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The theory of quantum chromodynamics (QCD) predicts that at high energies,
such as those investigated in deep inelastic scattering experiments, hadrons evolve
into dense gluonic states described by the BFKL equation, and at very high densities,
the more general BK equation. In certain approximations, the BK equation reduces
to a well studied reaction-diffusion type nonlinear partial differential equation, the
FKPP equation, for which analytical results are known. In this work, we model the
BK equation using a classical branching process rooted in the dipole model of QCD
evolution. Because the BK equation is inherently two dimensional, our model allows
dipole impact parameters to occupy the full transverse space. A one dimensional limit
of this model is studied as well. Results are compared with the predictions of the
FKPP equation, and correlations between evolution at different impact parameters
are presented. The general features of previously studied one dimensional impact
parameter models are verified, but the details are refined in what we believe to be a

more accurate model.
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Part 1

Background

1 Introduction

Much effort has been applied to the understanding of a hadron’s transition from a
dilute parton gas to a saturated CGC (Color Glass Condensate). While the DGLAP
(Dokshitzer, Gribov, Lipatov, Altarelli, Parisi) equation could explain data collected
at DESY-HERA at very large (O, the investigation of the scaling region at moderate
Q? and very small z ~ Q?/(Q*+s) prompted the application of the integro-differential
BFKL (Balitsky, Fadin, Kuraev, Lipatov) equation, which resums infrared logarithms
(log1/z). [7]

In its original formulation, the BFKL equation can be derived from the infinite sum of
ladder diagrams of Reggeized gluons in the t-channel, as described in [6]. This deriva-
tion is known as the “BFKL pomeron” or “hard pomeron”, giving the Regge trajectory
ap(t) = 1+4a,1n2. However, in the mid 90s, Mueller was able to rederive the BFKL
equation in a much simpler s-channel picture and show that the BFKL pomeron is
equivalent to a formulation describing dipole splittings in transverse space[IT], 12]. A
set of color dipoles comprise a so-called onium configuration, in which the emission of
new gluons gives rise to new dipoles. Evolution consists of “parent” dipoles splitting

into “daughter” dipoles with a characteristic probability

2 72
dPUC(Jleoz,fBu _ :U()ld X9 (1)
- 2 .2
ay TiaTiy

The amplitude of a photonic probe interacting with such a highly evolved hadron
is roughly proportional to the number of dipoles in the hadron having the same

approximate impact parameter and size as the ¢g dipole into which the probe splits.

In the context of the dipole model, the BK (Balitsky, Kovchegov) equation—essentially
the BFKL equation modified by a nonlinear term responsible for saturation in the
CGC regime-has been studied in a variety of analytical and computational ways in

the past decade. The full BK equation in transverse space reads
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Figure 1: Phase diagram of a hadron in deep inelastic scattering
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The first two terms on the right hand side represent the increase in the amplitude due
to branching diffusion, the third term a virtual correction necessary to normalize the
onium wavefunction [I7], and the final term the nonlinearity that restores unitarity
to the BFKL equation.

One of the most exciting theoretical developments of the past decade has been
the discovery that for fixed impact parameter collisions, the BK equation belongs
to the universality class of the FKPP (Fisher Kolmogorov, Petrovsky, Piscounov)
equation[I4] I5]. That is, an analogy was noted between high energy QCD evolution
and a well studied reaction-diffusion equation. With the appropriate transformations,

the scattering amplitude can be put into the form

Owu(t, z) = O2u(t, z) + u(t,z) — u*(t, x) (3)

the solution of which describes a traveling wave. The time, ¢, is analogous to the
rapidity, Y, and spatial coordinate x to the dipole momentum. It is thereby possible

to speak of a saturation wave front, p,, that travels to smaller dipole sizes as collision



energy increases.

u(x.t)

Figure 2: Traveling wave solution to the FKPP equation [2]

An important caveat to the application of the FKPP equation is that it is a mean
field limit of the true stochastic evolution equations. Due to the discrete nature of
an onium state consisting of a finite number of dipoles, fluctuations in dipole number
must play a role in the evolution. Because the true stochastic equations are not known
and their formulation would probably require a more sophisticated understanding of
the saturation mechanism than is presently available, many researchers have taken to
monte carlo computer modeling of stochastic splittings. This continues to be a very
active field of research 20 21], 22], 23] 24, 25]. Two of the most recent of these in
particular |24, 25] have informed the study described in this manuscript. It will be
explained what has been accomplished so far and how it can be extended using a full

two dimensional model.



2 History of the BFKL Equation

2.1 Regge Theory and the origins of the Pomeron

Before the advent of QCD, a variety of other approaches were used to study strong
interactions, some of which are still useful today. Regge theory, a branch of S-matrix
theory, was for instance successfully used to predict the rise of hadronic cross-sections
at small x, or increasing center of mass energy. During the sixties when the funda-
mentals of strong interactions were not yet known, studies focused on the exchange
of massive mesons, as in the Yukawa theory of nuclear force. At that time it was
postulated (by Chew and Frautschi 3], [4], for example) that there were no elementary
strongly interacting particles among hadrons, i.e. mesons and baryons, as it appeared
as a consequence of Regge Theory that all hadrons are bound states or resonances
with interlocking angular momentum states. To this end a substantial attempt was
made to explain all of strong interactions through studying the implications of a
number of assumptions about the S-matrix. The argument was that if the strongly
interacting particles that were known obeyed a self-consistent theory of the S-matrix,
then the need for elementary particles of the strong force would be obviated, yielding

a “bootstrap” theory, as it was called.

It was not until detailed data of the nucleon structure functions was obtained from
inelastic electron-proton scattering at Stanford Linear Accelerator in 1969 that the
physics community came to accept the existence of spin % “partons”, as Feynman
dubbed them, which comprise the nucleon. Although this marked the shift toward
what was the beginning of QCD (and the decreasing popularity of the S-matrix ap-
proach, especially with regards to phenomenology), it is worth reflecting of the sub-
stantial successes of S-matrix theory and how they have shed light on much later
developments in QCD. Some insights from S-matrix theory still await a proper QCD
treatment while others lie beyond the reach of a perturbative theory like QCD.

We will now give an abbreviated tour of Regge theory, in which amplitudes of strong

interaction processes are expanded in terms of partial waves:

Agesga(s,t) =Y (21 + Day(s) (1 + 2t /s) (4)

=0

or by crossing symmetry,
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Figure 3: The Chew Frautschi plot of mesons’ mass squared versus spin. [7]
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Aabsea(s,t) = Y (21 + Day(t) (1 + 2s/1) (5)

1=0
where Pj(z) are Legendre polynomials and ;(s) are called a partial wave amplitudes.
can be rewritten as a contour integral in the complex angular momentum plane
in what is known as a Sommerfeld-Watson transform. The contour surrounds the

positive z-axis so that the residues reproduce the sum in (5):

Als, 1) = 211?2 a2+ 1)) p 1 o) (6)

sin 7l

a(l,t) and P(l,1 4 2s/t) are analytic continuations of the functions in (5). If we

consider the Regge region s > |t|, we can expand P)(z) as

R+ 25/t T () )

This allows us to conveniently deform the contour in @ to a vertical line on which
Je(l) < 0, causing (%)l to vanish at large s. In the process of deforming the contour,
however, we pick up poles in the [ plane known as Regge poles. The residue of the
pole with the largest real part leads to the amplitude behavior

A(s, t) "0 o) (8)

Recalling that «(t) is an angular momentum, one can learn about this function by

3



plotting low lying mesons with spin J; and mass m;, as done on figure [3] It then

2

becomes immediately obvious that J; = a(m;

7) is a linear function, i.e. «(t) =

a(0) + o't. The intercept of this plot has a special meaning: the optical theorem at

large s gives the forward total cross-section as

Oror ¢ s 01 (9)

Thus, the Regge intercept determines the total cross section. From figure [3] it appears
the intercept is about .5, implying that the so-called Reggeons in the figure contribute

Oror ¢ 805 (10)

to the total cross-section. But this is not at all what is observed! Instead, data shows
that cross-sections rise starting at /s %10 GeV. In the late 1950s, Pomeranchuk
proved that any scattering process in which there is charge exchange exhibits an
asymptotically vanishing cross-section. Therefore, there must be a exchange with
vacuum quantum numbers that causes the cross-section to rise. This Regge trajectory
is called the Pomeron] Later after the advent of QCD, it was conjectured that the
integer values of the Pomeron trajectory ap(t) might correspond to bound states of
gluons, or glueballs. Proving the existence of such entities remains one of the great

remaining experimental challenges of high energy QCD.

2.2 The hard Pomeron attained through QCD ladder dia-

grams

Once perturbative QCD techniques had become well established, it was naturally
wondered whether Pomeron behavior could be derived from pQCD. Copious detail
on this program can be found in [6], the results of which we will now briefly touch on.
Computing infinite ladder diagrams such as figure {4] left can reproduce the Pomeron
behavior of (@ Slashes through vertical gluons indicate they have been “Reggeized”,
i.e. each is a sum of infinite ladder rungs such that the gluon propagator is replaced
by

!Fits to the data actually indicate the presence of two kinds of Pomeron: a “soft” Pomeron with
behavior 5298 and a “hard” pomeron with behavior s°4. Because the soft Pomeron lies outside the
reach of perturbative methods, we will only focus on the hard Pomeron. [5]



g o

Figure 4: Left: A ladder diagram of Reggeized gluons representing Pomeron ex-
change. Right: Diagram illustrating the integral equation for the Mellin transformed
amplitude, f(w).

~ 19 [ Si\ kD)
Dyl k) = 25 (%) 1)

where ¢ stands for the ith rung and s; = (k;_1 — k;41)? is the squared center of mass
energy coming into the ith rung.

One may write an integral equation shown diagrammatically in figure [d]right and solve
for the Mellin transformed amplitude at zero momentum transfer, f(w,k;, ks, 0), as
such: [6]

1 [ dv (k2" 1
ki, ky,0) ® ——— — (=) — 12
f(wa 1, 82, ) Wkle /_OO 27T <k%) w_w0+a2y2 ( )

with
wo = 40, In 2 (13)

and v the anomalous dimension of the BFKL eigenvalue function, which we will

later cover in detail. Performing the contour integration and inverting the Mellin

transform,
1 5\ wo 1 1 In®(k? /k2)
F(s,ki,ko,0) ® ——— ( — ex —#) 14
(5. k1, ks, 0) VEKZK2 <k2> 7 In(s/k?) 2ma p( 4a?In(s/k?) (14)

The full ¢qq forward elastic scattering amplitude is then



W(s, 0 Pk, P’k
A (37 ) - 4@'05?5)\/,\15)\/>\2G81)/ 21—22F(S,k1,k2,0) (15)
S 1 2 kl k’2
and thus,
Opor ~ 890 = 502(0)=1 _ (4asIn2 (16)

So we see that the pQCD ladder diagram calculation successfully predicts the Pomeron

trajectory required for the rise of the total cross-section.
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Figure 5: Inclusive deep inelastic scattering for e™p — e~ X
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3 Dipole Formulation of BFKL Equation

3.1 Description of the dipole model

So far we have looked at the BFKL equation from the standpoint of t-channel interac-
tions of v*p — X. However, a much simpler method of deriving the BFKL equation
was achieved in the s-channel picture by Mueller [I1], in which the evolution takes
place in the target as one boosts it to greater rapidity. In this approach, the target
interacts with the probe as an “onium” state of quantum fluctuations. An onium com-
prises a high occupancy Fock state when the interaction energy is large. Using the
onium wavefunction to calculate the dipole cross-section, other useful deep inelastic

scattering observables may be calculated.

The idea for calculating the dipole cross-section had been popular before Mueller
used it to rederive the BFKL equation [33][34]. In a process such as e p — e~ X
(see figure [f), the dominant contribution to the scattering cross-section comes from
photon’s dissociation into a quark-antiquark color-singlet state that strongly interacts
with the proton (see figure @ This approach is only legitimate when the dissociation
time of the photon is large compared to interaction time with the proton. We can
estimate these times using energy uncertainty as follows [7]. Let the four-momentum

of the photon, quark, and antiquark be, respectively,

q=1(90,0,q3) ki =(E1,kp,z2q3) ko= (Es —kp,(1—2)gs (17)



YYVY

Figure 6: Photon dissociation into quark-antiquark pair and interaction with hadron.
A cut of the total cross-section is displayed.

where z is the fraction of the photon momentum carried by the quark (0 < z < 1),
and kr is the two dimensional transverse momentum of the quark. The dissociation

time for the photon is then given by

1
Tdis = o — E1 — By (18)
. . . .. m2+k3 m2+k3
Using expansions in the large ¢z limit, F; =~ 2q3 + gquT, Ey~ (1—2)g3+ Z(If_—z);,
do ~ g3 — %,
it N T (19)

T 2q0 22(1-2)q0

If we take the interaction time of the dissociated photon with the proton in its rest
frame to be of the order of the proton confinement radius 1/A, and set |ky| = A, our

timescale comparison yields

>>1
Tdis ry
dis =77

2 2
mp 2 mf—l—A

10



I rapidity gap

p p

Figure 7: Diffractive deep inelastic scattering

W2 >>% (Q2+m?+/\2)

z(1—2) (20)

since W2 = (p+q)? = mf, — Q% + 2m,qo in the proton rest frame. tells us that

unless z is close to 0 or 1, W2/Q? > 1. This condition has a special significance in

deep inelastic scattering—recalling the definition of the Bjorken =z,
Q? Q? Q*

T = = ~
2p-q  (pHaP-mj—q* W+Q

(21)

We see that W2/Q? > 1 at large energies implies we are in the small x regime.
Therefore, for the high energy processes we will be considering, the dipole picture is
appropriate. Note that this method differs from the usual deep inelastic picture in
which a parton is knocked out by the virtual photon in that the dipole is interacting

with the gluonic field of the hadron, as opposed to a single parton.

Deep inelastic scattering experiments, such as HERA, have been among the most
fruitful for the application of the dipole model. Deep inelastic scattering itself is good
testing ground for high energy QCD since the photon kinematics are contained in the
measurement of the outgoing lepton, yielding Q*. Models for the dipole cross-section
have successfully been applied to inclusive and diffractive events at HERA [35, 36}, [37]
(see figure [7] for an illustration of the latter).

In order to derive QCD evolution equations, we should focus our attention on the

wavefunction of the onium state of the target hadron. This state is built from succes-

11



Figure 8: Quark-antiquark pair interacting with an evolved target. A cut of the total
cross-section is displayed.

sive splittings of the original valence partons of the target until dense gluonic states
comprise the target at high energy. This process is called a gluonic cascade, a still
shot of which is shown in figure [§] Because quarks or gluons splitting into a gluon
exhibit a logarithmic singularity in z [1], soft gluons dominate in the small z limit or
alternatively in the large rapidity limit, as y = In1/z. In the limit of large number
of colors (N,), each emitted gluon is treated as a zero-size quark-antiquark pailﬂ7 as
shown in figure[d] Note, however, that the dipoles are of finite size, as can also be seen
in the figure. This is a potential source of confusion, as we usually think of a dipole
as being the limit of zero separation between a charge and anti-charge, although in

this case the color dipoles are finite size.

A major advantage to the dipole-onium interaction model is that the cross-section

for the subprocess shown in figure |8| factorizes:

1
o’ (Y, Q%) = /d2bd29001/ dZWv*(%%lQ)E Tdipote( Y, To1) (22)
0

where 1.«(2,201()) is the photon wavefunction for splitting into a quark-antiquark
dipole of size x¢;, 2 the longitudinal momentum fraction of the quark, and ogpee the

dipole forward scattering amplitude.

2This is related to T'Hooft’s observation that for SU(N), as N— oo planar graphs dominate over
those of differing topology [49].

12
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Figure 9: Illustration of dipoles in the evolved target from figure [8l Fach dipole is
indicated by a double-headed arrow.

