features used in the case of the BB. These
improved feature subsets are more beneficia for domain knowledge, overall
classifier interpretability and possible transportability of the classifiers. The TS
implementations are sensitive to the resulting class hierarchy structures; therefore,
if better hierarchical trees can be constructed, the TS implementations will be
enhanced and ultimately more useful for increasing classification accuracies.
Using the TS-FS in the construction of the class hierarchy is one method to

accomplish this goal.
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Chapter 5

Building the Binary Hierarchical Classifier Treewith the Aid of
Tabu Search Featur e Selection

The top-down Binary Hierarchica Classifier (BHC) builds its class
hierarchy iteratively starting with al of the classes in a single metaclass at the root
node. Subsequently, nodes at each level of the tree are partitioned into two child
nodes (subsets) until the leaves of the tree, consisting of a single class, are
reached. The top-down BHC framework uses the Generalized Associative
Modular Learning System (GAMLYS) [43], described in Section 3.1.1 and Figure
3.2. Whereas TS Feature Selection (TS-FS) was implemented initially as a post-
processor after the BHC was built, here it is incorporated into the development of

the BHC hierarchical tree.
5.1 TABU SEARCH FEATURE SELECTION

The TS-FS method in this application is utilized exactly as described in
Section 4.1. Now, it reduces the GAMLS input space and is instrumenta in
building the binary classification hierarchy. The algorithm, TS Build, is initiated
with all classes in the root node at the top of the class hierarchy. The first split is
accomplished using GAMLS (with al of the original features) resulting in two
child nodes. As aresult of this first partitioning, those features with the greatest
Fisher weights are identified, and GAMLS is used to make a second binary split
of the classes at the current node using only the identified highly-weighted

features. This new partition becomes the current partition. Using the set of
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highly-weighted features as its incumbent solution, TS-FS is then performed at
the root node to obtain the best subset of the total set of original features to
discriminate between the two current child nodes. This resulting subset of
features is passed to GAMLS which makes a third, and final, partitioning of the
classes at the current node using only those features selected by TS-FS. Thisfinal
partitioning becomes the binary split for the current node. Subsequent to this final
partitioning, TS-FSis performed one final time using the current set of features as
its incumbent solution, and the resulting feature subset becomes the feature subset
used at the current node for classification This partitioning process is then
repeated at each of the current node’s child nodes that contain more than a single
class, moving down the tree to perform the partitioning at all multiclass nodes
until only leaf nodes remain. The resulting class hierarchy is then used for
classification exactly as with the BHC. The flowchart for this algorithm is

presented in Figure 5.1.
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Figure 5.1: Flowchart for building the BHC tree using GAMLS and TS-FS.

5.2 RESULTSBUILDING THE TREE USING TSFOR AL| DATA

Tabu tenure was set at 3, and the correlation check was not implemented.
The maximum number of iterations was defined as 30 with an early termination
criterion of 10 iterations with no improvement. Overall accuracies are shown in

Table 5.1. Results from Section 4.3.1 are duplicated here for comparison.
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Experiment BHC BHC FS BHC TS-FS TSBuild
ALI1 88.72/72.82 | 86.38/69.18 88.59/72.74 89.15/ 73.54
ALl 2 87.20/71.71 | 85.30/64.92 89.71/ 72.20 89.23/ 71.38
ALI 3 86.29/69.69 | 86.64/68.16 89.88/ 71.20 89.93/ 72.84
ALl 4 86.60/70.96 | 85.99/68.62 90.01/ 71.69 90.49/ 72.84
ALI5 88.33/73.33 | 86.34/67.73 90.06/ 73.36 88.41/ 67.31
ALl 6 87.64/73.63 | 85.82/66.97 89.32 / 72.66 90.36/ 71.14
ALI7 86.86/70.96 | 87.68/67.48 90.06/ [71.90 90.32/ 70.76
ALI 8 85.82/75.03 | 84.48/71.82 88.28/ 75.16 87.76 / 69.65
ALI9 87.25/69.61 | 86.73/71.39 89.67/ 70.64 88.37/ 71.32

ALl 10 88.98/72.68 | 87.42/69.37 89.75/ 72.09 90.40/ 72.57
Average 87.37/72.04 | 86.28/68.56 89.53/72.36 89.44/71.33
Standard Deviation 1.05/1.76 0.95/2.04 0.62/1.25 1.00/1.84

Table5.1: BHC, BHCFS, BHC TS-FS and TS Build overall experiment
classification accuracies (%) for Botswana ALl
testing/independent test data

Ten different binary tree structures were constructed with TS Build; none
were identical to the BHC class hierarchies constructed for the same experiments,
nor were they identical to any drawn by BHC indicating that the TS Build is
having an effect on the tree-building process. The most notable differences were
the TS Build placement of exposed soil (class 14) and floodplainl (class 17).
Experiments ALI3 and ALI6 resulted in different root node partitions than the
BHC, affecting the subset placement of the exposed soil class. When classifying
the test data, the TS Build class hierarchy outperformed the BHC and the BHC
with feature selection in all experiments, and it bested the overall classification
accuracies of the BHC with TS-FSin 6 of the 10 experiments. When classifying
the test data, TS Build resulted in the second highest average overall classification
accuracy behind the BHC with TS-FS, athough by only .09%, and resulted in a
dightly lower average overall classification accuracy thanthe BHC and the BHC
with TS-FS when classifying the independent test set. In the two experiments

where the TS Build class hierarchy was least effective in classifying the
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independent test data (experiments ALI5 and ALI8), the resulting class
hierarchies had more difficulty than those developed in the other experiments
classifying the acacia shrublands (class 8) and the acacia grassands (class 9).
Both experiments exhibited similar trends by repeatedly classifying acacia
shrublands as acacia grasdands and acacia grasslands as dry grasses (class 12).
The similarities of the class signatures for the acacia shrublands, acacia grasslands

and the dry grasses are illustrated in Figures 5.2 and 5.3.

Experiment ALI5 comparison of acacia shrubland independent
test data observations and acacia grassland training data mean
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Figure5.2: Experiment ALI5 comparison of acacia shrubland independent test
data observations and acacia grassland training data mean
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Experiment ALI5 comparison of acacia grassland independent
test data observations and dry grasses training data mean
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Figure 5.3: Experiment ALI5 comparison of acacia grassland independent test
data observations and dry grasses training data mean

Average overall classification accuracies are listed by class in Table 5.2,
where the highest class accuracies are highlighted. Each of the algorithms
exhibits strengths in the classification of individual classes with the TS algorithms
resulting in the two highest average class accuracies for the test data. Although
the maximum number of features can be specified, this implementation of TS-FS
allowed the algorithm to seek the best cardinality of the feature subset; the TS
Build trees averaged 141.8 features per tree compared to 103.7 for the BHC TS-
FS. Figure 5.4 is an example of the classification of the data subset from Figure

4.3.
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Class# BHC BHC FS BHC TS-FS TSBuild
1 76.93/54.05 | 72.81/56.49 | 75.38/60.54 | 76.03/ 6243
2 88.12/85.08 | 88.23/69.59 | 89.38/72.18 | 89.16/ 73.39
3 95.76/88.48 | 91.52/87.63 | 95.25/88.53 | 96.23/ 86.90
4 8259 /7788 | 8241/75.96 | 87.49/75.05 | 83.87/71.82
5 8796/9282 | 87.24/87.39 | 88.67/90.48 | 89.60/ 89.10
6 96.00/87.50 | 96.10/98.08 | 97.10/98.42 | 95.60/ 98.42
7 84.98/3854 | 84.19/51.58 | 87.15/46.32 | 85.94/44.39
8 66.26/40.17 | 65.23/36.39 | 69.69/41.37 | 70.14/34.92
9 84.95/16.84 | 72.71/1851 | 78.00/1759 | 85.42/16.44
10 94.02/93.06 | 90.36/92.50 | 92.79/93.06 | 92.92/92.45
11 88.71/85.71 | 90.95/94.70 | 91.41/93.34 | 93.05/95.17
12 81.74/8843 | 76.68/77.36 | 82.13/83.72 | 83.57/83.29
13 87.47/76.15 | 87.48/176.80 | 87.48/75.60 | 83.87/71.30
14 79.67/63.63 | 94.56/79.84 | 92.86/75.97 | 93.71/ 7250
15 93.34/95.03 | 89.38/87.89 | 93.87/91.64 | 93.34/90.64
16 84.83/70.00 | 77.66/55.00 | 84.84/75.04 | 81.46/ 75.00
17 81.98/34.70 | 87.71/27.07 | 94.43/37.38 | 91.77/37.81
18 85.20/69.92 | 77.82/59.84 | 92.20/77.34 | 96.77/79.19
19 80.14/59.43 | 83.00/52.20 | 86.81/55.69 | 86.16/49.51
20 96.93/90.51 | 97.84/86.87 | 96.92/88.82 | 98.41/88.67
21 82.67/8222 | 96.94/90.15 | 89.48/86.26 | 86.81/85.27
2 99.28/65.13 | 98.80/61.91 | 98.96/54.47 | 98.80/61.98
23 98.31/99.20 | 89.35/64.63 | 97.44/90.37 | 95.63/84.88
Average 86.86/71.93 | 86.04/69.06 | 89.12 /7257 | 89.05/71.54
Standard Deviation | 4.27/5.27 5.33/8.34 3.86/5.36 4.3717.44

Table5.2: BHC, BHC FS, BHC TS-FS and TS Build average

testing/independent test classification accuracies (%) by class for

Botswana AL| data.
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Figure5.4: Example of aclassified subset using the TS Build classifier
(experiment ALI13: test set accuracy 89.93%, independent test set
accuracy 72.84%).

