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Throughout history, creature-based content has been a highly

valued source of entertainment. Recently, evolved virtual creatures (or

EVCs ; Sims 1994) were proposed as a potential new source of crea-

ture content. In EVCs, the creature’s morphology and the control

network driving its behavior are evolved together to accomplish natu-

ralistic tasks. Despite their immediate appeal, however, EVCs still lag

far behind their natural counterparts: Neither their morphology nor

their behavior is sufficiently complex. This dissertation presents three

contributions to address this problem. First, the ESP system, which

combines a human-designed syllabus with encapsulation and conflict-

resolution mechanisms, is used to approximately double the state of

the art in behavioral complexity for EVCs. Second, an extension to
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ESP is presented that allows full morphological adaptation to continue

beyond the initial skill. It produces both a greater variety of solu-

tions and solutions with higher fitness. Third, a muscle-drive system is

demonstrated to embody a significant degree of physical intelligence. It

increases morphological complexity and reduces demands on the control

network, thus freeing resources for more complex behaviors. Together,

these contributions bring evolved virtual creatures, in both action and

form, a step closer to matching the entertainment value of creatures

from the real world.
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exhibit (Intercommunication Center, Tokyo). This work
employed an early form of crowdsourcing implemented
using in-person interaction with sensors at the museum
installation. . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Images produced using worldwide crowdsourcing in Picbreeder [40],
a prominent example of evolved content. Similar in con-
cept to the evolved images of Sims, these results encode
their genotypes as Compositional Pattern-Producing Net-
works [48]. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Results from Draves’ cooperative evolution of animated
imagery Electric Sheep [12]. With highly effective inter-
action and world-class aesthetic results, this system is
an example of valued evolved content. . . . . . . . . . . 24

2.9 3-D printed shapes evolved using Clune and Lipson’s
Endless Forms [9]. This extension of Picbreeder’s web-
based interactive concept into three dimensions demon-
strates a potential application for the generation of con-
tent through physical evolution. . . . . . . . . . . . . . 25

2.10 Sims’ evolved virtual creatures [46]. Sims evolved crea-
tures for locomotion in water and on land, to jump, and
to follow a light source (phototaxis). . . . . . . . . . . . 26

2.11 This figure illustrates a body and brain from one of
Sims’ conventional EVCs—this one evolved for locomo-
tion [46]. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12 A selection of work indicating the breadth of research us-
ing locomotion in EVCs, including physical robots, soft
robots, flying robots, and diversity promotion. . . . . . 29

2.13 Evolved creatures compete one-on-one for control of a
target block in this work by Sims [45]. . . . . . . . . . . 32

xiv



2.14 EVC combat as implemented by Miconi [30]. Creatures
are evolved based on their ability to damage each other
in one-on-one competition. In this image, a larger crea-
ture (left) attacks a smaller one with a steamroller-like
technique. Combat is a demanding and natural goal for
EVCs, requiring a combination of several behaviors. It is
also part of the motivation for the work in this dissertation. 33

3.1 A typical result from the Basic EVC System. This crea-
ture was evolved for locomotion as described in Sec-
tion 3.6, and was produced at generation 2000 of Run
1 (Figure 3.9). This phenotype is the expression of the
genotype shown in Figures 3.4 and 3.5. . . . . . . . . . 35

3.2 An evolutionary algorithm as used in the Basic EVC Sys-
tem. A population of creature genotypes (left) is evalu-
ated for fitness, so that each one can be assigned a fitness
score (right). Based on these scores, a new population
is created using mechanisms such as crossover, muta-
tion, and elitism. Over time, as this process is repeated,
fitness in the population tends to improve. After a sig-
nificant number of generations, one or more individuals
are chosen as the winners, usually based on fitness, but
possibly using other criteria as well, such as how visually
appealing they are. . . . . . . . . . . . . . . . . . . . . . 37

3.3 Hand-designed genotype/phenotype pairs (as in [46]) demonstrate
the encoding power inherited from Sims’ original EVC system.
With relatively simple genotype graph topologies such as these,
complex and useful morphological phenotypes can be defined. . . . 38

3.4 An example morphology genotype encoded in the graphviz
format [13]. (Some formatting data removed for clarity.)
The graphviz format naturally encodes the genotype’s
connectivity, with additional attributes stored as com-
ments. Lines 2-9 describe a segment node, and lines
10-30 describe joint data, including muscle data at lines
20-30. This encoding is depicted as a graph in Figure 3.5,
and its expression as a phenotype is shown in Figure 3.1. 40

xv



3.5 The morphology genotype encoding of Figure 3.4 ren-
dered as a graph. Oval-shaped nodes (red) encode body
segments, with square nodes recording attributes of joints
(muscle attributes in blue, other joint attributes in green).
Segment and joint attributes stored as comments in the
encoding are visible as text within the nodes. Note that
in this format, each joint-encoding edge produces two
edges in the rendered graph—one from the parent seg-
ment to the joint record, and one from the joint record
to the child segment. . . . . . . . . . . . . . . . . . . . 41

3.6 An example control genotype encoded in graphviz. (Some
data removed for clarity.) As with the morphology geno-
type, the graphviz format encodes connectivity, and ad-
ditional attributes are stored as comments. Lines 2-7
describe nodes, and lines 9-12 describe wires connect-
ing nodes. This encoding is depicted as a graph in Fig-
ure 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 The control genotype graphviz of Figure 3.6 rendered as
a graph. Muscle nodes are colored red, proprioceptors
are colored green, and all other nodes are colored blue.
Unlike morphology, control is encoded directly, with the
phenotype control graph being essentially a direct copy
of the genotype control graph. . . . . . . . . . . . . . . 44

3.8 Photoreceptors (a) and muscles (b) bring sensing and
actuation to creatures in the Basic EVC System. For
both, function depends upon placement, so creature form
develops meaningfully as capabilities are evolved. . . . . 46

3.9 The fitness graphs (in red) of all 10 runs from which the
locomotion result was selected. Within each graph, the
horizontal axis measures generations of evolution, and
the vertical axis indicates fitness (for the red marks).
For the green marks, vertical position indicates the stage
of fitness shaping for that generation (as described in
Section 6.5). Seven of the 10 were successful, as shown
in Figures 3.10. . . . . . . . . . . . . . . . . . . . . . . . 49

3.10 Successful forward locomotion results produced by the Basic EVC
System. These creatures illustrate the seven successful results of
the 10 evolutionary runs used for this experiment. Note that each
one employs a different method of locomotion, despite the lack of
any diversity-promotion mechanism. . . . . . . . . . . . . . . 51

xvi



4.1 The body and brain of a creature evolved using the ESP
method to learn a complex fight-or-flight behavior. This
creature has achieved a level of behavioral complexity
that is approximately double the previous state of the
art for evolved virtual creatures. Previously, the most
complex behavior in EVCs was the ability to move to a
light source. This creature can move to a light source,
strike it once it arrives, and switch to a flight behavior
when appropriate, based on its perception of the envi-
ronment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 An example syllabus as a graph. Graph nodes represent
individual subskills to be learned, directed edges indi-
cate dependencies between subskills, and the numbering
indicates a learning order that satisfies the dependency
requirements. Pandemonium (i.e., competitive) relation-
ships are indicated by dashed red lines. . . . . . . . . . . 58

4.3 Encapsulation. The encapsulation of an evolved skill—in
this case, forward locomotion—ensures that it will per-
sist throughout future evolution, while also allowing it
to be activated easily as a unit by future skills. Before
encapsulation, in (a), the brain nodes that constitute the
forward locomotion skill connect directly to muscles and
sensors in the body, and may be changed by future evolu-
tion. In (b), the newly added nodes (shaded) implement
the encapsulation of that skill. The multiply nodes at
the bottom throttle all signals leaving the skill, allowing
its effect to be dialed up or down. The sigma node at
the top acts as a single point of control for all of the
throttling multiply nodes, allowing all outputs from the
skill to be blocked or allowed out simultaneously. All
nodes within the box labeled with the skill name FOR-
WARD are protected from future evolutionary changes.
(The sigma nodes at the bottom are not directly related
to the encapsulation of the new skill, but rather are re-
quired so that future skills can share control over new
muscles that have been recently added.) . . . . . . . . . 59

4.4 The chosen forward locomotion result (run eight,
generation 1900) after encapsulation. This creature was
selected not only for its fitness score, but also for its
aesthetically pleasing motion style, reliable locomotion,
and simple brain. . . . . . . . . . . . . . . . . . . . . . . 62

4.5 The fitness graphs of all five runs from which the left

turn result was selected. All runs were successful, mak-
ing it possible to select a creature for further evolution
using visual criteria. . . . . . . . . . . . . . . . . . . . . 64

xvii



4.6 The chosen left turn result (generation 319, run two).
In addition to the fact that it achieved the highest fitness—
the maximum possible for this task—this creature was
selected for fast, fine turns; reliable skill transitions; and
the visible contrast between its turn and locomotion be-
haviors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 The fitness graphs of all five runs for the right turn

skill. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 The selected right turn result. This creature (genera-
tion 450 from run five) achieved the highest fitness score
in all five runs for this skill. . . . . . . . . . . . . . . . . 66

4.9 The fitness graphs of all five runs for the turn to light

skill. Again all runs were successful, making it possible
to select the winner based on aesthetic concerns. . . . . 67

4.10 The chosen turn to light result. The turn to light

skill keeps the locomotion direction (black dashed arrow)
oriented toward a target (depicted here as a large disc,
but perceived by the creature as a single omnidirectional
light source at the disc’s center). The winning creature
for this task (generation 349, run one) is depicted. It
was chosen for multiple aesthetic reasons beyond its high
fitness score: stops between turns, a lack of blind spots,
a simple brain, and a relatively small number of added
photoreceptors. . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 The fitness graphs of all five runs for the move to light

skill. All runs were successful, and the winner was chosen
based on aesthetic concerns. . . . . . . . . . . . . . . . 69

4.12 A high-scoring, but less appealing move to light re-
sult. Despite meeting the requirements of the fitness
function approximately as well as the selected creature,
this creature’s style of motion gave it a less confident
appearance. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.13 The chosen move to light result. The creature shown
in this image (generation 308, run five) has acquired the
move to light skill, allowing it to follow a target along
a curving path, catching the target when it finally stops.
This creature was chosen for its appearance of deliberate
intentionality. . . . . . . . . . . . . . . . . . . . . . . . . 71

4.14 The fitness graphs of all 10 runs for the strike skill.
Five of the runs produced useful results. They varied
significantly in their approach, and the winner was cho-
sen based on aesthetic concerns. . . . . . . . . . . . . . 72

xviii



4.15 A high-scoring, but less appealing strike result. De-
spite a high fitness score, this creature’s technique con-
sisting of many small jumps similar to locomotion pro-
duced a less rewarding visual effect. . . . . . . . . . . . . 72

4.16 This creature’s strike solution (generation 1313 of run
seven) employs a vertical jump, and was chosen for its
high score, deliberate appearance, and visual contrast
with other behaviors. . . . . . . . . . . . . . . . . . . . . 73

4.17 The fitness graphs of all 10 runs for the attack skill.
Three of these runs produced good results, making it
possible to select a winner based on aesthetic concerns. 74

4.18 In the newly added attack, the creature navigates to
the target, then strikes it. The winning creature shown
here (run two, generation 24) was chosen for having few
new eyes, accurate strikes, and clean switches between
skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.19 The fitness graphs of all five runs for the turn from

light skill. All five runs produced usable results, allow-
ing the winner to be selected based on aesthetic concerns. 76

4.20 The selected turn from light result. The turn from

light behavior keeps the locomotion direction (black
dashed arrow) oriented away from the target. The tar-
get (depicted as as a stack of three spinning discs) is
perceived by the creature as point light sources at the
center of each disc. Later, this will provide the opportu-
nity to distinguish between the two target types based
on both vertical placement of lights and overall light in-
tensity. The winning creature for this skill (run two,
generation 46) is depicted in this figure. In addition to
having the highest score, it had an aesthetically pleasing
eye placement and apparent intentionality. . . . . . . . . 77

4.21 The fitness graphs of all five runs for the retreat skill.
All five runs produced usable results, allowing the winner
to be selected based on aesthetic concerns. . . . . . . . 78

4.22 The winning creature for the retreat skill (run five,
generation 41). It was chosen for having the highest
score and few added eyes. . . . . . . . . . . . . . . . . . 78

4.23 The fitness graphs of all five runs for the fight or

flight skill. All five runs achieved similarly high scores. 80

xix



4.24 The winning creature (run two, generation 163) with the
fight or flight ability. This creature completes the
full progression through the syllabus, resulting in behav-
ior two levels more complex than the prior state of the
art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.25 A creature with significant differences in body plan, phys-
ical techniques, and character from the creature evolved
in Section 4.3. This creature (despite being produced
using the same evolutionary technique and same selec-
tion criteria) has a different number of limbs, different
types of body segments, and a diverse style of action.
Despite these differences, this second creature nonethe-
less succeeded in all skills attempted, including the at-

tack behavior—a level of complexity beyond the previ-
ous limit for EVCs. This result indicates that it is pos-
sible to produce significant variation using ESP, which
makes it a good tool for creating virtual content. . . . . 82

5.1 A selection of creatures produced using Extended ESP.
These results illustrate some of the useful variety and
multi-skill morphological adaptation produced by this
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 In this representation of the syllabus graph, shaded nodes
are leaf nodes, which act only on the body, rather than
other nodes, and constitute the focus of the extended
ESP system discussed in this chapter. While the leaf
nodes may benefit from the extended system’s continued
morphological development, non-leaf nodes are not ex-
pected to require these additional evolutionary resources,
and can be evolved using the original system, which pro-
duces only a linear growth in required testing. . . . . . . 92

5.3 Further evolution of the hopper locomotion morphology
in the strike task. (a) A creature adapted for locomo-
tion. From this creature, creatures (b) through (f) were
evolved using the extended ESP method described in this
chapter. Each of them has developed a new technique
(with corresponding morphological changes) for accom-
plishing an additional task—in this case, delivering a
strike to the ground—while still maintaining the ability
to perform the initial skill (locomotion) to prescribed lev-
els. The extended ESP system makes such adaptations
possible, resulting in morphology that supports multiple
distinct skills. . . . . . . . . . . . . . . . . . . . . . . . 97

xx



5.4 Fitness graphs for the first ten of 20 runs of Extended
ESP. The five selected for Figure 5.3 (Runs 4, 5, 8, 10,
and 20) were chosen because they demonstrated the most
diverse, interesting, and successful solutions. Within
each graph, the horizontal axis measures generations of
evolution, and the vertical axis indicates fitness. As in all
fitness graphs in this chapter, the first 500 generations
are devoted to the development of body and brain for
the new skill (in this case, strike), and the last 250 gen-
erations are used to allow the initial skill (locomotion)
to reconcile itself to any changes in morphology. . . . . 98

5.5 Fitness graphs for the last ten of 20 runs from which the
strike results in Figure 5.3 were selected. . . . . . . . . . 99

5.6 Further evolution of the hopper morphology in the high-
reach task. The locomoting creature of Figure 5.3a was
further evolved using the extended ESP system to adapt
to a high-reach task. The results demonstrate the po-
tential of continued morphology evolution to produce a
great degree of useful variety. . . . . . . . . . . . . . . . 102

5.7 Fitness graphs for the first ten of 20 runs of Extended
ESP. The six selected for Figure 5.6 (Runs 1, 2, 11, 14,
16, and 19) were chosen because they demonstrated the
most diverse, interesting, and successful solutions. . . . 103

5.8 Fitness graphs for the last ten of 20 runs of Extended
ESP from which the high-reach results in Figure 5.6 were
selected. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.9 A simple jump for height with the existing morphology
was produced in eight of ten runs of the Original ESP
system on the learning task of Section 5.4 (high reach,
hopper morphology). . . . . . . . . . . . . . . . . . . . 105

5.10 Fitness graphs for ten runs of Original ESP on the task
of Section 5.4.1 (high reach with hopper morphology).
Due to Original ESP’s constraints on morphology, these
runs produced extremely uniform results, with only two
strategies observed. . . . . . . . . . . . . . . . . . . . . 106

5.11 Further evolution of a snake morphology in the high
reach task. These results demonstrate how the extended
ESP system (b) can produce better fitness values (i.e.,
a higher reach) than the original ESP system (a) by al-
lowing the addition of new body segments. . . . . . . . 107

xxi



5.12 Fitness graphs for all 10 runs of Extended ESP from
which the high-reach result in Figure 5.11b (high reach
with snake morphology) was selected. Extended ESP’s
ability to change morphology produced a distinct in-
crease in fitness over Original ESP (see Figure 5.13). . . 108

5.13 Fitness graphs for 10 runs of Original ESP on the task of
Section 5.4.2 (high reach with snake morphology). This
system’s inability to fully adapt morphology produced
significantly less fit results than Extended ESP. . . . . . 109

5.14 Further evolution of a quadruped morphology in the
high reach task. The initial locomoting quadruped (a)
is evolved for high reach in the Extended ESP system
(b)-(d). Through a variety of strategies, each of the Ex-
tended ESP creatures shown scores better on this new
task than any creature from the Original ESP system. . 111

5.15 Fitness graphs for the first ten of 20 runs from which
the quadruped high-reach results in Figure 5.14 were se-
lected. Extended ESP’s ability to fully adapt morphol-
ogy produced results which were both more varied and
more fit than those of Original ESP. . . . . . . . . . . . 112

5.16 Fitness graphs for the last ten of 20 runs from which the
high-reach results in Figure 5.14 were selected. . . . . . 113

5.17 The only technique developed in ten runs of the Original
ESP system on the learning task of Section 5.4.3 (high
reach, quadruped): reaching up with one limb. Due to
the fixed morphology in Original ESP, this resulted in
almost exactly the same score for all ten runs. . . . . . 114

5.18 Fitness graphs for ten runs of Original ESP on the task of
Section 5.4.3 (high reach with quadruped morphology).
In this case, Original ESP’s constraints on morphologi-
cal adaptation produce results which are both extremely
uniform and less fit than those of Extended ESP. . . . . 115

6.1 A creature evolved for jumping (Section 6.4.6) using the
method described in this chapter, demonstrating the mor-
phological complexity that results from replacing im-
plicit joint-motor drives with an evolvable musculature.
As with all other examples in this chapter, the phys-
ical intelligence embodied by these muscle drives en-
ables this creature to perform a useful task essentially
without control intelligence (Section 6.3). Video of this
and all other results from this chapter can be viewed at
http://youtu.be/csZ9JZcuBfE. . . . . . . . . . . . . . . 118

xxii



6.2 Evolvable musculature, with example muscle body (a)
and attachment point (b) indicated. The density of mus-
cles at a joint, their thickness (indicating current force),
orientation, and attachment points all contribute mean-
ingfully to the creature’s morphological complexity. . . . 121

6.3 The fixed global muscle activations that replace the typi-
cal EVC’s relatively complex brain for all experiments in
this work are illustrated. With the muscle drives’ capac-
ity for physical intelligence, simple but useful behaviors
can be performed effectively without control intelligence. 123

6.4 Two-armed swing (repeatable), from generation 300 of
Run 4 of the jump task. . . . . . . . . . . . . . . . . . . 127

6.5 Two-armed swing (non-repeatable), from generation 360
of Run 12 of the jump task. . . . . . . . . . . . . . . . . 128

6.6 One-armed swing, from generation 320 of Run 19 of the
jump task. . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.7 Four-legged push, from generation 221 of Run 25 of the
jump task. . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.8 Complex-arm swing, from generation 500 of Run 35 of
the jump task. . . . . . . . . . . . . . . . . . . . . . . . 130

6.9 Fitness graphs for Run 1 through 18 of the jump task.
(Note: The data from Runs 2-3 and 6-10 has been lost.)
This set of runs contained the repeatable two-armed
swing of Figure 6.4 and the non-repeatable two-armed
swing of Figure 6.5. . . . . . . . . . . . . . . . . . . . . 131

6.10 Fitness graphs for Run 19 through 29 of the jump task.
This set of runs contained the one-armed swing of Fig-
ure 6.6 and the four-legged push of Figure 6.7. . . . . . 132

6.11 Fitness graphs for Run 30 through 40 of the jump task.
This set of runs contained the complex-arm swing of Fig-
ure 6.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.12 Double front-armed swing hop, from generation 1000 of
Run 6 of the locomotion task. . . . . . . . . . . . . . . 136

6.13 Single front-armed swing hop, from generation 1000 of
Run 7 of the locomotion task. . . . . . . . . . . . . . . 137

6.14 Front-armed swing step, from generation 1000 of Run 12
of the locomotion task. . . . . . . . . . . . . . . . . . . 137

6.15 Delta wheelbarrow, from generation 2000 of Run 12 of
the locomotion task. . . . . . . . . . . . . . . . . . . . . 138

xxiii



6.16 Front-hinged swing drag, from generation 2000 of Run
18 of the locomotion task. . . . . . . . . . . . . . . . . . 139

6.17 Square wheelbarrow, from generation 1250 of Run 20 of
the locomotion task. . . . . . . . . . . . . . . . . . . . . 139

6.18 Complex swing step, from generation 1000 of Run 23 of
the locomotion task. . . . . . . . . . . . . . . . . . . . . 140

6.19 High hop, from generation 1000 of Run 31 of the loco-
motion task. . . . . . . . . . . . . . . . . . . . . . . . . 141

6.20 Fitness graphs for Run 1 through 10 of the locomotion
task. This set of runs contained the double front-armed
swing hop of Figure 6.12 and the single front-armed
swing hop of Figure 6.13. . . . . . . . . . . . . . . . . . 142

6.21 Fitness graphs for Run 11 through 20 of the locomo-
tion task. This set of runs contained the front-armed
swing step of Figure 6.14, the delta wheelbarrow of Fig-
ure 6.15, the front-hinged swing drag of Figure 6.16, and
the square wheelbarrow of Figure 6.17. . . . . . . . . . . 143

6.22 Fitness graphs for Run 21 through 30 of the locomotion
task. This set of runs contained the complex swing step
of Figure 6.18. . . . . . . . . . . . . . . . . . . . . . . . 144

6.23 Fitness graphs for Run 31 through 40 of the locomotion
task. This set of runs contained the high hop of Fig-
ure 6.19. . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xxiv



Figure 1.1: Islandia map by Abraham Ortelius, circa 1600. We once lived
in a world with mysterious realms worthy of the phrase Here Be Dragons.
Today it is becoming possible to create such worlds virtually, and populate
them with automatically generated creature content.

