

Copyright

by

Donna Kay Korycinski

2003

The Dissertation Committee for Donna Kay Korycinski

Certifies that this is the approved version of the following dissertation:

INVESTIGATING THE USE OF TABU SEARCH

TO FIND NEAR-OPTIMAL SOLUTIONS

IN MULTICLASSIFIER SYSTEMS

Committee:

Melba M. Crawford, Co-Supervisor

J. Wesley Barnes, Co-Supervisor

Joydeep Ghosh

Elmira Popova

John J. Hasenbein

Investigating the Use of Tabu Search to Find Near-Optimal

Solutions in Multiclassifier Systems

by

Donna Kay Korycinski, B.S., M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August, 2003

Dedication

To Richard, Sydney and Jordan

 v

Acknowledgements

I would like to thank my advisors, Dr. Melba M. Crawford and

Dr. J. Wesley Barnes, whose insightful guidance and unwavering support made

this dissertation possible. I would also like to thank all of my friends at the

Center for Space Research, especially Amy Neuenschwander, for their help and

support during the completion of this work. I am grateful to my parents, Joseph

and Phyllis Cecil, for an encouraging word and a helping hand when I needed it

most. I wish to extend a sincere heartfelt thank you to my loving husband,

Richard, who closed his own window-of-opportunity in life so that mine could be

opened; I shall never forget your sacrifice. And to my two daughters, Sydney and

Jordan, thank you for understanding when you always heard the words, “Mommy

has to study.”

 vi

Investigating the Use of Tabu Search to Find Near-Optimal

Solutions in Multiclassifier Systems

Publication No._____________

Donna Kay Korycinski, Ph.D.

The University of Texas at Austin, 2003

Supervisors: Melba M. Crawford, J. Wesley Barnes

Binary trees provide an ideal framework for many decision problems due

to their logical, understandable structures and the computational advantages of the

“divide and conquer” paradigm. They can be particularly advantageous for

classification applications, which involve categorization of information into

groups that are in some sense homogeneous. Algorithms used in construction of

decision trees used in classification problems are typically greedy. A new

algorithm was developed in this study which incorporates Tabu Search (TS) in the

feature selection aspect of hierarchical classification trees. Specifically, it is

implemented within the hierarchical classification problem framework of the

Binary Hierarchical Classifier (BHC) which has been shown to be advantageous

for classification problems with a large number of output classes. The algorithm

incorporates feature selection as a means for input space and classifier complexity

 vii

reduction for a static tree; the algorithm was also extended and coupled with the

BHC to allow TS feature selection to aid in building the class hierarchy. Finally,

a new algorithm was developed which uses TS in the rearrangement of the nodes

of a binary classification tree. Since the use of highly accurate classification

algorithms is vital in fields such as medical diagnoses, character recognition,

target detection, and land cover mapping, the primary goal of this research is to

attain improved classification accuracies.

 viii

Table of Contents

List of Tables .. xi

List of Figures.. xvii

Chapter 1: Introduction... 1

Chapter 2: Background and Related Work... 5

2.1 Classification and Features .. 5

2.2 Measures of Goodness... 6

2.3 The Classifier... 8

2.4 Feature Selection... 9

2.4.1 Filters ... 11

2.4.2 Wrappers.. 12

2.4.3 Optimal Methods... 14

2.4.4 Sub-optimal Methods .. 14

2.5 Tabu Search... 15

2.6 Multiple Classifier Systems... 18

Chapter 3: The Binary Hierarchical Classifier ... 20

3.1 Binary Hierarchical Classifier for Classification 20

3.1.1 Top-down BHC ... 22

3.1.2 Best Bases BHC .. 25

3.2 Research .. 25

Chapter 4: The BHC with Tabu Search Feature Selection (TS-FS)..................... 28

4.1 Tabu Search Feature Selection.. 29

4.2 Application of TS-FS Algorithm to Static Trees................................... 33

4.2.1 Botswana Advanced Land Imager (ALI) Dataset 33

4.2.2 Botswana Hyperion Dataset .. 36

4.2.3 Letter Recognition Dataset .. 37

 ix

4.3 Implementation of TS-FS Algorithm and Results 40

4.3.1 Feature Selection Results for ALI Remotely Sensed Data........ 40

4.3.2 Feature Selection Results for Hyperion Remotely Sensed
Data... 46

4.3.3 Feature Selection Results for Hyperion Data Using Best
Bases ... 52

4.3.4 Feature Selection Results for Letter Recognition Data 55

4.4 Conclusions ... 58

Chapter 5: Building the Binary Hierarchical Classifier Tree with the Aid of
Tabu Search Feature Selection... 60

5.1 Tabu Search Feature Selection.. 60

5.2 Results Building the Tree Using TS for ALI Data................................ 62

5.3 Results Building the Tree Using TS for Hyperion Data Using
Original Features ... 67

5.4 Results Building the Tree Using TS and Best Bases for Hyperion
Data.. 70

5.5 Results Building the Tree Using TS for Letter Recognition Data......... 72

5.6 Conclusions ... 74

Chapter 6: Binary Hierarchical Classifier Tree Rearrangement Using Tabu
Search... 76

6.1 Tabu Search Tree Rearrangement ... 76

6.2 TSTRA Results for ALI Data .. 78

6.3 TSTRA Results for Hyperion Data ... 82

6.4 TSTRA Results for Letter Recognition Data .. 85

6.5 Conclusions ... 87

Chapter 7: Conclusions ... 89

7.1 Summary of Contributions .. 89

7.1.1 Tabu Search Feature Selection.. 89

7.1.2 Classification Tree Rearrangement ... 90

7.2 Future Work... 91

 x

7.2.1 The Classifier and Feature Selection... 91

7.2.2 Best Bases.. 91

7.2.3 Tabu Search... 92

7.2.4 Tree Rearrangement .. 93

7.2.5 A Grove of Trees ... 94

Appendix A: Selected ALI Data Class Hierarchies and confusion Matrices 95

A.1 Experiment ALI2 ... 95

A.2 Experiment ALI3 ... 97

A.3 Experiment ALI4 ... 100

A.4 Experiment ALI5 ... 103

A.5 Experiment ALI6 ... 104

A.6 Experiment ALI7 ... 105

A.7 Experiment ALI8 ... 106

A.8 Experiment ALI9 ... 110

Appendix B: Selected Hyperion Data Class Hierarchies and Confusion
Matrices .. 112

B.1 Experiment HYP12 ... 112

B.2 Experiment HYP13 ... 116

B.3 Experiment HYP17 ... 119

B.4 Experiment HYP18 ... 122

B.5 Experiment HYP19 ... 124

Appendix C: Selected Hyperion Best Bases Data Class Hierarchies and
Confusion Matrices .. 128

C.1 Experiment HYP12 ... 128

C.2 Experiment HYP16 ... 131

Appendix D: Letter Recognition Data Confusion Matrices............................... 134

References ... 137

Vita .. 142

 xi

List of Tables

Table 4.1: Class information for the Botswana ALI dataset 35

Table 4.2: Class information for the Botswana Hyperion dataset..................... 37

Table 4.3: Class information for the letter recognition dataset 38

Table 4.4: Feature information for the letter recognition dataset 39

Table 4.5: BHC, BHC FS and BHC TS-FS overall experiment classification

accuracies (%) for Botswana ALI testing/independent test data 40

Table 4.6: BHC, BHC FS and BHC TS-FS average testing/independent test

classification accuracies (%) by class for Botswana ALI data 44

Table 4.7: BHC, BHC FS and BHC TS-FS overall experiment classification

accuracies (%) for Botswana Hyperion testing/independent test

data ... 47

Table 4.8: BHC, BHC FS and BHC TS-FS average testing/independent test

classification accuracies (%) by class for Botswana Hyperion

data ... 49

Table 4.9: BHC BB, BHC BB FS and BHC BB TS-FS overall experiment

classification accuracies (%) for Botswana Hyperion

testing/independent test data... 53

Table 4.10: BHC BB, BHC BB FS and BHC BB TS-FS average

testing/independent test classification accuracies (%) by class for

Botswana Hyperion data... 54

Table 4.11: BHC, BHC FS and BHC TS-FS classification accuracies (%) by

letter for letter recognition data .. 57

 xii

Table 4.12: Average algorithm execution times in minutes for BHC, BHC FS

and BHC TS-FS.. 59

Table 5.1: BHC, BHC FS, BHC TS-FS and TS Build overall experiment

classification accuracies (%) for Botswana ALI

testing/independent test data... 63

Table 5.2: BHC, BHC FS, BHC TS-FS and TS Build average

testing/independent test classification accuracies (%) by class for

Botswana ALI data ... 66

Table 5.3: BHC, BHC FS, BHC TS-FS and TS Build overall experiment

classification accuracies (%) for Botswana Hyperion

testing/independent test data... 68

Table 5.4: BHC, BHC FS, BHC TS-FS and TS Build average

testing/independent test classification accuracies (%) by class for

Botswana Hyperion data... 69

Table 5.5: BHC BB, BHC BB FS, BHC BB TS-FS and TS Build BB

overall experiment classification accuracies (%) for Botswana

Hyperion testing/independent test data .. 71

Table 5.6: BHC BB, BHC BB FS, BHC BB TS-FS and TS Build BB

average testing/independent test classification accuracies (%) by

class for Botswana Hyperion data .. 71

Table 5.7: BHC, BHC FS, BHC TS-FS and TS Build classification

accuracies (%) by letter for letter recognition data 73

 xiii

Table 5.8: Average algorithm execution times in minutes for BHC, BHC

FS, BHC TS-FS and TS Build.. 74

Table 6.1: BHC, TSTRA and TSTRA TS overall experiment classification

accuracies (%) for Botswana ALI testing/independent test data 80

Table 6.2: BHC, TSTRA and TSTRA TS-FS average testing/independent

test classification accuracies (%) by class for Botswana ALI data .. 81

Table 6.3: BHC, TSTRA and TSTRA TS-FS overall experiment

classification accuracies (%) for Botswana Hyperion

testing/independent test data... 83

Table 6.4: BHC, TSTRA and TSTRA TS-FS average testing/independent

test classification accuracies (%) by class for Botswana Hyperion

data ... 84

Table 6.5: BHC, TSTRA and TSTRA TS-FS classification accuracies (%)

by letter for the letter recognition dataset ... 86

Table 6.6: Average algorithm execution times in minutes for BHC and

TSTRA ... 87

Table A.1: Experiment ALI2 BHC confusion matrix .. 95

Table A.2: Experiment ALI2 BHC FS confusion matrix................................... 96

Table A.3: Experiment ALI2 BHC TS-FS confusion matrix............................. 96

Table A.4: Experiment ALI3 BHC confusion matrix .. 97

Table A.5: Experiment ALI3 BHC FS confusion matrix................................... 98

Table A.6: Experiment ALI3 BHC TS-FS confusion matrix............................. 98

Table A.7: Experiment ALI3 TS build confusion matrix................................... 99

 xiv

Table A8: Experiment ALI4 BHC confusion matrix 100

Table A.9: Experiment ALI4 BHC FS confusion matrix................................. 101

Table A.10: Experiment ALI4 BHC TS-FS confusion matrix........................... 101

Table A.11: Experiment ALI4 TSTRA confusion matrix.................................. 102

Table A.12: Experiment ALI5 TS Build confusion matrix 103

Table A.13: Experiment ALI6 TS Build confusion matrix 104

Table A.14: Experiment ALI7 TSTRA confusion matrix.................................. 105

Table A.15: Experiment ALI8 BHC confusion matrix 106

Table A.16: Experiment ALI8 BHC FS confusion matrix................................. 107

Table A.17: Experiment ALI8 BHC TS-FS confusion matrix........................... 107

Table A.18: Experiment ALI8 TS Build confusion matrix 108

Table A.19: Experiment ALI8 TSTRA confusion matrix.................................. 109

Table A.20: Experiment ALI9 BHC confusion matrix 110

Table A.21: Experiment ALI9 BHC FS confusion matrix................................. 111

Table A.22: Experiment ALI9 BHC TS-FS confusion matrix........................... 111

Table B.1: Experiment HYP12 BHC confusion matrix 112

Table B.2: Experiment HYP12 BHC FS confusion matrix.............................. 113

Table B.3: Experiment HYP12 BHC TS-FS confusion matrix........................ 113

Table B.4: Experiment HYP12 TS Build confusion matrix............................. 114

Table B.5: Experiment HYP12 TSTRA confusion matrix............................... 115

Table B.6: Experiment HYP13 BHC confusion matrix 116

Table B.7: Experiment HYP13 BHC FS confusion matrix.............................. 117

Table B.8: Experiment HYP13 BHC TS-FS confusion matrix........................ 117

 xv

Table B.9: Experiment HYP13 TSTRA confusion matrix............................... 118

Table B.10: Experiment HYP17 BHC confusion matrix 119

Table B.11: Experiment HYP17 BHC FS confusion matrix.............................. 120

Table B.12: Experiment HYP17 BHC TS-FS confusion matrix........................ 120

Table B.13: Experiment HYP17 TSTRA confusion matrix............................... 121

Table B.14: Experiment HYP18 BHC confusion matrix 122

Table B.15: Experiment HYP18 BHC FS confusion matrix.............................. 123

Table B.16: Experiment HYP18 BHC TS-FS confusion matrix........................ 123

Table B.17: Experiment HYP19 BHC confusion matrix 124

Table B.18: Experiment HYP19 BHC FS confusion matrix.............................. 125

Table B.19: Experiment HYP19 BHC TS-FS confusion matrix........................ 125

Table B.20: Experiment HYP19 TS Build confusion matrix............................. 126

Table B.21: Experiment HYP19 TSTRA confusion matrix............................... 127

Table C.1: Experiment HYP12 BHC BB confusion matrix............................. 128

Table C.2: Experiment HYP12 BHC BB FS confusion matrix 129

Table C.3: Experiment HYP12 BHC BB TS-FS confusion matrix 129

Table C.4: Experiment HYP12 TS Build BB confusion matrix 130

Table C.5: Experiment HYP16 BHC BB confusion matrix............................. 131

Table C.6: Experiment HYP16 BHC BB FS confusion matrix 132

Table C.7: Experiment HYP16 BHC BB TS-FS confusion matrix 132

Table C.8: Experiment HYP16 TS Build BB confusion matrix 133

Table D.1: Letter Recognition BHC confusion matrix..................................... 134

Table D.2: Letter Recognition BHC FS confusion matrix 134

 xvi

Table D.3: Letter Recognition BHC TS-FS confusion matrix 135

Table D.4: Letter Recognition TS Build confusion matrix 135

Table D.5: Letter Recognition TSTRA confusion matrix 136

Table D.6: Letter Recognition TSTRA TS-FS confusion matrix..................... 136

 xvii

List of Figures

Figure 2.1: Hierarchy of feature types .. 6

Figure 2.2: Hierarchy of types of measures .. 7

Figure 2.3: Four-dimensional feature selection lattice.. 10

Figure 2.4: A filter model of feature selection... 12

Figure 2.5: A wrapper model of feature selection ... 13

Figure 3.1: Example of a BHC with 5 classes .. 21

Figure 3.2: Flowchart of GAMLS execution.. 24

Figure 4.1: Typical BHC hierarchical tree for a dataset with five classes 28

Figure 4.2: Flowchart of TS-FS Algorithm .. 32

Figure 4.3: False color RGB composite (bands 4p, 5 and 3) of subset of

Botswana ALI data ... 34

Figure 4.4: Examples of letters which yielded individual data observations

for the letter recognition dataset ... 39

Figure 4.5: Example of a classified subset using the BHC TS-FS classifier

(experiment ALI7: test set accuracy 90.06%, independent test set

accuracy 71.90%) ... 43

Figure 4.6: Representative BHC tree structure for the Botswana ALI dataset... 46

Figure 4.7: Plot of experiment ALI8 training data: class 9 Observations and

mean, class 12 mean... 46

Figure 4.8: Plot of Hyperion data class means .. 51

Figure 4.9: Plot of ALI data class means .. 51

 xviii

Figure 4.10: Representative BHC tree structure for the Botswana Hyperion

dataset ... 52

Figure 4.11: BHC class hierarchy for the single partition of the letter

recognition data .. 58

Figure 5.1: Flowchart for building the BHC tree using GAMLS and TS-FS..... 62

Figure 5.2: Experiment ALI5 comparison of acacia shrubland independent

test data observations and acacia grassland training data mean....... 64

Figure 5.3: Experiment ALI5 comparison of acacia grassland independent

test data observations and dry grasses training data mean............... 65

Figure 5.4: Example of a classified subset using the TS Build classifier

(experiment ALI3: test set accuracy 89.93%, independent test set

accuracy 72.84%). .. 67

Figure 5.5: Building the BHC tree using GAMLS and TS-FS for the letter

recognition data .. 72

Figure 6.1: Example of neighboring tree structures.. 77

Figure 6.2: Example of a classified subset using the TSTRA classifier

(experiment ALI7: test set accuracy, 87.81%, independent test

set accuracy 74.65%). ... 82

Figure 6.3: TSTRA class hierarchy for the letter recognition data 87

Figure A.1: Experiment ALI2 BHC class hierarchy.. 95

Figure A.2: Experiment ALI3 BHC class hierarchy.. 97

Figure A.3: Experiment ALI3 TS Build class hierarchy 99

Figure A.4: Experiment ALI4 BHC class hierarchy.. 100

 xix

Figure A.5: Experiment ALI4 TSTRA class hierarchy 102

Figure A.6: Experiment ALI5 TS Build class hierarchy 103

Figure A.7: Experiment ALI6 TS Build class hierarchy 104

Figure A.8: Experiment ALI7 TSTRA class hierarchy 105

Figure A.9: Experiment ALI8 BHC class hierarchy.. 106

Figure A.10: Experiment ALI8 TS Build class hierarchy 108

Figure A.11: Experiment ALI8 TSTRA class hierarchy 109

Figure A.12: Experiment ALI9 BHC class hierarchy.. 110

Figure B.1: Experiment HYP12 BHC class hierarchy 112

Figure B.2: Experiment HYP12 TS Build class hierarchy................................ 114

Figure B.3: Experiment HYP12 TSTRA class hierarchy.................................. 115

Figure B.4: Experiment HYP13 BHC class hierarchy 116

Figure B.5: Experiment HYP13 TSTRA class hierarchy.................................. 118

Figure B.6: Experiment HYP17 BHC class hierarchy 119

Figure B.7: Experiment HYP17 TSTRA class hierarchy.................................. 121

Figure B.8: Experiment HYP18 BHC class hierarchy 122

Figure B.9: Experiment HYP19 BHC class hierarchy 124

Figure B.10: Experiment HYP19 TS Build class hierarchy................................ 126

Figure B.11: Experiment HYP19 TSTRA class hierarchy.................................. 127

Figure C.1: Experiment HYP12 BHC BB class hierarchy................................ 128

Figure C.2: Experiment HYP12 TS Build BB class hierarchy.......................... 130

Figure C.3: Experiment HYP16 BHC BB class hierarchy................................ 131

Figure C.4: Experiment HYP16 TS Build BB class hierarchy.......................... 133

 1

Chapter 1

Introduction

Data acquisition is often an expensive undertaking; therefore, many

organizations acquire all data possible because it is never known when the data

may become useful. Advances in technology have made data storage relatively

inexpensive, thereby resulting in enormous increases in the quantity of data being

acquired and stored. Unfortunately, the acquisition and storage rates far exceed

the current capabilities to process and extract useful information from this data.