5.3 RESULTSBUILDING THE TREE USING TS FOR HYPERION DATA USING
ORIGINAL FEATURES

Tabu tenure was initialized at 5 within the allowable range of 3 to 10. Due
to the large number of candidate features, the correlation check for feature
inclusion was used. The number of iterations was set at 30, but execution was
halted if 10 iterations were performed without improvement. Results from

Section 4.3.2 are included for comparison (see Table 5.3).
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Experiment BHC BHC with FS | BHC TS-FS TSBuild
HYP11 92.71/ 61.23 89.13/66.32 93.51/60.87 | 92.22/ 68.20
HYP12 88.76 / 56.87 86.53/ 63.44 89.75/67.52 | 92.16/ 65.08
HYP13 88.08 / 69.36 90.30/ 69.36 92.77/64.08 | 91.48/ 68.92
HYP14 91.91/60.07 86.72/ 62.88 92.59/58.35 | 93.02/ 62.68
HYP15 89.99 / 58.55 85.98 / 59.47 90.67/62.07 | 91.79/[73.93
HYP16 91.85/ 60.63 87.34/64.04 92.16/66.92 | 92.40/71.89
HYP17 91.60 / 59.43 86.29/ 62.15 92.90/61.35 | 91.85/63.88
HYP18 91.91/60.59 90.80/ 68.88 92.34/63.88 | 92.84/64.60
HYP19 89.19/ 63.52 85.05/ 68.92 89.13/63.40 | 91.48/69.16
HY P20 90.67 / 62.07 8555/ 63.04 91.54/62.15 | 91.17/60.95

Average 90.67/61.23 | 87.37/64.85 91.74/63.06 | 92.04/66.93
Standard Deviation 1.58/3.39 2.01/3.36 1.4412.75 0.60/4.17

Table5.3: BHC, BHC FS, BHC TS-FS and TS Build overall experiment
classification accuracies (%) for Botswana Hyperion
testing/independent test data.

For this particular dataset, the initial partitioning of the root node proves to
be a very important factor; in 7 of the 10 experiments, TS Build partitioned the
root node differently than the BHC. As was noted in Section 4.3.2, in 8/10
experiments, the BHC grouped riparian (class 6) and acacia woodlands (class 9)
together at the bottom of the hierarchy, but in experiments HY P12 and HY P19,
these classes were in different subsets at the root node partition. In contrast, TS
Build grouped riparian and acacia woodlands together at the bottom of the class
hierarchy in all of the experiments. Using the test data, TS Build outperformed:
the BHC in 9/10 experiments, the BHC with feature selection in all of the
experiments, and the BHC with TS-FSin 6/10 of the experiments; in addition, TS
Build yielded significantly reduced standard deviatiors of the accuracies for the
test set relative to the other algorithms (~40% of that of the BHC, ~30% of that of
the BHC FS and ~40% of that of the BHC TS-FS). When classifying the

independent test data, TS Build resulted in higher accuracies in 5/10 experiments
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and the highest overall average accuracy for all of the agorithms, but resulted in
the highest standard deviation of the accuracies of the algorithms. This appears to
imply that the TS Build may be overtraining, but further investigation is required.
Average class accuracies are listed in Table 5.4 (where the results from Table 4.8
are duplicated for comparison and the greatest are highlighted); the TS Build
resulted in the highest overall average accuracy for both the test and indeperdent
test data. It is noteworthy that significant improvement was achieved in
classification of both hippo grass (class 2) and acacia grassands (class 11) in the
independent test set. There was also substantial improvement in the classification
accuracy of mixed mopane (class 13) usng TS Build. The TS Build tree
structures averaged 145.1 features per tree which compares to 62.5 for TS-FS.
With the present settings, the TS Build does not reduce the input space as

dramatically as the other agorithms, and the class standard deviations are

somewhat comparable.

Class# BHC BHC FS BHC TS-FS TSBuild

1 100.00/99.92 | 99.41/98.81 99.41/99.53 | 99.12/97.70

2 87.60/ 15.68 96.80/ 51.29 97.60/ 40.12 | 94.60/ 52.41

3 95.12/ 81.39 88.16 / 51.58 96.08/ 5393 | 93.60/ 48.67

4 96.92/ 72.00 96.34 / 81.88 96.37/66.61 | 94.03/ 75.88

5 86.03/ 48.93 72.25/ 43.39 84.71/58.69 | 80.98/55.95

6 80.09/ 60.76 67.69 / 56.87 83.43/63.56 | 83.74/66.30

7 98.96 / 82.27 93.55/ 88.58 97.20/88.01 | 98.97/88.01

8 95.05/ 84.90 93.75/ 83.06 94.35/78.98 | 91.38/69.21

9 88.07 / 69.27 87.01/ 69.67 86.56/64.50 | 88.61/89.37

10 90.86/ 86.74 80.98/ 83.32 87.42/85.74 | 90.55/ 36.87

11 93.02/ 18.49 90.31/ 30.61 90.45/26.68 | 93.62/78.11

12 87.66 / 66.67 91.34/72.75 92.68/76.80 | 94.57/56.61

13 84.40/ 57.86 84.34/61.20 90.58/49.53 | 93.72/ 95.96

14 76.16/ 77.98 98.30/99.89 98.73/99.78 | 98.51/82.29

Average 90.00/65.92 | 88.59/69.49 | 92.54/68.03 | 92.57/70.95
Standard Deviation 4.82/8.48 7.39/9.51 3.7718.54 3.40/8.74

Table5.4: BHC, BHC FS, BHC TS-FS and TS Build average

testing/independent test classification accuracies (%) by class for

Botswana Hyperion data.

69




5.4 RESULTSBUILDING THE TREE USING TSAND BEST BASESFOR
HYPERION DATA

In this implementation, new BB features are computed for the current
node, and TS-FS is performed on these new BB features. Otherwise, the
algorithm progresses as previously described. Parameters were defined as: tabu
tenure, 3; maximum tabu tenure, 10; minimum tabu tenure, 3; stopping criterion,
30 iterations; and terminate after 10 iterations with no improvement. In 8 of the
10 experiments, TS Build partitioned the root node differently than the BHC. The
two classes most affected were the acacia woodlands (class 9) and the exposed
soil (class 14). While the classification accuracy of the acacia woodlands is not
significantly impacted by TS Build, the classification accuracy of the exposed soil
class is noticeably impacted with an increased average accuracy of 98.30% over
the 81.06% average accuracy of the BHC (see Table 5.6). Using the test data, the
TS Build classifier resulted in higher accuracies in 9/10 experiments than the
BHC BB, in 10/10 experiments over the BHC BB with feature selection
(indicating that the TS-FSis outperforming the greedy FS when using BB), and in
7/10 experiments over the BHC BB with TS-FS (see Table 5.5, results of Table
4.9 are duplicated for comparison). The average class accuracies are recorded in
Table 5.6 (resultsof Table 4.10 are duplicated for comparison) where the highest
average accuracy per class is highlighted. Consistent with earlier results, the BB
algorithms yielded lower standard deviations of accuracies than when the original
feature set was used. Further, the TS Build BB significantly reduced the standard
deviations for both the test and independent test data relative to the other BB

algorithms. For example, the TS Build BB standard deviation is ~70% of that of
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the BHC for the test data and ~80% of that of the BHC for the independent test
data. Thus, the TS Build BB method yielded the most stable classifier. This
result is duplicated in the class standard deviations in Table 5.6. The TS Build

class hierarchies averaged 147.7 features per hierarchy compared to 91.70 chosen

by BB TS-FS.
Experiment BHC BB BHC BB FS BHC BB TS-FS | TSBuild BB
HYP11 89.38/ 56.59 88.94/ 63.84 91.60/ 65.76 92.90/ 64.64
HY P12 91.54/ 61.43 86.66/ 68.00 90.92/ 66.80 92.22/ 66.28
HYP13 91.17/58.55 85.36/ 64.84 93.27/ 69.92 93.27/ 60.39
HY P14 92.16/61.43 87.77/ 6151 93.02/ 60.75 92.09/ 67.20
HY P15 92.28/ 59.99 86.35/61.71 93.70/ 64.80 94.01/ 64.08
HY P16 91.54/60.15 88.14 / 65.48 93.39/ 62.80 93.33/ 64.12
HY P17 91.72/61.19 89.31/ 66.84 91.41/ 66.88 92.46/ 65.04
HY P18 92.46/61.83 86.41/ 64.60 93.21/ 65.84 93.39/ 63.96
HY P19 90.30/ 66.08 89.19/64.80 90.80/ 70.56 91.85/ 66.60
HY P20 92.22 / 62.07 85.55/61.67 91.97/62.60 92.84/ 66.48
Average 91.48/60.93 | 87.37/64.33 92.33/65.67 92.84/64.88
Standard Deviation 0.98/2.48 1.49/2.20 1.10/3.12 0.68/1.98

Table5.5: BHC BB, BHC BB FS, BHC BB TS-FSand TS Build BB overall
experiment classification accuracies (%) for Botswana Hyperion
testing/independent test data.

Class# BHC BB BHCBBFS | BHCBBTS-FS | TSBuild BB
1 100.00/ 100.00 | 99.40/98.49 99.78 / 98.49 9956/ 52.22
2 94.00/ 15.06 95.60/ 52.90 96.00/ 49.44 96.60/ 62.67
3 95.36 / 86.65 89.12 / 52.98 94.40 / 54.94 95.92/99.21
4 96.92/ 74.30 94.77 | 82.12 95.44 ] 72.37 94.67 / 50.25
5 89.19/ 50.06 75.15/ 47.26 88.97 / 55.83 88.00/ 59.70
6 80.16 / 60.05 60.81 / 51.09 82.99 / 66.63 83.27/ 64.74
7 98.80/ 80.57 91.77/ 88.01 95.81 / 88.98 98.58/ 87.44
8 96.52/ 87.64 96.41/ 79.30 96.21/ 78.60 96.23/ 77.01
9 86.18/ 70.53 89.09/ 80.66 84.83/ 64.64 85.99/ 64.50
10 90.06 / 87.00 90.72/92.11 90.00/ 88.84 93.00/ 88.11
11 92.45/17.91 89.08/23.13 93.70/ 26.87 94.28/ 33.27
12 89.09 / 66.08 91.90/72.16 92.46 / 75.43 93.34/ 73.20
13 88.36 / 49.57 78.27 /1 56.91 92.38/ 63.91 90.67/ 57.30
14 81.06/ 77.42 98.44 / 98.99 99.16/ 98.99 93.30/ 97.30
Average 91.30/65.92 88.61/69.72 93.01/70.28 93.46 / 69.06
Standard Deviation 4.37/7.03 6.65/9.67 3.63/7.82 2.93/7.25

Table5.6:. BHC BB, BHC BB FS, BHC BB TS-FS and TS Build BB average
testing/independent test classification accuracies (%) by class for
Botswana Hyperion data.
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5.5 RESULTSBUILDING THE TREE USING TSFOR LETTER RECOGNITION
DATA

TS Build overall classification accuracy for the letter recognition dataset is
76.49% which is .22% greater than the highest accuracy reported in Section 4.3.4.
Tabu tenure was set at 5 and allowed to range from 3 to 8. The correlation check
for inclusion of new features was disabled as it is not appropriate for this data set,
the stopping criterion was 30 iterations, and the maximum number of iterations to
continue with no improvements was 10. The class hierarchy was constructed
using a total of 33 features. When compared to the BHC class hierarchy, the
root node partition is identical to the BHC, but the overall class hierarchy differs.
For example, TS Build brings the letter U closer to the letters M, N and W and

also B closer to Sand Z (see Figure 5.5).
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Figure5.5: Building the BHC tree using GAMLS and TS-FS for the letter
recognition data.
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The average class accuracies are shown in Table 5.7 where the results
from Section 4.3.4 are included for comparison, and the greatest accuracies
achieved from the various methods are highlighted. The TS algorithms, again,
were able to classify the individual classes with greater consistency (and with

smaller standard deviations) than the BHC or BHC with feature selection.