Chapter 1

Introduction

Imagine living in a time when, just by traveling over the horizon,

you could discover not only new geography, but new life as well. Ancient

maps filled uncharted areas with illustrations of imagined monsters and

inscriptions like Here Be Dragons to express this state of exhilarating
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ignorance about the world (Figure 1.1). And just when it seemed the

age of discovery was over, virtual worlds have provided a new avenue

for exploration, offering novel terrain that is created faster than we can

experience it. However, while it is possible to construct and program

creatures to inhabit these worlds, something vital is missing: creature

content that is compelling and truly novel, like the kind seen in nature.

Taking a step in this direction by making evolved virtual creature con-

tent complex and compelling is the focus of this dissertation.

1.1 Motivation

Creature content has been highly valued throughout human his-

tory (Figure 1.2). From the cruel spectacle of animal (and human)

combat, to educational and inspirational nature documentaries, to the

emergent slapstick of pet videos on television and the internet with mil-

lions of views1, real-world creatures have long been a prominent source

of compelling and valued entertainment. In recent decades, advances

in computer power and sophistication have made it possible to consider

not only creature content evolved and observed in nature, but also the

entirely new parallel category of creature content evolved and simu-

lated in virtual environments. This technology opens the door from

evolved-creature-content-as-we-know-it to evolved-creature-content-as-

1e.g., “THE BEST CAT VIDEO YOU’LL EVER SEE” [sic],
http://www.youtube.com/watch?v=20mrEtabOLM
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it-could-be.

(a) Combat.

(b) Nature documentaries.

(c) Pet videos on television.
(d) Internet cat videos.

Figure 1.2: Compelling creature content. Throughout history, many forms
of highly valued entertainment have been derived from animal and human
life in the natural world. The goal of this dissertation is to create similarly
entertaining content for virtual worlds.

This new font of creature content offers numerous potential ad-

vantages over its non-virtual predecessor. By applying the creative

power of evolution, this new field has the potential to produce endlessly
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novel virtual creature content; instead of hoping to someday discover

alien life evolved on other planets or in some as-yet-inaccessible region

of our own, we can restart randomly seeded virtual evolution when-

ever we wish. And further, virtual evolution may be modified to suit

specific content requirements. Abstract goals such as morphological or

behavioral novelty can be rewarded [26], more specific constraints such

as topological complexity or simplicity can be enforced, and indirect

pressures may be applied, such as environmental modifications. Note

that many of these techniques, although they involve human input, still

result in genuine creativity: Only the desired outcome is given, with the

specifics of the solution emerging purely from evolutionary processes.

In addition, these creatures can be used (either as finished prod-

ucts or along with mechanisms for continued evolution) in non-real envi-

ronments, from computer-generated movie scenes to the larger worlds of

video games and open virtual environments. With sufficient progress in

performance to allow near-real-time creature evolution, the exploration

of a virtual world could become like real-world exploration. Pushing

back boundaries in it results in the genuine discovery of new forms of

life.

1.2 Challenge and Opportunity

In 1994, this endeavor got off to a strong start with the pub-

lication of Karl Sims’ landmark paper on evolving virtual creatures
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(EVCs) [46]. In it, physical simulation and artificial evolution were

combined to develop morphology and control simultaneously for novel

and compelling evolved virtual creatures. Their abilities included loco-

motion on land and in water, jumping, and, most impressively, photo-

taxis (the ability to move toward a user-controlled light source). Since

that time, significant extensions to Sims’ work have been demonstrated

in multiple fields, including computer graphics, artificial life, evolution-

ary computation, and even robotics. But there has, to date, been one

notable exception to this progress. Despite the potential benefits to

creature content, there has been no clear increase in the behavioral

complexity of EVCs beyond the light following demonstrated in Sims’

original work.

Defining behavioral complexity as the number of discriminable

behaviors in a creature’s repertoire, many of Karl Sims’ creatures could

be said to have minimal complexity, employing repertoires that contain

only a single behavior. His examples of locomotion on land and in

water, as well as jumping, fall into this category, as does much of the

work that others have since completed. For example, locomotion in

air for EVCs was demonstrated [42], and a specialized form of ground-

locomoting EVC was produced, which can be converted into functional

real-world robots [29]. Soft-bodied virtual creatures were evolved for lo-

comotion [21, 18], and many other variations at this level of complexity

were presented [7, 20, 5, 25, 23, 26].
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The highest level of behavioral complexity demonstrated by

Sims—creatures with the ability to follow a target or a path by switch-

ing between up to four discriminable behaviors—has since been matched

multiple times [37, 43, 30]. However it has never been clearly exceeded,

even though more complex behaviors would be useful. There are nu-

merous examples of creature content in the real world that are valued

precisely because they are complex—much more than what has been

demonstrated in EVCs to date. If we could give the behavior of EVCs

similar complexity, they might begin to approach the entertainment

value of their non-virtual counterparts.

In fact, there is suggestive evidence in support of this propo-

sition. There is a striking effect in cognitive science and psychology

in which the right kinds of relatively complex behaviors—even by the

simplest of geometric figures—lead to the perception of intentionality

and desires (perceptual animacy) [38]. This principle is well described

in the classic work by Heider and Simmel [17], in which viewers watch-

ing simple geometric forms performing complex motions (i.e., behav-

iors) readily ascribe internal motivations and emotions to them. For

a particularly clear non-academic example of this same effect, consider

the academy-award-winning animated short “The Dot and the Line”

(Chuck Jones, 1965). In this film, the simple dot and line are trans-

formed into the protagonists of a compelling love story simply through

animation, i.e., their complex behavior.
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A second way to make EVCs more interesting and entertaining

is to make their physical appearance, i.e. morphology, more complex.

While morphology can be interesting in its own right, it can be es-

pecially powerful when it matches behavior—that is, when the EVC

utilizes behavior that naturally emerges from its morphology. Unlike

the almost complete stagnation in behavioral complexity since Sims,

there has been a slow but steady (and recently increasing) interest in

more complex bodies for evolved virtual creatures.

For example, Bongard and Pfeifer’s [5] bodies built of multiple

spheres provide one potential avenue for complexifying EVC bodies.

They are based on using a larger number of smaller primitives to pro-

duce a more finely grained physical description. Similarly, soft-bodied

EVCs with voxel-based body descriptions [8] increase morphological

resolution. This approach makes it possible to fine tune creature form

in ways that arrangements of a few predefined primitives cannot.

Another approach is to apply evolutionary techniques to the

same goal with traditional block-based EVC morphologies. For exam-

ple, Lehman and Stanley [26] motivate morphological diversity explic-

itly through novelty search and niching. Taking a slightly different ap-

proach, with a strong focus on the value of physical intelligence [36] and

a novel metric for morphological complexity, Bongard and Auerbach

pursued this goal by defining creatures using Compositional Pattern-

Producing Neural Networks (CPPNs) [2], and by attempting to use
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complex environments to promote complex bodies [4, 3].

Given that behavioral and morphological complexity is impor-

tant, why has more of them not been seen in EVCs to date? It seems

that behavioral complexity has been limited by the monolithic devel-

opmental process of typical EVC evolution. Using that approach, it is

difficult to make the kinds of leaps in brain architecture that complex

behaviors require. On the other hand, morphology evolution has been

limited, missing the kind of complex underlying mechanics found in

natural bodies. However, if the large-scale process could be directed

through human intuition, it might be possible for evolution to solve the

details; if more of body mechanics, such as muscles and joints, can be

incorporated into the morphology, more complex bodies should emerge.

Increasing behavioral and morphological complexity in this manner is

the challenge and opportunity taken on in this dissertation.

1.3 Approach

Motivated by the potential value of behavioral complexity for

content creation, this dissertation describes a method, ESP, for con-

structing significantly more complex EVC behaviors than have been

seen before. The primary elements of this method—encapsulation, syl-

labus, and pandemonium—are defined as follows:

1. A human-designed syllabus breaks the development of a complex
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creature into a sequence of smaller learning tasks.

2. Once each of these subskills is learned, it is encapsulated to pre-

serve it throughout future evolution, and also to allow future skills

to more easily incorporate its function.

3. A mechanism inspired by Selfridge’s pandemonium [41] is used

to resolve disputes between competing skills or drives within the

increasingly complex creature.

These behaviors are evolved in a brain consisting of a network

of nodes connected by wires. Each node computes a simple function,

making it easier to construct high-level behaviors and to implement en-

capsulation. Network topology and all node properties emerge entirely

through evolutionary processes.

To create useful morphological complexity, this dissertation pro-

poses an approach that extends the traditional EVC body with biolog-

ically motivated elements. The traditional Sims-like segments are envi-

sioned as approximations to bones, and muscle-like springs are added

to them for actuation. In addition to a mechanically intricate increase

in morphological complexity, this bone and muscle structure results in

physical intelligence. By encoding part of the behavior in the creature’s

body, physical intelligence has the additional benefit of making it easier

to evolve more complex behaviors, since the demands on the brain are

reduced.
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1.4 Overview
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(a) ESP. This system produces a significant increase in
behavioral complexity over traditional EVCs.

(b) Extended ESP. This augmented version of ESP allows greater
body adaptation to multiple tasks than what Original ESP allows.

(c) Muscle Drives. This novel
drive system simultaneously increases
morphological complexity and reduces
computational demands on the brain.

Figure 1.3: This dissertation’s primary contributions, which improve both
the behavioral and morphological complexity of evolved virtual creatures.
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This dissertation is organized as follows:

Chapter 2 describes the basis upon which the ESP approach

is built: the foundational concepts and related work on evolutionary

algorithms and evolved content.

Chapter 3 presents the basic EVC system, which reproduces

Sims’ original work with some changes, including those that support

more complex bodies and behaviors. As a basis for evolving more com-

plex behaviors in Chapters 4 and 5, it will be demonstrated on the task

of evolving a variety of creatures for locomotion.

In chapter 4, the ESP method is employed to approximately

double the state of the art in behavioral complexity for evolved vir-

tual creatures (Figure 1.3a). This chapter focuses almost entirely on

behavior; the morphology evolved in Chapter 3 is kept largely fixed

throughout most of this process.

In Chapter 5 (Figure 1.3b), an extension to the ESP system

is described which allows full morphological development to continue

throughout a larger portion of the syllabus-based evolutionary process.

This technique can produce creatures with greater variety and greater

fitness when applied to learning goals with multiple and differing mor-

phological requirements. This ability is demonstrated by evolving a

diverse set of solutions to the strike and high-reach tasks using the

creatures from Chapter 3 as a starting point.
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In Chapter 6, the muscle drive system employed throughout

the dissertation is evaluated in detail (Figure 1.3c). It is shown to

produce two important benefits for evolved virtual creatures. First, it

manifests a significant measure of intelligence that would otherwise be

hidden in the brain, adding to the creature’s morphological complexity.

Second, transferring intelligence from the brain to the body reduces the

computational load that must be borne by the brain, making it easier

to evolve more complex control.

These three new methods—ESP, extended ESP, and muscle

drives for EVCs—comprise the primary contributions of this disser-

tation. The degree to which they are successful in creating valued

content, and can be extended in the future to provide creature content

on demand will be discussed in the last two chapters.

1.5 Conclusion

This dissertation presents significant new steps in the pursuit of

increasing complexity in evolved creature content. This goal is pursued

as a rewarding avenue for improving the entertainment value of evolved

virtual creatures. With continued progress down this path to more

compelling EVCs, we may someday witness the dawn of a new age of

naturalistic exploration, in which the borders of our world are once

again worthy of the phrase Here Be Dragons.
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Chapter 2

Background

The results of this dissertation are built on the foundation of evo-

lutionary algorithms, evolution of content, and in particular, evolved

virtual creatures (EVCs). These are discussed in this chapter, both as

foundational material and for their relation to the dissertation’s contri-

butions.

2.1 Evolutionary Algorithms

At the heart of this dissertation’s contributions is the evolution-

ary algorithm. Inspired by the workings of evolution in nature, this

algorithm is at once extremely powerful and extremely versatile.

In order to find valuable results, an evolutionary algorithm starts

with a population of candidate solutions—locations within the space

of all possible solutions. These candidate solutions are genotypes—

individual genetic encodings, analogous to the set DNA of a single

individual in nature. Also defined for the algorithm is a method for

mapping from genotypes to the phenotypes which they encode (anal-

ogous to individual creatures in nature). The process of converting a
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genotype into a phenotype is called expression (Figure 2.1).

(a) Genotype: complete ge-
netic encoding for a single in-
dividual.

(b) Phenotype: the indi-
vidual produced by express-
ing a genotype. (José
Mujica, 40th President of
Uruguay

Figure 2.1: A genotype (a) is expressed to produce a phenotype (b).

The evolutionary algorithm itself functions as depicted in Fig-

ure 2.2. Individual genotypes may be encoded in a variety of ways, from

a simple binary string to a grammar-like rule list to a complex directed

graph. Starting with the population of genotypes (possible solutions),

each one is expressed as the corresponding phenotype. The expression

process also varies, sometimes mapping directly from the genotype, and

sometimes involving organic growth-like processes, in which a complex

final result emerges in hard-to-predict ways from a relatively simple

genotypic encoding. The expressed phenotype is evaluated using a fit-
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ness function, which may be accomplished by many means. Phenotypes

may be evaluated in simple mathematical terms such as the number of

ones in a binary string or the physical dimensions of a virtual crea-

ture’s body, or they may be put through a battery of tests in physical

simulation, or they might even be scored using human input. In fact,

this flexibility of genotypic encoding, phenotypic expression, and fitness

evaluation is a particular advantage of evolutionary algorithms: As long

as a fitness function can be computed from it, few other constraints on

a genotype are required.

Once the population of genotypes has had its fitness evaluated,

the next generation can be created. As in nature, fitter individuals

are more likely to survive and reproduce, thereby making up a larger

proportion of the next generation’s population. Typical ways to select

parents include fitness-proportionate selection (likelihood proportional

to fitness value) and rank selection (likelihood proportional to fitness

rank). Using crossover, selected parents produce new individuals by

splicing together their genotypes. For example, two string-like geno-

types can be combined by choosing a random point in the encoding,

and copying everything up to that point in one and everything after

that point in the other. Analogously, graph-based parent genotypes can

combine randomly selected subgraphs to produce a child genotype. As

an alternative to crossover, individuals may be produced by mutation

of a single selected genotype. Mutation can range from simple local
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Figure 2.2: Evolutionary algorithm. A population of genotypes (left) are
individually expressed to produce a phenotype (center), which can then be
evaluated by a fitness function. This produces a fitness value for each geno-
type (right), which determines the survival and reproduction of genotypes to
produce the next generation. As the cycle is repeated, fitness in the popula-
tion tends to improve.
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modifications to a genotype, such as flipping a bit in a binary-string

encoding, to relatively complex topological changes in a graph-based

encoding. Highly fit genotypes may also be copied directly from one

generation to the next without modification, which is referred to as

elitism [32]. These processes continue until an entire new population

has been created to replace the old one.

From that point, a new round of fitness evaluations can occur,

and the process repeats. Over time, the prevalence of fit individuals

in the population tends to increase. With a sufficient number of gen-

erations, impressive demonstrations of creativity and problem solving

are often observed, as seen in results from fields as diverse as satellite

antenna design [19], vibration-reducing truss design [33], wind farm

layout [16], protein structure prediction [52], aircraft wing design [34],

and many more. The work in this dissertation builds on this creativity

as well.

2.2 Evolved Content

One particularly relevant application of evolutionary algorithms

is the production of content—making things that are interesting, en-

tertaining, or compelling to human viewers.

By making the fitness function dependent on user perception,

visually appealing images can be created. An early example of this

(1986) was Richard Dawkins’ Blind Watchmaker algorithm [10], which
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Figure 2.3: Biomorphs. An early example of interactive evolution of visual
imagery from Richard Dawkins’ Blind Watchmaker algorithm [10]. Although
created to demonstrate principles of evolution, and despite the simplicity of
their construction, these results have clear aesthetic appeal.
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was created to demonstrate basic ideas about evolution. In this system,

genotypes were defined by nine numerical values, expressed as pheno-

types that were simple, yet organic-looking tree-like structures, which

Dawkins referred to as biomorphs (Figure 2.3). Through interactive

evolution based on user preference of phenotype images, more visually

pleasing biomorphs were evolved–an early example of evolved content,

which is the ultimate focus of this dissertation.

Figure 2.4: Plant forms evolved based on their visual appearance from a sys-
tem designed by Sims [44]. In a system similar to Dawkins’ Blind Watch-
maker, genotypes (in this case, growth rules) are selected for evolution using
fitness determined by a human user viewing the plant-like phenotypes. The
resulting content was of sufficient quality to be included in a short film by
Sims: Panspermia (1990).

In 1991 [44], Sims created evolved content with interactively

evolved growth rules for generating plant designs (Figure 2.4). While
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Figure 2.5: Images evolved based on their visual appeal from a system by
Sims [44]. In this system, the genotypes are hierarchical lisp expressions,
but the basic interactive-evolution selection method is essentially unchanged
from the one used in Figure 2.4. This further example of evolved content is
notable for its persistent visual appeal.
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Dawkins’ biomorphs were simple two-dimensional images composed of

straight lines, these plants were three-dimensional and more complex,

with 21 evolved parameters instead of Dawkins’ nine. This advance

demonstrated more complex and aesthetically appealing content cre-

ation through evolution, with the resulting phenotypes having suffi-

cient visual appeal to play a central role in Sims’ short film Panspermia

(1990).

In addition, in the same publication, Sims demonstrated an

early yet powerful implementation of interactively evolved images (Fig-

ure 2.5), with genotypes encoded as hierarchical lisp expressions. With

a human user as the selector, these images remain arguably unsurpassed

in their visual appeal in evolutionary image generation.

In 1997, Sims presented the Galápagos museum installation (In-

tercommunication Center, Tokyo)—an animated three-dimensional ver-

sion of the same concept, even employing an early form of crowdsourc-

ing to obtain fitness evaluations. Viewers stood on sensors in front of

displayed creatures that they preferred, leading to increased fitness for

those individuals, and increased odds of survival in the future (Fig-

ure 2.6).