3.2 QCD evolution using color dipoles
3.2.1 Single emitted gluon wavefunction

With the dipole model of hadron evolution we can now see how QCD evolution
equations, in particular the BFKL equation, can be obtained. We will follow the
seminal paper by Mueller [IT] with the addition of some omitted details. The accuracy
of our calculation will be leading logarithmic such that the (a In %) " contribution
to the square of the onium wavefunction will be computed for n soft gluons with
momentum between zgp and p. Using the usual Feynman rules for a gluon and quark
vertex, the diagrams in figure (10| yield the following contribution to the momentum

space onium wavefunction:

A

a a ko€
T/}Sg) (ki, ko; 21, 20) = —gT %Ugg (ki;21) — %Ugg (k1 + ko; Zl)] 2k2 2 (23)
2

where a is the color index of the emitted gluon, 7% the SU(3) generator, a and 3
spinor indices, z, := k' /p™ the fractional momentum of the original quark-antiquark
pair (in lightcone coordinates), €, the polarization vector of the emitted gluon with

helicity A, and ™ is the wavefunction when n soft gluons have been emitted.

We will now transform the momentum space wavefunction to transverse space where
a significant simplification takes place: in the high energy limit the emission of small
z, or soft, gluons dominates, and the transverse coordinates of the parent partons

are not affected by subsequent evolution of the system. Thus, each dipole evolves

13
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Figure 10: Single gluon emission from quark-antiquark pair

independently of the others. Their transverse coordinates are said to be “frozen”.

Fourier transforming to transverse space,

d’k d’k
w(l) (x1,%2; 21, 22) _/ : / el "Qw “(k1, ko; 21, 22) (24)

(2m)* ) (2m)?
Substituting into ([24),

dk? zkx d2k1 1k —ko)-x kg'E%
=9 /(27r) 2 2<w“5<xl’zl) /(27r)2 sl 2) K

2 A
_ a,,(0) d k2 iko-(x2—x ika-(x2—x1 k2 )
=gT waﬁ(xl, 21) / —(27T)2 (e ( 0) _ gikar( )) W (25)

At this point we will need to prove the following Hankel transform:

L K€ X-€
2 ik-x
/d ke = —27?2? (26)

We can demonstrate as follows:
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o 2 ik-x"VI~J
LHS = > / ke x5t
j=1,2

0 1exc €
— . d2k ikex -7
! ;2 8xj / ¢ k2

J

‘ 5 ~ €
= 2mi Z éj - Vm/o dk:JQ(lm)EJ

j=12
= —2m2éj-§;/ dkJ, (kx)e;
j=1,2 0
6. e
— o ]
wi Y
7j=12
- om S O
22
Using in (25)), we obtain
1gT* (0) X20 X1 A
_ . X0 X 97
o ¢a,6’(x1721) (3750 l’%1> €2 ( )

where a Hankel transform has been performed in the last step. Note that xo = 0
in the above, and X9 := X9 — X, X921 := X9 — X;. Now let us calculate the squared
and summed wavefunction. If the squared and summed wavefunction for zero gluons

present is

2
1/)(()4(2 <X7 Zl)

O (x1,21) = Z

af

(28)

then similarly, that for one gluon present is

¢(1)(X1>Zl) = /d2X2 /Z1 dZ_Z;Z% Z Z

af A=1,2 a

(a . 2
1/Ja5 (x1,X2; 21, 22)

2o serves as a lower cutoff to the emitted gluon momentum, z5. The largest momentum

the gluon can possess is z; in the leading logarithmic approximation.
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dZQ

T d2X2

XZl

2

{(Xm X21) EA}
E : 2 2 )
D19 L\T20 T2

N. [ d? d 2
_a / X2/ 422 4 0 (x,, 21) (X_so B X_gl) (29)
0 Toy  T9p

where we have used the strong coupling constant a; = %, the trace over ) TT* =

M

N in the adjoint representation of SU(N), and the polarization sum was evaluated
with ¢! = (0,1,0,0) and €2 = (0,0,1,0). After foiling the term in parenthesis in (29)

and some algebraic simplification we arrive at

N. [ dxy [ d
B (xy, 21) = & / XQ/ 2 g0, 2) (30)
20

22 3”203321

At this point we might want to pause to see what we have gained. Notice that the

momentum space representation of single gluon emission,

d
(I) (kl, Zl /d2 / 22
27T 2

does not exhibit the same clean factorization as , which is written as an integral

(1)a 2
] <k17k2721»22) (3]-)

of the zero gluon, bare quark-antiquark wavefunction squared. The simplicity of
will allow us to generalize the onium wavefunction to include n soft gluons. Also, we
will see the kernel of the spatial integral, x%,/z3,73, play a significant role later in

this manuscript.

3.2.2 n emitted gluon wavefunction

For notational simplicity, let us make use of the following Jacobian,

d*xy = vadrode = Jdx19dTs0 (32)

where ¢ is the angle between x5y and x;¢. Inserting an extra factor of 2 to account
for the 0 < ¢ < w as well as the 7 < ¢ < 27 domain,
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Figure 11: Diagrams for two gluon emission
4xa1 90
J(ZL‘lg,ZL'Og) == (33)

V(o 4 220)? — 23] [23, — (221 — 220)?]

For the 2 gluon emitted squared wavefunction, the second gluon can be emitted from
either the x(y dipole (lefthand picture in ﬁgure or the x15 dipole (righthand picture
in figure . Given these two possibilities, the 2 gluon squared wavefunction can then

be written,

A dyy 2 L dz x? x?
o) _ /dz / “e2 10 /dz / “<=3 02 12 o0
a1, 2) (27T2 ) s 0 F2 TTh 0 23073 i 15123 a1, 21)
aN, 3, x2 22
— [ In 2 @( ) /dZ /d2 02 12 34
(27T2 ) (ZO) a1, 21) 2 -’3305521 L3073 " 13,73, (39

Performing the transform of coordinates using the Jacobian , we can also

write this solution as

2aN.\ 2 J (220,
— ( ; ) In? (ﬂ) (I)(O)(szl)x%o/dmodle (x220 f21)
o

T2

20 20%21
J(x30, T32)T3 J(x31, T32)73
02 31, 432)4L12
X |:/ d$30d$32T + dl’ggdﬂ?;ﬂT (35)
L30L32 31232

Now that we have calculated the squared wavefunctions for 1 and 2 soft gluons, we
are prepared to generalize to n gluons through the use of a generating functional. Let
d (x4, 21, u(x, z)) be defined by the equation,
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) 4] )

5U(X27 22) 5U(X3, Zs) o 6U(Xn+1> Zn+1

) (I)<X1, 21, u(x, Z))’u:O

= (I’(n)(xlv)(?v"' 7Xn+1;22'”zn+1) (36)

where ®™ is the n gluon squared wavefunction, and Xn+1, Znt1 are the transverse
position and momentum fraction, respectively, of the nth gluon. Let us now define
the generating functional Z by
B(x1, 21, u) = DO (xy, 21) Z(x1, X0, 21, 1) (37)
such that the following holds:
aN, x? 1
Z(Xl, X0, 21, u) = 1+?2C.T(2)1 /dQXQ# / U(Xg, ZQ)Z(XQ, X1, 292, U)Z(Xz, X0, 22, U)
20121 J z
(38)

Using the standard rules for functional differentiation,

J
du(x)

J

uy) =6 (x —y) e / Pyuly)fly) = f(x) (39)

we can demonstrate by reproducing the 2 gluon squared wavefunction (34). Let
us calculate the LHS of before setting u = 0.

o o

du(xs, z3) du(xa, 22)

o© (X1> Zl)Z(Xla X0, 21, U)
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) o aN, x?
1 c d2 N 10
du(xs, 23) du(xa, 22) [ o x 2,02,

21 g
></ ﬁu(xa,za)Z(Xa,xl,za,u)Z(xa,xo,za,u)} (40)

0 Fa
aN. 1 z? )

o
2 29 T5,15, du(xs, 23)
aN, 1 23,

= o) (Xh 21) [

= CD(O)(Xb Zl)

[Z(XZa X1, 22, U)Z(X27 X0, 22, u)]

6Z(X27 X1, 292, u)

Z<X2a X0, 22, u)

R du(xs, 23)
5Z(X2aX0)ZQ7u)
A 41
du(xs, z3) (%2, X1, 22, u) (41)
aN\? 1 1 z3, 72
= ) Bt 2 Zoss Z1s:3 70, 42
(27T2) 2 7 Ty (x1,21) 12,13, Sl (42)

2

x

20

+ == Z23;3231;3221;2:|
L23L30

where hopefully the abbreviated notation for Z,s., := Z(Xq,Xg, 2y, u) is clear. Now
letting v = 0 in so that Z,s, = 1, and taking the appropriate integrals, we
obtain (34)).

While yields the n gluon squared wavefunctions upon functional differentiation,

it fails to address virtual corrections and does not satisfy

1
/d2X1/ le(I)(Xl,Zl7U>|u:1 =1 (43)
0

Cutting off the ultraviolet divergences caused by oy or x9; going to zero, we introduce
a size cutoff p < Rygrger such that xog, 291 > p. By enforcing at each order in o

one can obtain the generating functional with virtual corrections,

Z(X17X07 Zlau)
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2aN, 10 21 alN, [* dz
= exp|— In{—)In{— ||+ —
T p 20 212 . %

2aN, d?’xqa?
X /exp [— @ In (@) In (é):| ;(23;10U(X2, ZQ)ZQJ;QZQJ);Q (44)
P

T P <2 20721

This equation represents a classical branching process and is exact in the leading

logarithmic approximation. Another form of this equation we will use, letting Y :=
In <Z—1>, y:=In (Z—2), and & = e s
20 20 ™

Z(Xl,XO, Zl,U)

.
= exp {—264 In (ﬁ) Y} + g/ =2
p 27 J,, %2

d2 2
X /exp |:—204 111 (%) (Y — y):| ;(25521()”()(27 ZQ)ZQ’I;QZQ’O;Q (45)
p

Lo0T21

3.2.3 BFKL from the n gluon onium wavefunction

The generating functional in can now be rewritten as an amplitude. Adding the
two equal terms at first order in @ yields a factor of two in second term of the RHS

below:

T(96’107 21;Q, Z)

2w
= av(Q,x1)exp {—207 In (@) Y} + 2&/ 2=
P z Z2

X /exp [—QOzln (@) (Y — y)} K (210, T12)dz19T (212, 205 Q, 2)  (46)
0 P

where
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~ 1 T
K(1’107$12) = —/%J(Imxzo)d%ze (47)

27 x20x21

Let us now write T(Y, Qz10) := T(x19, 21; @, 2) as the (inverse) Mellin transformﬂ of
Tw(QI10)~

c+1i00 dw

T0.Qo) = [ 52 Qoo (48)

This contour integral is a vertical line in the complex plane drawn such that c is
greater than the real part of any singularities of T,,. Note that the first term on the
RHS of can be written as

c+ioco _
@U<Q,ZE10> eXp |:_2C¥ In (@> Y:| — / d_a)‘ewy aU(nyIO) (49)
P c—ioo 2T w + 2aln (’”;0)

since the pole of w = —2aIn ( p > leads to the residue on the LHS of the equation.
Evaluating the second term on the RHS of (46),

Z1 -
2&/ @ /exp {—2& In (@> (Y — y)] K (210, x12)dz12T (212, 22; Q, 2)
z ) P P

Y N c+i00
= 2a/ dy/exp [ 2aln< P ) (Y — y)} K(l‘lo,l‘lg)dl'm/ dw =T (Qx12)
0 P c

o 27rz

“Hdw [ - 1
—254/ —./K($10>$12)d$12

—ico 20, w+2aln <TO>

oL o))

3Technically, this would be the i 1nverse Laplace transform of T (Qxlo), but these transforms are
related since {M T} (e7Y) = o= [ Y Todw = {L7'T,} (V

} T(Qw12)
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- 2@ /C+iOO d_w /dm12K(x10,x12)Tw(Qx12) (50)
cmivo 270 J, w+2aln (L;o)

—100

Where we took the leading order of the term in curly braces in the last step. Using
(49) and (50), we now see that in Mellin space, takes the following form:

K T,
T(Quy) = a— 90 9s / dary, T T10, ©12) T (Q12) (51)
w+2aln (7) w + 2aln (7>
Notice that if we redefine the kernel as
” Z10
K(I'lo, ZE12) = K(l’lojl’lg) — 5((1310 — 51312) 11’1 <7) (52)
then takes on a particularly simple form.
K T
Tw(Qxl()) = U<Qx10) + 26(/d.1’12 (l’l(),l’m) w(QIIQ) (53)
w+2aln (’%) w+2aln (f%o)
B(a1o = 12)In (22 ) To(Qus)
+
w+ 2aln (x—;o
K T,
Tw(Qxl()) d =Q U(Qxlo) + 207 / dl‘lg <x107 1'12) (Qx12)
W+ 2aln (ff%) w+2aln (f—;o) w4t 2aln (:%0)
(54)
1o 200
Tw(leo) = ZU(Ql’lo) + U/dx12K(x107x12)Tw($12Q) (55)

This is, in fact, the celebrated BFKL equation. Let us now show that it yields the
well known eigenvalue x(A) = 1(1) — $0(1 — A/2) — 2¢(A/2), with ¢(z) := L InT(x)
being the digamma function and (1) = 7. Euler’s constant. Let us first manipulate

the K part of the kernel in . Recalling and ,
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K(l'loal'u) =

o9 2
21 p  TiaThg

o] 2
L1
2

J(9€21, 9520)619520

- / o 1 (56)
o 20 /[(zn + 220)? — 23] [23) — (21 — 220)?]
Bringing in an identity that relates transverse lengths and Bessel functions,
T [ 1
— bdbjo(bl’()l)Jo(bxgo)Jo(bl’lg) = (57)
2 /O \/[(@1 + 90)? — 5’5%0] [ﬁo — (291 — 720)?]
- 35%0 > < dxy
K(C(]lo, 1’12) = — bde()(b[E()l)J()(bCClQ) —JQ(bZEQ()) (58)
12 Jo p T20

Let us tackle the x9g integral:

> d
/ ﬂjo(bx%
o

Z20

)

S p
lim |:/ dxgol’y_ljo(bijo) - / d[EQ()ZL’y_Ie]o(bIQO) (59)
0 0

y—0

INE y
lim 201y L) 0"
y—0 (1—3) v
. (2)y rg+1)  p
lim | — — e
v=0\b/ yI'(1—-%) y

2V PE+1)-T(1 2pY T(1 v
lim (b)y (5+1) ()+ by (1 p¥
y=0 (1 — %) y F'1-4%) v Y

Y TE4+1)-T(1 2V py
lim (b . (2+ ) <)+ 1 y (b) p
v=0 (1 —4) y INGEEY y

b

Y1)~ (60)

Note that in the above integral we used the standard formula I'(z) = T'(x + 1)/x. In
(B9, we also used the approximation Jy(bzag) &~ 1 in the second term (red), as its
argument is bounded by p. The integral in the first term (blue) is given in Gradshteyn
and Ryzhik [9], p. 668, 6.516-14.

Using this result, let us now evince the eigenvalue for the eigenfunction 7, of the
kernel K in (55). Although Mueller omits this derivation in [II] due to it being
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“straightforward”, it is still quite a bit of work to show. Given the importance of the
BFKL eigenvalue, we will perform the full calculation. To do so, we will make use of

the Taylor series for Bessel functions,

- bas\ 2"
belz ( 12) (61)

m=0

Other techniques used will be summarized below.