Class BHC | BHCFS | BHC TS-FS | TSBuild
A 85.26 86.54 87.82 90.38
B 43.38 26.47 61.03 77.94
C 71.83 74.65 80.99 77.46
D 80.24 34.13 73.65 79.64
E 52.63 53.29 58.55 52.63
F 71.90 71.90 78.43 78.43
G 39.63 68.29 70.73 73.17
H 47.68 33.77 63.58 46.36
I 73.94 70.30 83.03 85.45
J 77.03 77.70 81.08 80.41
K 60.96 18.49 50.00 63.01
L 73.25 79.62 77.71 80.89
M 85.42 86.81 94.44 93.75
N 87.35 74.10 88.55 84.94
@) 43.17 49.64 69.06 74.82
P 70.83 76.79 79.76 76.79
Q 50.60 71.43 67.86 69.64
R 54.66 57.76 56.52 59.63
S 58.39 49.69 73.91 68.94
T 80.79 65.56 78.81 77.48
U 74.40 46.43 8155 76.79
\% 88.97 77.21 86.76 85.29
W 85.61 86.33 89.93 89.93
X 73.58 67.30 76.10 72.33
Y 80.69 55.86 80.69 81.38
Z 77.22 60.13 92.41 91.14
Average 68.82 62.31 76.27 76.49
Standard Deviation | 15.26 18.83 11.47 11.44

Table5.7: BHC, BHC FS, BHC TS-FS and TS Build classification accuracies
(%) by letter for letter recognition data.

It is interesting to note that there are some dramatic differences. The use

of feature selection never degrades the performance dramatically relative to the
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original set. However, it can improve results dramatically. Further, the problems
with the greedy algorithm are clear — it has dramatically degraded results for D,
K, U, and Y. Eisdifficult for al of the algorithms to classify, but benefits from
the TS-FS. The letters B, O and Z benefit from TS relative to using al of the
features and the greedy feature selection while classification of the letters B and O
is significantly improved when using the TS Build. Both TS based algorithms

have substantially reduced standard deviations of the classification accuracies.
5.6 CONCLUSIONS

Algorithm average execution times are displayed in Table 5.8 for
comparison. The TS Build algorithm has increased execution times as related to
the other agorithms due to its process. GAMLS is executed three times and
TS-FS is executed twice for each node. Also, more candidate features lead to
increased execution times as evidenced by comparing the ALI and Hyperion
average execution times. As was noted in Section 4.4, the Hyperion BB TS Build
suffers from the same matrix multiplication issues associated with the calculation
of the best basis as the BB TS-FS, and this is reflected in the increased average

algorithm execution time.

Algorithm ALl Hyperion Hyperion BB
BHC 0.07707 0.65949 0.36346
BHC FS 0.12904 1.06725 0.76155
BHC TS-FS 1.23707 6.04634 15.38026
TS Build 2.68853 10.76789 65.55054

Table 5.8: Average algorithm execution times in minutes for BHC, BHC FS,
BHC TS-FSand TS Build.
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The TS feature selection was used within the BHC algorithm to reduce the
feature space in an effort to allow GAMLS to make a better partition at every
multiclass node. In addition, parameter estimates used for performing the
classification may benefit from TS Build. Its impact was generally positive:
classification accuracies of many classes were improved, and the standard
deviations of accuracies were consistently reduced. Once constructed, the class
hierarchy is static and has no opportunity for recourse. The possibility for
recourse arises by allowing the rearrangement of the nodes (classes) within the
class hierarchy structure. In order to investigate this, a new algorithm was
developed. This new method, referred to as the Tabu Search Tree Rearrangement
Algorithm (TSTRA), is discussed in the following chapter.

75



Chapter 6

Binary Hierarchical Classifier Tree Rearrangement Using Tabu
Search

Once the BHC class hierarchy is constructed, the original BHC framework
does not provide any possibility of recourse. No recovery is possible if a bad
decision was made in the partitioning phase of any of the metaclasses. The tree
rearrangement algorithm described in this chapter performs as a post- processor

that uses the BHC tree output as its incumbent solution.
6.1 TABU SEARCH TREE REARRANGEMENT

The tabu search tree arrangement algorithm (TSTRA) uses the same
classifier as the BHC and the same training data that were used to construct the
original BHC class hierarchy. Using the BHC tree as the TSTRA initia solution,
the TSTRA move neighborhood is defined as any neighboring tree resulting from
an adjacent insertion of any leaf node to every other nonadjacent leaf node. For
example, a BHC tree for a problem with five classes is pictured in Figure 6.1(a).
Figures 6.1(b), (c), (d) show the aternate trees when Class 1 is inserted in its
other possible positions. This complete neighborhood would include the results

of al insertions of classes 2, 3, 4, and 5.
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0={1,2.3,4,5} 0,={1,2,3,4,5}

0,~i1} Oyy={4}

a) Origina decision tree b Result of inserting class | near 2

0,={1,2345} 0={1,2345}

011} Og1{3} 0yp={1} =15}

o) Result of inserting class | near 3 d) Result of inserting class | near 5

Figure 6.1: Example of neighboring tree structures.

In this application of TS methodology, the tabu list begins as a column
vector of zeros with arow for each class. Once a class is selected for movement
within the tree structure, the class is marked as tabu and the tabu list records the
iteration number of the classinto the list. The class cannot be noved again within
the tabu tenure number of iterations unless moving the class results in finding a
classification accuracy that is better than any found thus far, overruling the tabu
status. As in the previous implementations of TS, the tabu tenure is adaptive
between a user-defined maximum and minimum. Given an incumbent tree, the

best nontabu move within the move neighborhood is selected (unless a tabu
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status is overruled) for that iteration. The tree with the best accuracy found is
maintained and updated (nodes merged, metaclass statistics and Fisher projections
computed) as appropriate when a tree with an improved accuracy is found.
Iterations continue until a user-specified number of iterations has been completed
or no improving tree structures have been found within a specified number of
iterations. Upon termination, the algorithm returns the best tree structure found
for classification. Although a user-specified option exists that allows the tree-
rearrangements to be level-restricted if prior knowledge of the problem suggests
such a limitation would be beneficial, it was not implemented in this study. In
addition, if implemented, this level restriction can be adaptive by adjusting the
level of the tree considered for change depending on the ability, or inability, of the
TSTRA to find improving solutions. Restrictions which prohibit changes to
major partitions of the classes (for example, at the root node) intensify the search
in the current solution space while movements alowing such effects diversify the

search.

6.2 TSTRA RESULTSFOR ALI DATA

The Botswana ALI data were analyzed with the TSTRA. Because
improving moves were consistently found during the early iterations with no
improvements in the later iterations, the maximum number of iterations was
limited to 20. Tabu tenure was maintained at 3, and execution was halted if 10
iterations were performed and no improving solution was found.

The TSTRA considers the current class hierarchy output by the BHC, and

using the same training data and classifier, rearranges the tree structure to find
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better classification accuracies. In every experiment, the TSTRA was able to find
improved class hierarchy structures and increased classification accuracies using
the training data, and these improved class hierarchies, while not guaranteed to do
so, improved or maintained the classification accuracies for the test and
independent test data, as well. When compared to the BHC, the TSTRA averaged
a 1.60% increase in the classification accuracies per experiment using the test data
and a 2.15% average increase per experiment using the independent test data (see
Table 6.1). In 8 of the 10 experiments, the TSTRA maintained the origina
partition of the root node; in the 2 experiments where the original partition
altered, the aquatic vegetation (class 21), which is usualy grouped with classes
1, 2, 7 and 15, is moved to the other subset and grouped with the backswamp
(class 16).

TS-FS (as described in Section 4.1) was performed as a post processing
operation on the TSTRA resulting class hierarchies while 7 of the 10 experiment
overall accuracies were improved by the TS-FS for the test data (with an average
increase of 2.43% per experiment), only one was improved using the independent
test data. An average d 111.8 features per tree were selected by TS-FS. The
standard deviation of accuraciesisimproved for both the TSTRA and the TSTRA
TS-FSresults, relative to the origina BHC.
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Experiment BHC TSTRA TSTRA TS-FS
ALI1 88.72/72.82 89.23/ 74.49 89.06/ 70.39
ALl 2 87.20/71.71 90.27/ 74.92 89.41/ 72.17
ALI 3 86.29 / 69.69 88.85/ 71.47 90.14/ [72.36
ALl 4 86.60 / 70.96 87.76/ 74.16 91.53/ 69.69
ALI5 88.33/73.33 88.80/ 75.40 90.75/ 71.01
ALI 6 87.64/ 73.63 89.23/ 75.13 89.75/ 69.69
ALI7 86.86 / 70.96 87.81/ 74.65 88.93/ 69.56
ALI 8 85.82 / 75.03 90.10/ 75.03 89.23/ 71.15
ALI 9 87.25/ 69.61 88.54/ 73.09 89.02/ 71.07
ALI 10 88.98 / 72.68 89.06/ 73.60 90.14/ 71.34

Average 87.37/72.04 | 88.97/74.19 89.80/70.84
Standard Deviation 1.05/1.76 0.83/1.20 0.85/1.00

Table6.1: BHC, TSTRA and TSTRA TS-FS overall experiment classification
accuracies (%) for Botswana AL testing/independent test data.