In 2008, Picbreeder [40] made a result similar to Sims’ two-

dimensional evolved images available for worldwide user input by way

of the internet, producing visually appealing results such as those seen

in Figure 2.7. In this example, genotypes are encoded as Compositional
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Figure 2.6: Evolved animated content from Sims’ 1997 Galápagos exhibit
(Intercommunication Center, Tokyo). This work employed an early form of
crowdsourcing implemented using in-person interaction with sensors at the
museum installation.
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Figure 2.7: Images produced using worldwide crowdsourcing in
Picbreeder [40], a prominent example of evolved content. Similar in
concept to the evolved images of Sims, these results encode their genotypes
as Compositional Pattern-Producing Networks [48].
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Pattern-Producing Networks (CPPNs) [48]—similar in concept to the

hierarchical lisp expressions used in Sims’ work. Due to its internet-

based open-ended nature, this is one of the more prominent examples

of evolution of content.

Figure 2.8: Results from Draves’ cooperative evolution of animated imagery
Electric Sheep [12]. With highly effective interaction and world-class aes-
thetic results, this system is an example of valued evolved content.

The interactive evolution of imagery achieved perhaps its highest

expression with the development of Draves’ Electric Sheep [12], a web-

based crowdsourcing system for the development of animated visuals

based on his fractal flame algorithm, with powerful aesthetic appeal

(Figure 2.8). With a particularly well-conceived interaction method,
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as well as world-class aesthetics, this system has achieved significant

recognition for its visual beauty beyond the academic world.

Figure 2.9: 3-D printed shapes evolved using Clune and Lipson’s Endless
Forms [9]. This extension of Picbreeder’s web-based interactive concept into
three dimensions demonstrates a potential application for the generation of
content through physical evolution.

Most recently, Endless Forms [9] employed an extended version

of the encoding used by Picbreeder to produce interactively evolved

three-dimensional shapes suitable for 3-D printing (Figure 2.9), also

using online user input. This extension of interactive evolution provides

an example of how physical content can be produced through artificial

evolution.

In these examples, the ability of evolutionary algorithms to pro-

duce content is made particularly plain. It is this font of creativity that
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is harnessed for evolved virtual creatures, i.e. the core application at

the heart of this dissertation.

2.3 Evolved Virtual Creatures

For the purposes of this dissertation, evolved virtual creatures

(EVCs) are defined as digital organisms having co-evolved bodies and

brains, evaluated in physical simulation. The foundations of this dissertation—

the definition of EVCs and the established research with them—is dis-

cussed in this section.

(a) A creature evolved
for locomotion in wa-
ter.

(b) A creature evolved
for locomotion on
land.

(c) A creature evolved
to follow a light source.

Figure 2.10: Sims’ evolved virtual creatures [46]. Sims evolved creatures
for locomotion in water and on land, to jump, and to follow a light source
(phototaxis).

2.3.1 Sims’ EVCs

The first and most influential example of evolved virtual crea-

tures are due to Sims ([46]; Figure 2.10). The advances of this dis-

sertation are also built on this foundation, as described in detail in
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Chapter 3.

(a)

(b)

Figure 2.11: This figure illustrates a body and brain from one of Sims’ con-
ventional EVCs—this one evolved for locomotion [46].

The genotypes for Sims’ creatures were directed graphs, able

to encode complex body structures, as shown in Figure 2.11a. The

bodies of these creatures were composed of boxes, connected by joints

with varying degrees of freedom and evolvable limits to their revolution.

Actuation was provided by implicit joint motors, able to apply force at

every degree of freedom of every joint.

Corresponding to the body, Figure 2.11b depicts the brain, with
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nodes computing simple functions and signals carried between nodes by

evolved connections. In Sims’ implementation, brain elements can be

embedded within body segments, where they can take advantage of the

same kinds of repetition and recursion as the creature’s morphology.

Evolution in Sims’ system proceeds as described in Section 2.1,

making use of fitness-proportionate selection, crossover, mutation, and

elitism. Interestingly, while Sims’ computation was performed in a

massively parallel fashion on a Connection Machine CM-5 (described

at the time as a supercomputer), similar work can now be performed

on a typical desktop machine.

Using this system, Sims demonstrated impressive results in mul-

tiple tasks. A variety of creatures were evolved for locomotion, both on

land and in water (Section 2.3.2), and creatures with the ability to jump

off the ground were produced. Most impressively, Sims demonstrated

creatures evolved for phototaxis (light seeking) behavior (Section 2.3.3),

a level of behavioral complexity not exceeded until the work presented

in this dissertation [27] (Chapter 4). Many of these behaviors have

since then become benchmarks in EVCs. They have been replicated

many times on different platforms, and other similar behaviors have

been added to this repertoire, as will be described next.
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2.3.2 Locomotion

The standard benchmark task for an EVC system is locomotion.

Sims presented locomotion on land and water (Figures 2.10a and 2.10 b),

and this result has been repeated for many different purposes by many

different researchers. An illustration of the breadth of these results is

seen in Figure 2.12

(a) Automatic Design and
Manufacture of Robotic
Lifeforms [29].

(b) Generating Flying
Creatures Using Body-
Brain Co-Evolution [42].

(c) Evolving a Diversity of
Creatures through Novelty
Search and Local Competi-
tion [26].

(d) Unshackling Evolution:
Evolving Soft Robots with
Multiple Materials and a
Powerful Generative En-
coding [8].

Figure 2.12: A selection of work indicating the breadth of research using
locomotion in EVCs, including physical robots, soft robots, flying robots, and
diversity promotion.

Lipson and Pollack evolved creatures for locomotion in a system
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that allowed the results to be 3-D printed and activated in the real world

(Figure 2.12a) [29]. Creatures composed of rigid segments and linear

actuators were evolved for locomotion in physical simulation. The body

parts (including joints) could then be 3-D printed, and only the fitting

of actuators required special attention during assembly. Notably, these

creatures were required to maintain static stability at all times (i.e.,

have their center of gravity always supported by the body). In this

manner, a consistent transition to the real world was guaranteed, where

dynamics might differ from simulation, but geometry should not.

Shim and Kim evolved virtual creatures for another type of

locomotion—flight (Figure 2.12b) [42]. Lehman and Stanley used loco-

moting EVCs as the subject for an investigation of novelty promotion

(Figure 2.12c) [26]. Cheney et al. (Figure 2.12d) demonstrated their

new encoding for soft-bodied EVCs by applying them to the locomotion

benchmark [8].

As a preliminary step, locomotion results from this disserta-

tion’s EVC system are presented in Section 3.6. In Chapter 4, this

fundamental ability will be used as a starting point for the incremental

acquisition of more complex behaviors.

2.3.3 Phototaxis

Phototaxis (the ability to move to a light source) was the most

complex behavior demonstrated by Sims (Figure 2.10c). By testing the
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ability to move toward a light target placed at multiple positions, crea-

tures were developed with a generalized ability to perform phototaxis.

This remained the most complex EVC behavior for almost two decades

until the work of this dissertation (Chapter 4) approximately doubled

that complexity (measured as the number of discriminable behaviors,

as defined in Section 1.2).

Pilat and Jacob reproduced the behavioral complexity of Sims’

phototaxis approximately in their 2010 work [37], although their im-

plementation differed in some respects. While Sims’ photoreceptors

were embedded in each body segment and produced signals relative

to the segment’s orientation, Pilat and Jacob used a single sensor for

the entire creature, and that sensor’s signals were preprocessed to give

one output for heading to the light and another for the light’s eleva-

tion angle. Also, Pilat and Jacob’s creatures had simpler morphology,

allowing only single-degree-of-freedom hinge joints between segments.

Unlike the control networks of Sims, with nodes computing a variety of

predefined functions, Pilat and Jacob’s creatures used a more conven-

tional artificial neural network (ANN).

Shim and Kim also achieved a similar result in 2004 with flying

creatures able to follow paths [43]. This dissertation’s EVC system

demonstrates phototaxis as an intermediate step on the path to more

complex behaviors (Section 4.3.5).
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2.3.4 Combat

Another important EVC result, especially with respect to en-

tertainment value, is combat. Sims demonstrated a stylized form of

combat in his block-control competition [45]. In it, creatures compete

in one-on-one contests for control of a target block. Successful results

employ a variety of entertaining strategies (Figure 2.13), leading to a

new form of particularly compelling EVC content.

Figure 2.13: Evolved creatures compete one-on-one for control of a target
block in this work by Sims [45].

In 2008, Miconi [30] implemented a more direct form of EVC

competition (Figure 2.14), again with very entertaining results. In

Miconi’s relatively realistic implementation of combat, creatures are

evolved for their ability to damage each other with physical impacts.

In the process, many of Sims’ accomplishments were replicated, includ-

ing both locomotion and phototaxis. As Miconi anticipates, a fully

convincing implementation of collision damage would require bodies

composed of different materials (otherwise, every collision may well in-

flict equal damage on both the attacker and the victim). However,
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even with a simplified damage model, Miconi produces a broad vari-

ety of compelling creature-combat results. Note that this dissertation’s

proposed future work on morphological complexity (Section 7.3) might

well enable exactly the kind of body-material trade-offs needed to take

Miconi’s EVC combat to the next level of realism.

Figure 2.14: EVC combat as implemented by Miconi [30]. Creatures are
evolved based on their ability to damage each other in one-on-one compe-
tition. In this image, a larger creature (left) attacks a smaller one with
a steamroller-like technique. Combat is a demanding and natural goal for
EVCs, requiring a combination of several behaviors. It is also part of the
motivation for the work in this dissertation.

In Chapter 4, this dissertation’s ESP system demonstrates the

ability to develop skills relevant to complex and entertaining combat,

such as seeking and striking a target (Section 4.3.7), fleeing from a

dangerous target (Section 4.3.9), and deciding between the two actions

based on perception of its environment (Section 4.3.10).
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In Chapter 5, the Extended ESP system demonstrates combat-

relevant capabilities which allow EVC morphology to adapt to multiple

skills while still developing the complex behaviors made possible by

ESP.

2.4 Conclusion

This chapter described the creative engine of the evolutionary

algorithm, its application to the evolution of content, and in particular

its use to produce evolved virtual creatures. This dissertation is built

on these foundations. In the next chapter, these general techniques are

specialized for this dissertation, with the presentation of the basic EVC

system upon which all of this dissertation’s contributions are built.
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Chapter 3

The Basic EVC System

Figure 3.1: A typical result from the Basic EVC System. This creature
was evolved for locomotion as described in Section 3.6, and was produced at
generation 2000 of Run 1 (Figure 3.9). This phenotype is the expression of
the genotype shown in Figures 3.4 and 3.5.

The Basic EVC System described in this chapter is the foun-

dation underlying this dissertation’s three primary contributions. In

Chapter 4, this system is extended by a mechanism called ESP, which

makes it possible to increase behavioral complexity dramatically. In

Chapter 5, the Basic EVC System is further extended to permit not

just behavior but also morphology to be adapted to multiple skills. In
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Chapter 6, the Basic EVC System’s muscle drives (Section 3.5) are

demonstrated to embody physical intelligence, which may then be re-

moved from the brain, leaving it to develop higher functions. The Basic

EVC System largely replicates the work of Sims [46] and other tradi-

tional EVC systems [7, 24, 30], although it does include some novel

elements to support the technologies developed in Chapters 4-6.

3.1 Evolutionary Algorithm

In the Basic EVC System, the engine of development is an evolu-

tionary algorithm (Section 2.1). It begins with a population of genetic

representations (genotypes) for virtual creatures. These genotypes are

expressed to produce the physical representations of the creatures (phe-

notypes), and these phenotypes are evaluated in a physically simulated

virtual environment implemented with NVIDIA PhysX. This evalu-

ation (via a user-defined fitness function) produces a score for each

creature’s genotype, and based on these scores, genotypes are selected

for survival, breeding, and mutation (Figure 3.2) to produce the next

generation. Over time, the fitness of the population tends to improve.

After a sufficient number of generations, the creature with the best fit-

ness may be considered the winner, or a user may select a winner from

among individuals with relatively high fitness values.

The evolutionary algorithm is conventional, making use of elitism

(the intact preservation of the population’s best), fitness-proportionate
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Figure 3.2: An evolutionary algorithm as used in the Basic EVC System.
A population of creature genotypes (left) is evaluated for fitness, so that
each one can be assigned a fitness score (right). Based on these scores, a
new population is created using mechanisms such as crossover, mutation,
and elitism. Over time, as this process is repeated, fitness in the population
tends to improve. After a significant number of generations, one or more
individuals are chosen as the winners, usually based on fitness, but possibly
using other criteria as well, such as how visually appealing they are.

selection (choosing the next generation’s parents based directly on their

fitness), and rank selection (choosing the next generation’s parents

based on their place in a fitness-based ranking) [32]. In addition, the

most challenging tasks employ some degree of shaping [35], a process

described by B.F. Skinner in which fitness is based on increasingly close

approximations to the ultimate behavioral goal [47]. A specific example

is given in Section 3.6.

3.2 Encoding Morphology

As in traditional EVC systems, creature morphology is described

by a graph-based genotype, with graph nodes representing body seg-
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(a) Simple topology. Starting with the
genotype’s root node, the phenotype’s
root segment (the center block) is de-
fined. Each graph edge leaving the
root describes a joint, which connects
to its own child node and correspond-
ing segment (the two arms).

(b) Multiple edges for repeated sub-
structures. In this example, a simpler
genotype produces the same phenotype
as in (a). Both joint edges connect
to a single child node/segment, rather
than to two separate child nodes, as
was done in (a). As each edge is tra-
versed, a new copy of the child node
is created.

(c) Reflexive edge for recursive struc-
ture. In this example, an edge from
one node to itself describes a repeating
joint-node sequence. Each transition
through the edge applies that joint’s
scale and orientation transformations
to all structures below it. Recur-
sion stops when the parent-segment’s
evolved recursion limit is reached.

(d) Multiple and reflexive edges to-
gether. In this example recreated from
Sims’ original, a 15-segment bug-like
phenotype is described using only two
nodes and four edges in the genotype.
This result is made possible by the
combination of the techniques shown
in (b) and (c).

(e) Two reflexive edges. In a fur-
ther application of the recursive tech-
nique shown in (b) (again recreating
an original by Sims), this genotype of
only one node and two edges encodes
a phenotype of significant complexity
and aesthetic interest.

Figure 3.3: Hand-designed genotype/phenotype pairs (as in [46]) demonstrate the
encoding power inherited from Sims’ original EVC system. With relatively simple
genotype graph topologies such as these, complex and useful morphological pheno-
types can be defined.
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ments, and graph edges representing joints between segments. By start-

ing at the root and traversing the graph’s edges, the phenotype is ex-

pressed. Reflexive edges as well as multiple edges between the same

node pair are allowed, making it easy to define recursive and repeated

body substructures, as illustrated in Figure 3.3. In addition, as in Sims’

work, reflection of body parts as well as body symmetry are made eas-

ily accessible to evolution as single attributes susceptible to activation

and deactivation by single mutations.

In the Basic EVC implementation, all PhysX primitives are

made available for use as body segments: the boxes of traditional EVC

systems, as well as spheres and capsules. Joints between segments may

be of most of the types offered by PhysX, specifically: fixed, revo-

lute, spherical, prismatic, and cylindrical. In contrast to the typical

technique of evolving explicit joint limits separately, most limitations

on joint movement in the Basic EVC System are provided implicitly

by creature structure through natural collisions between adjacent seg-

ments. In this way, evolution of a single number—the width of a joint—

implicitly defines joint limits in a straightforward and natural way.

For convenience, the genotype is stored in the text-based graphviz [13]

format. This format is well suited to represent the genotype’s graph-

like nature, and may be easily converted into graph visualizations using

utilities in the graphviz package such as dot. In this encoding, addi-

tional genotype attributes beyond graph topology are stored as com-
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1 digraph body genotype {
2 s 0 [
3 l a b e l = ”
4 p r im i t i v e type : 0
5 dimensions : 0 .10 0 .16 0 .05
6 symmetry f lag : 0
7 symmetry di r ect ion : 0
8 max recur s ion : 1
9 ” ]

10 s 0 j 0 [ shape = record ,
11 l a b e l = ”
12 j o i n t t y p e : 1
13 pa r en t a t t a ch po i n t : −0.19 −2.72
14 c h i l d o r i e n t a t i o n : 0 .42 0 .60 0 .43 0 .53
15 c h i l d s c a l e : 0 .98 1 .01 1 .03
16 m i r r o r f l a g : 1
17 m i r r o r d i r e c t i o n : 1
18 te rmina l on ly : 0
19 j o i n t w id th : 0 .50
20 | {
21 pa r en t a t t a ch th e t a ph i : −1.30 −1.74
22 c h i l d a t t a c h t h e t a ph i : −2.03 2 .78
23 max s p r i n g c o e f f i c i e n t : 82 .60 |
24 pa r en t a t t a ch th e t a ph i : 1 .24 −1.97
25 c h i l d a t t a c h t h e t a ph i : −2.96 0 .39
26 max s p r i n g c o e f f i c i e n t : 86 .68 |
27 pa r en t a t t a ch th e t a ph i : 2 .06 2 .27
28 c h i l d a t t a c h t h e t a ph i : −1.91 −1.31
29 max s p r i n g c o e f f i c i e n t : 51 .43
30 }” ]
31 s 0−>s 0 j 0
32 s 0 j 0 −>s 0
33 }

Figure 3.4: An example morphology genotype encoded in the graphviz for-
mat [13]. (Some formatting data removed for clarity.) The graphviz for-
mat naturally encodes the genotype’s connectivity, with additional attributes
stored as comments. Lines 2-9 describe a segment node, and lines 10-30
describe joint data, including muscle data at lines 20-30. This encoding is
depicted as a graph in Figure 3.5, and its expression as a phenotype is shown
in Figure 3.1.
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ments within the graphviz file. For example, the body of the creature

phenotype shown in Figure 3.1 (evolved for locomotion, as described in

Section 3.6) was produced from the genotype encoded in the graphviz

file shown in Figure 3.4. Figure 3.5 shows the same genotype graphviz

file converted into a graph visualization by dot. With this technique, an

already convenient text-based storage format brings the added benefit

of a powerful data visualization system with minimal added cost.

Figure 3.5: The morphology genotype encoding of Figure 3.4 rendered as
a graph. Oval-shaped nodes (red) encode body segments, with square nodes
recording attributes of joints (muscle attributes in blue, other joint attributes
in green). Segment and joint attributes stored as comments in the encoding
are visible as text within the nodes. Note that in this format, each joint-
encoding edge produces two edges in the rendered graph—one from the par-
ent segment to the joint record, and one from the joint record to the child
segment.
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3.3 Encoding Control

Again in a manner similar to that of traditional EVCs, creature

control is provided by a brain composed of a set of nodes connected by

wires, in a network identical to that of the brain genotype (Figure 3.7).

Nodes receive varying numbers of input wires, and use their inputs

to compute an output value (always in the range [0,1]) which may be

sent to other wires. Signals originate from sensors in the body as well

as certain types of internal brain nodes, travel through the network

of internal nodes and wires, and ultimately control the operation of

actuators (muscles) in the physically simulated body. For each step of

physical simulation, control signals move one step through the brain.

1 digraph bra in genotype {
2 s 0x9079018 [ l a b e l = ”muscle \n ta r g e t : 0 : 1 ” ]
3 s 0x1c347198 [ l a b e l = ” propr i o c epto r \n ta r g e t : 0 : 0 ” ]
4 s 0x21ea f e10 [ l a b e l = ”muscle \n ta r g e t : 0 : 0 ” ]
5 s 0x11da5b48 [ l a b e l = ” propr i o c epto r \n ta r g e t : 0 : 1 ” ]
6 s 0x8d0d528 [ l a b e l = ”complement ” ]
7 s 0x3c91dc10 [ l a b e l = ” switch \n thr e sho ld : 0 . 116095” ]
8 . . .
9 s 0x17831a38−>s 0x14627dd8 [ l a b e l = ”0” ]

10 s 0x14627dd8−>s 0x17831a38 [ l a b e l = ”0” ]
11 s 0x10d757f8−>s 0 x c 2 f c f c 0 [ l a b e l = ”1” ]
12 s 0 x c 2 f c f c 0−>s 0x38c f4d68 [ l a b e l = ”1” ]
13 . . .
14 }

Figure 3.6: An example control genotype encoded in graphviz. (Some data
removed for clarity.) As with the morphology genotype, the graphviz for-
mat encodes connectivity, and additional attributes are stored as comments.
Lines 2-7 describe nodes, and lines 9-12 describe wires connecting nodes.
This encoding is depicted as a graph in Figure 3.7.

