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The theory of quantum chromodynamics (QCD) predicts that at high energies,

such as those investigated in deep inelastic scattering experiments, hadrons evolve

into dense gluonic states described by the BFKL equation, and at very high densities,

the more general BK equation. In certain approximations, the BK equation reduces

to a well studied reaction-di�usion type nonlinear partial di�erential equation, the

FKPP equation, for which analytical results are known. In this work, we model the

BK equation using a classical branching process rooted in the dipole model of QCD

evolution. Because the BK equation is inherently two dimensional, our model allows

dipole impact parameters to occupy the full transverse space. A one dimensional limit

of this model is studied as well. Results are compared with the predictions of the

FKPP equation, and correlations between evolution at di�erent impact parameters

are presented. The general features of previously studied one dimensional impact

parameter models are veri�ed, but the details are re�ned in what we believe to be a

more accurate model.
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Part I

Background

1 Introduction

Much e�ort has been applied to the understanding of a hadron's transition from a

dilute parton gas to a saturated CGC (Color Glass Condensate). While the DGLAP

(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) equation could explain data collected

at DESY-HERA at very large Q2, the investigation of the scaling region at moderate

Q2 and very small x ∼ Q2/(Q2+s) prompted the application of the integro-di�erential

BFKL (Balitsky, Fadin, Kuraev, Lipatov) equation, which resums infrared logarithms

(log 1/x). [?]

In its original formulation, the BFKL equation can be derived from the in�nite sum of

ladder diagrams of Reggeized gluons in the t-channel, as described in [6]. This deriva-

tion is known as the �BFKL pomeron� or �hard pomeron�, giving the Regge trajectory

αP (t) = 1+4ᾱs ln 2. However, in the mid 90s, Mueller was able to rederive the BFKL

equation in a much simpler s-channel picture and show that the BFKL pomeron is

equivalent to a formulation describing dipole splittings in transverse space[11, 12]. A

set of color dipoles comprise a so-called onium con�guration, in which the emission of

new gluons gives rise to new dipoles. Evolution consists of �parent� dipoles splitting

into �daughter� dipoles with a characteristic probability

dPx01→x02,x12

dY
=
x2

01d
2x2

x2
02x

2
12

(1)

The amplitude of a photonic probe interacting with such a highly evolved hadron

is roughly proportional to the number of dipoles in the hadron having the same

approximate impact parameter and size as the qq̄ dipole into which the probe splits.

In the context of the dipole model, the BK (Balitsky, Kovchegov) equation�essentially

the BFKL equation modi�ed by a nonlinear term responsible for saturation in the

CGC regime�has been studied in a variety of analytical and computational ways in

the past decade. The full BK equation in transverse space reads

1
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Figure 1: Phase diagram of a hadron in deep inelastic scattering

∂N(x01, Y )

∂Y
=

ᾱ

2π

ˆ
ρ

d2x2
x2

01

x2
02x

2
12

2N(x02, Y )−N(x01, Y )−N(x02, Y )N(x12, Y ) (2)

The �rst two terms on the right hand side represent the increase in the amplitude due

to branching di�usion, the third term a virtual correction necessary to normalize the

onium wavefunction [17], and the �nal term the nonlinearity that restores unitarity

to the BFKL equation.

One of the most exciting theoretical developments of the past decade has been

the discovery that for �xed impact parameter collisions, the BK equation belongs

to the universality class of the FKPP (Fisher Kolmogorov, Petrovsky, Piscounov)

equation[14, 15]. That is, an analogy was noted between high energy QCD evolution

and a well studied reaction-di�usion equation. With the appropriate transformations,

the scattering amplitude can be put into the form

∂tu(t, x) = ∂2
xu(t, x) + u(t, x)− u2(t, x) (3)

the solution of which describes a traveling wave. The time, t, is analogous to the

rapidity, Y , and spatial coordinate x to the dipole momentum. It is thereby possible

to speak of a saturation wave front, ρs, that travels to smaller dipole sizes as collision

2



energy increases.

Figure 2: Traveling wave solution to the FKPP equation [2]

An important caveat to the application of the FKPP equation is that it is a mean

�eld limit of the true stochastic evolution equations. Due to the discrete nature of

an onium state consisting of a �nite number of dipoles, �uctuations in dipole number

must play a role in the evolution. Because the true stochastic equations are not known

and their formulation would probably require a more sophisticated understanding of

the saturation mechanism than is presently available, many researchers have taken to

monte carlo computer modeling of stochastic splittings. This continues to be a very

active �eld of research [20, 21, 22, 23, 24, 25]. Two of the most recent of these in

particular [24, 25] have informed the study described in this manuscript. It will be

explained what has been accomplished so far and how it can be extended using a full

two dimensional model.

3



2 History of the BFKL Equation

2.1 Regge Theory and the origins of the Pomeron

Before the advent of QCD, a variety of other approaches were used to study strong

interactions, some of which are still useful today. Regge theory, a branch of S-matrix

theory, was for instance successfully used to predict the rise of hadronic cross-sections

at small x, or increasing center of mass energy. During the sixties when the funda-

mentals of strong interactions were not yet known, studies focused on the exchange

of massive mesons, as in the Yukawa theory of nuclear force. At that time it was

postulated (by Chew and Frautschi [3, 4], for example) that there were no elementary

strongly interacting particles among hadrons, i.e. mesons and baryons, as it appeared

as a consequence of Regge Theory that all hadrons are bound states or resonances

with interlocking angular momentum states. To this end a substantial attempt was

made to explain all of strong interactions through studying the implications of a

number of assumptions about the S-matrix. The argument was that if the strongly

interacting particles that were known obeyed a self-consistent theory of the S-matrix,

then the need for elementary particles of the strong force would be obviated, yielding

a �bootstrap� theory, as it was called.

It was not until detailed data of the nucleon structure functions was obtained from

inelastic electron-proton scattering at Stanford Linear Accelerator in 1969 that the

physics community came to accept the existence of spin 1
2
�partons�, as Feynman

dubbed them, which comprise the nucleon. Although this marked the shift toward

what was the beginning of QCD (and the decreasing popularity of the S-matrix ap-

proach, especially with regards to phenomenology), it is worth re�ecting of the sub-

stantial successes of S-matrix theory and how they have shed light on much later

developments in QCD. Some insights from S-matrix theory still await a proper QCD

treatment while others lie beyond the reach of a perturbative theory like QCD.

We will now give an abbreviated tour of Regge theory, in which amplitudes of strong

interaction processes are expanded in terms of partial waves:

Aac̄→b̄d(s, t) =
∞∑
l=0

(2l + 1)al(s)Pl(1 + 2t/s) (4)

or by crossing symmetry,

4



Figure 3: The Chew Frautschi plot of mesons' mass squared versus spin. [7]

Aab→cd(s, t) =
∞∑
l=0

(2l + 1)al(t)Pl(1 + 2s/t) (5)

where Pl(z) are Legendre polynomials and al(s) are called a partial wave amplitudes.

(5) can be rewritten as a contour integral in the complex angular momentum plane

in what is known as a Sommerfeld-Watson transform. The contour surrounds the

positive x-axis so that the residues reproduce the sum in (5):

A(s, t) =
1

2i

˛
C

dl(2l + 1)
a(l, t)

sin πl
P (l, 1 + 2s/t) (6)

a(l, t) and P (l, 1 + 2s/t) are analytic continuations of the functions in (5). If we

consider the Regge region s� |t|, we can expand Pl(z) as

Pl(1 + 2s/t)
s�t→ Γ(2l + 1)

Γ2(l + 1)

( s
2t

)l
(7)

This allows us to conveniently deform the contour in (6) to a vertical line on which

<e(l) < 0, causing
(
s
2t

)l
to vanish at large s. In the process of deforming the contour,

however, we pick up poles in the l plane known as Regge poles. The residue of the

pole with the largest real part leads to the amplitude behavior

A(s, t)
s→∞∼ sα(t) (8)

Recalling that α(t) is an angular momentum, one can learn about this function by

5



plotting low lying mesons with spin Ji and mass mi, as done on �gure 3. It then

becomes immediately obvious that Ji = α(m2
i ) is a linear function, i.e. α(t) =

α(0) + α′t. The intercept of this plot has a special meaning: the optical theorem at

large s gives the forward total cross-section as

σtot ∝ sα(0)−1 (9)

Thus, the Regge intercept determines the total cross section. From �gure 3, it appears

the intercept is about .5, implying that the so-called Reggeons in the �gure contribute

σtot ∝ s−0.5 (10)

to the total cross-section. But this is not at all what is observed! Instead, data shows

that cross-sections rise starting at
√
s

>∼ 10 GeV. In the late 1950s, Pomeranchuk

proved that any scattering process in which there is charge exchange exhibits an

asymptotically vanishing cross-section. Therefore, there must be a exchange with

vacuum quantum numbers that causes the cross-section to rise. This Regge trajectory

is called the Pomeron1. Later after the advent of QCD, it was conjectured that the

integer values of the Pomeron trajectory αP(t) might correspond to bound states of

gluons, or glueballs. Proving the existence of such entities remains one of the great

remaining experimental challenges of high energy QCD.

2.2 The hard Pomeron attained through QCD ladder dia-

grams

Once perturbative QCD techniques had become well established, it was naturally

wondered whether Pomeron behavior could be derived from pQCD. Copious detail

on this program can be found in [6], the results of which we will now brie�y touch on.

Computing in�nite ladder diagrams such as �gure 4 left can reproduce the Pomeron

behavior of (9). Slashes through vertical gluons indicate they have been �Reggeized�,

i.e. each is a sum of in�nite ladder rungs such that the gluon propagator is replaced

by

1Fits to the data actually indicate the presence of two kinds of Pomeron: a �soft� Pomeron with
behavior s0.08 and a �hard� pomeron with behavior s0.4. Because the soft Pomeron lies outside the
reach of perturbative methods, we will only focus on the hard Pomeron. [5]

6
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Figure 4: Left: A ladder diagram of Reggeized gluons representing Pomeron ex-
change. Right: Diagram illustrating the integral equation for the Mellin transformed
amplitude, f(ω).

D̃µν(si, k
2
i ) =

igµν
k2
i

( si
k2

)ε(k2
i )

(11)

where i stands for the ith rung and si = (ki−1 − ki+1)2 is the squared center of mass

energy coming into the ith rung.

One may write an integral equation shown diagrammatically in �gure 4 right and solve

for the Mellin transformed amplitude at zero momentum transfer, f(ω,k1,k2,0), as

such: [6]

f(ω,k1,k2,0) ≈ 1

πk1k2

ˆ ∞
−∞

dν

2π

(
k2

1

k2
2

)iν
1

ω − ω0 + a2ν2
(12)

with

ω0 = 4ᾱs ln 2 (13)

and ν the anomalous dimension of the BFKL eigenvalue function, which we will

later cover in detail. Performing the contour integration and inverting the Mellin

transform,

F (s,k1,k2,0) ≈ 1√
k2

1k
2
2

( s
k2

)ω0 1√
π ln(s/k2)

1

2πa
exp

(
− ln2(k2

1/k
2
2)

4a2 ln(s/k2)

)
(14)

The full qq̄ forward elastic scattering amplitude is then

7



A(1)(s, 0)

s
= 4iα2

sδλ′1λ1
δλ′2λ2

G
(1)
0

ˆ
d2k1

k2
1

d2k2

k2
2

F (s,k1,k2,0) (15)

and thus,

σtot ∼ sω0 = sαP(0)−1 = s4ᾱs ln 2 (16)

So we see that the pQCD ladder diagram calculation successfully predicts the Pomeron

trajectory required for the rise of the total cross-section.

8
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Figure 5: Inclusive deep inelastic scattering for e−p→ e−X

3 Dipole Formulation of BFKL Equation

3.1 Description of the dipole model

So far we have looked at the BFKL equation from the standpoint of t-channel interac-

tions of γ∗p→ X. However, a much simpler method of deriving the BFKL equation

was achieved in the s-channel picture by Mueller [11], in which the evolution takes

place in the target as one boosts it to greater rapidity. In this approach, the target

interacts with the probe as an �onium� state of quantum �uctuations. An onium com-

prises a high occupancy Fock state when the interaction energy is large. Using the

onium wavefunction to calculate the dipole cross-section, other useful deep inelastic

scattering observables may be calculated.

The idea for calculating the dipole cross-section had been popular before Mueller

used it to rederive the BFKL equation [33][34]. In a process such as e−p → e−X

(see �gure 5), the dominant contribution to the scattering cross-section comes from

photon's dissociation into a quark-antiquark color-singlet state that strongly interacts

with the proton (see �gure 6). This approach is only legitimate when the dissociation

time of the photon is large compared to interaction time with the proton. We can

estimate these times using energy uncertainty as follows [7]. Let the four-momentum

of the photon, quark, and antiquark be, respectively,

q = (q0,0, 0, q3) k1 = (E1,kT , zq3) k2 = (E2,−kT , (1− z)q3 (17)

9



q k1

k2

p

Figure 6: Photon dissociation into quark-antiquark pair and interaction with hadron.
A cut of the total cross-section is displayed.

where z is the fraction of the photon momentum carried by the quark (0 ≤ z ≤ 1),

and kT is the two dimensional transverse momentum of the quark. The dissociation

time for the photon is then given by

τdis =
1

|q0 − E1 − E2|
(18)

Using expansions in the large q3 limit, E1 ≈ zq3 +
m2
f+k2

T

2zq3
, E2 ≈ (1 − z)q3 +

m2
f+k2

T

2(1−z)q3 ,

q0 ≈ q3 − Q2

2q3
,

τdis ≈
1∣∣∣−Q2

2q0
− m2

f+k2
T

2z(1−z)q0

∣∣∣ (19)

If we take the interaction time of the dissociated photon with the proton in its rest

frame to be of the order of the proton con�nement radius 1/Λ, and set |kT | ≈ Λ, our

timescale comparison yields

τdis �
1

Λ

2q0mp �
mp

Λ

(
Q2 +

m2
f + Λ2

z(1− z)

)
10
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Figure 7: Di�ractive deep inelastic scattering

W 2 � mp

Λ

(
Q2 +

m2
f + Λ2

z(1− z)

)
(20)

since W 2 = (p + q)2 = m2
p − Q2 + 2mpq0 in the proton rest frame. (20) tells us that

unless z is close to 0 or 1, W 2/Q2 � 1. This condition has a special signi�cance in

deep inelastic scattering�recalling the de�nition of the Bjorken x,

x :=
Q2

2p · q
=

Q2

(p+ q)2 −m2
p − q2

≈ Q2

W 2 +Q2
(21)

We see that W 2/Q2 � 1 at large energies implies we are in the small x regime.

Therefore, for the high energy processes we will be considering, the dipole picture is

appropriate. Note that this method di�ers from the usual deep inelastic picture in

which a parton is knocked out by the virtual photon in that the dipole is interacting

with the gluonic �eld of the hadron, as opposed to a single parton.

Deep inelastic scattering experiments, such as HERA, have been among the most

fruitful for the application of the dipole model. Deep inelastic scattering itself is good

testing ground for high energy QCD since the photon kinematics are contained in the

measurement of the outgoing lepton, yielding Q2. Models for the dipole cross-section

have successfully been applied to inclusive and di�ractive events at HERA [35, 36, 37]

(see �gure 7 for an illustration of the latter).

In order to derive QCD evolution equations, we should focus our attention on the

wavefunction of the onium state of the target hadron. This state is built from succes-

11
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Figure 8: Quark-antiquark pair interacting with an evolved target. A cut of the total
cross-section is displayed.

sive splittings of the original valence partons of the target until dense gluonic states

comprise the target at high energy. This process is called a gluonic cascade, a still

shot of which is shown in �gure 8. Because quarks or gluons splitting into a gluon

exhibit a logarithmic singularity in z [1], soft gluons dominate in the small x limit or

alternatively in the large rapidity limit, as y = ln 1/x. In the limit of large number

of colors (Nc), each emitted gluon is treated as a zero-size quark-antiquark pair2, as

shown in �gure 9. Note, however, that the dipoles are of �nite size, as can also be seen

in the �gure. This is a potential source of confusion, as we usually think of a dipole

as being the limit of zero separation between a charge and anti-charge, although in

this case the color dipoles are �nite size.

A major advantage to the dipole-onium interaction model is that the cross-section

for the subprocess shown in �gure 8 factorizes:

σγ
∗p(Y,Q2) =

ˆ
d2bd2x01

ˆ 1

0

dz |ψγ∗(z, x01Q)|2 σdipole(Y, x01) (22)

where ψγ∗(z, x01Q) is the photon wavefunction for splitting into a quark-antiquark

dipole of size x01, z the longitudinal momentum fraction of the quark, and σdipole the

dipole forward scattering amplitude.

2This is related to T'Hooft's observation that for SU(N), as N→∞ planar graphs dominate over
those of di�ering topology [49].
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Figure 9: Illustration of dipoles in the evolved target from �gure 8. Each dipole is
indicated by a double-headed arrow.

3.2 QCD evolution using color dipoles

3.2.1 Single emitted gluon wavefunction

With the dipole model of hadron evolution we can now see how QCD evolution

equations, in particular the BFKL equation, can be obtained. We will follow the

seminal paper by Mueller [11] with the addition of some omitted details. The accuracy

of our calculation will be leading logarithmic such that the
(
α ln 1

z0

)
n contribution

to the square of the onium wavefunction will be computed for n soft gluons with

momentum between z0p and p. Using the usual Feynman rules for a gluon and quark

vertex, the diagrams in �gure 10 yield the following contribution to the momentum

space onium wavefunction:

ψ
(1)a
αβ (k1,k2; z1, z2) = −gT a

[
ψ

(0)
αβ (k1; z1)− ψ(0)

αβ (k1 + k2; z1)
] k2 · ελ2

k2
2

(23)

where a is the color index of the emitted gluon, T a the SU(3) generator, α and β

spinor indices, zn := k+
n /p

+ the fractional momentum of the original quark-antiquark

pair (in lightcone coordinates), ελ2 the polarization vector of the emitted gluon with

helicity λ, and ψ(n) is the wavefunction when n soft gluons have been emitted.

We will now transform the momentum space wavefunction to transverse space where

a signi�cant simpli�cation takes place: in the high energy limit the emission of small

z, or soft, gluons dominates, and the transverse coordinates of the parent partons

are not a�ected by subsequent evolution of the system. Thus, each dipole evolves

13
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Figure 10: Single gluon emission from quark-antiquark pair

independently of the others. Their transverse coordinates are said to be �frozen�.

Fourier transforming to transverse space,

ψ
(1)a
αβ (x1,x2; z1, z2) =

ˆ
d2k2

(2π)2

ˆ
d2k1

(2π)2
eik1·x1+ik2·x2ψ

(1)a
αβ (k1,k2; z1, z2) (24)

Substituting (23) into (24),

= gT a
ˆ

d2k2

(2π)2
eik2·x2

(
ψ

(0)
αβ (x1; z1)−

ˆ
d2k

′
1

(2π)2
ei(k

′
1−k2)·x1ψ

(0)
αβ (k

′

1; z1)

)
k2 · ελ2
k2

2

= gT aψ
(0)
αβ (x1; z1)

ˆ
d2k2

(2π)2

(
eik2·(x2−x0) − eik2·(x2−x1)

) k2 · ελ2
k2

2

(25)

At this point we will need to prove the following Hankel transform:

ˆ
d2keik·x

k · ε
k2

= −2πi
x · ε
x2

(26)

We can demonstrate (26) as follows:

14



LHS =
∑
j=1,2

ˆ
d2keik·x

kjεj
k2

= −i
∑
j=1,2

∂

∂xj

ˆ
d2keik·x

εj
k2

= 2πi
∑
j=1,2

êj · ∇x

ˆ ∞
0

dkJ0(kx)
εj
k

= −2πi
∑
j=1,2

êj · x̂
ˆ ∞

0

dkJ1(kx)εj

= −2πi
∑
j=1,2

êj · x̂εj
x

= −2πi
x · ε
x2

�

Using (26) in (25), we obtain

= −igT
a

2π
ψ

(0)
αβ (x1; z1)

(
x20

x2
20

− x21

x2
21

)
· ελ2 (27)

where a Hankel transform has been performed in the last step. Note that x0 = 0

in the above, and x20 := x2 − x0, x21 := x2 − x1. Now let us calculate the squared

and summed wavefunction. If the squared and summed wavefunction for zero gluons

present is

Φ(0)(x1, z1) :=
∑
αβ

∣∣∣ψ(0)
αβ (x, z1)

∣∣∣2 (28)

then similarly, that for one gluon present is

Φ(1)(x1, z1) :=

ˆ
d2x2

ˆ z1

z0

dz2

z2

∑
αβ

1

2

∑
λ=1,2

∑
a

∣∣∣ψ(1)a
αβ (x1,x2; z1, z2)

∣∣∣2
z0 serves as a lower cuto� to the emitted gluon momentum, z2. The largest momentum

the gluon can possess is z1 in the leading logarithmic approximation.

15



=
1

2

g2

(2π)2

∑
a

T aT a
ˆ
d2x2

ˆ z1

z0

dz2

z2

∑
αβ

∣∣∣ψ(0)
αβ (x, z1)

∣∣∣2 ∑
λ=1,2

[(
x20

x2
20

− x21

x2
21

)
· ελ2
]2

=
αNc

π

ˆ
d2x2

2π

ˆ z1

z0

dz2

z2

Φ(0)(x1, z1)

(
x20

x2
20

− x21

x2
21

)2

(29)

where we have used the strong coupling constant αs = g2

4
, the trace over

∑
a T

aT a =

N in the adjoint representation of SU(N), and the polarization sum was evaluated

with ε1 = (0, 1, 0, 0) and ε2 = (0, 0, 1, 0). After foiling the term in parenthesis in (29)

and some algebraic simpli�cation we arrive at

Φ(1)(x1, z1) =
αNc

π

ˆ
d2x2

(2π)

ˆ z1

z0

dz2

z2

x2
10

x2
20x

2
21

Φ(0)(x1, z1) (30)

At this point we might want to pause to see what we have gained. Notice that the

momentum space representation of single gluon emission,

Φ(1)(k1, z1) =
1

(2π)2

ˆ
d2k2

ˆ z1

z0

dz2

z2

1

2

∑
λ,a,αβ

∣∣∣ψ(1)a
αβ (k1,k2, z1, z2)

∣∣∣2 (31)

does not exhibit the same clean factorization as (30), which is written as an integral

of the zero gluon, bare quark-antiquark wavefunction squared. The simplicity of (30)

will allow us to generalize the onium wavefunction to include n soft gluons. Also, we

will see the kernel of the spatial integral, x2
10/x

2
20x

2
21 play a signi�cant role later in

this manuscript.