Thus, large amounts of stored data exist that may never be examined. When data

exist in large quantities, it is imperative that computer technologies be used to

examine the data and to extract useful information. Even using modern

computing capabilities, this task can be extremely difficult. Classification

involves categorization of information into groups that are in some sense

homogeneous. Classification thus achieves both information extraction and

compression, and its methods are widely used to perform such diverse actions as

labeling and tracking of land cover, making medical diagnoses, target detection,

and assessing credit-risks and detecting fraud. The field of statistical

classification has been an active area of research for over forty years. Supervised

classification is performed in the following manner: out of a set of C known

classes, data observations are examined and assigned, or recognized as belonging

to one of the known classes. This is accomplished by examining the pattern of the

features belonging to each observation and assigning labels to individual

 2

observations based on this pattern. Features are also known as attributes or

properties, and each observation may possess an associated vector of feature

values. In a perfect world, this vector of values would completely determine the

correct classification for each observation, but this is a rarity. Typically,

observations from classes are random variables with associated probability

distributions; often there is substantial overlap between distributions of different

classes.

The number of features (attributes) that describe each observation can

range from only a few to thousands. This is problematic both because of

computational complexity and because the resulting high dimensional input

observation space is typically quite sparse. Further, when features are redundant,

covariance based classification methods encounter numerical problems. The two

general approaches to input space dimensionality reduction involve feature

extraction or feature subset selection. The goal of techniques developed under

either strategy is to construct a simpler classification algorithm that is more

reliable, i.e., possesses greater accuracy and executes faster. Feature extraction is

the process of extracting features from the original set to form a lower-

dimensional set of potentially different features. This is accomplished through

some type of mapping or transformation. For example, principal component

analysis is commonly used to project the original feature space onto a lower

dimensional feature space. Feature selection reduces the feature space by

choosing a subset of the original features to represent the entire set. The goal of

feature selection is to find the optimal feature subset such that when the

 3

classification algorithm is applied to observations, the resulting labels have the

highest accuracy. This selection of the optimal subset out of all possible subsets

is an NP-hard problem [1]. Performing an exhaustive search of the solution space

of all possible subsets would be required to ensure that the optimal feature subset

had been identified. For a very large number of features, exhaustive search is

intractable. For a problem with n features, the number of all possible feature

subsets is 2n. A few calculations show how the number of possible subsets

becomes unmanageable: 24 = 16, 212 = 4,096, 230 = 1,073,741,824, and

2250 = 1.809x1075. Current feature selection techniques, which include greedy

algorithms and the use of heuristics, do not guarantee optimality but often obtain

near-optimal solutions more quickly than an exhaustive search.

The classification algorithm, or classifier, is that function which examines

the observations and maps them into the set of C known classes. Research has

shown that it is very rare when a single classifier can be considered as the best

classifier for all of the classes when multiple classes are involved. This

realization led to an area of research known as multiclassifier systems whereby

results from multiple classifiers are combined in such a way as to improve the

accuracy of classification relative to that of the single classifier.

This research involves investigation of Tabu Search (TS), a well-known

metaheuristic that is able to adaptively and reactively guide its own search

through the solution space, coupled with the multiclassifier system known as the

Binary Hierarchical Classifier (BHC) [2, 3]. The current BHC algorithm utilizes

a deterministic annealing-type algorithm which employs Fisher projection based

 4

feature extraction to partition the classes and produces a binary hierarchical tree

structure that is used to classify all unknown observations. The primary goal in

development of this approach was output decomposition for problems with a

medium to large number of classes. While the classification accuracies obtained

from the BHC are typically good, problems are encountered if the number of

inputs is extremely large and the amount of training data is limited. Further, the

Fisher weights are not typically stable, and the tree is not necessarily robust to

problems where the inputs are perturbed, as would be the case if the classifier

were applied to a slightly different problem. A preliminary investigation of a

simple greedy based feature selection approach [4] was promising, but inflexible.

In this study, new models are developed which incorporate the use of TS in the

feature selection aspect of the hierarchical classification trees within the

hierarchical problem framework of the BHC. Improved classification accuracies

are increasingly more important as the use of classification algorithms becomes

more prevalent.

In addition, the combined use of TS for feature selection coupled with tree

rearrangement is investigated as a means for input space and classifier complexity

reduction. The goals of this research are to extend knowledge and understanding

in the areas of classification and to introduce metaheuristics within the

hierarchical classification framework. This methodology is applied in the

analysis of several datasets, including a standard character set and remotely

sensed data acquired by multispectral and hyperspectral sensors, which acquire

data simultaneously in hundreds of spectral bands.

 5

Chapter 2

Background and Related Work

This section contains an overview of the characteristics of supervised

classification problems and solution approaches, with a focus on the problem of

selecting optimal inputs for large data mining problems. It contains a more in-

depth discussion of the BHC algorithm and TS as a method for attacking

combinatorial problems.

2.1 CLASSIFICATION AND FEATURES

Supervised classification methods derive a set of rules for labeling a

(typically) vector-valued observation of features as members of one of C known

classes. Features can have discrete, continuous or complex values. Discrete

features can possess only a finite number of values; ordinal and nominal scale

values are of the discrete type. Continuous features possess an infinite number of

values within the domain of real numbers. Complex features possess an infinite

number of values within the domain of complex numbers, i.e., x+iy. Figure 2.1

shows the hierarchy of these feature types.

 6

Figure 2.1: Hierarchy of feature types [5].

The vector of feature values that describes each observation forms a

pattern that, when examined and compared to known patterns of classes that exist

within the dataset, can be used to assign labels to unclassified observations.

When there are no clear distinctions between the patterns of different classes,

some observations may be misclassified; thus, classification algorithms seek to

minimize the expected error rate of classification or maximize some measure of

goodness for classification.

2.2 MEASURES OF GOODNESS

Measures of goodness seek to maximize the classifier’s ability to

discriminate between the known classes. There are five different types of

measures that are commonly used within the area of classification: accuracy,

information, distance, dependence and consistency. Accuracy measures directly

depend on the classifier used and reflect the predictive accuracy of the classifier

by either maximizing the accuracy rate or minimizing the error rate of

classification. Accuracy measures are widely used by researchers as the primary

measure for evaluation. The other types are measures of class separability which

Feature
Types

Discrete
(Finite)

Continuous
(Infinite)

Complex

Ordinal Nominal

 7

are maximized to yield the greatest potential for distinguishing between the

classes. Class separability can be further characterized in terms of consistency

and the classic measures of information, distance and dependence. Consistency

measures reward consistent classification of an observation into the same class as

the classifier is iteratively refined. An information measure monitors the

likelihood of an observation being classified into its true class by the use of an

uncertainty function such as Shannon’s entropy, ∑−
i

ii cPcP)(log)(2 [6].

Distance measures attempt to separate the classes as much as possible and label

an observation as belonging to its closest class. Typical distance measures

include the Mahalanobis distance [7], the Battacharyya distance [7], the Jeffries-

Matusita distance [8] and the Patrick-Fisher distance [9]. Finally, dependence

measures quantify the association or correlations between features and the classes

involved. Figure 2.2 shows the hierarchy of measures typically used in

classification.

Figure 2.2: Hierarchy of types of measures [5].

Measure

Accuracy Class Separability

Classic Measure

Information Distance Dependence

Consistency

 8

2.3 THE CLASSIFIER

A supervised classification procedure takes each unclassified observation

and maps it into the set of C known classes, assigning the observation a class

label. This process consists of the following steps: (1) determine the set of classes

that exists within the dataset, (2) select representative observations that are known

to reside in each class (subsequently these will be divided into the set of training

data and the set of testing data), (3) use the training data to estimate the

parameters of the probability density functions of the individual classes, (4) train

the classifier with the training data and evaluate the classifier with the testing

data, iterating as necessary, (5) label all unclassified observations using the

trained classifier and (6) summarize the results of the classification. This type of

classification depends on the ability to model the classes, typically using

parametric probability distributions. The classifier can be viewed as a conjecture

of the true mapping from a data observation to the correct class. Given new

unclassified observations, the classifier predicts the observation’s class. Typical

classifiers include Bayesian classifiers [10], maximum likelihood classifiers [11]

and minimum distance classifiers [12]. During classification, problems can arise

when the set of inputs includes features that are irrelevant (do not affect the

structure of the data in any way), and/or redundant (do not add any new

information to the description of the data structure). These issues are greatly

exacerbated when the input space is quite large. This is problematic both because

of computational complexity and the resulting high dimensional input observation

space is typically quite sparse.

 9

2.4 FEATURE SELECTION

Methods which overcome the problems of irrelevant or redundant features

are “input space reduction techniques.” The motivation for input space reduction

is three-fold: (1) to improve the accuracy of the chosen classifier, (2) to reduce

the data dimensionality, while simultaneously reducing the number of

observations required to appropriately train the classifier (to estimate the class

parameters), and (3) to simplify the classifier by reducing the search space that the

classifier must traverse. A welcomed side-effect is the possible reduction of the

effort required for the classifier to learn an accurate classification function

[13, 14]. Feature extraction and feature subset selection are two general

approaches to input space reduc tion. Feature extraction is the process of

extracting a set of new features from the original set of features through a

mapping or transformation, for example, the projection of the original feature

space onto a lower dimensional feature space (as in principal component

analysis). It has been shown that a classifier using irrelevant or redundant

features does not perform as well as a classifier that excludes the irrelevant or

redundant features [7]. Subset selection is an optimization problem which

involves searching the solution space of all possible subsets for an optimal or

near-optimal subset of features. Feature selection is usually directed at one of two

goals: (1) minimize the number of features selected while satisfying some

minimal level of classification capability or (2) maximize classification ability for

a subset of prescribed cardinality. Additionally, feature selection potentially

provides valuable domain knowledge about the process.

 10

Feature selection can be visualized as a search in a discrete binary space

(or Boolean hypercube) where each point depicts a feature subset whose vector of

D components identifies the members of the feature subset. For example, a 1 in

the vector’s jth position indicates the jth feature’s inclusion in the subset while a 0

in the jth position indicates its exclusion. This space can be depicted in a lattice

structure as depicted in Figure 2.3, where the top node includes all features and

the bottom node is the empty set; all other nodes within the lattice are the result of

a removal of a feature if the lattice is traversed top-down or the addition of a

feature if the lattice is traversed bottom-up. For example, if D = 4, the binary

vector (1, 0, 1, 0) depicts the feature subset which includes features one and three,

i.e. {1, 3} and is highlighted in Figure 2.3.

Figure 2.3: Four-dimensional feature selection lattice.

0000

1110 1101 1011 0111

1111

0110 0101 0011 1100 1010 1001

1000 0100 0010 0001

 11

An example of a greedy heuristic search of the feature selection lattice

used in classification is implemented as the Steepest Ascent Algorithm discussed

in [15]. This algorithm uses the Jeffries-Matusita (JM) distance as its objective

function (maximization) and assumes Gaussian class distributions to simplify

computation. In this algorithm, an initial subset is selected and evaluated; all

possible one-feature changes are considered; if an improvement can be made, the

best improvement is accepted, and the algorithm then considers all one-feature

changes from the current subset. These iterations terminate when no

improvements can be made, indicating that the process has reached a local

optimum, and return the best subset found. This type of algorithm is sensitive to

the initial subset. This weakness can be lessened by executing the algorithm

several times and comparing the resulting subsets.

Feature selection techniques are characterized either as filters, which

ignore the classifier to be used, or wrappers, which base selection directly on the

classifier.

2.4.1 Filters

Computationally more efficient than wrappers, a filter approach performs

subset selection based only on the feature qualities within the training data. Since

the classifier is ignored, there is no interaction between the biases of the feature

selector and the classifier. The quality of the best filter subset is typically not as

effective as a subset selected using a wrapper model. Two well-known filter

approaches are embodied in the RELIEF and FOCUS algorithms described in

[16]. Figure 2.4 depicts a flowchart of a filter model for feature selection.

 12

Figure 2.4: A filter model of feature selection [5].

2.4.2 Wrappers

Wrappers select a feature subset based directly on the classifier. The

training data are used to train the classifier using different feature subsets; each is

then evaluated using the testing data to find the best subset. In this way, the

biases inherent in the feature selection algorithm and the classifier strongly

interact, and the feature selection is described as being “wrapped around” the

classification algorithm. The feature subset with the highest evaluation score is

subsequently passed to the classifier to label the remaining unclassified

 13

observations. Selecting better subsets can improve the accuracy of a classifier

[17], and this is one reason that wrapper models are often preferred over filter

models. Unfortunately, depending on the computational intensity of the classifier

used and the number of original features, wrapper models can be computationally

burdensome and may be intractable for problems having a very large number of

features. Another problem associated with wrappers is that they may actually

overfit the data [17] by placing undue emphasis on random variations in training

data which yields a model that does not generalize well for new data. Figure 2.5

depicts a flowchart of a wrapper model for feature selection.

Figure 2.5: A wrapper model of feature selection [5].

 14

2.4.3 Optimal methods

Optimal feature selection methods identify the optimal feature subset

which yields the highest possible accuracy for a set of known data. Identification

of the optimal subset is guaranteed by an exhaustive search of the solution space

of all possible subsets [1]. For a very large number of features, exhaustive search

is computationally intractable.

The branch and bound (B&B) method also produces optimal features [18].

A limitation of B&B is that it guarantees the optimal subset only if the

performance measure is known to be monotonic, where the addition of features

does not deteriorate the performance measure. This condition often cannot be

satisfied. In addition, in many situations the effort associated with B&B may still

be prohibitive. Other forms of the B&B, automatic B&B and backward automatic

B&B [19], have been proposed, but still require the monotonicity property.

Approximate B&B [20] is a heuristic B&B which does not require a monotonic

performance measure but is computationally more demanding than B&B [5].

2.4.4 Sub-optimal methods

The computational complexities of optimal feature selection methods have

resulted in the acceptance of heuristic techniques that find good, near-optimal

subsets in relatively short computational times. A comparative study of several of

the well-known optimal and sub-optimal feature selection algorithms is contained

in [21]. Specifically, the authors contrasted results obtained from the following

methods: Sequential Forward/Backward Selection (SFS/SBS), their generalized

versions (GSFS(g)/GSBS(g)) and their floating point versions (SFFS/SBFS); Plus

 15

l take away r (PTA(l, r)) and its generalized version (GPTA(l, r)); versions of

B&B and relaxed B&B; a genetic algorithm; and a parallel algorithm. Genetic

algorithms were introduced for the selection of features in [22]. Simulated

annealing was used as a feature selector in [20], and the use of the TS

metaheuristic was shown as a promising approach in [23].

2.5 TABU SEARCH

Tabu Search (TS) is a metaheuristic method for solving combinatorial

optimization problems. Its first modern formulation is attributed to Glover [24].

TS differs from other search techniques in that modern versions of TS are able to

adaptively and reactively guide their search through the solution space while

allowing infeasible areas of the solution space to be traversed in its search for the

optimal solution. TS uses specialized memory structures to maintain its search

history and to avoid becoming trapped in local optima. Its popularity has grown

due to its ability to find near-optimal solutions in a short amount of time and its

adaptability to many combinatorial optimization problems, including job shop

scheduling problems [25], pickup and delivery problems [26], and communication

network problems [27, 28]. Group Theoretic TS, a version of TS that makes

extensive use of group theory has recently been developed [29, 30] and has been

successfully implemented in the aerial fleet refueling problem [31, 32], the theater

deployment vehicle routing and scheduling problem [33, 34] and the general crew

scheduling problem [35]. Another version known as Extreme Point TS [36] has

been proposed to optimize decision trees by representing the tree as a set of

 16

disjunctive linear inequalities and optimizing over these inequalities; the results

are considered promising.

TS explores from its incumbent solution, looks at neighboring solutions,

i.e., those solutions that can be reached by a single move within the specified

move-neighborhood, and moves to the neighboring solution with the best non-

tabu solution. It avoids cycling and escapes from local optima by using a tabu

list, which incorporates solution attributes of recent solutions that are forbidden

for tabu tenure future moves. An aspiration criterion may be introduced to allow

TS to make a tabu move if stipulated conditions are satisfied. TS can include

intensification and diversification elements: intensification allows a deeper

search into promising areas of the solution space, and diversification encourages

movement to yet unexplored or less explored areas of the solution space. Finally,

the search will halt and return the best solution found when a stopping criterion is

satisfied. As with all heuristic methods, the solution returned is not guaranteed to

be optimal.

To facilitate the visualization of the TS principles, its application to one of

the most researched problems in scientific literature, the combinatorial

optimization problem known as the Traveling Salesman Problem (TSP), is

discussed here. Simply stated, a single salesman is to travel to several cities,

starting from and returning to his home city. Knowing the exact distance between

each pair of cities, the salesman desires to plan his route minimizing his entire

travel-distance. The simplicity of the problem description is deceiving, as all

permutations of the cities must be implicitly examined to identify the tour of

 17

minimum length, and thus, the TSP is NP-complete [37]. When the number of

cities is large, the TSP becomes intractable. To clarify the general TS approach, a

general description of a TS implementation for the TSP is now described.

The TSP, as in all applications of TS, starts with an initial tour (solution).

The move-neighborhood is all other solutions in the solution space that are

reachable by a single move. While moves can be defined in a number of ways,

two common types of moves are known as swap-moves and insert-moves. In the

TSP, a swap-move identifies two cities within the tour and exchanges their

positions. For example, suppose for a 6 city TSP that city 1 is the salesman’s

home. Given incumbent tour 1-2-4-3-6-5, swapping cities 2 and 6 yields

1-6-4-3-2-5. An insert-move removes a single city from its current position and

inserts it in a different position. Given incumbent tour 1-2-4-3-6-5 with city 2

selected for insertion, the neighborhood tours are 1-4-2-3-6-5, 1-4-3-2-6-5,

1-4-3-6-2-5 and 1-4-3-6-5-2.

TS is aggressive and will generally choose the best non-tabu move

available within its present move neighborhood (characterized by the greatest

decrease or smallest increase in the tour length). It differs from simple classical

descent methods in that it can escape being trapped in local optima by its ability

to learn. An attribute of the new solution is identified and labeled as tabu (not

repeatable for a given number of iterations known as tabu tenure). The tabu

architecture eliminates cycling, repeatedly returning to and not being able to

escape from a local optimum, and allows the search to move away from recently

searched areas. Pure TS, a simple but cumbersome and ineffective tabu strategy

 18

memorizes all solutions (tours) visited thus far and forbids return to any such

solution; an alternative to remembering entire tours is to select an attribute, such

as the city just inserted, and then to forbid it from being moved within its tabu

tenure. Tabu status can be overridden by a move meeting the aspiration criterion.

The simplest such criterion is to allow the move when it leads to a new best

solution for the TSP. Diversification may be introduced by counting the number

of times the cities have been in particular tour positions and choosing to penalize

moves that cause higher counts to be repeated. This drives the search into

possibly new unexplored areas of the solution space. Intensification may be

implemented by returning to good solutions and searching within the vicinities of

such solutions in the hope of finding even better solutions. The stopping criterion

is often a specified number of iterations performed or number of iterations

performed with no improvement to the tour length. These strategies presented for

the TSP are only representative and in no way exhaust the great number of the

strategies that may be applied to the TSP and similar problems when using TS.

2.6 MULTIPLE CLASSIFIER SYSTEMS

In classification, it is very rare when a single classifier can be considered

the best classifier when multiple classes are present [38]. This led to the

development of a research area which focuses on developing methods that

combine a group of classifiers in such a way as to improve the accuracy of

classification relative to that of the single classifier and with greater classification

accuracy than any of the individuals within the ensemble [39]. These types of

classifiers are said to “divide and conquer” the solution space. Instead of learning

 19

one complex classifier, this family of classifiers combines many smaller, easier

classifiers into a multiclassifier system. Many multiclassifier systems have been

developed and continue to be refined; a brief history is presented in [40].