/dSUlzK(l’lo, 5512)171\2

[e’e) 2 o]
= / dl‘lQﬁlfi\Q |:@/ bdeo(b(L’()l)Jg(blL’lg) (’Qb(l) —In b—p) — In (@):|
p Z12 Jo 2 P

o0 2 [ee]
= / 192y 220 { / bdbJo(bxo1) Jo(bx12) (w(n —In bﬂ)}
p T2 0 2

00 2 X/ 1\m 00 2m

=[S 3 G () =gt ) ()7 s
(63

- [ dennt 5 o (e - ) [2 () e

_ [T r T o (D)™ (0" m! z10\ I'(m +1
- / g, <m!>22<x—u> <r<—m>¢<”‘1“(m> S

) F(m+1))

© 20m T(—m)
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_ 1T(m 4+ 1) (=m) + I'(=m)I'(m + 1))

m=0
(65)
00 72 o (7] )m 1 T10 2m
_ d A 710 — 2x(—2
/p xuxmx%miu m!l T(—m) <.,1,712> x(—2m)
(66)
> N
= / dx12x12—3$015(:v01—a:lg)x(é?/@xlz)
p Lo
/dx12K(x107 T12)712 = X(\)7 O (67)
In (green) we used the orthogonality /closure relation for Bessel functions:
e 1
/ bdeg(b£C01)J0(b£L'12) = I_(S(xlo - 33'12) (68)
0 12

In (63) (blue) we used the same Gradshteyn and Ryzhik integral as in (59). In
(red) and (cyan) we used

g oo - ! (@)m = 0501 — ) (69)

= ml T(=m) \z1

causing the red term to drop out. In (red) we used and (69). Finally, in
(65) (magenta) we defined
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= o - 30 (1-3) - 50 (3) (1)

3.3 The Pomeron from BFKL

Now in possession of the BFKL eigenvalue equation (67), we may demonstrate the
emergence of the Pomeron. Let us begin by inverse Mellin transforming the amplitude

once again.

c+i00
T (212, Q) = / D Quin) T (71)

c—100 2mi

The BFKL equation can be easily solved for T,

c+i00 d)\ - c+i00 d)\ -
| a2 = [ an(@o) (72)
Qv
T — TP
AT 2ax(N) (73)

where v, is the Mellin transform of v(Qz10). Recalling , let us perform the inverse
Laplace and inverse Mellin transforms on to solve for the amplitude as a function

of energy, where we expect pomeron behavior to manifest itself.

c+ioco dw c+ioco d)\ 071})\
(Y, Qro) /H.oo o /H.OO 2 @T0) TR (74)
The w integral is a simple residue.
— o dA 2ax(A)Y +AIn(Qz10)
T(Y,Qxy) = & _ 5e 10 (75)

Assuming that a) In(Qz19) < @Y, or that the transverse momentum is not too large,
and b) vyis a slowly varying function, the integral in can be approximated by
the saddle point method. This method evaluates the integral where the phase is

approximately stationary. We can see where this occurs by examining the graph of
x(\) shown on figure
Let us use the expansion of x(\) around A = 1 [40]:
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Figure 12: Graph of x(\) between 0 < A < 2. Note the saddle point at A = 1.

x(\) =~ 21n2+£((3)()\—1)2 (76)
YO & B (77)
) m203) (78)

where ((x) is the Riemann zeta function. The saddle point approximation can be

written as
ot 1 /') = 27
D YA SR — As) = AT — 2 79
/cioo ) P ) 27 (Ns) (79)
Applying this approximation to , along with , , and , we obtain
O_ﬂ)l _ 1H2(Q$10) )
T(Y,Qryy) ~ ————=exp | 4aIn(2)Y — In(Qz1g) — ———=
(Y, Q1o) dar(3)Y p< (2) (Qz10) 14ac(3)Y
_an(Quyp) plar=DY <_1HQ(Q$10)> (80)
1dar((3)Y 14ad(3)Y

with

27



ap — 1 =4aln(2) (81)

By , we see that BFKL evolution in the dipole picture indeed leads to the same
hard pomeron behavior as in (|16)).
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4 The BK Equation and Traveling Wave Solutions

4.1 Unitarity corrections to the BFKL equation; the BK equa-

tion

What are the consequences of a cross-sectional rise that goes like e®*~! using (81])?
Let us do a quick calculation: let Q% ~ 10GeV, a moderate value that does not
violate the condition under (75). Using the well known formula of Gross, Politzer,

and Wilczek for asymptotic freedom [53] [54],

2T 2
- T py=11- = 82
bn(Q/A) " 3" (82)

Using ny = 3 light quarks and A = .2 GeV, we obtain o, = .178. Then, with N, = 3,

as(Q)

12a,
s

ap — 1 =4aln(2) = In(2) ~ .47

Unlike for Reggeons (mesons p,w, f2, as,etc.) with a Regge trajectory intercept oﬁ
a(0) —1 ~ —.45, the BFKL pomeron, also called the hard pomeron, causes the cross-
section to rise with s. This is actually necessary to fit available data, but with such

a large power the Froissart-Martin bound [55] (a consequence of unitarity),

ron(8) < % In® (i) (83)

™ S0
is violated even within HERA’s energy range. It is possible to introduce next to
leading order (NLO) corrections to the BFKL equation that allow HERA data to be
successfully fit [1], but even these are not enough to tame the eventual rise predicted
by the LO BFKL equationﬂ A great deal of effort throughout the 90s went into
formulating QCD evolution equations that preserve unitarity. This led to the B-
JIMWLK equations [41], 56] [57], which were several different techniques: a functional
renormalization group equation, an infinite hierarchy of coupled integro-differential

equations, and a Langevin equation. In 1999, Kovchegov managed to considerably

4assuming degenerate trajectories for even and odd C-parity

®Interestingly, because the NLO correction is so substantial, Donnachie et. al. claim the pertur-
bative ladder diagram calculation of the BFKL pomeron is suspect and that the correct value for
the hard pomeron intercept provided by this calculation is probably a coincidence. See section 7.3
of [7] for details.
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simplify Balitsky’s equation using Mueller’s dipole formulation, deriving what is now

known as the BK equation. We will review the presentation of [39, 40] condensing

and simplifying notation where possible.

Following [12][13], we will implement a dipole number density n(zo1, Y, |b|, z1), which

when convoluted with the photon dissociation wavefunction squared, ®(zy, z¢1 ), gives

9017 /d $01/ dz P 21,1’01 (96’01,Y$1)

(84)

where N(z1,Y) is the propagator of the virtual photon through a target nucleusﬂ

The BK equation is usually derived in the frame of the target with the evolution put

into probe. We will see obtains when we define n(zg1, Y, 1) by

1 )
Y, |b = A Y
Wl'%nl(x()l, ) | |7 1'1) 5U(X1) (X017 ) u>|u:1
Likewise, we can define the dipole pair density
1 1 1 9 0
Y. = _ Z Y
27Tx1 27r na(Tor, Y, 21, ) 2 du(xy) du(xz) (o, ¥ )]y
and generalizing to the group of £ dipoles with sizes x1,. ..,z
E 1
g 27m?nk($01, Yoy, .,2p) = k;_ 1;[ XOLK U)‘uzl

The result of multiple functional differentiation in is [39]

ni<$01;Y7 X1y ,Xk)

= / dyexp[ 2a1n (:c )(Y y)}/dQX’ 61
p p 235%235%2

21
[ l’oQ,YXl,...,Xk)—i— E nj(.Tog,Y,Xl,...,Xk)nk(xlg,Y,Xl,...

jtk=i

6This is basically a rewriting of
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The total interaction cross-section is the sum of the interactions of each of the groups

of k dipoles with the target. We can write this as

d*x
N(XonY) = /27;77/1(330175/3(1)
1

d’x, d’x
+/—1—2n2(:c01,Y,x1,x2)+...

2 2
2mx] 2w

- d*x d*x;
= Z/ 5o (o, Yo Xa, LX) (89)
i=1

2
2mxy 2mxs

Performing these operations on yields

Z10 @ Y 10
N(x01,Y) = exp|—2aln (— Y +—/ dyexp |—2aln (— Y —y)
P 21 Jo P

x/d2 $(2)2$12 [2N (x02,y) — N(x02,y) N (x12, )] (90)

Finally, taking the derivative of with respect to Y,

8N(X01,Y) L Z10 _ T10
— Yy - 2111( )exp{Zaln(p)Y}

—/d2 > [2N (%02, Y) — N(Xg2, Y)N(x12,Y)]  (91)

Rewriting the the first term on the RHS to first order in & as

—2aln (@> exp {—20_6 In (@) Y:| = ——1 (xlo) /d2X247T52(X01—X02)N(X02, Y)
P P 2m pJ)Js

(92)
we can put into a somewhat simpler form.
ON (x01,Y a 2
% = % /d2X2 {[E02[L’12 [2N(X02, Y) - N(XOQ, Y)N(Xlg, Y)] (93)
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—47'('(52(}(01 — XQQ) In (%) N<X027 Y)}

Notice that

2 2 1 d
/d2X2 meg = 2(2m) /d$12$12 <x—gl> — = 47T/ﬂ =A4rln (m) (94)
o Lo2T72 p Loz /) T12 p L12 P

= /d2X247T(52(X01 — XOQ) In (m)
p P

where the factor of 2 after the first equality is due to evaluation at the collinear limit

near both xq and x;. If we take xg; = g2, for instance, the second equality of
follows. Using (94), we can write the BK equation in another commonly used form

(see [I][2]):

ON Y 2
& g /d2X2 :UOl QN(XQQ, Y) — N(XOl, Y) — N(XOQ, Y)N(Xlg, Y) (95)
p

= 2 2
Y 2m TioT o

Aside from the nonlinear product N(xg2, Y )N (X12,Y), this equation is actually the
same as the BFKL equation. We can crudely approximate when the solutions to the
two equations diverge. Using the fact that the elementary dipole-dipole scattering
amplitude is T ~ o2, the probability of two simultaneous scatterings is ~ a*, which
is suppressed until the density of dipoles is n ~ 1/a? (see , for details). At
these densities, corrections provided by the nonlinear term are needed to stem the
rise of the amplitude. Although the interpretation of this reduction in growth is not
completely clear at present—be it due to gluon recombination, color swings, etc.—it
must exist to preserve unitarity at high energies. In the t-channel picture, one can
view the correction as replacing the single gluon ladder diagram with a “fan diagram”

containing triple pomeron vertices, as in figure [13]

4.2 FKPP equation and reaction-diffusion dynamics

In this subsection we will show how the BK equation encodes a branching dif-
fusion of dipoles in the variable In(1/r?). The equation describing such diffusion is
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Figure 13: A fan diagram representing the BK equation in the t-channel.

called the Fisher-Kolmogorov-Petrovsky-Piscounoff (FKPP) equation, which is well
known in statistical physics and is equivalent to the BK equation in the aptly named
diffusion approximation. We will see the FKPP equation admits a traveling wave
solution as dipoles diffuse to smaller sizes with increasing rapidity. The application of
the FKPP equation to QCD evolution was first pointed out by Munier and Peschanski
in a series of papers in 2003-4 |14} [15] 16].

Starting by Fourier transforming the BK equation and using steps very similar
to (62H67), we can rewrite the BK equation for momentum space N(k,Y) using the
BFKL eigenvalue XMueller()‘)IZI we found in as [40]

ON(kY) _ d \ < .
T = ax ( W) Nk, Y) —aN?(k,Y) (96)
Defining L := In (k*/Adcp),

ON(E,Y)

Sy~ X (=0L) N(k,Y) — aN*(k,Y) (97)

Using a series expansion of x (—dp) in the principle branch of the eigenvalue around

a point 0 < 9 < 1,

"N.B. We have made a trivial change to comply with more modern notation, 2x nrueiier(A =

2(1 =) = xprrr(y =1 - 3) = x(7v) = 2¢(1) = (1 =) — 9(7) [44]. Thus the poles displayed
in figure [12] are transformed like so: A =0 — v =1 and A = 2 — v = 0. Also, the saddle point at

As=1—= 79, = % For the remainder of this manuscript, we mean “xprx” when we write “x”.
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1 1
X (=01) = X(10)1+X(90) (=0 =70 1)+5X" (90) (=9 =201)*+ X' (30) (= =70 1)+ .
(98)
The diffusion approximation is tantamount to keeping only up to second order terms

in . Let us work with this truncated series and expand around ~y = %, as we did
in the saddle point method used in

: 1) X" 1)
X(=0p) =~ x(=0) =x |5 ]+ ) oL+ 5 (99)
2 2 2
If we make the following change of coordinates with w = x (3), D := x”(3), and
y:=1-1y/1+8w/D,
D
to= 0‘7(1 — 7)Y (100)
D
z=(1-7) (L+%Y) (101)
2 2t x t
t = N — 102
w0 = DAy (5417(1—7)2’1—7 <1—7>2) (102)
then with becomes the FKPP equation:
Ouu(t, ) = O2u(t, z) + u(t,x) — u?(t, z) (103)

This equation is very well studied—see, for example, [45], 46] for comprehensive dis-

cussions. To quote from one of those references,

The general goal of our discussion of front propagation into unstable states
is to investigate the following front propagation problem: If initially a spa-
tially extended system is in an unstable state everywhere except in some
spatially localized region, what will be the large-time dynamical properties
and speed of the nonlinear front which will propagate into the unstable
state? Are there classes of initial conditions for which the front dynamics
converges to some unique asymptotic front state? If so, what characterizes
these initial conditions, and what can we say about the asymptotic front
properties and the convergence to them? [45)]
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’ Reaction-diffusion H QCD ‘

Occupation fraction u(t,x) Scattering amplitude for the probe off
a frozen realization of the target
T(k,Y),or N(k,Y)

| Average occupation fraction (u(t,x)) || Physical scattering amplitude A = (T)

| Space variable x, sometimes L | In(k?/A?) or In(1/r°A?) }
’ Time variable t H Rapidity aY ‘
Average maximum density of particles || 1/a?
N
| Position of the front X (¢) | Saturation scale In(Q2(Y)/A?) |
Branching-diffusion kernel w(—0,), BFKL kernel x(—0,,2) or its
(w(=0,) = 9% + 1 for FKPP) equivalent in coordinate space

Table 1: A dictionary between reaction-diffusion and QCD variables. [1]
Let us turn our attention towards some of these issues. In short, an initial condition

u(0, z) will evolve into a traveling wave solution u(t, z) = u(z—wvt) with an asymptotic

front velocity. Using the known result from FKPP analysis, [15]

wt,z) oo wlw— 2+ ;lnt) (104)

and assuming an exponential solution,

3
u(t,z) ~ exp(x — 2t + 3 Int) (105)

we may use the mappings (100]), (101), and (102)) to write

N(Y, k) ~ ut, ) ~ exp {(1 _5) (L + ?Y) - 2?(1 _ Y + gln {%(1 - 7)21/} }
(106)

oD : D 2(0-7)
= exp(1 —7) exp {L + %Y —aD(1 - V)Y] Yy (0‘7(1 _ 7)2)

= ki 2k exp {—aD (% - ﬁ) Y] V=]
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Figure 14: Geometric scaling data: the total cross section ago? X as a function of
7= Q%/Q%(x) for x < .01. [38]
K 2 2y~ 315 PG -AY
- Q(Y)’ Q(Y) = kgY 20"z (107)

where k, 2 absorbs the constants. The result of these manipulations is to demonstrate
that

N(Y,k) =N ( Qg‘é)) (108)

which is the definition of geometric scaling, a feature strikingly revealed in the data,
as shown in figure [14] Geometric scaling was known before Munier and Peschanski
showed it was a consequence of the FKPP (see [35] [36]), but these authors framed
the BK equation in the larger context of the universality class of the FKPP equation.
In fact, the full BK equation (not using the diffusion approximation) and the NLO
BFKL equation have both been shown to be a part of this universality class [I],
meaning that all of these equations, details aside, exhibit branching diffusion with a
saturation mechanism. This has been one of the pivotal discoveries in QCD over the

last decade.

It is possible to analytically determine the velocity of the traveling wave predicted

36



by the FKPP equation. Because the wavefront mediates between the high density
and low density regions in x, matching amplitudes at the two conditions allows us to
determine a critical condition at the wavefront. This critical condition, in a certain

interpretation, then yields the wavefront velocity.