A magjority of the individual ALI classes benefited from the TSTRA (see
Table 6.2); 17 of the 23 classes increased in accuracies averaging a 1.80%
increase in the individual class accuracies for the test data and a 2.24% increase
for the independent test data. The south riparian (class 2) class accuracy was
markedly decreased by the TSTRA. On 8 of the 10 resulting TSTRA trees, south
riparian is grouped with acacia woodlands (class 7) whereas on the BHC trees, it
is only found grouped with acacia woodlands on a single tree. The goa of the
TSTRA is to find trees with increased overall classification accuracies; in its
current implementation, it is not constrained from decreasing some class
accuraciesin its quest to do so, asis the case with the south riparian (class 2). At
the same time, it is able to substantially improve the classification accuracies of
some classes, for example, the island interior (class 13). Figure 6.2 is an example

of the classification of the data subset from Figure 4.3.

80



Class# Class BHC TSTRA TSTRA TS-FS
1 north riparian 76.93 / 54.05 76.92/ 67.84 75.38/ 62.57
2 south riparian 88.12/85.08 87.09/72.95 91.98/74.01
3 short mopane 95.76 / 88.48 97.84/ 88.76 98.16 / 87.40
4 mopane (dense) 82.59/77.88 84.69/81.01 85.88/77.88
5 acaciamix 87.96/ 92.82 89.38/93.83 88.36/ 90.80
6 woodland mix 96.00/ 87.50 96.40/97.34 97.60/97.92
7 acacia woodlands 84.98 / 38.54 83.49/48.71 87.15/ 46.20
8 acacia shrublands 66.26 / 40.17 72.98/42.46 68.94 / 38.69
9 acacia grasslands 84.95/16.84 84.47/18.05 76.83/16.72
10 mopane/pechuel/grass mix 94.02 / 93.06 93.89/95.72 93.54/92.96
11 grass/pechuel mix 88.71/85.71 88.82/94.08 91.65/89.73
12 dry grasses 81.74/ 88.43 81.81/87.29 78.72 | 78.86
13 island interior 87.47/76.15 95.08 / 84.35 91.22/79.35
14 exposed soil 79.67 / 63.63 81.88/67.58 92.18/71.94
15 reedsl 93.34/95.03 95.31/95.97 93.15/90.64
16 backswamp 84.83/70.00 85.27/ 72.57 84.12/77.92
17 floodplainl 81.98/34.70 88.99/39.76 93.86/22.32
18 floodplain2 85.20/69.92 88.65/74.92 94.06 / 75.00
19 floodplain3 80.14 / 59.43 81.28/57.07 88.31/46.26
20 water 96.93/90.51 98.26/92.31 98.59/90.36
21 aguatic vegetation 82.67/82.22 86.12/ 68.47 90.55/82.37
22 firescarl 99.28/65.13 99.76 / 67.76 98.64 / 51.65
23 firescar2 98.31/99.20 98.08/97.16 95.90/ 86.30

Average 86.86/71.93 88.54/74.17 89.34/70.78
Standard Deviation 4.27/5.27 3.58/5.06 4.17/6.22
Table 6.2. BHC, TSTRA and TSTRA TS-FS average testing/independent test

classification accuracies (%) by class for Botswana ALI data.
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Figure 6.2: Example of aclassified subset using the TSTRA classifier
(experiment ALI7: test set accuracy 87.81%, independent test set
accuracy 74.65%).

6.3 TSTRA RESULTSFOR HYPERION DATA

Due to the implementation of BB at each individual metaclass, whenever a
single class is moved during the TSTRA, a new BB must be found at each
metaclass that is affected by the move of the class. Because of the time involved
for doing so, the TSTRA was not implemented for the Hyperion data using BB.

The parameter settings for the analysis of the Hyperion data were: tabu
tenure 3, number of iterations 20 and halt execution after 10 iterations with no

improvement. For the test data, the TSTRA improved the overall accuracies of
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the BHC in 8 of the 10 experiments, maintained the same class hierarchy in
experiment HYP11 (it was unable to find a better hierarchical tree when
classifying the training data), and decreased the overall accuracy in experiment
HYP14. The TSTRA aso decreased the standard deviation of the classification
accuraciesrelative to the BHC: for the testing data, the TSTRA standard deviation
was ~35% of that of the BHC, and for the independent test data, the TSTRA
standard deviation was ~45% of that of the BHC. In terms of classification
accuracies, addition of the TS-FS to the resulting TSTRA structures was
advantageous for this data set, especially when applied to the independent test
data (see Table 6.3), resulting in the highest average overall accuracy of 64.30%
and an average increase of 3.06% per experiment relative to the BHC. The
standard deviation of the accuracies for TSTRA TS-FS was smaller than that of
the BHC, but increased relative to the TSTRA. When executed, the TS-FS chose

an average of 65.6 features per tree.

Experiment BHC TSTRA TSTRA TS-FS
HYP11 92.71/61.23 | 92.71/61.23 93.51/ 60.87
HYP12 88.76 /56.87 | 92.53/ 62.07 92.96/ 66.00
HYP13 88.08/69.36 | 91.54/62.11 91.35/ 63.64
HYP14 91.91/60.07 | 91.66/63.64 91.97/ 61.83
HYP15 89.99/5855 | 92.16/ 62.96 91.85/ 63.56
HYP16 91.85/60.63 | 92.90/61.19 90.67 / 68.64
HYP17 91.60/59.43 | 91.85/58.31 91.85/ 5851
HY P18 91.91/6059 | 93.14/ 62.76 92.77 / 61.87
HYP19 89.19/6352 | 91.91/62.88 93.21/ [71.73
HYP20 90.67/62.07 | 92.09/ 63.52 91.91/ 66.32

Average 90.67/61.23 | 92.25/62.07 92.21/64.30
Standard Deviation 1.58/3.39 0.54/1.57 0.89/3.93

Table6.3: BHC, TSTRA and TSTRA TS-FS overall experiment classification
accuracies (%) for Botswana Hyperion testing/independent test data.
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As mentioned in Section 4.3.2 and Section 5.3, in experiments HY P12 and
HY P19, classes 6 and 9 were not grouped together and resulted in some of the
lowest overall classification accuracies per experiment. The TSTRA results for
these two experiments improved the classification accuracies for the test data,
partly (as this was not the only change) by changing the partition at the root node
and grouping classes 6 and 9 together at the bottom of the tree (only experiment
HYP12 was improved for the independent test data). Although these changes
aided the overall classification, they did not result in significant increases in
individual accuracies for the classes (see Table 6.4). In addition to classes 6 and
9, class 14 (exposed soil) also changed subsets at the partition of the root node in
experiments HY P13 and HY P17; as was noted in Section 4.3.2, feature selection,

again, significantly increased the class 14 accuracy (see Table 6.4).

Class# Class BHC TSTRA TSTRA TS-FS

1 water 100.00/99.92 | 99.78/99.60 99.41/99.13
2 hippo grass 87.60/ 15.68 97.40/ 28.15 97.40/ 37.66
3 floodplain grassesl 95.12/81.39 96.00/ 87.28 95.44 / 59.94
4 floodplain grasses2 96.92/ 72.00 96.73 / 63.45 95.25/61.94
5 reedsl 86.03/48.93 88.35/ 52.38 86.35/59.17
6 riparian 80.09 / 60.76 82.60 / 60.29 84.85/ 63.18
7 firescar2 98.96/ 82.27 98.42 / 79.04 96.26 / 84.43
8 island interior 95.05/ 84.90 97.81/ 84.59 95.34/ 75.61
9 acaciawoodlands 88.07 / 69.27 89.29/ 69.41 83.44 / 58.68
10 acacia shrublands 90.86 / 86.74 92.55/ 89.21 91.45/91.00
11 acacia grasslands 93.02/ 18.49 94.53/ 16.34 92.82/38.41
12 short mopane 87.66 / 66.67 87.11/ 65.95 92.67/ [77.06
13 mixed mopane 84.40 / 57.86 85.00 / 62.06 92.17/50.73
14 exposed soils 76.16/ 77.98 86.61/ 79.44 98.72/98.43

Average 90.00/ 65.92 92.30/66.94 92.97/68.24

Standard Deviation 4.82/8.48 3.41/6.60 3.28/8.67
Table6.4: BHC, TSTRA and TSTRA TS-FS average testing/independent test

classification accuracies (%) by class for Botswana Hyperion data.
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6.4 TSTRA RESULTSFOR LETTER RECOGNITION DATA

The TSTRA was implemented on the BHC output for the letter
recognition data with a dynamic tabu tenure of 3 to 5 (originaly set at 3), a
stopping criterion of 30 (or 10 iterations without any improvements). The
TSTRA maintained the origina root node partition, but resulted in an overall
classification accuracy of 71.91% which was an improvement over the BHC
accuracy of 68.82%. Twelve letter moves were made; the most noticeable of
these involved bringing the letters B and E, the letters D and O, and the letters Q
and X closer together (see Figure 6.3) increasing the individual class accuracies
for 5 of these 6 letters (see Table 6.5). Executing TS-FS on the rearranged
hierarchy (using the same parameter settings as outlined in Section 4.3.4) resulted
in an accuracy of 76.01% (compared to 76.27% which was achieved by executing

TS-FS on the BHC).
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Class BHC TSTRA TSTRA TS-FS
A 85.26 85.90 87.18
B 43.38 66.18 73.53
C 71.83 73.24 79.58
D 80.24 83.83 73.65
E 52.63 79.61 84.87
F 71.90 77.12 78.43
G 39.63 53.66 69.51
H 47.68 51.66 51.66
| 73.94 80.00 83.03
J 77.03 75.00 80.41
K 60.96 53.42 39.73
L 73.25 75.16 80.25
M 85.42 87.50 93.75
N 87.35 79.52 85.54
(@) 43.17 59.71 68.35
P 70.83 67.86 79.17
Q 50.60 52.98 67.86
R 54.66 68.94 65.84
S 58.39 47.83 60.25
T 80.79 80.13 80.79
U 74.40 76.19 77.98
\Y 88.97 89.71 86.03
W 85.61 88.49 96.40
X 73.58 69.18 71.70
Y 80.69 76.55 77.93
Z 77.22 70.25 82.91

Average 68.82 71.91 76.01
Standard Deviation 15.26 12.25 12.29

Table 6.5: BHC, TSTRA and TSTRA TS-FS classification accuracies (%) by
letter for the letter recognition dataset.
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Figure6.3: TSTRA class hierarchy for the letter recognition data.

6.5 CONCLUSIONS

Average execution times for the BHC and TSTRA are displayed in Table
6.6. The average TSTRA execution times are somewhat elevated; in order to
interface with existing MATLAB code, an additional step was required to
restructure the tree after every node movement. This additional step renumbered
the tree nodes into the sequence that the code expects, but may be unnecessary if

thisinefficiency could be corrected through alternate coding.