Examples of multiclassifier systems include the Bayesian Pairwise Classifier

(BPC) [2], the Bayesian Pairwise Classifier with the Fisher Discriminant (BPC-

FD) [2], and the Best-Bases Binary Hierarchical Classifier (B-B BHC) [41, 42].

Much research has been devoted to the exploitation of these multiclassifier-

improvements to overall system accuracy in an effort to develop higher quality,

more robust classifiers that can contribute to knowledge reuse and transferability

of the classifier.

 20

Chapter 3

The Binary Hierarchical Classifier

The focus of this research is multiclassifier problems with large input and

output spaces. Large input spaces require input space reduction techniques, while

large output spaces are often handled by various output space decomposition

techniques. An example of a classifier framework that transforms the feature

space and the output space simultaneously is the BHC. The BHC is studied as a

means of developing models that attain better overall classification accuracies. In

addition, the use of class dependent feature selection within the hierarchical tree

schemes is investigated for its impact on retention of domain knowledge. The

remainder of this chapter contains a discussion of the current implementation of

the BHC and an introduction to the research conducted in this study.

3.1 BINARY HIERARCHICAL CLASSIFIER FOR CLASSIFICATION

The BHC, as developed by Kumar et al. [3] for a C-class problem, forms a

binary tree-type hierarchical classifier (at each node of the tree, only two branches

are created). Sets containing more than one class are known as metaclasses and

are the internal nodes of the tree structure; sets containing individual classes are

the leaf nodes of the tree which are the final nodes of the branches. The metaclass

at the top of the tree structure includes all original classes. The internal nodes of

the tree, to include the top node, depict a two-metaclass problem that partitions

the classes at each internal node nΩ into two child nodes, 2nΩ and 2 1n+Ω , where

 21

2 2 1n n n+Ω ∪ Ω = Ω ; this is accomplished recursively at each internal node until the

leaves of the tree structure contain the individual classes and no more partitioning

can be executed. Ultimately, this framework yields a hierarchical tree structure of

C-1 internal nodes (two-metaclass problems) and C leaf nodes. Figure 3.1 depicts

an example of a BHC tree structure with 5 classes.

Figure 3.1: Example of a BHC with 5 classes [2].

In its current implementation, a feature extractor at each internal node

extracts those features that best discriminate child node pairs in a reduced input

space. Kumar et al. apply the Fisher discriminant as the feature extractor.

Additionally, it is often easier for a classifier to distinguish between two subsets

of classes than it is for the classifier to distinguish between all classes

simultaneously, thus decomposing (and reducing) the output space. Therefore,

the best child node pair which is that pair with the strongest associations based on

 22

a posterior probability based criterion, is chosen and the parent node branches on

those child nodes.

Based solely on the training data, the construction of the BHC tree can be

accomplished in two ways: a top-down approach or a bottom-up approach. The

top-down version of the BHC tends to be less greedy than the bottom-up version,

and the two versions often yield different results. The top-down approach starts

with all of the classes in a single metaclass which is partitioned into two child

nodes (subsets) that can be depicted as having three possible combinations of

child nodes: leaves only, i.e. two single class child nodes if the parent metaclass

is comprised of only two classes; smaller metaclasses, i.e. child nodes made up of

more than one class but fewer classes than the metaclass that serves as its parent,

so that 2 2 1n n n+Ω ∪ Ω = Ω if the parent metaclass is made up of four or more

classes; or some combination of a leaf and metaclass if the parent metaclass is

comprised of three or more classes. The bottom-up version of tree construction is

initiated with all the individual classes as leaf nodes and successively combines

those leaves, metaclasses, or combination of leaf and metaclasses determined to

be the least distinguishable from each other. This agglomeration is continued

until the single metaclass containing all the classes is attained. Once the tree is

built, the classifier uses the structure for classification of unlabeled observations.

Refer to [2, 3] for more information on the BHC.

3.1.1 Top-down BHC

The top-down BHC framework uses the Generalized Associative Modular

Learning System (GAMLS) [43], a deterministic annealing-type algorithm.

 23

GAMLS is used to partition each metaclass into two child nodes until each branch

of the tree is reduced to a single class at the leaves. This process decomposes the

output space at each branching of the tree by reducing the number of possible

allocations of an observation to two choices at each branch of the tree.

Each individual class contained in a metaclass is ultimately assigned to

one, and only one, of the two child nodes. This allocation is accomplished by

computing the posterior probabilities of each class ϖ ∈Ω belonging to either

child node. This requires allocating the classes to nodes and estimating the

parameters for the child nodes. Each partition needs to be explored to ensure that

the best partition was found. Instead of allocating classes directly, GAMLS

“softly associates” classes with child nodes by associating one class with one of

the subordinate metaclasses with probability 1 while all other classes are equally

associated with each subordinate metaclass with probability .5. The algorithm

updates these associations at each step until the associations are clear, i.e., close to

1 for “associated with” and close to 0 for “not associated with”. For the metaclass

with C > 2, GAMLS execution can be summarized as: (1) the Fisher feature

extractor reduces the feature space to that which maximally discriminates between

the two “soft” metaclasses using the current associations; (2) the mean log-

likelihoods of classes in the feature space are computed, (a univariate or

multivariate Gaussian distribution is assumed); (3) associations are updated by

maximizing the weighted sum of the log- likelihoods subject to an annealing

constraint; (4) Steps 1 through 3 are repeated until the incremental increase in

the defined gain is insignificant; (5) the stopping threshold is reached then the

 24

execution halts returning the current associations, else the temperature is cooled

and execution returns to the Fisher feature extractor. (These steps are displayed in

Figure 3.2.) As the temperature cools, the associations (posterior probabilities)

approach 0 or 1. When the algorithm terminates, the partition is realized and the

metaclass is split between those classes that most closely associate with αΩ and

those that most closely associate with βΩ . This splitting is continued at all

internal nodes until only leaf nodes remain. Unclassified observations are

ultimately classified using the resulting binary hierarchical classifier.

Figure 3.2: Flowchart of GAMLS execution.

 25

3.1.2 Best Bases BHC

An approach referred to as “best bases feature extraction”, was developed

by Kumar et al. [41] for a Bayesian Pairwise Classifier (BPC) to reduce the input

candidates in high dimensional remote sensing data. Many of the original

features of hyperspectral data, which are comprised of potentially hundreds of

narrow, contiguous windows of the electromagnetic spectrum, are highly

correlated and provide redundant information. Implemented in both a bottom up

band aggregation mode and a top down splitting mode, the method seeks to

reduce the number of highly correlated features while maintaining good

discrimination between pairs of classes in the BPC. The approach was modified

by Morgan et al. [42, 44] and incorporated in the BHC. In this bottom up

implementation of best bases feature extraction, the features which are contiguous

in the spectrum and are highly correlated are combined to form a class dependent

feature “group” at every node of the BHC. Spectrally adjacent feature groups are

successively combined until some user defined threshold is satisfied. The

resulting best bases features then replace the original features, thereby reducing

the dimensionality of the input space while exploiting the correlation structure

inherent in the data.

3.2 RESEARCH

In this study, Tabu Search (TS) was investigated as a means of improving

classification accuracies within the BHC and Best-Bases BHC frameworks. TS

was first implemented as a means of generalizing the greedy feature selection

within a specified tree structure obtained by the original BHC and Best Bases

 26

BHC. Feature selection extracts the most useful bands/band groups from the

feature vector and presents them to the classifier as a vector of lower dimension

whose elements retain only the most significant characteristics of the original

input space. Feature selection also attempts to remove any redundant and/or

irrelevant features. TS uses the greedy feature selection results as an initial

solution and searches the solution space for subsets of features (original features

for the BHC and combined features for the Best Bases BHC) which yield higher

classification accuracies while leaving the hierarchical tree unchanged.

 TS is then investigated as the feature selector at each internal node as the

hierarchy is being constructed. In this configuration, TS aides in the construction

of the binary hierarchical structure and can be applied when using either the

original features or the best bases combined features.

While class hierarchies such as those resulting from the BHC generally

achieve good classification accuracies, leaf nodes that are statistically close to

each other can reside in two unrelated branches. The BHC algorithms do not

have the ability to examine the resulting tree structure and to rebuild/rearrange the

branches and leaf nodes when the algorithm is unable to effectively

partition/merge the metaclasses. The hierarchy, once built, is fixed without any

possibility of recourse. This second application of TS provides a method that

allows hierarchical classification algorithms to rearrange the resulting class

hierarchies through the application of a combinatorial search through the solution

space containing all possible class hierarchies. For this component of the study,

the tree structure from a hierarchical classifier like the BHC becomes the initial

 27

incumbent solution for the TS algorithm and is stored as the “best solution found

thus far”.

The primary goals of this research were to extend knowledge and

understanding in the areas of classification and to implement TS within the

hierarchical classification framework in the quest for increased classification

accuracies. A secondary goal is to select a meaningful set of features that provide

domain knowledge. Finally, robustness of classifiers is important as values of the

inputs used to train and test the classifier may not be representative of the

population, or the classifier may need to be applied to a similar dataset for which

no training data are available. This work should contribute to that longer term

goal.

 28

Chapter 4

The BHC with Tabu Search Feature Selection (TS-FS)

The output of the BHC is a binary hierarchical tree that is used to assign a

class label to observations whose class is unknown. A typical BHC class

hierarchy is displayed in Figure 4.1 for a dataset with five classes where the root

node includes all C classes, the leaf nodes are the individual classes, and the

internal nodes are metaclasses or subsets of the original set of classes. Starting at

the root node, each internal node is partitioned into two child nodes, two mutually

exclusive subsets of the classes at that node, where 2 2 1n n n+Ω ∪ Ω = Ω . The

partitioning continues until the destination node for each branch of the tree results

in a leaf node, yielding a binary class hierarchy with 2C-1 nodes (C leaf nodes

and C-1 internal nodes).

Figure 4.1: Typical BHC hierarchical tree for a dataset with five classes.

 29

Once the BHC class hierarchy is constructed using the entire feature set,

an option using feature selection then iteratively examines each internal node,

selecting that subset of features which is most useful for discriminating between

each internal node’s child nodes. This feature selection option is currently

accomplished in the operational code [4] by a greedy forward feature selection

algorithm. Considering the particular classes present in the current metaclass, the

first feature included is the feature that individually yields the highest

classification accuracy. The second feature that is considered for inclusion in the

feature subset is that feature which, when included, maximizes a log-odds

relevance function; the feature is subsequently selected if the classification

accuracy at the current node is increased more than an arbitrarily selected

threshold (.01). This process continues until the increase in accuracy is less than

the defined threshold. Here, features are only added to the subset, never removed.

Once the hierarchy is constructed and all metaclass features selected, unclassified

observations are labeled as described in Section 3.1.1.

4.1 TABU SEARCH FEATURE SELECTION

A feature subset selection algorithm attempts to find an optimal or near-

optimal subset of features. In its simplest implementation, Tabu Search Feature

Selection (TS-FS) is a post-processing algorithm that operates on, but does not

change the class hierarchy developed by the original BHC. It can add or remove

features from the feature subset during the search.

The new TS based feature selection algorithm developed in this study

starts with the root node and travels down the hierarchical tree, iteratively

 30

considering each internal node for feature subset selection. At the root node, the

TS-FS is initiated using the BHC feature subset as an incumbent solution. The

objective is to maximize the classification accuracy, i.e., the percentage of correct

labels of classes that are members of the metaclass at the current node. This

accuracy is computed using the same classification scheme as the original BHC

and the same training data. If the classification accuracy for any node is perfect

(100%), the node is skipped. The move neighborhood selected for the TS

procedure consists of the union of all possible swaps and inserts of features that

can be achieved from the current incumbent solution. The swap neighborhood

considers all possible single-feature swaps between the sets of used and unused

features. This neighborhood does not change the current number of features used.

The insert neighborhood considers all single-feature insertions both from the set

of selected features into the set of unused features and from the set of unused

features into the set of currently selected features. This neighborhood is either

incrementing or decrementing a feature from the current set of features selected at

the current node. If a feature to be included in the feature subset is highly

correlated with any features already present (exceeds a user defined correlation

threshold), the move is not allowed. This prohibition, which was included for

analysis of remotely sensed hyperspectral data, ensures that features being

considered for inclusion are not redundant. The maximum number of features

allowed at any node is also user-defined. It can be unrestricted allowing greater

search flexibility, or the user may define a maximum number of features based on

knowledge of the problem. Other user-defined parameters include the maximum

 31

tabu tenure, the minimum tabu tenure, the initial tabu tenure (a number between

the maximum and minimum defined tabu tenures), the number of iterations

allowed with no improvements before halting the execution, and the maximum

allowable number of iterations. The tabu list is initialized as a column vector of

zeros with a row for each feature. When a feature is selected for movement either

into or out of the subset of features, that feature is marked as tabu and the tabu list

records the iteration number of that feature’s entry into or exit from the list. That

feature cannot be moved again until it has been on the tabu list for the number of

iterations specified by the tabu tenure. An exception to this rule is made when

moving the feature results in a classification accuracy that is higher than any other

accuracy previously achieved. In this case, the tabu status is overruled, and the

move is allowed.

 The user defined maximum and minimum tabu tenure are employed to

determine an adaptive tabu tenure strategy. The tabu tenure is never allowed

outside of the boundaries defined by maximum and minimum tabu tenures. An

improving classification accuracy decrements (if possible) the tabu tenure to

allow an intensified search in the current area of the solution space. If no

improving classification accuracies are found, the tabu tenure is incremented (if

possible) to encourage the search to leave the current area of the solution space

and diversify into other unexplored areas of the solution space.

 Given an incumbent solution, the best non-tabu move within the move

neighborhood is selected. (Since the best non-tabu move is not necessarily an

improving move, TS can escape from local optima.) If the current classification

 32

accuracy is the highest value yet achieved, the new subset is recorded as the best

yet found. The next iteration is performed. Iterations continue until either the

user-defined number of iterations has been completed or no improvements have

been found within the specified maximum-number-of- iterations-with-no-

improvement. When the TS terminates for the current node, the best subset of

features is recorded for that node, and the algorithm progresses to the next node

for feature selection unt il all of the nodes have been processed. A flowchart of

the algorithm is displayed in Figure 4.2.

Figure 4.2: Flowchart of TS-FS Algorithm.

When the TS-FS is completed for each node, novel observations are

classified using the binary hierarchical tree with feature subsets selected by TS.

 33

All algorithms were executed using MATLAB® student version 6.0.0.42a, release

12 dated 13 November 2000 with the Pentium IV patch applied and implemented

on a personal computer with an Intel® Pentium® IV, 2.66GHz and 512 Mb of

RAM; all execution times reported are in reference to this system.

4.2 APPLICATION OF TS-FS ALGORITHM TO STATIC TREES

The TS-FS algorithm was applied to the BHC tree obtained from three

datasets: multispectral and hyperspectral remotely sensed data acquired over

Botswana and a standard character recognition dataset.

4.2.1 Botswana Advanced Land Imager (ALI) Dataset

The Botswana multispectral data were acquired by the Advanced Land

Imager (ALI) aboard the Earth Observer 1 (EO1) satellite on 31 May 2001. The

mission is being flown to evaluate experimental sensor technology for future

space missions. For example, ALI is a prototype sensor for the Landsat Data

Continuity Mission (LDCM). The array of data can be displayed as an image

where each pixel represents a vector-valued observation. The data cover a subset

of the Okavango Delta of Botswana that is undergoing change due to

anthropogenic and natural processes such as seasonal flooding. A small subset of

the data is displayed in Figure 4.3 to illustrate the difficulty of land cover

classification in this particular area.

 34

Figure 4.3: False color RGB composite (bands 4p, 5 and 3) of subset of

Botswana ALI data.

Data were pre-processed by the UT Center for Space Research (CSR)

prior to analysis in this study [45]. The ALI data consist of observations from 23

identified classes representing the land cover types in the area, each with 9 integer

features which represent the spectral reflectance of the land cover types within

contiguous bands of the visible and near infrared spectrum. The class numbers,

names and number of ground truth observations are listed in Table 4.1. In

addition to vegetation, soils and water, three types of floodplain are identified:

floodplain1 (class 17) is the primary floodplain, floodplain2 (class 18) represents

the seasonal floodplain, and floodplain3 (class 19) is considered to be a secondary

floodplain. In addition, two fire scar classes are identified: firescar1 (class 22)

 35

was recently burned, whereas firescar2 (class 23) was previously burned and

exhibits some patches of new vegetation growth. CSR provided ten partitions of

the data, where each class was randomly sampled and the data partitioned such

that 50% of the data were identified for the training of the classifiers and the

remaining 50% identified for the subsequent testing of the classifiers. These ten

datasets were maintained, and the same testing/training data utilized for each of

the experiments labeled ALI1-ALI10. Appendix A contains selected results

(class hierarchies and confusion matrices) for this dataset. Because the training

and test data are spatially co- located in regions of known classes, accuracies can

be inflated in remote sensing applications. For this reason, an additional

independent test set was also provided, and data were classified as novel

observations.
Class # Class Name Training Sample Size

1 north riparian 157
2 south riparian 193
3 short mopane 303
4 mopane (dense) 249
5 acacia mix 254
6 woodland mix 201
7 acacia woodlands 149
8 acacia shrublands 134
9 acacia grasslands 171
10 mopane/pechuel/grass mix 164
11 grass/pechuel mix 170
12 dry grasses 252
13 island interior 166
14 exposed soil 118
15 reeds1 192
16 backswamp 233
17 floodplain1 202
18 floodplain2 193
19 floodplain3 340
20 water 241
21 aquatic vegetation 151
22 firescar1 248
23 firescar2 156

Table 4.1: Class information for the Botswana ALI dataset.

 36

4.2.2 Botswana Hyperion Dataset

The Hyperion sensor on EO-1 is the first hyperspectral sensor successfully

flown in space. It acquires data simultaneously with ALI, but over a smaller area

(7.5 km vs. 37 km strip width) that is shifted slightly to the west as the telescopes

for the sensors are not co-aligned. The width of the Hyperion strip is smaller

because the number of bands is more than 20 times that of ALI, thereby resulting

in a dramatic increase in the amount of data recorded. ALI and Hyperion cover

the same range of the electromagnetic spectrum [46]. The data were provided to

the study after extensive pre-processing was completed by CSR. The Hyperion

dataset consists of observations from 14 identified classes representing the land

cover types in the area studied, each with 242 candidate features. Uncalibrated

and noisy bands that cover water absorption features are removed, and the

remaining 145 bands are included as candidate features: [10-55, 82-97, 102-119,

134-164, 187-220]. The class numbers, names and number of ground truth

observations are presented in Table 4.2. As with the ALI, CSR provided ten

randomly sampled partitions of the data, which were subdivided into 50% for

training and 50% for testing the classifiers, and an independent test set. These

data splits were maintained throughout the study and are labeled HYP11-HYP20.

Selected results (class hierarchies and confusion matrices) for this dataset are

contained in Appendices B and C.

 37

Class code Class Training sample size

1 water 270
2 hippo grass 101
3 floodplain grasses1 251
4 floodplain grasses2 215
5 reeds1 269
6 riparian 269
7 firescar2 259
8 island interior 203
9 acacia woodlands 314
10 acacia shrublands 248
11 acacia grasslands 305
12 short mopane 181
13 mixed mopane 268
14 exposed soils 95

Table 4.2: Class information for the Botswana Hyperion dataset.