42



In addition to special node types for muscles and photoreceptors

(described below) and one special type used in encapsulation (the sigma

node; see Section 3.2), the following 13 node types are allowed:

sinusoidal: Generates sine wave based on evolved amplitude, frequency, and phase.

complement: Outputs 1 - input.

constant: Outputs an evolved constant value.

scale: Multiplies input by an evolved constant.

multiply: Outputs the product of two inputs.

divide: Divides first input by second input.

sum: Outputs the sum of two inputs.

difference: Subtracts second input from first.

derivative: Outputs difference between current and previous input, scaled to units
of change per tenth of a second, with evolvable direction flag.

threshold: Outputs one if input is above evolvable threshold, zero otherwise.

switch: If first input is at or above evolvable threshold, output second input, oth-
erwise output zero.

delay: Applies an evolvable delay to input signal.

absolute difference: Outputs the absolute difference between two inputs.

This set of nodes is inspired by the similar collection of Sims,

who had 23 node types of similar style and power [46], and is intended

to offer a broad variety for evolution to employ in ways that might be

hard to predict.

Just as for the morphology genotype, the control genotype is

stored in the graphviz format (Figure 3.6), with the graph defining

topology, and extra attributes stored in comments. Unlike the mor-
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Figure 3.7: The control genotype graphviz of Figure 3.6 rendered as a graph.
Muscle nodes are colored red, proprioceptors are colored green, and all other
nodes are colored blue. Unlike morphology, control is encoded directly, with
the phenotype control graph being essentially a direct copy of the genotype
control graph.
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phology, however, the phenotype control system is directly encoded in

the genotype—it is essentially a direct copy of the genotype’s control

graph (Figure 3.7).

3.4 Photoreceptors

For tasks involving light sensing, creatures are allowed to develop

simple photoreceptors ((a) in Figure 3.8), defined only by a direction

from the center of their parent segment. This direction indicates a loca-

tion on the creature’s surface as well as an orientation for the receptor.

In contrast, in Sims’ implementation [46], each segment had exactly

one photoreceptor, always aligned with the segment, eliminating the

possibility of physical intelligence embodied as eye placement.

The signal produced by the receptor is determined by light

strength, distance, occlusion, and the difference between the direction

to the light and the sensor’s orientation, and multiple lights are al-

lowed. Let i be the light’s intensity, θ the angle between the direction

to the light and the sensor’s orientation, d the distance to the light,

and H the falloff half-distance (used so that the light’s effect is halved

at this distance from the sensor). Then, when a light is unoccluded, its

contribution s to the sensor’s signal is

s =
i cos(θ)

1 + (d/H)
. (3.1)

For each photoreceptor in the body, a corresponding brain node
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Figure 3.8: Photoreceptors (a) and muscles (b) bring sensing and actuation
to creatures in the Basic EVC System. For both, function depends upon
placement, so creature form develops meaningfully as capabilities are evolved.

is added which makes the receptor’s output signal (clamped to the

range [0,1]) available to the rest of the brain.

3.5 Muscles

In a break with traditional EVC systems, which typically use

forces exerted directly at joints, the Basic EVC System uses simulated

muscles as actuators. Each muscle ((b) in Figure 3.8) is defined by

two attachment points on adjacent segments, along with a maximum

strength value. In simulation, the muscle is implemented as a spring,

with muscle activation modifying the spring constant. If the activation

signal (in [0,1]) is a, the evolved maximum spring constant is kmax, and
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the muscle’s current length is x, the resulting force F applied by the

muscle is

F = (akmax)x. (3.2)

In addition to acting as an effector, each muscle also produces

a proprioceptive feedback signal based on its current length. For each

muscle, one node is added to the brain, accepting an input to set the

muscle’s activation, and another node is added that makes the muscle’s

proprioceptive output signal available to the rest of the brain. The

proprioceptive signal is linear with respect to muscle length, 0.5 at the

muscle’s initial length, and clamped to [0,1]. So, if the muscle’s initial

length is linit and its current length is lcurr, the proprioceptive signal p

(before clamping) is

p = 0.5
lcurr

linit

. (3.3)

Muscle drives benefit EVCs in several ways. They are flexible,

as they can be used even on creatures without joints. They are effi-

cient, since effectors need only exist where useful, not at every degree of

freedom of every joint. And they are beautiful, tapping into the human

affinity for elegant, functional body structure. These benefits of the

evolved musculature system are explored in depth in Chapter 6.
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3.6 Evolving Locomotion

In this section, the Basic EVC System is applied to a stan-

dard benchmark task for evolved virtual creatures: forward locomotion.

These results were produced with the use of shaping, with creature fit-

ness evaluated using a sequence of goals leading up to locomotion: the

addition of joints, the addition of useful muscles, jumping, then hori-

zontal motion.

The ultimate fitness for this task was defined by interleaving an

efficiency score into a discretized score for speed. Specifically, if s is the

creature’s speed, smax is the maximum speed, σ is the discretization

step, and ǫ is a measure of the creature’s efficiency (within [0, 1]), the

combined fitness f is

f =
σ(⌊ s

σ
⌋ + ǫ)

smax

. (3.4)

This measure is intended to ensure that speed is the primary factor in

fitness, but increased efficiency (while maintaining approximate speed)

is also rewarded.

In this experiment, 10 independent instances of the evolution-

ary algorithm were run, each with a unique random seed and a random

starting population of single-segment creatures with empty brains. In

the end, the best was chosen based on a number of criteria, including

both numerical fitness and aesthetic concerns. Each instance had a

population size of 200 and was allowed to evolve for up to 2000 gener-
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(a) Run 1 (b) Run 2 (c) Run 3 (d) Run 4

(e) Run 5 (f) Run 6 (g) Run 7 (h) Run 8

(i) Run 9 (j) Run 10

Figure 3.9: The fitness graphs (in red) of all 10 runs from which the loco-
motion result was selected. Within each graph, the horizontal axis measures
generations of evolution, and the vertical axis indicates fitness (for the red
marks). For the green marks, vertical position indicates the stage of fitness
shaping for that generation (as described in Section 6.5). Seven of the 10
were successful, as shown in Figures 3.10.
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ations, although earlier generations (as low as a few hundred in some

cases) sometimes produced better results. The fitness graphs of all 10

runs are shown in Figure 3.9. Out of these 10, seven produced use-

ful results. Although no diversity promoting mechanisms were used,

the champions were highly diverse in both morphology and locomo-

tion techniques. In fact, each of the seven runs resulted in a different

method of locomotion, as illustrated in Figure 3.10.

3.7 Conclusion

This chapter described the particular EVC system implementa-

tion which is the foundation of this dissertation’s three primary contri-

butions. In the next three chapters, the Basic EVC System is extended

and evaluated in three ways: (1) constructing a creature that learns

more complex tasks than seen before for EVCs, (2) evolving morpholo-

gies adapted to multiple tasks, and (3) demonstrating how muscle drives

can take on part of the intelligence burden normally borne by the brain.
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(a) By oscillating its
simple, two-segment
body, this creature
(Run 1, generation
2000) produces a
highly effective form of
locomotion.

(b) With two small
limbs in front alter-
nately pulling its body
forward, the creature of
Run 3’s 2000th gener-
ation has found a new
way to propel itself.

(c) Although slower
than some other re-
sults, generation 300
of Run 5 produced a
creature that travels
sideways in a man-
ner reminiscent of a
maraca dancer.

(d) This creature (Run
6, generation 2000)
swings two limbs back
to move forward in a
swimming-like motion.

(e) This creature (gen-
eration 350 of Run 7)
deliberately drags itself
along with a single box-
shaped forelimb.

(f) This creature (Run
8, generation 1900)
uses two limbs held off
the ground for balance,
as it achieves an
extremely fast, stable,
and visually appealing
form of locomotion.

(g) The creature of Run 10, generation 2000
takes the unusual approach of kicking itself in
the back to produce its forward locomotion.

Figure 3.10: Successful forward locomotion results produced by the Basic EVC
System. These creatures illustrate the seven successful results of the 10 evolutionary
runs used for this experiment. Note that each one employs a different method of
locomotion, despite the lack of any diversity-promotion mechanism.
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Chapter 4

Evolving Complex Behavior with ESP

 ATTACK 

 FIGHT OR 
 FLIGHT 

 FORWARD 

 LEFT 

 RETREAT 

 MOVE TO 

 RIGHT 

 STRIKE 

 TURN FROM  TURN TO 

muscle

ta rge t :  0 :0

muscle

ta rge t :  0 :1

proprio-
cep to r

ta rge t :  0 :0

derivative

direction: 1

0

switch

threshold :  0 .66317

0

multiply
0

proprio-
cep to r

ta rge t :  1 :1

multiply

0

muscle

ta rge t :  1 :1

proprio-
cep to r

ta rge t :  1 :0

delay

delay_seconds:  0 .140154

0

s u m

1

multiply 0

switch

thresho ld :  0 .770308

0

muscle

ta rge t :  1 :0

proprio-
cep to r

ta rge t :  0 :1

threshold

thresho ld :  0 .460982

0

multiply

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

proprio-
cep to r

ta rge t :  0 :2

multiply

0

multiply

0

proprio-
cep to r

ta rge t :  1 :2

muscle

ta rge t :  0 :2

muscle

ta rge t :  1 :2

muscle

ta rge t :  0 :3

muscle

ta rge t :  1 :3

proprio-
cep to r

ta rge t :  1 :3

scale

scale_factor:  8 .41318

0

multiply
0

proprio-
cep to r

ta rge t :  0 :3

multiply

0

muscle

ta rge t :  1 :4

muscle

ta rge t :  0 :4

proprio-
cep to r

ta rge t :  1 :4

proprio-
cep to r

ta rge t :  0 :4

multiply

0

multiply

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

proprio-
cep to r

ta rge t :  0 :5

multiply

0

proprio-
cep to r

ta rge t :  1 :5

muscle

ta rge t :  0 :5

muscle

ta rge t :  1 :5

muscle

ta rge t :  1 :6

proprio-
cep to r

ta rge t :  0 :6

proprio-
cep to r

ta rge t :  1 :6

multiply

0

multiply

0

1

muscle

ta rge t :  0 :6

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

photore-
cep to r

ta rge t :  0 :0

multiply

0

multiply

0

photore-
cep to r

ta rge t :  1 :0

multiply

0

photore-
cep to r

ta rge t :  0 :1

multiply

0

photore-
cep to r

ta rge t :  1 :1

multiply

0

multiply

0

photore-
cep to r

ta rge t :  0 :2

multiply

0

multiply 0

photore-
cep to r

ta rge t :  1 :2

multiply

0

multiply

0

photore-
cep to r

ta rge t :  :1

multiply

0

photore-
cep to r

ta rge t :  :0

multiply

0

multiply

0

multiply

0

multiply

0

multiply

0

photore-
cep to r

ta rge t :  :3

multiply

0

multiply

0

multiply

0

multiply

0

multiply

0

photore-
cep to r

ta rge t :  :2

photore-
cep to r

ta rge t :  1 :3

multiply

0

multiply

0

multiply

0

multiply

0

photore-
cep to r

ta rge t :  0 :3

multiply

0

difference

1

muscle

ta rge t :  0 :7

muscle

ta rge t :  1 :7

proprio-
cep to r

ta rge t :  1 :7

s u m

0

switch

thresho ld :  0 .896652

0

multiply

0

proprio-
cep to r

ta rge t :  0 :7

proprio-
cep to r

ta rge t :  0 :8

multiply

0

proprio-
cep to r

ta rge t :  1 :8

muscle

ta rge t :  0 :8

muscle

ta rge t :  1 :8

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

sigma

n a m e :
 (none)

0

photore-
cep to r

ta rge t :  0 :4

absolute_difference

1

multiply

0

multiply

0

photore-
cep to r

ta rge t :  1 :4

multiply

0

photore-
cep to r

ta rge t :  0 :5

0

photore-
cep to r

ta rge t :  1 :5

multiply

0

photore-
cep to r

ta rge t :  1 :6

multiply

0

photore-
cep to r

ta rge t :  0 :6

multiply

0

multiply

0

photore-
cep to r

ta rge t :  0 :7

multiply

0

multiply

0

photore-
cep to r

ta rge t :  1 :7

0

multiply

0

sigma

n a m e :
 STRIKE

0

sigma

n a m e :
 MOVE_TO

00

sigma

n a m e :
 ATTACK

111

cons tan t

va lue :  0 .795183

multiply

0

0

sigma

n a m e :
 MOVE_FROM

0000 0 00

sigma

n a m e :
 FIGHT_OR

_FLIGHT

1

11

1

1

1

1
1

sigma

n a m e :
 FORWARD

multiply

1

multiply

1
1

multiply

1

0

0

0

delay

delay_seconds:  0 .0143377

0

0

1

0

0 00

multiply

0 00

multiply

0

0

sigma

n a m e :
 LEFT

1 1
1

1

1

1

1 1

1

0

0
0

0
0

0

multiply

0

0

sigma

n a m e :
 TURN_FROM

000

1
111

0 sigma

n a m e :
 TURN_TO

00

0

0

0

0 0000

1 111 11 111 1 1

sigma

n a m e :
 RIGHT

11

1 1 1
multiply

1

0

0

0

0

0

0
0

threshold

thresho ld :  0 .812383

1

multiply

0

multiply

0

multiply
0

sinusoidal

f requency:  1 .85852
phase :  0 .0179815

ampl i tude :  0 .890901

0

sinusoidal

f requency:  1 .17044
phase :  0 .802024

amplitude:  0

multiply

0

difference

1

multiply
0

multiply

0

complement

0

multiply

0

multiply

0

1

0

0

0

00

0 0

0

0
00

11 11
1

1
11 1

1

11

1

1

00 0000 00 0 00 0

1
1

11 11 1 1

Figure 4.1: The body and brain of a creature evolved using the ESP method
to learn a complex fight-or-flight behavior. This creature has achieved a level
of behavioral complexity that is approximately double the previous state of
the art for evolved virtual creatures. Previously, the most complex behavior
in EVCs was the ability to move to a light source. This creature can move to
a light source, strike it once it arrives, and switch to a flight behavior when
appropriate, based on its perception of the environment.

At this point, with the underlying EVC system specified, it is

possible to describe this dissertation’s first major contribution: ESP, a

mechanism to exceed the nearly two-decades-old ceiling in behavioral

complexity for evolved virtual creatures [27].
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4.1 Motivation

As discussed in Section 1.1, behavioral complexity for evolved

virtual creatures has not increased for 19 years. This stagnation is

surprising given that more complex behaviors would greatly improve

creature content. The right kinds of complex behavior inspire in the

viewer a sense of inner life and motivation in even the simplest creature

forms (i.e., perceptual animacy). This effect makes complex behaviors

a promising avenue for improving EVCs as content.

But how can more complex behaviors be created? ESP (Fig-

ure 4.1) answers this question by applying real-world instructional ideas

that have a proven record of bringing otherwise impractical learning

goals within reach.

Consider, for example, the task of hovering a helicopter. This is

a challenging task even for humans to learn. It requires proper inputs

in four or five dimensions of control, each of which typically affects the

others: lift the collective to increase altitude, and the change in power

requires a corresponding increase in anti-torque pedal application; use

longitudinal cyclic input to begin forward motion, and complex aerody-

namic effects require changes in collective input to maintain altitude.

This challenging task is usually learned by decomposing it into

a sequence of simpler challenges. First the instructor might control all

but the collective, so that the student can learn to control altitude in
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isolation; then the instructor might control all but the cyclic, so the

student can focus only on controlling the helicopter’s tilt; then, with

those two mastered, they can be attempted together. Proceeding in

this manner, the student can acquire smaller skills independently, and

in the proper order, which eventually allows the skills to be combined

to accomplish the full hovering behavior successfully. This type of hier-

archical syllabus-based task decomposition is the core concept behind

ESP.

Could a student accomplish the same goal without such guid-

ance? For example, could a student learn martial arts simply by repeat-

edly entering competitions and trying to improve based on his or her

score? While it is certainly possible for human students to learn a com-

plicated topic independently, their development is typically faster and

surer with an expert-designed syllabus. Simple individual skills—punch

high, kick low, block left, block right, etc.—are learned one at a time,

then eventually combined to accomplish more complex goals: When you

perceive an attack from your right, block right; when your opponent’s

legs are vulnerable, kick low. Ultimately, this approach brings even

the highest-level skills—such as participating in a competition—within

reach. Thus, the syllabus acts as a sequence of waypoints through the

space of possible solutions, decomposing the larger learning task into a

succession of more manageable steps between the waypoints.

If such assistance is useful—or even required—for a learner as
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powerful as a human student, it should be even more useful for the

algorithmic mechanical learners available to artificial life researchers

today. It is also important that the human input required to create

the syllabus is relatively abstract and human-relatable. In fact, such

input should be simpler than the fitness functions currently required

for evolving virtual creatures. In comparison to those highly technical

specifications, the syllabus should require only the encoding of high-

level learning concepts such as “before you learn to move to a target,

first learn to move forward, left, and right”. The method for doing that

will be described next.

4.2 Method

ESP adds three new elements to the underlying EVC system:

encapsulation, syllabus, and pandemonium. In this section, each of

these components is described in detail. As the primary component of

the ESP system, the syllabus is presented first.

4.2.1 Syllabus

In the ESP system, the syllabus consists of an ordered sequence

of intermediate goals used to reach the ultimate, larger goal. This

collection of goals (each one defined by a fitness function) is designed by

a human expert with the aim of making attainable goals more reliably

learnable, and bringing previously unattained goals within reach.
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For example, assume that you want to evolve a virtual creature

with some of the behavioral complexity demonstrated in an internet

cat video. Rather than simply drifting smoothly toward a target, this

creature might run to the target, then strike it, and perhaps even run

away if the target is perceived as threatening. Without a syllabus, a

single fitness test evaluating all of these skills might be constructed,

but evolutionary progress would be unlikely.

Consider, instead, how this complex behavioral goal could be

broken down into an ordered sequence of smaller learning tasks. The

clearly achievable goal of locomotion will be the first target. Left turn

and right turn are of a similarly manageable difficulty, and will be

attempted next. Then, with the turns mastered and with an addi-

tional ability to develop photoreceptors, it is relatively straightforward

to maintain orientation toward a light source. With the ability to face

a light and the ability to move forward, navigating to that light is

a similarly achievable goal, and so on. Proceeding in this manner, a

knowledgeable human designer might produce the following sequence

of subskills to be learned; each subskill is attainable with basic EVC

methods, and earlier subskills serve to make later skills easier to learn:

1. forward locomotion

2. left turn

3. right turn
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4. turn to light (using left turn and right turn)

5. move to light (using turn to light and forward loco-

motion)

6. strike

7. attack light (using move to light and strike)

8. turn from light (using left turn and right turn)

9. retreat from light (using turn from light and forward

locomotion)

10. fight or flight (switching between attack light and re-

treat from light based on external circumstances)

This information may be conveniently summarized in a graph,

encompassing subskills to be learned, dependency between subskills,

learning order, and competition (Section 4.2.3), as seen in Figure 4.2.

At this point, using high-level human knowledge, a previously

impractical learning task has been broken into a sequence of poten-

tially attainable subgoals. But how can a single evolving creature learn

new skills while retaining and making use of the ones it already has?

Encapsulation is a mechanism that makes it possible.

4.2.2 Encapsulation

The second element of the ESP system is a mechanism to encap-

sulate previously learned skills. This element accomplishes two goals:
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Figure 4.2: An example syllabus as a graph. Graph nodes represent indi-
vidual subskills to be learned, directed edges indicate dependencies between
subskills, and the numbering indicates a learning order that satisfies the de-
pendency requirements. Pandemonium (i.e., competitive) relationships are
indicated by dashed red lines.

It ensures that previously learned skills (and the body components on

which they rely) are preserved, and it makes these skills easily accessible

to future evolutionary development. Both of these goals are achieved

through the automated encapsulation process illustrated in Figure 4.3.