First let us investigate the critical condition using a method explained in [47]. Starting
from the BK equation (97), and using the Laplace transform,

N(k,w) = / dYe Y N(k,Y) (109)
with a proposed ansatz [42]

N(k,w) = N(w)eh@-1L (110)

where L := In(k?/A?) as before and v(w) is the Mellin space argument of the BFKL

eigenvalue (also called the anomalous dimension), we obtain

c+i00 d / ,
weY N(k,w) = ax(y(w))e*Y N(k,w) — a/ . 2—:2,6(““ WN(k,w)N(k,o') (111)
Shifting w — w — W’ in the integral on the RHS,
c+i00 dw’ , ,
w — ax(y(w))] N(w)el = 1F = —@/ 5 VW - W )N (W)el @) Hrw)=2lL
c—100 qy

(112)
We may again use the saddle approximation on the integral on the RHS, approx-

imating around the choice w’' = w/2 at which the derivative of the exponent vanishes.
We obtain

= ax(y(w))] Nw)eb @1t - -2 e P G CE)

N2 (
Ary"(w/2) L 2

In the region where the density is dilute, the nonlinear RHS is approximately zero,

yielding

Dilute Region : w—ax(y(w)) =0 (114)
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On the other hand, we may match exponents in (113 in the saturation region to

obtain a different condition.

Saturation Region : y(w) = 2v <E) -1 (115)
which is satisfied by

Y(w)=Cw+1 (116)

for some constant C'. We may solve for C' using the derivative of (116]) to obtain

V() = —— (117)

(118)

Finally, we expect (118)) to match with (117 at some critical value 7. = y(w,.) at the

wavefront where the dilute and saturation regions meet. Thus we obtain

W) =
X' () = 5(1)1 (119)

where the second equality follows from evaluation of (114) at ~.. (L19) can also be
rewritten using the symmetry of x(v) in its principle branch: x(1 —v) = x(v) and

X'(1—7)=—=x(v). Letting 1 — v, = 7,

(120)
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This matching condition was actually first derived in the extensive 1983 Gribov,
Levin, and Ryskin paper [48], but was rederived by Levin and Bartels in 1992 [42]

with a more modern presentation.

More recently, in 2003 Munier and Peschanski [14] discovered a satisfying physical
interpretation of the long known condition. Solving the linear part of the BK equation
(97) as a wave packet in Mellin space,
S dy A Ltax()Y
N(k,Y) = —— No(ry)e 7T oxty (121)

271

—100

we see that the phase velocity of a wave is

x()
v, = —= 122
b= (122)
and the group velocity is
d
vy = —);(J) (123)

For the initial conditions relevant in QCD (a steeply falling function of L), FKPP
analysis shows that the group velocity will equal the minimum phase velocity, which

occurs at v = ..

X(Ve)
Ug vp|min 7@ (]‘24)
b X ()
X' (ve) = - (125)

which is the same as (120)).

Before continuing, we will briefly address the nondeterministic nature of the evolution
of the saturation scale. All that we have thus far discussed is deterministic and applies
only to the mean field. However, because the formation of discrete dipoles ahead of
the saturation front is a stochastic process, there will be some inherent dispersion
among different “events”, or realizations of BK evolution. As of currently, there has
not been a rigorous proof of the behavior of this dispersion, but several numerical

implementations have shown that
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o’ xY (126)

There has been some progress in establishing this behavior using a “phenomenological”
approach (see [18] 19]).
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Part 11
Model

5 Description of the Model: 2D, 2DR, and 2DSR

5.1 Overview

The object of our model is to implement Mueller’s 2D branching kernel using a com-
puter simulated Monte Carlo dipole generator. We expect the results to reproduce
broad features of the FKPP traveling wave solution, in particular that the amplitude
will behave like in figure [2| that we showed in the introduction, traveling with a fixed
asymptotic velocity. Part of the motivation for this undertaking is to evaluate the

following statement.

Note that, though a full study with two transverse degrees of freedom
would be of great interest, we believe that our one-dimensional picture
grasps the important aspects of the problem and, based on universal prop-
erties of the reaction-diffusion systems, we expect our results to hold for
full QCD. [24]

Will a 2D model reproduce the same universal properties as the 1D model? In what

ways will the details be refined? We seek to answer these questions.

First let us define a model “event”. An event begins with an initial set of dipoles of
size 7o = 1 randomly oriented and randomly distributed in impact parameter such
that |b| < %. Over the course of evolution in timﬂ this initial dipole will have
evolved into a multitude of smaller dipoles in each size index, exponentially at first
but then tamed by a saturation mechanism. Each event consists of the movement
of the saturation front p, to successively smaller sizes over a specified time interval.
Because we expect the solution to take the form of a traveling wave, the amplitude

should be a function only of

T(o— p(V)) =T (ﬁ) (127)

8Remember that t =Y.
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Figure 15: Geometry of a dipole-dipole scattering.

if p~ 1/r ~ k. Thus, we see that ps(Y) plays the role of the saturation scale in the

problem, and the traveling wave solution is equivalent to geometric scaling.

The amplitude can be calculated by making use of the following equation |17, [1].

A’z d*z
T(y,Xo1) = 2—7:2—7;T8l(3%h zo1)1(Y, Zo1) (128)

where n(y,zo1) is the dipole density, and the elementary scattering amplitude for a

projectile dipole scattering off a target dipole is

7T2a§ 2 Ixo — 21|?|x1 — Zo|? (129)

1 —
T (%01, Zo1) = 5 X0 — Zo|?|x1 — 71 ]2

This formula represents the exchange of two gluons between a pair of dipoles, and
as such is the square of the the single gluon potential between two dipoles in two
dimensions [22]. It roughly counts the number of dipoles of similar size to zo;, which
is convenient for computer implementation. Let us evince this feature. Given two
dipoles of size 2r and 2R, using the points shown on figure 15| 7 can be written

2o’ (AB)*(A’'B)?

S 1n2

Tel —
> N ABR(AB)

(130)

Case 1: b>> r, R, leading order in R?/b?, rR/b?, and r?/b*
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pet _ 703 [P+ (R
2 P (R-nY
2 2 2 N2
~ {1 2(R;T> ] [1—2(Rb2r) ]}
a2, 8rR
~ 2 ln (1 + b—2>
202 /8rR\° R)2 R)2
~ T <£—2) :327r2a§(rb4) ~ <Tb4) (131)

Tel _ 71'2043 1112 [b2 + (R + T)2]2
2 N (R
2.2 4 4
~ 7?2045 In? { 1+§T) (1+Er>]
w202 8r
~ SIn? (14 —
ot (1+7)
7r204§ 8r 2 9 o9 r? r?

From (131) and (132), we see that dipoles which are far apart or which have very
different sizes will not greatly contribute to (128)).

5.2 Determination of splitting probabilities and lifetimes

Recall the transverse space kernel we derived in (30), which represents a classical

branching probabilityﬂ:
dPI01—>1302,5012 _ 'T(2)1 d2X2
dy 213y 27

(133)

In order to derive an expression for the lifetime of a given size dipole and its proba-
bility of splitting into another size dipole, we will integrate (133)) over x3. Changing

coordinates to a polar coordinate system with origin x; and expanding z2, with the

9Note that “Y™ in this model is actually rapidity scaled by a. L.e @Y — Y throughout Part II.
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law of cosines,

P, g [rmes d
T 922, / a9 B (134)
dy o 27 x12 () + x5 — 2x01212 COS @)

Tmin

The lower limit 7,,;, on the radial integral cuts off the collinear singularity, as we did
in , whereas the upper limit r,,,, exists for the sake of computer implementation,
as will become clear below. The left diagram in figure [16|shows the integration region
around the point x;, with radial integration performed in such a way as to capture
the collinear singularity around this point. This diagram depicts the parent dipole
xo1 splitting into two daughter dipoles, x15 and zgs. The placement of x5 determines
both the lengths and positions of said daughters. Impact parameters (bgy, bgo, by2) are
defined to be the midpoint of the line segment joining the two endpoints of a given
dipole. The result of this particular process will be two daughter dipoles with the

parent removed.

Although it might be tempting to extend the integration region to the entire plane
in such a polar coordinate system, there are two problems associated with doing so.
First, using the logarithmic indexing shown in figure [16] left (which will be defined
shortly), notice that if x15 = xo and if ¢ = 0, measured with respect to the axis
defined by x¢;, then xgo = 0 and the integrand in blows up. Of course, one
could rotate the polar coordinate grid off of the singularity, but this brings us to our
second point: symmetry dictates that we include the collinear singularity at x, as
well as x;. A simple method for doing so is to restrict the integration region to the
vicinity of x; and multiply by 2 to account for the symmetric probability distribution

around x(. This accounts for the factor of 2 in ([134]).

So far we have only discussed how to capture the collinear singularity, but we must
also include the infrared singularity when zgo, x12 > xg; for our model to contain
the proposed physics. Figure 16| right shows a scheme for covering most of the plane
without overlap between the xy and x; regions. In practice we will divide the az-

imuthal range into 12 bins. Splittings of zy; to equal size daughter x5 are allowed in

5
3

are restricted to § < ¢ < 37”, shaded in yellow.

Continuing with the integral in (134) but switching to variable limits on ¢,

the azimuthal range 7 < ¢ < shaded in green, while all splittings to larger sizes
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Figure 16: “Dartboard” diagrams indicating integration regions in (134). Left: Parent
dipole x¢; splitting into daughter dipoles z¢s and x15. The integration region is shown
in the vicinity of x;. Right: The collinear region from the left figure is shaded in red,
the equal size splitting region in green, and the infrared region in yellow. Only the
first larger size splitting is shown for the infrared region, but the yellow region is
understood to be an infinite radius section of a semicircle. The union of these three
regions is mirrored for the region around xj.

45



Py 1 [% [T d
01 _ _/ dé > 12 (135)
W7o i g (14 52— 222 cos)
01 1
1 ¢2 Pmax dp
B [ d 136
p n( )/1 ¢ i LA B72(0=pe) — 2B~(0=p2) cos ¢ (136)

where logarithmic sizes are defined by p := logp (i> and p, :

z12

= logp (wil ) . The

base B determines the coarseness of the graining and will be taken to be 2 in the

computer implementation of the model. Also, let pin 1=

1
lOgB T'min

log W}w =0 and ppz =

= 50 comprise the size limits on dipoles in our mode. We will approximate

this integral as a Riemann sum for the purposes of computer implementation, with

A¢ and Ap chosen to be, respectively, 27”

region will be restricted, as discussed above.

and 1. For pp;n < p < p, the angular

W = a3 ¥ :
dy n 1+ B=2(=pz) — 2B~ (p=px) cos ¢y,
pP= pmznk kl
P'ma:t 1n— 1 1
—ln Z Z n 1+ B=2(p=pz) — 2B~(p=p=) cos ¢, (137)
p=py+1 k=0
Letting i = p, and j = p,
7 dP Pmax 1 dP
i—j 1—J
_ Z X Z Himg (138)
J=Pmin dY J<i Jj=i+1 dY 3>
since
day |, = 0 ;i 1+ B72r=) —2B~(r=Dcos ¢
(G+1)—-1n-1
1 27 1

10, a4z = 50 is chosen due to the fact that 64-bit double precision binary floating-point numbers
carry 1 bit of sign, 11 bits of exponent width, and 52 bits of significand precision. Thus, the maximum
rounding error between two numbers, or machine epsilon, is 2753, p,,4 should be kept well below
53.
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1 2 1
T In(B) — n 1+ B20-) —2B-G9 cos o (139)
and likewise,
Py _ Ly g2 L (140)
ay |, o« o 1+ B~20-9) — 2B~0U~%) cos ¢y,

Thus, according to ((138)), the total probability for a dipole to split is the sum of the
probabilities for it to split to any other size. For convenience, let us now define a

probability splitting matrix P such that P;j;, is the kth term in the azimuthal sum of
apPi_;

v e

1 27 1
ik = — In(B)— — —
Pish i n(B) n 1+ B~20-9) — 2B~ cos ¢y,

(141)

The P;j, terms for which ¢y, lies outside the azimuthal boundaries shown in figure
are set to 0. We can now write the total probability for the splitting of z¢; (logarithmic

size i) as

dP@ pmaz—1 n—1
PN YR (142)

J=pPmin k=0
and therefore, its “lifetime” in units of rapidity is
7 = (dP;/dY )™ (143)

The preceding forms the basis of our Monte Carlo calculation. During each step of
the target’s evolution in rapidity, the number of splittings of size i is determined

according to

1
# splittings, = —AY x (# dipoles of size i) (144)
T

We then randomly select this number of dipoles of size i, and for each selection choose

a size j to split into using the discrete probability distribution
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d.Pi_>j B n—1
dy _;P”’“

(145)

This can be done, for example, by randomly choosing a number on the interval [0, 1]
in the properly normalized cumulative distribution function of (145)) and finding the

corresponding ordinate. Similarly, we can randomly choose an azimuthal bin k& to

split into using the discrete probability distribution P;;;, for a given 7 and ]E

5.3 Determination of x,

Once we have determined to which j and k a given dipole xy; will split, it is a simple

matter to locate x,. If splitting from x,

2k
X9 = X1 — TjR(T)X()l

21k X1 — Xg
e S -
17— &0

where R(6) is the standard rotation matrix,

R(0) = C?SQ —sin
sinf  cos6

By components,

Loy = X1y — 1j(c0S0Tp1, — sinbToy )
Toy = X1y — 1;(sinbo1 , + cosOTo1y)
and
Xo + X2 X1 + X
by = ———, by = ————
2 2

(146)

(147)

(148)

(149)

(150)

"Tn practice, to avoid creating p?,,, discrete probability distributions for azimuth selection, we
note that (141) depends on j — 4, which is bounded between —ppax < j — ¢ < prmas. Thus we only

need to create 2p.,q, + 1 discrete probability distributions.
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If splitting from the x, side, then (146 becomes

2wk .
X9 = X + TjR(T)XOI (151)

mutatis mutandis.

5.4 Saturation veto and impact parameter cutoff veto

Limiting the number of dipoles in our model serves the dual purpose of satisfying
unitarity constraints and ensuring computational efficiency. Toward this end, we will
introduce two types of splitting vetoes into our model: the saturation veto and the

impact parameter cutoff veto.

The former is based on the well known effect resulting from the BK equation, as
discussed in While the exact mechanism for saturation is not precisely known,
be it a gluon recombination or shadowing effect, the results of our simulation should
not strongly depend on the details. We will use the same condition as in [24) 25],
which is that splittings that would generate daughters in regions already containing
more than some N,,; number of dipoles will not be allowed. But how are we to count

the number of such dipoles?

Observing figure [I7, say we want to probe the number of dipoles of logarithmic
size ¢ in the vicinity of some impact parameter b,. We will count the number of
dipoles whose impact parameters lie within an open ball around by, B, /(b,) =
{b € R?|d(b,b,) < 7"#2}@ Thus, in the figure the dipole with impact parameter
b; (shaded blue) is counted while that with by (shaded green) is not. However, even
if this number of counted dipoles is less than Ny, this does not guarantee that the
saturation condition is not violated elsewhere. For example, say there are already Nq
dipoles with impact parameters very near by. The addition of a dipole with impact
parameter b, will violate the saturation condition at some bs € B,, /2(b,) U B,, 2(bs),
even though fewer than Ny, dipoles have impact parameters within B, /Q(bp). Thus,
technically speaking we should check saturation at all b € B,, /»(b,) to ensure the
saturation condition is never violated, but in practice saturation checks are very
computationally expensive to carry out. Our results show that if checks are carried

out at b,, b, — %f)p, and b, + %f)p, amplitudes obey saturation, and these checks are

2Recall from the logarithmic size definition under (136) that r; = B~".
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Figure 17: Two dipoles are shown with impact parameters b satisfying |b,| —r;/2 <
|b| < |b,| + 7i/2. The dipole with impact parameter by (blue) is counted as being
in the vicinity of b, while that with by (green) is not. The crosshatched annulus is
relevant to our search algorithm explained in 5.5
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ipso facto sufficient.