3.2.2 n emitted gluon wavefunction

For notational simplicity, let us make use of the following Jacobian,

d2x2 = x2dx2dφ = Jdx12dx20 (32)

where φ is the angle between x20 and x10. Inserting an extra factor of 2 to account

for the 0 < φ < π as well as the π < φ < 2π domain,
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Figure 11: Diagrams for two gluon emission

J(x12, x02) =
4x21x20√

[(x21 + x20)2 − x2
10] [x2

10 − (x21 − x20)2]
(33)

For the 2 gluon emitted squared wavefunction, the second gluon can be emitted from

either the x02 dipole (lefthand picture in �gure 11) or the x12 dipole (righthand picture

in �gure 11). Given these two possibilities, the 2 gluon squared wavefunction can then

be written,

Φ(2)(x1, z1) =

(
αNc

2π2

)2 ˆ
d2x2

ˆ z1

z0

dz2

z2

x2
10

x2
20x

2
21

ˆ
d2x3

ˆ z1

z0

dz3

z3

(
x2

02

x2
30x

2
32

+
x2

12

x2
31x

2
32

)
Φ(0)(x1, z1)

=

(
αNc

2π2

)2

ln2

(
z1

z0

)
Φ(0)(x1, z1)

ˆ
d2x2

x2
10

x2
20x

2
21

ˆ
d2x3

(
x2

02

x2
30x

2
32

+
x2

12

x2
31x

2
32

)
(34)

Performing the transform of coordinates (32) using the Jacobian (33), we can also

write this solution as

=

(
2αNc

π2

)2

ln2

(
z1

z0

)
Φ(0)(x1, z1)x2

10

ˆ
dx20dx21

J(x20, x21)

x2
20x

2
21

×
[ˆ

dx30dx32
J(x30, x32)x2

02

x2
30x

2
32

+

ˆ
dx32dx31

J(x31, x32)x2
12

x2
31x

2
32

]
(35)

Now that we have calculated the squared wavefunctions for 1 and 2 soft gluons, we

are prepared to generalize to n gluons through the use of a generating functional. Let

Φ(x1, z1, u(x, z)) be de�ned by the equation,

17



δ

δu(x2, z2)

δ

δu(x3, z3)
· · · δ

δu(xn+1, zn+1)
Φ(x1, z1, u(x, z))|u=0

= Φ(n)(x1,x2, · · · ,xn+1; z2 · · · zn+1) (36)

where Φ(n) is the n gluon squared wavefunction, and xn+1, zn+1 are the transverse

position and momentum fraction, respectively, of the nth gluon. Let us now de�ne

the generating functional Z by

Φ(x1, z1, u) = Φ(0)(x1, z1)Z(x1,x0, z1, u) (37)

such that the following holds:

Z(x1,x0, z1, u) = 1+
αNc

2π2
x2

01

ˆ
d2x2

x2
10

x2
20x

2
21

ˆ z1

z0

u(x2, z2)Z(x2,x1, z2, u)Z(x2,x0, z2, u)

(38)

Using the standard rules for functional di�erentiation,

δ

δu(x)
u(y) = δ(2)(x− y)

δ

δu(x)

ˆ
d2yu(y)f(y) = f(x) (39)

we can demonstrate (36) by reproducing the 2 gluon squared wavefunction (34). Let

us calculate the LHS of (36) before setting u = 0.

δ

δu(x3, z3)

δ

δu(x2, z2)
Φ(0)(x1, z1)Z(x1,x0, z1, u)

18



= Φ(0)(x1, z1)
δ

δu(x3, z3)

δ

δu(x2, z2)

[
1 +

αNc

2π2

ˆ
d2xα

x2
10

x2
α0x

2
α1

×
ˆ z1

z0

dzα
zα

u(xα, zα)Z(xα,x1, zα, u)Z(xα,x0, zα, u)

]
(40)

=
αNc

2π2

1

z2

x2
10

x2
20x

2
21

Φ(0)(x1, z1)
δ

δu(x3, z3)
[Z(x2,x1, z2, u)Z(x2,x0, z2, u)]

=
αNc

2π2

1

z2

x2
10

x2
20x

2
21

Φ(0)(x1, z1)

[
δZ(x2,x1, z2, u)

δu(x3, z3)
Z(x2,x0, z2, u)

+
δZ(x2,x0, z2, u)

δu(x3, z3)
Z(x2,x1, z2, u)

]
(41)

=

(
αNc

2π2

)2
1

z2

1

z3

x2
10

x2
20x

2
21

Φ(0)(x1, z1)

[
x2

21

x2
23x

2
31

Z23;3Z13;3Z20;2 (42)

+
x2

20

x2
23x

2
30

Z23;3Z31;3Z21;2

]

where hopefully the abbreviated notation for Zαβ;γ := Z(xα,xβ, zγ, u) is clear. Now

letting u = 0 in (42) so that Zαβ;γ = 1, and taking the appropriate integrals, we

obtain (34).

While (38) yields the n gluon squared wavefunctions upon functional di�erentiation,

it fails to address virtual corrections and does not satisfy

ˆ
d2x1

ˆ 1

0

dz1Φ(x1, z1, u)|u=1 = 1 (43)

Cutting o� the ultraviolet divergences caused by x20 or x21 going to zero, we introduce

a size cuto� ρ� Rtarget such that x20, x21 ≥ ρ. By enforcing (43) at each order in α

one can obtain the generating functional with virtual corrections,

Z(x1,x0, z1, u)
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= exp

[
−2αNc

π
ln

(
x10

ρ

)
ln

(
z1

z0

)]
+
αNc

2π2

ˆ z1

z0

dz2

z2

×
ˆ
ρ

exp

[
−2αNc

π
ln

(
x10

ρ

)
ln

(
z1

z2

)]
d2x2x

2
10

x2
20x

2
21

u(x2, z2)Z2,1;2Z2,0;2 (44)

This equation represents a classical branching process and is exact in the leading

logarithmic approximation. Another form of this equation we will use, letting Y :=

ln
(
z1
z0

)
, y := ln

(
z2
z0

)
, and ᾱ := αNc

π
, is

Z(x1,x0, z1, u)

= exp

[
−2ᾱ ln

(
x10

ρ

)
Y

]
+

ᾱ

2π

ˆ z1

z0

dz2

z2

×
ˆ
ρ

exp

[
−2ᾱ ln

(
x10

ρ

)
(Y − y)

]
d2x2x

2
10

x2
20x

2
21

u(x2, z2)Z2,1;2Z2,0;2 (45)

3.2.3 BFKL from the n gluon onium wavefunction

The generating functional in (45) can now be rewritten as an amplitude. Adding the

two equal terms at �rst order in ᾱ yields a factor of two in second term of the RHS

below:

T (x10, z1;Q, z)

= ᾱv(Q, x10) exp

[
−2ᾱ ln

(
x10

ρ

)
Y

]
+ 2ᾱ

ˆ z1

z

dz2

z2

×
ˆ
ρ

exp

[
−2ᾱ ln

(
x10

ρ

)
(Y − y)

]
K̃(x10, x12)dx12T (x12, z2;Q, z) (46)

where
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K̃(x10, x12) =
1

2π

ˆ
ρ

x2
10

x2
20x

2
21

J(x21, x20)dx20 (47)

Let us now write T (Y,Qx10) := T (x10, z1;Q, z) as the (inverse) Mellin transform3 of

Tω(Qx10).

T (Y,Qx10) =

ˆ c+i∞

c−i∞

dω

2πi
eωY Tω(Qx10) (48)

This contour integral is a vertical line in the complex plane drawn such that c is

greater than the real part of any singularities of Tω. Note that the �rst term on the

RHS of (46) can be written as

ᾱv(Q, x10) exp

[
−2ᾱ ln

(
x10

ρ

)
Y

]
=

ˆ c+i∞

c−i∞

dω

2πi
eωY

ᾱv(Q, x10)

ω + 2ᾱ ln
(
x10

ρ

) (49)

since the pole of ω = −2ᾱ ln
(
x10

ρ

)
leads to the residue on the LHS of the equation.

Evaluating the second term on the RHS of (46),

2ᾱ

ˆ z1

z

dz2

z2

ˆ
ρ

exp

[
−2ᾱ ln

(
x10

ρ

)
(Y − y)

]
K̃(x10, x12)dx12T (x12, z2;Q, z)

= 2ᾱ

ˆ Y

0

dy

ˆ
ρ

exp

[
−2ᾱ ln

(
x10

ρ

)
(Y − y)

]
K̃(x10, x12)dx12

ˆ c+i∞

c−i∞

dω

2πi
eω(y−Y )Tω(Qx12)

= 2ᾱ

ˆ c+i∞

c−i∞

dω

2πi

ˆ
ρ

K̃(x10, x12)dx12
1

ω + 2ᾱ ln
(
x10

ρ

)

×
{

1− exp

[
−
(

2ᾱ ln

(
x10

ρ

)
+ ω

)
Y

]}
Tω(Qx12)

3Technically, this would be the inverse Laplace transform of Tω(Qx10), but these transforms are
related since

{
M−1Tω

}
(e−Y ) = 1

2πi

´
c
eωY Tωdω =

{
L−1Tω

}
(Y ).
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≈ 2ᾱ

ˆ c+i∞

c−i∞

dω

2πi

ˆ
ρ

dx12
K̃(x10, x12)Tω(Qx12)

ω + 2ᾱ ln
(
x10

ρ

) (50)

Where we took the leading order of the term in curly braces in the last step. Using

(49) and (50), we now see that in Mellin space, (46) takes the following form:

Tω(Qx10) = ᾱ
v(Qx10)

ω + 2ᾱ ln
(
x10

ρ

) + 2ᾱ

ˆ
dx12

K̃(x10, x12)Tω(Qx12)

ω + 2ᾱ ln
(
x10

ρ

) (51)

Notice that if we rede�ne the kernel as

K(x10, x12) := K̃(x10,x12)− δ(x10 − x12) ln

(
x10

ρ

)
(52)

then (51) takes on a particularly simple form.

Tω(Qx10) = ᾱ
v(Qx10)

ω + 2ᾱ ln
(
x10

ρ

) + 2ᾱ

ˆ
dx12

K(x10, x12)Tω(Qx12)

ω + 2ᾱ ln
(
x10

ρ

) (53)

+
δ(x10 − x12) ln

(
x10

ρ

)
Tω(Qx12)

ω + 2ᾱ ln
(
x10

ρ

)


Tω(Qx10)

 ω

ω + 2ᾱ ln
(
x10

ρ

)
 = ᾱ

v(Qx10)

ω + 2ᾱ ln
(
x10

ρ

) + 2ᾱ

ˆ
dx12

K(x10, x12)Tω(Qx12)

ω + 2ᾱ ln
(
x10

ρ

)
(54)

Tω(Qx10) =
ᾱ

ω
v(Qx10) +

2ᾱ

ω

ˆ
dx12K(x10, x12)Tω(x12Q) (55)

This is, in fact, the celebrated BFKL equation. Let us now show that it yields the

well known eigenvalue χ(λ) = ψ(1)− 1
2
ψ(1−λ/2)− 1

2
ψ(λ/2), with ψ(x) := d

dx
ln Γ(x)

being the digamma function and ψ(1) = γe Euler's constant. Let us �rst manipulate

the K̃ part of the kernel in (52). Recalling (32) and (33),
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K̃(x10, x12) =
1

2π

ˆ ∞
ρ

x2
10

x2
12x

2
20

J(x21, x20)dx20

=
2x2

10

πx12

ˆ ∞
ρ

dx20

x20

1√
[(x21 + x20)2 − x2

10] [x2
10 − (x21 − x20)2]

(56)

Bringing in an identity that relates transverse lengths and Bessel functions,

π

2

ˆ ∞
0

bdbJ0(bx01)J0(bx20)J0(bx12) =
1√

[(x21 + x20)2 − x2
10] [x2

10 − (x21 − x20)2]
(57)

K̃(x10, x12) =
x2

10

x12

ˆ ∞
0

bdbJ0(bx01)J0(bx12)

ˆ ∞
ρ

dx20

x20

J0(bx20) (58)

Let us tackle the x20 integral:

ˆ ∞
ρ

dx20

x20

J0(bx20) = lim
y→0

[ˆ ∞
0

dx20x
y−1J0(bx20)−

ˆ ρ

0

dx20x
y−1J0(bx20)

]
(59)

= lim
y→0

2y−1b−y
Γ(y

2
)

Γ(1− y
2
)
− ρy

y

= lim
y→0

(
2

b

)y Γ(y
2

+ 1)

yΓ(1− y
2
)
− ρy

y

= lim
y→0

(
2
b

)y
Γ(1− y

2
)

Γ(y
2

+ 1)− Γ(1)

y
+

2yb−y

Γ(1− y
2
)

Γ(1)

y
− ρy

y

= lim
y→0

(
2
b

)y
Γ(1− y

2
)

Γ(y
2

+ 1)− Γ(1)

y
+

1

Γ(1− y
2
)

(
2
b

)y − ρy
y

= ψ(1)− ln
bρ

2
(60)

Note that in the above integral we used the standard formula Γ(x) = Γ(x+ 1)/x. In

(59), we also used the approximation J0(bx20) ≈ 1 in the second term (red), as its

argument is bounded by ρ. The integral in the �rst term (blue) is given in Gradshteyn

and Ryzhik [9], p. 668, 6.516-14.

Using this result, let us now evince the eigenvalue for the eigenfunction xλ12 of the

kernel K in (55). Although Mueller omits this derivation in [11] due to it being
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�straightforward�, it is still quite a bit of work to show. Given the importance of the

BFKL eigenvalue, we will perform the full calculation. To do so, we will make use of

the Taylor series for Bessel functions,

J0(bx12) =
∞∑
m=0

(−1)m

(m!)2

(
bx12

2

)2m

(61)

Other techniques used will be summarized below.ˆ
dx12K(x10, x12)xλ12

=

ˆ ∞
ρ

dx12x
λ
12

[
x2

10

x12

ˆ ∞
0

bdbJ0(bx01)J0(bx12)

(
ψ(1)− ln

bρ

2

)
− δ(x10 − x12) ln

(
x10

ρ

)]
(62)

=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x12

{ˆ ∞
0

bdbJ0(bx01)J0(bx12)

(
ψ(1)− ln

bx10

2

)}

=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x12

∞∑
m=0

(−1)m

(m!)2

ˆ ∞
0

bdb

(
ψ(1)− ln

bx10

2

)(
bx01

2

)2m

J0(bx12)

=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x12

∞∑
m=0

(−1)m

(m!)2

(
m!

x2
12Γ(−m)

ψ(1)− ∂

∂(2m)

)[(x10

2

)2m
ˆ ∞

0

bdbJ0(bx12)b2m

]
(63)

=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x3
12

∞∑
m=0

(−1)m

(m!)2

(
m!

Γ(−m)
ψ(1)− ∂

∂(2m)

)[
2

(
x10

x12

)2m
Γ(m+ 1)

Γ(−m)

]

=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x3
12

∞∑
m=0

(−1)m

(m!)2
2

(
x10

x12

)2m(
m!

Γ(−m)
ψ(1)− ln

(
x10

x12

)
Γ(m+ 1)

Γ(−m)
(64)

− ∂

2∂m

Γ(m+ 1)

Γ(−m)

)
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=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x3
12

∞∑
m=0

(−1)m

(m!)2
2

(
x10

x12

)2m(
m!

Γ(−m)
ψ(1)

− 1

2

Γ′(m+ 1)Γ(−m) + Γ′(−m)Γ(m+ 1)

Γ2(−m)

)

=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x3
12

∞∑
m=0

(−1)m

(m!)2

m!

Γ(−m)

(
x10

x12

)2m

2

[
ψ(1)− 1

2
ψ(m+ 1)− 1

2
ψ(−m)

]
(65)

=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x3
12

∞∑
m=0

(−1)m

m!

1

Γ(−m)

(
x10

x12

)2m

2χ(−2m)

(66)

=

ˆ ∞
ρ

dx12x
λ
12

x2
10

x3
12

x01δ(x01−x12)χ(∂/∂x12)

ˆ
dx12K(x10, x12)xλ12 = χ(λ)xλ01 � (67)

In (62) (green) we used the orthogonality/closure relation for Bessel functions:

ˆ ∞
0

bdbJ0(bx01)J0(bx12) =
1

x12

δ(x10 − x12) (68)

In (63) (blue) we used the same Gradshteyn and Ryzhik integral as in (59). In (64)

(red) and (66) (cyan) we used

∞∑
m=0

(−1)m

m!

1

Γ(−m)

(
x10

x12

)2m

=
x10

2
δ(x10 − x12) (69)

causing the red term to drop out. In (63) (red) we used (68) and (69). Finally, in

(65) (magenta) we de�ned
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χ(λ) := ψ(1)− 1

2
ψ

(
1− λ

2

)
− 1

2
ψ

(
λ

2

)
(70)

3.3 The Pomeron from BFKL

Now in possession of the BFKL eigenvalue equation (67), we may demonstrate the

emergence of the Pomeron. Let us begin by inverse Mellin transforming the amplitude

once again.

Tω(x12, Q) =

ˆ c+i∞

c−i∞

dλ

2πi
(Qx12)λTλω (71)

The BFKL equation (55) can be easily solved for Tλω.

ˆ c+i∞

c−i∞

dλ

2πi
[Tω(ω − 2ᾱχ(λ))] =

ˆ c+i∞

c−i∞

dλ

2πi
ᾱvλ(Qx10) (72)

Tλω =
ᾱvλ

ω − 2ᾱχ(λ)
(73)

where vλ is the Mellin transform of v(Qx10). Recalling (48), let us perform the inverse

Laplace and inverse Mellin transforms on (73) to solve for the amplitude as a function

of energy, where we expect pomeron behavior to manifest itself.

T (Y,Qx10) =

ˆ c+i∞

c−i∞

dω

2πi
eωY
ˆ c+i∞

c−i∞

dλ

2πi
(Qx10)λ

ᾱvλ
ω − 2ᾱχ(λ)

(74)

The ω integral is a simple residue.

T (Y,Qx10) = ᾱ

ˆ c+i∞

c−i∞

dλ

2πi
vλe

2ᾱχ(λ)Y+λ ln(Qx10) (75)

Assuming that a) ln(Qx10)� ᾱY , or that the transverse momentum is not too large,

and b) vλis a slowly varying function, the integral in (75) can be approximated by

the saddle point method. This method evaluates the integral where the phase is

approximately stationary. We can see where this occurs by examining the graph of

χ(λ) shown on �gure 12.

Let us use the expansion of χ(λ) around λ = 1 [40]:
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Figure 12: Graph of χ(λ) between 0 < λ < 2. Note the saddle point at λ = 1.

χ(λ) ≈ 2 ln 2 +
7

4
ζ(3)(λ− 1)2 (76)

χ′(λ) ≈ 7

2
ζ(3)(λ− 1) (77)

χ′′(λ) ≈ 7

2
ζ(3) (78)

where ζ(x) is the Riemann zeta function. The saddle point approximation can be

written as

ˆ c+i∞

c−i∞
dλef(λ)−λx̄ ≈ 1√

2πf ′′(λs)
exp

(
f(λs)− λsx̄−

[f ′(λs)− x̄]2

2f ′′(λs)

)
(79)

Applying this approximation to (75), along with (76), (77), and (78), we obtain

T (Y,Qx10) ≈ ᾱv1√
14ᾱπζ(3)Y

exp

(
4ᾱ ln(2)Y − ln(Qx10)− ln2(Qx10)

14ᾱζ(3)Y

)

=
ᾱv1(Qx10)√
14ᾱπζ(3)Y

e(αP−1)Y exp

(
− ln2(Qx10)

14ᾱζ(3)Y

)
(80)

with
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αP − 1 = 4ᾱ ln(2) (81)

By (22), we see that BFKL evolution in the dipole picture indeed leads to the same

hard pomeron behavior as in (16).
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4 The BK Equation and Traveling Wave Solutions

4.1 Unitarity corrections to the BFKL equation; the BK equa-

tion

What are the consequences of a cross-sectional rise that goes like eαP−1 using (81)?

Let us do a quick calculation: let Q2 ≈ 10 GeV, a moderate value that does not

violate the condition under (75). Using the well known formula of Gross, Politzer,

and Wilczek for asymptotic freedom [53, 54],

αs(Q) =
2π

b0 ln(Q/Λ)
, b0 = 11− 2

3
nf (82)

Using nf = 3 light quarks and Λ = .2 GeV, we obtain αs = .178. Then, with Nc = 3,

αP − 1 = 4ᾱ ln(2) =
12αs
π

ln(2) ≈ .47

Unlike for Reggeons (mesons ρ, ω, f2, a2,etc.) with a Regge trajectory intercept of4

α(0)−1 ≈ −.45, the BFKL pomeron, also called the hard pomeron, causes the cross-

section to rise with s. This is actually necessary to �t available data, but with such

a large power the Froissart-Martin bound [55] (a consequence of unitarity),

σtot(s) <
π

m2
π

ln2

(
s

s0

)
(83)

is violated even within HERA's energy range. It is possible to introduce next to

leading order (NLO) corrections to the BFKL equation that allow HERA data to be

successfully �t [1], but even these are not enough to tame the eventual rise predicted

by the LO BFKL equation5. A great deal of e�ort throughout the 90s went into

formulating QCD evolution equations that preserve unitarity. This led to the B-

JIMWLK equations [41, 56, 57], which were several di�erent techniques: a functional

renormalization group equation, an in�nite hierarchy of coupled integro-di�erential

equations, and a Langevin equation. In 1999, Kovchegov managed to considerably

4assuming degenerate trajectories for even and odd C-parity
5Interestingly, because the NLO correction is so substantial, Donnachie et. al. claim the pertur-

bative ladder diagram calculation of the BFKL pomeron is suspect and that the correct value for
the hard pomeron intercept provided by this calculation is probably a coincidence. See section 7.3
of [7] for details.
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simplify Balitsky's equation using Mueller's dipole formulation, deriving what is now

known as the BK equation. We will review the presentation of [39, 40] condensing

and simplifying notation where possible.

Following [12][13], we will implement a dipole number density n(x01, Y, |b|, x1), which

when convoluted with the photon dissociation wavefunction squared, Φ(z1, x01), gives

N(x1, Y ) =

ˆ
d2x01

ˆ 1

0

dz1Φ(z1, x01)n(x01, Y, x1) (84)

where N(x1, Y ) is the propagator of the virtual photon through a target nucleus6.

The BK equation is usually derived in the frame of the target with the evolution put

into probe. We will see (84) obtains when we de�ne n(x01, Y, x1) by

1

2πx2
1

n1(x01, Y, |b|, x1) :=
δ

δu(x1)
Z(x01, Y, u)|u=1 (85)

Likewise, we can de�ne the dipole pair density

1

2πx2
1

1

2πx2
2

n2(x01, Y, x1, x2) =
1

2

δ

δu(x1)

δ

δu(x2)
Z(x01, Y, u)|u=1 (86)

and generalizing to the group of k dipoles with sizes x1, . . . , xk,

k∏
i=1

1

2πx2
i

nk(x01, Y, x1, . . . , xk) =
1

k!

k∏
i=1

δ

δu(xi)
Z(x01,Y, u)|u=1 (87)

The result of multiple functional di�erentiation in (87) is [39]

ni(x01, Y,x1, . . . ,xk)

=
ᾱ

2π

ˆ Y

0

dy exp

[
−2ᾱ ln

(
x01

ρ

)
(Y − y)

] ˆ
ρ

d2x′2
x2

01

x2
02x

2
12

×

[
2ni(x02, Y,x1, . . . ,xk) +

∑
j+k=i

nj(x02, Y,x1, . . . ,xk)nk(x12, Y,x1, . . . ,xk)

]
(88)

6This is basically a rewriting of (22)
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The total interaction cross-section is the sum of the interactions of each of the groups

of k dipoles with the target. We can write this as

N(x01, Y ) =

ˆ
d2x1

2πx2
1

n1(x01, Y,x1)

+

ˆ
d2x1

2πx2
1

d2x2

2πx2
2

n2(x01, Y,x1,x2) + . . .