Figure 4.3a depicts a brain evolved for forward locomotion, and

Figure 4.3b shows the result of encapsulation. Note that, first, the

nodes that compute the old skill have been preserved and frozen (mean-

ing that future evolution cannot change them). Second, a new multiply

node has been inserted into every output wire leaving the encapsu-

lated skill. The internals of the skill will continue to function as before,
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Figure 4.3: Encapsulation. The encapsulation of an evolved skill—in this
case, forward locomotion—ensures that it will persist throughout future evo-
lution, while also allowing it to be activated easily as a unit by future skills.
Before encapsulation, in (a), the brain nodes that constitute the forward
locomotion skill connect directly to muscles and sensors in the body, and
may be changed by future evolution. In (b), the newly added nodes (shaded)
implement the encapsulation of that skill. The multiply nodes at the bot-
tom throttle all signals leaving the skill, allowing its effect to be dialed up
or down. The sigma node at the top acts as a single point of control for
all of the throttling multiply nodes, allowing all outputs from the skill to be
blocked or allowed out simultaneously. All nodes within the box labeled with
the skill name FORWARD are protected from future evolutionary changes.
(The sigma nodes at the bottom are not directly related to the encapsulation
of the new skill, but rather are required so that future skills can share control
over new muscles that have been recently added.)
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always trying to perform their forward locomotion task, but now, a sec-

ond signal sent to each new multiply node will modify those outgoing

forward-locomotion control signals, scaling them by a number within

[0,1]. Third, a single controlling node (called a sigma node for its func-

tion as a summation of zero or more inputs) is added, sending its output

to all of the new multiply nodes. So, for each signal si leaving a node in

the forward locomotion skill (such as the complement node), the

new signal after encapsulation (s′
i
) is computed as s′

i
= σsi where σ is

the output of the controlling sigma node.

With encapsulation complete, the entire forward locomotion

skill can be activated and deactivated as a unit by using the controlling

sigma node just as if it were a single muscle in the creature’s body.

(Incidentally, note that this brain’s actual muscle nodes have been hid-

den behind additional sigma nodes to allow future evolution to share

control over them when appropriate.) As progress through the syllabus

continues and the next skill after forward locomotion is evolved,

its newly added nodes will be the only ones in the brain that are not

already frozen, and will therefore be easily identifiable when it is their

turn to be encapsulated.

At this point, we have seen a system in which a complex skill

can be broken into smaller subskills, and those subskills can be ac-

quired cumulatively, but a potential problem still remains: How will

competing signals from the multiple sub-brains within a single creature
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be resolved? The pandemonium component will achieve this goal.

4.2.3 Pandemonium

Consider the following example based on the syllabus graph of

Figure 4.2. A creature evolved through this syllabus will ultimately

have a part of its brain devoted to left and a part to right turns. But

it is unlikely that both of these abilities should ever be used at the

same time. So the syllabus designer might place the left and right-

turn skills in a pandemonium relationship with each other, meaning

that whichever one is most active at any given moment will be allowed

to send its output at full strength, and the other will have its output

entirely suppressed. Under a competitive system like this, sub-brains

within the creature can compete for overall control, with little risk of

sabotaging the rest of the brain. In Figure 4.2, a full set of pande-

monium relationships is indicated by red dashed lines between subskill

nodes.

With this final component of the ESP system described, it is

now possible to consider a full example, in which previously achieved

levels of behavioral complexity are first matched, then exceeded.

4.3 Evolving a Fight or Flight Behavior

The first contribution to be described in this dissertation is an

application of the ESP method, using the syllabus of Figure 4.2, to
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evolve a virtual creature through a sequence of ten learning tasks. The

first five of these tasks approximately match the previously demon-

strated behavioral-complexity limit for EVCs, and the second five ap-

proximately double it. These results are best viewed in the accompa-

nying video at http://youtu.be/dRLNnJlT8rY.

4.3.1 FORWARD LOCOMOTION

In the first step, a forward locomotion result from the ba-

sic EVC system was chosen, and its control abilities encapsulated. The

creature selected for continued evolution (Figure 4.4) was produced at

generation 1900 of run number eight of the Basic EVC System experi-

ment described in Section 3.6. Receiving a fitness score of 0.355, it was

chosen from among the successful results based on qualities beyond the

locomotive speed required by the fitness function: a smooth, coordi-

nated style of motion; stability and reliability; and a simple brain.

FORWARD

Figure 4.4: The chosen forward locomotion result (run eight, generation
1900) after encapsulation. This creature was selected not only for its fitness
score, but also for its aesthetically pleasing motion style, reliable locomotion,
and simple brain.

At this point in its progression through the syllabus, the creature
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has developed the rigid body segments, muscles, and control system it

needs for successful locomotion, and these elements will be preserved

as evolution continues.

4.3.2 LEFT TURN

With the locomotion skill encapsulated, a new run of evolu-

tion begins, this time with the fitness function rewarding the ability to

rotate counterclockwise while largely maintaining position. Specifically,

core fitness was determined by degrees per second of rotation (out of a

maximum of 90), with a fitness of zero assigned if the creature’s center

of gravity moved more than its approximate diameter during a sin-

gle evaluation (which lasted for one second, after a one-second spin-up

period).

To prepare for each left turn run, the selected locomotion re-

sult (with locomotion encapsulated and thereby excluded from fur-

ther evolution) was duplicated 200 times. This provided each run with

an initial population whose brains appeared (to the current round of

evolution) empty, just as they were before locomotion was evolved. The

same technique is used for all steps in the syllabus.

A left-turning creature was produced using five such indepen-

dent runs, each of which lasted less than 300 generations (Figure 4.5).

Such reduced evolutionary resources (compared to locomotion) were

sufficient since this skill is easier (aside from the risk of physics cheat-
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5

Figure 4.5: The fitness graphs of all five runs from which the left turn

result was selected. All runs were successful, making it possible to select a
creature for further evolution using visual criteria.

ing, discussed in Section 4.5). Each of these five starts produced a

usable result. The addition of new muscles was allowed during this

stage of evolution.

The chosen skill is shown (after encapsulation) in Figure 4.6. It

was selected at generation 319 from run number two for three reasons

beyond having the highest fitness score (clamped at 1.0): (1) This

creature displayed a fast skittering turn, able to stop at a finely selected

angle, which improves its ability to achieve a given orientation.(2) It

had the ability to transition reliably between skills. (3) It demonstrated

a visually pleasing contrast between the left turn and the previously

acquired forward locomotion skill.
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FORWARD

LEFT

Figure 4.6: The chosen left turn result (generation 319, run two). In
addition to the fact that it achieved the highest fitness—the maximum possi-
ble for this task—this creature was selected for fast, fine turns; reliable skill
transitions; and the visible contrast between its turn and locomotion behav-
iors.

4.3.3 RIGHT TURN

With the first two skills encapsulated, a clockwise turn is evolved

in the same way as the counterclockwise turn (but with the fitness score

negated) and the result is encapsulated (Figure 4.8). The fitness scores

from all five runs are illustrated in Figure 4.7. The individual at the

end of the highest-scoring run (generation 450 from run number five)

was examined and found to perform the right turn well. This creature

was used for continued evolution, and the results from the other runs

were not examined in detail.

At this point, the creature has all of the low-level skills that it

will need to reach any point on the ground, with the majority of future

skills relying ultimately on reapplications of forward locomotion,

left turn, and right turn. Next, one such skill, turn to light,

will be developed.
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5

Figure 4.7: The fitness graphs of all five runs for the right turn skill.

FORWARD

LEFT

RIGHT

Figure 4.8: The selected right turn result. This creature (generation 450
from run five) achieved the highest fitness score in all five runs for this skill.

4.3.4 TURN TO LIGHT

For this skill, the creature is tested on its ability to orient its di-

rection of locomotion toward a target perceived as a point light source.

It is allowed to evolve photoreceptors (described in Section 3.4), and

use the previously encapsulated left turn and right turn skills,

which are placed in a pandemonium relationship, as indicated in the
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syllabus (Figure 4.2). To encourage a general solution, the fitness eval-

uation is an average over four tests, each with a fixed light source at

a different heading from the creature (northeast, northwest, southeast,

or southwest). For each direction, fitness is the average throughout the

evaluation time of the number of degrees off heading from the target

(normalized for the maximum of 180). For this task, physics cheating

was not a factor, and a relatively small amount of evolutionary re-

sources were sufficient. Successful solutions were evolved in each of the

five runs, using a population size of 35 and less than 300 generations,

with scores stabilizing before approximately 100 generations.

(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5

Figure 4.9: The fitness graphs of all five runs for the turn to light skill.
Again all runs were successful, making it possible to select the winner based
on aesthetic concerns.

The full set of fitness graphs is depicted in Figure 4.9. Because
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consistently high scores were achieved in all runs, the creature from

generation 349 of run one was selected based on aesthetic concerns:

crisp stops between turns, a lack of blind spots, a simple brain, and

relatively few photoreceptors. Figure 4.10 shows the completed and

encapsulated result, which is able to consistently aim its locomotion

direction at a user-controlled target.

FORWARDLEFTRIGHT

TURN TO

Figure 4.10: The chosen turn to light result. The turn to light skill
keeps the locomotion direction (black dashed arrow) oriented toward a tar-
get (depicted here as a large disc, but perceived by the creature as a single
omnidirectional light source at the disc’s center). The winning creature for
this task (generation 349, run one) is depicted. It was chosen for multi-
ple aesthetic reasons beyond its high fitness score: stops between turns, a
lack of blind spots, a simple brain, and a relatively small number of added
photoreceptors.

4.3.5 MOVE TO LIGHT

With turn to light and forward locomotion available,

and with the evolution of more photoreceptors allowed, the creature

was then evaluated on its ability to navigate to a light source. As with

turn to light, fitness is averaged over multiple evaluations (in this

case five), again with a fixed light source at a different relative angle

each time. In this case, the light positions were the same as for the
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previous skill, but with an additional evaluation for a light directly

behind the creature to reduce the occurrence of blind spots. Fitness for

a single evaluation was defined as the average distance from the target

during simulation.

(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5

Figure 4.11: The fitness graphs of all five runs for the move to light

skill. All runs were successful, and the winner was chosen based on aesthetic
concerns.

As in the previous task, only a relatively small amount of evolu-

tionary resources were required. Five runs with a population size of 35

produced successful results in all runs, with all scores leveling off by ap-

proximately 100 generations (Figure 4.11. Despite the almost identical

fitness, some minor variations were observed across runs in attributes

not encoded in the fitness function. For example, some results focused

more on choosing an accurate locomotion direction first then moving
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straight to the target, while others achieved a similar score by adjusting

course more while approaching the target, giving the impression of a

somewhat less confident and capable creature (e.g., run 4, generation

286, with fitness 0.762; illustrated in Figure 4.12). The creature se-

lected for continued evolution from these runs (run 5, generation 308,

with fitness 0.765) was chosen for being most consistent in using for-

ward locomotion in long uninterrupted stretches. This behavior gave

the creature the strongest appearance of deliberate intentionality.

FORWARD

LEFT

MOVE_TO

RIGHT

TURN_TO

Figure 4.12: A high-scoring, but less appealing move to light result. De-
spite meeting the requirements of the fitness function approximately as well
as the selected creature, this creature’s style of motion gave it a less confident
appearance.

The creatures produced for this task demonstrated behavioral

complexity that approximately matched the state of the art. The se-

lected result is illustrated in Figure 4.13.

4.3.6 STRIKE

In anticipation of the upcoming attack task (Figure 4.2), the

creature must first learn to deliver a strike to the ground underneath

it. Fitness is primarily computed as total such strike force in each

one-second interval (averaged across five intervals in sequence), with
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FORWARD

LEFT
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RIGHT

TURN TO

Figure 4.13: The chosen move to light result. The creature shown in
this image (generation 308, run five) has acquired the move to light skill,
allowing it to follow a target along a curving path, catching the target when
it finally stops. This creature was chosen for its appearance of deliberate
intentionality.

small factors added to reward beginning and ending contacts as well

as vertical center-of-gravity movement during an interval (to provide a

degree of shaping).

To facilitate the evolution of this new low-level skill, evolution

of new muscles is allowed. As might be expected, this task requires

greater evolutionary resources, both because of the muscle evolution

and because it controls the body directly rather than switching between

a few pre-existing skills. Using a population of 100, five of 10 runs

produced useful results. Some of them emerged after as few as 100

generations, but some improvements still appeared after more than

1000 generations (Figure 4.14).

As often occurs, even results with similar fitness scores varied

in how useful they were because important aesthetic factors that are

not encoded in the fitness function. For this skill, for example, it was

possible to score well with many small strikes rather than few larger
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(a) Run 1 (b) Run 2 (c) Run 3 (d) Run 4

(e) Run 5 (f) Run 6 (g) Run 7 (h) Run 8

(i) Run 9 (j) Run 10

Figure 4.14: The fitness graphs of all 10 runs for the strike skill. Five of
the runs produced useful results. They varied significantly in their approach,
and the winner was chosen based on aesthetic concerns.
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Figure 4.15: A high-scoring, but less appealing strike result. Despite a
high fitness score, this creature’s technique consisting of many small jumps
similar to locomotion produced a less rewarding visual effect.

ones. This approach looks weak and is visually less distinguishable from

locomotion, producing a less rewarding overall effect when switching

between the two behaviors (as in run 2, generation 781, with fitness

0.409; Figure 4.15). In contrast, the selected winner for this skill (run
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Figure 4.16: This creature’s strike solution (generation 1313 of run seven)
employs a vertical jump, and was chosen for its high score, deliberate ap-
pearance, and visual contrast with other behaviors.

seven, generation 1313, with fitness 0.364; Figure 4.16) was chosen not

only for its high score and ground impact, but also for its moderately

high and less frequent jumps. These produced a visually appealing

look of deliberate action, as well as a clear visual contrast with other

behaviors.

4.3.7 ATTACK

Having learned move to light and strike, it is now possible

to produce an ability more complex than simply moving to a target.

By first moving to the target, then striking, this creature takes another

small step toward the behavioral complexity of compelling creature

content from the real world. For this task, fitness is an average across

the four cardinal directions of distance from the target when the first

sufficiently strong ground impact occurs (with a penalty for producing

such an impact when the scene contains no light).

This task builds upon existing skills only, with no direct control

over the body, and it thus required relatively few evolutionary resources.
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(a) Run 1 (b) Run 2 (c) Run 3 (d) Run 4

(e) Run 5 (f) Run 6 (g) Run 7 (h) Run 8

(i) Run 9 (j) Run 10

Figure 4.17: The fitness graphs of all 10 runs for the attack skill. Three of
these runs produced good results, making it possible to select a winner based
on aesthetic concerns.

ATTACK

FORWARD

LEFT

MOVE TO

RIGHT

STRIKE TURN TO

Figure 4.18: In the newly added attack, the creature navigates to the target,
then strikes it. The winning creature shown here (run two, generation 24)
was chosen for having few new eyes, accurate strikes, and clean switches
between skills.

With a population size of 50, three of the 10 runs produced results

of sufficient quality, and the highest scores were achieved within 50
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generations (Figure 4.17). While this skill’s chosen creature (generation

24 of run two, with fitness 0.86; Figure 4.18) did not have the highest

numerical score, it stood out for the following reasons: few new eyes

added (and none on the top of the head), very consistent and accurate

initial strikes, and very clean switching between skills.

4.3.8 TURN FROM LIGHT

In preparation for the upcoming retreat skill, the creature

must learn to turn away from a light source. Although similar to turn

to light, this task also requires a fitness term to discourage an ini-

tial turn in the wrong direction, in order to achieve reasonable results

for targets near the creature’s front. Also, significantly more evalua-

tion directions (13) were used, particularly near the front, to produce

reasonable reactions in those cases. (Evaluations were performed at

directions every 60 degrees from the front, as well as at plus and mi-

nus 1, 2, 5, and 10 degrees.) When turning to a target near the front,

choosing the wrong direction would be detrimental to fitness and this

response would be eliminated quickly in the evolution. When turning

away, however, the fitness cost of an initial wrong-direction turn with a

near-front target is low (because a turn in the wrong direction quickly

becomes a turn in the correct direction), so such behaviors are more

likely to persist. Unfortunately, this kind of incorrect reaction with a

target near the front looks particularly unnatural, and therefore it is
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worth spending a bit more evolutionary resources to eliminate it.

Other than those increased testing requirements, however, this

task is not very demanding. All five runs (Figure 4.19) produced us-

able results in less than 60 generations, using a population size of 50.

From these, the creature of generation 46 from run two (Figure 4.20)

was selected not only for having the highest score (0.874), but also for

aesthetic reasons. Specifically, the lack of eyes on top of the head made

this creature more visually appealing, and its technique of remaining

still after turning away from the target gave it a greater appearance of

purposeful action.

(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5

Figure 4.19: The fitness graphs of all five runs for the turn from light

skill. All five runs produced usable results, allowing the winner to be selected
based on aesthetic concerns.
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Figure 4.20: The selected turn from light result. The turn from light

behavior keeps the locomotion direction (black dashed arrow) oriented away
from the target. The target (depicted as as a stack of three spinning discs)
is perceived by the creature as point light sources at the center of each disc.
Later, this will provide the opportunity to distinguish between the two target
types based on both vertical placement of lights and overall light intensity.
The winning creature for this skill (run two, generation 46) is depicted in
this figure. In addition to having the highest score, it had an aesthetically
pleasing eye placement and apparent intentionality.

4.3.9 RETREAT

At this point, using turn from light and forward loco-

motion, the creature learns to maximize its average distance from a

light target. As with turn from light, penalties for initial wrong-

direction moves and multiple tests with targets near the front are com-

bined to discourage inappropriate initial reactions.

As for the previous skill, a population size of 50 was used along

with five runs. All starts quickly produced high-quality results, with

fitness scores for all runs (Figure 4.21) leveling off at their approximate

best within a mere 15 generations (as observed within the 40 or more

generations allowed for each run). From these runs, the winning crea-

ture (generation 41, run five, fitness 0.635; Figure 4.22) was selected for

having the highest score along with a minimum of newly added eyes.
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5

Figure 4.21: The fitness graphs of all five runs for the retreat skill. All
five runs produced usable results, allowing the winner to be selected based on
aesthetic concerns.
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Figure 4.22: The winning creature for the retreat skill (run five, genera-
tion 41). It was chosen for having the highest score and few added eyes.

With this skill complete, the necessary components are in place

for the final top-level skill of the syllabus.
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4.3.10 FIGHT OR FLIGHT

The task of this final, highest skill is to choose between attack

and retreat based on the perceived environment. For this evaluation,

the creature is confronted with a vulnerable target (a single disc on

the ground), which the creature should attack, or a dangerous target

(a spinning vertical stack of three such discs), which will destroy the

creature if it touches it. These two target types may be distinguished

in the creature’s perception based on the differences in light elevation

and the overall intensity of the light.

The fitness score is again the result of averaging over initial

light directions, but in this case there is some additional complexity.

At each direction, one evaluation is made with a vulnerable target, and

one with a dangerous target. While the proper reaction in a single case

from such a pair of evaluations should be rewarded, the real challenge is

to motivate a discrimination between the two, so that the right action

can be taken in both cases. To accomplish this goal, a small fraction of

the final score is based on the average maximum of the two component

scores (to motivate any development, especially initially), and a much

larger fraction is based on the average minimum of the two component

scores (to reward the ultimate goal of finding the proper reaction in

both cases). The weighting is chosen so that a single perfect result for

a minimum component will be worth more than perfect scores in all of

the maximum components. So, with f+ the average maximum score
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across all n test directions, and f− the average minimum score across

all n test directions, the final overall fitness f is computed as

f =
f+ + 2n · f−

2n + 1
. (4.1)

Without these additional motivations, solutions emerge that choose

a single (higher-scoring) hard-coded reaction to be used for each light

position—regardless of target type. The fitness function of equation 4.1

encourages the leap to the increased scores available by discerning be-

tween the two types of target.

(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5

Figure 4.23: The fitness graphs of all five runs for the fight or flight

skill. All five runs achieved similarly high scores.

As with a number of previous examples, five runs and a popu-

lation size of 50 were used (Figure 4.23). However, unlike the typical
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Figure 4.24: The winning creature (run two, generation 163) with the fight

or flight ability. This creature completes the full progression through the
syllabus, resulting in behavior two levels more complex than the prior state
of the art.

results for internal-only tasks, this skill required significantly more evo-

lutionary computation. Although all five runs eventually achieved sim-

ilarly high scores, more generations were required—in one case, almost

200.

Figure 4.24 illustrates a highly successful, visually appealing and

alive-looking result for this task (generation 163 of run two, fitness:

0.368), marking the completion of the full syllabus and the acquisition

of its highest, most complex skill. This result demonstrates that the

ESP system can enable evolved virtual creatures to achieve a level of

behavioral complexity which is a clear advance on the state of the art.