4.2.3 Letter Recognition Dataset

The letter recognition data were obtained from the University of

California, Irvine (UCI) [47] Machine Learning Repository with the title, Letter

Image Recognition Data. This dataset consists of 20,000 instances, where

typically the first 16,000 are used for training and the last 4,000 for testing; this

partition was followed for this study. The class labels are contained in Table 4.3.

 38

Class # Class Name Training Sample Size Testing Sample Size
1 A 633 156
2 B 630 136
3 C 594 142
4 D 638 167
5 E 616 152
6 F 622 153
7 G 609 164
8 H 583 151
9 I 590 165
10 J 599 148
11 K 593 146
12 L 604 157
13 M 648 144
14 N 617 166
15 O 614 139
16 P 635 168
17 Q 615 168
18 R 597 161
19 S 587 161
20 T 645 151
21 U 645 168
22 V 628 136
23 W 613 139
24 X 628 159
25 Y 641 145
26 Z 576 158

Table 4.3: Class information for the letter recognition dataset.

Each instance is a black-and-white rectangular pixel display of one of the

26 capital letters of the English alphabet (see Figure 4.4 for example letters which

yielded individual data observations) and is described by 16 integer-valued

numerical attributes (statistical moments and edge counts), or features (see Table

4.4). The best accuracy obtained for this dataset is reported in the literature as “a

little over 80%” [47]. Confusion matrices for this dataset can be found in

Appendix D.

 39

Figure 4.4: Examples of letters which yielded individual data observations for

the letter recognition dataset [2].

Feature # Feature Name Description

1 x-box horizontal position of box
2 y-box vertical position of box
3 width width of box
4 high height of box
5 onpix total # on pixels
6 x-bar mean x of on pixels in box
7 y-bar mean y of on pixels in box
8 x2bar mean x variance
9 y2bar mean y variance
10 xybar mean x y correlation
11 x2ybr mean of x*x*y
12 xy2br mean of x*y*y
13 x-ege mean edge count left to right
14 xegvy correlation of x-ege with y
15 y-ege mean edge count bottom to top
16 yegvx correlation of y-ege with x

Table 4.4: Feature information for the letter recognition dataset.

 40

4.3 IMPLEMENTATION OF TS-FS ALGORITHM AND RESULTS

The TS parameters were tuned using the first experiment for the ALI and

Hyperion datasets. The parameters were then used for the remainder of the

experiments. For the letter recognition dataset, the parameters were tuned with

the single data partition.

4.3.1 Feature Selection Results for ALI Remotely Sensed Data

Each of the ten datasets (experiments) was analyzed by the BHC, both

with and without the original feature selection (FS) method. The TS-FS was then

performed on the static tree structures output by this algorithm using the features

selected by the greedy algorithm as the TS starting solutions. The overall

classification accuracies for each of the algorithms are displayed in Table 4.5.

Tabu tenure was set at 3. Because this dataset has only 9 features, neither the

correlation check for inclusion of new features nor the adaptive tabu tenure was

utilized. The stopping criterion was set at 30 iterations, and the maximum

number of iterations to continue with no improvements was set at 10.
Experiment BHC BHC FS BHC TS-FS

ALI1 88.72 / 72.82 86.38 / 69.18 88.59 / 72.74
ALI 2 87.20 / 71.71 85.30 / 64.92 89.71 / 72.20
ALI 3 86.29 / 69.69 86.64 / 68.16 89.88 / 71.20
ALI 4 86.60 / 70.96 85.99 / 68.62 90.01 / 71.69
ALI 5 88.33 / 73.33 86.34 / 67.73 90.06 / 73.36
ALI 6 87.64 / 73.63 85.82 / 66.97 89.32 / 72.66
ALI 7 86.86 / 70.96 87.68 / 67.48 90.06 / 71.90
ALI 8 85.82 / 75.03 84.48 / 71.82 88.28 / 75.16
ALI 9 87.25 / 69.61 86.73 / 71.39 89.67 / 70.64

ALI 10 88.98 / 72.68 87.42 / 69.37 89.75 / 72.09
Average 87.37 / 72.04 86.28 / 68.56 89.53 / 72.36

Standard Deviation 1.05 / 1.76 0.95 / 2.04 0.62 / 1.25
Table 4.5: BHC, BHC FS and BHC TS-FS overall experiment classification

accuracies (%) for Botswana ALI testing/independent test data.

 41

The original BHC utilizes the full set of features (weighted according to

the Fisher projection) and consistently yields higher accuracies than the BHC with

greedy feature selection. The goal of both the original FS and TS-FS are to

reduce the number of features, both to improve interpretability and increase

robustness of the classifier. In every experiment (using the test data), the class

hierarchy utilizing the TS-FS resulted in higher overall classification accuracies

than the BHC with the greedy feature selection by an average of 3.26% per

experiment, and in 9 out of the 10 experiments it yielded higher overall

classification accuracies than the BHC by an average of 2.16% per experiment

(only experiment ALI1 resulted in a lower overall accuracy). Even more

significantly, standard deviation of the classification accuracies was also reduced

relative to both the BHC and BHC FS. For the testing data, the standard deviation

of the accuracies for the TS-FS was only ~60% of that of the BHC and ~65% of

that of the BHC-FS. For the independent test data it was ~70% of that obtained

by the BHC and ~60% of that for BHC-FS. Thus, TS-FS method yielded a more

stable set of features. The tree structures had 22 internal nodes consisting of

metaclasses where the feature selection was implemented. On average per class

hierarchy, compared to the results of the greedy feature selection: no feature

selection was performed at 4 of the metaclass nodes because the classification

accuracy at the nodes was 100%; feature selection was performed on 18 of the

metaclass nodes, and of these the classification accuracy at 16.3 of the metaclass

nodes was improved by an average of 1.65% per metaclass with 3.8 of the nodes

improving to 100%; and the classification accuracy at 1.7 of the metaclass nodes

 42

could not be improved upon using tabu search feature selection. Of a total 198

possible features per hierarchy (9 features per metaclass node), the greedy feature

selection chose an average of 70 per hierarchy while the TS-FS (starting with the

features selected by the greedy algorithm) chose an average of 103.7 features per

hierarchy and maintained an average of 55.7 of the greedy features per hierarchy.

The first feature selected by the greedy algorithm at each metaclass is that feature

which is individually the most significant contributor to classification accuracy;

these first-chosen features were discarded by the TS feature selector an average of

4.8 times per tree in order to find better feature subsets and to attain better

classification accuracies at the metaclasses. Given that these features are

considered to be the “most important” in one sense, this clearly illustrates the

value of eliminating features subsequent to their initial selection. Using the

independent test data, the BHC TS-FS resulted in the highest overall average

accuracy of 72.36%. Figure 4.5 is an example of the classification of the data

subset from Figure 4.3.

 43

Figure 4.5: Example of a classified subset using the BHC TS-FS classifier

(experiment ALI7: test set accuracy 90.06%, independent test set
accuracy 71.90%).

The average classification accuracies for each class for each algorithm are

displayed in Table 4.6 highlighting the highest average accuracy per class. Each

of the algorithms performs well in classifying selected classes, but the TS-FS is

able to classify a majority of the classes more consistently for this dataset using

both the test and independent test data. While the standard deviations of the class

classification accuracies are comparable for the BHC and the BHC TS-FS, there

was a reduction relative to the BHC FS. For the test data, the standard deviation

 44

of the class accuracies for the TS-FS was ~70% of that of the BHC FS, and for the

independent test data, it was ~65% of that for the BHC FS, again indicating that

the TS-FS yielded a more stable set of features than the BHC FS. Class 8, which

is consistently classified with low accuracy by all algorithms, is a mixed class.

Class # Class BHC BHC FS BHC TS-FS

1 north riparian 76.93 / 54.05 72.81 / 56.49 75.38 / 60.54
2 south riparian 88.12 / 85.08 88.23 / 69.59 89.38 / 72.18
3 short mopane 95.76 / 88.48 91.52 / 87.63 95.25 / 88.53
4 mopane (dense) 82.59 / 77.88 82.41 / 75.96 87.49 / 75.05
5 acacia mix 87.96 / 92.82 87.24 / 87.39 88.67 / 90.48
6 woodland mix 96.00 / 87.50 96.10 / 98.08 97.10 / 98.42
7 acacia woodlands 84.98 / 38.54 84.19 / 51.58 87.15 / 46.32
8 acacia shrublands 66.26 / 40.17 65.23 / 36.39 69.69 / 41.37
9 acacia grasslands 84.95 / 16.84 72.71 / 18.51 78.00 / 17.59
10 mopane/pechuel/grass mix 94.02 / 93.06 90.36 / 92.50 92.79 / 93.06
11 grass/pechuel mix 88.71 / 85.71 90.95 / 94.70 91.41 / 93.34
12 dry grasses 81.74 / 88.43 76.68 / 77.36 82.13 / 83.72
13 island interior 87.47 / 76.15 87.48 / 76.80 87.48 / 75.60
14 exposed soil 79.67 / 63.63 94.56 / 79.84 92.86 / 75.97
15 reeds1 93.34 / 95.03 89.38 / 87.89 93.87 / 91.64
16 backswamp 84.83 / 70.00 77.66 / 55.00 84.84 / 75.04
17 floodplain1 81.98 / 34.70 87.71 / 27.07 94.43 / 37.38
18 floodplain2 85.20 / 69.92 77.82 / 59.84 92.20 / 77.34
19 floodplain3 80.14 / 59.43 83.00 / 52.20 86.81 / 55.69
20 water 96.93 / 90.51 97.84 / 86.87 96.92 / 88.82
21 aquatic vegetation 82.67 / 82.22 96.94 / 90.15 89.48 / 86.26
22 firescar1 99.28 / 65.13 98.80 / 61.91 98.96 / 54.47
23 firescar2 98.31 / 99.20 89.35 / 64.63 97.44 / 90.37
 Average 86.86 / 71.93 86.04 / 69.06 89.12 / 72.57
 Standard Deviation 4.27 / 5.27 5.33 / 8.34 3.86 / 5.36

Table 4.6: BHC, BHC FS and BHC TS-FS average testing/independent test
classification accuracies (%) by class for Botswana ALI data.

For the 10 experiments, the BHC constructed 7 different class hierarchies,

and no hierarchy was duplicated more than twice. A representative class

hierarchy is displayed in Figure 4.6. The partition of the root node is identical for

all of the experiments; subtle differences in the structure become apparent at and

 45

below the third level of the trees. Closer inspection of the trees reveals that the

acacia shrublands (class 8) was paired with four different classes; this result is not

unexpected, as accuracies listed in Table 4.6 reflect that this class is the most

difficult for each of the algorithms to classify using the test data. Exposed soil

(class 14), which is not closely related phenologically to any other class, was

assigned to two different major branches of the class hierarchies in different

experiments. While the BHC class hierarchies differ with respect to the exposed

soil class, the feature selection is able to isolate those features that are useful for

labeling the class and to improve the accuracies for this class. Interestingly, when

class signatures are quite similar (e.g. acacia grasslands (class 9) and the dry

grasses (class 12)), feature selection may tend to exacerbate the problem of

misclassification. This problem is illustrated in Figure 4.7, which contains plots

of the training data for experiment ALI8. For illustration of the overall within-

class variation, all class 9 training observations are plotted with the class means

for classes 9 and 12. Classes 9 and 12 are paired on 9 of the 10 hierarchies, with

the acacia grasslands most often misclassified as dry grasses for both test and

independent test data due to their similar patterns and variations in the

observations sampled for training and test data. When distinguishing between

classes 9 and 12, the greedy feature selection generally tended to choose the

features 2, 4, 8 and 9 while the TS-FS most often chose features 1, 4, 5, 6 and 9.

This difference is significant for such a small number of total features.

 46

Figure 4.6: Representative BHC tree structure for the Botswana ALI dataset.

Class 9 Observations & Mean,Class 12 Mean
Experiment ALI18, Training Data

0
200
400
600
800

1000
1200
1400
1600
1800

1 3 5 7 9
Features

V
al

u
es

Class 9 Obs

Class 9 Mean

Class 12 Mean

Figure 4.7: Plot of experiment ALI8 training data: class 9 Observations and

mean, class 12 mean.

4.3.2 Feature Selection Results for Hyperion Remotely Sensed Data

The Hyperion experiments were also analyzed with the BHC, with and

without feature selection. As with the ALI data, the TS-FS was then performed

 47

on the static tree structure utilizing the features output by the greedy feature

selection algorithm as its starting solution. The overall classification accuracies

for each of the experiments are contained in Table 4.7. Dynamic tabu tenure was

initialized at 5 and allowed to range from 3 to 10. Because this dataset has 145

total candidate features, the correlation check for inclusion of new features was

utilized. The TS stopping criterion was set at 30 iterations and the maximum

number of iterations to continue with no improvements was set at 10.

Experiment BHC BHC FS BHC TS-FS

HYP11 92.71 / 61.23 89.13 / 66.32 93.51 / 60.87
HYP12 88.76 / 56.87 86.53 / 63.44 89.75 / 67.52
HYP13 88.08 / 69.36 90.30 / 69.36 92.77 / 64.08
HYP14 91.91 / 60.07 86.72 / 62.88 92.59 / 58.35
HYP15 89.99 / 58.55 85.98 / 59.47 90.67 / 62.07
HYP16 91.85 / 60.63 87.34 / 64.04 92.16 / 66.92
HYP17 91.60 / 59.43 86.29 / 62.15 92.90 / 61.35
HYP18 91.91 / 60.59 90.80 / 68.88 92.34 / 63.88
HYP19 89.19 / 63.52 85.05 / 68.92 89.13 / 63.40
HYP20 90.67 / 62.07 85.55 / 63.04 91.54 / 62.15

Average 90.67 / 61.23 87.37 / 64.85 91.74 / 63.06
Standard Deviation 1.58 / 3.39 2.01 / 3.36 1.44 / 2.75

Table 4.7: BHC, BHC FS and BHC TS-FS overall experiment classification
accuracies (%) for Botswana Hyperion testing/independent test
data.

In every experiment using the test data, the tree structure utilizing the TS-

FS resulted in higher overall classification accuracies than the BHC with the

greedy feature selection by an average of 4.33% per experiment, and in 9 out of

the 10 experiments it resulted in higher overall classification accuracies than the

BHC by an average of 1.07% per experiment (only experiment HYP19 resulted in

a lower overall accuracy). In addition, the standard deviation of the classification

accuracies was reduced relative to the other algorithms: for the test data, the

 48

standard deviation of the accuracies for the TS-FS was ~90% of that of the BHC

and ~70% of that of the BHC FS, and for the independent test data, the standard

deviation was ~80% of both the BHC and BHC FS. The class hierarchies had 13

metaclasses where feature selection was implemented. On average per hierarchy,

when compared with the results of the greedy feature selection: no feature

selection was performed at 3.6 of the metaclass nodes because the classification

accuracy was 100%; feature selection was performed on 9.4 of the metaclass

nodes and of these the classification accuracy at all of the metaclass nodes was

improved by an average of 2.03% per metaclass (with 2.7 of the nodes improving

to 100% with the test data). With a maximum of 1885 features per tree (145

features per metaclass node), the greedy feature selection chose an average of

40.6 per tree while the TS-FS chose an average of 62.5 features per tree,

maintaining an average of 22.7 of the greedy features per class hierarchy. The

greedy first-chosen features at each metaclass were discarded by the TS-FS an

average of 6.6 metaclasses per tree.

The average classification accuracies for each class for each algorithm are

listed in Table 4.8 highlighting the highest average accuracy per class. The BHC

and the BHC with TS-FS both outperform the BHC with greedy feature selection.

The BHC is able to classify a majority of the classes more consistently than the

BHC with TS-FS for this dataset; however, when the BHC using TS classifies an

individual class with higher average accuracy, it is able to do so with greater

improvements in the accuracies (for example, class 14 BHC accuracy: 76.16%

and BHC TS-FS accuracy: 98.73%). When the BHC results in higher class

 49

accuracy than the BHC TS-FS, it averages 1.56% improvement, while the BHC

TS-FS averages 5.10% better than the BHC for individual average class

accuracies. The standard deviations of the class classification accuracies are

somewhat elevated due to the large differences in the capabilities of individual

experiments to classify some individual classes. For example, for the BHC,

experiment HYP13 classifies exposed soil (class 14) with an accuracy of 25.5%

while experiment HYP18 is able to classify it with an accuracy of 89.4%. Using

the same class hierarchy and the same training/testing data, the TS-FS is able to

increase the exposed soil classification accuracies for these experiments to 97.9%

and 100% respectively, while greatly reducing the standard deviation for this

particular class from 20.41 (BHC) to 2.67 (TS-FS). Particularly significant, were

the reductions in standard deviations for the testing data, where the average

standard deviation of the accuracies for TS-FS was ~78% of that of the BHC and

~50% of that of the BHC FS.
Class # Class BHC BHC FS BHC TS-FS

1 water 100.00 / 99.92 99.41 / 98.81 99.41 / 99.53
2 hippo grass 87.60 / 15.68 96.80 / 51.29 97.60 / 40.12
3 floodplain grasses1 95.12 / 81.39 88.16 / 51.58 96.08 / 53.93
4 floodplain grasses2 96.92 / 72.00 96.34 / 81.88 96.37 / 66.61
5 reeds1 86.03 / 48.93 72.25 / 43.39 84.71 / 58.69
6 riparian 80.09 / 60.76 67.69 / 56.87 83.43 / 63.56
7 firescar2 98.96 / 82.27 93.55 / 88.58 97.20 / 88.01
8 island interior 95.05 / 84.90 93.75 / 83.06 94.35 / 78.98
9 acacia woodlands 88.07 / 69.27 87.01 / 69.67 86.56 / 64.50
10 acacia shrublands 90.86 / 86.74 80.98 / 83.32 87.42 / 85.74
11 acacia grasslands 93.02 / 18.49 90.31 / 30.61 90.45 / 26.68
12 short mopane 87.66 / 66.67 91.34 / 72.75 92.68 / 76.80
13 mixed mopane 84.40 / 57.86 84.34 / 61.20 90.58 / 49.53
14 exposed soils 76.16 / 77.98 98.30 / 99.89 98.73 / 99.78
 Average 90.00 / 65.92 88.59 / 69.49 92.54 / 68.03
 Standard Deviation 4.82 / 8.48 7.39 / 9.51 3.77 / 8.54

Table 4.8: BHC, BHC FS and BHC TS-FS average testing/independent test
classification accuracies (%) by class for Botswana Hyperion
data.

 50

For the 10 experiments, the BHC constructed 8 different class hierarchies,

and no hierarchy was duplicated more than twice. A representative class

hierarchy is displayed in Figure 4.10. All of the hierarchies do not share the same

partition of the root node. Experiments HYP12 and HYP19 place the acacia

woodlands (class 9) with the left branch while all other experiments place it with

the right branch. Experiment HYP12 and HYP19 yield the two lowest overall

BHC TS-FS classification accuracies while yielding two of the three lowest

accuracies for the BHC. Discrimination of acacia shrublands and woodlands is

greatly improved in the Hyperion data, presumably due to the increased number

of bands. Labeling of acacia grasslands (class 11) is still problematic for the

independent test set, as is hippo grass (class 2). This may be due to incorrect

labeling of the independent test data, which have not been field validated, changes

in signature, or overtraining. The most difficult class for the Hyperion data to

discriminate in the test data is the riparian (class 6), which also proved a challenge

when classifying the ALI data (north riparian was the second most difficult to

classify). The firescar and water classes were most consistently classified with a

high degree of accuracy for both the Hyperion and ALI data. These results are

not unexpected as the plots of the class means in Figures 4.8 and 4.9 show that the

spectra of the most difficult classes to label are clustered toward the centers of

plots.