=
∞∑
i=1

ˆ
d2x1

2πx2
1

. . .
d2xi
2πx2

2

ni(x01, Y,x1, . . . ,xi) (89)

Performing these operations on (88) yields

N(x01, Y ) = exp

[
−2ᾱ ln

(
x10

ρ

)
Y

]
+

ᾱ

2π

ˆ Y

0

dy exp

[
−2ᾱ ln

(
x10

ρ

)
(Y − y)

]
×
ˆ
ρ

d2x2
x2

01

x2
02x

2
12

[2N(x02, y)−N(x02, y)N(x12, y)] (90)

Finally, taking the derivative of (90) with respect to Y,

∂N(x01, Y )

∂Y
= −2ᾱ ln

(
x10

ρ

)
exp

[
−2ᾱ ln

(
x10

ρ

)
Y

]
ᾱ

2π

ˆ
ρ

d2x2
x2

01

x2
02x

2
12

[2N(x02, Y )−N(x02, Y )N(x12, Y )] (91)

Rewriting the the �rst term on the RHS to �rst order in ᾱ as

−2ᾱ ln

(
x10

ρ

)
exp

[
−2ᾱ ln

(
x10

ρ

)
Y

]
= − ᾱ

2π
ln

(
x10

ρ

) ˆ
ρ

d2x24πδ2(x01−x02)N(x02, Y )

(92)

we can put (91) into a somewhat simpler form.

∂N(x01, Y )

∂Y
=

ᾱ

2π

ˆ
ρ

d2x2

{
x2

01

x2
02x

2
12

[2N(x02, Y )−N(x02, Y )N(x12, Y )] (93)
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−4πδ2(x01 − x02) ln

(
x01

ρ

)
N(x02, Y )

}
Notice that

ˆ
ρ

d2x2
x2

01

x2
02x

2
12

= 2(2π)

ˆ
ρ

dx12x12

(
x2

01

x2
02

)
1

x2
12

= 4π

ˆ
ρ

dx12

x12

= 4π ln

(
x01

ρ

)
(94)

=

ˆ
ρ

d2x24πδ2(x01 − x02) ln

(
x01

ρ

)
where the factor of 2 after the �rst equality is due to evaluation at the collinear limit

near both x0 and x1. If we take x01 ≈ x02, for instance, the second equality of (94)

follows. Using (94), we can write the BK equation in another commonly used form

(see [1][2]):

∂N(x01, Y )

∂Y
=

ᾱ

2π

ˆ
ρ

d2x2
x2

01

x2
02x

2
12

2N(x02, Y )−N(x01, Y )−N(x02, Y )N(x12, Y ) (95)

Aside from the nonlinear product N(x02, Y )N(x12, Y ), this equation is actually the

same as the BFKL equation. We can crudely approximate when the solutions to the

two equations diverge. Using the fact that the elementary dipole-dipole scattering

amplitude is T el ∼ α2, the probability of two simultaneous scatterings is ∼ α4, which

is suppressed until the density of dipoles is n ∼ 1/α2 (see (128,129) for details). At

these densities, corrections provided by the nonlinear term are needed to stem the

rise of the amplitude. Although the interpretation of this reduction in growth is not

completely clear at present�be it due to gluon recombination, color swings, etc.�it

must exist to preserve unitarity at high energies. In the t-channel picture, one can

view the correction as replacing the single gluon ladder diagram with a �fan diagram�

containing triple pomeron vertices, as in �gure 13.

4.2 FKPP equation and reaction-di�usion dynamics

In this subsection we will show how the BK equation (95) encodes a branching dif-

fusion of dipoles in the variable ln(1/r2). The equation describing such di�usion is
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Figure 13: A fan diagram representing the BK equation in the t-channel.

called the Fisher-Kolmogorov-Petrovsky-Piscouno� (FKPP) equation, which is well

known in statistical physics and is equivalent to the BK equation in the aptly named

di�usion approximation. We will see the FKPP equation admits a traveling wave

solution as dipoles di�use to smaller sizes with increasing rapidity. The application of

the FKPP equation to QCD evolution was �rst pointed out by Munier and Peschanski

in a series of papers in 2003-4 [14, 15, 16].

Starting by Fourier transforming the BK equation (93) and using steps very similar

to (62-67), we can rewrite the BK equation for momentum space Ñ(k, Y ) using the

BFKL eigenvalue χMueller(λ)7 we found in (70) as [40]

∂Ñ(k, Y )

∂Y
= ᾱχ

(
− ∂

∂ ln k2

)
Ñ(k, Y )− ᾱÑ2(k, Y ) (96)

De�ning L := ln
(
k2/Λ2

QCD

)
,

∂Ñ(k, Y )

∂Y
= ᾱχ (−∂L) Ñ(k, Y )− ᾱÑ2(k, Y ) (97)

Using a series expansion of χ (−∂L) in the principle branch of the eigenvalue around

a point 0 < γ0 < 1,

7N.B. We have made a trivial change to comply with more modern notation, 2χMueller(λ =
2(1 − γ)) = χBFKL(γ = 1 − λ

2 ) =: χ(γ) = 2ψ(1) − ψ(1 − γ) − ψ(γ) [44]. Thus the poles displayed
in �gure 12 are transformed like so: λ = 0 → γ = 1 and λ = 2 → γ = 0. Also, the saddle point at
λs = 1→ γs = 1

2 . For the remainder of this manuscript, we mean �χBFKL� when we write �χ�.
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χ (−∂L) = χ(γ0)1+χ′(γ0)(−∂L−γ01)+
1

2
χ′′(γ0)(−∂L−γ01)2+

1

6
χ(3)(γ0)(−∂L−γ01)3+. . .

(98)

The di�usion approximation is tantamount to keeping only up to second order terms

in (98). Let us work with this truncated series and expand around γ0 = 1
2
, as we did

in the saddle point method used in 3.3.

χ (−∂L) ≈ χ̄ (−∂L) := χ

(
1

2

)
+
χ′′
(

1
2

)
2

(
∂L +

1

2

)2

(99)

If we make the following change of coordinates with ω := χ
(

1
2

)
, D := χ′′(1

2
), and

γ̄ := 1− 1
2

√
1 + 8ω/D,

t :=
ᾱD

2
(1− γ̄)2Y (100)

x := (1− γ̄)

(
L+

ᾱD

2
Y

)
(101)

u(t, x) :=
2

D(1− γ̄)2
N

(
2t

ᾱD(1− γ̄)2
,

x

1− γ̄
− t

(1− γ̄)2

)
(102)

then (97) with (99) becomes the FKPP equation:

∂tu(t, x) = ∂2
xu(t, x) + u(t, x)− u2(t, x) (103)

This equation is very well studied�see, for example, [45, 46] for comprehensive dis-

cussions. To quote from one of those references,

The general goal of our discussion of front propagation into unstable states
is to investigate the following front propagation problem: If initially a spa-
tially extended system is in an unstable state everywhere except in some
spatially localized region, what will be the large-time dynamical properties
and speed of the nonlinear front which will propagate into the unstable
state? Are there classes of initial conditions for which the front dynamics
converges to some unique asymptotic front state? If so, what characterizes
these initial conditions, and what can we say about the asymptotic front
properties and the convergence to them? [45]
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Reaction-di�usion QCD

Occupation fraction u(t,x) Scattering amplitude for the probe o�
a frozen realization of the target
T (k, Y ), or N(k, Y )

Average occupation fraction 〈u(t, x)〉 Physical scattering amplitude A = 〈T 〉
Space variable x, sometimes L ln(k2/Λ2) or ln(1/r2Λ2)

Time variable t Rapidity ᾱY

Average maximum density of particles
N

1/α2

Position of the front X(t) Saturation scale ln(Q2
s(Y )/Λ2)

Branching-di�usion kernel ω(−∂x),
(ω(−∂x) = ∂2

x + 1 for FKPP)
BFKL kernel χ(−∂ln k2) or its
equivalent in coordinate space

Table 1: A dictionary between reaction-di�usion and QCD variables. [1]

Let us turn our attention towards some of these issues. In short, an initial condition

u(0, x) will evolve into a traveling wave solution u(t, x) = u(x−vt) with an asymptotic

front velocity. Using the known result from FKPP analysis, [15]

u(t, x)
∼

t→∞ w(x− 2t+
3

2
ln t) (104)

and assuming an exponential solution,

u(t, x) ∼ exp(x− 2t+
3

2
ln t) (105)

we may use the mappings (100), (101), and (102) to write

N(Y, k) ∼ u(t, x) ∼ exp

{
(1− γ̄)

(
L+

ᾱD

2
Y

)
− 2

ᾱD

2
(1− γ̄)2Y +

3

2
ln

[
ᾱD

2
(1− γ̄)2Y

]}
(106)

= exp(1− γ̄) exp

[
L+

ᾱD

2
Y − ᾱD(1− γ̄)Y

]
Y

3
2(1−γ̄)

(
ᾱD

2
(1− γ̄)2

) 3
2(1−γ̄)

= k−2
0 k2 exp

[
−ᾱD

(
1

2
− γ̄
)
Y

]
Y

3
2(1−γ̄)
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Figure 14: Geometric scaling data: the total cross section σγ
∗p→X
tot as a function of

τ := Q2/Q2
s(x) for x < .01. [38]

=
k2

Q2
s(Y )

, Q2
s(Y ) = k2

0Y
− 3

2(1−γ̄) eᾱD( 1
2
−γ̄)Y (107)

where k−2
0 absorbs the constants. The result of these manipulations is to demonstrate

that

N(Y, k) = N

(
k2

Q2
s(Y )

)
(108)

which is the de�nition of geometric scaling, a feature strikingly revealed in the data,

as shown in �gure 14. Geometric scaling was known before Munier and Peschanski

showed it was a consequence of the FKPP (see [35, 36]), but these authors framed

the BK equation in the larger context of the universality class of the FKPP equation.

In fact, the full BK equation (not using the di�usion approximation) and the NLO

BFKL equation have both been shown to be a part of this universality class [1],

meaning that all of these equations, details aside, exhibit branching di�usion with a

saturation mechanism. This has been one of the pivotal discoveries in QCD over the

last decade.

It is possible to analytically determine the velocity of the traveling wave predicted

36



by the FKPP equation. Because the wavefront mediates between the high density

and low density regions in x, matching amplitudes at the two conditions allows us to

determine a critical condition at the wavefront. This critical condition, in a certain

interpretation, then yields the wavefront velocity.

First let us investigate the critical condition using a method explained in [47]. Starting

from the BK equation (97), and using the Laplace transform,

N(k, ω) =

ˆ
dY e−ωYN(k, Y ) (109)

with a proposed ansatz [42]

N(k, ω) = N(ω)e[γ(ω)−1]L (110)

where L := ln(k2/Λ2) as before and γ(ω) is the Mellin space argument of the BFKL

eigenvalue (also called the anomalous dimension), we obtain

ωeωYN(k, ω) = ᾱχ(γ(ω))eωYN(k, ω)− ᾱ
ˆ c+i∞

c−i∞

dω′

2πi
e(ω+ω′)YN(k, ω)N(k, ω′) (111)

Shifting ω → ω − ω′ in the integral on the RHS,

[ω − ᾱχ(γ(ω))]N(ω)e[γ(ω)−1]L = −ᾱ
ˆ c+i∞

c−i∞

dω′

2πi
N(ω − ω′)N(ω′)e[γ(ω−ω′)+γ(ω′)−2]L

(112)

We may again use the saddle approximation (79) on the integral on the RHS, approx-

imating around the choice ω′ = ω/2 at which the derivative of the exponent vanishes.

We obtain

[ω − ᾱχ(γ(ω))]N(ω)e[γ(ω)−1]L = − ᾱ√
4πγ′′(ω/2)L

N2
(ω

2

)
e[2γ(ω/2)−2]L (113)

In the region where the density is dilute, the nonlinear RHS is approximately zero,

yielding

Dilute Region : ω − ᾱχ(γ(ω)) = 0 (114)
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On the other hand, we may match exponents in (113) in the saturation region to

obtain a di�erent condition.

Saturation Region : γ(ω) = 2γ
(ω

2

)
− 1 (115)

which is satis�ed by

γ(ω) = Cω + 1 (116)

for some constant C. We may solve for C using the derivative of (116) to obtain

γ(ω) = γ′(ω)ω + 1

γ′(ω) =
γ(ω)− 1

ω
(117)

Taking the derivative of the dilute condition (114),

ᾱχ′(γ) =
1

γ′(ω)
(118)

Finally, we expect (118) to match with (117) at some critical value γc = γ(ωc) at the

wavefront where the dilute and saturation regions meet. Thus we obtain

ᾱχ′(γc) =
ωc

γc − 1

χ′(γc) =
χ(γc)

γc − 1
(119)

where the second equality follows from evaluation of (114) at γc. (119) can also be

rewritten using the symmetry of χ(γ) in its principle branch: χ(1 − γ) = χ(γ) and

χ′(1− γ) = −χ′(γ). Letting 1− γc → γc,

χ′(γc) =
χ(γc)

γc
(120)
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This matching condition was actually �rst derived in the extensive 1983 Gribov,

Levin, and Ryskin paper [48], but was rederived by Levin and Bartels in 1992 [42]

with a more modern presentation.

More recently, in 2003 Munier and Peschanski [14] discovered a satisfying physical

interpretation of the long known condition. Solving the linear part of the BK equation

(97) as a wave packet in Mellin space,

N(k, Y ) =

ˆ c+i∞

c−i∞

dγ

2πi
N0(γ)e−γL+ᾱχ(γ)Y (121)

we see that the phase velocity of a wave is

vp =
χ(γ)

γ
(122)

and the group velocity is

vg =
dχ(γ)

dγ
(123)

For the initial conditions relevant in QCD (a steeply falling function of L), FKPP

analysis shows that the group velocity will equal the minimum phase velocity, which

occurs at γ = γc.

vg = vp|min =
χ(γc)

γc
(124)

χ′(γc) =
χ(γc)

γc
(125)

which is the same as (120).

Before continuing, we will brie�y address the nondeterministic nature of the evolution

of the saturation scale. All that we have thus far discussed is deterministic and applies

only to the mean �eld. However, because the formation of discrete dipoles ahead of

the saturation front is a stochastic process, there will be some inherent dispersion

among di�erent �events�, or realizations of BK evolution. As of currently, there has

not been a rigorous proof of the behavior of this dispersion, but several numerical

implementations have shown that
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σ2 ∝ Y (126)

There has been some progress in establishing this behavior using a �phenomenological�

approach (see [18, 19]).
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Part II

Model

5 Description of the Model: 2D, 2DR, and 2DSR

5.1 Overview

The object of our model is to implement Mueller's 2D branching kernel using a com-

puter simulated Monte Carlo dipole generator. We expect the results to reproduce

broad features of the FKPP traveling wave solution, in particular that the amplitude

will behave like in �gure 2 that we showed in the introduction, traveling with a �xed

asymptotic velocity. Part of the motivation for this undertaking is to evaluate the

following statement.

Note that, though a full study with two transverse degrees of freedom
would be of great interest, we believe that our one-dimensional picture
grasps the important aspects of the problem and, based on universal prop-
erties of the reaction-di�usion systems, we expect our results to hold for
full QCD. [24]

Will a 2D model reproduce the same universal properties as the 1D model? In what

ways will the details be re�ned? We seek to answer these questions.

First let us de�ne a model �event�. An event begins with an initial set of dipoles of

size r0 = 1 randomly oriented and randomly distributed in impact parameter such

that |b| < r0
2
. Over the course of evolution in time8, this initial dipole will have

evolved into a multitude of smaller dipoles in each size index, exponentially at �rst

but then tamed by a saturation mechanism. Each event consists of the movement

of the saturation front ρs to successively smaller sizes over a speci�ed time interval.

Because we expect the solution to take the form of a traveling wave, the amplitude

should be a function only of

T (ρ− ρs(Y )) = T

(
k2

Q2
s(Y )

)
(127)

8Remember that t ≡ Y .
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Figure 15: Geometry of a dipole-dipole scattering.

if ρ ∼ 1/r ∼ k. Thus, we see that ρs(Y ) plays the role of the saturation scale in the

problem, and the traveling wave solution is equivalent to geometric scaling.

The amplitude can be calculated by making use of the following equation [17, 1].

T (y,x01) =

ˆ
d2z0

2π

d2z1

2π
T el(x01, z01)n(y, z01) (128)

where n(y, z01) is the dipole density, and the elementary scattering amplitude for a

projectile dipole scattering o� a target dipole is

T el(x01, z01) =
π2α2

s

2
ln2 |x0 − z1|2|x1 − z0|2

|x0 − z0|2|x1 − z1|2
(129)

This formula represents the exchange of two gluons between a pair of dipoles, and

as such is the square of the the single gluon potential between two dipoles in two

dimensions [22]. It roughly counts the number of dipoles of similar size to x01, which

is convenient for computer implementation. Let us evince this feature. Given two

dipoles of size 2r and 2R, using the points shown on �gure 15 T el can be written

T el =
π2α2

s

2
ln2 (AB′)2(A′B)2

(AB)2(A′B′)2
(130)

Case 1: b� r, R, leading order in R2/b2, rR/b2, and r2/b2:
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T el =
π2α2

s

2
ln2 [b2 + (R + r)2]

2

[b2 + (R− r)2]2

≈ π2α2
s

2
ln2

{[
1 + 2

(R + r)2

b2

] [
1− 2

(R− r)2

b2

]}
≈ π2α2

s

2
ln2

(
1 +

8rR

b2

)
≈ π2α2

s

2

(
8rR

b2

)2

= 32π2α2
s

(rR)2

b4
∼ (rR)2

b4
(131)

Case 2: R > r, b, leading order in r/R and b/R:

T el =
π2α2

s

2
ln2 [b2 + (R + r)2]

2

[b2 + (R− r)2]2

≈ π2α2
s

2
ln2

[(
1 +

4r

R

)(
1 +

4r

R

)]
≈ π2α2

s

2
ln2

(
1 +

8r

R

)
≈ π2α2

s

2

(
8r

R

)2

= 32π2α2
s

r2

R2
∼ r2

R2
(132)

From (131) and (132), we see that dipoles which are far apart or which have very

di�erent sizes will not greatly contribute to (128).

5.2 Determination of splitting probabilities and lifetimes

Recall the transverse space kernel we derived in (30), which represents a classical

branching probability9:

dPx01→x02,x12

dY
=

x2
01

x2
12x

2
02

d2x2

2π
(133)

In order to derive an expression for the lifetime of a given size dipole and its proba-

bility of splitting into another size dipole, we will integrate (133) over x2. Changing

coordinates to a polar coordinate system with origin x1 and expanding x2
02 with the

9Note that �Y � in this model is actually rapidity scaled by ᾱ. I.e ᾱY → Y throughout Part II.
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law of cosines,

dPx01

dY
= 2x2

01

ˆ 2π

0

dφ

2π

ˆ rmax

rmin

dx12

x12 (x2
01 + x2

12 − 2x01x12 cosφ)
(134)

The lower limit rmin on the radial integral cuts o� the collinear singularity, as we did

in (44), whereas the upper limit rmax exists for the sake of computer implementation,

as will become clear below. The left diagram in �gure 16 shows the integration region

around the point x1, with radial integration performed in such a way as to capture

the collinear singularity around this point. This diagram depicts the parent dipole

x01 splitting into two daughter dipoles, x12 and x02. The placement of x2 determines

both the lengths and positions of said daughters. Impact parameters (b01, b02, b12) are

de�ned to be the midpoint of the line segment joining the two endpoints of a given

dipole. The result of this particular process will be two daughter dipoles with the

parent removed.

Although it might be tempting to extend the integration region to the entire plane

in such a polar coordinate system, there are two problems associated with doing so.

First, using the logarithmic indexing shown in �gure 16 left (which will be de�ned

shortly), notice that if x12 = x01 and if φ = 0, measured with respect to the axis

de�ned by x01, then x02 = 0 and the integrand in (134) blows up. Of course, one

could rotate the polar coordinate grid o� of the singularity, but this brings us to our

second point: symmetry dictates that we include the collinear singularity at x0 as

well as x1. A simple method for doing so is to restrict the integration region to the

vicinity of x1 and multiply by 2 to account for the symmetric probability distribution

around x0. This accounts for the factor of 2 in (134).

So far we have only discussed how to capture the collinear singularity, but we must

also include the infrared singularity when x02, x12 � x01 for our model to contain

the proposed physics. Figure 16 right shows a scheme for covering most of the plane

without overlap between the x0 and x1 regions. In practice we will divide the az-

imuthal range into 12 bins. Splittings of x01 to equal size daughter x12 are allowed in

the azimuthal range π
3
≤ φ < 5π

3
, shaded in green, while all splittings to larger sizes

are restricted to π
2
≤ φ < 3π

2
, shaded in yellow.

Continuing with the integral in (134) but switching to variable limits on φ,
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x2

b01

b02

b12

x0

Figure 16: �Dartboard� diagrams indicating integration regions in (134). Left: Parent
dipole x01 splitting into daughter dipoles x02 and x12. The integration region is shown
in the vicinity of x1. Right: The collinear region from the left �gure is shaded in red,
the equal size splitting region in green, and the infrared region in yellow. Only the
�rst larger size splitting is shown for the infrared region, but the yellow region is
understood to be an in�nite radius section of a semicircle. The union of these three
regions is mirrored for the region around x0.
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dPx01

dY
=

1

π

ˆ φ2

φ1

dφ

ˆ rmax

rmin

dx12

x12

(
1 +

x2
12

x2
01
− 2x12

x01
cosφ

) (135)

=
1

π
ln(B)

ˆ φ2

φ1

dφ

ˆ ρmax

ρmin

dρ

1 +B−2(ρ−ρx) − 2B−(ρ−ρx) cosφ
(136)

where logarithmic sizes are de�ned by ρ := logB

(
1
x12

)
and ρx := logB

(
1
x01

)
. The

base B determines the coarseness of the graining and will be taken to be 2 in the

computer implementation of the model. Also, let ρmin := logB
1

rmax
= 0 and ρmax :=

logB
1

rmin
= 50 comprise the size limits on dipoles in our model10. We will approximate

this integral as a Riemann sum for the purposes of computer implementation, with

∆φ and ∆ρ chosen to be, respectively, 2π
n

and 1. For ρmin ≤ ρ ≤ ρx the angular

region will be restricted, as discussed above.

dPx01

dY
≈ 1

π
ln(B)

ρx∑
ρ=ρmin

k2∑
k=k1

2π

n

1

1 +B−2(ρ−ρx) − 2B−(ρ−ρx) cosφk

+
1

π
ln(B)

ρmax−1∑
ρ=ρy+1

n−1∑
k=0

2π

n

1

1 +B−2(ρ−ρx) − 2B−(ρ−ρx) cosφk
(137)

Letting i = ρx and j = ρ,

=
i∑

j=ρmin

dPi→j
dY

∣∣∣∣
j≤i

+

ρmax−1∑
j=i+1

dPi→j
dY

∣∣∣∣
j>i

(138)

since

dPi→j
dY

∣∣∣∣
j>i

=
1

π
ln(B)

ˆ 2π

0

dφ

ˆ j+1

j

dρ

1 +B−2(ρ−i) − 2B−(ρ−i) cosφ

=
1

π
ln(B)

(j+1)−1∑
ρ=j

n−1∑
k=0

2π

n

1

1 +B−2(ρ−i) − 2B−(ρ−i) cosφk

10ρmax = 50 is chosen due to the fact that 64-bit double precision binary �oating-point numbers
carry 1 bit of sign, 11 bits of exponent width, and 52 bits of signi�cand precision. Thus, the maximum
rounding error between two numbers, or machine epsilon, is 2−53. ρmax should be kept well below
53.
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=
1

π
ln(B)

n−1∑
k=0

2π

n

1

1 +B−2(j−i) − 2B−(j−i) cosφk
(139)

and likewise,

dPi→j
dY

∣∣∣∣
j≤i

=
1

π
ln(B)

k2∑
k=k1

2π

n

1

1 +B−2(j−i) − 2B−(j−i) cosφk
(140)

Thus, according to (138), the total probability for a dipole to split is the sum of the

probabilities for it to split to any other size. For convenience, let us now de�ne a

probability splitting matrix P such that Pijk is the kth term in the azimuthal sum of
dPi→j
dY

, i.e.