4.4 Diversity of Solutions

The primary results described in Section 4.3 demonstrate the

level of behavioral complexity that ESP makes possible. With that
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result established, it is informative to evaluate the diversity of complex-

behavior creatures this system can produce. Throughout Section 4.3,

a variety of solutions were generated for each skill (some of them very

different from each other), and one selected for further development. An

interesting question is, what would have happened if different choices

had been made? In particular, what if a creature with a very different

morphology would have been selected from the very beginning?

Figure 4.25: A creature with significant differences in body plan, physical
techniques, and character from the creature evolved in Section 4.3. This
creature (despite being produced using the same evolutionary technique and
same selection criteria) has a different number of limbs, different types of
body segments, and a diverse style of action. Despite these differences, this
second creature nonetheless succeeded in all skills attempted, including the
attack behavior—a level of complexity beyond the previous limit for EVCs.
This result indicates that it is possible to produce significant variation using
ESP, which makes it a good tool for creating virtual content.

To answer this question, the creature in Figure 4.25 was chosen
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for study in this section. It originates from a different evolutionary run

on the locomotion task, and has very different physical characteristics

from the first selected creature (Figure 4.4). This second creature was

further evolved in the same syllabus as the first creature. It is en-

couraging to see that, despite significant differences in morphology and

locomotion style, the second creature was able to succeed in all of the

skills which were attempted, including the attack behavior—a level

of complexity beyond the previous limit for EVCs. For video of this

creature, see http://youtu.be/dRLNnJlT8rY.

Whereas the first creature has two short limbs that do not typ-

ically touch the ground, the second creature has four elongated limbs

that do make contact with the ground. Whereas the first creature uses

the momentum of its limbs to effect changes to the root segment’s mo-

tion, the second creature uses its limbs to push against the ground

for locomotion, turning, and strikes. Whereas the first creature’s best

strike is produced by jumping through upward swings of its limbs, the

second creature’s useful strikes are produced by direct impacts by its

limbs on the ground. In fact, the second creature developed a variety

of these entertaining and effective strikes, from whole-body momentum

delivered through a single limb’s impact, to a flurry of alternating blows

from multiple limbs.

One way in which the second creature fares worse is in turn

precision. Whereas the first creature’s short and fast turn-movement
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cycles allow it to control its orientation to a fine degree, the second crea-

ture’s turns are produced by a much slower and angularly larger unit of

movement, offering fewer choices of orientation. While such imprecision

may not be immediately apparent in isolated turning tasks, when those

turns are employed to aim the creature for locomotion toward a target,

it becomes a disadvantage. It often leads to multiple false starts and

en-route adjustments to which the original creature was far less prone.

With awareness of this potential pitfall, fine turning precision might

be a useful element of fitness in the evolution of future creatures for

similar tasks.

It is also worth noting that each of these creatures has potential

value as content due to their contrasting styles of movement. The first

creature’s rapid and precise motions convey a very different character

than the second creature, with its slow, loping, and perhaps even clumsy

ways. ESP is able to create such diversity through natural variation in

its evolutionary search, which makes it a good candidate for creating

content automatically or various virtual world applications.

4.5 Discussion

As is common in evolutionary computation in a complex envi-

ronment, evolution attempts to “cheat”, often leading to a kind of arms

race between evolved solutions and carefully defined fitness functions.

In particular with the ESP system, cheating was a significant factor
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in the evolution of turns: Creatures tended to evolve that exploited

small errors in physical simulation. Through the proper addition and

application of muscles, it was relatively easy for creatures to apply

forces to themselves which (presumably due to small physics errors)

produced a physically inaccurate asymmetrical effect—a net turning

force that would not have existed in reality. This exploit was rapidly

and consistently discovered by evolution, preventing the physically re-

alistic solutions from being discovered. This obstacle was eventually

overcome by adding a sequence of evaluations in which the creature

was required to turn in a reasonable way for multiple combinations of

active and inactive brain and muscles. In addition, the full fitness scor-

ing for a single individual required five repetitions of that evaluation

sequence, with an overall score of zero if any of the repetitions indicated

cheating. (This form of cheating produced such high fitness scores that

it was considered a risk to allow even intermittent cheaters to survive,

since even a single successful cheat might be enough to quickly take

over the population.) Although this solution was found, it was only

produced through many failed experiments, and resulted in a fitness

function that is significantly more complex and costly to evaluate than

would otherwise have been required.

It is also important to note that, while there are particular chal-

lenges in applying ESP-style task decomposition to EVCs, it has been

used in multiple related fields for many years. As was outlined in Chap-
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ter 1, Selfridge’s pandemonium, Minsky’s society of mind [31], and

Brooks’ subsumption architecture [6] are prominent examples of such

use in artificial intelligence and robotics. In reinforcement learning

and evolutionary computation, layered learning and hierarchical task

decomposition [49, 51, 11] explore similar concepts. With EVCs, how-

ever, no previous system has demonstrated how such an approach can

be used to increase behavioral complexity beyond existing limits.

Note that in order to demonstrate how the long-standing ceil-

ing on behavioral complexity can be exceeded, only a limited case of

morphological evolution was considered in this chapter. Specifically,

changes to body segments and joints (essentially the creature’s skele-

ton) were prevented after the first skill was complete (although the

brain, muscles, and eyes continued to evolve). While this constraint

may have been an appropriate choice for the first step, it is a serious

limitation. The next chapter describes the extended ESP system, in

which this constraint is removed.

4.6 Conclusion

This chapter described the first of this dissertation’s major con-

tributions: ESP, a mechanism for exceeding the behavioral complexity

ceiling in EVCs that had existed for almost two decades. In addition,

useful techniques for overcoming expected but unpredictable cheats by

evolution were developed. Third, an evaluation of a second creature

86



with a number of diverse characteristics established that ESP can cre-

ate a variety of useful content, which makes it promising as a technique

for virtual world applications.

The following chapter presents this dissertation’s second major

contribution: an extended version of the ESP system that allows full

morphological adaptation to multiple tasks, while keeping the original

system’s ability to decompose a complex learning task into a hierarchi-

cal sequence of simpler goals.

87



Chapter 5

Evolving Complex Morphology with

Extended ESP

Figure 5.1: A selection of creatures produced using Extended ESP. These re-
sults illustrate some of the useful variety and multi-skill morphological adap-
tation produced by this system.

The previous chapter described the ESP system and demon-

strated that it can evolve complex behavior. In this chapter, that sys-

tem will be generalized to a significantly less constrained version that

allows morphological changes to continue to evolve beyond the first

skill. This extension improves both the fitness and the useful diversity

of results, and constitutes this dissertation’s second major contribution.
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5.1 Motivation

The initial ESP implementation did achieve its goal of breaking

the behavioral-complexity barrier for EVCs. However, it applied only

to a significantly restricted case—one in which the most important

morphology (i.e., the creature’s skeletal segments and joints) were fixed

after the first skill’s evolution was complete.

Such a system is limited in its ability to discover interesting

creatures. For example, what if a creature is evolved for an initial skill

such as locomotion, then is asked to adapt to a largely orthogonal skill

such as reaching up to a high target? That creature may or may not

have the required morphological capacity for performing the second

task, depending on the accidents of evolution.

This chapter introduces an extended version of ESP, in which a

retesting and reconciliation scheme replaces previous absolute limita-

tions on morphological evolution. Morphology can thus be fully evolved

to suit the requirements of more than just a single skill.

In the following sections, this Extended ESP implementation is

described. The results demonstrate a significant increase in the useful

variety and quality of evolved creatures, while the ESP system’s ability

to develop complex behaviors incrementally from a sequence of simpler

learning tasks remains intact.

89



5.2 Method

The extended ESP method is presented in two parts, the first of

which describes its underlying concept, and the second its implemen-

tation.

5.2.1 Replacing Morphological Constraints with Retesting

The initial implementation of the ESP system enforced strict

limits on morphological changes after the first skill was completed. Al-

though changes to muscles and photoreceptors were allowed, segments

and joints were fixed. Due to this constraint, previously learned skills

could be expected to work reliably throughout the syllabus-based con-

struction. On the other hand, this limitation may make it difficult to

develop other abilities later. For example, a creature may succeed in

developing forward locomotion and the ability to turn left, but—due to

the construction of a certain joint evolved for locomotion—be unable

to learn to turn right, even after many generations of evolution.

Luckily, this limitation was undertaken only to make an initial

success in the original system easier to achieve. It can be removed by ex-

panding and modifying the fitness evaluations applied during learning:

Instead of freezing segments and joints after the first skill is developed,

successive skills can be allowed to change these attributes, as long as

new testing shows that such changes will not conflict with earlier abil-

ities.
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However, such an increase in testing threatens to make an al-

ready computationally demanding problem significantly more difficult,

especially because the system is intended to be open ended. Assuming

n skills and one independent test for each skill, full retesting of all pre-

vious skills at each step of the syllabus would produce an O(n2) growth

in the required testing, instead of the original system’s linear growth.

Fortunately, the retesting can be reduced considerably by fo-

cusing it where it matters. Consider the syllabus graph shown in Fig-

ure 5.2. The skills that have a direct influence on the creature’s body are

shaded, and will be referred to as leaf skills. These are: forward lo-

comotion, left turn, right turn, and strike. Once these skills

are successfully established, the remaining non-leaf skills can be evolved

independently (in an order that meets dependency requirements), with-

out the need for any retesting. This approach stops the O(n2) growth

in testing requirements significantly earlier than would otherwise be

possible—in this syllabus, for example, after four skills instead of 10

(assuming all leaf skills are learned first).

5.2.2 The Extended ESP Algorithm

This section describes the implementation of the new, more gen-

eral form of the ESP algorithm, including the application of the con-

cept of leaf skills, as described above. The method is comprised of two

stages. The first stage consists of a fixed number of generations during
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Figure 5.2: In this representation of the syllabus graph, shaded nodes are
leaf nodes, which act only on the body, rather than other nodes, and consti-
tute the focus of the extended ESP system discussed in this chapter. While
the leaf nodes may benefit from the extended system’s continued morpholog-
ical development, non-leaf nodes are not expected to require these additional
evolutionary resources, and can be evolved using the original system, which
produces only a linear growth in required testing.

which the new skill’s control and body evolves, as described in Algo-

rithm 1. During this stage, existing encapsulated skills in the brain do

not change, but if any morphological changes reduce these skills’ fitness

beyond a preset limit, the creature will be marked as unfit. In this way,

the new skill is given free rein to adapt the body to its needs, provided

that sufficient ability in all existing skills is retained.

The second stage runs for a fixed number of generations for
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each of the old skills, during which the morphology is temporarily

frozen—ensuring that the abilities achieved by the new primary skill

are preserved—and each of the already existing skills gets a chance to

reconcile itself to the new body (Algorithm 2). Since the morphology

is fixed, these skills can develop completely independently—each skill

can adapt to the new body, without degrading any of the other skills

in the brain.

Proceeding in this manner, this extension of the ESP algorithm

allows new leaf skills to seek their own adaptations to morphology

as well as control, with a reasonable expectation that—as in the old

system—existing skills will be maintained, allowing abilities to accu-
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mulate incrementally as in the original ESP.

Algorithm 1: Full evolution of morphology and control for
new skill s′.

foreach generation do1

foreach individual in the population do2

mutate morphology;3

mutate control for new skill s′;4

foreach existing skill s do5

evaluate fitness for s;6

if fitness for s has decreased significantly then7

set individual fitness to 0;8

proceed to next individual;9

end10

end11

evaluate fitness for s′;12

set individual fitness to fitness for s′;13

end14

produce new population from existing one;15

end16

Algorithm 2: Reconciling existing skills to body changes
made for new skill s′.

foreach existing skill s do1

foreach generation do2

foreach individual in the population do3

mutate control for skill s;4

evaluate fitness for s;5

set individual fitness to fitness for s;6

end7

produce new population from existing one;8

end9

end10

Experiments with the extended ESP system demonstrate the

advantages of the continuing morphological evolution enabled by this
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new algorithm. In Section 5.3 (Strike Results), an experiment from

the original ESP system is reproduced in the extended ESP system,

with dramatically different results. In Section 5.4 (High-Reach Re-

sults), a learning challenge designed to highlight the extended system’s

advantages is presented, and detailed benefits are described. Note that

the extended ESP maintains original ESP’s ability to construct com-

plex hierarchical behaviors, and that ability is inherited largely without

modification in the new system. Therefore, instead of simply replicat-

ing the fight-or-flight behavior of Chapter 4, the experiments in this

chapter demonstrate the extended system’s success in more challeng-

ing applications that were impossible in the original system. Video

illustrating both of the result sections of this chapter can be viewed

online at http://youtu.be/fyVr7gdGEPE.

5.3 Strike Results

An important part of the original ESP system’s primary exper-

imental result was to add a strike behavior to a locomoting creature

(toward the larger goal of developing a complex fight-or-flight behav-

ior). In this section, that portion of the old experiment is reproduced

in the extended system, and a broad range of novel strategies and mor-

phological changes is observed.
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5.3.1 Strike in Original ESP

Figure 5.3a depicts a creature evolved for locomotion in the un-

derlying EVC system (which is common to both the original and ex-

tended versions of ESP). In Original ESP (as presented in Section 4.3.6),

that creature consistently solved the challenge of producing a striking

behavior by using its existing skeletal structure to either jump up and

down or smash the ground with its limbs (best fitness in ten runs:

0.358), without any opportunity to explore the potential for new strate-

gies or better adaptation that might result from continuing full mor-

phological development.

5.3.2 Strike in Extended ESP

When the morphology is allowed to continue to evolve, however,

new strategies become possible, and even old strategies may be better

executed with morphological changes adapted to their specific needs.

The extended ESP system develops a variety of such solutions, as can

be seen in Figures 5.3b through 5.3f.

These creatures were produced using 20 parallel runs, with each

employing a population size of 200 (Figures 5.4 and 5.5). As described

in Section 5.2.2, each run began with a fixed number of generations

(in this case 500), during which the new strike skill was rewarded as

morphology and control were completely free to evolve. The minimum

requirement for a nonzero fitness score was that the original locomotion
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skill continue to function to an acceptable level within the changing

body (Algorithm 1). Specifically, 50% of the original locmotion score

was required for 15 of the runs, with only 10% required for the other 5

runs. Useful results were obtained in the majority of runs with both of

these settings. During the second stage of each run (Algorithm 2), an

additional 250 generations were allowed for the first skill (locomotion)

to reconcile itself to any morphological changes made during the first

stage.

(a) Initial locomoting
creature.

(b) Heavy smashing
arms (Run 4).

(c) Smashing flail
arms (Run 20).

(d) Jump with anti-
tip limbs (Run 5).

(e) Smashing tail,
stabilizers (Run 8).

(f) Jump with heav-
ier body (Run 10).

Figure 5.3: Further evolution of the hopper locomotion morphology in the
strike task. (a) A creature adapted for locomotion. From this creature, crea-
tures (b) through (f) were evolved using the extended ESP method described
in this chapter. Each of them has developed a new technique (with corre-
sponding morphological changes) for accomplishing an additional task—in
this case, delivering a strike to the ground—while still maintaining the abil-
ity to perform the initial skill (locomotion) to prescribed levels. The extended
ESP system makes such adaptations possible, resulting in morphology that
supports multiple distinct skills.
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5 (f) Run 6

(g) Run 7 (h) Run 8 (i) Run 9

(j) Run 10

Figure 5.4: Fitness graphs for the first ten of 20 runs of Extended ESP. The
five selected for Figure 5.3 (Runs 4, 5, 8, 10, and 20) were chosen because
they demonstrated the most diverse, interesting, and successful solutions.
Within each graph, the horizontal axis measures generations of evolution,
and the vertical axis indicates fitness. As in all fitness graphs in this chapter,
the first 500 generations are devoted to the development of body and brain
for the new skill (in this case, strike), and the last 250 generations are used
to allow the initial skill (locomotion) to reconcile itself to any changes in
morphology.
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(a) Run 11 (b) Run 12 (c) Run 13

(d) Run 14 (e) Run 15 (f) Run 16

(g) Run 17 (h) Run 18 (i) Run 19

(j) Run 20

Figure 5.5: Fitness graphs for the last ten of 20 runs from which the strike
results in Figure 5.3 were selected.
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Morphological changes seen in Figure 5.3b (run four, fitness

0.254) have produced a strong new strike technique and an appear-

ance to match. The arms are now significantly heavier and can easily

reach the ground to deliver impressive simultaneous smashing strikes di-

rectly. In Figure 5.3c (run 20, fitness 0.230), additional long segments

are attached by hinges onto the end of the arms, allowing a striking

technique reminiscent of a flail from medieval Europe or Japanese nun-

chaku. The creature of Figure 5.3d (run five, fitness 0.462) employs

a jumping strike similar to one produced in the original ESP system,

but this time, long extensions to the limbs make it almost impossible

for the creature to tip over, even during extremely energetic attacking

leaps. A completely new technique is made possible by morphological

changes in Figure 5.3e (run eight, fitness 0.423). Here, four low stabiliz-

ing legs have been added, allowing one of the original limbs to deliver a

focused tail strike much like that of the ankylosaurus. Finally, the crea-

ture of Figure 5.3f (run ten, fitness 0.493) uses the same technique as

the example from the original system, but with further morphological

adaptations, such as a heavier body and heavier arms.

5.4 High-Reach Results

In this chapter’s first experiment (Section 5.3.2), the goal was to

demonstrate the extended system’s benefits over the original system,

when applied to the previously seen strike task in the hopper mor-
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phology (Figure 5.3a). In this section, the experiment is specifically

designed to highlight the extended system’s advantages by selecting a

task that is more different from locomotion than the strike task: that

of reaching a high target. Specifically, a selection of three different lo-

comoting creatures was evolved, using both the original and extended

ESP systems, and the differences in results were examined in detail. For

this experiment, fitness was defined as the maximum height reached by

any part of the creature in a two-second evaluation interval (relative to

the creature’s start height), averaged across five successive intervals.

5.4.1 Original Creature 1: Hopper

In this experiment, the locomoting creature of Figure 5.3a was

evolved toward new high-reach goal. As in the previous experiment, the

results are from 20 independent runs (Figures 5.7 and 5.8), each with

a population size of 200, using 500 generations for full morphological

and control development of the new skill (high reach) followed by 250

generations to allow the original skill (locomotion) to reconcile itself to

the new body.

In the Original ESP system, only two strategies were observed,

within which the results were extremely uniform. Using core morphol-

ogy unchanged from the original locomotion result, all such creatures

developed to either jump as high as possible (Figure 5.9), or reach a

limb up by tipping over onto the other limb (as seen in Figure 5.6 (a)
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(a) Tipping, long
new limbs (run 2).

(b) Push-up, ex-
tended limbs (run
16).

(c) Telescoping limbs
(run 1).

(d) Telescoping, anti-
tip limbs (run 14).

(e) Tip with enlarged
limbs (run 11).

(f) Jump, swing ex-
tensions up (run 19).

Figure 5.6: Further evolution of the hopper morphology in the high-reach
task. The locomoting creature of Figure 5.3a was further evolved using the
extended ESP system to adapt to a high-reach task. The results demonstrate
the potential of continued morphology evolution to produce a great degree of
useful variety.

and (e), but without Extended ESP’s beneficial morphological adap-

tations). In both cases, the results (Figure 5.10, with best fitness in

ten runs: 0.182) were limited by the inability of skeletal morphology to

adapt to this new task.

In the extended ESP system, in contrast, a wide variety of re-

sults was observed, in which a number of novel strategies were used,

often to great effect. The creature of Figure 5.6a (run two, fitness

0.186) employs a tipping strategy similar to that produced in the Orig-

inal ESP system, but the capacity for morphological changes permits
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5 (f) Run 6

(g) Run 7 (h) Run 8 (i) Run 9

(j) Run 10

Figure 5.7: Fitness graphs for the first ten of 20 runs of Extended ESP. The
six selected for Figure 5.6 (Runs 1, 2, 11, 14, 16, and 19) were chosen because
they demonstrated the most diverse, interesting, and successful solutions.
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(a) Run 11 (b) Run 12 (c) Run 13

(d) Run 14 (e) Run 15 (f) Run 16

(g) Run 17 (h) Run 18 (i) Run 19

(j) Run 20

Figure 5.8: Fitness graphs for the last ten of 20 runs of Extended ESP from
which the high-reach results in Figure 5.6 were selected.
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Figure 5.9: A simple jump for height with the existing morphology was pro-
duced in eight of ten runs of the Original ESP system on the learning task
of Section 5.4 (high reach, hopper morphology).

long limb extensions that greatly increase the creature’s reach as well

as allowing greater freedom to tip without falling over. In Figure 5.6b

(run 16, fitness 0.090), a completely new strategy is seen, in which the

augmented limbs are used to push the creature’s root segment up for

a high reach that again would not have been possible in original ESP.