The other type of veto, which is a distance cutoff, is very easy to implement and
necessary for computation in any reasonable length of time. If we choose a particular
impact parameter b, or set of impact parameters {b,, bys...} at which to check the
amplitude throughout the evolution of an event, most dipoles—especially very small
sizes—will be too far from any of the b, for them or their progeny to affect T'(b,).

Therefore, we impose the same cutoff as in [24],

i

o 152
bb, " (152)

for some chosen value of x in order to allow the splitting which creates a daughter
dipole at b with size r;. (152]) must be satisfied for at least one of the {b,,} for the
splitting to be allowed; otherwise it is vetoed. We can see that this condition results

in smaller dipoles being more strongly constrained to the probe location(s):

T
b= byl < (153)

which is desirable, as there is no reason to keep track of the profusion of small dipoles
that will not be observed. Typical values of x we will be using are 107! and 1072
As long as k is not close to 1, the asymptotic results of our model will not be greatly
affected.

5.5 Data structure

2D evolution is much more computationally intensive than 1D due to the fact that
a 2D transverse space can accommodate a far larger number of dipoles. Even given
the veto constraints above, we must thoughtfully construct our data structure for
computational efficiency. We can easily estimate the number of dipoles allowed for a
given size ¢ using . Say b, = 0, then dipoles of size ¢ are constrained to a disk
of radius

T

by < — 154
<4 (154)

The number of dipoles that can exist within this radius is approximately
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{nj} = o 1|2 . . . Pmax

{b, bx,by,XOx,XOy,X‘I xX1 y}

Figure 18: The data structure used to store dipoles. It is a vector with p.. + 1
entries, each of which a red-black tree header node. Each red-black tree is ordered by
magnitude of impact parameter.

7sz2 . 4N5at

(3"

Ni ~ Nsat

For typical values we will be using, x = 107! and N,,; = 25, N; ~ 10,000. We
have discovered that a 2D simulation becomes very computationally unwieldy when

N; Z 105, For this reason, £ = 10~ will be our standard choice for full 2D simulation.

The main data structure of the program will contain all of the dipoles created in the
course of the target’s evolution. It will consist of a vector {ni}i6{071727m,pmw}, each index
1 of which represents all dipoles of logarithmic size . The vector object type will be
a binary red-black tree of nodes ordered by magnitude of impact parameter and that
each contain the variables {b, b, by, To,, Toy, T12, T1, }. This is indicated schematically
in figure

Let us divert our attention to the red-black tree structure for each size index, which
is crucial to the program’s ability to quickly carry out saturation checks of the type
described in[5.4] The conceptual basis for the red-black tree can be found in a number
of references, for example its inventor’s textbook, [50], but we will summarize the basic
features here for the reader less familiar with data structures. Essentially, the red-
black tree’s purpose is to maintain the binary search tree’s (BST) optimal O(log, N)

search performance. It is one of several self-balancing tree algorithms availabld™]

13The AVL tree is also sometimes used.
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Figure 19: Left: A low efficiency BST with O(V) search time. Right: A high efficiency
BST with O(log, N) search time.

Consider the degenerate case of adding, in sequence, 1,2,3,4,5 to a standard BST
(figure . The insertion algorithm for a BST is to traverse the tree, going left if the
node to be inserted is smaller than the current tree node, and right if it is greater.
Thus, figure left obtains with search time O(N), as the BST degenerates into
essentially a linked list in such cases. Figure [I9|right obtains if we insert the sequence
2,1,4,3,5, but we would like to achieve this efficient O(log, N) structure independent
of insertion order. That is where the red-black tree comes into play.

A red-black tree’s insertion and deletion algorithms ensure that its branches will

remain roughly balanced at all times by leaving the following properties intact:

1. Each node is either red or black.
2. The root node is black.

3. Both children of every red node are black. If unsatisfied, there is said

to be a “red violation”.

4. Every path from root to leafl] contains the same number of black

nodes. If unsatisfied, there is said to be a “black violation”.

Such a tree satisfying these properties is shown in figure as the reader may verify.

Although the rebalancing algorithms are fairly detailed and refer to a number of

The terminus of a path.
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Figure 20: A sample red-black tree, ordered by magnitude of impact parameter

different cases, we will give one example to indicate the flavor of the operations

required.

Say we are adding the node with impact parameter value “.93664”. The red-black
tree will now look like figure upper. We can see that there is currently a red
violation since the new node and its parent are both red. We cannot simply recolor
the new node black, as this would lead to a black violation. Instead, we will recolor
the new node’s parent and grandparent, as shown in the diagram. Unfortunately,
this causes another red violation. We cannot again recolor grandparent and great
grandparent, as this would violate property 2. Thus, we can see that rotations are
required for rebalancing. These rotations, along with recoloration and reattachment
of appropriate subtrees are indicated in figure 21 middle. We end up with figure
bottom, which has the immediate visual appearance of being more balanced than
top.

Without going through all of the cases, suffice it to say that algorithms exist to
maintain properties 1 through 4 during insertion and deletion of nodes. (The latter
is especially tedious and is usually omitted from texts.) Several different types of
algorithms actually exist to accomplish these tasks. The example given above is a type
of “bottom-up” algorithm which recursively travels up the tree from the insertion point
fixing mistakes on the way up. Another method involves nodes which have pointers

from children to parents as well as from parents to children. However, both of these
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Figure 21: An example of red-black tree rebalancmg after adding the node containing
“.93664” on the far right.



methods appear somewhat inelegant when compared with “top-down” insertion. Top-
down insertion is a nonrecursive method that makes changes on the way down the
tree to the insertion point. Since it does useful work on the way down and does not
have to traverse back up the tree, it is the most efficient method of implementing the
red-black tree. It is surprisingly difficult to find these algorithms, but [5I] provides a
discussion of them.

Having the red-black tree data structure at our disposal allows us to quickly check
{n;} for saturation vetoes, as explained in and also to calculate the T;(b,), the
amplitude at b, for size ¢ dipoles, at each step of the target’s evolution. This is done

by searching n;, the ¢th red-black tree, for dipoles satisfying

T
2
This check is efficiently accomplished given the O(log, N) search performance of the
red-black tree. Notice that corresponds to the annulus in figure Of course,
we also need to check each dipole satisfying to see whether

max(0, b, — %) <b<b,+ (155)

b, — b < % (156)

which is the number of dipoles with impact parameters within the open ball B, /2(b,),
shaded red in figure[17] The sum of dipoles that satisty (153)) and (156) divided by Nyq
yields T;(b,). Knowledge of T;(b,) for all i also allows us to calculate the saturation

front, ps(b,,Y’), which we will define as the smallest ¢ such that T;(b,) < 3.

5.6 Parallel coding

Our C-++ code was written using the OpenMP API for shared memory multiprocess-
ing. Threading is controlled by the use of “#pragma” directives in the code, which
stands for “pragmatic”. These allow the C++ compiler to precisely control memory
management and passing of parameters so as to offer machine and operating system-
specific features while maintaining C+-+ compatibility. This platform independence
allows the programmer to run the same code on machines of different number of cores

while always utilizing the maximum advantage of multithreading on each machine.

Short data runs were performed on a typical home PC with 4 cores running at 2.67

GHz while longer runs up to 24 hours were performed on the Texas Advanced Com-
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System Name: Lonestar 4
Host Name: lonestar.tacc.utexas.edu
Operating System: Linux
Number of Processors: 22,656
Total Memory 44 TB
Peak Performance 302 TFLOPS
Total Disk: 276 TB(local), 1000TB(global)

Table 2: TACC Lonestar 4 specifications

puter Center’s (TACC) Lonestar 4 Dell Linux cluster. Without going into great detail,

the basic specifications of this cluster are the following: [52]

The 22,656 cores are housed on 1,888 Dell PowerEdge M610 compute blades with 12
to a blade. Fach blade has 2 Xeon 5680 series 3.33GHz hex-core processors. The user
may submit jobs serially to each compute blade, which then multithreads the code
onto 12 cores, providing essentially a 12-fold increase in the rate data production for
our simulation. Multiple blades may be simultaneously harnessed, allowing further

generation of data.

5.7 Pseudocode program

Most of what has not been described heretofore is merely nuts and bolts of program-
ming, such as declarations, flow control statements, data output, and the like. The
essential physics has all been described. For the reader interested in how the program
works, we will give a pseudocode overview of the program flow. This description is

for a single event—multiple events are simply repeated instances of a single event.

Program flow, single event

e main rapidity loop over Y:

— loop over dipole size 7:

x calculate number of splittings for size ¢ using lifetime, see (144))
* loop over number of splittings, I

- choose a random dipole of size ¢ to split
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- monte carlo this dipole into size j dipole, see (145))

- monte carlo into kth angular bin

- randomly choose which side of dipole i to split, see and
- check if 2 daughter dipoles, x¢2 and X2, satisfy x cutoff (152)); if

not, veto splitting

- check if 2 daughter dipoles, xgo and xi, violate saturation; if so,

veto splitting

- if neither veto has been applied, insert xg, and x5 and remove Xg;

from the appropriate red-black trees in the data structure shown
in figure

— output data for this AY step

5.8 First several steps of an event

To illustrate the operations of the program, let us visually inspect the first several
splittings of a single initial dipole. The program randomly generates the following
two splittings during the first AY step, as shown in figure 22|

First Splitting:

Zoe = 0.744071, x1, = —0.253879, 29, = —0.269879
xoy = —0.397142, x1, = —0.333142, x5, = —0.58263
Second Splitting:

Tor = —0.253879, x1, = —0.269879, x9, = —0.305895
xoy = —0.333142, 21, = —0.58263, 29, = —0.298492

Both of these splittings occur in the collinear region, the first from ¢ = 0 to j = 2
and the second from i = 2 to j = 4 (in logarithmic size). Notice that although the
probability to split to a much smaller size is not improbable via , it is extremely
improbable that a dipole created near the endpoints of its parent will pass the
cutoff condition ((152)), which is to say it will likely be too far away from the region of
interest to have any effect there. Over the course of the evolution of an event, smaller

size dipoles will have found their way sufficiently near the probe location via other
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Figure 22: The first two splittings of an initial dipole shown
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Figure 23: The evolution of a single dipole in transverse space at time Y = 1.

somewhat larger sizes to pass (152). In this sense the traveling wave moves smoothly

from larger to smaller size dipoles over the evolution time.

After a longer period of time, the parent dipole will have branched into a multitude
of various sized smaller dipoles, shown in figure . These daughter dipoles remain

a connected graph, as the splitting rules imply.

Beginning with N, = Nsar = 25 dipoles and after sufficient time, a more fully
evolved target is attained (figure [24).

5.9 2D Restricted (2DR)

It is desirable to have a way to check the results of our 2D calculation in the 1D limit
in order to make contact with other work that has been done in 1D. To do so, we
will employ the method illustrated in figure The operation of the program is very
similar to the 2D calculation, but with an added step before the veto conditions are
checked. Recall that a logarithmic size and angle are chosen using discrete probability
distributions, as described in[5.3] In the newly introduced step, the impact parameters
b1z and by, are projected onto the x-axis. If we were to simply project x, onto the
x-axis as well, this would have the effect of shortening the two projected dipoles x5
and xgy, especially in the case of an infrared splitting. Instead, we want to preserve
the lengths x15 and x(, which can be done by redefining the endpoints of the two

daughters in the following way.

The endpoints of the dipole 2, are given by
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Figure 24: Going clockwise, target at time ¥ = .5, Y =1, Y = 1.5, and Y = 2, all
with Njnitiat = Nsar = 25 initial dipoles .
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Figure 25: A method for reducing the full 2D calculation to 1D.

61



/ x12 .

iy = biog + 7$01x
.%’Izl, = b12:1: — %i’(ﬂx (157)
and those of z{, by
o2 .
ffgz = booe — %xou
x
:E/Q,z - b021’ + %:’%OII (158)

In this scheme, we lose the shared endpoint between daughters, as x5, # x4, but

2z

dipole sizes of the 2D model are preserved.

5.10 2D Semi-Restricted (2DSR)

In another variation of our model, this time we would like to be able to smoothly
transition from the full 2D calculation to a 1D version of that calculation. The basic
idea is to allow dipoles to evolve by spreading in the azimuth, but only within a
certain defined strip width d around the x-axis. The shaded strip is shown in figure
left. Clearly the strip size must scale with the daughter dipole size if evolution is

to be effectively constrained near the x-axis. We define d in the following way:

d = fr; (159)

where r; = min(xgs, £12) is the size of the smaller daughter dipole and £ is a factor that
mediates the transition from 2D to 1D. If x5 lies within the strip then no projection

takes place. If, on the other hand |zy,| > d, then the projection

Loy — Ty, = sd, 0<s<l1 (160)

shown in [26] left takes place, with s a random number in the interval above. In order

to preserve the lengths of zgs and x5, we slide xg and x; along the x-axis away from
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projected into the strip (shaded yellow) a distance sd away from the x-axis, where
0 < s < 1. Right: The limit of 2DSR as the strip width d — 0.
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20

/ /
Loy = o2, Lo = T12

/ o / 2 _ _ / 2
Ty, = Ty, & \/wm (T1y ny)

The end result of this scheme is that when 8 — oo we recover the full 2D calculation,
and when 5 — 0 the calculation becomes 1D, as shown in figure 26| right. Note that
this 1D limit is not exactly the same as the 2DR scheme, although the differences in

the overall results between the two are minor.

15 2 T )2 2 . ! )2
unless x5, < (woy — 75, )° or ¥y < (T1, — T5,)°.
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6 Results and Analysis

6.1 2D results

In presenting our results, we will display a number of the following quantities. Recall
that the saturation front p,(Y,b) is a function of Y and b.

dps _ <:08(Y + AK O) — ps<Y7 0)>
ay AY

(162)

0® = (pA(Y,0)) — (p,(Y,0))" (163)

Cov(b) := Cov(ps(Y,0), ps(Y; b)) = (ps(Y,0)ps(Y, b)) — (ps(Y,0)) (ps(Y,))  (164)

And with these definitions,

Cov(0) = o? (165)

as expected. Note that only ensemble averages are shown, and thus, individual events
would have a more discrete appearance than the mean curves displayed on the am-
plitude plots. Also, individual events will be ahead of or behind the mean curves,
the degree to which is indicated by the accompanying variance plots. Note that the
attached C+-+ code only outputs the amplitude at various impact parameters and

times. Additional data processing was handled in Matlab.

Figure [27] reveals the asymptotic wave speed to be about 3.5-much slower than the
1D models we will consider. Variance is proportional to Y after an initial wavefront
formation time, as we expect from . The explanation for the the saturated region
in left having an amplitude slightly higher than 1 is the fact that we have only
performed saturation checks at three points in transverse space when adding dipoles,

as explained in However, this slight excess has little effect on asymptotic values.
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Figure 27: 2D Model: 700 events, x = 107!

6.2 2DR results

Because the 2DR model is restricted to 1D, the number of dipoles allowed is severely
curtailed when compared to 2D (see beginning of [5.5] for details). It is thereby much
easier to gather high statistics in this version of the dipole model. With 5000 events
in figure wavefront velocity and variance curves are the smoothest of the data
we present. The three point saturation check is also clearly more effective in 1D, as
amplitudes are kept below T(Y) = 1 in the plots shown. Additionally, asymptotic
wave velocity is seen to be much greater in 1D than in 2D, which we will discuss
later. A comparison of figures [28 and 29| reveals that a change in x has little effect on
asymptotic velocity: (dps/dY) = 14.078 for the former while (dp;/dY) = 14.390 for
the latte] Tt is slightly larger for the latter because x = 307! for this data allows
dipoles to form within a radius three times greater (at a given i) than x = 10! for
the former. Some of these additional dipoles that are farther from the probe location
will be able to “walk in” through successive splittings. Further decreasing x will have
a diminishing effect on the wavefront velocity since the farther away a dipole is from

the probe, the less likely it is have an effect there.