Pijk :=
1

π
ln(B)

2π

n

1

1 +B−2(j−i) − 2B−(j−i) cosφk
(141)

The Pijk terms for which φk lies outside the azimuthal boundaries shown in �gure 16

are set to 0. We can now write the total probability for the splitting of x01 (logarithmic

size i) as

dPi
dY

=

ρmax−1∑
j=ρmin

n−1∑
k=0

Pijk (142)

and therefore, its �lifetime� in units of rapidity is

τi = (dPi/dY )−1 (143)

The preceding forms the basis of our Monte Carlo calculation. During each step of

the target's evolution in rapidity, the number of splittings of size i is determined

according to

# splittingsi =
1

τi
∆Y × (# dipoles of size i) (144)

We then randomly select this number of dipoles of size i, and for each selection choose

a size j to split into using the discrete probability distribution
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dPi→j
dY

=
n−1∑
k=0

Pijk (145)

This can be done, for example, by randomly choosing a number on the interval [0, 1]

in the properly normalized cumulative distribution function of (145) and �nding the

corresponding ordinate. Similarly, we can randomly choose an azimuthal bin k to

split into using the discrete probability distribution Pijk for a given i and j11.

5.3 Determination of x2

Once we have determined to which j and k a given dipole x01 will split, it is a simple

matter to locate x2. If splitting from x1,

x2 = x1 − rjR(
2πk

n
)x̂01 (146)

x2 = x1 − rjR(
2πk

n
)
x1 − x0

|x1 − x0|
(147)

where R(θ) is the standard rotation matrix,

R(θ) :=

(
cos θ − sin θ

sin θ cos θ

)
(148)

By components,

x2x = x1x − rj(cos θx̂01,x − sin θx̂01,y)

x2y = x1y − rj(sin θx̂01,x + cos θx̂01,y) (149)

and

b02 =
x0 + x2

2
, b12 =

x1 + x2

2
(150)

11In practice, to avoid creating ρ2max discrete probability distributions for azimuth selection, we
note that (141) depends on j − i, which is bounded between −ρmax ≤ j − i ≤ ρmax. Thus we only
need to create 2ρmax + 1 discrete probability distributions.
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If splitting from the x0 side, then (146) becomes

x2 = x0 + rjR(
2πk

n
)x̂01 (151)

mutatis mutandis.

5.4 Saturation veto and impact parameter cuto� veto

Limiting the number of dipoles in our model serves the dual purpose of satisfying

unitarity constraints and ensuring computational e�ciency. Toward this end, we will

introduce two types of splitting vetoes into our model: the saturation veto and the

impact parameter cuto� veto.

The former is based on the well known e�ect resulting from the BK equation, as

discussed in 4.1. While the exact mechanism for saturation is not precisely known,

be it a gluon recombination or shadowing e�ect, the results of our simulation should

not strongly depend on the details. We will use the same condition as in [24, 25],

which is that splittings that would generate daughters in regions already containing

more than some Nsat number of dipoles will not be allowed. But how are we to count

the number of such dipoles?

Observing �gure 17, say we want to probe the number of dipoles of logarithmic

size i in the vicinity of some impact parameter bp. We will count the number of

dipoles whose impact parameters lie within an open ball around bp, Bri/2(bp) :=

{b ∈ R2|d(b,bp) < ri/2}12. Thus, in the �gure the dipole with impact parameter

b1 (shaded blue) is counted while that with b2 (shaded green) is not. However, even

if this number of counted dipoles is less than Nsat, this does not guarantee that the

saturation condition is not violated elsewhere. For example, say there are already Nsat

dipoles with impact parameters very near b2. The addition of a dipole with impact

parameter bp will violate the saturation condition at some b3 ∈ Bri/2(bp)∪Bri/2(b2),

even though fewer than Nsat dipoles have impact parameters within Bri/2(bp). Thus,

technically speaking we should check saturation at all b ∈ Bri/2(bp) to ensure the

saturation condition is never violated, but in practice saturation checks are very

computationally expensive to carry out. Our results show that if checks are carried

out at bp, bp− ri
2
b̂p, and bp + ri

2
b̂p, amplitudes obey saturation, and these checks are

12Recall from the logarithmic size de�nition under (136) that ri = B−i.
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|bp|-ri/2

|bp|+ri/2

bp

b2

b

b1

Figure 17: Two dipoles are shown with impact parameters b satisfying |bp| − ri/2 <
|b| < |bp| + ri/2. The dipole with impact parameter b1 (blue) is counted as being
in the vicinity of bp while that with b2 (green) is not. The crosshatched annulus is
relevant to our search algorithm explained in 5.5.
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ipso facto su�cient.

The other type of veto, which is a distance cuto�, is very easy to implement and

necessary for computation in any reasonable length of time. If we choose a particular

impact parameter bp or set of impact parameters {bp1,bp2...} at which to check the

amplitude throughout the evolution of an event, most dipoles�especially very small

sizes�will be too far from any of the bp for them or their progeny to a�ect T (bp).

Therefore, we impose the same cuto� as in [24],

ri
|b− bpn|

> κ (152)

for some chosen value of κ in order to allow the splitting which creates a daughter

dipole at b with size ri. (152) must be satis�ed for at least one of the {bpn} for the
splitting to be allowed; otherwise it is vetoed. We can see that this condition results

in smaller dipoles being more strongly constrained to the probe location(s):

|b− bpn| <
ri
κ

(153)

which is desirable, as there is no reason to keep track of the profusion of small dipoles

that will not be observed. Typical values of κ we will be using are 10−1 and 10−2.

As long as κ is not close to 1, the asymptotic results of our model will not be greatly

a�ected.

5.5 Data structure

2D evolution is much more computationally intensive than 1D due to the fact that

a 2D transverse space can accommodate a far larger number of dipoles. Even given

the veto constraints above, we must thoughtfully construct our data structure for

computational e�ciency. We can easily estimate the number of dipoles allowed for a

given size i using (153). Say bp = 0, then dipoles of size i are constrained to a disk

of radius

bi <
ri
κ

(154)

The number of dipoles that can exist within this radius is approximately
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0 1 2 ρmax

{b,bx,by,x0x,x0y,x1x,x1y}

. . .{ni}  =  

Figure 18: The data structure used to store dipoles. It is a vector with ρmax + 1
entries, each of which a red-black tree header node. Each red-black tree is ordered by
magnitude of impact parameter.

Ni ≈ Nsat
πb2

i

π
(
ri
2

)2 =
4Nsat

κ2

For typical values we will be using, κ = 10−1 and Nsat = 25, Ni ≈ 10, 000. We

have discovered that a 2D simulation becomes very computationally unwieldy when

Ni
>∼ 105. For this reason, κ = 10−1 will be our standard choice for full 2D simulation.

The main data structure of the program will contain all of the dipoles created in the

course of the target's evolution. It will consist of a vector {ni}iε{0,1,2,...,ρmax}, each index
i of which represents all dipoles of logarithmic size i. The vector object type will be

a binary red-black tree of nodes ordered by magnitude of impact parameter and that

each contain the variables {b, bx, by, x0x, x0y, x1x, x1y}. This is indicated schematically

in �gure 18.

Let us divert our attention to the red-black tree structure for each size index, which

is crucial to the program's ability to quickly carry out saturation checks of the type

described in 5.4. The conceptual basis for the red-black tree can be found in a number

of references, for example its inventor's textbook, [50], but we will summarize the basic

features here for the reader less familiar with data structures. Essentially, the red-

black tree's purpose is to maintain the binary search tree's (BST) optimal O(log2N)

search performance. It is one of several self-balancing tree algorithms available13.

13The AVL tree is also sometimes used.
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Figure 19: Left: A low e�ciency BST with O(N) search time. Right: A high e�ciency
BST with O(log2N) search time.

Consider the degenerate case of adding, in sequence, 1, 2, 3, 4, 5 to a standard BST

(�gure 19). The insertion algorithm for a BST is to traverse the tree, going left if the

node to be inserted is smaller than the current tree node, and right if it is greater.

Thus, �gure 19 left obtains with search time O(N), as the BST degenerates into

essentially a linked list in such cases. Figure 19 right obtains if we insert the sequence

2, 1, 4, 3, 5, but we would like to achieve this e�cient O(log2N) structure independent

of insertion order. That is where the red-black tree comes into play.

A red-black tree's insertion and deletion algorithms ensure that its branches will

remain roughly balanced at all times by leaving the following properties intact:

1. Each node is either red or black.

2. The root node is black.

3. Both children of every red node are black. If unsatis�ed, there is said

to be a �red violation�.

4. Every path from root to leaf14 contains the same number of black

nodes. If unsatis�ed, there is said to be a �black violation�.

Such a tree satisfying these properties is shown in �gure 20, as the reader may verify.

Although the rebalancing algorithms are fairly detailed and refer to a number of

14The terminus of a path.
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Figure 20: A sample red-black tree, ordered by magnitude of impact parameter

di�erent cases, we will give one example to indicate the �avor of the operations

required.

Say we are adding the node with impact parameter value �.93664�. The red-black

tree will now look like �gure 21 upper. We can see that there is currently a red

violation since the new node and its parent are both red. We cannot simply recolor

the new node black, as this would lead to a black violation. Instead, we will recolor

the new node's parent and grandparent, as shown in the diagram. Unfortunately,

this causes another red violation. We cannot again recolor grandparent and great

grandparent, as this would violate property 2. Thus, we can see that rotations are

required for rebalancing. These rotations, along with recoloration and reattachment

of appropriate subtrees are indicated in �gure 21 middle. We end up with �gure 21

bottom, which has the immediate visual appearance of being more balanced than 21

top.

Without going through all of the cases, su�ce it to say that algorithms exist to

maintain properties 1 through 4 during insertion and deletion of nodes. (The latter

is especially tedious and is usually omitted from texts.) Several di�erent types of

algorithms actually exist to accomplish these tasks. The example given above is a type

of �bottom-up� algorithm which recursively travels up the tree from the insertion point

�xing mistakes on the way up. Another method involves nodes which have pointers

from children to parents as well as from parents to children. However, both of these
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Figure 21: An example of red-black tree rebalancing after adding the node containing
�.93664� on the far right. 55



methods appear somewhat inelegant when compared with �top-down� insertion. Top-

down insertion is a nonrecursive method that makes changes on the way down the

tree to the insertion point. Since it does useful work on the way down and does not

have to traverse back up the tree, it is the most e�cient method of implementing the

red-black tree. It is surprisingly di�cult to �nd these algorithms, but [51] provides a

discussion of them.

Having the red-black tree data structure at our disposal allows us to quickly check

{ni} for saturation vetoes, as explained in 5.4, and also to calculate the Ti(bp), the

amplitude at bp for size i dipoles, at each step of the target's evolution. This is done

by searching ni, the ith red-black tree, for dipoles satisfying

max(0, bp −
ri
2

) < b < bp +
ri
2

(155)

This check is e�ciently accomplished given the O(log2N) search performance of the

red-black tree. Notice that (155) corresponds to the annulus in �gure 17. Of course,

we also need to check each dipole satisfying (155) to see whether

|bp − b| < ri
2

(156)

which is the number of dipoles with impact parameters within the open ball Bri/2(bp),

shaded red in �gure 17. The sum of dipoles that satisfy (155) and (156) divided byNsat

yields Ti(bp). Knowledge of Ti(bp) for all i also allows us to calculate the saturation

front, ρs(bp, Y ), which we will de�ne as the smallest i such that Ti(bp) <
1
2
.

5.6 Parallel coding

Our C++ code was written using the OpenMP API for shared memory multiprocess-

ing. Threading is controlled by the use of �#pragma� directives in the code, which

stands for �pragmatic�. These allow the C++ compiler to precisely control memory

management and passing of parameters so as to o�er machine and operating system-

speci�c features while maintaining C++ compatibility. This platform independence

allows the programmer to run the same code on machines of di�erent number of cores

while always utilizing the maximum advantage of multithreading on each machine.

Short data runs were performed on a typical home PC with 4 cores running at 2.67

GHz while longer runs up to 24 hours were performed on the Texas Advanced Com-
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System Name: Lonestar 4
Host Name: lonestar.tacc.utexas.edu

Operating System: Linux
Number of Processors: 22,656

Total Memory 44 TB
Peak Performance 302 TFLOPS

Total Disk: 276TB(local), 1000TB(global)

Table 2: TACC Lonestar 4 speci�cations

puter Center's (TACC) Lonestar 4 Dell Linux cluster. Without going into great detail,

the basic speci�cations of this cluster are the following: [52]

The 22,656 cores are housed on 1,888 Dell PowerEdge M610 compute blades with 12

to a blade. Each blade has 2 Xeon 5680 series 3.33GHz hex-core processors. The user

may submit jobs serially to each compute blade, which then multithreads the code

onto 12 cores, providing essentially a 12-fold increase in the rate data production for

our simulation. Multiple blades may be simultaneously harnessed, allowing further

generation of data.

5.7 Pseudocode program

Most of what has not been described heretofore is merely nuts and bolts of program-

ming, such as declarations, �ow control statements, data output, and the like. The

essential physics has all been described. For the reader interested in how the program

works, we will give a pseudocode overview of the program �ow. This description is

for a single event�multiple events are simply repeated instances of a single event.

Program �ow, single event

• main rapidity loop over Y :

� loop over dipole size i:

∗ calculate number of splittings for size i using lifetime, see (144)

∗ loop over number of splittings, l:

· choose a random dipole of size i to split

57



· monte carlo this dipole into size j dipole, see (145)

· monte carlo into kth angular bin

· randomly choose which side of dipole i to split, see (146) and (151)

· check if 2 daughter dipoles, x02 and x12, satisfy κ cuto� (152); if

not, veto splitting

· check if 2 daughter dipoles, x02 and x12, violate saturation; if so,

veto splitting

· if neither veto has been applied, insert x02 and x12 and remove x01

from the appropriate red-black trees in the data structure shown

in �gure 18

� output data for this ∆Y step

5.8 First several steps of an event

To illustrate the operations of the program, let us visually inspect the �rst several

splittings of a single initial dipole. The program randomly generates the following

two splittings during the �rst ∆Y step, as shown in �gure 22.

First Splitting:

x0x = 0.744071, x1x = −0.253879, x2x = −0.269879

x0y = −0.397142, x1y = −0.333142, x2y = −0.58263

Second Splitting:

x0x = −0.253879, x1x = −0.269879, x2x = −0.305895

x0y = −0.333142, x1y = −0.58263, x2y = −0.298492

Both of these splittings occur in the collinear region, the �rst from i = 0 to j = 2

and the second from i = 2 to j = 4 (in logarithmic size). Notice that although the

probability to split to a much smaller size is not improbable via (145), it is extremely

improbable that a dipole created near the endpoints of its parent will pass the κ

cuto� condition (152), which is to say it will likely be too far away from the region of

interest to have any e�ect there. Over the course of the evolution of an event, smaller

size dipoles will have found their way su�ciently near the probe location via other
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Figure 22: The �rst two splittings of an initial dipole shown in transverse space in
clockwise progression. Removed parent dipoles are shown in red while extant dipoles
are blue.
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Figure 23: The evolution of a single dipole in transverse space at time Y = 1.

somewhat larger sizes to pass (152). In this sense the traveling wave moves smoothly

from larger to smaller size dipoles over the evolution time.

After a longer period of time, the parent dipole will have branched into a multitude

of various sized smaller dipoles, shown in �gure (23). These daughter dipoles remain

a connected graph, as the splitting rules imply.

Beginning with Ninitial = Nsat = 25 dipoles and after su�cient time, a more fully

evolved target is attained (�gure 24).

5.9 2D Restricted (2DR)

It is desirable to have a way to check the results of our 2D calculation in the 1D limit

in order to make contact with other work that has been done in 1D. To do so, we

will employ the method illustrated in �gure 25. The operation of the program is very

similar to the 2D calculation, but with an added step before the veto conditions are

checked. Recall that a logarithmic size and angle are chosen using discrete probability

distributions, as described in 5.3. In the newly introduced step, the impact parameters

b12 and b02 are projected onto the x-axis. If we were to simply project x2 onto the

x-axis as well, this would have the e�ect of shortening the two projected dipoles x12

and x02, especially in the case of an infrared splitting. Instead, we want to preserve

the lengths x12 and x02, which can be done by rede�ning the endpoints of the two

daughters in the following way.

The endpoints of the dipole x′12 are given by
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Figure 24: Going clockwise, target at time Y = .5, Y = 1, Y = 1.5, and Y = 2, all
with Ninitial = Nsat = 25 initial dipoles .
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Figure 25: A method for reducing the full 2D calculation to 1D.
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x′1x = b12x +
x12

2
x̂01x

x′2x = b12x −
x12

2
x̂01x (157)

and those of x′02 by

x′′0x = b02x −
x02

2
x̂01x

x′′2x = b02x +
x02

2
x̂01x (158)

In this scheme, we lose the shared endpoint between daughters, as x′2x 6= x′′2x, but

dipole sizes of the 2D model are preserved.

5.10 2D Semi-Restricted (2DSR)

In another variation of our model, this time we would like to be able to smoothly

transition from the full 2D calculation to a 1D version of that calculation. The basic

idea is to allow dipoles to evolve by spreading in the azimuth, but only within a

certain de�ned strip width d around the x-axis. The shaded strip is shown in �gure

26 left. Clearly the strip size must scale with the daughter dipole size if evolution is

to be e�ectively constrained near the x-axis. We de�ne d in the following way:

d := βri (159)

where ri = min(x02, x12) is the size of the smaller daughter dipole and β is a factor that

mediates the transition from 2D to 1D. If x2 lies within the strip then no projection

takes place. If, on the other hand |x2y| > d, then the projection

x2y → x′2y = sd, 0 < s < 1 (160)

shown in 26, left takes place, with s a random number in the interval above. In order

to preserve the lengths of x02 and x12, we slide x0 and x1 along the x-axis away from
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Figure 26: Left: Gluons emitted outside of a strip of width 2d around the x-axis are
projected into the strip (shaded yellow) a distance sd away from the x-axis, where
0 < s < 1. Right: The limit of 2DSR as the strip width d→ 0.
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x2x
15.

x′02 = x02, x′12 = x12

x′1x = x′2x ±
√
x2

12 − (x1y − x′2y)2

x′0x = x′2x ∓
√
x2

02 − (x0y − x′2y)2 (161)

The end result of this scheme is that when β →∞ we recover the full 2D calculation,

and when β → 0 the calculation becomes 1D, as shown in �gure 26 right. Note that

this 1D limit is not exactly the same as the 2DR scheme, although the di�erences in

the overall results between the two are minor.

15unless x202 < (x0y − x′2y)2 or x212 < (x1y − x′2y)2.
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6 Results and Analysis

6.1 2D results

In presenting our results, we will display a number of the following quantities. Recall

that the saturation front ρs(Y, b) is a function of Y and b.

dρs
dY

=
〈ρs(Y + ∆Y, 0)− ρs(Y, 0)〉

∆Y
(162)

σ2 =
〈
ρ2
s(Y, 0)

〉
− 〈ρs(Y, 0)〉2 (163)

Cov(b) := Cov(ρs(Y, 0), ρs(Y, b)) = 〈ρs(Y, 0)ρs(Y, b)〉 − 〈ρs(Y, 0)〉 〈ρs(Y, b)〉 (164)

And with these de�nitions,

Cov(0) = σ2 (165)

as expected. Note that only ensemble averages are shown, and thus, individual events

would have a more discrete appearance than the mean curves displayed on the am-

plitude plots. Also, individual events will be ahead of or behind the mean curves,

the degree to which is indicated by the accompanying variance plots. Note that the

attached C++ code only outputs the amplitude at various impact parameters and

times. Additional data processing was handled in Matlab.

Figure 27 reveals the asymptotic wave speed to be about 3.5�much slower than the

1D models we will consider. Variance is proportional to Y after an initial wavefront

formation time, as we expect from (126). The explanation for the the saturated region

in 27 left having an amplitude slightly higher than 1 is the fact that we have only

performed saturation checks at three points in transverse space when adding dipoles,

as explained in 5.4. However, this slight excess has little e�ect on asymptotic values.
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Figure 27: 2D Model: 700 events, κ = 10−1

6.2 2DR results

Because the 2DR model is restricted to 1D, the number of dipoles allowed is severely

curtailed when compared to 2D (see beginning of 5.5 for details). It is thereby much

easier to gather high statistics in this version of the dipole model. With 5000 events

in �gure 28, wavefront velocity and variance curves are the smoothest of the data

we present. The three point saturation check is also clearly more e�ective in 1D, as

amplitudes are kept below T (Y ) = 1 in the plots shown. Additionally, asymptotic

wave velocity is seen to be much greater in 1D than in 2D, which we will discuss

later. A comparison of �gures 28 and 29 reveals that a change in κ has little e�ect on

asymptotic velocity: 〈dρs/dY 〉 = 14.078 for the former while 〈dρs/dY 〉 = 14.390 for

the latter16. It is slightly larger for the latter because κ = 30−1 for this data allows

dipoles to form within a radius three times greater (at a given i) than κ = 10−1 for

the former. Some of these additional dipoles that are farther from the probe location

will be able to �walk in� through successive splittings. Further decreasing κ will have

a diminishing e�ect on the wavefront velocity since the farther away a dipole is from

the probe, the less likely it is have an e�ect there.

Figure 30 displays decorrelation of wavefronts at various impact parameters. This

phenomenon is intuitively explained by considering the �resolution� of dipoles required

to distinguish between two points. As long as the dipoles present in the simulation are

larger than the separation between two impact parameters, these impact parameters

are correlated and their covariance will rise over time. The points will decorrelate

16The velocity values were averaged over Y = 1 to Y = 3.
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Figure 28: 2DR Model: 5000 events, κ = 10−1
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Figure 29: 2DR Model: 1000 events, κ = 30−1

(their covariance will become constant) when the event has reached a �ne enough

resolution such that [25]

∆b ≈ B−ρs(Y ) (166)

Table 3 details the Y values at which various impact parameters decorrelate from

b = 0. These Y values match well with �gure 30.

6.3 2DSR results

The data from �gure 31 interpolates between the 1D and 2D realizations of our model.