Algorithm ALl Hyperion Hyperion BB
BHC 0.07707 0.65949 0.36346
TSTRA 9.23284 22.84715

Table 6.6: Average agorithm execution times in minutes for BHC and TSTRA.

The TSTRA was successful in finding better class hierarchies for the
training data as compared to the BHC when the objective was to increase overall

classification accuracy. These TSTRA hierarchies trandated into increased
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classification accuracies for the test data and independent test data in a majority of
the experiments. In addition, the TSTRA consistently reduced the standard
deviations for all of the datasets over that of the BHC. Upon executing the TS-FS
on the resulting TSTRA trees, the overal average classification accuracy was
increased from 88.97% to 89.80% for the ALI data and decreased from 92.25% to
92.21% for the Hyperion data.

The move neighborhood selected for and currently implemented in the
TSTRA is extremely limited. Further research into the structure of the move
neighborhoods, the classifiers used and the overall objective of the improvements

when comparing the hierarchies may enhance the future use of the TSTRA.
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Chapter 7

Conclusions

Classification methods and techniques are becoming increasingly utilized
as new emerging technologies acquire masses of data and the demand for their
use in new applications increases. High levels of accuracy are desirable (and
often required) to accommodate the varied fields that utilize these methodologies
in today's fast-paced data-driven society. Results obtained from traditional
classification algorithms can often be improved by integrating new techniques

within their structures.
7.1 SUMMARY OF CONTRIBUTIONS

This research focused on the incorporation of the metaheuristic Tabu
Search for feature selection within the multiclassifier system of the BHC. In

addition, atree rearrangement algorithm using Tabu Search was devel oped.

7.1.1 Tabu Search Feature Selection

Input space reduction is often a necessity when classification algorithms
are faced with an input space of high dimensionality. Feature selection reduces
the input space by eliminating those features that are useless or redundant (but
fully exploits the information that the full set of features provides) and allows for
improved parameter estimation for classification. In addition, feature selection
preserves domain knowledge and interpretability of the input space, particularly
relative to feature extraction methods that project the data into new spaces.
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Feature selection was explored for use within the framework of the BHC
supervised classification agorithm in a variety of ways. The Tabu Search
metaheuristic was first utilized to solve the combinatorial optimization problem of
feature selection as a post-processor of the class hierarchy, in place of the greedy
feature selection that is currently being employed. The ability of TS to efficiently
search the solution space and to enhance the performance of the classifiers was
demonstrated by the reduction of the input space, the increased classification
accuracies and the decreased standard deviations of the accuracies that were
attained.

An enhancement to the BHC algorithm, which uses TS-FS in the
construction of the class hierarchy, TS Build, was also developed. This algorithm
demonstrated that applying feature selection in the construction of the class
hierarchy is significantly useful compared to only applying feature selection as a
post-processing step for classification This incorporation of TS-FS in the

building of the class hierarchieswas another novel contribution of the study.
7.1.2 Classification Tree Rearrangement

The implementation of the TSTRA demonstrated the potential for recourse
after a class hierarchy is built. This algorithm alows for recovery should a less-
than-optimal partition be made at a multiclass node in the hierarchy-building
process. Ultilizing the same classifier and partition of training and test data, the
TSTRA constructed aternate class hierarchies whose accuracies were increased
when classifying the training data.  While not guaranteed to also increase the

overdl classification accuracies of the test data, it achieved increased accuracies
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when classifying the test datain al but one instance (where the accuracy was not

significantly degraded).

7.2 FUTURE WORK

While research in the field of classification has been ongoing for over
forty years, it remains a difficult and intensely studied area. Data with a large
number of inputs and outputs are now being acquired in multiple application areas
that will require specialized techniques for classification and information
extraction in order to utilize the data to their fullest potential. This current work

can be extended in a variety of ways to meet this growing need.
7.21 TheClassfier and Feature Selection

The classifier used within the BHC agorithm was not altered in this
research. The same classifier was utilized here for comparison purposes to assess
the effects of the TS-FS on the classification accuracies. An alternative classifier
may be more appropriate for use with TS-FS; this approach needs to be
investigated with other methodologies. Preliminary results of using TS-FS with
the Bayesian Pairwise Classifier [48] are promising. In addition, the investigation
of more advantageous measures of goodness for incluson and exclusion of
features could facilitate the feature selection in the identification of more

meaningful feature subsets.
7.2.2 Best Bases

When aggregating the bands using BB, a correlation threshold of .90 was

implemented in this study without consideration for the amount of training data
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that is present to estimate the class parameters. An dternative threshold presented
in[49], takes into account the possibility of limited training data, and dictates that
the (number of training data observations)/(number of features) should be greater
than 5, thus aggregating the bands until this threshold is reached. The addition of
this check and threshold should be considered for use in the algorithms described,
especially for datasets possessing a great number of features like the Hyperion
data.

7.2.3 Tabu Search

The Tabu Search (TS) metaheuristic is ever evolving; continued research
has brought about a multitude of new, innovative techniques in its implementation
and new problems for its application. The move neighborhoods implemented for
the feature selection in this study were limited to swaps and inserts, while the tree
rearrangement was extremely limited in that it only paired classes at the leaf node
level. These TS agorithms may benefit from the addition or total replacement of
the move neighborhoods used. In addition, further research could provide
alternative parameters, attributes, adaptive methods, starting solutions, and
techniques that would aid classification algorithms, especialy those with large
numbers of inputs and outputs, such as hyperspectral data. The sensitivity of the
TS starting solution in the TS Build using the Hyperion data was briefly studied
by randomly choosing a subset of features for the second metaclass partition as
opposed to using those features with the highest Fisher weights (see Figure 5.1).
The resulting classification accuracies were comparable, indicating a lack of

sengitivity to the incumbent solution and warranting further research in this area.
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Additionally, further study into the sensitivity of the current TS parameters may
yield a more extensive search of the solution space.

Other techniques coupled with TS, such as nmaintaining ensembles of the
best feature subsets for each metaclass identified by TS may prove to be helpful.
Subjective evaluation of the feature subsets by subject matter experts may provide
better classifiers as opposed to focusing on the classification accuracy of the test
data as the primary measure of goodness. Another technique often applied to TS
is the use of a candidate move list as opposed to searching the entire move
neighborhood, which can be huge when the number of candidate features (i.e.
hyperspectral data) is large.

In the present implementation of TS-FS, a node is “skipped” and TS-FSiis
not performed when the classes at the current node are classified with an accuracy
of 100%. While this approach saves computation time, it may miss an
opportunity to refine a subset of features. TS-FS could still be implemented to
search for subsets of decreased cardinality while maintaining (or possibly dightly

reducing) the classification accuracy at the current node.
7.24 TreeRearrangement

The TSTRA can potentially enhance any binary tree structure, and with
modifications, could be applied to other types of decision trees. Research into
different measures of goodness, classifiers and tree structures may, as a
composite, yield better hierarchies for classification. Feature selection could also

be incorporated into the TSTRA.
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725 A Groveof Trees

This research showed that many different class hierarchies are constructed
from the very same data: the only difference being the way that the data were
partitioned into training and testing sets. Each hierarchy has its strengths, but at
the same time, each has its weaknesses. Further research could identify away to
group these differing hierarchy structures to exploit their strengths collectively

while limiting the negative effects of their individual weaknesses.
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APPENDIX A

Selected AL Data Class Hierarchiesand Confusion Matrices

A.1 EXPERIMENT ALI2
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Figure A.1: Experiment ALI2 BHC class hierarchy.
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Figure A.2: Experiment ALI3 BHC class hierarchy.
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Table A.6: Experiment ALI3 BHC TS-FS confusion matrix.
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Figure A.3: Experiment ALI3 TS Build class hierarchy.
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A.3 EXPERIMENT ALI4
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Figure A.4: Experiment ALI14 BHC class hierarchy.
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Figure A.9: Experiment ALI8 BHC class hierarchy.
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Figure A.10: Experiment ALI8 TS Build class hierarchy.
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Table A.18: Experiment ALI8 TS Build confusion matrix.
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Figure A.12: Experiment ALI9 BHC class hierarchy.
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Average Accuracy: $9.67%

Table A.22: Experiment ALI9 BHC TS-FS confusion matrix.
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Appendix B

Selected Hyperion Data Class Hierar chies and Confusion
Matrices

B.1 EXPERIMENT HY P12

1 7 2 4 5 6 3 8 11 9 13 10 12 14
Figure B.1: Experiment HY P12 BHC class hierarchy.

Class 1 2 3 4 5 & T & $ 10 11 12 13 14
1 135 1] 0 0 1] 0 1] 0 1] 0 1] 0 1] 0 100.0
2 0 a0 0 0 1 0 1] 0 1] 0 1] 0 1] 0 93.0
3 0 o122 0 1] 0 1 1 1] 0 1] 0 1] 0 934
4 0 ] 1 107 2 0 ] 0 2 0 ] 0 ] 0 933
5 ] 1] ] o121 19 1] 1 3 ] 1] ] 1] 0 g4.0
& 0 0 0 o 10 40 0 0 26 0 0 0 1 o 709
T 0 0 0 0 0 0 127 0 0 0 0 0 0 1 99.2
& 0 1] 1 0 1] 0 o 85 1] 0 1] 0 1] 2 989
9 0 1] 0 0 n 12 1 o 1y 5 1] 1 1] 9§01
10 0 1] 1 0 1] 1 1] 1 g 107 v 1 12 o var
11 0 1] 0 0 1] 0 1] 3 1] G 143 0 1 20923
12 0 ] 0 0 ] 0 ] 0 ] 0 1 74 G 3 988
13 ] 1] ] ] o1z 1] ] 3 & 1] 9 114 o 7ay
14 0 0 0 0 0 0 0 0 0 0 1 0 0 30 4965

1000 100.0 976 1000 903 67.2 934 941 745 863 941 878 831 B35

Average Accuracy: 88.76%
Table B.1: Experiment HY P12 BHC confusion matrix.
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Class. 1 2 | 3 4 5 & 7 & % 1w 11 1z 13 14
1 1335 0o 0o 0o o 0 0 0 0 0o 0 0 0 01000
2 O 4 0 0 1 0 0 0 0 0O 0 0 0 0 %0
3 o o122 1 o o 0o o o & 0o 0 0 0 945
4 o o 1 104 4 0o 1 o o o 0o 0o 0o 0 945
5 o 1 1 1/1200 18 4 o0 o o o 0o 0o 0 828
6 ol o o o 3 s4 0o o ¢ o o 4 o o 771
7 o o o o 1 012 0 0 0 0 0 0 0 @82
2 o o 1 1 o0 0 0 9 0 2 1 0 0 1 241
) o o0 0 0 5 & 0 0144 5 0 0 0 0 &7
10 o o o 0 o0 o0 1 o o 7 7 0 0 0 299
11 ol o o o o o o 1 o 37141 0o 0o 0 788
12 o o o o o o o 4 o o o 78 11| 0 89
13 o o o o o o o o 4 3 0o 8 119 0 888
14 ol o o o o o o 1 o o 3 0o 4 45 852

1000 930 976 972 894 403 953 241 917 573 925 267 888 979

Average Accuracy: £6.53%

Table B.2: Experiment HY P12 BHC FS confusion matrix.