Figure displays decorrelation of wavefronts at various impact parameters. This
phenomenon is intuitively explained by considering the “resolution” of dipoles required
to distinguish between two points. As long as the dipoles present in the simulation are
larger than the separation between two impact parameters, these impact parameters

are correlated and their covariance will rise over time. The points will decorrelate

16The velocity values were averaged over Y =1to Y = 3.
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Figure 29: 2DR Model: 1000 events, x = 307!

(their covariance will become constant) when the event has reached a fine enough
resolution such that [25]

Ab~ B (166)

Table |3| details the Y values at which various impact parameters decorrelate from
b= 0. These Y values match well with figure [30]

6.3 2DSR results

The data from figure |31|interpolates between the 1D and 2D realizations of our model.
As [ increases, widening the projection strip, we see the essentially 1D results from

the top row become the 2D results from the last row.

67



25

——— dpJdY
Cov(b)

Figure 30: 2DR Model: 300 events, x = 107}

’ Ab ‘ Ps ‘ Ydecor ‘
107% ] 19.9 2
1074 ] 133 1.5
1072 | 6.6 1
1071} 3.3

Table 3: Decorrelation data for impact parameters in figure [30| calculated using (166)).
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Figure 31: 2DSR Model: 1st row: S = 0; 2nd row: 8 = 1; 3rd row: [ = 3; 4th row:
B =100. All data 500 events and x = 107!,
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6.4 Wavefront velocity analysis
6.4.1 1D Eigenvalue calculation

Splitting the kernel K;; into infrared (j < i), collinear (j > i), and equal size (j = i)

parts,

Pmaz—1
aYni = Z Kijnj
J=Pmin
i maz—1
N Z dy ..nj+ Z ay | 1y '_‘nj (167)
J=Pmin J<t Jj=i+1 71> j=t

The splitting probability is given by the BFKL kernel, transformed to logarithmic

size index:

ap., 1 o j+1 dp
= —In(B d ' ‘
v = -In(B) /0 ¢ /] 1+ B=2(—) — 2B~ cos ¢

1 2w 1
= —In(B — , A
T n(B) ; ; n 14 B=2=9) — 2B~ cos ¢,
1 — 2 1
= —In(B — — — 168
T n(B) n 1+ B~20-9) — 2B~ cos ¢, (168)

=0

First we will handle the collinear term (5 > 7). Using the following approximation
with ( ;= z—;? = B9,

1 - m
1+¢?—2Ccos¢ - Z<2CCOS¢_C2)

m=0

= 14 (2¢cosp — ) +2¢%(1 + cos 2¢) + O(¢?)
= 1+ +0()

where the identity (2cos$)? = 2(1 + cos2¢) was used in the second step, and the

70



integration of cosine terms set to 0 in the third, we can simplify the kernel. Using
the eigenfunctions ¢; = B’ and inserting a factor 2 = B"J =: B~* to reduce 1D

to 0D fixed impact parameter (FIP),

Xcor1p(7)pi(7) = Z ju In(B)

j>i 1=0

— 2In(B) <Z B*B™(1+ B‘Z’“)) vi(7)

k>0

Xcorap(Y) =2In(B) (Z BFO-1) 4 Bk(7—3)>

k>0

1 1
= 2In(B) (1 T T 2) (171)

Restoring the A factors, taking the limit as A — 0, and using L’Hospital’s Rule,

2 2

lm xcor(7) = o1 + o (172)

we see that the v = 1 singularity is present. Moving on to the infrared part (j < ),

i AP,
Xrrap(7)ei(Y) = Z B k#

J=Pmin

wi(7) (173)

Notice that since we are integrating semi-circles, we only sum over half of the azimuth.

half azimuth

1 2T 1 ,
=Y ~In(B ~—pB* B
Z T n(B) Z n 1+ B2k — 2B~k cos ¢,

k<0 =0

~In(B)) B *B*B"

k<0
=In(B) Y B*B¥¢i(v)
k<0
1
Xir1p(7) = In(B) 1B Gy 1 (174)
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Finally, there is the k = 0 term, whose integral bounds come from figure

5m/3 1 \/g

1
—01p = —In(B = (B
Xk=01D = o n( )/7r/3 1+ B%—2B%o0s¢ « ")

Adding the two parts (171)) and (174),

xip(y) = XCOL,lD(’Y) + XIR,lD('Y) + Xk=0,1D

(175)

1 1 1 5 V3
=2Mn(B) (1 Bl 1B 2(1 — B-0+D) 2 * ﬁ)

6.4.2 2D Eigenvalue calculation

2
Repeating all of the above steps but using instead the FIP factor of <:—Z> = B~ % to
reduce 2D to 0D, (171)) and (174) become

1 1
Xcor2p(7) = 2In(B) (1 —_ B2 + 1— B4 2) (176)

inan(n) =(B) (5= 1) (17)

X2p(7) = 2In(B) ( L + L + ! _2 + ﬁ) (178)

1-B2  1-B% 21—-B) 2 2«

6.4.3 Velocity calculations

Notice that for neither 1D nor 2D do we get both poles. has the ﬁ pole, and
(177) has the % pole. This is perhaps to be expected since the 1D FIP correction
factor B~* works well for the collinear sum in which dipoles remain more or less
collinear. However, the 2D FIP factor B=2* is better suited to the infrared sum since
these kind of splittings allow the daughter dipoles to explore the azumithal range.
We might consider using a “hybrid” eigenvalue function which has both of the correct

poles,

Xhybrid(Y) = Xcorip + Xir2D + Xk=o
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1 1 1 5 \/§> 179)

—2In(B 0, V3
a( )<1—Bvl+1—Bv3+2(1—Bv) > on

Using the eigenvalue functions (175)), (178)), and (179) and solving (120) using nu-

merical methods, we obtain

X1p(7e)
Vip = 223l 19 67 . =053
P In(2) ’ "
Xap(7Ve)
Vap = 22221 _ 363 . =1.19
P () 7
/
Viybria = % =1535  7.=061 (180)

Comparing these values to the data, we see the our analytical calculation for V5p looks
very accurate. Using the data shown in figure 27 we obtain (dps/dY) = 3.513"| The
2DR and 2DSR models suggest a value of (dps/dY) = 13.5, which is still reasonably
close to Vip. We can also calculate the asymptotic velocity from the actual BFKL

eigenvalue function, x(v) = 2¢(1) — (1 —v) — (). Using, for instance, [16]

oy X0y 8 3 [ 1

hY/a) — =/ ———=+0O(1/Y 181
e 2% ¥/e) e\ X () VY Y) (181)
the dominant term asymptotically yields
dmQAY) _ x(%)
ay Ye
dps 1 ,
= ~ 3.52 182

which also compares well with our 2D model value.

17The velocity values were averaged over Y = 1.5 to Y = 3.
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6.5 Conclusions

One facet of wave propagation we have noticed is the necessity of including both the
infrared and collinear singularities of the branching kernel. Because the saturation
front propagates to smaller dipole sizes over time, the collinear part of the kernel
drives the wave forward in x while the infrared part “fills in” the unsaturated sizes
behind the wavefront. Without the back-filling effect of the infrared term, the wave
moves forward but is eventually damped out as the larger dipoles are replaced by

dispersed smaller ones, and consequently, no stable wave shape asymptotically forms.

Comparing 1D and 2D data, it is seen that average wavefront velocities are consid-
erably higher for the former. We have not seen a discussion of this effect in previous
work, probably because no previous work has undertaken a model in two dimensions.
One explanation why the saturation front progresses faster in 1D configuration space
than in 2D is that dipoles spreading out in 2D transverse space with the same splitting
probability as used in the 1D model become more dilute in comparison. As long as
daughter dipoles are confined to a line, it is much more probable that each splitting
will increase dipole density near the probe than in 2D. This reasoning still does not
make the result a priori obvious, since one might imagine that the far more numerous
dipoles in 2D could compensate for this dilution; however, it is seen that they do not.

The analytical work in gives some justification for this lower velocity.

We would like to consider the statement made in an earlier work,

Note that, though a full study with two transverse degrees of freedom
would be of great interest, we believe that our one-dimensional picture
grasps the important aspects of the problem and, based on universal prop-
erties of the reaction-diffusion systems, we expect our results to hold for
full QCD. [24]

Let us take stock of some of the assumptions made in the [24] model:

e Parent dipoles are retained throughout the evolution; collinear splitting rules
create one small daughter dipole while the maintained parent approximates the
other daughter. Infrared splitting probabilities are increased by a factor of 2

since only one daughter is created—the parent is still maintained.

e Dipole size is discrete: all dipoles have a size B~ for some i.
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(ps(Y +dY,b) — ps(Y, B)) /dY

Figure 32: Average wavefront velocity, as shown in [24]

e The 2D kernel (133) is replaced by a 1D version,

dP o1

ay To2L12

dl’g

e The impact parameter of daughter dipoles is chosen using

bj:bii%igs, 0<s<l1

We believe our model represents a more accurate calculation by avoiding all of these
assumptions. The first assumption is obviated by replacement of the parent with two
daughter dipoles in all cases. This assumption becomes questionable when the parent
splits into a daughter of roughly the same logarithmic size, for example when an ¢ = 0
parent splits into two j = 1 daughters. In this case it is not accurate to maintain
the parent since neither of the daughters are the same size. In fact, most allowed
splittings are of this nature since a splitting where j — ¢ is large is unlikely to pass
the k cutoff condition (152)). Possibly this difference accounts for our 1D wavefront
velocity being higher than that of [24] (shown in figure [32)), as sizes can be driven
downwards faster when parents are removed and replaced by two smaller dipoles.
Assumption 2 is not present in our model, since splittings like that shown in figure
left create dipoles that are not equal to B~ for any i. Assumption 3 reasonable in

the collinear and infrared limits, but again, if |j — 4| is small then it is not accurate.
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Assumption 4 is not necessary in our model because the splitting kernel determines

the impact parameters of all daughter dipoles.

In summary, the splittings most relevant to driving the saturation front forward are
those between similarly sized parent and daughter dipoles. Thus, it is important to
handle these splittings accurately. We believe our model succeeds in this respect, and
that it is therefore a more accurate model of dipole evolution than those previously

wrought.
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7 Final Summary

In this final chapter, we will more or less repeat was has already been said as concisely
as possible. In chapter 2 we saw that a Regge trajectory with intercept greater than
1 called the Pomeron was needed to explain the rise of hadronic cross-sections. We
then gave an account of how a pQCD calculation in the form of an infinite gluon
ladder diagram could account for such a trajectory. In chapter 3 we introduced the
dipole formulation for calculating cross-sections such as v*p — X . In this picture,
the virtual photon dissociates into a quark-antiquark pair which then interacts with
the initial state hadron. Using this picture, Mueller showed that evolution of the
target with increasing energy could be viewed as a highly occupied Fock state called
an onium. Colorless dipoles comprise these states, which form due to soft gluon
emissions. Using the wavefunction for the onium state, Mueller derived an integral
equation which was equivalent to the BFKL equation found via the gluon ladder

diagram, albeit the result of a much simpler calculation.

Although the BFKL equation correctly predicts dipole density growth in the dilute
regime, in chapter 4 we explain that the eventual violation of unitarity with increasing
s necessitates a nonlinear growth taming term. This is provided by the BK equation,
which adds a —N? term to the evolution equation, providing the desired effect. It
was later shown by Munier and Peschanski that the BK equation belongs to the
universality class of the FKPP equation, familiar from reaction-diffusion dynamics.
This conceptual framework allowed the phenomenon of geometric scaling to be viewed
as a traveling wave whose front is the logarithm of the saturation scale. This front
moves with a group velocity equal to the minimum phase velocity of a wave packet
in Mellin space, a condition that can be found by matching conditions in the dilute

and saturation regions.

In Part II, we move on to describe a model based on the classical branching kernel of
the BFKL equation and a saturation mechanism. Both the collinear and infrared parts
of the kernel are taken into account. Saturation is checked by the program efficiently
through the use of the red-black tree data structure. A full 2D implementation of
the model as well as a 1D variant and a smooth interpolation between 1D and 2D
are introduced. Data on wavefront asymptotics and correlations in impact parameter
are presented and contrasted with an earlier work based on a 1D model. Finally,

analytical calculations of the wavefront asymptotic velocity are compared with the
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Figure 33: Comparison of velocity and variance between p,.. = 20 and p,na = 50.

8 Appendix

8.1 Dependence of the model on p,,,,;

During the final defense of this manuscript, the question was raised whether the length
cutoff r,,;,, which in logarithmic coordinates is ppq. := logg ﬁ, in the divergent
integral has any effect on the results of the model. Analytically, we can see from
that the BFKL equation in Mellin space does not have a cutoff dependence. In
fact, the lower size bound p cancels in . Still, it may be asked whether this
analytical cancellation applies to the model. I will demonstrate in several ways that

the model does not have a strong dependence on p,,.. as long as it is sufficiently large.

8.1.1 Brute force model check

Running the model with different values of p,,.. is one way of checking for a possible
dependence. For technical reasons explained before, it is not convenient to have
Pmaz % 50, but we may check smaller values. Figure for example, compares
Pmaz = 20 and ppe: = 50. Over 30 powers of the logarithmic base, the change
in velocity and variance is small, although it appears the front velocity is slightly
higher for the p,,.. = 20 case. This may be due to the change in relative splitting
probabilities between near-size and far-size splittings. However, we believe that for
sufficiently large pp... the artifact of higher front velocities disappears, as we now

explain.
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8.1.2 Lifetime dependence

Using the collinear branching probability approximation made in (169)), we can write

dpiﬁj

~ ~2(j~i)
% 2(1+B ) (183)

j>i

T4 2
Making the fixed impact parameter approximation and multiplying by <T—j) =
B~20-% as an estimate of the probability that the daughter j will be created near

the probe location,

dPi*)j

~ ~2(j—1) —4(j—i)
% 2(B + B )

7>1

Now finding the total probability of a size i dipole splitting collinearly,

ap. et . o
dyl ~ ) 2(BTUTI 4 BT (184)
j=it+1

Observe this sum is convergent as p.. — 00. Also, because it converges quickly,
the effective dipole splitting rates (and lifetimes) are not highly sensitive to the exact
value chosen for ppaz, as long as pa. > ps(Y). By “effective”, we mean the splittings
that will affect the amplitudes measured at a particular impact parameter, which we

estimated by adjusting the splitting probability by B=20-%,

8.1.3 Analytical check of BK equation using model constructs

We can explicitly check the BK equation (95) within the model construct to verify
insensitivity to pne- 1o do so, we want to investigate the collinear part of the
integral from limits O to r,,;,, which in logarithmic coordinates p := log B% become,
respectively, oo and pj,q.. Writing the BK equation using logarithmic coordinates at
some impact parameter and using ,

O Ni(Y) = 2(14B2U) [Ny (V) + Ni(Y) = NiY) + Ny jy (V) N; (V)]

j:pmaz

(185)
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where i := logp 9%01, j:=logp ﬁ, and

. 1
fi,j) = logg—
Zo2
1
= logg - -
\/:Um + 27y — 2201212 COS @
1 BQi

= -1 — —
9 98B 1 pali—i) — 2BG) Ccos ¢

~ 5 logy [BY (14 B2079)

Assume that Y is small enough such that pn.. > ps(Y). This is required for the
validity of the model, as the wavefront must “fit” within the allotted logarithmic
domain. Then j > p,(Y) and N;(Y) ~ 0 far ahead of the saturation front. Also,
because we are in the collinear region, j > ¢, assuming p,,.. is large enough that this
is possible, and thus f(i,7) ~ i. Therefore, we see that with a sufficiently large pyqz,
the term in brackets in is approximately 0. Further increasing p,, will have
little effect on dy NV;(Y').