As β increases, widening the projection strip, we see the essentially 1D results from

the top row become the 2D results from the last row.
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∆b ρs Ydecor

10−6 19.9 2
10−4 13.3 1.5
10−2 6.6 1
10−1 3.3 .8

Table 3: Decorrelation data for impact parameters in �gure 30 calculated using (166).
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Figure 31: 2DSR Model: 1st row: β = 0; 2nd row: β = 1; 3rd row: β = 3; 4th row:
β = 100. All data 500 events and κ = 10−1.
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6.4 Wavefront velocity analysis

6.4.1 1D Eigenvalue calculation

Splitting the kernel Kij into infrared (j < i), collinear (j > i), and equal size (j = i)

parts,

∂Y ni =

ρmax−1∑
j=ρmin

Kijnj

=
i∑

j=ρmin

dPi→j
dY

∣∣∣∣
j<i

nj +

ρmax−1∑
j=i+1

dPi→j
dY

∣∣∣∣
j>i

nj +
dPi→j
dY

∣∣∣∣
j=i

nj (167)

The splitting probability is given by the BFKL kernel, transformed to logarithmic

size index:

dPi→j
dY

≡ 1

π
ln(B)

ˆ 2π

0

dφ

ˆ j+1

j

dρ

1 +B−2(ρ−i) − 2B−(ρ−i) cosφ

=
1

π
ln(B)

(j+1)−1∑
ρ=j

n−1∑
l=0

2π

n

1

1 +B−2(ρ−i) − 2B−(ρ−i) cosφl

=
1

π
ln(B)

n−1∑
l=0

2π

n

1

1 +B−2(j−i) − 2B−(j−i) cosφl
(168)

First we will handle the collinear term (j > i). Using the following approximation

with ζ := x12

x01
= B−(j−i),

1

1 + ζ2 − 2ζ cosφ
=

∞∑
m=0

(2ζ cosφ− ζ2)m

= 1 + (2ζ cosφ− ζ2) + 2ζ2(1 + cos 2φ) +O(ζ3)

→ 1 + ζ2 +O(ζ3)

≈ 1 +B−2(j−i) (169)

where the identity (2 cosφ)2 = 2(1 + cos 2φ) was used in the second step, and the
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integration of cosine terms set to 0 in the third, we can simplify the kernel. Using

the eigenfunctions ϕj = Bjγ, and inserting a factor
rj
ri

= Bi−j =: B−k to reduce 1D

to 0D �xed impact parameter (FIP),

χCOL,1D(γ)ϕi(γ) ≈
∑
j>i

1

π
ln(B)

n−1∑
l=0

2π

n
B−k(1 +B−2(j−i))ϕj(γ) (170)

= 2 ln(B)

(∑
k>0

B−kBγk(1 +B−2k)

)
ϕi(γ)

χCOL,1D(γ) = 2 ln(B)

(∑
k>0

Bk(γ−1) +Bk(γ−3)

)

= 2 ln(B)

(
1

1−Bγ−1
+

1

1−Bγ−3
− 2

)
(171)

Restoring the ∆ factors, taking the limit as ∆→ 0, and using L'Hospital's Rule,

lim
∆→0

χCOL(γ) =
2

γ − 1
+

2

γ − 3
(172)

we see that the γ = 1 singularity is present. Moving on to the infrared part (j < i),

χIR,1D(γ)ϕi(γ) =
i∑

j=ρmin

B−k
dPi→j
dY

∣∣∣∣
j<i

ϕj(γ) (173)

Notice that since we are integrating semi-circles, we only sum over half of the azimuth.

=
∑
k<0

1

π
ln(B)

half azimuth∑
l=0

2π

n
B−k

1

1 +B−2k − 2B−k cosφl
Bjγ

≈ ln(B)
∑
k<0

B−kB2kBjγ

= ln(B)
∑
k<0

BkBkγϕi(γ)

χIR,1D(γ) = ln(B)

(
1

1−B−(γ+1)
− 1

)
(174)
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Finally, there is the k = 0 term, whose integral bounds come from �gure 16,

χk=0,1D =
1

π
ln(B)

ˆ 5π/3

π/3

1

1 +B0 − 2B0 cosφ
=

√
3

π
ln(B)

Adding the two parts (171) and (174),

χ1D(γ) = χCOL,1D(γ) + χIR,1D(γ) + χk=0,1D

= 2 ln(B)

(
1

1−Bγ−1
+

1

1−Bγ−3
+

1

2(1−B−(γ+1))
− 5

2
+

√
3

2π

)
(175)

6.4.2 2D Eigenvalue calculation

Repeating all of the above steps but using instead the FIP factor of
(
rj
ri

)2

= B−2k to

reduce 2D to 0D, (171) and (174) become

χCOL,2D(γ) = 2 ln(B)

(
1

1−Bγ−2
+

1

1−Bγ−4
− 2

)
(176)

χIR,2D(γ) = ln(B)

(
1

1−B−γ
− 1

)
(177)

χ2D(γ) = 2 ln(B)

(
1

1−Bγ−2
+

1

1−Bγ−4
+

1

2(1−B−γ)
− 5

2
+

√
3

2π

)
(178)

6.4.3 Velocity calculations

Notice that for neither 1D nor 2D do we get both poles. (171) has the 1
γ−1

pole, and

(177) has the 1
γ
pole. This is perhaps to be expected since the 1D FIP correction

factor B−k works well for the collinear sum in which dipoles remain more or less

collinear. However, the 2D FIP factor B−2k is better suited to the infrared sum since

these kind of splittings allow the daughter dipoles to explore the azumithal range.

We might consider using a �hybrid� eigenvalue function which has both of the correct

poles,

χhybrid(γ) ≡ χCOL,1D + χIR,2D + χk=0
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= 2 ln(B)

(
1

1−Bγ−1
+

1

1−Bγ−3
+

1

2(1−B−γ)
− 5

2
+

√
3

2π

)
(179)

Using the eigenvalue functions (175), (178), and (179) and solving (120) using nu-

merical methods, we obtain

V1D =
χ′1D(γc)

ln(2)
= 12.67, γc = 0.53

V2D =
χ′2D(γc)

ln(2)
= 3.63, γc = 1.19

Vhybrid =
χ′hybrid(γc)

ln(2)
= 15.35 γc = 0.61 (180)

Comparing these values to the data, we see the our analytical calculation for V2D looks

very accurate. Using the data shown in �gure 27 we obtain 〈dρs/dY 〉 = 3.51317.The

2DR and 2DSR models suggest a value of 〈dρs/dY 〉 = 13.5, which is still reasonably

close to V1D. We can also calculate the asymptotic velocity from the actual BFKL

eigenvalue function, χ(γ) = 2ψ(1)− ψ(1− γ)− ψ(γ). Using, for instance, [16]

lnQ2
s(Y ) =

χ(γc)

γc
Y − 3

2γc
ln(Y/ᾱ)− 3

γ2
c

√
2π

χ′′(γc)

1√
Y

+O(1/Y ) (181)

the dominant term asymptotically yields

d lnQ2
s(Y )

dY
≈ χ(γc)

γc
dρs
dY

=
1

2 ln(2)
χ′(γc) ≈ 3.523 (182)

which also compares well with our 2D model value.

17The velocity values were averaged over Y = 1.5 to Y = 3.
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6.5 Conclusions

One facet of wave propagation we have noticed is the necessity of including both the

infrared and collinear singularities of the branching kernel. Because the saturation

front propagates to smaller dipole sizes over time, the collinear part of the kernel

drives the wave forward in x while the infrared part ��lls in� the unsaturated sizes

behind the wavefront. Without the back-�lling e�ect of the infrared term, the wave

moves forward but is eventually damped out as the larger dipoles are replaced by

dispersed smaller ones, and consequently, no stable wave shape asymptotically forms.

Comparing 1D and 2D data, it is seen that average wavefront velocities are consid-

erably higher for the former. We have not seen a discussion of this e�ect in previous

work, probably because no previous work has undertaken a model in two dimensions.

One explanation why the saturation front progresses faster in 1D con�guration space

than in 2D is that dipoles spreading out in 2D transverse space with the same splitting

probability as used in the 1D model become more dilute in comparison. As long as

daughter dipoles are con�ned to a line, it is much more probable that each splitting

will increase dipole density near the probe than in 2D. This reasoning still does not

make the result a priori obvious, since one might imagine that the far more numerous

dipoles in 2D could compensate for this dilution; however, it is seen that they do not.

The analytical work in 6.4 gives some justi�cation for this lower velocity.

We would like to consider the statement made in an earlier work,

Note that, though a full study with two transverse degrees of freedom
would be of great interest, we believe that our one-dimensional picture
grasps the important aspects of the problem and, based on universal prop-
erties of the reaction-di�usion systems, we expect our results to hold for
full QCD. [24]

Let us take stock of some of the assumptions made in the [24] model:

• Parent dipoles are retained throughout the evolution; collinear splitting rules

create one small daughter dipole while the maintained parent approximates the

other daughter. Infrared splitting probabilities are increased by a factor of 2

since only one daughter is created�the parent is still maintained.

• Dipole size is discrete: all dipoles have a size B−i for some i.
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Figure 32: Average wavefront velocity, as shown in [24]

• The 2D kernel (133) is replaced by a 1D version,

dP

dY
=

x01

x02x12

dx2

• The impact parameter of daughter dipoles is chosen using

bj = bi ±
ri
2
± rj

2
s, 0 < s < 1

We believe our model represents a more accurate calculation by avoiding all of these

assumptions. The �rst assumption is obviated by replacement of the parent with two

daughter dipoles in all cases. This assumption becomes questionable when the parent

splits into a daughter of roughly the same logarithmic size, for example when an i = 0

parent splits into two j = 1 daughters. In this case it is not accurate to maintain

the parent since neither of the daughters are the same size. In fact, most allowed

splittings are of this nature since a splitting where j − i is large is unlikely to pass

the κ cuto� condition (152). Possibly this di�erence accounts for our 1D wavefront

velocity being higher than that of [24] (shown in �gure 32), as sizes can be driven

downwards faster when parents are removed and replaced by two smaller dipoles.

Assumption 2 is not present in our model, since splittings like that shown in �gure

16 left create dipoles that are not equal to B−i for any i. Assumption 3 reasonable in

the collinear and infrared limits, but again, if |j − i| is small then it is not accurate.
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Assumption 4 is not necessary in our model because the splitting kernel determines

the impact parameters of all daughter dipoles.

In summary, the splittings most relevant to driving the saturation front forward are

those between similarly sized parent and daughter dipoles. Thus, it is important to

handle these splittings accurately. We believe our model succeeds in this respect, and

that it is therefore a more accurate model of dipole evolution than those previously

wrought.
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7 Final Summary

In this �nal chapter, we will more or less repeat was has already been said as concisely

as possible. In chapter 2 we saw that a Regge trajectory with intercept greater than

1 called the Pomeron was needed to explain the rise of hadronic cross-sections. We

then gave an account of how a pQCD calculation in the form of an in�nite gluon

ladder diagram could account for such a trajectory. In chapter 3 we introduced the

dipole formulation for calculating cross-sections such as γ∗p → X . In this picture,

the virtual photon dissociates into a quark-antiquark pair which then interacts with

the initial state hadron. Using this picture, Mueller showed that evolution of the

target with increasing energy could be viewed as a highly occupied Fock state called

an onium. Colorless dipoles comprise these states, which form due to soft gluon

emissions. Using the wavefunction for the onium state, Mueller derived an integral

equation which was equivalent to the BFKL equation found via the gluon ladder

diagram, albeit the result of a much simpler calculation.

Although the BFKL equation correctly predicts dipole density growth in the dilute

regime, in chapter 4 we explain that the eventual violation of unitarity with increasing

s necessitates a nonlinear growth taming term. This is provided by the BK equation,

which adds a −N2 term to the evolution equation, providing the desired e�ect. It

was later shown by Munier and Peschanski that the BK equation belongs to the

universality class of the FKPP equation, familiar from reaction-di�usion dynamics.

This conceptual framework allowed the phenomenon of geometric scaling to be viewed

as a traveling wave whose front is the logarithm of the saturation scale. This front

moves with a group velocity equal to the minimum phase velocity of a wave packet

in Mellin space, a condition that can be found by matching conditions in the dilute

and saturation regions.

In Part II, we move on to describe a model based on the classical branching kernel of

the BFKL equation and a saturation mechanism. Both the collinear and infrared parts

of the kernel are taken into account. Saturation is checked by the program e�ciently

through the use of the red-black tree data structure. A full 2D implementation of

the model as well as a 1D variant and a smooth interpolation between 1D and 2D

are introduced. Data on wavefront asymptotics and correlations in impact parameter

are presented and contrasted with an earlier work based on a 1D model. Finally,

analytical calculations of the wavefront asymptotic velocity are compared with the
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data.
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Figure 33: Comparison of velocity and variance between ρmax = 20 and ρmax = 50.

8 Appendix

8.1 Dependence of the model on ρmax

During the �nal defense of this manuscript, the question was raised whether the length

cuto� rmin, which in logarithmic coordinates is ρmax := logB
1

rmin
, in the divergent

integral (134) has any e�ect on the results of the model. Analytically, we can see from

(67) that the BFKL equation in Mellin space does not have a cuto� dependence. In

fact, the lower size bound ρ cancels in (62). Still, it may be asked whether this

analytical cancellation applies to the model. I will demonstrate in several ways that

the model does not have a strong dependence on ρmax as long as it is su�ciently large.

8.1.1 Brute force model check

Running the model with di�erent values of ρmax is one way of checking for a possible

dependence. For technical reasons explained before, it is not convenient to have

ρmax
>∼ 50, but we may check smaller values. Figure 33, for example, compares

ρmax = 20 and ρmax = 50. Over 30 powers of the logarithmic base, the change

in velocity and variance is small, although it appears the front velocity is slightly

higher for the ρmax = 20 case. This may be due to the change in relative splitting

probabilities between near-size and far-size splittings. However, we believe that for

su�ciently large ρmax the artifact of higher front velocities disappears, as we now

explain.
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8.1.2 Lifetime dependence

Using the collinear branching probability approximation made in (169), we can write

dPi→j
dY

∣∣∣∣
j>i

≈ 2
(
1 +B−2(j−i)) (183)

Making the �xed impact parameter approximation and multiplying by
(
rj
ri

)2

=

B−2(j−i) as an estimate of the probability that the daughter j will be created near

the probe location,

dPi→j
dY

∣∣∣∣
j>i

≈ 2
(
B−2(j−i) +B−4(j−i))

Now �nding the total probability of a size i dipole splitting collinearly,

dPi
dY
≈

ρmax−1∑
j=i+1

2
(
B−2(j−i) +B−4(j−i)) (184)

Observe this sum is convergent as ρmax → ∞. Also, because it converges quickly,

the e�ective dipole splitting rates (and lifetimes) are not highly sensitive to the exact

value chosen for ρmax, as long as ρmax � ρs(Y ). By �e�ective�, we mean the splittings

that will a�ect the amplitudes measured at a particular impact parameter, which we

estimated by adjusting the splitting probability by B−2(j−i).

8.1.3 Analytical check of BK equation using model constructs

We can explicitly check the BK equation (95) within the model construct to verify

insensitivity to ρmax. To do so, we want to investigate the collinear part of the

integral from limits 0 to rmin, which in logarithmic coordinates ρ := logB
1
x
become,

respectively, ∞ and ρmax. Writing the BK equation using logarithmic coordinates at

some impact parameter and using (183),

∂YNi(Y ) =
∞∑

j=ρmax

2
(
1 +B−2(j−i)) [Nf(i,j)(Y ) +Nj(Y )−Ni(Y ) +Nf(i,j)(Y )Nj(Y )

]
(185)
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where i := logB
1
x01

, j := logB
1
x12

, and

f(i, j) := logB
1

x02

= logB
1√

x2
01 + x2

12 − 2x01x12 cosφ

=
1

2
logB

B2i

1 +B2(j−i) − 2B(j−i) cosφ

≈ 1

2
logB

[
B2i

(
1 +B−2(j−i))]

Assume that Y is small enough such that ρmax � ρs(Y ). This is required for the

validity of the model, as the wavefront must ��t� within the allotted logarithmic

domain. Then j � ρs(Y ) and Nj(Y ) ≈ 0 far ahead of the saturation front. Also,

because we are in the collinear region, j � i, assuming ρmax is large enough that this

is possible, and thus f(i, j) ≈ i. Therefore, we see that with a su�ciently large ρmax,

the term in brackets in (185) is approximately 0. Further increasing ρmax will have

little e�ect on ∂YNi(Y ).

8.2 2D Code

1 /∗
2 2D Dipole Simulation

3 Author : Matt Haley

4 Versions :

5 2: uses red black tree removal

6 3: uses openmp

7 −
8 ∗/
9

10 #include <iostream>

11 #include <fstream>

12 #include <sstream>

13 #include <cs td l i b >

14 #include <ctime>

15 #include <cmath>

16 #include <vector>

17 #include <omp. h>

18 #include <std i o . h>

19 #include <s t d l i b . h>

20

21 us ing namespace std ;

22

23 #include " da ta s t ru c t s /RedBlackTree4 . h"

24 #include <codecogs / s t a t s / d i s t s / d i s c r e t e / d i s c r e t e /randomsample . h>

25

26 // Declare g loba l var iab les

27 const double B=2;

28 const double de l t a =1;

29 const double pi =3.1415926535;

30 const double ep s i l o n=pow(10.0 ,−14) ;
31
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32 double r ( const int & i )

33 {

34 return pow(B,− i ∗ de l t a ) ;
35 }

36

37 bool areSame (double a , double b)

38 {

39 return abs ( a − b) < ep s i l o n ;

40 }

41

42 int main ( )

43 {

44 // Seed random generator and make f i r s t c a l l ( predic tab le )

45 srand ( (unsigned ) time (0) ) ;

46 rand ( ) ;

47

48 // Declare Input Vars −− a l l w i l l be shared among threads and so should be const

49 const double Y_max=3;

50 const double Y1=1,Y2=2,Y3=3; // output at these Y

51 const double delta_Y=.1;

52 const int numEvents = 700 ;

53 const double kappa_cutoff = pow(10 .0 , −1 .0) ;
54 //kappa_cutoff = 0; // disab le cu to f f

55 const double b_probe=0;

56 const double b_probe2=0; // make b_probeN=b_probe for fas te r runs at centra l IP

57 const double b_probe3=0;

58 const double b_probe4=0;

59 const double b_probe5=0;

60 //const double b_probe2=pow(10.0 ,−6.0) ; // make b_probeN=b_probe for fas te r runs at centra l IP

61 //const double b_probe3=pow(10.0 ,−4.0) ;
62 //const double b_probe4=pow(10.0 ,−2.0) ;
63 //const double b_probe5=pow(10.0 ,−1.0) ;
64 const int N_sat=25;

65 const int N_in i t i a l=N_sat ;

66 //const int N_max=4∗double (N_sat)/pow(kappa_cutoff ,2) ; // max number of d ipo les of a given s i ze

67 //cout << "N_max = " << N_max << endl ;

68 // double alpha_s=1;

69 // N_sat=de l ta /alpha_s^2;

70 const double probFactor = 2∗ l og (B) /(2∗ pi ) ;
71 const int rho_min = 0 ;

72 const int rho_max = 40 ;

73 //const int rho_max = 50;

74 const int n_azimuth = 12 ;

75 const double dphi = 2∗ pi /n_azimuth ;

76

77 // Declare Other Vars

78

79 // using array for probab i l i t y matrix instead of vector for multidimensionality

80 // f i r s t entry of l a s t dimension i s sum over theta

81 double prob_itoj [ rho_max+1] [ rho_max+1] [ n_azimuth+1] = {{{0}}};

82 // i n i t i a l i z e random generator , generate one value ( predic tab le )

83 RandGen gen ;

84 gen . RandInt (10) ;

85

86 // determine discre te probab i l i t y matrix for i−>j
87 for ( int i =0; i<=rho_max ; i++ )

88 {

89 for ( int j =0; j<=rho_max ; j++ )

90 {

91 double kthTerm ;

92 i f ( j<i ) {

93 for ( int k=3; k<=n_azimuth−3; k++) { // k l imi t s depend on n_azimuth−−here 60<k<300 deg

94 kthTerm = probFactor∗dphi /(1+pow(B,2∗ ( i−j ) )−2∗pow(B, i−j )∗ cos (k∗dphi ) ) ;
95 prob_itoj [ i ] [ j ] [ 0 ] += kthTerm ; // k=0 i s t o t a l angular prob i−>j
96 prob_itoj [ i ] [ j ] [ k+1] = kthTerm ; // prob for the kth angular bin

97 }

98 }

99 else i f ( j==i ) {

100 for ( int k=2; k<=n_azimuth−2; k++) { // k l imi t s depend on n_azimuth−−here 60<k<300 deg

101 kthTerm = probFactor∗dphi /(1+pow(B,2∗ ( i−j ) )−2∗pow(B, i−j )∗ cos (k∗dphi ) ) ;
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102 prob_itoj [ i ] [ j ] [ 0 ] += kthTerm ; // k=0 i s t o t a l angular prob i−>j
103 prob_itoj [ i ] [ j ] [ k+1] = kthTerm ; // prob for the kth angular bin

104 }

105 }

106 else { // j>i

107 for ( int k=0; k<=n_azimuth−1; k++) {

108 kthTerm = probFactor∗dphi /(1+pow(B,2∗ ( i−j ) )−2∗pow(B, i−j )∗ cos (k∗dphi ) ) ;
109 prob_itoj [ i ] [ j ] [ 0 ] += kthTerm ; // k=0 i s t o t a l angular prob i−>j
110 prob_itoj [ i ] [ j ] [ k+1] = kthTerm ; // prob for the kth angular bin

111 }

112 }

113 }

114 }

115

116 // print probab i l i t y matrix

117 cout << "Probab i l i t y Matrix : " << endl ;

118 cout << endl ;

119 for ( int i =0; i<=rho_max ; i++)

120 {

121 for ( int j =0; j<=rho_max ; j++ ) {

122 cout << prob_itoj [ i ] [ j ] [ 0 ] << " " ;

123 }

124 cout << endl ;

125 }

126 cout << endl ;

127

128 // determine l i f e t imes

129 vector<double> sum(rho_max+1) ;

130 vector<double> l i f e t im e (rho_max+1) ; // upper l imi t on rho_a i s rho_max−1??
131 for ( int i =0; i<=rho_max ; i++ ) {

132 sum [ i ] = 0 ;

133 for ( int j =0; j<=rho_max ; j++ ) {

134 sum [ i ] += prob_itoj [ i ] [ j ] [ 0 ] ;

135 }

136 l i f e t im e [ i ] = 1/sum [ i ] ;

137 }

138 // output l i f e t imes

139 cout << " L i f e t ime s : " << endl ;

140 for ( int rho_a=rho_min ; rho_a<=rho_max ; rho_a++) {

141 cout << 1/ l i f e t im e [ rho_a ] << endl ;

142 }

143

144 // print probab i l i t y matrix , f i xed i and j , print angular p robab i l i t i e s

145 /∗
146 cout << endl ;

147 int i2 = 0;

148 int j2 = 0;

149 cout << prob_itoj [ i2 ] [ j2 ] [ 0 ] << ": ";

150 for ( int k=0; k<=n_azimuth−1; k++) {

151 cout << prob_itoj [ i2 ] [ j2 ] [ k+1] << " ";

152 }

153 cout << endl ;

154 i2 = 0;

155 j2 = 1;

156 cout << prob_itoj [ i2 ] [ j2 ] [ 0 ] << ": ";

157 for ( int k=0; k<n_azimuth ; k++) {

158 cout << prob_itoj [ i2 ] [ j2 ] [ k+1] << " ";

159 }

160 cout << endl << endl ;

161 ∗/
162

163 vector< Stat s : : D i s t s : : D i s c r e t e : : D i s c r e t e : : RandomSample<double>∗ > prob_itoj_gen (rho_max) ;

164 vector< Stat s : : D i s t s : : D i s c r e t e : : D i s c r e t e : : RandomSample<double>∗ > prob_k_azimuth_gen (2∗( rho_max

−1)+1) ;
165 double passToGenij [ rho_max ] [ rho_max ] = {{0}};