Class 1 2 |3 4 5 6 7 8 9 10 11 12 13 14
1 13 0 0 0 0o 0 0 0 0 0 0 0 0 01000
2 o 46 o 0o 1 0o o o o o o o 0 0 880
3 o o123 s 0 o o o o 2 o 0o 0 0 946
4 o0 o o100 2 o 2 o o o o o 0o o0 %62
5 o 1 o 1123 13 5 0o 1 0o 0o 1 0 0 &4
6 o o o0 0 3 %4 0 0 M 0 0 2 0 0 783
7 o o 0 0 0 011 0 0 0 0O 0 0 041000
3 o o 1 1 1 0 0 9 0 2 1 0 0 2 925
9 ol o o o 1 : 0o o113 2 0o 0 0 0 845
10 ol o 1 0o 1 o 1 o o @93 10 0o 0o o0 877
1 ol o o o 1 o o 1 o0 23140 0 0 2 838
12 ol o o o 1 o o 1 0o o o s 8 o0 890
13 o o o o o o0 o o 4 2 1 & 122 0 a04
14 o o o0 0 0 0 0 1 0 0 0 0 4 43 896

1000 980 954 935 918 701 938 970 834 750 921 900 910 915

Average Accuracy: 89.75%
Table B.3: Experiment HY P12 BHC TS-FS confusion matrix.
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1 2 4 5 7 6 9 3 10 8 11 14 12 13
Figure B.2: Experiment HY P12 TS Build class hierarchy.

Class 1 2 3 4 5 [ T &

L]
-
=
-
=
-

Mt
-
ot
-
L=

1 135 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 0 100.0
2 1] a0 0 1] 4 1] 0 1] 0 1] 0 1] 0 0 926
3 1] 0 123 1 0 1 0 1] 0 3 0 1] 0 0 946
4 ] ] 0 103 2 ] 0 ] 0 ] 0 ] 0 0 831
5 1] 1] ] 2 M7 2 ] 1] 1 1] ] 1] ] 0 830
& 0 0 0 0 9 100 1 o 17 0 0 0 0 o 787
T 0 0 1 1 0 1 128 0 0 0 0 0 0 o a7y
& 1] 1] 0 1] 0 1] 0 93 o 10 0 1] 1 o 899
9 1] 1] 0 1] 0 4 0 0 136 1] 0 1] 0 o 871
10 1] 1] 1 1] 0 1 0 1] 110 g 1] 2 0 &83.6
11 1] 1] 0 1] 1 1] 0 2 0 7144 1] 0 0 935
12 ] ] 0 ] 1 1 0 ] 0 ] 0 &3 2 1 946
13 1] 1] ] 1] ] ] ] 1 2 1 ] 2 128 5 5549
14 0 0 0 0 0 0 0 0 0 0 0 0 1 41 4976
100.0 100.0 934 96.3 57.3 746 992 97.0 866 51.5 947 975 935 &57.2

Average Accuracy: 92.16%
Table B.4: Experiment HY P12 TS Build confusion matrix.
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1 7 2 4 5 6 9 3 8 10 11 13 12 14
Figure B.3: Experiment HY P12 TSTRA class hierarchy.

Class 1 2 3 4 5 & T &

L]
-
-
-
=
-

st
-
ot
-
=

1 135 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0
2 1] a0 0 0 1 0 0 0 0 0 0 0 0 0 83.0
3 1] 0 120 0 0 0 1 0 0 0 0 0 0 o 93z
4 ] 0 1 106 3 0 0 0 0 0 0 0 0 0 964
5 1] 0 1 1128 11 1 0 2 0 0 0 0 o 559
& 0 0 0 0 2109 0 0 9 0 0 0 2 o 593
T 0 0 0 0 0 o127 0 0 0 0 0 0 6 935
& 1] 0 1 0 0 0 o 99 0 0 0 0 0 3 981
9 1] 0 1 0 0 g 0 0 133 1 0 0 0 o 932
10 1] 0 1 0 0 0 0 1 1114 1 0 1 0 933
11 1] 0 0 0 0 0 0 1 0 9 149 0 1 o 831
12 ] 0 0 0 0 2 0 0 0 0 0 &3 2 4 861
13 1] 0 0 0 0 4 0 0 7 0 222 125 4 TE2
14 0 0 0 0 0 0 0 0 0 0 0 0 0 30 1000
1000 100.0 960 991 955 51.3 934 930 579 919 930 756 933 638

Average Accuracy: 92.53%
Table B.5: Experiment HY P12 TSTRA confusion matrix.
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B.2 EXPERIMENT HY P13

(1) (W) (1) (96) (20)

1 7 2 5 4 6 9 3 10 11 13 8 12 14
Figure B.4: Experiment HY P13 BHC class hierarchy.

Class 1 2 3 4 5 L T & 10 11 12 13 | 14
1 135 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 0 100.0
2 0 42 0 ] 9 1 0 ] 0 ] 0 ] 0 0 803
3 ] o114 1 ] 1] ] 3 ] 1] ] 1] ] 0 966
4 0 1] g 103 4 1] 0 1] 0 1] 0 1] 0 0 596
& 0 g 0 3 114 7 0 1] 1 1] 0 2 0 1 5838
[ 0 1] 0 1] 710 0 1] 3 1] 0 2 1 0 83.0
T 0 1] 0 1] 0 0 128 1] 0 1] 0 1] o110 921
& 0 1] 2 1] 0 1 o ar 0 1 2 1 2 1 807
9 0 1] 1 1] 0 i 1 0 144 1] 0 2 3 0 906
10 0 ] 0 ] 0 1 0 ] 2 M3 7 1 9 10 7r4
11 ] 1] ] 1] ] 1] ] 1 ] 9 140 1] 2 o8z
12 0 1] 0 1] 0 1] 0 1] 0 1] 2 EBS = 4 523
13 0 1] 0 1] 0 G 0 1] 2 1 1 17 109 g 7ay
14 0 1] 0 1] 0 1] 0 1] 0 1] 0 1] o 121000

1000 340|912 9635|851 §21 /992 960 M7 91921 722|815 255

Average Accuracy: §8.08%
Table B.6: Experiment HY P13 BHC confusion matrix.
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11 12 | 13 14

10

Clazs

0 100.0
0 %43
o %a1
0 gg.2
o 821
0 514
o 92
o 7.8
o mz2
0 0.4
0 %04

1

1]
1]
1]
]
1]
1]
1]
1
1
1]
1]

1

155

50

1

0 113

1]

0 1la g

1]

1]

1]

o127

1]

8

0 122

1

21

10
11

0
18

% 151

1]

1.8

12
13
14

o 72
45 S58

12 12%

1]

1000 1000 204 981 866 716 284 201 707 831 293 887 283 979

Average Accuracy: 90.30%

3 1]

14

2

Table B.7: Experiment HY P13 BHC FS confusion matrix.

14

13

11

10

1

Class

0/ 100.0
0 393.0
0 933
0 954
0 9049
0 5§30
0 99.2
0 96.0
0 922
0 9335
0 93.0

0
0

1

135

a0

2

0122

]

1]

0
0
0
0
2
1
1

2

2 104

0
0

L

0 120

]

0 o 13
0

100 112
0

0 125

0 141 4

1]

10
11

1]

1]

7147

1]

g9.3
0 831
46 9349

14 123
0

1000 1000 976 972 5896 536 969 5941 898 563 967 533 95 5749

Average Accuracy: 92.77%

1]

&)

13
14

1

Table B.8: Experiment HY P13 BHC TS-FS confusion matrix.
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() (20)

(18) (16) () (1) A)

3 12 13 10 8 11 1 7 4 9 5 6 2 14
Figure B.5: Experiment HY P13 TSTRA class hierarchy.

Class 1 2 3 4 3 G T &

e
-
-
-
-
-

"t
-
L)
-
L=

1 135 0 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 100.0
2 0 44 ] 0 ] 0 ] 0 ] 0 ] 0 ] 01000
3 1] o122 1 1] 1 1] 1 1] ] 1 ] 1] 0 965
4 0 0 2 104 2 0 0 0 0 0 0 0 0 0 963
& 0 1 0 2 18 13 1 1 0 0 0 0 0 2 855
[ 1] 0 1] o 13 104 1] o 10 0 1] 0 4 o 734
T 1] 0 1] 0 1] 0127 0 1] 0 1] 0 1] 0 100.0
& 1] 0 1 0 1] 0 o 85 1] 1 4 0 1] 0 941
9 1] 0 1] 0 1 g 1 0139 0 1] 0 1 o 927
10 ] 0 ] 0 ] 0 ] 1 2 114 3 0 ] 0 934
11 1] ] 1] ] 1] ] 1] 3 1] 9 141 ] 1] 1 916
12 0 0 0 0 0 3 0 0 2 0 o 73 18 o 7rs
13 0 0 0 0 0 3 0 0 4 0 1 11 111 0§41
14 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 0 44 100.0
1000 95.0/976 972 /831 776 954 941 835 919 928 578/ 5248 936

Average Accuracy: 91.54%
Table B.9: Experiment HY P13 TSTRA confusion matrix.
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B.3 EXPERIMENT HY P17

(241) (W) () (2%) (W) (%)

1 7 2 5 4 6 9 3 g8 10 11 12 13 14
Figure B.6: Experiment HY P17 BHC class hierarchy.

