

CO₂ recycling accounting and EOR operation scheduling to assist in storage capacity assessment at a U.S. gulf coast depleted reservoir

GCCC Publication Series #2013-04

J.-W. Choi J.-P. Nicot S.A. Hosseini S.J. Clift S.D. Hovorka

Keywords: reservoir, capacity

Cited as:

Choi, J.-W., J.-P. Nicot, S.A. Hosseini, S.J. Clift, and S. Hovorka, 2013, CO₂ recycling accounting and EOR operation scheduling to assist in storage capacity assessment at a U.S. gulf coast depleted reservoir, GCCC Publication Series #2013-04, originally published in *International Journal of Greenhouse Gas Control*

TEXAS Geosciences Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

Abstract

From the start of CO₂ injection on July 2008, through August 31, 2011, \sim 3 million metric tons of CO₂ have been stored in the lower Tuscaloosa Formation at Cranfield, Mississippi. We used the field to illustrate the importance of two operational choices on CO₂ storage capacity: (1) reinjection of CH₄ with the recycled CO_2 ; and (2) injection rate in the presence of a spill point in the storage structure. The overall amount stored in the reservoir is approximately the amount purchased, corrected for the presence of impurities. We present a procedure to estimate how much CO₂ is stored in an arbitrary volume smaller than that of the reservoir. The mass stored is corrected for CH₄ and accounts for produced and recycled CO_2 . The procedure was applied to estimate the amount of CO₂ stored in two Cranfield compartments, which are separated by a non-transmissive fault. We also investigated factors impacting storage capacity in EOR-then-storage and pure-storage contexts, with both being constrained by non-desirable migration of CO₂ out of the reservoir through a spillpoint. As expected, the longer the EOR operations continue, the larger the amount stored relative to the pure storage case. Although never large, the 14% gain in a hypothetical simplified model of the Cranfield reservoir, is strongly dependent on the injection/production strategy used.