166 double passToGenk [ 2∗ ( rho_max−1)+1] [ n_azimuth ] = {{0}};

167 for ( int i =0; i<=rho_max−1; i++) {

168 for ( int j =0; j<=rho_max−1; j++) {

169 passToGenij [ i ] [ j ] = prob_itoj [ i ] [ j ] [ 0 ] ;

170 }
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171 }

172 for ( int i =0; i<=rho_max−1; i++) {

173 prob_itoj_gen [ i ]=new Stat s : : D i s t s : : D i s c r e t e : : D i s c r e t e : : RandomSample<double>(rho_max ,

passToGenij [ i ] , true , time (0) /MERSENNEDIV) ;

174 //prob_itoj_gen [ i ]=new Stats : : Dists : : Discrete : : Discrete : : RandomSample<double>(rho_max,

prob_itoj [ i ] , true , 0.3416) ;

175 }

176 for ( int j =0; j <=2∗(rho_max−1) ; j++) {

177 i f ( j<=rho_max−2 ) {

178 for ( int k=0; k<=n_azimuth−1; k++) {

179 passToGenk [ j ] [ k ] = prob_itoj [ rho_max−1] [ j ] [ k+1] ; // l a s t row of prob matrix

180 }

181 }

182 else { // j>rho_max−2, where the rho_max−1 entry i s for i−>i
183 for ( int k=0; k<=n_azimuth−1; k++) {

184 passToGenk [ j ] [ k ] = prob_itoj [ 0 ] [ j ] [ k+1] ; // f i r s t row of prob matrix

185 }

186 }

187 }

188 for ( int j =0; j <=2∗(rho_max−1) ; j++) {

189 prob_k_azimuth_gen [ j ]=new Stat s : : D i s t s : : D i s c r e t e : : D i s c r e t e : : RandomSample<double>(n_azimuth ,

passToGenk [ j ] , true , time (0) /MERSENNEDIV) ;

190 }

191

192 cout << "Y_max = " << Y_max << " , kappa_cutoff = " << kappa_cutoff <<

193 " , events = " << numEvents << endl ;

194 cout << "probFactor = " << probFactor << endl ;

195

196 // end se r i a l code i n i t i a l i z e r s

197

198 #pragma omp p a r a l l e l // clear contents of output f i l e s

199 {

200 int th_id = omp_get_thread_num () ;

201 ofstream fi leOutputStream , rho_sStream , TatProbeY1 , TatProbeY2 , TatProbeY3 ;

202 s t r ing s t r eam ss ;

203 s s << th_id ;

204 s t r i n g f i l ename ;

205

206 f i l ename = "rho_sCore" + ss . s t r ( ) + " . dat" ;

207 rho_sStream . open ( f i l ename . c_str ( ) ) ; // c lears f i l e contents

208 ////rho_sStream << "numEvents= " << numEvents << endl ;

209 rho_sStream . c l o s e ( ) ;

210

211 f i l ename = "TatProbeY1Core" + ss . s t r ( ) + " . dat" ;

212 TatProbeY1 . open ( f i l ename . c_str ( ) ) ; // c lears f i l e contents

213 ////TatProbeY1 << "numEvents= " << numEvents << endl ;

214 TatProbeY1 . c l o s e ( ) ;

215

216 f i l ename = "TatProbeY2Core" + ss . s t r ( ) + " . dat" ;

217 TatProbeY2 . open ( f i l ename . c_str ( ) ) ; // c lears f i l e contents

218 ////TatProbeY2 << "numEvents= " << numEvents << endl ;

219 TatProbeY2 . c l o s e ( ) ;

220

221 f i l ename = "TatProbeY3Core" + ss . s t r ( ) + " . dat" ;

222 TatProbeY3 . open ( f i l ename . c_str ( ) ) ; // c lears f i l e contents

223 ////TatProbeY3 << "numEvents= " << numEvents << endl ;

224 TatProbeY3 . c l o s e ( ) ;

225 }

226

227 // EVENT LOOP

228 cout << "Num procs = " << omp_get_num_procs ( ) << endl ;

229 #pragma omp p a r a l l e l for

230 for ( int event=1; event<=numEvents ; event++ ) {

231

232 // i n i t i a l i z e thread var iab les

233 double kappa , kappa2 , kappa3 , kappa4 , kappa5 ;

234 double b01 , b01x , b01y , x0x , x0y , x1x , x1y , x2x , x2y ;

235 double x01x , x01y , x02x , x02y , x12x , x12y ;

236 double length_x01 , x01hatx , x01haty , length_x02 , length_x12 ;

237 double b02 , b12 , b02x , b02y , b12x , b12y ;
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238 double b02hatx , b02haty , b12hatx , b12haty , checkpointx , checkpointy ;

239 int rho_x02 , rho_x12 ;

240 double numspl its_i ;

241 bool sizeRangex02 , sizeRangex12 , exceedkappax02 , exceedkappax12 , unSatx02 , unSatx02Lower ,

unSatx02Upper ,

242 unSatx12 , unSatx12Lower , unSatx12Upper ;

243 double T[ rho_max+1 ] [ 5 ] = {{0}};

244 double b ;

245 int rho_s , rho_sPrev ;

246 double angle , angle1 , angle2 ;

247 int count1 , count2 , count3 , count4 , count5 , count6 ;

248 count1=count2=count3=count4=count5=count6=0;

249

250 // stream vars

251 int th_id = omp_get_thread_num () ;

252 ofstream fi leOutputStream , rho_sStream , TatProbeY1 , TatProbeY2 , TatProbeY3 ;

253 streambuf∗ sbuf = cout . rdbuf ( ) ; // make a copy of the cout stream buf fer

254 s t r ing s t r eam ss ;

255 s s << th_id ;

256 s t r i n g f i l ename ;

257

258 f i l ename = "rho_sCore" + ss . s t r ( ) + " . dat" ;

259 rho_sStream . open ( f i l ename . c_str ( ) , i o s : : app ) ; // appends to f i l e contents

260

261 f i l ename = "TatProbeY1Core" + ss . s t r ( ) + " . dat" ;

262 TatProbeY1 . open ( f i l ename . c_str ( ) , i o s : : app ) ; // appends to f i l e contents

263

264 f i l ename = "TatProbeY2Core" + ss . s t r ( ) + " . dat" ;

265 TatProbeY2 . open ( f i l ename . c_str ( ) , i o s : : app ) ; // appends to f i l e contents

266

267 f i l ename = "TatProbeY3Core" + ss . s t r ( ) + " . dat" ;

268 TatProbeY3 . open ( f i l ename . c_str ( ) , i o s : : app ) ; // appends to f i l e contents

269

270 cout << "//////////////////// EVENT = " << event << " , core = " <<

271 omp_get_thread_num () << " ////////////////////" << endl << endl ;

272 // i n i t i a l i z e n [ i ]

273 vector< RedBlackTree<double>∗ > n(rho_max+1) ;

274 for ( int i =0; i<=rho_max ; i++ ) {

275 n [ i ]=new RedBlackTree<double>(−1000) ;
276 }

277 // populate the i n i t i a l s i z e dipo les

278 for ( int k_b=1; k_b<=N_in i t i a l ; k_b++ )

279 {

280 angle1 = 2∗ pi ∗gen . RandReal ( ) ;
281 angle2 = 2∗ pi ∗gen . RandReal ( ) ;
282 b01 = r (0) /2∗gen . RandReal ( ) ;
283 b01x = b01∗ cos ( angle1 ) ;
284 b01y = b01∗ s i n ( angle1 ) ;
285 x0x = b01x + r (0) /2∗ cos ( angle2 ) ;
286 x0y = b01y + r (0) /2∗ s i n ( angle2 ) ;
287 x1x = b01x − r (0 ) /2∗ cos ( angle2 ) ;
288 x1y = b01y − r (0 ) /2∗ s i n ( angle2 ) ;
289 n[0]−> in s e r t ( b01 , b01x , b01y , x0x , x0y , x1x , x1y ) ;

290 }

291 rho_s=rho_sPrev=0;

292 // Rapidity Loop

293 for ( double Y=0; Y<=Y_max+ep s i l o n ; Y=Y+delta_Y ) {

294 cout << "////////////// Y = " << Y << endl << endl ; // output progress

295 for ( int i =0; i<=rho_max−1; i++ ) {

296 numspl its_i=1/ l i f e t im e [ i ]∗ delta_Y∗n [ i ]−>s i z e ( ) ;

297 i f ( numspl its_i != 0 ) {

298 //cout << " i=" << i << " , numsplits_i= " << numsplits_i << endl ;

299 //cout << " l i f e t ime=" << l i f e t ime [ i ] << " , s i ze=" << n[ i]−>size () << endl ;

300 //cout << endl ;

301 }

302 for ( int l =1; l<=numspl its_i ; l++ ) {

303 i f ( n [ i ]−>s i z e ( ) > 0 ) { // only s p l i t i f d ipo les ex i s t

304 // choose a random dipole from column i to s p l i t

305 n [ i ]−>randElement ( b01 , b01x , b01y , x0x , x0y , x1x , x1y ) ;

306 // choose s i ze j to s p l i t into
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307 int j=int ( prob_itoj_gen [ i ]−>genReal ( ) ) ;

308 // choose azimuth k to s p l i t into

309 int k = int ( prob_k_azimuth_gen [ j−i +(rho_max−1)]−>genReal ( ) ) ;

310 // ca lcu la te x2

311 angle = 2∗ pi ∗double ( k ) /double ( n_azimuth ) ;

312 x01x = x1x − x0x ;

313 x01y = x1y − x0y ;

314 length_x01 = pow(pow( x01x , 2 )+pow( x01y , 2 ) , . 5 ) ; //Pythagorean thm

315 x01hatx = x01x/ length_x01 ;

316 x01haty = x01y/ length_x01 ;

317 x2x = −r ( j ) ∗( cos ( ang le )∗x01hatx − s i n ( angle )∗x01haty ) ; // jus t rotation piece

318 x2y = −r ( j ) ∗( s i n ( angle )∗x01hatx + cos ( angle )∗x01haty ) ; // jus t rotation piece

319 // choose which side of x01 to s p l i t o f f of

320 i f ( gen . RandInt (0 , 1 )==1) { // s p l i t o f f of x1

321 x2x = x2x + x1x ;

322 x2y = x2y + x1y ;

323 }

324 else { // s p l i t o f f of x0

325 x2x = −x2x + x0x ;

326 x2y = −x2y + x0y ;

327 }

328 // choose IP to s p l i t into

329 b02x = ( x0x + x2x ) / 2 . 0 ;

330 b02y = ( x0y + x2y ) / 2 . 0 ;

331 b02 = pow(pow(b02x , 2 )+pow(b02y , 2 ) , . 5 ) ;

332 b12x = ( x1x + x2x ) / 2 . 0 ;

333 b12y = ( x1y + x2y ) / 2 . 0 ;

334 b12 = pow(pow(b12x , 2 )+pow(b12y , 2 ) , . 5 ) ;

335

336 x02x = x2x − x0x ;

337 x02y = x2y − x0y ;

338 length_x02 = pow(pow( x02x , 2 )+pow( x02y , 2 ) , . 5 ) ; //Pythagorean thm

339 x12x = x2x − x1x ;

340 x12y = x2y − x1y ;

341 length_x12 = pow(pow( x12x , 2 )+pow( x12y , 2 ) , . 5 ) ; //Pythagorean thm

342

343 // inser t new dipoles , round new dipo les to nearest log_2

344 ////rho_x02 = f loor ( log (1/ length_x02 )/ log (2) + .5) ;

345 ////rho_x12 = f loor ( log (1/ length_x12 )/ log (2) + .5) ;

346 rho_x02 = int ( l og (1/ length_x02 ) / log (B) + . 5 ) ;

347 rho_x12 = int ( l og (1/ length_x12 ) / log (B) + . 5 ) ;

348

349 /∗
350 cout << "x0={" << x0x << "," << x0y << "} , x1={" << x1x << "," << x1y <<

351 "} , x2={" << x2x << "," << x2y << "}" << endl ;

352 cout << " b01={" << b01x << "," << b01y << "} , b02={" << b02x <<

353 " ," << b02y << "} , b12={" << b12x << "," << b12y << "}" << endl ;

354 ∗/
355 /∗
356 cout << "endpoint x coordinates : " << x0x << "," << x1x << "," << x2x << endl ;

357 cout << "endpoint y coordinates : " << x0y << "," << x1y << "," << x2y << endl ;

358 cout << "IP x coordinates : " << b01x << "," << b02x << "," << b12x << endl ;

359 cout << "IP y coordinates : " << b01y << "," << b02y << "," << b12y << endl ;

360 cout << "rho_x01=" << i << " , rho_x02=" << rho_x02 << " , rho_x12=" << rho_x12 << endl ;

361 cout << endl ;

362 ∗/
363

364 // check various conditions before adding daughters x02 and x12

365 unSatx02=unSatx02Lower=unSatx02Upper=unSatx12=unSatx12Lower=unSatx12Upper=0;

366 sizeRangex02 = ( rho_x02 >= 0) && ( rho_x02 <= rho_max) ;

367 sizeRangex12 = ( rho_x12 >= 0) && ( rho_x12 <= rho_max) ;

368

369 kappa = r ( rho_x02 ) /abs ( b02−b_probe ) ;
370 kappa2 = r ( rho_x02 ) /abs ( b02−b_probe2 ) ;
371 kappa3 = r ( rho_x02 ) /abs ( b02−b_probe3 ) ;
372 kappa4 = r ( rho_x02 ) /abs ( b02−b_probe4 ) ;
373 kappa5 = r ( rho_x02 ) /abs ( b02−b_probe5 ) ;
374 exceedkappax02 = ( kappa > kappa_cutoff ) | | ( kappa2 > kappa_cutoff ) | | ( kappa3 >

kappa_cutoff )

375 | | ( kappa4 > kappa_cutoff ) | | ( kappa5 > kappa_cutoff ) ;
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376 kappa = r ( rho_x12 ) /abs ( b12−b_probe ) ;
377 kappa2 = r ( rho_x12 ) /abs ( b12−b_probe2 ) ;
378 kappa3 = r ( rho_x12 ) /abs ( b02−b_probe3 ) ;
379 kappa4 = r ( rho_x12 ) /abs ( b02−b_probe4 ) ;
380 kappa5 = r ( rho_x12 ) /abs ( b02−b_probe5 ) ;
381 exceedkappax12 = ( kappa > kappa_cutoff ) | | ( kappa2 > kappa_cutoff ) | | ( kappa3 >

kappa_cutoff )

382 | | ( kappa4 > kappa_cutoff ) | | ( kappa5 > kappa_cutoff ) ;

383

384 i f ( s izeRangex02 && sizeRangex12 && exceedkappax02 && exceedkappax12 ) {

385 // assume already saturated i f s i z e > N_max

386 // i f ( ((n [ rho_x02]−>size () >= N_max) | | (n [ rho_x12]−>size () >= N_max) ) ) continue ;

387 // i f other t e s t s passed , do time consuming saturation t e s t s in nested form ( nesting

saves computation)

388 unSatx02 = ( n [ rho_x02]−>between2D (b02−r ( rho_x02 ) /2 , b02+r ( rho_x02 ) /2 , r ( rho_x02 ) , b02x ,
b02y ) < N_sat ) ;

389 i f ( unSatx02 ) { // lower boundary x02

390 b02hatx = b02x/b02 ;

391 b02haty = b02y/b02 ;

392 checkpointx = b02x−r ( rho_x02 ) /2∗b02hatx ;
393 checkpointy = b02y−r ( rho_x02 ) /2∗b02haty ;
394 i f ( b02−r ( rho_x02 ) /2 >= 0 ) {

395 unSatx02Lower = n [ rho_x02]−>between2D (b02−r ( rho_x02 ) , b02 , r ( rho_x02 ) , checkpointx ,

checkpointy ) < N_sat ;

396 }

397 else { // b02−r (rho_x02)/2 < 0

398 unSatx02Lower = n [ rho_x02]−>between2D (0 , abs ( b02−r ( rho_x02 ) ) , r ( rho_x02 ) , checkpointx ,

checkpointy ) < N_sat ;

399 }

400 i f ( unSatx02Lower ) { // upper boundary x02

401 checkpointx = b02x+r ( rho_x02 ) /2∗b02hatx ;
402 checkpointy = b02y+r ( rho_x02 ) /2∗b02haty ;
403 unSatx02Upper = n [ rho_x02]−>between2D (b02 , b02+r ( rho_x02 ) , r ( rho_x02 ) , checkpointx ,

checkpointy ) < N_sat ;

404 i f ( unSatx02Upper ) { // at b12

405 unSatx12 = n [ rho_x12]−>between2D (b12−r ( rho_x12 ) /2 , b12+r ( rho_x12 ) /2 , r ( rho_x12 ) , b12x
, b12y ) < N_sat ;

406 i f ( unSatx12 ) { // lower boundary x02

407 b12hatx = b12x/b12 ;

408 b12haty = b12y/b12 ;

409 checkpointx = b12x−r ( rho_x12 ) /2∗b12hatx ;
410 checkpointy = b12y−r ( rho_x12 ) /2∗b12haty ;
411 i f ( b12−r ( rho_x12 ) /2 >= 0 ) {

412 unSatx12Lower = n [ rho_x12]−>between2D (b12−r ( rho_x12 ) , b12 , r ( rho_x12 ) ,
checkpointx , checkpointy ) < N_sat ;

413 }

414 else { // b12−r (rho_x12)/2 < 0

415 unSatx12Lower = n [ rho_x12]−>between2D (0 , abs ( b12−r ( rho_x12 ) ) , r ( rho_x12 ) ,
checkpointx , checkpointy ) < N_sat ;

416 }

417 i f ( unSatx12Lower ) { // upper boundary x12

418 checkpointx = b12x+r ( rho_x12 ) /2∗b12hatx ;
419 checkpointy = b12y+r ( rho_x12 ) /2∗b12haty ;
420 unSatx12Upper = n [ rho_x12]−>between2D (b12 , b12+r ( rho_x12 ) , r ( rho_x12 ) ,

checkpointx , checkpointy ) < N_sat ;

421 } // upper boundary x12

422 } // lower boundary x12

423 } // at b12

424 } // upper boundary x02

425 } // lower boundary x02

426 } // sizerange and kappa check

427 // e l se {

428 // cout << "veto sizerange or kappa : " << sizeRangex02 << " , " << sizeRangex12 << " , " <<

429 // exceedkappax02 << " , " << exceedkappax12 << endl ;

430 //}

431 i f ( unSatx02 && unSatx02Lower && unSatx02Upper && unSatx12 && unSatx12Lower &&

unSatx12Upper ) {

432 i f ( f l o o r ( b01 ∗10000) != f l o o r (pow( pow(b01x , 2 )+pow(b01y , 2 ) , . 5 ) ∗10000) ) {

433 cout << "∗∗∗∗∗∗∗ALERT∗∗∗∗∗∗∗ : " << b01 << " " << pow( pow(b01x , 2 )+pow(b01y , 2 ) , . 5 ) <<

endl << endl << endl << endl ;
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434 }

435 ///n[ i]−>printTreeVector () ;
436 n [ i ]−>remove ( b01 ) ; // remove parent

437 n [ rho_x02]−>in s e r t ( b02 , b02x , b02y , x0x , x0y , x2x , x2y ) ; // add b02

438 n [ rho_x12]−>in s e r t ( b12 , b12x , b12y , x1x , x1y , x2x , x2y ) ; // add b12

439 //cout << "x0x = " << x0x << " , x1x = " << x1x << " , x2x = " << x2x << endl ;

440 //cout << "x0y = " << x0y << " , x1y = " << x1y << " , x2y = " << x2y << endl << endl ;

441 //cout << "entry rho_x02=" << rho_x02 << ": " << b02 << "," << b02x << "," << b02y <<

"," << x0x << "," << x0y

442 // << "," << x2x << "," << x2y << endl ;

443 //cout << "entry rho_x12=" << rho_x12 << ": " << b12 << "," << b12x << "," << b12y <<

"," << x1x << "," << x1y

444 // << "," << x2x << "," << x2y << endl ;

445 //cout << "removal i=" << i << ": " << b01 << "," << b01x << "," << b01y << "," << x0x

<< "," << x0y

446 // << "," << x1x << "," << x1y << endl << endl ;

447 } // saturation check

448 // e l se {

449 // cout << "veto saturation : " << unSatx02 << " , " << unSatx02Lower << " , " <<

unSatx02Upper <<

450 // " , " << unSatx12 << " , " << unSatx12Lower << " , " << unSatx12Upper <<endl ;

451 //}

452 } // tree s i ze check

453 } // dipole creation ( numsplits )

454 } // i loop

455

456 // output amplitude

457 for ( int i =0; i<=rho_max ; i++) {

458 for ( int j =0; j <=4; j++) {

459 i f ( j==0 ) b=0;

460 else i f ( j==1 ) b=pow(10.0 ,−6) ;
461 else i f ( j==2 ) b=pow(10.0 ,−4) ;
462 else i f ( j==3 ) b=pow(10.0 ,−2) ;
463 else b=pow(10.0 ,−1) ; // j==4

464 T[ i ] [ j ] = (double ) n [ i ]−>between2D (b−r ( i ) /2 ,b+r ( i ) /2 , r ( i ) ,b , 0 ) /( (double ) N_sat ) ;

465 }

466 }

467 i f ( areSame (Y,Y1) | | areSame (Y,Y2) | | areSame (Y,Y3) ) {

468 cout << "OUTPUTTING AMPLITUDE" << endl << endl ;

469 i f ( areSame (Y,Y1) ) {

470 for ( int i =0; i<=rho_max ; i++) {

471 TatProbeY1 << i << " " << T[ i ] [ 0 ] << endl ;

472 }

473 TatProbeY1 << "end_of_event=" << event << endl ;

474 }

475 i f ( areSame (Y,Y2) ) {

476 for ( int i =0; i<=rho_max ; i++) {

477 TatProbeY2 << i << " " << T[ i ] [ 0 ] << endl ;

478 }

479 TatProbeY2 << "end_of_event=" << event << endl ;

480 }

481 i f ( areSame (Y,Y3) ) {

482 for ( int i =0; i<=rho_max ; i++) {

483 TatProbeY3 << i << " " << T[ i ] [ 0 ] << endl ;

484 }

485 TatProbeY3 << "end_of_event=" << event << endl ;

486 }

487 /∗ for ( int i=0; i<=rho_max−1; i++) {

488 fileOutputStream << T[ i ] << endl ;

489 }∗/
490 ///fileOutputStream . c lose () ;

491 //cout . rdbuf ( sbuf ) ; // reassign cout to console output

492 } // end output

493

494 // front posi t ion at centra l IP

495 rho_sStream << Y << " " ;

496 for ( int j =0; j <=4; j++ ) {

497 for ( int i =0; i<=rho_max ; i++) {

498 i f ( T[ i ] [ j ] >= .5 ) rho_s=i ;

499 }
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500 rho_sStream << rho_s << " " ;

501 }

502 rho_sStream << endl ;

503 } // Y loop

504

505 f i leOutputStream . open ( "TAmplitude . dat" ) ;

506 f i l eOutputStream << "b , b01x , b01y , x0x , x0y , x1x , x1y , kappa=" << kappa_cutoff << " ,Y_max=" << Y_max

<<

507 " , numEvents=" << numEvents << " , probFactor=" << probFactor << endl ;

508 cout . rdbuf ( f i l eOutputStream . rdbuf ( ) ) ; // redirec t cout to the output f i l e stream