 51

Hyperion Data Class Means

0

1000

2000

3000

4000

5000

6000

7000

0 50 100
Feature

V
al

ue

water

hippo grass

floodplain grass1

floodplain grass2

reeds1

riparian

firescar2

island interior

acacia woodlands

acacia shrublands

acacia grasslands

short mopane

mixed mopane

exposed soils

Figure 4.8: Plot of Hyperion data class means.

ALI Data Class Means

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9

Features

V
al

u
e

north riparian

south riparian

short mopane

mopane (dense)

acacia mix

woodland mix

acacia woodlands

acacia shrublands

acacia grasslands

mopane/pechuel/grass mix

grass/pechuel mix

dry grasses

island interior

exposed soil

reeds1

backswamp

floodplain1

floodplain2

floodplain3

water

aquatic vegetation

firescar1

firescar2
Figure 4.9: Plot of ALI data class means.

 52

Figure 4.10: Representative BHC tree structure for the Botswana Hyperion

dataset.

4.3.3 Feature Selection Results for Hyperion Data using Best Bases

The best bases method for band aggregation described in Section 3.2.2

was applied to the Hyperion data. Since the features are combined differently and

thereby best bases features subsequently are selected differently for each

metaclass on each tree, only general results are presented here. The overall

classification accuracies for the BHC BB, BHC BB with greedy FS and the BHC

BB with TS-FS are displayed in Table 4.9. A dynamic tabu tenure initialized at 5

was allowed to vary from 3 to 8. Because the combining of the features is

implemented to reduce redundant correlated features, the correlation check for

inclusion of new features was not utilized. The stopping criterion was set at 30

 53

iterations and the maximum number of iterations to continue with no

improvements was set at 10.

Experiment BHC BB BHC BB FS BHC BB TS-FS

HYP11 89.38 / 56.59 88.94 / 63.84 91.60 / 65.76
HYP12 91.54 / 61.43 86.66 / 68.00 90.92 / 66.80
HYP13 91.17 / 58.55 85.36 / 64.84 93.27 / 69.92
HYP14 92.16 / 61.43 87.77 / 61.51 93.02 / 60.75
HYP15 92.28 / 59.99 86.35 / 61.71 93.70 / 64.80
HYP16 91.54 / 60.15 88.14 / 65.48 93.39 / 62.80
HYP17 91.72 / 61.19 89.31 / 66.84 91.41 / 66.88
HYP18 92.46 / 61.83 86.41 / 64.60 93.21 / 65.84
HYP19 90.30 / 66.08 89.19 / 64.80 90.80 / 70.56
HYP20 92.22 / 62.07 85.55 / 61.67 91.97 / 62.60

Average 91.48 / 60.93 87.37 / 64.33 92.33 / 65.67
Standard Deviation 0.98 / 2.48 1.49 / 2.20 1.10 / 3.12

Table 4.9: BHC BB, BHC BB FS and BHC BB TS-FS overall experiment
classification accuracies (%) for Botswana Hyperion
testing/independent test data.

The BHC BB reduced the 1885 original features per tree to an average of

850.7 BB features per tree (averaging 65.44 BB features per metaclass). The

greedy feature selection chose an average of 40.10 BB features per tree while the

TS-FS chose an average of 91.70 BB features. The TS-FS kept an average of

25.30 BB greedy features while maintaining an average of 7.70 of the first-chosen

BB features per tree. In every experiment using the test data, the tree structure

utilizing the TS-FS with BB resulted in higher overall classification accuracies

than the BHC BB with the greedy feature selection by an average of 4.96% per

experiment. In 7 of the 10 experiments it achieved higher overall classification

accuracies than the BHC BB, and it resulted in a higher overall average accuracy.

The independent test data results were similar with the BHC BB TS-FS having

the highest average accuracy per experiment. The standard deviations of the

 54

experiments, however, are increased for both the test and independent test data

when using BB TS-FS over that of the BHC BB. For the test data, the standard

deviation of the accuracy for the BHC BB is ~90% of that of the BB TS-FS and

~80% of that of the BB TS-FS for the independent test data. The results are

mixed when comparing the standard deviations of the BHC BB FS and the BHC

BB TS-FS.

The average classification accuracies for each class for each BB algorithm

are displayed in Table 4.10 highlighting the highest average accuracy per class for

both the test and independent test data. The BHC BB TS-FS clearly outperforms

the BHC BB with greedy feature selection, and it exhibits the ability to classify a

majority of the classes more consistently for this dataset. While not improving

the classification accuracies for all individual classes when compared to the prior

application without BB, the average overall classification accuracies were

improved.
Class # BHC BB BHC BB FS BHC BB TS-FS

1 100.00 / 100.00 99.40 / 98.49 99.78 / 98.49
2 94.00 / 15.06 95.60 / 52.90 96.00 / 49.44
3 95.36 / 86.65 89.12 / 52.98 94.40 / 54.94
4 96.92 / 74.30 94.77 / 82.12 95.44 / 72.37
5 89.19 / 50.06 75.15 / 47.26 88.97 / 55.83
6 80.16 / 60.05 60.81 / 51.09 82.99 / 66.63
7 98.80 / 80.57 91.77 / 88.01 95.81 / 88.98
8 96.52 / 87.64 96.41 / 79.30 96.21 / 78.60
9 86.18 / 70.53 89.09 / 80.66 84.83 / 64.64
10 90.06 / 87.00 90.72 / 92.11 90.00 / 88.84
11 92.45 / 17.91 89.08 / 23.13 93.70 / 26.87
12 89.09 / 66.08 91.90 / 72.16 92.46 / 75.43
13 88.36 / 49.57 78.27 / 56.91 92.38 / 63.91
14 81.06 / 77.42 98.44 / 98.99 99.16 / 98.99

Average 91.30 / 65.92 88.61 / 69.72 93.01 / 70.28
Standard Deviation 4.37 / 7.03 6.65 / 9.67 3.63 / 7.82

Table 4.10: BHC BB, BHC BB FS and BHC BB TS-FS average
testing/independent test classification accuracies (%) by class for
Botswana Hyperion data.

 55

For the 10 experiments, the BHC BB constructed 7 different tree

structures, and no tree was duplicated more than twice. Comparing the BHC BB

tree structures with the BHC tree structures, again, no tree structures were

identical; there were 15 different resulting tree structures for 10 partitions of a

single dataset when the BHC and BHC BB algorithms were implemented. As

was noticed with the BHC, acacia woodlands (class 9) branches left 6 times and

right 4. When the acacia woodlands were grouped with the first right branch, it

resulted in the 4 lowest overall average accuracies for the BHC BB TS-FS; the

results utilizing TS-FS are very sensitive to the tree structures selected by the

original BHC, indicating the importance of possibly incorporating TS into the

building of the tree.

4.3.4 Feature Selection Results for Letter Recognition Data

Overall classification accuracies for the different BHC algorithms when

implemented on the letter recognition dataset are: BHC, 68.82%; BHC with

greedy feature selection, 62.31%; and BHC with TS-FS, 76.27%. Tabu tenure

was initially set at 3 and allowed to range from 3 to 5. Because this dataset only

has 16 features, the correlation check for inclusion of new features was disabled.

The stopping criterion was set at 30 iterations and the maximum number of

iterations to continue with no improvements was set at 10. With a total of 400

possible features for the entire tree (25 internal nodes each with 16 features), the

greedy feature selection chose 143, and the TS-FS chose 336. TS-FS was

implemented at every node because no metaclass was able to classify with 100%

accuracy with the greedy features, and was able to increase the classification

 56

accuracy at all but one metaclass with an average accuracy increase of 4.68% per

metaclass for this single tree when compared with the greedy feature selection

tree. The standard deviations for the algorithms are dramatically different with

the TS-FS more consistently classifying the individual letters resulting in the

standard deviation being ~75% of the BHC and ~60% of the BHC FS.

The single data partition classification accuracies for each class are

displayed in Table 4.11 highlighting the highest accuracy achieved per class. The

BHC with TS-FS outperforms the BHC and BHC with greedy feature selection as

it is able to classify a majority of the classes more consistently and often with

markedly improved accuracies. The BHC resulting tree structure is displayed in

Figure 4.11. BHC with feature selection yields consistently poorer results than

the other two methods.

 57

 Class BHC BHC FS BHC TS-FS

A 85.26 86.54 87.82
B 43.38 26.47 61.03
C 71.83 74.65 80.99
D 80.24 34.13 73.65
E 52.63 53.29 58.55
F 71.90 71.90 78.43
G 39.63 68.29 70.73
H 47.68 33.77 63.58
I 73.94 70.30 83.03
J 77.03 77.70 81.08
K 60.96 18.49 50.00
L 73.25 79.62 77.71
M 85.42 86.81 94.44
N 87.35 74.10 88.55
O 43.17 49.64 69.06
P 70.83 76.79 79.76
Q 50.60 71.43 67.86
R 54.66 57.76 56.52
S 58.39 49.69 73.91
T 80.79 65.56 78.81
U 74.40 46.43 81.55
V 88.97 77.21 86.76
W 85.61 86.33 89.93
X 73.58 67.30 76.10
Y 80.69 55.86 80.69
Z 77.22 60.13 92.41

Average 68.82 62.31 76.27
Standard Deviation 15.26 18.83 11.47

Table 4.11: BHC, BHC FS and BHC TS-FS classification accuracies (%) by
letter for letter recognition data.

 58

Figure 4.11: BHC class hierarchy for the single partition of the letter recognition

data.

4.4 CONCLUSIONS

The algorithms average execution times are displayed in Table 4.12. The

BHC and BHC FS algorithms are very fast, averaging a fraction of a minute to

execute analysis of the ALI data with its small number of 9 features and slightly

greater execution times for the Hyperion data with its larger set of 145 features.

The TS-FS average execution times for the ALI and Hyperion data are not

substantially increased in comparison. In contrast, the Hyperion BB TS-FS

average execution time is noticeably increased compared to the other execution

 59

times; this is due to matrix multiplication required for the large BB matrices and

the large feature vectors. Further investigation may reveal more efficient coding

methods to execute the TS-FS using the BB.

Algorithm ALI Hyperion Hyperion BB

BHC 0.07707 0.65949 0.36346
BHC FS 0.12904 1.06725 0.76155
BHC TS-FS 1.23707 6.04634 15.38026

Table 4.12: Average algorithm execution times in minutes for BHC, BHC FS
and BHC TS-FS.

The impact of TS-FS upon the BHC classification accuracies was

demonstrated to be positive. When feature selection was conducted, TS’s ability

to find improved feature subsets significantly improved the overall classification

accuracies. TS-FS is aided by searching from a good starting solution, the set of

greedy selected features, which on average, more than half are found in the TS-FS

subset of features. The TS-FS algorithm also significantly increased the total

number of features used by approximately one-third in most instances, but

approximately doubling the number of features used in the case of the BB. These

improved feature subsets are more beneficial for domain knowledge, overall

classifier interpretability and possible transportability of the classifiers. The TS

implementations are sensitive to the resulting class hierarchy structures; therefore,

if better hierarchical trees can be constructed, the TS implementations will be

enhanced and ultimately more useful for increasing classification accuracies.

Using the TS-FS in the construction of the class hierarchy is one method to

accomplish this goal.

 60

Chapter 5

Building the Binary Hierarchical Classifier Tree with the Aid of
Tabu Search Feature Selection

The top-down Binary Hierarchical Classifier (BHC) builds its class

hierarchy iteratively starting with all of the classes in a single metaclass at the root

node. Subsequently, nodes at each level of the tree are partitioned into two child

nodes (subsets) until the leaves of the tree, consisting of a single class, are

reached. The top-down BHC framework uses the Generalized Associative

Modular Learning System (GAMLS) [43], described in Section 3.1.1 and Figure

3.2. Whereas TS Feature Selection (TS-FS) was implemented initially as a post-

processor after the BHC was built, here it is incorporated into the development of

the BHC hierarchical tree.

5.1 TABU SEARCH FEATURE SELECTION

The TS-FS method in this application is utilized exactly as described in

Section 4.1. Now, it reduces the GAMLS input space and is instrumental in

building the binary classification hierarchy. The algorithm, TS Build, is initiated

with all classes in the root node at the top of the class hierarchy. The first split is

accomplished using GAMLS (with all of the original features) resulting in two

child nodes. As a result of this first partitioning, those features with the greatest

Fisher weights are identified, and GAMLS is used to make a second binary split

of the classes at the current node using only the identified highly-weighted

features. This new partition becomes the current partition. Using the set of

 61

highly-weighted features as its incumbent solution, TS-FS is then performed at

the root node to obtain the best subset of the total set of original features to

discriminate between the two current child nodes. This resulting subset of

features is passed to GAMLS which makes a third, and final, partitioning of the

classes at the current node using only those features selected by TS-FS. This final

partitioning becomes the binary split for the current node. Subsequent to this final

partitioning, TS-FS is performed one final time using the current set of features as

its incumbent solution, and the resulting feature subset becomes the feature subset

used at the current node for classification. This partitioning process is then

repeated at each of the current node’s child nodes that contain more than a single

class, moving down the tree to perform the partitioning at all multiclass nodes

until only leaf nodes remain. The resulting class hierarchy is then used for

classification exactly as with the BHC. The flowchart for this algorithm is

presented in Figure 5.1.

 62

Figure 5.1: Flowchart for building the BHC tree using GAMLS and TS-FS.

5.2 RESULTS BUILDING THE TREE USING TS FOR ALI DATA

Tabu tenure was set at 3, and the correlation check was not implemented.

The maximum number of iterations was defined as 30 with an early termination

criterion of 10 iterations with no improvement. Overall accuracies are shown in

Table 5.1. Results from Section 4.3.1 are duplicated here for comparison.

 63

Experiment BHC BHC FS BHC TS-FS TS Build
ALI1 88.72 / 72.82 86.38 / 69.18 88.59 / 72.74 89.15 / 73.54
ALI 2 87.20 / 71.71 85.30 / 64.92 89.71 / 72.20 89.23 / 71.38
ALI 3 86.29 / 69.69 86.64 / 68.16 89.88 / 71.20 89.93 / 72.84
ALI 4 86.60 / 70.96 85.99 / 68.62 90.01 / 71.69 90.49 / 72.84
ALI 5 88.33 / 73.33 86.34 / 67.73 90.06 / 73.36 88.41 / 67.31
ALI 6 87.64 / 73.63 85.82 / 66.97 89.32 / 72.66 90.36 / 71.14
ALI 7 86.86 / 70.96 87.68 / 67.48 90.06 / 71.90 90.32 / 70.76
ALI 8 85.82 / 75.03 84.48 / 71.82 88.28 / 75.16 87.76 / 69.65
ALI 9 87.25 / 69.61 86.73 / 71.39 89.67 / 70.64 88.37 / 71.32

ALI 10 88.98 / 72.68 87.42 / 69.37 89.75 / 72.09 90.40 / 72.57
Average 87.37 / 72.04 86.28 / 68.56 89.53 / 72.36 89.44 / 71.33

Standard Deviation 1.05 / 1.76 0.95 / 2.04 0.62 / 1.25 1.00 / 1.84
Table 5.1: BHC, BHC FS, BHC TS-FS and TS Build overall experiment

classification accuracies (%) for Botswana ALI
testing/independent test data.

Ten different binary tree structures were constructed with TS Build; none

were identical to the BHC class hierarchies constructed for the same experiments,

nor were they identical to any drawn by BHC indicating that the TS Build is

having an effect on the tree-building process. The most notable differences were

the TS Build placement of exposed soil (class 14) and floodplain1 (class 17).

Experiments ALI3 and ALI6 resulted in different root node partitions than the

BHC, affecting the subset placement of the exposed soil class. When classifying

the test data, the TS Build class hierarchy outperformed the BHC and the BHC

with feature selection in all experiments, and it bested the overall classification

accuracies of the BHC with TS-FS in 6 of the 10 experiments. When classifying

the test data, TS Build resulted in the second highest average overall classification

accuracy behind the BHC with TS-FS, although by only .09%, and resulted in a

slightly lower average overall classification accuracy than the BHC and the BHC

with TS-FS when classifying the independent test set. In the two experiments

where the TS Build class hierarchy was least effective in classifying the

 64

independent test data (experiments ALI5 and ALI8), the resulting class

hierarchies had more difficulty than those developed in the other experiments

classifying the acacia shrublands (class 8) and the acacia grasslands (class 9).

Both experiments exhibited similar trends by repeatedly classifying acacia

shrublands as acacia grasslands and acacia grasslands as dry grasses (class 12).

The similarities of the class signatures for the acacia shrublands, acacia grasslands

and the dry grasses are illustrated in Figures 5.2 and 5.3.

Experiment ALI5 comparison of acacia shrubland independent
test data observations and acacia grassland training data mean

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9

Features

Fe
at

ur
e

va
lu

es

acacia shrubland observations

acacia grassland training data mean

Figure 5.2: Experiment ALI5 comparison of acacia shrubland independent test

data observations and acacia grassland training data mean.

 65

Experiment ALI5 comparison of acacia grassland independent
test data observations and dry grasses training data mean

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9

Features

Fe
at

ur
e

va
lu

es

acacia grassland observations

dry grasses training data mean

Figure 5.3: Experiment ALI5 comparison of acacia grassland independent test

data observations and dry grasses training data mean.

Average overall classification accuracies are listed by class in Table 5.2,

where the highest class accuracies are highlighted. Each of the algorithms

exhibits strengths in the classification of individual classes with the TS algorithms

resulting in the two highest average class accuracies for the test data. Although

the maximum number of features can be specified, this implementation of TS-FS

allowed the algorithm to seek the best cardinality of the feature subset; the TS

Build trees averaged 141.8 features per tree compared to 103.7 for the BHC TS-

FS. Figure 5.4 is an example of the classification of the data subset from Figure

4.3.