8.2 2D Code

/*

2D Dipole Simulation

Author: Matt Haley

Versions:

2: uses red black tree removal

3: uses openmp

*/

#include <iostream>
#include <fstream >
#include <sstream >
#include <cstdlib >
#include <ctime>
#include <cmath>
#include <vector>
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>

using namespace std;

#include "datastructs/RedBlackTree4.h"
#include <codecogs/stats/dists/discrete/discrete /randomsample.h>

// Declare global variables

const double B=2;

const double delta=1;

const double pi=3.1415926535;
const double epsilon=pow(10.0,—14);
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32 double r( const int & i )

33 {

34 return pow(B,—ixdelta);

35}

36

37 bool areSame(double a, double b)

38 |

39 return abs(a — b) < epsilon;

40 3}

41

42 int main ()

43 {

44 // Seed random generator and make first call (predictable)

45 srand ((unsigned ) time (0));

46 rand ( );

47

48 // Declare Input Vars — all will be shared among threads and so should be const
49 const double Y_max=3;

50 const double Y1=1,Y2=2,Y3=3; // output at these Y

51 const double delta_Y=.1;

52 const int numEvents = 700;

53 const double kappa_ cutoff = pow(10.0,—-1.0);

54 //kappa_cutoff = 0; // disable cutoff

55 const double b_probe=0;

56 const double b_probe2=0; // make b_probeN=b_ probe for faster runs at central IP
57 const double b_probe3=0;

58 const double b_probed =0;

59 const double b_probe5=0;

60 //const double b_probe2=pow(10.0,—6.0); // make b_probeN=b_probe for faster runs at central IP
61 //const double b_probe3=pow(10.0,—4.0);

62 //const double b_probej=pow(10.0,—2.0);

63 //const double b_probes=pow(10.0,—1.0);

64 const int N_sat=25;

65 const int N _initial=N_sat;

66 //const int N_max=4+double (N_sat)/pow(kappa_cutoff,2); // maz number of dipoles of a given size
67 //cout << "N_maz = " << N_maz << endl;

68 // double alpha_s=1;

69 // N_sat=delta/alpha_s"~2;

70 const double probFactor = 2xlog (B)/(2*pi);

71 const int rho_ min = 0;

72 const int rho_ max = 40;

73 //const int rtho maz = 50;

74 const int n_azimuth = 12;

75 const double dphi = 2xpi/n_azimuth;

76

77 // Declare Other Vars

78

79 // using array for probability matrizc instead of vector for multidimensionality
80 // first entry of last dimension ts sum over theta

81 double prob_itoj[rho_max+1][rho_max+1][n_azimuth+1] = {{{0}}};

82 // initialize random generator, generate one value (predictable)

83 RandGen gen;

84 gen.RandInt (10);

85

86 // determine discrete probability matriz for i—>j

87 for ( int i=0; i<=rho_ max; i++ )

88 {

89 for ( int j=0; j<=rho_ max; j++ )

920 {

91 double kthTermj;

92 if( j<i ) {

93 for ( int k=3; k<=n_azimuth—-3; k++) { // k limits depend on n_ azimuth—here 60<k<300 deg
94 kthTerm = probFactorxdphi/(l1+pow(B,2%(i—j))—2xpow(B,i—j)*cos(k*dphi));
95 prob_itoj[i][j][0] += kthTerm; // k=0 is total angular prob i—>j

96 prob_itoj[i][j][k+1] = kthTerm; // prob for the kth angular bin

97 }

98 }

99 else if( j==i ) {

100 for ( int k=2; k<=n_azimuth—-2; k++) { // k limits depend on n_ azimuth—here 60<k<300 deg
101 kthTerm = probFactorxdphi/(1+pow(B,2*(i—j))—2xpow(B,i—j)*cos(kxdphi));
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102 prob_itoj[i][j][0] += kthTerm; // k=0 is total angular prob i—>j

103 prob_itoj[i][j][k+1] = kthTerm; // prob for the kth angular bin

104 1

105 +

106 else { // j>1

107 for ( int k=0; k<=n_azimuth—-1; k4++4) {

108 kthTerm = probFactorxdphi/(1+pow(B,2%(i—j))—2*pow(B,i—j)*cos(kxdphi));

109 prob _itoj[i][j][0] 4+= kthTerm; // k=0 is total angular prob i—>j

110 prob _itoj[i][]j][k+1] = kthTerm; // prob for the kth angular bin

111 1

112 1

113 }

114 }

115

116 // print probability matriz

117 cout << "Probability Matrix:" << endl;

118 cout << endl;

119 for( int i=0; i<=rho_max; i++)

120 {

121 for ( int j=0; j<=rho_max; j++ ) {

122 cout << prob itoj[i][j][0] << " ",

123 !

124 cout << endl;

125 s

126 cout << endl;

127

128 // determine lifetimes

129 vector <double> sum(rho_ max+1);

130 vector <double> lifetime (rho_max+1); // upper limit on rho_a is rho_max—1%%

131 for( int i=0; i<=rho_max; i++ ) {

132 sum[i] = 0;

133 for ( int j=0; j<=rho_max; j++ ) {

134 sum[i] += prob_itoj[i][j][0];

135 }

136 lifetime [i] = 1/sum/[i];

137 }

138 // output lifetimes

139 cout << "Lifetimes:" << endl;

140 for ( int rho_ a=rho_ min; rho_ a<=rho max; rho_a++) {

141 cout << 1/lifetime[rho_a] << endl;

142 s

143

144 // print probability matriz, fized i and j, print angular probabilities

145 /*

146 cout << endl;

147 int 12 = 0;

148 int j2 = 0;

149 cout << prob_itoj[i2][j2][0] << ": ";

150 for( int k=0; k<=n_ azimuth—1; k++) {

151 cout << prob_itoj[i2][j2][k+1] << " ;

152 }

153 cout << endl;

154 i2 = 0;

155 12 = 1;

156 cout << prob_idtoj[i2][j2][0] << ": ";

157 for( int k=0; k<n_azimuth; k++) {

158 cout << prob_itoj[i2][j2][k+1] << " ";

159 }

160 cout << endl << endl;

161 Ny

162

163 vector< Stats:: Dists:: Discrete:: Discrete :: RandomSample<double>* > prob_itoj_gen(rho_max);

164 vector< Stats:: Dists:: Discrete:: Discrete :: RandomSample<double>* > prob_k_azimuth_gen(2*(rho_max
—1)+1);

165 double passToGenij[rho_max][rho_max] = {{0}};

166 double passToGenk[2#(rho_max—1)+1][n_azimuth] = {{0}};

167 for (int i=0; i<=rho_max—1; i++) {

168 for (int j=0; j<=rho_max—1; j++) {

169 passToGenij[i][j] = prob_itoj[i][]j][0];

170 1
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171 '

172 for (int i=0; i<=rho_max—1; i++) {

173 prob_itoj_gen[i]=new Stats:: Dists:: Discrete :: Discrete :: RandomSample<double>(rho_max,
passToGenij[i], true, time (0)/MERSENNEDIV) ;

174 //prob_itoj gen[i]=new Stats:: Dists:: Discrete :: Discrete : : RandomSample<double >(rho_maz,
prob_itoj[i], true, 0.3416);

175 }

176 for (int j=0; j<=2x(rho_max—1); j++) {

177 if ( j<=rho max—2 ) {

178 for (int k=0; k<=n_azimuth—-1; k++4) {

179 passToGenk|[j][k] = prob_itoj[rho_max—1][j][k+1]; // last row of prob matriz

180 }

181 3

182 else { // j>rho_maz—2, where the rho_maz—1 entry is for i—>i

183 for (int k=0; k<=n_azimuth—1; k++) {

184 passToGenk[]j][k] = prob_itoj[0][j][k+1]; // first row of prob matriz

185 3

186 1

187 3

188 for (int j=0; j<=2x(rho_max—1); j++) {

189 prob_k azimuth gen[j]=new Stats:: Dists:: Discrete:: Discrete : : RandomSample<double>(n_azimuth,
passToGenk[j], true, time(0)/MERSENNEDIV) ;

190 s

191

192 cout << "Y max = " << Y max << ", kappa_ cutoff = " << kappa_ cutoff <<

193 ", events = " << numEvents << endl;

194 cout << "probFactor = " << probFactor << endl;

195

196 // end serial code initializers

197

198 #pragma omp parallel // clear contents of output files

199 {

200 int th_id = omp_get_thread num();

201 ofstream fileOutputStream ,rho_sStream ,TatProbeY1l,TatProbeY2,TatProbeY3;

202 stringstream ss;

203 ss << th_id;

204 string filename;

205

206 filename = "rho sCore" 4 ss.str() + ".dat";

207 rho_sStream.open(filename.c_str()); // clears file contents

208 ////Tho _sStream << "numBvents= " << numBvents << endl;

209 rho_ sStream.close () ;

210

211 filename = "TatProbeY1Core" 4+ ss.str() + ".dat";

212 TatProbeY1l.open(filename.c str()); // clears file contents

213 ////TatProbeY1l << "numEvents= " << numEvents << endl;

214 TatProbeY1l.close ();

215

216 filename = "TatProbeY2Core" + ss.str() + ".dat";

217 TatProbeY2.open(filename.c_str()); // clears file contents

218 ////TatProbeY2 << "numEvents= " << numEvents << endl;

219 TatProbeY2. close ()

220

221 filename = "TatProbeY3Core" + ss.str() + ".dat";

222 TatProbeY3.open(filename.c str()); // clears file contents

223 ////TatProbeY8 << "numBEvents= " << numBEvents << endl;

224 TatProbeY3. close ();

225 }

226

227 // EVENT LOOP

228 cout << "Num procs = " << omp_get num_procs() << endl;

229 #pragma omp parallel for

230 for( int event=1; event<=numEvents; event++ ) {

231

232 // initialize thread variables

233 double kappa,kappa2,kappa3,kappad,h kappab;

234 double b01,b01lx,b0ly,x0x,x0y,xlx,xly,x2x,x2y;

235 double x01x,x0ly,x02x,x02y ,x12x,x12y;

236 double length_x01,x0lhatx ,x0lhaty ,length_x02,length_x12;

237 double b02,b12,b02x,b02y ,bl2x,bl2y;
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238 double b02hatx,b02haty ,bl2hatx,bl2haty ,checkpointx ,checkpointy;
239 int rho_x02, rho_x12;

240 double numsplits_1i;

241 bool sizeRangex02 ,sizeRangex12 ,exceedkappax02,exceedkappaxl2,unSatx02,unSatx02Lower,
unSatx02Upper ,

242 unSatx12 ,unSatxl2Lower ,unSatx12Upper;

243 double T[rho _max+1][5] = {{0}};

244 double b;

245 int rho_s,rho_sPrev;

246 double angle ,anglel ,angle2;

247 int countl,count2,count3,countd4 ,count5,count6;

248 countl=count2=count3=count4d=count5=count6=0;

249

250 // stream wvars

251 int th_id = omp_get_thread num();

252 ofstream fileOutputStream ,rho_sStream ,TatProbeY1l, TatProbeY2,TatProbeY3;

253 streambufx sbuf = cout.rdbuf(); // make a copy of the cout stream buffer

254 stringstream ss;

255 ss << th_id;

256 string filename;

257

258 filename = "rho sCore" + ss.str() + ".dat";

259 rho sStream.open(filename.c_ str(),ios::app); // appends to file contents

260

261 filename = "TatProbeY1Core" + ss.str () + ".dat";

262 TatProbeY1l.open(filename.c_ str(),ios::app); // appends to file contents

263

264 filename = "TatProbeY2Core" + ss.str() + ".dat";

265 TatProbeY2.open(filename.c_str(),ios::app); // appends to file contents

266

267 filename = "TatProbeY3Core" + ss.str() + ".dat";

268 TatProbeY3.open(filename.c_str(),ios::app); // appends to file contents

269

270 cout << "////)]))///])/]]]/]// EVENT = " << event << ", core = " <<

271 omp_get_thread _num () << " ////////////////////" << endl << endl;

272 // initialize nf[i]

273 vector < RedBlackTree<double>x > n(rho_max+1);

274 for ( int i=0; i<=rho max; i++ ) {

275 n|i]J=new RedBlackTree<double>(—1000);

276 }

277 // populate the initial size dipoles

278 for ( int k _b=1; k_b<=N_initial; k b+ )

279 {

280 anglel = 2xpixgen.RandReal();

281 angle2 = 2xpixgen.RandReal();

282 b0l = r(0)/2xgen.RandReal() ;

283 b0lx = bOlxcos(anglel);

284 b0ly = bOlxsin (anglel);

285 x0x = bO0lx + r(0)/2*cos(angle2);

286 x0y = bOly + r(0)/2+sin(angle2);

287 xlx = bO0lx — r(0)/2*cos(angle2);

288 xly = bOly — r(0)/2*sin(angle2);

289 n[0]—>insert (b01,b01x,b0ly ,x0x,x0y ,xlx,xly);

290 '

291 rho_s=rho_sPrev=0;

292 // Rapidity Loop

293 for ( double Y=0; Y<=Y maxtepsilon; Y=Y+delta Y ) {

294 cout << "////////)/1//) Y =" << Y << endl << endl; // output progress

295 for ( int i=0; i<=rho_ max—1; i++ ) {

296 numsplits i=1/lifetime[i]xdelta Yx*n[i]->size ();

297 if ( numsplits_i != 0 ) {

298 //cout << "i=" << i << ", numsplits_i= " << numsplits_ 1 << endl;

299 //cout << "lifetime=" << lifetime[i] << ", size=" << n[i]->size() << endl;

300 //cout << endl;

301 }

302 for( int 1=1; l<=numsplits_i; 14+ ) {

303 if( n[i]->size() > 0 ) { // only split if dipoles ezist

304 // choose a random dipole from column i to split

305 n[i]->randElement (b0l ,b01x,b0ly ,x0x,x0y ,x1lx ,x1ly);

306 // choose size j to split into
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308
309
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314
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335
336
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348
349
350
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374

375

int j=int( prob_itoj_gen[i]->genReal() );

// choose azimuth k to split into

int k = int( prob_k_azimuth_gen[j—i+(rho_max—1)]->genReal() );
// calculate z2

angle = 2xpixdouble(k)/double(n_azimuth);

x01lx = xlx — x0x;

x0ly = xly — x0y;

length x01 = pow(pow(x01x,2)+4pow(x01ly,2) ,.5); //Pythagorean thm
x0lhatx = x01x/length x01;

x0lhaty = x0ly/length x01;

x2x = —r(j)=*(cos(angle)*x0lhatx — sin (angle)*x0lhaty); // just rotation piece
x2y = —r(j)=*(sin(angle)*x0lhatx + cos(angle)*x0lhaty); // just rotation piece
// choose which side of z01 to split off of
if (gen.RandInt(0,1)==1) { // split off of =zl

x2x = x2x + xlx;

x2y = x2y + xly;
}
else { // split off of =0

x2x = —x2x + x0x;

x2y = —x2y + x0y;
}
// choose IP to split into
b02x = (x0x + x2x)/2.0;
b02y = (x0y + x2y)/2.0;
b02 = pow (pow(b02x,2)+pow(b02y,2) ,.5);
bl2x = (xlx + x2x)/2.0;
bl2y = (xly + x2y)/2.0;
b12 = pow(pow(bl2x,2)+pow(bl2y,2) ,.5);
x02x = x2x — x0x;
x02y = x2y — x0y;
length_x02 = pow(pow(x02x,2)+pow(x02y,2) ,.5); //Pythagorean thm
x12x = x2x — xlx;
x12y = x2y — xly;
length_x12 = pow(pow(x12x,2)+pow(x12y,2) ,.5); //Pythagorean thm
// insert new dipoles, round new dipoles to nearest log_2
////rho_z02 = floor (log(1/length_ x02)/log(2) + .5);
////rho_z12 = floor (log(1/length_ z12)/log(2) + .5);
rho x02 = int (log(1/length x02)/log(B) + .5);
rho x12 = int (log(1/length x12)/log(B) + .5);
/*
cout << "zO0={" << z0z << "," << 0y << "}, zl={" << zlz << ", << zly <<

"l z2={" << z2z << ", << z2y << "} << endl;
cout << " bO1={" << b0lz << "," << b01ly << "}, b02={" << b02z <<
HMco b02y << "}, b12={" << bl2z << "," << bl2y << "}" << endl;