Class 1 2 3 4 5 & T & 9 10

-
-
-
L]
-
et
-
£

1 135 1] ] 1] ] 1] ] 1] ] 1] ] 1] ] 04000
2 o 39 0 0 0 0 0 0 0 0 0 0 0 0 100.0
3 0 o114 1 0 0 0 1 0 0 0 0 0 0 933
4 0 1] 4 105 = 1] 0 1] 0 1] 0 1] 0 o 913
3 o 11 0 1 117 10 0 1] 1 1] 0 1] 0 0 836
[ 0 1] 0 o 11 103 1 1] g 1] 0 1] 1 o 837
T 0 1] 0 1] 0 o127 1] 0 1] 0 1] 0 0 100.0
& 0 ] 0 ] 0 ] 0 a9 0 ] 0 ] 0 0 100.0
& ] 1] 1 1] o 11 1 o142 1 ] 1] 1 0 804
10 0 0 1 0 0 0 0 1 1 16 11 0 2 1 872
11 0 0 0 0 0 0 0 0 0 g 140 0 0 1 8952
12 0 1] 0 1] 0 1 0 1] 0 1] 1 80 13 3 816
13 0 1] 0 1] 0 4 0 1] 3 1 o 10 117 3 836
14 0 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 39 1000
1000 75.0/952 951 |&7.53 S06 954 950 904 935921 §59 873 350

Average Accuracy: 9#1.60%
Table B.10: Experiment HY P17 BHC confusion matrix.
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Class: 1 2 3 4 & 6 7 & 9 10 11 12 13 14
1 13 0 0 0 0 0 0 0 0 0 0 0 0 01000
2 0O s 0 0 0 0 0 0 0 0 0 0 0 01000
3 0 0 % 0 0 0 0 0 0 1% 0 0 0 0 326
4 O 0 30104 5 0 2 0 0 0 0 0 0 0 738
5 ol o o 1 7 220 1 o0 0 o0 o0 0 0 0 782
6 of o 1 o0 18104 2 0 @9 o0 o0 0 3 0 759
7 o0 o 1 o 0o o012 o 0o o0 o0 0 0 0 992
3 o] o 1 o 0o o o0 9 0 1 4 0 0 0 941l
9 o 0o 2 0 1 1 0 014 7 0 0 1 0 %21
10 o 0 0 0 0 0 0 2 5 % & 0 5 0 318
11 O 0 0 0 0 0 1 0 0 5140 0 0 0 959
12 o 0 0 0 1 3 0 0 0 0 0 8 12 0 343
13 ol o o0 o 1 5 o o0 1 2 0 4 113 0| 837
14 o0 o o 2 2 1 o0 3 2 0 0 0 0 47 827

1000/ 1000/ 72.0/97.2 59.0| 776 953/95.0 89.2 726 92.1 956 8431000

Average Accuracy: $6.29%

Table B.11: Experiment HY P17 BHC FS confusion matrix.

Class 1 | 2 3 4 5 6 T & 9% 10 1 12 13 14
1 13 0 0 0 0 0 0 0 0 0 0 0 0 01000
2 0 s 0 0 0 0 0 0 0 0 0 0 0 01000
3 ol o0/122 4 0o o o o 0o 8 o0 o 0 0 931
4 0O 0 1105 2 0 0 0 0 0 0 0 0 0 972
5 o o 0o 1111 9 1 0 0 0 0 0 0 0 910
6 0 0 0 0 1912 0 0 11 0 0 0 1 0 798
7 0 0 0 0 0 012 0 0 0 0 0 0 01000
8 o o 1 0o 0 0 0 8 0 1 3 0 0 0 90
9 0 0 0 0 0 2 0 014 & 0 0 0 0 946
10 o0 0 0 0 0 0 0 1 3101 9 0 & 0 342
1 o 0 1 0 0 0 0 0 0 & 140 0 0 0 940
12 o0 o o o 0o o o o 0o o o0 8 8 0 98
13 o 0o 0 0o 0 2 0 0o 1 0 0 1113 0 97
14 o0 o o o 2 o o s 1 0 0 0 0 47 85

1000 1000 976 951 825 903 992 941 835 815 921 959 83.5 1000

Average Accuracy: 92.90%
Table B.12: Experiment HY P17 BHC TS-FS confusion matrix.
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() ()

() (16) (16) (20) ()

7 1 14 2 6 9 4 5 3 10 11 13 8 12
Figure B.7: Experiment HY P17 TSTRA class hierarchy.

Class 1 2 3 4 % L3 T & ¥ 10 11 12 13 14
1 133 0 0 0 0 0 1 0 0 0 0 0 0 0 993
2 o 49 0 0 0 0 0 0 0 0 0 0 0 0 100.0
3 0 0 122 1 0 0 0 0 0 0 0 0 1 0 954
4 0 0 o a9 2 0 0 1 0 0 0 0 0 o 49741
3 0 1 0 3124 7 2 0 0 0 0 0 0 0 g9z
[ 0 0 0 0 g o111 0 0 g 0 0 0 1 1/ 86.0
T 2 0 0 1 0 0 126 0 1 0 0 0 0 7920
& 0 0 0 0 0 1 o ar 0 0 1 0 0 0 93.0
& 0 0 1 0 o 10 0 0 143 2 0 1 2 o 599
10 0 0 2 0 0 0 0 3 2 M1Me 1 0 3 0 547
11 0 0 0 0 0 0 0 0 0 2139 0 0 3 946
12 0 0 0 0 0 0 0 0 0 0 1 &80 10 2 88.0
13 0 0 0 1 0 3 0 0 3 1 0 9 N7 3 g4.2
14 0 0 0 0 0 0 0 0 0 0 0 0 o 31 1000

935 93.0 976 925 925 828 977 960 911 935 914 339 7.3 66.0

Average Accuracy: 91.85%
Table B.13: Experiment HY P17 TSTRA confusion matrix.
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B.4 EXPERIMENT HY P18

1 7 2 5 4 6 9 3 8 10 11 12 13 14
Figure B.8: Experiment HY P18 BHC class hierarchy.
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1 2 104 a0.1
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Average Accuracy: 91.91%

Table B.14: Experiment HY P18 BHC confusion matrix.

5.1 954 1000 904 91,
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Clasz 1 z 3 4 £ [ T 8 9 1o 11 17 13 14
1 155 0 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 100.0
I 0 a0 1] 0 4 0 1 0 1] 0 1] 0 1] o %02
3 0 0 1la 0 1] 0 1] 0 o 1a 1] 0 1] o 879
4 0 0 g 107 7 0 1 0 ] 0 ] 0 ] 0 870
£ ] ] 1] o111 z 1] ] 1] ] 1] ] 1] o 835
& 0 0 0 0 g 112 0 0 5 0 0 0 0 o 829
T 0 0 0 0 1 0 143 0 0 0 0 0 0 o 822
L 0 0 1 0 1] 0 o S9 1] 1 1 0 1] 1 %61
9 0 0 1] 0 1 1z 4 0 131 g 1] 0 1] 0 g4.0
10 0 0 1] 0 1] 0 1] 0 1 =21 7 0 5 0 8735
11 0 0 1] 0 1] 0 1] 0 1] g 144 0 1 o %41
12 0 0 ] 0 ] 0 ] 0 ] 0 0 85 7 0 524
13 ] ] 1] ] 1 2 1] 2 20 ] 1] 5 120 0 800
14 0 0 0 0 0 0 0 0 0 0 0 0 1 45 879

10000 1000 2.8 1000 328 836 953 920 334 734 947 944 8398 5789

Average Accuracy: 90.80%
Table B.15: Experiment HY P18 BHC FS confusion matrix.

Class 1 2 3 4 5 [ T & 9

-
-
-
-
-
P
-
ot
-
L

1 135 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 0 100.0
2 0 49 0 ] 1 ] 0 ] 0 ] 0 ] 0 0 93.0
3 ] 0120 1] ] 1] ] 1] ] 3 ] 1] ] 0 4876
4 0 0 3103 v 0 2 0 0 0 0 0 0 0 596
& 0 1 0 4 113 4 0 0 1 0 0 0 0 o 91.9
[ 0 1] 0 o 10 141 1 1] Ei 1] 0 1] Ei 0 829
T 0 1] 0 1] 0 o 122 1] 0 1] 0 1] 0 0 100.0
& 0 1] 1 1] 0 1] o ar 0 1] 0 1] 0 0 93.0
9 0 1] 0 1] 2 v 2 0 143 v 0 1] 1 0 833
10 0 ] 1 ] 0 ] 0 ] 2 1 3 ] 4 0 336
11 ] 1] ] 1] ] 1] ] 1] o 10 149 1] 1 0 4931
12 0 0 0 0 0 0 0 1 0 0 o 52 g 0 901
13 0 0 0 0 0 2 0 0 1 2 0 g 113 0 897
14 0 1] 0 1] 1 1] 2 3 0 1 0 1] 0 47 &7.0
1000 95.0/96.0 965 /3453 905|946 96.0/ 911 81.5/95.0 911|345 1000

Average Accuracy: 92.34%
Table B.16: Experiment HY P18 BHC TS-FS confusion matrix.
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B.5 EXPERIMENT HY P19
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1 2 5 4 6 7 3 8 9 10 13 11 12 14
Figure B.9: Experiment HY P19 BHC class hierarchy.
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Table B.17: Experiment HY P19 BHC confusion matrix.
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:;\:ﬁqmmaunn—g

ot |t
TR T

s 1 2 3 4 £ [ T 8 9 1o 11 1T 13 14
154 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 01

1 47 0 1] 2 1] 0 1] 0 1] 0 1] 0 1]

0 o121 1] 0 1] 0 1] 0 g 0 1] 0 1]

0 ] 3 10 2 ] 0 ] 0 ] 0 ] 0 ]

] 3 ] 4 82 1% ] 1] ] 1] ] 2 ] 1]

0 0 0 o 29 43 0 0 g 0 0 0 0 0

0 0 1 0 1 0 128 0 0 0 0 0 0 0

0 1] 0 1 0 1] o 27 0 5 3 1] 0 2

0 1] 0 1] g a7 0 0 143 1 0 1] 1 1]

0 1] 0 1] 0 1] 1 1] 0 1oz 29 1] 0 1]

0 1] 0 1] 0 1] 0 2 0 7 1E0 1] 0 1]

0 ] 0 ] 0 ] 0 1 0 ] 0 g3 12 ]

] 1] ] 1] ] 5 ] 1 5 1 ] 5 120 1]

0 0 0 0 0 0 0 0 0 0 0 0 1 45

995 90 %58 353 657 321 552 %m0 1.1 823 VB9 922 898 957

Average Accuracy: F5.05%
Table B.18: Experiment HY P19 BHC FS confusion matrix.