 66

Class # BHC BHC FS BHC TS-FS TS Build

1 76.93 / 54.05 72.81 / 56.49 75.38 / 60.54 76.03 / 62.43
2 88.12 / 85.08 88.23 / 69.59 89.38 / 72.18 89.16 / 73.39
3 95.76 / 88.48 91.52 / 87.63 95.25 / 88.53 96.23 / 86.90
4 82.59 / 77.88 82.41 / 75.96 87.49 / 75.05 83.87 / 71.82
5 87.96 / 92.82 87.24 / 87.39 88.67 / 90.48 89.60 / 89.10
6 96.00 / 87.50 96.10 / 98.08 97.10 / 98.42 95.60 / 98.42
7 84.98 / 38.54 84.19 / 51.58 87.15 / 46.32 85.94 / 44.39
8 66.26 / 40.17 65.23 / 36.39 69.69 / 41.37 70.14 / 34.92
9 84.95 / 16.84 72.71 / 18.51 78.00 / 17.59 85.42 / 16.44
10 94.02 / 93.06 90.36 / 92.50 92.79 / 93.06 92.92 / 92.45
11 88.71 / 85.71 90.95 / 94.70 91.41 / 93.34 93.05 / 95.17
12 81.74 / 88.43 76.68 / 77.36 82.13 / 83.72 83.57 / 83.29
13 87.47 / 76.15 87.48 / 76.80 87.48 / 75.60 83.87 / 71.30
14 79.67 / 63.63 94.56 / 79.84 92.86 / 75.97 93.71 / 72.50
15 93.34 / 95.03 89.38 / 87.89 93.87 / 91.64 93.34 / 90.64
16 84.83 / 70.00 77.66 / 55.00 84.84 / 75.04 81.46 / 75.00
17 81.98 / 34.70 87.71 / 27.07 94.43 / 37.38 91.77 / 37.81
18 85.20 / 69.92 77.82 / 59.84 92.20 / 77.34 96.77 / 79.19
19 80.14 / 59.43 83.00 / 52.20 86.81 / 55.69 86.16 / 49.51
20 96.93 / 90.51 97.84 / 86.87 96.92 / 88.82 98.41 / 88.67
21 82.67 / 82.22 96.94 / 90.15 89.48 / 86.26 86.81 / 85.27
22 99.28 / 65.13 98.80 / 61.91 98.96 / 54.47 98.80 / 61.98
23 98.31 / 99.20 89.35 / 64.63 97.44 / 90.37 95.63 / 84.88

Average 86.86 / 71.93 86.04 / 69.06 89.12 / 72.57 89.05 / 71.54
Standard Deviation 4.27 / 5.27 5.33 / 8.34 3.86 / 5.36 4.37 / 7.44

Table 5.2: BHC, BHC FS, BHC TS-FS and TS Build average
testing/independent test classification accuracies (%) by class for
Botswana ALI data.

 67

Figure 5.4: Example of a classified subset using the TS Build classifier

(experiment ALI3: test set accuracy 89.93%, independent test set
accuracy 72.84%).

5.3 RESULTS BUILDING THE TREE USING TS FOR HYPERION DATA USING
ORIGINAL FEATURES

Tabu tenure was initialized at 5 within the allowable range of 3 to 10. Due

to the large number of candidate features, the correlation check for feature

inclusion was used. The number of iterations was set at 30, but execution was

halted if 10 iterations were performed without improvement. Results from

Section 4.3.2 are included for comparison (see Table 5.3).

 68

Experiment BHC BHC with FS BHC TS-FS TS Build

HYP11 92.71 / 61.23 89.13 / 66.32 93.51 / 60.87 92.22 / 68.20
HYP12 88.76 / 56.87 86.53 / 63.44 89.75 / 67.52 92.16 / 65.08
HYP13 88.08 / 69.36 90.30 / 69.36 92.77 / 64.08 91.48 / 68.92
HYP14 91.91 / 60.07 86.72 / 62.88 92.59 / 58.35 93.02 / 62.68
HYP15 89.99 / 58.55 85.98 / 59.47 90.67 / 62.07 91.79 / 73.93
HYP16 91.85 / 60.63 87.34 / 64.04 92.16 / 66.92 92.40 / 71.89
HYP17 91.60 / 59.43 86.29 / 62.15 92.90 / 61.35 91.85 / 63.88
HYP18 91.91 / 60.59 90.80 / 68.88 92.34 / 63.88 92.84 / 64.60
HYP19 89.19 / 63.52 85.05 / 68.92 89.13 / 63.40 91.48 / 69.16
HYP20 90.67 / 62.07 85.55 / 63.04 91.54 / 62.15 91.17 / 60.95

Average 90.67 / 61.23 87.37 / 64.85 91.74 / 63.06 92.04 / 66.93
Standard Deviation 1.58 / 3.39 2.01 / 3.36 1.44 / 2.75 0.60 / 4.17

Table 5.3: BHC, BHC FS, BHC TS-FS and TS Build overall experiment
classification accuracies (%) for Botswana Hyperion
testing/independent test data.

For this particular dataset, the initial partitioning of the root node proves to

be a very important factor; in 7 of the 10 experiments, TS Build partitioned the

root node differently than the BHC. As was noted in Section 4.3.2, in 8/10

experiments, the BHC grouped riparian (class 6) and acacia woodlands (class 9)

together at the bottom of the hierarchy, but in experiments HYP12 and HYP19,

these classes were in different subsets at the root node partition. In contrast, TS

Build grouped riparian and acacia woodlands together at the bottom of the class

hierarchy in all of the experiments. Using the test data, TS Build outperformed:

the BHC in 9/10 experiments, the BHC with feature selection in all of the

experiments, and the BHC with TS-FS in 6/10 of the experiments; in addition, TS

Build yielded significantly reduced standard deviations of the accuracies for the

test set relative to the other algorithms (~40% of that of the BHC, ~30% of that of

the BHC FS and ~40% of that of the BHC TS-FS). When classifying the

independent test data, TS Build resulted in higher accuracies in 5/10 experiments

 69

and the highest overall average accuracy for all of the algorithms, but resulted in

the highest standard deviation of the accuracies of the algorithms. This appears to

imply that the TS Build may be overtraining, but further investigation is required.

Average class accuracies are listed in Table 5.4 (where the results from Table 4.8

are duplicated for comparison and the greatest are highlighted); the TS Build

resulted in the highest overall average accuracy for both the test and independent

test data. It is noteworthy that significant improvement was achieved in

classification of both hippo grass (class 2) and acacia grasslands (class 11) in the

independent test set. There was also substantial improvement in the classification

accuracy of mixed mopane (class 13) using TS Build. The TS Build tree

structures averaged 145.1 features per tree which compares to 62.5 for TS-FS.

With the present settings, the TS Build does not reduce the input space as

dramatically as the other algorithms, and the class standard deviations are

somewhat comparable.
Class # BHC BHC FS BHC TS-FS TS Build

1 100.00 / 99.92 99.41 / 98.81 99.41 / 99.53 99.12 / 97.70
2 87.60 / 15.68 96.80 / 51.29 97.60 / 40.12 94.60 / 52.41
3 95.12 / 81.39 88.16 / 51.58 96.08 / 53.93 93.60 / 48.67
4 96.92 / 72.00 96.34 / 81.88 96.37 / 66.61 94.03 / 75.88
5 86.03 / 48.93 72.25 / 43.39 84.71 / 58.69 80.98 / 55.95
6 80.09 / 60.76 67.69 / 56.87 83.43 / 63.56 83.74 / 66.30
7 98.96 / 82.27 93.55 / 88.58 97.20 / 88.01 98.97 / 88.01
8 95.05 / 84.90 93.75 / 83.06 94.35 / 78.98 91.38 / 69.21
9 88.07 / 69.27 87.01 / 69.67 86.56 / 64.50 88.61 / 89.37
10 90.86 / 86.74 80.98 / 83.32 87.42 / 85.74 90.55 / 36.87
11 93.02 / 18.49 90.31 / 30.61 90.45 / 26.68 93.62 / 78.11
12 87.66 / 66.67 91.34 / 72.75 92.68 / 76.80 94.57 / 56.61
13 84.40 / 57.86 84.34 / 61.20 90.58 / 49.53 93.72 / 95.96
14 76.16 / 77.98 98.30 / 99.89 98.73 / 99.78 98.51 / 82.29

Average 90.00 / 65.92 88.59 / 69.49 92.54 / 68.03 92.57 / 70.95
Standard Deviation 4.82 / 8.48 7.39 / 9.51 3.77 / 8.54 3.40 / 8.74

Table 5.4: BHC, BHC FS, BHC TS-FS and TS Build average
testing/independent test classification accuracies (%) by class for
Botswana Hyperion data.

 70

5.4 RESULTS BUILDING THE TREE USING TS AND BEST BASES FOR
HYPERION DATA

In this implementation, new BB features are computed for the current

node, and TS-FS is performed on these new BB features. Otherwise, the

algorithm progresses as previously described. Parameters were defined as: tabu

tenure, 3; maximum tabu tenure, 10; minimum tabu tenure, 3; stopping criterion,

30 iterations; and terminate after 10 iterations with no improvement. In 8 of the

10 experiments, TS Build partitioned the root node differently than the BHC. The

two classes most affected were the acacia woodlands (class 9) and the exposed

soil (class 14). While the classification accuracy of the acacia woodlands is not

significantly impacted by TS Build, the classification accuracy of the exposed soil

class is noticeably impacted with an increased average accuracy of 98.30% over

the 81.06% average accuracy of the BHC (see Table 5.6). Using the test data, the

TS Build classifier resulted in higher accuracies in 9/10 experiments than the

BHC BB, in 10/10 experiments over the BHC BB with feature selection

(indicating that the TS-FS is outperforming the greedy FS when using BB), and in

7/10 experiments over the BHC BB with TS-FS (see Table 5.5, results of Table

4.9 are duplicated for comparison). The average class accuracies are recorded in

Table 5.6 (results of Table 4.10 are duplicated for comparison) where the highest

average accuracy per class is highlighted. Consistent with earlier results, the BB

algorithms yielded lower standard deviations of accuracies than when the original

feature set was used. Further, the TS Build BB significantly reduced the standard

deviations for both the test and independent test data relative to the other BB

algorithms. For example, the TS Build BB standard deviation is ~70% of that of

 71

the BHC for the test data and ~80% of that of the BHC for the independent test

data. Thus, the TS Build BB method yielded the most stable classifier. This

result is duplicated in the class standard deviations in Table 5.6. The TS Build

class hierarchies averaged 147.7 features per hierarchy compared to 91.70 chosen

by BB TS-FS.
Experiment BHC BB BHC BB FS BHC BB TS-FS TS Build BB

HYP11 89.38 / 56.59 88.94 / 63.84 91.60 / 65.76 92.90 / 64.64
HYP12 91.54 / 61.43 86.66 / 68.00 90.92 / 66.80 92.22 / 66.28
HYP13 91.17 / 58.55 85.36 / 64.84 93.27 / 69.92 93.27 / 60.39
HYP14 92.16 / 61.43 87.77 / 61.51 93.02 / 60.75 92.09 / 67.20
HYP15 92.28 / 59.99 86.35 / 61.71 93.70 / 64.80 94.01 / 64.08
HYP16 91.54 / 60.15 88.14 / 65.48 93.39 / 62.80 93.33 / 64.12
HYP17 91.72 / 61.19 89.31 / 66.84 91.41 / 66.88 92.46 / 65.04
HYP18 92.46 / 61.83 86.41 / 64.60 93.21 / 65.84 93.39 / 63.96
HYP19 90.30 / 66.08 89.19 / 64.80 90.80 / 70.56 91.85 / 66.60
HYP20 92.22 / 62.07 85.55 / 61.67 91.97 / 62.60 92.84 / 66.48

Average 91.48 / 60.93 87.37 / 64.33 92.33 / 65.67 92.84 / 64.88
Standard Deviation 0.98 / 2.48 1.49 / 2.20 1.10 / 3.12 0.68 / 1.98

Table 5.5: BHC BB, BHC BB FS, BHC BB TS-FS and TS Build BB overall
experiment classification accuracies (%) for Botswana Hyperion
testing/independent test data.

Class # BHC BB BHC BB FS BHC BB TS-FS TS Build BB
1 100.00 / 100.00 99.40 / 98.49 99.78 / 98.49 99.56 / 52.22
2 94.00 / 15.06 95.60 / 52.90 96.00 / 49.44 96.60 / 62.67
3 95.36 / 86.65 89.12 / 52.98 94.40 / 54.94 95.92 / 99.21
4 96.92 / 74.30 94.77 / 82.12 95.44 / 72.37 94.67 / 50.25
5 89.19 / 50.06 75.15 / 47.26 88.97 / 55.83 88.00 / 59.70
6 80.16 / 60.05 60.81 / 51.09 82.99 / 66.63 83.27 / 64.74
7 98.80 / 80.57 91.77 / 88.01 95.81 / 88.98 98.58 / 87.44
8 96.52 / 87.64 96.41 / 79.30 96.21 / 78.60 96.23 / 77.01
9 86.18 / 70.53 89.09 / 80.66 84.83 / 64.64 85.99 / 64.50
10 90.06 / 87.00 90.72 / 92.11 90.00 / 88.84 93.00 / 88.11
11 92.45 / 17.91 89.08 / 23.13 93.70 / 26.87 94.28 / 33.27
12 89.09 / 66.08 91.90 / 72.16 92.46 / 75.43 93.34 / 73.20
13 88.36 / 49.57 78.27 / 56.91 92.38 / 63.91 90.67 / 57.30
14 81.06/ 77.42 98.44 / 98.99 99.16 / 98.99 98.30 / 97.30

Average 91.30 / 65.92 88.61 / 69.72 93.01 / 70.28 93.46 / 69.06
Standard Deviation 4.37 / 7.03 6.65 / 9.67 3.63 / 7.82 2.93 / 7.25

Table 5.6: BHC BB, BHC BB FS, BHC BB TS-FS and TS Build BB average
testing/independent test classification accuracies (%) by class for
Botswana Hyperion data.

 72

5.5 RESULTS BUILDING THE TREE USING TS FOR LETTER RECOGNITION
DATA

TS Build overall classification accuracy for the letter recognition dataset is

76.49% which is .22% greater than the highest accuracy reported in Section 4.3.4.

Tabu tenure was set at 5 and allowed to range from 3 to 8. The correlation check

for inclusion of new features was disabled as it is not appropriate for this data set,

the stopping criterion was 30 iterations, and the maximum number of iterations to

continue with no improvements was 10. The class hierarchy was constructed

using a total of 323 features. When compared to the BHC class hierarchy, the

root node partition is identical to the BHC, but the overall class hierarchy differs.

For example, TS Build brings the letter U closer to the letters M, N and W and

also B closer to S and Z (see Figure 5.5).

Figure 5.5: Building the BHC tree using GAMLS and TS-FS for the letter

recognition data.

 73

The average class accuracies are shown in Table 5.7 where the results

from Section 4.3.4 are included for comparison, and the greatest accuracies

achieved from the various methods are highlighted. The TS algorithms, again,

were able to classify the individual classes with greater consistency (and with

smaller standard deviations) than the BHC or BHC with feature selection.

Class BHC BHC FS BHC TS-FS TS Build

A 85.26 86.54 87.82 90.38
B 43.38 26.47 61.03 77.94
C 71.83 74.65 80.99 77.46
D 80.24 34.13 73.65 79.64
E 52.63 53.29 58.55 52.63
F 71.90 71.90 78.43 78.43
G 39.63 68.29 70.73 73.17
H 47.68 33.77 63.58 46.36
I 73.94 70.30 83.03 85.45
J 77.03 77.70 81.08 80.41
K 60.96 18.49 50.00 63.01
L 73.25 79.62 77.71 80.89
M 85.42 86.81 94.44 93.75
N 87.35 74.10 88.55 84.94
O 43.17 49.64 69.06 74.82
P 70.83 76.79 79.76 76.79
Q 50.60 71.43 67.86 69.64
R 54.66 57.76 56.52 59.63
S 58.39 49.69 73.91 68.94
T 80.79 65.56 78.81 77.48
U 74.40 46.43 81.55 76.79
V 88.97 77.21 86.76 85.29
W 85.61 86.33 89.93 89.93
X 73.58 67.30 76.10 72.33
Y 80.69 55.86 80.69 81.38
Z 77.22 60.13 92.41 91.14

Average 68.82 62.31 76.27 76.49
Standard Deviation 15.26 18.83 11.47 11.44

Table 5.7: BHC, BHC FS, BHC TS-FS and TS Build classification accuracies
(%) by letter for letter recognition data.

It is interesting to note that there are some dramatic differences. The use

of feature selection never degrades the performance dramatically relative to the

 74

original set. However, it can improve results dramatically. Further, the problems

with the greedy algorithm are clear – it has dramatically degraded results for D,

K, U, and Y. E is difficult for all of the algorithms to classify, but benefits from

the TS-FS. The letters B, O and Z benefit from TS relative to using all of the

features and the greedy feature selection while classification of the letters B and O

is significantly improved when using the TS Build. Both TS based algorithms

have substantially reduced standard deviations of the classification accuracies.

5.6 CONCLUSIONS

 Algorithm average execution times are displayed in Table 5.8 for

comparison. The TS Build algorithm has increased execution times as related to

the other algorithms due to its process: GAMLS is executed three times and

TS-FS is executed twice for each node. Also, more candidate features lead to

increased execution times as evidenced by comparing the ALI and Hyperion

average execution times. As was noted in Section 4.4, the Hyperion BB TS Build

suffers from the same matrix multiplication issues associated with the calculation

of the best basis as the BB TS-FS, and this is reflected in the increased average

algorithm execution time.

Algorithm ALI Hyperion Hyperion BB

BHC 0.07707 0.65949 0.36346
BHC FS 0.12904 1.06725 0.76155
BHC TS-FS 1.23707 6.04634 15.38026
TS Build 2.68853 10.76789 65.55054

Table 5.8: Average algorithm execution times in minutes for BHC, BHC FS,
BHC TS-FS and TS Build.

 75

The TS feature selection was used within the BHC algorithm to reduce the

feature space in an effort to allow GAMLS to make a better partition at every

multiclass node. In addition, parameter estimates used for performing the

classification may benefit from TS Build. Its impact was generally positive:

classification accuracies of many classes were improved, and the standard

deviations of accuracies were consistently reduced. Once constructed, the class

hierarchy is static and has no opportunity for recourse. The possibility for

recourse arises by allowing the rearrangement of the nodes (classes) within the

class hierarchy structure. In order to investigate this, a new algorithm was

developed. This new method, referred to as the Tabu Search Tree Rearrangement

Algorithm (TSTRA), is discussed in the fo llowing chapter.

 76

Chapter 6

Binary Hierarchical Classifier Tree Rearrangement Using Tabu
Search

Once the BHC class hierarchy is constructed, the original BHC framework

does not provide any possibility of recourse. No recovery is possible if a bad

decision was made in the partitioning phase of any of the metaclasses. The tree

rearrangement algorithm described in this chapter performs as a post-processor

that uses the BHC tree output as its incumbent solution.

6.1 TABU SEARCH TREE REARRANGEMENT

The tabu search tree arrangement algorithm (TSTRA) uses the same

classifier as the BHC and the same training data that were used to construct the

original BHC class hierarchy. Using the BHC tree as the TSTRA initial solution,

the TSTRA move neighborhood is defined as any neighboring tree resulting from

an adjacent insertion of any leaf node to every other nonadjacent leaf node. For

example, a BHC tree for a problem with five classes is pictured in Figure 6.1(a).

Figures 6.1(b), (c), (d) show the alternate trees when Class 1 is inserted in its

other possible positions. This complete neighborhood would include the results

of all insertions of classes 2, 3, 4, and 5.

 77

Figure 6.1: Example of neighboring tree structures.

In this application of TS methodology, the tabu list begins as a column

vector of zeros with a row for each class. Once a class is selected for movement

within the tree structure, the class is marked as tabu and the tabu list records the

iteration number of the class into the list. The class cannot be moved again within

the tabu tenure number of iterations unless moving the class results in finding a

classification accuracy that is better than any found thus far, overruling the tabu

status. As in the previous implementations of TS, the tabu tenure is adaptive

between a user-defined maximum and minimum. Given an incumbent tree, the

best non-tabu move within the move neighborhood is selected (unless a tabu

 78

status is overruled) for that iteration. The tree with the best accuracy found is

maintained and updated (nodes merged, metaclass statistics and Fisher projections

computed) as appropriate when a tree with an improved accuracy is found.