509 for ( int i =0; i<=rho_max ; i++ ) {

510 ///cout << " i=" << i << endl ;

511 ///n[ i]−>printTreeVector () ;
512 }

513 cout . rdbuf ( sbuf ) ; // reassign cout to console output

514 f i leOutputStream . c l o s e ( ) ;

515 rho_sStream << "end_of_event=" << event << endl ;

516 rho_sStream . c l o s e ( ) ;

517 TatProbeY1 . c l o s e ( ) ;

518 TatProbeY2 . c l o s e ( ) ;

519 TatProbeY3 . c l o s e ( ) ;

520 } // EVENT LOOP, threads rejoin

521

522 // compile data

523 int numThreads = omp_get_num_procs ( ) ;

524 ofstream fi leOutputStream , rho_sStream , TatProbeY1 , TatProbeY2 , TatProbeY3 ;

525 i f s t r e am input ;

526 s t r ing s t r eam ss ;

527 rho_sStream . open ( "rho_s . dat" ) ;

528 rho_sStream << "numEvents= " << numEvents << endl ;

529 TatProbeY1 . open ( "TatProbeY1 . dat" ) ;

530 TatProbeY2 . open ( "TatProbeY2 . dat" ) ;

531 TatProbeY3 . open ( "TatProbeY3 . dat" ) ;

532 TatProbeY1 << "numEvents= " << numEvents << endl ;

533 TatProbeY2 << "numEvents= " << numEvents << endl ;

534 TatProbeY3 << "numEvents= " << numEvents << endl ;

535 for ( int i =0; i<numThreads ; i++ ) {

536 s s . s t r ( "" ) ; // empty the s tr ing

537 s s << i ;

538 s t r i n g f i l ename , data ;

539

540 f i l ename = "rho_sCore" + ss . s t r ( ) + " . dat" ;

541 input . open ( f i l ename . c_str ( ) ) ;

542 i f ( ! input . f a i l ( ) ) {

543 while ( g e t l i n e ( input , data ) ) {

544 rho_sStream << data << endl ;

545 }

546 }

547 else cout << "Error : cannot open f i l e " << f i l ename << endl ;

548 input . c l o s e ( ) ;

549

550 f i l ename = "TatProbeY1Core" + ss . s t r ( ) + " . dat" ;

551 input . open ( f i l ename . c_str ( ) ) ;

552 i f ( ! input . f a i l ( ) ) {

553 while ( g e t l i n e ( input , data ) ) {

554 TatProbeY1 << data << endl ;

555 }

556 }

557 else cout << "Error : cannot open f i l e " << f i l ename << endl ;

558 input . c l o s e ( ) ;

559

560 f i l ename = "TatProbeY2Core" + ss . s t r ( ) + " . dat" ;

561 input . open ( f i l ename . c_str ( ) ) ;

562 i f ( ! input . f a i l ( ) ) {

563 while ( g e t l i n e ( input , data ) ) {

564 TatProbeY2 << data << endl ;

565 }

566 }

567 else cout << "Error : cannot open f i l e " << f i l ename << endl ;

568 input . c l o s e ( ) ;
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569

570 f i l ename = "TatProbeY3Core" + ss . s t r ( ) + " . dat" ;

571 input . open ( f i l ename . c_str ( ) ) ;

572 i f ( ! input . f a i l ( ) ) {

573 while ( g e t l i n e ( input , data ) ) {

574 TatProbeY3 << data << endl ;

575 }

576 }

577 else cout << "Error : cannot open f i l e " << f i l ename << endl ;

578 input . c l o s e ( ) ;

579 }

580 rho_sStream . c l o s e ( ) ;

581 TatProbeY1 . c l o s e ( ) ;

582 TatProbeY2 . c l o s e ( ) ;

583 TatProbeY3 . c l o s e ( ) ;

584

585 cout << "DONE, Y_max = " << Y_max << " , kappa_cutoff = " << kappa_cutoff <<

586 " , events = " << numEvents << endl ;

587 cout << "probFactor = " << probFactor << endl ;

588 ///cout << "saturation veto counts : " << count1 << " , " << count2 << " , " << count3 << " , " <<

589 /// count4 << " , " << count5 << " , " << count6 << endl ;

590 cout << f l u sh ;

591 return 0 ;

592 }

8.3 2DR Code Snippet

1 // 2DR changes

2 x1xPrime = b12x + length_x12 /2∗x01hatx ;
3 x2xPrime = b12x − length_x12 /2∗x01hatx ;
4 x0xPrimePrime = b02x − length_x02 /2∗x01hatx ;
5 x2xPrimePrime = b02x + length_x02 /2∗x01hatx ;
6 b02y = 0 ;

7 b12y = 0 ;

8 b02 = abs ( b02x ) ;

9 b12 = abs ( b12x ) ;

8.4 2DSR Code Snippet

1 // 2DSR changes

2 s = gen . RandReal (0 , 1 ) ;

3 smallerRho = min( rho_x02 , rho_x12 ) ;

4 s t r ipw id th = s t r i pFac to r ∗ r ( smallerRho ) ;

5 i f ( abs ( x2y ) > st r ipw id th ) {

6 i f ( x2y < 0 ) s = −s ; // project to the correct side of the x−axis
7 x2xPrime = x2x ;

8 x2yPrime = s∗ s t r ipw id th ;

9 i f ( length_x02 > abs ( x0y−x2yPrime ) ) {

10 i f ( x0x > x2xPrime ) { // x0 s l i d e s up x−axis
11 x0xPrime = x2xPrime + pow(pow( length_x02 , 2 )−pow(x0y−x2yPrime , 2 ) , . 5 ) ;

12 }

13 else { // x0x <= x2xPrime , x0 s l i d e s down x−axis
14 x0xPrime = x2xPrime − pow(pow( length_x02 , 2 )−pow(x0y−x2yPrime , 2 ) , . 5 ) ;

15 }

16 }

17 else x0xPrime = x0x ;

18 i f ( length_x12 > abs ( x1y−x2yPrime ) ) {

19 i f ( x1x > x2xPrime ) { // x1 s l i d e s up x−axis
20 x1xPrime = x2xPrime + pow(pow( length_x12 , 2 )−pow(x1y−x2yPrime , 2 ) , . 5 ) ;

21 }

22 else { // x1x <= x2xPrime , x1 s l i d e s down x−axis
23 x1xPrime = x2xPrime − pow(pow( length_x12 , 2 )−pow(x1y−x2yPrime , 2 ) , . 5 ) ;

24 }

25 }

26 else x1xPrime = x1x ;

27 i f ( x0xPrime!=x0xPrime | | x1xPrime!=x1xPrime ) {
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28 cout << "∗∗∗∗∗∗∗ALERT∗∗∗∗∗∗∗" << endl ;

29 }

30 x0yPrime = x0y ;

31 x1yPrime = x1y ;

32

33 // redef ine impact parameters to primed ones

34 b02x = ( x0xPrime+x2xPrime ) / 2 . 0 ;

35 b02y = ( x0yPrime+x2yPrime ) / 2 . 0 ;

36 b02 = pow(pow(b02x , 2 )+pow(b02y , 2 ) , . 5 ) ;

37 b12x = ( x1xPrime+x2xPrime ) / 2 . 0 ;

38 b12y = ( x1yPrime+x2yPrime ) / 2 . 0 ;

39 b12 = pow(pow(b12x , 2 )+pow(b12y , 2 ) , . 5 ) ;

40 // redef ine coordinates to primed ones

41 x0x = x0xPrime ;

42 x0y = x0yPrime ;

43 x1x = x1xPrime ;

44 x1y = x1yPrime ;

45 x2x = x2xPrime ;

46 x2y = x2yPrime ;

47 }

8.5 RedBlackTree.h

1 #i f n d e f RED_BLACK_TREE_H_

2 #de f i n e RED_BLACK_TREE_H_

3

4 #inc lude " da ta s t ru c t s / dsexcept ions . h"

5 #inc lude <iostream> // For NULL

6 #inc lude <c s td l i b >

7 #inc lude " tape s t ry / randgen . h"

8

9 // Red−black tree c lass

10 //

11 // CONSTRUCTION: with negative i n f i n i t y object also

12 // used to s igna l f a i l e d f inds

13 //

14 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗PUBLIC OPERATIONS∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
15 // void inser t ( x ) −−> Insert x

16 // void remove( x ) −−> Remove x (unimplemented)

17 // Comparable f ind ( x ) −−> Return item that matches x

18 // Comparable findMin( ) −−> Return smal lest item

19 // Comparable findMax( ) −−> Return larges t item

20 // boolean isEmpty( ) −−> Return true i f empty ; e l s e f a l s e

21 // void makeEmpty( ) −−> Remove a l l items

22 // void printTree ( ) −−> Print tree in sorted order

23 // void printTree2 ( ) −−> Print tree in tree order

24 // int s i ze ( ) −−> Returns number of nodes in tree

25 // int between(x , y) −−> Returns number of nodes with elements between x and y

26 // Comparable randElement(n) −−> Returns a random tree element from the f i r s t n nodes

27

28 // Node and forward declaration because g++ does

29 // not understand nested c lasses .

30 template <c l a s s Comparable>

31 c l a s s RedBlackTree ;

32

33 template <c l a s s Comparable>

34 c l a s s RedBlackNode

35 {

36 Comparable element ;

37 ///RedBlackNode ∗ l e f t ;
38 ///RedBlackNode ∗ r igh t ;
39 RedBlackNode ∗ l i n k [ 2 ] ; // Left (0) and r igh t (1) l inks

40 int red ;

41 double bx ;

42 double by ;

43 double x0x ;

44 double x0y ;

45 double x1x ;
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46 double x1y ;

47

48 // c = 0 should be c = RedBlackTree<Comparable>::BLACK

49 // But Visual 5.0 does not comprehend i t .

50 RedBlackNode ( const Comparable & theElement = Comparable ( ) ,

51 RedBlackNode ∗ l t = NULL, RedBlackNode ∗ r t = NULL,

52 double thebx = double ( ) , double theby = double ( ) ,

53 double thex0x = double ( ) , double thex0y = double ( ) ,

54 double thex1x = double ( ) , double thex1y = double ( ) ,

55 int thered = 1 )

56 : element ( theElement ) , red ( thered ) , bx ( thebx ) ,

57 by ( theby ) , x0x ( thex0x ) , x0y ( thex0y ) , x1x ( thex1x ) , x1y ( thex1y )

58 {

59 l i n k [ 0 ] = l t ;

60 l i n k [ 1 ] = r t ;

61 ///cout << "element= " << element << " , mem of l ink [1]=" << l ink [1 ] << endl ;

62 }

63 f r i e nd c l a s s RedBlackTree<Comparable>;

64 } ;

65

66 template <c l a s s Comparable>

67 c l a s s RedBlackTree

68 {

69 pub l i c :

70 e x p l i c i t RedBlackTree ( const Comparable & negIn f ) ;

71 RedBlackTree ( const RedBlackTree & rhs ) ;

72 ~RedBlackTree ( ) ;

73

74 const Comparable & findMin ( ) const ;

75 const Comparable & findMax ( ) const ;

76 const Comparable & f ind ( const Comparable & x ) const ;

77 bool isEmpty ( ) const ;

78 void pr intTree ( ) const ;

79 void pr intTree2 ( ) const ;

80 void pr intTreeVector ( ) const ;

81 int s i z e ( ) const ;

82 int between ( const Comparable & lower , const Comparable & upper ) const ;

83 int between2D ( const Comparable & lower , const Comparable & upper ,

84 const double & ri , const double & thebx , const double & theby ) const ;

85 // void randElement( const int & n, Comparable & theElement ,

86 // double & thebx , double & theby ,

87 // double & thex0x , double & thex0y ,

88 // double & thex1x , double & thex1y ) const ;

89 void randElement ( Comparable & theElement ,

90 double & thebx , double & theby ,

91 double & thex0x , double & thex0y ,

92 double & thex1x , double & thex1y ) const ;

93

94 void makeEmpty( ) ;

95 //void inser t ( const Comparable & x ) ;

96 int i n s e r t ( const Comparable & x , const double & bx ,

97 const double & by , const double & x0x ,

98 const double & x0y , const double & x1x ,

99 const double & x1y ) ;

100 int remove ( const Comparable & x ) ;

101

102 enum { BLACK, RED } ;

103

104 const RedBlackTree & operator=( const RedBlackTree & rhs ) ;

105

106 pr i va t e :

107 RedBlackNode<Comparable> ∗header ; // The tree header ( contains negInf )

108 const Comparable ITEM_NOT_FOUND;

109 RedBlackNode<Comparable> ∗nullNode ;

110

111 // Used in inser t routine and i t s helpers ( l o g i c a l l y s t a t i c )

112 RedBlackNode<Comparable> ∗ cur rent ;
113 RedBlackNode<Comparable> ∗parent ;
114 RedBlackNode<Comparable> ∗grand ;
115 RedBlackNode<Comparable> ∗ great ;
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116

117 // Usual recursive s t u f f

118 void reclaimMemory ( RedBlackNode<Comparable> ∗ t ) const ;

119 void pr intTree ( RedBlackNode<Comparable> ∗ t ) const ;

120 void pr intTree2 ( RedBlackNode<Comparable> ∗ t ) const ;

121 void pr intTreeVector ( RedBlackNode<Comparable> ∗ t ) const ;

122 int r e c u r s i v e S i z e ( RedBlackNode<Comparable> ∗ t ) const ;

123 int between ( const Comparable & lower , const Comparable & upper , RedBlackNode<Comparable> ∗ t )
const ;

124 int between2D ( const Comparable & lower , const Comparable & upper , RedBlackNode<Comparable> ∗
t ,

125 const double & ri , const double & thebx , const double & theby ) const ;

126 void randElement ( RedBlackNode<Comparable> ∗t , int & countdown , Comparable &

theElement ,

127 double & thebx , double & theby ,

128 double & thex0x , double & thex0y ,

129 double & thex1x , double & thex1y , bool & done ) const ;

130 RedBlackNode<Comparable> ∗ c lone ( RedBlackNode<Comparable> ∗ t ) const ;

131

132 // Red−black tree manipulations

133 RedBlackNode<Comparable> ∗ j sw_sing le (RedBlackNode<Comparable> ∗ root , int d i r ) const ;

134 RedBlackNode<Comparable> ∗ jsw_double (RedBlackNode<Comparable> ∗ root , int d i r ) const ;

135 //void handleReorient ( const Comparable & item ) ;

136 //RedBlackNode<Comparable> ∗ rotate ( const Comparable & item ,

137 // RedBlackNode<Comparable> ∗parent ) const ;

138 //void rotateWithLeftChild ( RedBlackNode<Comparable> ∗ & k2 ) const ;

139 //void rotateWithRightChild ( RedBlackNode<Comparable> ∗ & k1 ) const ;

140

141 int i s_red ( RedBlackNode<Comparable> ∗ root ) const ;

142 int mySize ;

143 } ;

144

145 #inc lude "RedBlackTree4 . cpp"

146 #end i f

8.6 RedBlackTree.cpp

1 #include "RedBlackTree4 . h"

2 #ifndef HEIGHT_LIMIT

3 #define HEIGHT_LIMIT 64 /∗ Tal les t a l lowable tree ∗/
4 #endif

5

6 /∗∗
7 ∗ Construct the tree .

8 ∗ negInf i s a value l e s s than or equal to a l l others .

9 ∗ I t i s a lso used as ITEM_NOT_FOUND.

10 ∗/
11 template <c l a s s Comparable>

12 RedBlackTree<Comparable >: : RedBlackTree ( const Comparable & negIn f )

13 : ITEM_NOT_FOUND( negIn f )

14 {

15 nullNode = new RedBlackNode<Comparable>;

16 nullNode−>l i nk [ 0 ] = nullNode−>l i nk [ 1 ] = nullNode ;

17 header = new RedBlackNode<Comparable>( negIn f ) ;

18 header−>l i nk [ 0 ] = header−>l i nk [ 1 ] = nullNode ;

19 mySize = 0 ;

20 }

21

22 /∗∗
23 ∗ Copy constructor .

24 ∗/
25 template <c l a s s Comparable>

26 RedBlackTree<Comparable >: : RedBlackTree ( const RedBlackTree<Comparable> & rhs )

27 : ITEM_NOT_FOUND( rhs .ITEM_NOT_FOUND ) , mySize ( rhs . mySize )

28 {

29 nullNode = new RedBlackNode<Comparable>;

30 nullNode−>l i nk [ 0 ] = nullNode−>l i nk [ 1 ] = nullNode ;

31 header = new RedBlackNode<Comparable>( ITEM_NOT_FOUND ) ;
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32 header−>l i nk [ 0 ] = header−>l i nk [ 1 ] = nullNode ;

33 ∗ t h i s = rhs ;

34 }

35

36 /∗∗
37 ∗ Destroy the tree .

38 ∗/
39 template <c l a s s Comparable>

40 RedBlackTree<Comparable >::~RedBlackTree ( )

41 {

42 makeEmpty( ) ;

43 d e l e t e nullNode ;

44 d e l e t e header ;

45 }

46

47

48 /∗∗
49 ∗ Remove item x from the tree .

50 ∗ Not implemented in th i s version .

51 ∗/
52 template <c l a s s Comparable>

53 int RedBlackTree<Comparable >: : remove ( const Comparable & x )

54 {

55 i f ( header−>l i nk [ 1 ] != nullNode ) {

56 RedBlackNode<Comparable> head ; /∗ False tree root ∗/
57 RedBlackNode<Comparable> ∗q , ∗p , ∗g ; /∗ Helpers ∗/
58 RedBlackNode<Comparable> ∗ f = nullNode ; /∗ Found item ∗/
59 int d i r = 1 ;

60

61 /∗ Set up our helpers ∗/
62 q = &head ;

63 g = p = nullNode ;

64 q−>l i nk [ 0 ] = nullNode ; // added so that looking above the root does not cause problems

65 q−>l i nk [ 1 ] = header−>l i nk [ 1 ] ;

66

67 /∗
68 Search and push a red node down

69 to f i x red v io la t ions as we go

70 ∗/
71 while ( q−>l i nk [ d i r ] != nullNode ) {

72 int l a s t = d i r ;

73

74 /∗ Move the helpers down ∗/
75 g = p ;

76 p = q ;

77 q = q−>l i nk [ d i r ] ;

78 d i r = q−>element < x ;

79

80 /∗
81 Save the node with matching data and keep

82 going ; we ' l l do removal tasks at the end

83 ∗/
84 i f ( q−>element == x )

85 f = q ;

86

87 /∗ Push the red node down with rotat ions and color f l i p s ∗/
88 i f ( ! i s_red (q ) && ! is_red (q−>l i nk [ d i r ] ) ) {

89 i f ( is_red ( q−>l i nk [ ! d i r ] ) )

90 p = p−>l i nk [ l a s t ] = jsw_sing le ( q , d i r ) ;

91 else i f ( ! i s_red ( q−>l i nk [ ! d i r ] ) ) {

92 RedBlackNode<Comparable> ∗ s = p−>l i nk [ ! l a s t ] ;

93

94 i f ( s != nullNode ) {

95 i f ( ! i s_red ( s−>l i nk [ ! l a s t ] ) && ! is_red ( s−>l i nk [ l a s t ] ) ) {

96 /∗ Color f l i p ∗/
97 p−>red = 0 ;

98 s−>red = 1 ;

99 q−>red = 1 ;

100 }

101 else {
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102 int d i r2 = g−>l i nk [ 1 ] == p ;

103

104 i f ( is_red ( s−>l i nk [ l a s t ] ) )

105 g−>l i nk [ d i r 2 ] = jsw_double ( p , l a s t ) ;

106 else i f ( is_red ( s−>l i nk [ ! l a s t ] ) )

107 g−>l i nk [ d i r 2 ] = jsw_sing le ( p , l a s t ) ;

108

109 /∗ Ensure correct coloring ∗/
110 q−>red = g−>l i nk [ d i r 2 ]−>red = 1 ;

111 g−>l i nk [ d i r 2 ]−>l i nk [0]−>red = 0 ;

112 g−>l i nk [ d i r 2 ]−>l i nk [1]−>red = 0 ;

113 }

114 }

115 }

116 }

117 } // end while

118

119 /∗ Replace and remove the saved node ∗/
120 i f ( f != nullNode ) {

121 ///tree−>re l ( f−>element ) ;

122 f−>element = q−>element ;

123 f−>bx = q−>bx ;
124 f−>by = q−>by ;
125 f−>x0x = q−>x0x ;
126 f−>x0y = q−>x0y ;
127 f−>x1x = q−>x1x ;
128 f−>x1y = q−>x1y ;
129 p−>l i nk [ p−>l i nk [ 1 ] == q ] =

130 q−>l i nk [ q−>l i nk [ 0 ] == nullNode ] ;

131 d e l e t e (q ) ;

132 mySize−−;
133 }

134

135 /∗ Update the root ( i t may be d i f f e r en t ) ∗/
136 header−>l i nk [ 1 ] = head . l i n k [ 1 ] ;

137

138 /∗ Make the root b lack for s imp l i f i ed log i c ∗/
139 i f ( header−>l i nk [ 1 ] != nullNode )

140 header−>l i nk [1]−>red = 0 ;

141

142 ///−−tree−>size ;
143 }

144

145 return 1 ;

146 }

147

148 /∗∗
149 ∗ Find the smal lest item the tree .

150 ∗ Return the smal lest item or ITEM_NOT_FOUND i f empty .

151 ∗/
152 template <c l a s s Comparable>

153 const Comparable & RedBlackTree<Comparable >: : findMin ( ) const

154 {

155 i f ( isEmpty ( ) )

156 return ITEM_NOT_FOUND;

157

158 RedBlackNode<Comparable> ∗ i t r = header−>l i nk [ 1 ] ;

159

160 while ( i t r−>l i nk [ 0 ] != nullNode )

161 i t r = i t r−>l i nk [ 0 ] ;

162

163 return i t r−>element ;

164 }

165

166 /∗∗
167 ∗ Find the la rges t item in the tree .

168 ∗ Return the la rges t item or ITEM_NOT_FOUND i f empty .

169 ∗/
170 template <c l a s s Comparable>

171 const Comparable & RedBlackTree<Comparable >: : findMax ( ) const
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172 {

173 i f ( isEmpty ( ) )

174 return ITEM_NOT_FOUND;

175

176 RedBlackNode<Comparable> ∗ i t r = header−>l i nk [ 1 ] ;

177

178 while ( i t r−>l i nk [ 1 ] != nullNode )

179 i t r = i t r−>l i nk [ 1 ] ;

180

181 return i t r−>element ;

182 }

183

184 /∗∗
185 ∗ Find item x in the tree .

186 ∗ Return the matching item or ITEM_NOT_FOUND i f not found .

187 ∗/
188 template <c l a s s Comparable>

189 const Comparable & RedBlackTree<Comparable >: : f i nd ( const Comparable & x ) const

190 {

191 nullNode−>element = x ;

192 RedBlackNode<Comparable> ∗ curr = header−>l i nk [ 1 ] ;

193

194 for ( ; ; )

195 {

196 i f ( x < curr−>element )

197 curr = curr−>l i nk [ 0 ] ;

198 else i f ( curr−>element < x )

199 curr = curr−>l i nk [ 1 ] ;

200 else i f ( curr != nullNode )

201 return curr−>element ;

202 else

203 return ITEM_NOT_FOUND;

204 }

205 }

206

207 /∗∗
208 ∗ Make the tree l o g i c a l l y empty .