In Figure 5.6c (run one, fitness 0.163), another new strategy was dis-

covered: long telescoping limbs are cast upward as part of a tipping

action for an extremely high reach. (Note that, while this morpholog-

ical adaptation is made in such a way that locomotion is preserved,

this type of body plan would be unlikely to develop in the original sys-

tem’s locomotion-only morphological evolution.) The creature depicted

in Figure 5.6d (run 14, fitness 0.150) combines the strategies seen in

Figures 5.6a and c, with the addition of both telescoping and anti-tip

limbs. Figure 5.6e (run 11, fitness 0.140) demonstrates a solution sim-

ilar to the original ESP’s tipping strategy, but this time with greatly

enlarged limbs for a higher reach, along with smaller limb additions
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5 (f) Run 6

(g) Run 7 (h) Run 8 (i) Run 9

(j) Run 10

Figure 5.10: Fitness graphs for ten runs of Original ESP on the task of
Section 5.4.1 (high reach with hopper morphology). Due to Original ESP’s
constraints on morphology, these runs produced extremely uniform results,
with only two strategies observed.
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that prevent the creature from falling over during the reaching process.

The creature of Figure 5.6f (run 19, fitness 0.128) produces a novel take

on the original system’s jumping strategy with the addition of swinging

limb extensions that increase its upward reach at the height of its leap.

5.4.2 Original Creature 2: Snake

(a) Original ESP
result.

(b) Result in new ESP
(run 1).

Figure 5.11: Further evolution of a snake morphology in the high reach task.
These results demonstrate how the extended ESP system (b) can produce
better fitness values (i.e., a higher reach) than the original ESP system (a)
by allowing the addition of new body segments.

Another successful solution to the locomotion task produced by

the Original ESP is shown in Figure 5.11a. This snake-like creature

achieved a high reach by extending one end of its long morphology,

while the rest of the body maintained balance. This creature’s perfor-

mance in the high-reach task provides an especially clear example of

how Extended ESP can provide improved results over Original ESP.

As in the preceding two experiments, a population size of 200

was applied to 500 generations of new-skill body-and-brain adaptation,
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5 (f) Run 6

(g) Run 7 (h) Run 8 (i) Run 9

(j) Run 10

Figure 5.12: Fitness graphs for all 10 runs of Extended ESP from which the
high-reach result in Figure 5.11b (high reach with snake morphology) was
selected. Extended ESP’s ability to change morphology produced a distinct
increase in fitness over Original ESP (see Figure 5.13).
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5 (f) Run 6

(g) Run 7 (h) Run 8 (i) Run 9

(j) Run 10

Figure 5.13: Fitness graphs for 10 runs of Original ESP on the task of
Section 5.4.2 (high reach with snake morphology). This system’s inability to
fully adapt morphology produced significantly less fit results than Extended
ESP.
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followed by 250 generations of first-skill reconciliation. In this case,

even the Extended ESP system produced rather uniform results across

multiple runs, and therefore the results were obtained from only 10

runs.

The Original ESP produced a high fitness of 0.174 in ten runs

(Figure 5.13 ). Extended ESP improved upon this creature by adapting

its morphology to the secondary task, while its strategy remained un-

changed, as seen in Figure 5.11b (Run 1 of Figure 5.12, fitness 0.267).

It grew an additional body segment that enabled the higher reach,

while allowing it still to perform locomotion to acceptable standards.

In this manner, further evolution can adapt existing morphology while

preserving prior function.

5.4.3 Original Creature 3: Quadruped

The relatively complex quadruped seen in Figure 5.14a was a

third type of solution developed by the underlying EVC system for

the locomotion task (with all experimental details as in the previous

examples and the use of 20 parallel starts; Figures 5.15 and 5.16). In

continued evolution of the high-reach task in the Original ESP system,

this creature’s results were again extremely uniform in approach and

fitness. They all reached up with a single limb (Figure 5.17), and all

with approximately equal success (producing a top fitness of 0.164 in

ten runs, shown in Figure 5.18).
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(a) Initial locomoting crea-
ture.

(b) Subtle body
changes (run 3).

(c) More obvious body
changes (run 5).

(d) Dramatic changes in
morphology (run 14).

Figure 5.14: Further evolution of a quadruped morphology in the high reach
task. The initial locomoting quadruped (a) is evolved for high reach in the
Extended ESP system (b)-(d). Through a variety of strategies, each of the
Extended ESP creatures shown scores better on this new task than any crea-
ture from the Original ESP system.

111



(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5 (f) Run 6

(g) Run 7 (h) Run 8 (i) Run 9

(j) Run 10

Figure 5.15: Fitness graphs for the first ten of 20 runs from which the
quadruped high-reach results in Figure 5.14 were selected. Extended ESP’s
ability to fully adapt morphology produced results which were both more var-
ied and more fit than those of Original ESP.
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(a) Run 11 (b) Run 12 (c) Run 13

(d) Run 14 (e) Run 15 (f) Run 16

(g) Run 17 (h) Run 18 (i) Run 19

(j) Run 20

Figure 5.16: Fitness graphs for the last ten of 20 runs from which the high-
reach results in Figure 5.14 were selected.
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Figure 5.17: The only technique developed in ten runs of the Original ESP
system on the learning task of Section 5.4.3 (high reach, quadruped): reach-
ing up with one limb. Due to the fixed morphology in Original ESP, this
resulted in almost exactly the same score for all ten runs.

In the Extended system, the ability to continue to adapt mor-

phology to this new task led to a diverse set of useful results. All of

those depicted in Figure 5.14 also were more fit than those produced

with the Original ESP. For example, Figure 5.14b (Run 3, fitness 0.209)

illustrates a creature that pursues the same strategy as the creature in

Figure 5.14a, yet does so more effectively due to subtle morphological

adaptations, such as changes in segment dimensions. In Figure 5.14c

(Run five, fitness 0.294), more obvious changes have been made to the

body. In particular, new segments have been added to the ends of the

limbs which provide an increased reach. These changes made it pos-

sible to further exceed the uniform performance limit of the original

creature, while still employing the same basic high-reach technique. In

Figure 5.14d (run 14, fitness 0.314), even more dramatic changes to

morphology provide a new way of accomplishing the high reach task:

This creature employs a new pair of tall, dedicated limbs to even fur-

ther exceed the previous system’s performance—another clear example
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5 (f) Run 6

(g) Run 7 (h) Run 8 (i) Run 9

(j) Run 10

Figure 5.18: Fitness graphs for ten runs of Original ESP on the task of
Section 5.4.3 (high reach with quadruped morphology). In this case, Original
ESP’s constraints on morphological adaptation produce results which are both
extremely uniform and less fit than those of Extended ESP.
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of an evolutionary path to improved fitness that was unavailable in the

original ESP system.

Interestingly, in the case of 5.14c , these body-plan changes were

accompanied by a very different but effective new form of locomotion

in a direction perpendicular to the original. This result demonstrates

how evolution in further tasks can result in novel solutions in earlier

tasks as well. In other words, further evolution does not only add more

structure to existing solutions, but it can fundamentally change these

solutions as well.

5.5 Discussion

The results in this chapter demonstrate that (1) it is useful to

continue to adapt the morphology when adding a new task, and (2)

such continued adaptation can leverage the diversity in the initial mor-

phology and produce a variety of interesting solutions.

Although the Extended ESP algorithm removed the original sys-

tem’s explicit limitations on body changes after the first skill, develop-

ment of morphology throughout the acquisition of complex skills is still

not fully general and completely unlimited. First, the retesting require-

ments would make morphological development impractical if continued

through too many steps of leaf skill addition. To mitigate this issue in

the future, it may be possible to do the retesting periodically rather

than universally, and to run the tests in parallel. Also, the more leaf
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skills there are, the more likely it is that the morphological change re-

quired by one skill will be harmful to the others. This limitation may

be more difficult to overcome, because it reflects the inherently conflict-

ing demands that any creature would face in such an environment. As

in the real world, some compromise is expected to evolve, or perhaps

a set of solutions that compromise in different ways, or create different

niches. Such variety exists in biology and it would also be expected in

artificial creatures.

5.6 Conclusion

This chapter described this dissertation’s second major contri-

bution: a useful generalization of the original ESP system’s specialized

implementation into one that allows morphological adaptation to multi-

ple tasks, improving both performance and diversity. The next chapter

presents the third major contribution of this dissertation: a novel ac-

tuator system for evolved virtual creatures that results in an increase

in meaningful morphological complexity and a significant reduction in

cognitive load.

117



Chapter 6

Muscle Drives

Figure 6.1: A creature evolved for jumping (Section 6.4.6) using the method
described in this chapter, demonstrating the morphological complexity that
results from replacing implicit joint-motor drives with an evolvable muscula-
ture. As with all other examples in this chapter, the physical intelligence em-
bodied by these muscle drives enables this creature to perform a useful task es-
sentially without control intelligence (Section 6.3). Video of this and all other
results from this chapter can be viewed at http://youtu.be/csZ9JZcuBfE.

The preceding two chapters described the Original and Extended

ESP systems, which served to increase the behavioral complexity of

evolved virtual creatures. This chapter describes this dissertation’s

third major contribution: a novel muscle drive system that increases
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morphological complexity in a meaningful, bio-mimetic fashion, while

simultaneously reducing the control requirements imposed on creature

brains.

6.1 Motivation

In addition to behavioral complexity, morphological complex-

ity is an important goal for evolved virtual creatures (Figure 6.1) [4].

How can it be increased to approach the morphological complexity

of creatures evolved in the real world? Traditional segmented EVCs

[46, 7, 30, 26] achieve some measure of complexity through the place-

ment, dimensions, and types of their rigid segments and joints. More

recently, creatures with morphology based on implicit definitions such

as CPPNs and gene regulatory networks [4, 22, 8] demonstrated a

different—and arguably greater morphological complexity, albeit based

on indirect developmental mechanisms. In contrast, the technique de-

scribed in this chapter demonstrates that it is possible to increase the

complexity of the rigid-bodied model directly by employing a more ad-

vanced approach to actuation.

In a conventional EVC, actuation is provided by implicit joint

motors. Such motors are completely uniform, i.e., attached to every free

axis of every joint, and fixed over time. They are also typically unseen,

perhaps because they are all the same, and therefore displaying them

provides no useful information.
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However, the ESP system 4 demonstrated that EVCs can also be

successfully actuated by a simple form of simulated muscle—a variable-

strength linear spring attached to two segments across a joint. Although

in that example, the muscles were controlled by a complex brain, one

particularly interesting property of such drives is that they do not al-

ways require this control complexity. As will be shown in this chap-

ter, these muscles can embody and replace a significant portion of the

control intelligence that would normally be provided by the creature’s

brain. In fact, creatures that are almost entirely without control in-

telligence can still develop sufficient physical intelligence (in the form

of their evolved musculature) to perform rudimentary, yet useful tasks,

such as jumping and locomotion.

Besides simplicity, there’s another beneficial result of this shift-

ing of intelligence from brain to body: where the control intelligence was

invisible, the physical intelligence that replaces it is visible, in the mor-

phological complexity of the muscles. Although the muscle-drive model

described in this work is in some ways simple, it nevertheless commu-

nicates meaningful complexity through its evolved characteristics: the

density of muscles at a joint, their size (with rendered thickness indi-

cating strength), orientation (indicating direction of force), and their

attachment points.

Many EVC applications could benefit from this easing of the

demands on brainpower. By removing the cognitive load that can now
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be borne by the muscle drives, this implementation frees the brain

to devote equivalent computational power to achieving more complex

behavioral goals.

In this chapter, the implementation of the muscle drives is first

presented in detail. The extremely minimal control that it enables

is specified, followed by experimental results in creating jumping and

locomotion for EVCs with varying morphologies.

Figure 6.2: Evolvable musculature, with example muscle body (a) and attach-
ment point (b) indicated. The density of muscles at a joint, their thickness
(indicating current force), orientation, and attachment points all contribute
meaningfully to the creature’s morphological complexity.
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6.2 Muscle Implementation

The muscle drives are implemented as simple linear springs.

Each muscle (Figure 6.2(a)) is completely described by its attachment

points and maximum strength. An attachment point (Figure 6.2(b))

may be placed anywhere on a rigid body segment, and each pair of

attachment points must exist across a joint connecting two such seg-

ments. Muscles may be added and removed by evolution, and their

attachment points and maximum strength are evolvable. During sim-

ulation, a muscle’s activation (in [0,1]) determines what portion of its

maximum strength that muscle will apply.

The muscle is implemented using a standard PhysX joint called

a distance joint, modifying its attributes so that it acts as a simple

linear spring. A PhysX distance joint allows the specification of a max-

imum distance between two attachment points, and this maximum is

enforced by spring-like behavior when exceeded. By setting the distance

joint’s maximum distance to zero, only the spring-like enforcements are

applied. The spring constant is adjusted during simulation to reflect

the tension that results from combining the muscle’s activation with its

maximum force. Note that this implementation—with numerous joints

of varying types between a single pair of rigid body segments—is not

typical for PhysX, and indeed initial results with normal settings re-

sulted in simulations that were not sufficiently stable. All experiments

presented here rely on a much smaller simulation step—1/240th of a
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second—as well as other configuration settings, all of which can make

the simulation significantly more expensive.

From the three evolvable properties of each muscle (two attach-

ment points and the maximum strength), as well as the fact that mus-

cles may be added or removed at any joint, a great degree of visually

obvious meaningful morphological complexity emerges. This design

also can potentially embody sufficient physical intelligence to perform

basic behaviors with only simple control intelligence required, as will

be described next.

(a) Jump activation (single
square pulse).

(b) Locomotion activation (re-
peating square wave).

Figure 6.3: The fixed global muscle activations that replace the typical EVC’s
relatively complex brain for all experiments in this work are illustrated. With
the muscle drives’ capacity for physical intelligence, simple but useful behav-
iors can be performed effectively without control intelligence.

6.3 Minimal Control

As a demonstration of approximately how much physical in-

telligence the evolvable musculature can embody, the examples in the
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subsequent Results sections all function almost entirely without control

intelligence (Figure 6.3).

In a conventional evolved virtual creature, control intelligence

is implemented as a neural network [30] or a directed graph of simple

computing nodes [46] (Chapters 4 and 5), as shown in Figure 2.11. In

the creatures of this chapter, far less is required. For these creatures,

the typical brain is replaced by a single activation function, which is

applied to all muscles simultaneously. This activation function was ar-

bitrarily chosen and fixed before each experiment began, being neither

evolved nor hand-tuned. These functions, a half-second unit-amplitude

square pulse for jumping, and a 1-Hz unit-amplitude square wave for

locomotion, are illustrated in Figure 6.3.

6.4 Jump Results

In this section (6.4) and the next (6.5), the results of two exper-

iments are presented, in which creatures evolve body and musculature

for the tasks of jumping and locomotion. In each case, the potential for

physical intelligence in the muscle drives effectively obviates control in-

telligence and also demonstrates the muscle drives’ potential to exhibit

meaningful morphological complexity. All of the results described here

can be seen in motion in the accompanying video at http://youtu.

be/csZ9JZcuBfE.
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6.4.1 Experimental Setup

For all of the results in this section, the population size was ap-

proximately 100, initially filled with single-segment genotypes of ran-

dom dimensions, and the results were obtained with between 221 and

500 generations. Forty independent runs of the experiment were exe-

cuted, each with its own random seed. The champions of these 40 runs

are diverse, although certain variations of morphological themes tend

to recur. Illustrative examples are presented in the sections below. The

variety demonstrated in these results suggests that the approach should

scale well to more challenging tasks, as discussed in Section 6.6.

The following five examples illustrate the various solutions found

for a simple jumping task. For this skill, fitness is defined using a

number of intermediate shaping steps, resulting in a sequence of fit-

ness goals. Each stage is complete when a sufficient fraction of the

population—on the order of 5%—has achieved full fitness. At that

point, the individuals with full fitness are replicated to fill a new pop-

ulation, and evolution continues in the next stage.

A useful concept in defining these goals is the axis-aligned bound-

ing box (AABB)—particularly its top and bottom, which describe the

creature’s highest and lowest extents. Both static (i.e., at rest) and

highest (as measured throughout a single fitness evaluation) AABB

measures are employed. The shaping progressed in three steps.

125



1. static AABB top

For this step, full fitness is achieved by producing a creature so

tall (at rest) that it cannot contain only one segment. In this way,

it is ensured that creatures will contain joints, which will permit

the addition of muscles in future steps.

2. static AABB top + highest AABB top

In this step, half of the fitness (static AABB top) depends on

maintaining sufficient static size to ensure that joints are retained.

The other half of the fitness score (highest AABB top) is used to

encourage the addition of muscles which produce upward motion.

3. highest AABB top + highest AABB bottom

In this step, half of the fitness (highest AABB top) encourages

the retention of upward-motion-producing muscles developed in

the preceding step. In addition, the other half of the fitness score

(highest AABB bottom) encourages the ultimate goal: getting the

creature’s lowest point as high off the ground as possible during

the jump.

For all jump evolution experiments, control consists solely of the

single fixed global activation signal depicted in Figure 6.3(a), with all

other required intelligence residing entirely within the body, including

the evolvable musculature.
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In each result illustration (Figures 6.4-6.8), the left and right

sides show the creature before and during its jump, respectively.

6.4.2 Jump Result 1: Two-Armed Swing (Repeatable)

Figure 6.4: Two-armed swing (repeatable), from generation 300 of Run 4
of the jump task.

The creature in Figure 6.4 adapts its morphology to the given

minimal control signal by developing heavy arms that are swung up by

appropriately placed muscles. The upward momentum of these limbs

is then sufficient to make the creature airborne. This result is from

generation 300 of Run 4 (Figure 6.9) and achieved a fitness of 0.830.

Foreshadowing a common technique observed in the locomotion

results, this creature happens to end its jump in the same configuration

from which it began, demonstrating a potential for repeated action.

127



6.4.3 Jump Result 2: Two-Armed Swing (Non-Repeatable)

Figure 6.5: Two-armed swing (non-repeatable), from generation 360 of Run
12 of the jump task.

The creature in Figure 6.5 applies the same basic limb-swinging

strategy to a different morphology, resulting in a strong jump that does

not happen to end in the same pose from which it began. This result

is from generation 360 of Run 12 (Figure 6.9) and achieved maximal

fitness (1.000), which was the best among all results in this experiment.

6.4.4 Jump Result 3: One-Armed Swing

Figure 6.6: One-armed swing, from generation 320 of Run 19 of the jump
task.
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The strategy in Figure 6.6 is similar to that of the previous two,

but it works with a single limb instead of a symmetrical pair of limbs.

This result is from generation 320 of Run 19 (Figure 6.10) and achieved

a fitness of 0.162.

As with Jump Result 1, this creature’s consistent begin and

end poses foreshadow the successful technique seen in the locomotion

results—in this case matching almost exactly the morphology and be-

havior of Locomotion Result 2 (Section 6.5.3).

6.4.5 Jump Result 4: Four-Legged Push

Figure 6.7: Four-legged push, from generation 221 of Run 25 of the jump
task.

The creature in Figure 6.7 employs the far less common (for this

experiment) technique of pushing off the ground rather than swinging

limbs up. This bias may result from the particular method of fitness

shaping used for this skill, in which an initial upward extension of the

creature’s axis-aligned bounding box is rewarded as an intermediate
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goal on the way to a true jumping behavior. This result is from gener-

ation 221 of Run 25 (Figure 6.10) and achieved a fitness of 0.626.

6.4.6 Jump Result 5: Complex-Arm Swing

Figure 6.8: Complex-arm swing, from generation 500 of Run 35 of the jump
task.