Iterations continue until a user-specified number of iterations has been completed

or no improving tree structures have been found within a specified number of

iterations. Upon termination, the algorithm returns the best tree structure found

for classification. Although a user-specified option exists that allows the tree-

rearrangements to be level-restricted if prior knowledge of the problem suggests

such a limitation would be beneficial, it was not implemented in this study. In

addition, if implemented, this level restriction can be adaptive by adjusting the

level of the tree considered for change depending on the ability, or inability, of the

TSTRA to find improving solutions. Restrictions which prohibit changes to

major partitions of the classes (for example, at the root node) intensify the search

in the current solution space while movements allowing such effects diversify the

search.

6.2 TSTRA RESULTS FOR ALI DATA

The Botswana ALI data were analyzed with the TSTRA. Because

improving moves were consistently found during the early iterations with no

improvements in the later iterations, the maximum number of iterations was

limited to 20. Tabu tenure was maintained at 3, and execution was halted if 10

iterations were performed and no improving solution was found.

The TSTRA considers the current class hierarchy output by the BHC, and

using the same training data and classifier, rearranges the tree structure to find

 79

better classification accuracies. In every experiment, the TSTRA was able to find

improved class hierarchy structures and increased classification accuracies using

the training data, and these improved class hierarchies, while not guaranteed to do

so, improved or maintained the classification accuracies for the test and

independent test data, as well. When compared to the BHC, the TSTRA averaged

a 1.60% increase in the classification accuracies per experiment using the test data

and a 2.15% average increase per experiment using the independent test data (see

Table 6.1). In 8 of the 10 experiments, the TSTRA maintained the original

partition of the root node; in the 2 experiments where the original partition is

altered, the aquatic vegetation (class 21), which is usually grouped with classes

1, 2, 7 and 15, is moved to the other subset and grouped with the backswamp

(class 16).

TS-FS (as described in Section 4.1) was performed as a post processing

operation on the TSTRA resulting class hierarchies; while 7 of the 10 experiment

overall accuracies were improved by the TS-FS for the test data (with an average

increase of 2.43% per experiment), only one was improved using the independent

test data. An average of 111.8 features per tree were selected by TS-FS. The

standard deviation of accuracies is improved for both the TSTRA and the TSTRA

TS-FS results, relative to the original BHC.

 80

Experiment BHC TSTRA TSTRA TS-FS

ALI1 88.72 / 72.82 89.23 / 74.49 89.06 / 70.39
ALI 2 87.20 / 71.71 90.27 / 74.92 89.41 / 72.17
ALI 3 86.29 / 69.69 88.85 / 71.47 90.14 / 72.36
ALI 4 86.60 / 70.96 87.76 / 74.16 91.53 / 69.69
ALI 5 88.33 / 73.33 88.80 / 75.40 90.75 / 71.01
ALI 6 87.64 / 73.63 89.23 / 75.13 89.75 / 69.69
ALI 7 86.86 / 70.96 87.81 / 74.65 88.93 / 69.56
ALI 8 85.82 / 75.03 90.10 / 75.03 89.23 / 71.15
ALI 9 87.25 / 69.61 88.54 / 73.09 89.02 / 71.07
ALI 10 88.98 / 72.68 89.06 / 73.60 90.14 / 71.34

Average 87.37 / 72.04 88.97 / 74.19 89.80 / 70.84
Standard Deviation 1.05 / 1.76 0.83 / 1.20 0.85 / 1.00

Table 6.1: BHC, TSTRA and TSTRA TS-FS overall experiment classification
accuracies (%) for Botswana ALI testing/independent test data.

A majority of the individual ALI classes benefited from the TSTRA (see

Table 6.2); 17 of the 23 classes increased in accuracies averaging a 1.80%

increase in the individual class accuracies for the test data and a 2.24% increase

for the independent test data. The south riparian (class 2) class accuracy was

markedly decreased by the TSTRA. On 8 of the 10 resulting TSTRA trees, south

riparian is grouped with acacia woodlands (class 7) whereas on the BHC trees, it

is only found grouped with acacia woodlands on a single tree. The goal of the

TSTRA is to find trees with increased overall classification accuracies; in its

current implementation, it is not constrained from decreasing some class

accuracies in its quest to do so, as is the case with the south riparian (class 2). At

the same time, it is able to substantially improve the classification accuracies of

some classes, for example, the island interior (class 13). Figure 6.2 is an example

of the classification of the data subset from Figure 4.3.

 81

Class # Class BHC TSTRA TSTRA TS-FS
1 north riparian 76.93 / 54.05 76.92 / 67.84 75.38 / 62.57
2 south riparian 88.12 / 85.08 87.09 / 72.95 91.98 / 74.01
3 short mopane 95.76 / 88.48 97.84 / 88.76 98.16 / 87.40
4 mopane (dense) 82.59 / 77.88 84.69 / 81.01 85.88 / 77.88
5 acacia mix 87.96 / 92.82 89.38 / 93.83 88.36 / 90.80
6 woodland mix 96.00 / 87.50 96.40 / 97.34 97.60 / 97.92
7 acacia woodlands 84.98 / 38.54 83.49 / 48.71 87.15 / 46.20
8 acacia shrublands 66.26 / 40.17 72.98 / 42.46 68.94 / 38.69
9 acacia grasslands 84.95 / 16.84 84.47 / 18.05 76.83 / 16.72
10 mopane/pechuel/grass mix 94.02 / 93.06 93.89 / 95.72 93.54 / 92.96
11 grass/pechuel mix 88.71 / 85.71 88.82 / 94.08 91.65 / 89.73
12 dry grasses 81.74 / 88.43 81.81 / 87.29 78.72 / 78.86
13 island interior 87.47 / 76.15 95.08 / 84.35 91.22 / 79.35
14 exposed soil 79.67 / 63.63 81.88 / 67.58 92.18 / 71.94
15 reeds1 93.34 / 95.03 95.31 / 95.97 93.15 / 90.64
16 backswamp 84.83 / 70.00 85.27 / 72.57 84.12 / 77.92
17 floodplain1 81.98 / 34.70 88.99 / 39.76 93.86 / 22.32
18 floodplain2 85.20 / 69.92 88.65 / 74.92 94.06 / 75.00
19 floodplain3 80.14 / 59.43 81.28 / 57.07 88.31 / 46.26
20 water 96.93 / 90.51 98.26 / 92.31 98.59 / 90.36
21 aquatic vegetation 82.67 / 82.22 86.12 / 68.47 90.55 / 82.37
22 firescar1 99.28 / 65.13 99.76 / 67.76 98.64 / 51.65
23 firescar2 98.31 / 99.20 98.08 / 97.16 95.90 / 86.30
 Average 86.86 / 71.93 88.54 / 74.17 89.34 / 70.78
 Standard Deviation 4.27 / 5.27 3.58 / 5.06 4.17 / 6.22

Table 6.2: BHC, TSTRA and TSTRA TS-FS average testing/independent test
classification accuracies (%) by class for Botswana ALI data.

 82

Figure 6.2: Example of a classified subset using the TSTRA classifier

(experiment ALI7: test set accuracy 87.81%, independent test set
accuracy 74.65%).

6.3 TSTRA RESULTS FOR HYPERION DATA

Due to the implementation of BB at each individual metaclass, whenever a

single class is moved during the TSTRA, a new BB must be found at each

metaclass that is affected by the move of the class. Because of the time involved

for doing so, the TSTRA was not implemented for the Hyperion data using BB.

The parameter settings for the analysis of the Hyperion data were: tabu

tenure 3, number of iterations 20 and halt execution after 10 iterations with no

improvement. For the test data, the TSTRA improved the overall accuracies of

 83

the BHC in 8 of the 10 experiments, maintained the same class hierarchy in

experiment HYP11 (it was unable to find a better hierarchical tree when

classifying the training data), and decreased the overall accuracy in experiment

HYP14. The TSTRA also decreased the standard deviation of the classification

accuracies relative to the BHC: for the testing data, the TSTRA standard deviation

was ~35% of that of the BHC, and for the independent test data, the TSTRA

standard deviation was ~45% of that of the BHC. In terms of classification

accuracies, addition of the TS-FS to the resulting TSTRA structures was

advantageous for this data set, especially when applied to the independent test

data (see Table 6.3), resulting in the highest average overall accuracy of 64.30%

and an average increase of 3.06% per experiment relative to the BHC. The

standard deviation of the accuracies for TSTRA TS-FS was smaller than that of

the BHC, but increased relative to the TSTRA. When executed, the TS-FS chose

an average of 65.6 features per tree.

Experiment BHC TSTRA TSTRA TS-FS

HYP11 92.71 / 61.23 92.71 / 61.23 93.51 / 60.87
HYP12 88.76 / 56.87 92.53 / 62.07 92.96 / 66.00
HYP13 88.08 / 69.36 91.54 / 62.11 91.35 / 63.64
HYP14 91.91 / 60.07 91.66 / 63.64 91.97 / 61.83
HYP15 89.99 / 58.55 92.16 / 62.96 91.85 / 63.56
HYP16 91.85 / 60.63 92.90 / 61.19 90.67 / 68.64
HYP17 91.60 / 59.43 91.85 / 58.31 91.85 / 58.51
HYP18 91.91 / 60.59 93.14 / 62.76 92.77 / 61.87
HYP19 89.19 / 63.52 91.91 / 62.88 93.21 / 71.73
HYP20 90.67 / 62.07 92.09 / 63.52 91.91 / 66.32

Average 90.67 / 61.23 92.25 / 62.07 92.21 / 64.30
Standard Deviation 1.58 / 3.39 0.54 / 1.57 0.89 / 3.93

Table 6.3: BHC, TSTRA and TSTRA TS-FS overall experiment classification
accuracies (%) for Botswana Hyperion testing/independent test data.

 84

As mentioned in Section 4.3.2 and Section 5.3, in experiments HYP12 and

HYP19, classes 6 and 9 were not grouped together and resulted in some of the

lowest overall classification accuracies per experiment. The TSTRA results for

these two experiments improved the classification accuracies for the test data,

partly (as this was not the only change) by changing the partition at the root node

and grouping classes 6 and 9 together at the bottom of the tree (only experiment

HYP12 was improved for the independent test data). Although these changes

aided the overall classification, they did not result in significant increases in

individual accuracies for the classes (see Table 6.4). In addition to classes 6 and

9, class 14 (exposed soil) also changed subsets at the partition of the root node in

experiments HYP13 and HYP17; as was noted in Section 4.3.2, feature selection,

again, significantly increased the class 14 accuracy (see Table 6.4).

Class # Class BHC TSTRA TSTRA TS-FS

1 water 100.00 / 99.92 99.78 / 99.60 99.41 / 99.13
2 hippo grass 87.60 / 15.68 97.40 / 28.15 97.40 / 37.66
3 floodplain grasses1 95.12 / 81.39 96.00 / 87.28 95.44 / 59.94
4 floodplain grasses2 96.92 / 72.00 96.73 / 63.45 95.25 / 61.94
5 reeds1 86.03 / 48.93 88.35 / 52.38 86.35 / 59.17
6 riparian 80.09 / 60.76 82.60 / 60.29 84.85 / 63.18
7 firescar2 98.96 / 82.27 98.42 / 79.04 96.26 / 84.43
8 island interior 95.05 / 84.90 97.81 / 84.59 95.34 / 75.61
9 acacia woodlands 88.07 / 69.27 89.29 / 69.41 83.44 / 58.68
10 acacia shrublands 90.86 / 86.74 92.55 / 89.21 91.45 / 91.00
11 acacia grasslands 93.02 / 18.49 94.53 / 16.34 92.82 / 38.41
12 short mopane 87.66 / 66.67 87.11 / 65.95 92.67 / 77.06
13 mixed mopane 84.40 / 57.86 85.00 / 62.06 92.17 / 50.73
14 exposed soils 76.16 / 77.98 86.61 / 79.44 98.72 / 98.43
 Average 90.00 / 65.92 92.30 / 66.94 92.97 / 68.24
 Standard Deviation 4.82 / 8.48 3.41 / 6.60 3.28 / 8.67

Table 6.4: BHC, TSTRA and TSTRA TS-FS average testing/independent test
classification accuracies (%) by class for Botswana Hyperion data.

 85

6.4 TSTRA RESULTS FOR LETTER RECOGNITION DATA

The TSTRA was implemented on the BHC output for the letter

recognition data with a dynamic tabu tenure of 3 to 5 (originally set at 3), a

stopping criterion of 30 (or 10 iterations without any improvements). The

TSTRA maintained the original root node partition, but resulted in an overall

classification accuracy of 71.91% which was an improvement over the BHC

accuracy of 68.82%. Twelve letter moves were made; the most noticeable of

these involved bringing the letters B and E, the letters D and O, and the letters Q

and X closer together (see Figure 6.3) increasing the individual class accuracies

for 5 of these 6 letters (see Table 6.5). Executing TS-FS on the rearranged

hierarchy (using the same parameter settings as outlined in Section 4.3.4) resulted

in an accuracy of 76.01% (compared to 76.27% which was achieved by executing

TS-FS on the BHC).

 86

Class BHC TSTRA TSTRA TS-FS

A 85.26 85.90 87.18
B 43.38 66.18 73.53
C 71.83 73.24 79.58
D 80.24 83.83 73.65
E 52.63 79.61 84.87
F 71.90 77.12 78.43
G 39.63 53.66 69.51
H 47.68 51.66 51.66
I 73.94 80.00 83.03
J 77.03 75.00 80.41
K 60.96 53.42 39.73
L 73.25 75.16 80.25
M 85.42 87.50 93.75
N 87.35 79.52 85.54
O 43.17 59.71 68.35
P 70.83 67.86 79.17
Q 50.60 52.98 67.86
R 54.66 68.94 65.84
S 58.39 47.83 60.25
T 80.79 80.13 80.79
U 74.40 76.19 77.98
V 88.97 89.71 86.03
W 85.61 88.49 96.40
X 73.58 69.18 71.70
Y 80.69 76.55 77.93
Z 77.22 70.25 82.91

Average 68.82 71.91 76.01
Standard Deviation 15.26 12.25 12.29

Table 6.5: BHC, TSTRA and TSTRA TS-FS classification accuracies (%) by
letter for the letter recognition dataset.

 87

Figure 6.3: TSTRA class hierarchy for the letter recognition data.

6.5 CONCLUSIONS

Average execution times for the BHC and TSTRA are displayed in Table

6.6. The average TSTRA execution times are somewhat elevated; in order to

interface with existing MATLAB code, an additional step was required to

restructure the tree after every node movement. This additional step renumbered

the tree nodes into the sequence that the code expects, but may be unnecessary if

this inefficiency could be corrected through alternate coding.

Algorithm ALI Hyperion Hyperion BB

BHC 0.07707 0.65949 0.36346
TSTRA 9.23284 22.84715 --

Table 6.6: Average algorithm execution times in minutes for BHC and TSTRA.

The TSTRA was successful in finding better class hierarchies for the

training data as compared to the BHC when the objective was to increase overall

classification accuracy. These TSTRA hierarchies translated into increased

 88

classification accuracies for the test data and independent test data in a majority of

the experiments. In addition, the TSTRA consistently reduced the standard

deviations for all of the datasets over that of the BHC. Upon executing the TS-FS

on the resulting TSTRA trees, the overall average classification accuracy was

increased from 88.97% to 89.80% for the ALI data and decreased from 92.25% to

92.21% for the Hyperion data.

The move neighborhood selected for and currently implemented in the

TSTRA is extremely limited. Further research into the structure of the move

neighborhoods, the classifiers used and the overall objective of the improvements

when comparing the hierarchies may enhance the future use of the TSTRA.

 89

Chapter 7

Conclusions

Classification methods and techniques are becoming increasingly utilized

as new emerging technologies acquire masses of data and the demand for their

use in new applications increases. High levels of accuracy are desirable (and

often required) to accommodate the varied fields that utilize these methodologies

in today’s fast-paced data-driven society. Results obtained from traditional

classification algorithms can often be improved by integrating new techniques

within their structures.

7.1 SUMMARY OF CONTRIBUTIONS

This research focused on the incorporation of the metaheuristic Tabu

Search for feature selection within the multiclassifier system of the BHC. In

addition, a tree rearrangement algorithm using Tabu Search was developed.

7.1.1 Tabu Search Feature Selection

Input space reduction is often a necessity when classification algorithms

are faced with an input space of high dimensionality. Feature selection reduces

the input space by eliminating those features that are useless or redundant (but

fully exploits the information that the full set of features provides) and allows for

improved parameter estimation for classification. In addition, feature selection

preserves domain knowledge and interpretability of the input space, particularly

relative to feature extraction methods that project the data into new spaces.

 90

Feature selection was explored for use within the framework of the BHC

supervised classification algorithm in a variety of ways. The Tabu Search

metaheuristic was first utilized to solve the combinatorial optimization problem of

feature selection as a post-processor of the class hierarchy, in place of the greedy

feature selection that is currently being employed. The ability of TS to efficiently

search the solution space and to enhance the performance of the classifiers was

demonstrated by the reduction of the input space, the increased classification

accuracies, and the decreased standard deviations of the accuracies that were

attained.

An enhancement to the BHC algorithm, which uses TS-FS in the

construction of the class hierarchy, TS Build, was also developed. This algorithm

demonstrated that applying feature selection in the construction of the class

hierarchy is significantly useful compared to only applying feature selection as a

post-processing step for classification. This incorporation of TS-FS in the

building of the class hierarchies was another novel contribution of the study.

7.1.2 Classification Tree Rearrangement

The implementation of the TSTRA demonstrated the potential for recourse

after a class hierarchy is built. This algorithm allows for recovery should a less-

than-optimal partition be made at a multiclass node in the hierarchy-building

process. Utilizing the same classifier and partition of training and test data, the

TSTRA constructed alternate class hierarchies whose accuracies were increased

when classifying the training data. While not guaranteed to also increase the

overall classification accuracies of the test data, it achieved increased accuracies

 91

when classifying the test data in all but one instance (where the accuracy was not

significantly degraded).

7.2 FUTURE WORK

While research in the field of classification has been ongoing for over

forty years, it remains a difficult and intensely studied area. Data with a large

number of inputs and outputs are now being acquired in multiple application areas

that will require specialized techniques for classification and information

extraction in order to utilize the data to their fullest potential. This current work

can be extended in a variety of ways to meet this growing need.

7.2.1 The Classifier and Feature Selection

The classifier used within the BHC algorithm was not altered in this

research. The same classifier was utilized here for comparison purposes to assess

the effects of the TS-FS on the classification accuracies. An alternative classifier

may be more appropriate for use with TS-FS; this approach needs to be

investigated with other methodologies. Preliminary results of using TS-FS with

the Bayesian Pairwise Classifier [48] are promising. In addition, the investigation

of more advantageous measures of goodness for inclusion and exclusion of

features could facilitate the feature selection in the identification of more

meaningful feature subsets.

7.2.2 Best Bases

When aggregating the bands using BB, a correlation threshold of .90 was

implemented in this study without consideration for the amount of training data

 92

that is present to estimate the class parameters. An alternative threshold presented

in [49], takes into account the possibility of limited training data, and dictates that

the (number of training data observations)/(number of features) should be greater

than 5, thus aggregating the bands until this threshold is reached. The addition of

this check and threshold should be considered for use in the algorithms described,

especially for datasets possessing a great number of features like the Hyperion

data.

7.2.3 Tabu Search

The Tabu Search (TS) metaheuristic is ever evolving; continued research

has brought about a multitude of new, innovative techniques in its implementation

and new problems for its application. The move neighborhoods implemented for

the feature selection in this study were limited to swaps and inserts, while the tree

rearrangement was extremely limited in that it only paired classes at the leaf node

level. These TS algorithms may benefit from the addition or total replacement of

the move neighborhoods used. In addition, further research could provide

alternative parameters, attributes, adaptive methods, starting solutions, and

techniques that would aid classification algorithms, especially those with large

numbers of inputs and outputs, such as hyperspectral data. The sensitivity of the

TS starting solution in the TS Build using the Hyperion data was briefly studied

by randomly choosing a subset of features for the second metaclass partition, as

opposed to using those features with the highest Fisher weights (see Figure 5.1).