209 ∗/
210 template <c l a s s Comparable>

211 void RedBlackTree<Comparable >: :makeEmpty( )

212 {

213 reclaimMemory ( header−>l i nk [ 1 ] ) ;

214 header−>l i nk [ 1 ] = nullNode ;

215 }

216

217 /∗∗
218 ∗ Test i f the tree i s l o g i c a l l y empty .

219 ∗ Return true i f empty , f a l s e otherwise .

220 ∗/
221 template <c l a s s Comparable>

222 bool RedBlackTree<Comparable >: : isEmpty ( ) const

223 {

224 return header−>l i nk [ 1 ] == nullNode ;

225 }

226

227 /∗∗
228 ∗ Print the tree contents in sorted order .

229 ∗/
230 template <c l a s s Comparable>

231 void RedBlackTree<Comparable >: : pr intTree ( ) const

232 {

233 i f ( header−>l i nk [ 1 ] == nullNode )

234 cout << "Empty t r e e " << endl ;

235 else

236 pr intTree ( header−>l i nk [ 1 ] ) ;

237 }

238

239 /∗∗
240 ∗ Print the tree contents in binary tree order .

241 ∗/
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242 template <c l a s s Comparable>

243 void RedBlackTree<Comparable >: : pr intTree2 ( ) const

244 {

245 i f ( header−>l i nk [ 1 ] == nullNode )

246 cout << "Empty t r e e " << endl ;

247 else

248 pr intTree2 ( header−>l i nk [ 1 ] ) ;

249 }

250

251 /∗∗
252 ∗ Print the tree contents in order sorted .

253 ∗/
254 template <c l a s s Comparable>

255 void RedBlackTree<Comparable >: : pr intTreeVector ( ) const

256 {

257 i f ( header−>l i nk [ 1 ] == nullNode )

258 cout << "Empty t r e e " << endl ;

259 else

260 pr intTreeVector ( header−>l i nk [ 1 ] ) ;

261 }

262

263 /∗∗
264 ∗ Returns the number of nodes in the binary tree

265 ∗/
266 template <c l a s s Comparable>

267 int RedBlackTree<Comparable >: : s i z e ( ) const

268 {

269 return mySize ;

270

271 // i f ( header−>l ink [1 ] == nullNode )

272 // return 0;

273 // e l se

274 // return s i ze ( header−>l ink [1 ] ) ;

275 }

276

277 /∗∗
278 ∗ Returns the number of node elements between lower and upper

279 ∗/
280 template <c l a s s Comparable>

281 int RedBlackTree<Comparable >: : between ( const Comparable & lower , const Comparable & upper ) const

282 {

283 i f ( header−>l i nk [ 1 ] == nullNode )

284 return 0 ;

285 else

286 return between ( lower , upper , header−>l i nk [ 1 ] ) ;

287 }

288

289 /∗∗
290 ∗ Returns the number of ode elements between lower and upper and within a radius r_i

291 ∗/
292 template <c l a s s Comparable>

293 int RedBlackTree<Comparable >: : between2D ( const Comparable & lower , const Comparable & upper ,

294 const double & ri , const double & thebx , const double & theby ) const

295 {

296 i f ( header−>l i nk [ 1 ] == nullNode )

297 return 0 ;

298 else

299 return between2D ( lower , upper , header−>l i nk [ 1 ] , r i , thebx , theby ) ;

300 }

301

302 /∗∗
303 ∗ Returns a random element between the 1 s t and nth nodes ( in order )

304 ∗/
305 template <c l a s s Comparable>

306 void RedBlackTree<Comparable >: : randElement ( Comparable & theElement ,

307 double & thebx , double & theby ,

308 double & thex0x , double & thex0y ,

309 double & thex1x , double & thex1y ) const

310 {

311 i f ( header−>l i nk [ 1 ] == nullNode ) {
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312 cout << " error , randElement c a l l e d on empty t r e e " << endl ;

313 return ;

314 }

315

316 RandGen gen ; // random number generator

317 gen . RandInt ( 1 ,mySize ) ; // f i r s t predic tab le

318 int random_integer = gen . RandInt ( 1 ,mySize ) ;

319 bool thedone = 0 ;

320 return randElement ( header−>l i nk [ 1 ] , random_integer , theElement , thebx , theby , thex0x , thex0y ,

321 thex1x , thex1y , thedone ) ;

322 }

323

324 /∗∗
325 ∗ Deep copy .

326 ∗/
327 template <c l a s s Comparable>

328 const RedBlackTree<Comparable> &

329 RedBlackTree<Comparable >: : operator=( const RedBlackTree<Comparable> & rhs )

330 {

331 i f ( t h i s != &rhs )

332 {

333 makeEmpty( ) ;

334 header−>l i nk [ 1 ] = c lone ( rhs . header−>l i nk [ 1 ] ) ;

335 }

336

337 return ∗ t h i s ;
338 }

339

340 /∗∗
341 ∗ Internal method to print a subtree t in sorted order .

342 ∗/
343 template <c l a s s Comparable>

344 void RedBlackTree<Comparable >: : pr intTree ( RedBlackNode<Comparable> ∗ t ) const

345 {

346 i f ( t != t−>l i nk [ 0 ] )

347 {

348 pr intTree ( t−>l i nk [ 0 ] ) ;

349 cout << t−>element << endl ;

350 pr intTree ( t−>l i nk [ 1 ] ) ;

351 }

352 }

353

354 /∗∗
355 ∗ Internal method to print a subtree t in binary tree order .

356 ∗/
357 template <c l a s s Comparable>

358 void RedBlackTree<Comparable >: : pr intTree2 ( RedBlackNode<Comparable> ∗ t ) const

359 {

360 i f ( t != t−>l i nk [ 0 ] )

361 {

362 cout << t−>element << endl ;

363 pr intTree2 ( t−>l i nk [ 0 ] ) ;

364 pr intTree2 ( t−>l i nk [ 1 ] ) ;

365 }

366 }

367

368 /∗∗
369 ∗ Internal method to print a subtree t in sorted order .

370 ∗/
371 template <c l a s s Comparable>

372 void RedBlackTree<Comparable >: : pr intTreeVector ( RedBlackNode<Comparable> ∗ t ) const

373 {

374 i f ( t != t−>l i nk [ 0 ] )

375 {

376 pr intTreeVector ( t−>l i nk [ 0 ] ) ;

377 cout << t−>element << " " << t−>bx << " " << t−>by << " " <<

378 t−>x0x << " " << t−>x0y << " "<< t−>x1x << " " << t−>x1y << endl ;

379 pr intTreeVector ( t−>l i nk [ 1 ] ) ;

380 }

381 }
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382

383 /∗∗
384 ∗ Internal method to return the number of nodes in the binary tree

385 ∗/
386 template <c l a s s Comparable>

387 int RedBlackTree<Comparable >: : r e c u r s i v e S i z e ( RedBlackNode<Comparable> ∗ t ) const

388 {

389 i f ( t == t−>l i nk [ 0 ] )

390 return 0 ;

391 else

392 return 1+s i z e ( t−>l i nk [ 0 ] )+s i z e ( t−>l i nk [ 1 ] ) ;

393 }

394

395 /∗∗
396 ∗ Internal method to return the number of node elements between x and y

397 ∗/
398 template <c l a s s Comparable>

399 int RedBlackTree<Comparable >: : between ( const Comparable & lower , const Comparable & upper ,

RedBlackNode<Comparable> ∗ t ) const

400 {

401 i f ( t == t−>l i nk [ 0 ] )

402 return 0 ;

403 else i f ( t−>element > lower && t−>element < upper )

404 return 1+between ( lower , upper , t−>l i nk [ 0 ] )+between ( lower , upper , t−>l i nk [ 1 ] ) ;

405 else i f ( t−>element > lower )

406 return between ( lower , upper , t−>l i nk [ 0 ] ) ;

407 else i f ( t−>element < upper )

408 return between ( lower , upper , t−>l i nk [ 1 ] ) ;

409 else

410 {

411 cout << " e r r o r " << endl ;

412 return 0 ;

413 }

414 }

415

416 /∗∗
417 ∗ Internal method to return the number of node elements between x and y and within radius r_i

418 ∗/
419 template <c l a s s Comparable>

420 int RedBlackTree<Comparable >: : between2D ( const Comparable & lower , const Comparable & upper ,

421 RedBlackNode<Comparable> ∗t , const double & ri , const double & thebx , const double & theby )

const

422 {

423 i f ( t == t−>l i nk [ 0 ] )

424 return 0 ;

425 else i f ( t−>element >= lower && t−>element <= upper ) {

426 /// i f ( t−>hasSpl i t == 0 ) {

427 double d i s t = pow(pow( thebx − t−>bx , 2 ) + pow( theby − t−>by , 2 ) , . 5 ) ;

428 i f ( d i s t <= r i /2 ) { // check vector distance

429 return 1+between2D ( lower , upper , t−>l i nk [ 0 ] , r i , thebx , theby )+

430 between2D ( lower , upper , t−>l i nk [ 1 ] , r i , thebx , theby ) ;

431 }

432 else { // not within vector distance , keep looking

433 return 0+between2D ( lower , upper , t−>l i nk [ 0 ] , r i , thebx , theby )+

434 between2D ( lower , upper , t−>l i nk [ 1 ] , r i , thebx , theby ) ;

435 }

436 }

437 /// e l se {// already sp l i t , don ' t count for saturation

438 /// return 0+between2D( lower , upper , t−>l ink [0 ] , ri , thebx , theby )+
439 /// between2D( lower , upper , t−>l ink [1 ] , ri , thebx , theby ) ;
440 ///}

441 else i f ( t−>element > lower )

442 return between2D ( lower , upper , t−>l i nk [ 0 ] , r i , thebx , theby ) ;

443 else i f ( t−>element < upper )

444 return between2D ( lower , upper , t−>l i nk [ 1 ] , r i , thebx , theby ) ;

445 else

446 {

447 cout << " error , between2D f a i l e d " << endl ;

448 return 0 ;

449 }
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450 }

451

452 /∗∗
453 ∗ Internal method to return the randomly chosen dipole

454 ∗/
455 template <c l a s s Comparable>

456 void RedBlackTree<Comparable >: : randElement ( RedBlackNode<Comparable> ∗t , int & countdown ,

457 Comparable & theElement ,

458 double & thebx , double & theby ,

459 double & thex0x , double & thex0y ,

460 double & thex1x , double & thex1y , bool & thedone ) const

461 {

462 i f ( thedone == 1) return ;

463 countdown−−;
464 i f ( t == nullNode ) {

465 countdown++;

466 return ;

467 }

468 else i f ( countdown == 0) {

469 theElement = t−>element ;

470 thebx = t−>bx ;
471 theby = t−>by ;
472 thex0x = t−>x0x ;
473 thex0y = t−>x0y ;
474 thex1x = t−>x1x ;
475 thex1y = t−>x1y ;
476 ///countdown = −1000;
477 thedone = 1 ;

478 return ;

479 }

480 else {

481 randElement ( t−>l i nk [ 0 ] , countdown , theElement , thebx , theby , thex0x , thex0y , thex1x , thex1y ,

thedone ) ;

482 randElement ( t−>l i nk [ 1 ] , countdown , theElement , thebx , theby , thex0x , thex0y , thex1x , thex1y ,

thedone ) ;

483 return ;

484 }

485 }

486

487 /∗∗
488 ∗ Internal method to clone subtree .

489 ∗/
490 template <c l a s s Comparable>

491 RedBlackNode<Comparable> ∗
492 RedBlackTree<Comparable >: : c l one ( RedBlackNode<Comparable> ∗ t ) const

493 {

494 i f ( t == t−>l i nk [ 0 ] ) // Cannot t e s t against nullNode ! ! !

495 return nullNode ;

496 else

497 return new RedBlackNode<Comparable>( t−>element , c lone ( t−>l i nk [ 0 ] ) ,

498 c lone ( t−>l i nk [ 1 ] ) , t−>color , t−>bx , t−>by ,
499 t−>x0x , t−>x0y , t−>x1x , t−>x1y ) ;
500 }

501

502

503 /∗∗
504 <summary>

505 Performs a s ing l e red black rotation in the spec i f i ed direct ion

506 This function assumes that a l l nodes are va l id for a rotat ion

507 <summary>

508 <param name="root">The or ig ina l root to rotate around</param>

509 <param name="dir">The direct ion to rotate (0 = l e f t , 1 = r igh t )</param>

510 <returns>The new root ater rotation</returns>

511 <remarks>For jsw_rbtree . c internal use only</remarks>

512 ∗/
513 template <c l a s s Comparable>

514 RedBlackNode<Comparable> ∗ RedBlackTree<Comparable >: : j sw_sing le ( RedBlackNode<Comparable> ∗ root ,
int d i r ) const

515 {

516 RedBlackNode<Comparable> ∗ save = root−>l i nk [ ! d i r ] ;
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517

518 root−>l i nk [ ! d i r ] = save−>l i nk [ d i r ] ;

519 save−>l i nk [ d i r ] = root ;

520

521 root−>red = 1 ;

522 save−>red = 0 ;

523

524 return save ;

525 }

526

527 /∗∗
528 <summary>

529 Performs a double red black rotation in the spec i f i ed direct ion

530 This function assumes that a l l nodes are va l id for a rotat ion

531 <summary>

532 <param name="root">The or ig ina l root to rotate around</param>

533 <param name="dir">The direct ion to rotate (0 = l e f t , 1 = r igh t )</param>

534 <returns>The new root a f t er rotation</returns>

535 <remarks>For jsw_rbtree . c internal use only</remarks>

536 ∗/
537 template <c l a s s Comparable>

538 RedBlackNode<Comparable> ∗ RedBlackTree<Comparable >: : jsw_double ( RedBlackNode<Comparable> ∗ root ,
int d i r ) const

539 {

540 root−>l i nk [ ! d i r ] = jsw_sing le ( root−>l i nk [ ! d i r ] , ! d i r ) ;

541

542 return j sw_sing le ( root , d i r ) ;

543 }

544

545 /∗∗
546 <summary>

547 Insert a copy of the user−spec i f i ed
548 data into a red black tree

549 <summary>

550 <param name="tree">The tree to inser t into</param>

551 <param name="data">The data value to insert</param>

552 <returns>

553 1 i f the value was inserted success fu l ly ,

554 0 i f the insert ion f a i l e d for any reason

555 </returns>

556 ∗/
557 template <c l a s s Comparable>

558 int RedBlackTree<Comparable >: : i n s e r t ( const Comparable & x , const double & bx ,

559 const double & by , const double & x0x , const double & x0y , const double & x1x ,

560 const double & x1y )

561 {

562 i f ( header−>l i nk [ 1 ] == nullNode ) {

563 /∗
564 We have an empty tree ; attach the

565 new node d i r ec t l y to the root

566 ∗/
567 header−>l i nk [ 1 ] = new RedBlackNode<Comparable>( x , nullNode , nullNode , bx , by , x0x , x0y , x1x ,

x1y ) ;

568

569 i f ( header−>l i nk [ 1 ] == nullNode ) {

570 return 0 ;

571 }

572 else mySize++;

573 }

574 else {

575 ///jsw_rbnode_t head = {0}; /∗ False tree root ∗/
576 //RedBlackNode<Comparable> head = new RedBlackNode<Comparable>;

577 RedBlackNode<Comparable> head ; /∗ False tree root ∗/
578 //RedBlackNode<Comparable> ∗head ; /∗ False tree root ∗/
579 RedBlackNode<Comparable> ∗g , ∗ t ; /∗ Grandparent & parent ∗/
580 RedBlackNode<Comparable> ∗p , ∗q ; /∗ I terator & parent ∗/
581 int d i r = 0 , l a s t = 0 ;

582

583 /∗ Set up our helpers ∗/
584 t = &head ;
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585 ///cout << "hi5" << endl ;

586 g = p = nullNode ;

587 q = t−>l i nk [ 1 ] = header−>l i nk [ 1 ] ;

588 ///cout << "hi6" << endl ;

589

590 /∗ Search down the tree for a place to inser t ∗/
591 for ( ; ; ) {

592 i f ( q == nullNode ) {

593 /∗ Insert a new node at the f i r s t nu l l l ink ∗/
594 p−>l i nk [ d i r ] = q = new RedBlackNode<Comparable>( x , nullNode , nullNode , bx , by , x0x , x0y ,

x1x , x1y ) ;

595

596 i f ( q == nullNode )

597 return 0 ;

598 else mySize++;

599 }

600 else i f ( is_red ( q−>l i nk [ 0 ] ) && is_red ( q−>l i nk [ 1 ] ) ) {

601 /∗ Simple red v io la t ion : color f l i p ∗/
602 q−>red = 1 ;

603 q−>l i nk [0]−>red = 0 ;

604 q−>l i nk [1]−>red = 0 ;

605 }

606

607 i f ( is_red ( q ) && is_red ( p ) ) {

608 /∗ Hard red v io la t ion : rotat ions necessary ∗/
609 int d i r2 = t−>l i nk [ 1 ] == g ;

610

611 i f ( q == p−>l i nk [ l a s t ] )

612 t−>l i nk [ d i r 2 ] = jsw_sing le ( g , ! l a s t ) ;

613 else

614 t−>l i nk [ d i r 2 ] = jsw_double ( g , ! l a s t ) ;

615 }

616

617 /∗
618 Stop working i f we inserted a node . This

619 check also disa l lows dupl icates in the tree

620 ∗/
621 i f ( q−>element == x )

622 break ;

623

624 l a s t = d i r ;

625 d i r = q−>element < x ;

626

627 /∗ Move the helpers down ∗/
628 i f ( g != nullNode )

629 t = g ;

630

631 g = p , p = q ;

632 q = q−>l i nk [ d i r ] ;

633 }

634

635 /∗ Update the root ( i t may be d i f f e r en t ) ∗/
636 header−>l i nk [ 1 ] = head . l i n k [ 1 ] ;

637 }

638

639 /∗ Make the root b lack for s imp l i f i ed log i c ∗/
640 header−>l i nk [1]−>red = 0 ;

641

642 return 1 ;

643 }

644

645 ///∗∗
646 // ∗ Insert item x into the tree . Does nothing i f x already present .

647 // ∗/
648 //template <c lass Comparable>

649 //void RedBlackTree<Comparable>:: inser t ( const Comparable & x , const double & bx ,

650 // const double & by , const double & x0x , const double & x0y , const double & x1x ,

651 // const double & x1y )

652 //{

653 // current = parent = grand = header ;
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654 // nullNode−>element = x ;

655 //

656 // while ( current−>element != x )

657 // {

658 // great = grand ; grand = parent ; parent = current ;

659 // current = x < current−>element ? current−>l e f t : current−>right ;
660 //

661 // // Check i f two red chi ldren ; f i x i f so

662 // i f ( current−>le f t−>color == RED && current−>right−>color == RED )

663 // handleReorient ( x ) ;

664 // }

665 //

666 // // Insert ion f a i l s i f already present

667 // i f ( current != nullNode )

668 // return ;

669 // current = new RedBlackNode<Comparable>( x , nullNode , nullNode , bx , by , x0x , x0y , x1x , x1y ) ;

670 //

671 // // Attach to parent

672 // i f ( x < parent−>element )

673 // parent−>l e f t = current ;

674 // e l se

675 // parent−>right = current ;

676 // handleReorient ( x ) ;

677 //}

678

679

680 ///∗∗
681 // ∗ Internal routine that i s ca l l ed during an insert ion

682 // ∗ i f a node has two red chi ldren . Performs f l i p

683 // ∗ and rotatons .

684 // ∗ item is the item being inserted .

685 // ∗/
686 //template <c lass Comparable>

687 //void RedBlackTree<Comparable>:: handleReorient ( const Comparable & item )

688 //{

689 // // Do the color f l i p

690 // current−>color = RED;

691 // current−>le f t−>color = BLACK;

692 // current−>right−>color = BLACK;

693 //

694 // i f ( parent−>color == RED ) // Have to rotate

695 // {

696 // grand−>color = RED;

697 // i f ( item < grand−>element != item < parent−>element )

698 // parent = rotate ( item , grand ) ; // Start db l rotate

699 // current = rotate ( item , great ) ;

700 // current−>color = BLACK;

701 // }

702 // header−>right−>color = BLACK; // Make root black

703 //}

704 //

705 ///∗∗
706 // ∗ Internal routine that performs a s ing l e or double rotation .

707 // ∗ Because the re su l t i s attached to the parent , there are four cases .

708 // ∗ Called by handleReorient .

709 // ∗ item is the item in handleReorient .

710 // ∗ parent i s the parent of the root of the rotated subtree .

711 // ∗ Return the root of the rotated subtree .

712 // ∗/
713 //template <c lass Comparable>

714 //RedBlackNode<Comparable> ∗
715 //RedBlackTree<Comparable>:: rotate ( const Comparable & item ,

716 // RedBlackNode<Comparable> ∗ theParent ) const

717 //{

718 // i f ( item < theParent−>element )

719 // {

720 // item < theParent−>le f t−>element ?

721 // rotateWithLeftChild ( theParent−>l e f t ) : // LL

722 // rotateWithRightChild ( theParent−>l e f t ) ; // LR

723 // return theParent−>l e f t ;
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724 // }

725 // e l se

726 // {

727 // item < theParent−>right−>element ?

728 // rotateWithLeftChild ( theParent−>right ) : // RL

729 // rotateWithRightChild ( theParent−>right ) ; // RR

730 // return theParent−>right ;
731 // }

732 //}

733 //

734 ///∗∗
735 // ∗ Rotate binary tree node with l e f t ch i ld .

736 // ∗/
737 //template <c lass Comparable>

738 //void RedBlackTree<Comparable>::

739 //rotateWithLeftChild ( RedBlackNode<Comparable> ∗ & k2 ) const

740 //{

741 // RedBlackNode<Comparable> ∗k1 = k2−>l e f t ;

742 // k2−>l e f t = k1−>right ;
743 // k1−>right = k2 ;

744 // k2 = k1 ;

745 //}

746 //

747 ///∗∗
748 // ∗ Rotate binary tree node with r igh t ch i ld .

749 // ∗/
750 //template <c lass Comparable>

751 //void RedBlackTree<Comparable>::

752 //rotateWithRightChild ( RedBlackNode<Comparable> ∗ & k1 ) const

753 //{

754 // RedBlackNode<Comparable> ∗k2 = k1−>right ;
755 // k1−>right = k2−>l e f t ;

756 // k2−>l e f t = k1 ;

757 // k1 = k2 ;

758 //}

759

760

761 /∗∗
762 ∗ Internal method to reclaim internal nodes

763 ∗ in subtree t .

764 ∗/
765 template <c l a s s Comparable>

766 void RedBlackTree<Comparable >: : reclaimMemory ( RedBlackNode<Comparable> ∗ t ) const

767 {

768 i f ( t != t−>l i nk [ 0 ] )

769 {

770 reclaimMemory ( t−>l i nk [ 0 ] ) ;

771 reclaimMemory ( t−>l i nk [ 1 ] ) ;

772 d e l e t e t ;

773 }

774 }

775

776

777 /∗∗
778 <summary>

779 Checks the color of a red black node

780 <summary>

781 <param name="root">The node to check</param>

782 <returns>1 for a red node , 0 for a black node</returns>

783 <remarks>For jsw_rbtree . c internal use only</remarks>

784 ∗/
785 template <c l a s s Comparable>

786 int RedBlackTree<Comparable >: : is_red ( RedBlackNode<Comparable> ∗ root ) const

787 {

788 return root != nullNode && root−>red == 1 ;

789 }
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