1

DD e e

-
Pt

-
| B

Class 1 2 3 4 5 [ T & 2 10 11 12 13 14
134 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 0
0 a0 0 ] 1 ] 0 ] 0 ] 0 ] 0 0

0 o122 7 ] 1] ] 1] ] 1 ] 1] ] 0

0 0 2 87 1 0 0 0 0 0 0 0 0 0

0 0 0 2 12 14 0 0 0 0 0 0 0 0

0 1] 0 o 14 1o 1 1 38 1] 0 1] 0 0

1 1] 1 1 2 0 125 1] 0 1] 0 1] 0 0

0 1] 0 1] 0 1] o 94 0 1 0 1] 0 0

0 1] 0 1] o 13 0 o 114 1 0 1] 0 0

0 ] 0 ] 0 ] 0 1 0 13 27 ] 2 0
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Tabl

e B.19: Experiment HY P19 BHC TS-FS confusion matrix.
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Figure B.10: Experiment HY P19 TS Build class hierarchy.
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Table B.20: Experiment HY P19 TS Build confusion matrix.
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Figure B.11: Experiment HY P19 TSTRA class hierarchy.
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Table B.21: Experiment HY P19 TSTRA confusion matrix.
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Appendix C

Selected Hyperion Best Bases Data Class Hierar chiesand
Confusion Matrices

C.1 EXPERIMENT HY P12

1 2 4 5 6 7 3 8 10 11 9 13 12 14

Figure C.1: Experiment HY P12 BHC BB class hierarchy.

Class 1 2 3 4 & & T & $ 10 11 12 13 14
1 135 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0
2 0 a0 0 0 2 0 0 0 0 0 0 0 0 0 982
3 0 0 124 0 0 1 1 1 0 0 0 1 0 0 9569
4 0 0 1 106 0 0 0 0 2 0 0 0 0 0 49r.z2
3 0 0 0 1126 14 0 1 2 0 0 0 0 0 gr.a
& 0 0 0 0 G 83 0 0 23 0 0 0 1 0 748
T ] 0 0 0 0 0 127 0 0 0 0 0 0 1 99.2
8 0 0 0 0 0 0 o a7 0 0 0 0 0 34970
9 0 0 0 0 o 18 1 0 126 1 0 0 0 0 863
10 0 0 0 0 0 0 0 2 o115 12 0 0 0 891
11 0 0 0 0 0 0 0 0 0 2 137 1 1 1 9435
12 0 0 0 0 0 0 0 0 0 0 o &4 g 3 G966
13 0 0 0 0 0 5 0 0 2 3 3 4 123 0 gr.z2
14 0 0 0 0 0 0 0 0 0 0 0 0 1 37 4974

1000 1000 932 931 940 7049 954 560 503 927 901 833 945 757

Average Accuracy: %1.54%
Table C.1: Experiment HY P12 BHC BB confusion matrix.
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Class 1 2 3 4 5 &

1 135 1] 0 1] 0 1]
2 o 47 0 1] 2 i
3 0 0 11 1 0 1]
4 0 1] 010z 3 1]
3 0 1 0 4 17 23
& ] 2 ] 1] FARREY:
T 0 0 2 0 0
8 0 0 0 0 0 0
9 0 1] 0 1] S ER
10 0 1] 2 1] 0 1]
11 0 1] 0 1] 0 1]
12 0 1] 0 1] 0 1]
13 0 ] 0 ] 0 2
14 ] 1] ] 1] ] 1]
1000 940|955 953 /875 2349

Average Accuracy: 36.66%

—
—

[ux]
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T 8 g 10 11 12 13 14
0 1] 0 1] 0 1] 0 0 100.0
0 1] 0 1] 0 1] 0 0 8235
0 1] 0 2 0 1] 0 0 976

14 1] 0 1] 0 1] 0 o 837
0 ] 1 ] 0 g 0 0 ¥a0
] 1] 2 1] ] 1] ] 0 744
4 0 0 0 0 0 0 o 974
0 93 0 3 0 0 0 o 951
0 0 146 1] 0 1] 1 o 67.0
0 1] 2 109 13 1] 3 0 84.5
0 1 1 G 135 1] 1 1 8932
0 1 0 1] o v 4 0 934
1 1 2 2 0 314 0 833
] 1] ] 1] 1 1] 4 46 4902
41970930 879 905 856 9053 9749

Table C.2: Experiment HY P12 BHC BB FS confusion matrix.

Class 1 2 3 4 3 G

1 135 0 1] 0 1] 0
2 0 =0 0 1 0
3 0 o121 2 1] ]
4 0 0 3100 1 0
5 0 0 0 2126 A
& 0 0 1] 0 3 84
T 0 0 1] 2 1] 0
& 0 0 1] 0 1] 0
9 0 0 1] 0 o 1
10 0 0 1 1 1 0
11 0 ] 1] ] 1 ]
12 0 0 0 0 0 0
13 0 0 0 0 1 =
14 0 0 1] 0 1] 0

100.0 100.0 96.3 93.5 94.0 66.4

Average Accuracy: 90.92%
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Table C.3: Experiment HY P12 BHC BB TS-FS confusion matrix.
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Figure C.2: Experiment HY P12 TS Build BB class hierarchy.

Class A1 2 3 4 5 & T & 4

-
-
-
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-
Pt
-
ot
-
L=

1 135 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0
2 0 a0 0 0 2 0 0 0 0 0 0 0 0 0 962
3 1] 0 123 0 0 0 0 0 0 3 0 0 0 0 976
4 1] 0 1103 3 1 0 0 0 0 0 0 0 0 9335
3 1] 0 0 1121 13 2 0 1 0 0 0 0 o vy
[ 1] 0 0 0 G 100 0 o2 0 0 0 0 o va.r
T ] 0 0 1 0 0127 0 0 0 0 0 0 0 992
& 1] 0 0 0 1 0 o 85 0 g 1 0 0 o 805
9 0 0 0 0 o 10 0 0 133 0 0 0 3 o a141
10 0 0 1 0 0 0 0 3 1109 4 0 3 o 9041
11 1] 0 0 0 0 0 0 2 0 4 147 0 1 0 955
12 1] 0 0 0 0 1 0 0 0 0 0 &3 7 o 912
13 1] 0 0 0 1 9 0 1 1 0 0 G 120 2 837
14 1] 0 0 0 0 0 0 0 0 0 0 1 0 43 497§
10001000 934 931 903 V4.6 934 941 847 879 967 922 896 937

Average Accuracy: 92.22%

Table C.4: Experiment HY P12 TS Build BB confusion matrix.
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C.2 EXPERIMENT HYP16

1 2 7 4 5 6 9 3 8 10 11 14 12 13
Figure C.3: Experiment HY P16 BHC BB class hierarchy.

Class 1 2 3 4 5 & T 8 9
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1 135 1] 0 1] 0 1] 0 1] 0 1] 0 1] 0 0 100.0
2 o 49 0 1] 1 1] 0 1] 0 1] 0 1] 0 0 83.0
3 0 0 120 1 0 1] 0 1] 1 1 0 1] 0 0 976
4 0 1] 3 104 4 1] 1 1] 0 1] 0 1] 0 o 912
3 0 1 0 1 120 g 0 ] 0 ] 0 ] 0 0 923
& ] 1] ] 1] 9 111 ] 1] = 1] ] 1] 2 0 &87.4
T 0 0 0 0 0 o127 0 0 0 0 0 0 0 100.0
8 0 0 0 1 0 0 0 96 0 1 2 0 0 1 8950
9 0 1] 0 1] o 1 0 0 145 2 0 1] 1 o 912
10 0 1] 0 1] 0 3 1 1 G 102 13 1] 4 o ¥73
11 0 1] 0 1] 0 1] 0 2 o 17 134 1] 0 2 86.35
12 0 1] 0 1] 0 1] 0 1] 0 1] o 83 13 2 847
13 0 ] 0 ] 0 1 0 ] 0 1 1 7 o114 0 914
14 ] 1] ] 1] ] 1] ] 2 ] 1] ] 1] o 42 8955
1000 95.0/ 950 97.2 /896 825 954 950 924 823 /852 922851 894

Average Accuracy: 91.54%
Table C.5: Experiment HY P16 BHC BB confusion matrix.
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Table C.6: Experiment HY P16 BHC BB FS confusion matrix.
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Table C.7: Experiment HY P16 BHC BB TS-FS confusion matrix.
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Figure C.4: Experiment HY P16 TS Build BB class hierarchy.
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1 1354 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0
2 1 48 0 0 3 0 0 0 0 0 0 0 0 0 923
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 100.0
4 0 0 0 83 0 0 3 0 0 0 0 0 0 0 9569
3 0 1 0 g 122 [ 0 0 0 0 0 0 0 0 gr.a
[ 0 0 0 0 9 112 0 o 10 0 0 0 0 0 g3.3
T 0 1 0 3 0 0 126 0 0 0 0 0 0 0 98649
& 0 0 0 0 0 0 o 54 0 2 1 0 3 1 934
9 0 0 0 0 0 [ 0 0 134 0 0 0 0 0 957
10 0 0 4 0 0 0 0 1 9 121 =) 0 0 0 564
11 0 0 0 0 0 0 0 0 0 1142 0 0 0 993
12 0 0 0 0 0 1 0 0 0 0 o 83 3 0 934
13 0 0 0 1 0 T 0 0 4 0 0 3 126 0 31
14 0 0 0 0 0 0 0 1 0 0 4 0 0 46 902
993 96.0 965 3585 91.0 336 97.7 93.0 324 976 934 944 940 979

Average Accuracy: 93.33%
Table C.8: Experiment HY P16 TS Build BB confusion matrix.
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Appendix D

L etter Recognition Data Confusion Matrices
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Average Accuracy: 63.32%

Table D.1: Letter Recognition BHC confusion matrix.
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Table D.2: Letter Recognition BHC FS confusion matrix.
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Average Accuracy: T6.2T%

Table D.3: Letter Recognition BHC TS-FS confusion matrix.
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Table D.4: Letter Recognition TS Build confusion matrix.
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Table D.5: Letter Recognition TSTRA confusion matrix.
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Table D.6: Letter Recognition TSTRA TS-FS confusion matrix.
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