The resulting classification accuracies were comparable, indicating a lack of

sensitivity to the incumbent solution and warranting further research in this area.

 93

Additionally, further study into the sensitivity of the current TS parameters may

yield a more extensive search of the solution space.

Other techniques coupled with TS, such as maintaining ensembles of the

best feature subsets for each metaclass identified by TS may prove to be helpful.

Subjective evaluation of the feature subsets by subject matter experts may provide

better classifiers as opposed to focusing on the classification accuracy of the test

data as the primary measure of goodness. Another technique often applied to TS

is the use of a candidate move list as opposed to searching the entire move

neighborhood, which can be huge when the number of candidate features (i.e.

hyperspectral data) is large.

In the present implementation of TS-FS, a node is “skipped” and TS-FS is

not performed when the classes at the current node are classified with an accuracy

of 100%. While this approach saves computation time, it may miss an

opportunity to refine a subset of features. TS-FS could still be implemented to

search for subsets of decreased cardinality while maintaining (or possibly slightly

reducing) the classification accuracy at the current node.

7.2.4 Tree Rearrangement

The TSTRA can potentially enhance any binary tree structure, and with

modifications, could be applied to other types of decision trees. Research into

different measures of goodness, classifiers and tree structures may, as a

composite, yield better hierarchies for classification. Feature selection could also

be incorporated into the TSTRA.

 94

7.2.5 A Grove of Trees

This research showed that many different class hierarchies are constructed

from the very same data: the only difference being the way that the data were

partitioned into training and testing sets. Each hierarchy has its strengths, but at

the same time, each has its weaknesses. Further research could identify a way to

group these differing hierarchy structures to exploit their strengths collectively

while limiting the negative effects of their individual weaknesses.

 95

APPENDIX A

Selected ALI Data Class Hierarchies and Confusion Matrices

A.1 EXPERIMENT ALI2

Figure A.1: Experiment ALI2 BHC class hierarchy.

Table A.1: Experiment ALI2 BHC confusion matrix.

 96

Table A.2: Experiment ALI2 BHC FS confusion matrix.

Table A.3: Experiment ALI2 BHC TS-FS confusion matrix.

 97

A.2 EXPERIMENT ALI3

Figure A.2: Experiment ALI3 BHC class hierarchy.

Table A.4: Experiment ALI3 BHC confusion matrix.

 98

Table A.5: Experiment ALI3 BHC FS confusion matrix.

Table A.6: Experiment ALI3 BHC TS-FS confusion matrix.

 99

Figure A.3: Experiment ALI3 TS Build class hierarchy.

Table A.7: Experiment ALI3 TS Build confusion matrix.

 100

A.3 EXPERIMENT ALI4

Figure A.4: Experiment ALI4 BHC class hierarchy.

Table A.8: Experiment ALI4 BHC confusion matrix.

 101

Table A.9: Experiment ALI4 BHC FS confusion matrix.

Table A.10: Experiment ALI4 BHC TS-FS confusion matrix.

 102

Figure A.5: Experiment ALI4 TSTRA class hierarchy.

Table A.11: Experiment ALI4 TSTRA confusion matrix.

 103

A.4 EXPERIMENT ALI5

Figure A.6: Experiment ALI5 TS Build class hierarchy.

Table A.12: Experiment ALI5 TS Build confusion matrix.

 104

A.5 EXPERIMENT ALI6

Figure A.7: Experiment ALI6 TS Build class hierarchy.

Table A.13: Experiment ALI6 TS Build confusion matrix.

 105

A.6 EXPERIMENT ALI7

Figure A.8: Experiment ALI7 TSTRA class hierarchy.

Table A.14: Experiment ALI7 TSTRA confusion matrix.

 106

A.7 EXPERIMENT ALI8

Figure A.9: Experiment ALI8 BHC class hierarchy.

Table A.15: Experiment ALI8 BHC confusion matrix.

 107

Table A.16: Experiment ALI8 BHC FS confusion matrix.

Table A.17: Experiment ALI8 BHC TS-FS confusion matrix.

 108

Figure A.10: Experiment ALI8 TS Build class hierarchy.

Table A.18: Experiment ALI8 TS Build confusion matrix.

 109

Figure A.11: Experiment ALI8 TSTRA class hierarchy.

Table A.19: Experiment ALI8 TSTRA confusion matrix.

 110

A.8 EXPERIMENT ALI9

Figure A.12: Experiment ALI9 BHC class hierarchy.

Table A.20: Experiment ALI9 BHC confusion matrix.

 111

Table A.21: Experiment ALI9 BHC FS confusion matrix.

Table A.22: Experiment ALI9 BHC TS-FS confusion matrix.

 112

Appendix B

Selected Hyperion Data Class Hierarchies and Confusion
Matrices

B.1 EXPERIMENT HYP12

Figure B.1: Experiment HYP12 BHC class hierarchy.

Table B.1: Experiment HYP12 BHC confusion matrix.

 113

Table B.2: Experiment HYP12 BHC FS confusion matrix.

Table B.3: Experiment HYP12 BHC TS-FS confusion matrix.

 114

Figure B.2: Experiment HYP12 TS Build class hierarchy.

Table B.4: Experiment HYP12 TS Build confusion matrix.

 115

Figure B.3: Experiment HYP12 TSTRA class hierarchy.

Table B.5: Experiment HYP12 TSTRA confusion matrix.

 116

B.2 EXPERIMENT HYP13

Figure B.4: Experiment HYP13 BHC class hierarchy.

Table B.6: Experiment HYP13 BHC confusion matrix.

 117

Table B.7: Experiment HYP13 BHC FS confusion matrix.

Table B.8: Experiment HYP13 BHC TS-FS confusion matrix.

 118

Figure B.5: Experiment HYP13 TSTRA class hierarchy.

Table B.9: Experiment HYP13 TSTRA confusion matrix.

 119

B.3 EXPERIMENT HYP17

Figure B.6: Experiment HYP17 BHC class hierarchy.

Table B.10: Experiment HYP17 BHC confusion matrix.

 120

Table B.11: Experiment HYP17 BHC FS confusion matrix.

Table B.12: Experiment HYP17 BHC TS-FS confusion matrix.

 121

Figure B.7: Experiment HYP17 TSTRA class hierarchy.

Table B.13: Experiment HYP17 TSTRA confusion matrix.

 122

B.4 EXPERIMENT HYP18

Figure B.8: Experiment HYP18 BHC class hierarchy.

Table B.14: Experiment HYP18 BHC confusion matrix.

 123

Table B.15: Experiment HYP18 BHC FS confusion matrix.

Table B.16: Experiment HYP18 BHC TS-FS confusion matrix.

 124

B.5 EXPERIMENT HYP19

Figure B.9: Experiment HYP19 BHC class hierarchy.

Table B.17: Experiment HYP19 BHC confusion matrix.

 125

Table B.18: Experiment HYP19 BHC FS confusion matrix.

Table B.19: Experiment HYP19 BHC TS-FS confusion matrix.

 126

Figure B.10: Experiment HYP19 TS Build class hierarchy.

Table B.20: Experiment HYP19 TS Build confus ion matrix.

 127

Figure B.11: Experiment HYP19 TSTRA class hierarchy.

Table B.21: Experiment HYP19 TSTRA confusion matrix.

 128

Appendix C

Selected Hyperion Best Bases Data Class Hierarchies and
Confusion Matrices

C.1 EXPERIMENT HYP12

Figure C.1: Experiment HYP12 BHC BB class hierarchy.

Table C.1: Experiment HYP12 BHC BB confusion matrix.

 129

Table C.2: Experiment HYP12 BHC BB FS confusion matrix.

Table C.3: Experiment HYP12 BHC BB TS-FS confusion matrix.

 130

Figure C.2: Experiment HYP12 TS Build BB class hierarchy.

Table C.4: Experiment HYP12 TS Build BB confusion matrix.

 131

C.2 EXPERIMENT HYP16

Figure C.3: Experiment HYP16 BHC BB class hierarchy.

Table C.5: Experiment HYP16 BHC BB confusion matrix.

 132

Table C.6: Experiment HYP16 BHC BB FS confusion matrix.

Table C.7: Experiment HYP16 BHC BB TS-FS confusion matrix.

 133

Figure C.4: Experiment HYP16 TS Build BB class hierarchy.

Table C.8: Experiment HYP16 TS Build BB confusion matrix.

 134

Appendix D

Letter Recognition Data Confusion Matrices

Table D.1: Letter Recognition BHC confusion matrix.

Table D.2: Letter Recognition BHC FS confusion matrix.

 135

Table D.3: Letter Recognition BHC TS-FS confusion matrix.

Table D.4: Letter Recognition TS Build confusion matrix.

 136

Table D.5: Letter Recognition TSTRA confusion matrix.

Table D.6: Letter Recognition TSTRA TS-FS confusion matrix.

 137

References

[1] M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to

the Theory of NP-Completeness. San Francisco: W.H. Freeman and
Company, 1979.

[2] S. Kumar, Modular learning through output space decomposition, Ph.D.

dissertation, The University of Texas at Austin, 2000.

[3] S. Kumar, J. Ghosh, and M. Crawford, "A Hierarchical Multiclassifier

System for Hyperspectral Data Analysis," Lecture Notes in Computer
Science, F. Roli and J. Kittler, Eds., vol. 1857, pp. 270-279, 2000.

[4] A. Henneguelle, Feature Extraction for Hyperspectral Data Analysis,

Masters thesis, The University of Texas at Austin, 2002.

[5] H. Liu and H. Motoda, Eds. Feature selection for knowledge discovery and

data mining. Boston: Kluwer Academic Publishers, 1998a.

[6] M. Ben-Bassat, “Use of distance measures, information measures and error

bounds in feature evaluation,” in Handbook of statistics, vol. 2, P. R.
Krishnaiah and L. N. Kanal, Eds. Amsterdam: North-Holland Publishing
Company, 1982, pp. 773-791.

[7] P. A. Devijver and J. Kittler, Pattern recognition: A statistical approach,

London: Prentice/Hall International, Inc., 1982.

[8] J. A. Richards and X. Jia, Remote sensing digital image analysis: An

introduction, 3rd ed. Berlin: Springer-Verlag, 1999.

[9] T. Chenoweth and Z. Obradovic, “A multi-component nonlinear prediction

system for the S&P 500 Index,” Neurocomputing, vol. 10, issue 3, pp. 275-
290, Apr. 1996.

[10] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis.

4th ed. New Jersey: Prentice Hall, 1999.

[11] D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing,

J. A. Kong, Ed. Hoboken, New Jersey: Wiley Series in Remote Sensing,
2003.

 138

[12] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New
York: Wiley-Interscience Publication, 1973.

[13] P. Langley, “Selection of relevant features in machine learning,” in

Proceedings of AAAI Fall Symposium on Relevance, New Orleans, LA:
AAAI Press, 1994, pp. 127-131.

[14] P. Langley, Elements of Machine Learning. San Francisco: Morgan

Kaufmann, 1995.

[15] B. S. Serpico and L. Bruzzone, “A new search algorithm for feature

selection in hyperspectral remote sensing images,” IEEE Transactiosn on
Geoscience and Remote Sensing, vol. 39, issue 7, pp. 1360-1367, Jul. 2001.

[16] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset

selection problem,” in Proceedings of the Eleventh International Conference
on Machine Learning, 1994, pp. 121-129.

[17] H. Liu and H. Motoda, Eds. Feature extraction, construction and selection:

A data mining perspective. Boston: Kluwer Academic Publishers, 1998.

[18] P. M. Narendra and K. Fukunaga, “A branch and bound algorithm for

feature subset selection,” IEEE Transactions on Computers, vol. C-26,
number 9, pp. 917-922, Sep. 1977.

[19] H. Liu, H. Motoda, and M. Dash, “A monotonic measure for optimal feature

selection,” in European Conference on Machine Learning, 1998, pp. 101-
106.

[20] W. Siedlecki and J. Sklansky, “On automatic feature selection,”

International Journal of Pattern Recognition and Artificial Intelligence, vol.
2, issue 2, pp. 197-220, 1988.

[21] M. Kudo and J. Sklansky, “Comparison of algorithms that select features for

pattern classifiers,” Pattern Recognition, vol. 33, issue 1, pp. 25-41, Jan.
2000.

[22] W. Siedlecki and J. Sklansky, “A note on genetic algorithms for large-scale

feature selection,” Pattern Recognition Letters, vol. 10, pp. 335-347, Nov.
1989.

 139

[23] H. Zhang and G. Sun, “Feature Selection Using Tabu Search Method,”
Pattern Recognition, vol. 35, issue 3, pp. 701-711, Mar. 2002.

[24] F. Glover, “Heuristics for integer programming using surrogate constraints,”

Decision Sciences, vol. 8, issue 1, pp. 156-166, Jan. 1977.

[25] J. W. Barnes and J. B. Chambers, “Solving the job shop scheduling problem

using tabu search,” IIE Transactions, vol. 27, pp. 257-263, Apr. 1995.

[26] W. Nanry and J. W. Barnes, “Solving the pickup and delivery problem with

time windows using reactive tabu search,” The University of Texas as
Austin, Graduate Program in Operations Research Technical Report Series
ORP98-03, 1998.

[27] J. Xu, S. Y. Chiu, and F. Glover, “Using tabu search to solve the Steiner

tree-star problem in telecommunications network design,”
Telecommunication Systems, vol. 6, pp. 117-125, 1996.

[28] J. Xu, S. Y. Chiu, and F. Glover, “Tabu search for dynamic routing

communications network design,” Telecommunication Systems, vol. 8, issue
1, pp. 55-77, Jan. 1997.

[29] B. W. Colletti, Group Theory and Metaheuristics, Ph.D. dissertation, The

University of Texas at Austin, 1999.

[30] B. Colletti and J. W. Barnes, “Local search structure in the symmetric

traveling salesperson problem under a general class of rearrangement
neighborhoods,” Applied Mathematical Letters, vol. 14, issue 1, pp. 105-
108, Jan. 2001.

[31] V. Wiley, The Aerial Fleet Refueling Problem, Ph.D. dissertation, The

University of Texas at Austin, 2001.

[32] J. W. Barnes, V. Wiley, J. Moore, and D. Ryer, “Solving the Aerial Fleet

Refueling Problem using Group Theoretic Tabu Search,” unpublished.

[33] J. R. Crino, A group theoretic tabu search methodology for solving the

theater distribution vehicle routing and scheduling problem, Ph.D.
dissertation, Air Force Institute of Technology, Wright-Patterson AFB, OH,
2002.

 140

[34] J. Crino, J. T. Moore, J. W. Barnes, and W. P. Nanry, “Solving the theater
distribution vehicle routing and scheduling problem using group theoretic
tabu search,” Air Force Institute of Technology, University of Texas at
Austin, and Office of the Army G-8, Pentagon, 2002.

[35] T. Combs, A combined adaptive tabu search and set partitioning approach

for the crew scheduling problem with an air tanker crew application, Ph.D.
dissertation, Air Force Institute of Technology, Wright-Patterson AFB, OH,
2002.

[36] K. P. Bennett and J. A. Blue, “An extreme point tabu search method for data

mining,” Rensselaer Polytechnic Institute, Troy, NY, R.P.I. Math Report
No. 228, 1996.

[37] M. Dam and M. Zachariasen, Tabu search on the Geometric Traveling

Salesman Problem, Masters thesis, The University of Copenhagen, 1994.

[38] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. Pal, Fuzzy models and

algorithms for pattern recognition and image processing. Boston: Kluwer
Academic Publishers, 1999.

[39] T. G. Dietterich, “Ensemble methods in machine learning,” in Lecture Notes

in Computer Science, vol. 1857, F. Roli & J. Kittler, Eds. Germany:
Springer, 2000, pp. 1-15.

[40] J. Ghosh, “Multiclassifier systems: back to the future,” in Proceedings of the

Third International Workshop, MCS 2002, F. Roli and J. Kittler, Eds.
Germany: Springer-Verlag Lecture Notes in Computer Science (#2364), pp.
1-15, 2002.

[41] S. Kumar, J. Ghosh, and M. Crawford, “Best-bases feature extraction

algorithms for classification of hyperspectral data,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 39, issue 7, pp. 1368-1379, Jul. 2001.

[42] J. T. Morgan, A. Henneguelle, M. M.Crawford, J. Ghosh, and A.

Neuenschwander, “Adaptive feature spaces for land cover classification
with limited ground truth,” in Proceedings of the Third International
Workshop, MCS 2002, F. Roli and J. Kittler, Eds. Germany: Springer-
Verlag Lecture Notes in Computer Science (#2364), pp. 189-200, 2002.

 141

[43] S. Kumar and J. Ghosh, “GAMLS: A generalized framework for associative
modular learning systems,” in Proceedings of the Applications and Science
of Computational Intelligence II, Vol. 3722, 1999, pp. 24-34.

[44] J. T. Morgan, A. Henneguelle, J. Ham, M. M. Crawford, and J. Ghosh,

"Adaptive feature spaces for land cover classification with limited ground
truth data,” International Journal of Pattern Recognition and Artificial
Intellligence, in press.

[45] A. Neuenschwander, M. M. Crawford, and S. Ringrose, “Results from the

EO-1 experiment – Use of Earth Observing-1 Advanced Land Imager (ALI)
data to assess the vegetational response to flooding in the Okavango Delta,
Botswana,” International Journal of Remote Sensing, to be published.

[46] J. S. Pearlman, P. S. Barry, C. Segal, J. Shepanski, D. Beiso, and S. Carman,

“Hyperion, a space-based imaging spectrometer,” IEEE Transactions on
Geoscience and Remote Sensing, Special Issue on EO-1, in press, 2003.

[47] C. L. Blake and C. J. Merz, UCI Repository of machine learning databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA:
University of California, Department of Information and Computer Science,
2002.

[48] M.M. Crawford, S. Kumar, M.R. Ricard, J.C. Gibeaut, and A.L.

Neuenschwander, "Fusion of airborne polarimetric and interferometric SAR
data for classification of coastal environments," IEEE Transactions on
Geoscience and Remote Sensing, vol. 37, issue 3, pp. 1306-1315, May 1999.

[49] J. T. Morgan, Adaptive Hierarchical Classification with Limited Training

Data, Ph.D. dissertation, The University of Texas at Austin, 2002.

 142

Vita

Donna Kay Korycinski was born in Louisville, Kentucky on November

26, 1964, the daughter of Phyllis Ann Cecil and Joseph Louis Cecil. A 1982

graduate of Western High School, Louisville, Kentucky, she entered Morehead

State University in Morehead, Kentucky. She received the degree of Bachelor of

Science from Morehead State University in May 1986 and was commissioned as

an officer in the United States Army. Her military service has been continuous to

the present day, and she has held positions as an aviator and Operations Research,

Systems Analyst. She currently holds the rank of Lieutenant Colonel. She

received the degree of Masters of Science in Engineering from the University of

Texas, Austin, Texas in May 1996. In June 2000 she began doctoral studies in the

Operations Research, Industrial Engineering Program at the University of Texas,

Austin, Texas.

Permanent address: 3003 South Crums Lane, Louisville, KY 40216

This dissertation was typed by the author.