In Figure 6.8—the most morphologically elaborate of this chap-

ter’s jump results—a particularly complex collection of segments, joints,

and muscles is applied to the work of swinging heavy arms up to induce

a successful leap. (See Figure 6.1 for a more detailed illustration.) This

result is from generation 500 of Run 35 (Figure 6.11) and achieved a

fitness of 0.346.
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(a) Run 1 (b) Run 4 (c) Run 5

(d) Run 11 (e) Run 12 (f) Run 13

(g) Run 14 (h) Run 15 (i) Run 16

(j) Run 17 (k) Run 18

Figure 6.9: Fitness graphs for Run 1 through 18 of the jump task. (Note:
The data from Runs 2-3 and 6-10 has been lost.) This set of runs contained
the repeatable two-armed swing of Figure 6.4 and the non-repeatable two-
armed swing of Figure 6.5.
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(a) Run 19 (b) Run 20 (c) Run 21

(d) Run 22 (e) Run 23 (f) Run 24

(g) Run 25 (h) Run 26 (i) Run 27

(j) Run 28 (k) Run 29

Figure 6.10: Fitness graphs for Run 19 through 29 of the jump task. This
set of runs contained the one-armed swing of Figure 6.6 and the four-legged
push of Figure 6.7.
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(a) Run 30 (b) Run 31 (c) Run 32

(d) Run 33 (e) Run 34 (f) Run 35

(g) Run 36 (h) Run 37 (i) Run 38

(j) Run 39 (k) Run 40

Figure 6.11: Fitness graphs for Run 30 through 40 of the jump task. This
set of runs contained the complex-arm swing of Figure 6.8.
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6.5 Locomotion Results

In this section, results from a locomotion experiment are pre-

sented, in which the single fixed square-pulse control signal of Fig-

ure 6.3(a) was replaced with the repeating fixed square-wave signal of

Figure 6.3(b), and the ultimate fitness function was changed from jump

height to distance traveled in a given amount of time.

6.5.1 Experimental Setup

In locomotion experiments, the population size was 100, and the

results were obtained between 1000 and 2000 generations. As for the

jump experiments, 40 independent runs were executed. For locomotion,

the shaping schedule was more extensive: the first three goals are the

same as in the jump task, and the last two utilize these results to con-

struct locomotion. In the fourth step, in addition to ground clearance,

a modest amount of horizontal travel is required. In the final stage,

the previous requirement for jumping fitness is removed, and evolution

is allowed to focus solely on optimizing horizontal travel towards an

effectively unlimited distance goal.

1. static AABB top

For this step, full fitness is achieved by producing a creature so

tall (at rest) that it cannot contain only one segment. In this way,

it is ensured that creatures will contain joints, which will permit

the addition of muscles in future steps.
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2. static AABB top + highest AABB top

In this step, half of the fitness (static AABB top) depends on

maintaining sufficient static size to ensure that joints are retained.

The other half of the fitness score (highest AABB top) is used to

encourage the addition of muscles which produce upward motion.

3. highest AABB top + highest AABB bottom

In this step, half of the fitness (highest AABB top) encourages

the retention of upward-motion-producing muscles developed in

the preceding step. In addition, the other half of the fitness score

(highest AABB bottom) encourages getting the creature’s lowest

point as high off the ground as possible during the jump.

4. highest AABB bottom + (modest) horizontal distance

traveled

In this step, half of the fitness (highest AABB bottom) helps

maintain the ground clearance achieved in the previous step. The

other half is devoted to rewarding a small amount of horizontal

travel. Thus, the previous step’s jump is encouraged to become

a jump with translation.

5. horizontal distance traveled (unlimited)

In the final step, locomotion alone is encouraged, with fitness

being defined simply as horizontal distance traveled. The target

distance for achieving full fitness in this step is so large as to be
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effectively unattainable, so that locomotion development can be

pursued indefinitely.

In each of the following eight examples, the left image is a

closeup of the creature with muscles relaxed (as during the trough of

the activation square wave), and the right image depicts the creature

with muscles activated, during locomotion, with approximate direction

of movement indicated by the arrow.

6.5.2 Locomotion Result 1: Double Front-Armed Swing Hop

Figure 6.12: Double front-armed swing hop, from generation 1000 of Run
6 of the locomotion task.

In Figure 6.12, the square-wave activation of muscles is used to

swing the front limbs up, accumulating momentum, which produces for-

ward translation during repeated jumps. This result is from generation

1000 of Run 6 (Figure 6.20) and achieved a fitness of 0.017.
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6.5.3 Locomotion Result 2: Single Front-Armed Swing Hop

Figure 6.13: Single front-armed swing hop, from generation 1000 of Run 7
of the locomotion task.

With morphology and action very similar to that of Jump Re-

sult 3, the creature in Figure 6.13 also employs a repeating forward-

translating jump for simple but highly effective locomotion. This result

is from generation 1000 of Run 7 (Figure 6.20) and achieved a fitness

of 0.038.

6.5.4 Locomotion Result 3: Front-Armed Swing Step

Figure 6.14: Front-armed swing step, from generation 1000 of Run 12 of
the locomotion task.

137



The mode of locomotion of the creature in Figure 6.14 is surpris-

ingly complex and subtle, given the abrupt simplicity of the global ac-

tivation signal. In a two-stage sequence of actions, this creature swings

front legs up, which causes the middle box segments first to tip forward,

then step ahead, pulling the back limbs along with them.

This result is from generation 1000 of Run 12 (Figure 6.21) and

achieved a final-stage fitness of 0.016.

6.5.5 Locomotion Result 4: Delta Wheelbarrow

Figure 6.15: Delta wheelbarrow, from generation 2000 of Run 12 of the
locomotion task.

The creature in Figure 6.15 employs a dense concentration of

muscles at its central joints to produce upward and forward momentum,

which results in a wheelbarrowing forward slide. This result is from

generation 2000 of Run 12 (Figure 6.21) and achieved a final-stage

fitness of 0.015.
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6.5.6 Locomotion Result 5: Front-Hinged Swing Drag

Figure 6.16: Front-hinged swing drag, from generation 2000 of Run 18 of
the locomotion task.

In Figure 6.16, muscles sharply raise forward segments that are

hinged so as to provide a lifting and forward-moving impulse, which

drags the stabilizing rear legs along the ground. This result is from

generation 2000 of Run 18 (Figure 6.21) and achieved a fitness of 0.020.

6.5.7 Locomotion Result 6: Square Wheelbarrow

Figure 6.17: Square wheelbarrow, from generation 1250 of Run 20 of the
locomotion task.
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In Figure 6.17, a different morphology employs the same basic

technique as Locomotion Result 4 to again produce a sliding wheelbarrow-

like forward movement. This result is from generation 1250 of Run 20

(Figure 6.21) and achieved a fitness of 0.014.

6.5.8 Locomotion Result 7: Complex Swing Step

Figure 6.18: Complex swing step, from generation 1000 of Run 23 of the
locomotion task.

In Figure 6.18, the most morphologically complex of the loco-

motion results, one cluster of segments forms a stable base, while an-

other such cluster is swung up to produce an elegant raise-tip-and-step

sequence of actions, resulting in forward motion. This result is from

generation 1000 of Run 23 (Figure 6.22) and achieved a fitness of 0.027.
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6.5.9 Locomotion Result 8: High Hop

Figure 6.19: High hop, from generation 1000 of Run 31 of the locomotion
task.

In one of the simplest yet most effective locomotion results (Fig-

ure 6.19), the creature uses clusters of strong muscles to swing up heavy

limbs, lifting its comparatively small root segment in a high-jumping

locomotive technique. This result is from generation 1000 of Run 31

(Figure 6.23) and achieved a fitness of 0.045.
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(a) Run 1 (b) Run 2 (c) Run 3

(d) Run 4 (e) Run 5 (f) Run 6

(g) Run 7 (h) Run 8 (i) Run 9

(j) Run 10

Figure 6.20: Fitness graphs for Run 1 through 10 of the locomotion task.
This set of runs contained the double front-armed swing hop of Figure 6.12
and the single front-armed swing hop of Figure 6.13.
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(a) Run 11 (b) Run 12 (c) Run 13

(d) Run 14 (e) Run 15 (f) Run 16

(g) Run 17 (h) Run 18 (i) Run 19

(j) Run 20

Figure 6.21: Fitness graphs for Run 11 through 20 of the locomotion task.
This set of runs contained the front-armed swing step of Figure 6.14, the
delta wheelbarrow of Figure 6.15, the front-hinged swing drag of Figure 6.16,
and the square wheelbarrow of Figure 6.17.
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(a) Run 21 (b) Run 22 (c) Run 23

(d) Run 24 (e) Run 25 (f) Run 26

(g) Run 27 (h) Run 28 (i) Run 29

(j) Run 30

Figure 6.22: Fitness graphs for Run 21 through 30 of the locomotion task.
This set of runs contained the complex swing step of Figure 6.18.
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(a) Run 31 (b) Run 32 (c) Run 33

(d) Run 34 (e) Run 35 (f) Run 36

(g) Run 37 (h) Run 38 (i) Run 39

(j) Run 40

Figure 6.23: Fitness graphs for Run 31 through 40 of the locomotion task.
This set of runs contained the high hop of Figure 6.19.
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6.6 Discussion

The results in this chapter demonstrate the benefits of the evolved

muscle drives: removing a measure of the burden from control intel-

ligence and embodying that intelligence as functional morphological

complexity. These benefits are not expected to be limited to this partic-

ular form of adaptable drive. Any sufficiently inhomogeneous evolvable

drive system should be able to accomplish the same goal. For exam-

ple, if traditional EVC joint-motor drives had evolvable strengths, a

similar transfer of intelligence from brain to body should be possible.

The increase in morphological complexity in that case might be smaller

(perhaps variable motor sizes displayed at a joint, rather than the var-

ied number, orientation and attachment points exhibited by muscle

drives), but still useful.

Another important point is that the work presented in this chap-

ter is intended to establish that evolvable musculature can embody

some useful degree of control complexity, but does not yet include a

quantification of that amount. This topic is worthy of a more system-

atic examination in the future, as will be discussed in Chapter 7.

6.7 Conclusion

This chapter described this dissertation’s third contribution: A

novel actuation system based on biologically inspired simulated mus-

cles. This system of artificial-muscle drives produces both meaningful
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morphological complexity and reduces the required control intelligence,

potentially making it possible to create more complex EVCs than be-

fore.

With the dissertation’s three primary contributions now estab-

lished, the following chapter describes potential directions for future

work that build upon these accomplishments.
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Chapter 7

Discussion and Future Work

This dissertation advances both behavioral and morphological

complexity in evolved virtual creatures. In this chapter, remaining is-

sues with these advances are discussed, namely a clarification of the

differences between Original and Extended ESP, as well as the quan-

tification of physical intelligence. Also, promising directions for fu-

ture progress are presented in both of these areas, specifically: increas-

ing morphological complexity, refining the contributed algorithms, and

long-term applications.

7.1 Original ESP vs. Extended ESP

The original ESP method for evolving virtual creatures was pre-

sented in Chapter 4, and extended to continued morphology evolution

in Chapter 5. It is natural to ask whether Extended ESP subsumes

and obviates the original version. It does not: These two versions were

presented individually not only because it was natural to describe them

in succession, but also because they solve different problems. Extended

ESP increases ESP’s ability to adapt morphology to multiple tasks,
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but it does so at the cost of increasing evaluation times. When such

morphological changes are not required, and the focus is on behavioral

complexity, the original system would be preferred. Only when the

morphological goals justify the increased evaluation costs should the

extended system be employed.

7.2 Quantifying Physical Intelligence

Chapter 6 described the potential for muscle drives to embody

a useful degree of control complexity that would otherwise be required

in the brain. This shift in complexity from control to musculature was

clear in the examples presented—the brains were essentially removed,

but the behavior remained. The amount of control complexity trans-

ferred to the muscles was significant, i.e. it was sufficient for useful

benchmark behaviors, such as jumping and locomotion. However, it is

important to move beyond such qualitative descriptions to a quantita-

tive evaluation of the degree of complexity transferred.

One way to obtain quantitative estimates might be with an ex-

periment that compares creatures with muscle drives and no brains

directly against creatures with traditional joint motors and traditional

brains. First, the muscled, brainless creature would be evolved to some

optimal level of ability at a skill, e.g. best jump height or fastest loco-

motion. Second, a traditional creature would be evolved for the same

level of ability. Then, the traditional creature could be rewarded for
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minimizing brain complexity (perhaps measured by number of control

nodes and wires in some way), while still maintaining its performance

level. The resulting traditional creature’s brain would thus demonstrate

the minimal brain complexity required to match the muscle drives’

embodied intelligence, i.e. the amount of brain capacity liberated by

moving from traditional drives to muscle drives.

7.3 Biologically Inspired Morphological

Complexity

While the evolvable musculature of Chapter 6 provided a signif-

icant increase in morphological complexity for EVCs, it was only the

first step on a potentially long path of biologically inspired advances.

This section suggests a sequence of such steps, taking EVC bodies from

their current state to something closer to the fascinating complexity

displayed by creatures in the natural world.

Muscles with Volume. One obvious next step would be to give

the muscles volume by replacing the current system’s simulated lin-

ear springs with simulated soft bodies or pressurized cloth. Previous

work with simulated muscles [14] already demonstrated that such an

approach is feasible, and specifically within PhysX. Allowing muscles

to help define the distribution of the body’s mass, as they do in real

creatures, would advance biologically inspired purposeful morphology.
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Also, the meaningful change of such muscles’ shape during simulation—

indicating the degree of their extension and activation—would add an

additional layer of realistic detail.

Skin. Another biologically inspired refinement of the rigid-segment

EVC model would be to simulate skin, as anticipated by Sims 20 years

ago [46]. With powerful cloth simulation widely available (including in

PhysX), this extension has become a conceivable next step in life-like

morphological complexification. In particular, combining simulated-

cloth skin with massed muscles could produce a particularly rich sim-

ulation, with a skin stretching and sliding over muscles as they extend

and contract.

Emergent Joints. Further in the future, if evolved creatures can

embody the right kinds of morphological complexity, perhaps externally

imposed joint mechanisms could be replaced by more realistic and more

expressive joints whose properties arise directly from their morphology.

By allowing the shape of the rigid-body segments to evolve [2], and

permitting the inclusion of other necessary anatomical elements such

as tendons and ligaments, it may be possible for rich and useful joint

properties to emerge naturally.

Exoskeletons. Similarly, the ability to evolve sufficiently detailed

exoskeleton segments, along with the necessary muscles and connecting
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elements, could permit the development of exoskeleton-based virtual

creatures. In this style of morphology—where again, body function

follows from its form—meaningful complexity would be expected to

emerge.

7.4 Algorithmic Refinements

Although visually obvious improvements to morphology are ap-

pealing, the complex new algorithms introduced in this work (ESP in

Chapter 4 and Extended ESP in Chapter 5) bring their own opportu-

nities for further development, through more subtle recombination of

skills, and a new path to morphological complexity.

Whole-Syllabus Adaptation. Although Extended ESP allows mor-

phology evolution to continue through multiple skills, it still only ap-

plies to those skills that are leaves in the syllabus graph (Section 5.2.1).

In principle, it would be desirable to continue morphological evolution

throughout all skill adaptations. In this manner, it might be possible to

develop morphologies that make transitions between skills easier—for

example by making the creature more stable or more agile. To ac-

complish this goal in the current Extended ESP system would require

considering all skills to be leaves, leading to O(n2) growth in testing

requirements applied to all n skills in the syllabus. To make such evo-

lution possible without increasing testing excessively, a rolling horizon
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of leaf skills that travels through the syllabus hierarchy might be imple-

mented. The idea is that once a lower ability will no longer be explicitly

required for any subsequent skills, it need not be retested or maintained

at all. With a well-chosen sequence of skill learning, an approximately

constant-sized wave of leaves might result, sweeping gradually through

the hierarchy.

Morphological Complexity from Multiple-Task Adaptation.

While Extended ESP was employed in this dissertation to produce a

variety of results for particular tasks (Chapter 5), it might also prove

useful in the pursuit of morphological complexity as an end in itself

(Section 6.1). Rather than merely allowing morphology to adapt to

improve performance and variety in specific tasks (which may or may

not require a more complicated body), a set of goal behaviors could

be selected specifically for their ability to increase complexity. For ex-

ample, the human hand exhibits great physical complexity; most likely

this complexity emerged from the need to perform such a variety of

tasks with the hand. The ability to embody multiple types of physical

intelligence simultaneously through Extended ESP might similarly lead

to a greater degree of physical complexity in EVCs.
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7.5 Long-Term Applications

Beyond the near-term explorations described above, there are

compelling long-term goals for this dissertation’s research.

Combat. While Miconi already produced one limited form of com-

bat for EVCs [30], there is a great deal more that can be done. The

ESP method, in combination with a number of the future-work topics

described above, and the ability to vary body-part materials (the impor-

tance of which was recognized by Miconi), could potentially produce a

far richer and more compelling form of combat for evolved virtual crea-

tures than what has been seen to date. This goal also presents some

of the greatest challenges for increased complexity of morphology and

behavior in EVCs.

Fauna on Demand. A more refined and automated version of the

ESP system could make it possible to populate virtual worlds with

continually novel creature content, especially with the help of diversity-

promoting techniques such as those seen in [26]. As virtual boundaries

are pushed back, human users could (subject to limitations of comput-

ing power) continually encounter never-before-seen creatures, all devel-

oped from a single high-level human-designed syllabus.
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Physical Intelligence for Nanotechnology. Physical intelligence

through inhomogeneous drives (such as the muscle drives of Chapter 6)

can significantly reduce the need for control logic, in some cases render-

ing it almost completely unnecessary. This reduction could ultimately

prove useful in the real world, especially where control intelligence is

at a premium. Robots that need to be particularly small, for exam-

ple, might benefit from replacing a relatively complex controller with a

properly evolved actuator musculature.

Interactive ESP. Perhaps the highest expression of the ESP system

would be an interactive version, in which direct human input completely

replaces the explicit definition of fitness functions and the predefined

ESP syllabus. This goal may present the greatest challenges, as well as

offering some of the greatest rewards for the long-term future develop-

ment of evolved virtual creatures.

7.6 Conclusion

This chapter discussed unresolved issues in this dissertation,

namely the differences between Original and Extended ESP, and the

quantification of physical intelligence. It also presented a number of

promising avenues for continued development in morphological com-

plexity, algorithmic development, and long-term applications. The con-

tributions and main impact are reviewed in the next chapter.
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Chapter 8

Conclusion

Evolved virtual creatures to be used as content in movies, video

games, and virtual environments can benefit greatly from increased

behavioral and morphological complexity. This dissertation presented

three primary contributions toward those goals. This chapter summa-

rizes those contributions and evaluates their potential future impact.

8.1 Contributions

The first contribution was the original version of the ESP sys-

tem. As described in Chapter 4, it allowed evolved virtual creatures

to achieve a level of behavioral complexity (as defined in the intro-

duction) which approximately doubles the previous state of the art.

The behavioral complexity of evolved virtual creatures has thus not

yet been exhausted, and in fact it may continue to increase so as to

one day approach the behavioral complexity of creatures from the real

world—with all of the potential for content creation that this achieve-

ment might bring.

The second contribution was an extension of the original ESP
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system that makes it possible to continue adapting the morphology be-

yond the initial skill (Chapter 5), while still producing high-complexity

behaviors incrementally. The benefits of this continued adaptation were

demonstrated through experiments in which the extended ESP system

generated a greater variety of solutions, and solutions with higher fit-

ness. As discussed in Section 7.1, these are separate contributions be-

cause the original system is more efficient when focusing on complex

behavior alone; the extended version does not obviate the original.

Third, the dissertation described a version of evolved virtual

creatures in which traditional joint-motor drives are replaced by a sim-

ple yet powerful evolvable musculature (Chapter 6). This new substrate

can support a significant degree of physical intelligence, sufficient to al-

most entirely replace the control intelligence that would normally be

used for basic but useful tasks such as jumping and locomotion. The

process of shifting this intelligence into the body makes it visible, which

constitutes progress toward meaningful morphological complexity. In

addition, for these basic tasks, the typical EVC brain is made essen-

tially superfluous. This result illustrates that these muscle drives can

embody much of the normal control burden, liberating the brain’s com-

putational resources for other, more complex work.
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8.2 Conclusion

This work has made clear contributions to increasing both the

behavioral and morphological complexity of evolved virtual creatures,

advancing the state of the art for EVCs as content. In the process, this

dissertation has also opened a number of new avenues for rewarding

future research in this domain. As a result, in both action and form,

evolved virtual creatures are now a significant step closer to having the

entertainment value of the real-world creatures that we all know and

love.
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