*/
/%
cout << "endpoint z coordinates: " << zl0z << "," << zlz << ", << z2z << endl;
cout << "endpoint y coordinates: " << z0y << ", << zly << ", << 22y << endl;
cout << "IP =z coordinates: " << b0lzx << "," << b02z << "," << b12z << endl;
cout << "IP y coordinates: " << b0ly << "," << b02y << ", << b12y << endl;
cout << "rho_ z01=" << 1 << ", tho_=z02=" << rho_z02 << ", rho_zi12=" << rho_z12 << endl;

cout << endl;
*/

// check various conditions before adding daughters z02 and z12
unSatx02=unSatx02Lower=unSatx02Upper=unSatxl2=unSatx12Lower=unSatx12Uppe
sizeRangex02 = (rho_x02 >= 0) && (rho_x02 <= rho_max);

sizeRangex12 = (rho_x12 >= 0) && (rho_x12 <= rho_max);

kappa = r(rho_x02)/abs(b02—b_probe) ;

kappa2 = r(rho_x02)/abs(b02—b_probe2);
kappa3 = r(rho_x02)/abs(b02—b_probe3);
kappa4 = r(rho_x02)/abs(b02—b_probe4);
kappa5 = r(rho_x02)/abs(b02—b_probe5);

exceedkappax02 = (kappa > kappa_cutoff) || (kappa2 > kappa_cutoff) || (kappa3 >

kappa_cutoff)
|| (kappa4 > kappa_cutoff) || (kappab5 > kappa_cutoff);
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kappa = r(rho_x12)/abs(bl2—b_probe);

kappa2 = r(rho_x12)/abs(bl2—b_probe2);
kappa3 = r(rho_x12)/abs(b02—b_probe3);
kappa4 = r(rho_x12)/abs(b02—b_probed);
kappa5 = r(rho_x12)/abs(b02—b_probes);

exceedkappax12 = (kappa > kappa_cutoff) || (kappa2 > kappa_cutoff) || (kappa3 >

kappa_cutoff)

|| (kappa4 > kappa_ cutoff) || (kappab > kappa_cutoff);

if( sizeRangex02 && sizeRangex12 && exceedkappax02 && exceedkappax12 ) {

// assume already saturated if size > N_maz

//if( ((n[rho_x02]—>size () >= N_maz) [| (n[rho_=z12]->size() >= N_maz)) )
// if other tests passed, do time consuming saturation

saves computation)

tests

continue;

in nested form (mesting

unSatx02 = ( n[rho_x02]->between2D (b02—r (rho_x02)/2,b02+r (rho_x02)/2,r(rho_x02) ,b02x,

b02y) < N_sat );
if ( unSatx02 ) { // lower boundary z02
b02hatx = b02x/b02;
b02haty = b02y/b02;
checkpointx = b02x—r(rho_x02)/2xb02hatx;
checkpointy = b02y—r(rho_x02)/2+xb02haty ;
if ( b02—r(rho_ x02)/2 >= 0 ) {

unSatx02Lower = n[rho x02]->between2D (b02—r (rho_x02) ,b02,r(rho_x02) ,checkpointx,

checkpointy) < N_sat;

}
else { // b02—r(rho_z02)/2 < 0

unSatx02Lower = n[rho_ x02]->between2D (0,abs(b02—r (rho_x02)),r(rho_x02),checkpointx ,

checkpointy) < N_sat;
¥
if ( unSatx02Lower ) { // upper boundary z02
checkpointx = b02x+r(rho_x02)/2*b02hatx;
checkpointy = b02y+r(rho_x02)/2xb02haty ;

unSatx02Upper = n[rho_x02]->between2D (b02,b02+r (rho_x02) ,r(rho_x02),checkpointx ,

checkpointy) < N_sat;
if ( unSatx02Upper ) { // at b12

unSatx12 = n[rho_x12]->between2D (bl2—r(rho_x12)/2,bl124r (rho_x12)/2,r(rho_x12) ,bl12x

,bl2y) < N_sat;
if ( unSatx12 ) { // lower boundary z02
bl2hatx = bl2x/bl2;
bl2haty = bl2y/bl2;
checkpointx = bl2x—r(rho_x12)/2+«bl2hatx;
checkpointy = bl2y—r(rho_x12)/2+bl2haty;
if( bl2—r(rho_x12)/2 >= 0 ) {

unSatx12Lower = n[rho_x12]->between2D(b12—r(rho_x12),b12,r(rho_x12),

checkpointx ,checkpointy) < N_sat;

¥
else { // b12—r(rho_=x12)/2 < 0

unSatxl2Lower = n[rho_x12]->between2D (0,abs(bl2—r(rho_x12)) ,r(rho_x12),

checkpointx ,checkpointy) < N_sat;

}

if ( unSatxl2Lower ) { // upper boundary z12
checkpointx = bl2x+r(rho_x12)/2xbl2hatx;
checkpointy = bl2y+r(rho_x12)/2xbl2haty;

unSatx12Upper = n|[rho_ x12]->between2D(b12,bl2+r (rho_x12),r(rho_x12),

checkpointx ,checkpointy) < N_sat;
} // upper boundary z12
} // lower boundary z12
Y // at bi12
} // upper boundary z02
} // lower boundary =02
} // sizerange and kappa check

//else {

// cout << "veto sizerange or kappa: " << sizeRangezx02 <<
// exceedkappaz02 << ", " << exceedkappaxl2 << endl;
//}

"
i

" << sizeRangezl2 <<

if ( unSatx02 && unSatx02Lower && unSatx02Upper && unSatx12 && unSatxl2Lower &&

unSatx12Upper ) {

if( floor(b01%x10000) != floor (pow( pow(b0Olx,2)+pow(bOly,2) ,.5 )*x10000) ) {
cout << "wkxkxkx ALERT*kkkxxx: " << b0l << " " << pow( pow(b0lx,2)+pow(b0ly,2)

endl << endl << endl << endl;
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}

}

///n[i]->printTreeVector () ;

n[i]->remove(b0l); // remove parent

n[rho_x02]->insert (b02,b02x,b02y,x0x,x0y,x2x,x2y); // add b02
n[rho x12]—>insert(bl2,bl2x,bl2y,xlx,xly,x2x,x2y); // add b12

//cout << "zOz = " << zl0z << ", zlz = " << zlz << ", 2z = " << z2z << endl;
//cout << "zOy = " << z0y << ", zly = " << zly << ", 22y = " << z2y << endl << endl;
//cout << "entry rho z02=" << rho_z02 << ": " << b02 << "," << b02z << ", << b02y <<
<< 20z << ", << 20y
// << M << 222 << ) << 22y << endl;
//cout << "entry rho x12=" << rho_ z12 << ": " << b12 << ", << b12z << ", << b12y <<
<< ple << M << zly
// << MM K< z2x << M, << 22y << endl;
//cout << "remowval 1=" << 1 << M M << b01 << M, << b01n << M << b01y << ", << 20z
<< "M << z0y
// << M << gl << M << zly << endl << endl;
} // saturation check
//else {
// cout << "wveto saturation: " << wunSatz02 << ", " << unSatz02Lower << ", " <<
unSatz02Upper <<
// ", " << unSatzl12 << ", " << wnSatzl2Lower << ", " << unSatz12Upper <<Jendl;
S/}

} // tree size check
} // dipole creation (numsplits)
// i loop

// output amplitude
for (int i=0; i<=rho max; i++) {

for (int j=0; j<=4; j++) {
if( j==0 ) b=0;
else if( j==1 ) b=pow(10.0,—6);
else if( j==2 ) b=pow(10.0,—4);
else if( j==3 ) b=pow(10.0,—2);
else b=pow(10.0,—-1); // j==4

T[i][j] = (double) n[i]->between2D (b—r(i)/2,b+r(i)/2,r(i),b,0)/( (double) N_sat);

}
}
if ( areSame(Y,Y1l) || areSame(Y,Y2) || areSame(Y,Y3) ) {
cout << "OUTPUTTING AMPLITUDE" << endl << endl;
if ( areSame(Y,Y1l) ) {
for (int i=0; i<=rho max; i++) {
TatProbeY1l << i << " " << T[i][0] << endl;
}
TatProbeY1l << "end_ of event=" << event << endl;
}
if ( areSame(Y,Y2) ) {
for (int i=0; i<=rho_max; i++) {
TatProbeY2 << i << " " << T[i][0] << endl;
}
TatProbeY2 << "end_of_event=" << event << endl;
}
if ( areSame(Y,Y3) ) {
for (int i=0; i<=rho_max; i++) {
TatProbeY3 << i << " " << T[i1][0] << endl;
}
TatProbeY3 << "end_ of event=" << event << endl;
}
/*for(int 1=0; i<=rho_maz—1; i++) {
fileOutputStream << T[i1] << endl;
Fx/
///fileOutputStream . close () ;
//cout.rdbuf(sbuf); // reassign cout to console output
} // end output

// front position at central IP
rho_sStream << Y << " "

for ( int j=

<=4 j++ ) o
for (int i=0; i<=rho_max; i++) {
if( T[i][j] >= .5 ) rho_s=i;
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500 rho_sStream << rho_s << " ";

501 1

502 rho_sStream << endl;

503 } // Y loop

504

505 fileOutputStream .open("TAmplitude.dat");

506 fileOutputStream << "b,b0lx,b0ly,x0x,x0y,xIlx,xly,kappa=" << kappa_cutoff << " ¥ max=" << Y max
<<

507 " ,numEvents=" << numEvents << " ,probFactor=" << probFactor << endl;

508 cout.rdbuf(fileOutputStream.rdbuf()); // redirect cout to the output file stream

509 for ( int i=0; i<=rho_ max; i4++ ) {

510 ///cout << "i=" << 1 << endl;

511 ///n[i]->printTreeVector();

512

513 cout.rdbuf(sbuf); // reassign cout to console output

514 fileOutputStream. close () ;

515 rho_sStream << "end_of_event=" << event << endl;

516 rho_sStream.close ()

517 TatProbeY1l.close ();

518 TatProbeY2.close () ;

519 TatProbeY3.close () ;

520 } // EVENT LOOP, threads rejoin

521

522 // compile data

523 int numThreads = omp_get num_procs() ;

524 ofstream fileOutputStream ,rho_sStream , TatProbeY1l,TatProbeY2,TatProbeY3;

525 ifstream input;

526 stringstream ss;

527 rho_sStream.open("rho_s.dat");

528 rho_sStream << "numEvents= " << numEvents << endl;

529 TatProbeY1l.open("TatProbeY1l.dat");

530 TatProbeY2.open("TatProbeY2.dat");

531 TatProbeY3.open("TatProbeY3.dat");

532 TatProbeY1l << "numEvents= " << numEvents << endl;

533 TatProbeY2 << "numEvents= " << numEvents << endl;

534 TatProbeY3 << "numEvents= " << numEvents << endl;

535 for ( int i=0; i<numThreads; i++ ) {

536 ss.str(""); // empty the string

537 ss << i

538 string filename ,data;

539

540 filename = "rho_ sCore" + ss.str() + ".dat";

541 input.open(filename.c_ str());

542 if ( linput.fail() ) {

543 while( getline(input ,data) ) {

544 rho_sStream << data << endl;

545 }

546 1

547 else cout << "Error: cannot open file " << filename << endl;

548 input.close ();

549

550 filename = "TatProbeY1Core" + ss.str() + ".dat";

551 input.open(filename.c_str());

552 if ( linput.fail() ) {

553 while( getline (input ,data) ) {

554 TatProbeY1l << data << endl;

555 3

556 1

557 else cout << "Error: cannot open file" << filename << endl;

558 input.close ();

559

560 filename = "TatProbeY2Core" + ss.str() + ".dat";

561 input.open(filename.c_str());

562 if ( !input.fail() ) {

563 while( getline(input ,data) ) {

564 TatProbeY2 << data << endl;

565 }

566 1

567 else cout << "Error: cannot open file" << filename << endl;

568 input.close ()
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filename = "TatProbeY3Core" + ss.str() + ".dat";
input.open(filename.c_str());
if ( linput.fail() ) {
while( getline (input ,data) ) {
TatProbeY3 << data << endl;

}

else cout << "Error: cannot open file" << filename << endl;

input.close ();
}
rho_ sStream.close () ;
TatProbeY1l.close ();
TatProbeY2.close () ;
TatProbeY3.close () ;

cout << "DONE, Y_max = " << Y_max << ", kappa_cutoff = " << kappa_cutoff <<
", events = " << numEvents << endl;

cout << "probFactor = " << probFactor << endl;

///cout << "saturation veto counts: " << countl << ", " << count2 << ',

/// countf << ", " << counts << ", " << countb << endl;

cout << flush;
return O;

8.3 2DR Code Snippet

// 2DR changes

x1xPrime = bl2x + length_x12/2xx0lhatx;
x2xPrime = bl2x — length_x12/2xx0lhatx;
x0xPrimePrime = b02x — length_x02/2+x0lhatx;
x2xPrimePrime = b02x + length_x02/2xx0lhatx;
b02y = 0;

bl2y = 0;

b02 = abs(b02x);

bl2 = abs(bl2x);

8.4 2DSR Code Snippet

// 2DSR changes
s = gen.RandReal(0,1);

smallerRho = min(rho_x02,rho_x12);

stripwidth = stripFactor*r(smallerRho);

if( abs(x2y) > stripwidth ) {
if( x2y < 0 ) s = —s; // project to the correct side of the z—awmis
x2xPrime = x2x;

x2yPrime = sx*stripwidth;
if ( length_x02 > abs(x0y—x2yPrime) ) {
if( x0x > x2xPrime ) { // z0 slides up z—azis

x0xPrime = x2xPrime + pow(pow(length x02,2)—pow(x0y—x2yPrime

}

else { // z0z <= z2zPrime, z0 slides down z—azis

x0xPrime = x2xPrime — pow(pow(length x02,2)—pow(x0y—x2yPrime

}

else x0xPrime = x0x;
if ( length x12 > abs(xly—x2yPrime) ) {
if( xlx > x2xPrime ) { // w1l slides up z—azis

x1xPrime = x2xPrime + pow(pow(length_ x12,2)—pow(xly—x2yPrime

else { // zlz <= z2zPrime, wl slides down z—azis

x1xPrime = x2xPrime — pow(pow(length_ x12,2)—pow(xly—x2yPrime

}
}
else x1xPrime = xlx;
if ( xOxPrime!=x0xPrime || x1xPrime!=x1xPrime ) {
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cout << "sxkxxxx ALERT***x*xxxx" << endl;
}
x0yPrime = x0y;
xlyPrime = xly;

// redefine
b02x = (x0xPrime+x2xPrime) /2.0;
b02y = (xOyPrime+x2yPrime) /2.0;
b02 = pow (pow (b02x,2)+pow(b02y,2) ,.5);
bl2x = (x1xPrime+x2xPrime) /2.0;
bl12y = (xlyPrime+x2yPrime) /2.0;
b12 = pow(pow(bl2x,2)+pow(bl2y,2) ,.5);
// redefine

impact parameters to primed ones

coordinates to primed ones

x0x = xO0xPrime;
x0y = xOyPrime;
x1lx = x1xPrime;
xly = xlyPrime;
x2x = x2xPrime;
x2y = x2yPrime;

8.5 RedBlackTree.h

#ifndef RED BLACK TREE H
#define RED BLACK TREE H

#include
#include <iostream>
#include <cstdlib>

"datastructs/dsexceptions.h"
// For NULL

#include "tapestry/randgen.h"
// Red—black tree class
//
// CONSTRUCTION: with negative infinity object also
// used to signal failed finds
//

/o ok ko sk ok ok ok ok ok ok ok ok ok ok k PUBLIC! OPERA TIONS* s sk sk sk sk s sk sk ok sk % sk sk ok ok o ok ok % ok

else

false

// void insert( =z ) —> Insert =

// void remove( z ) ——> Remove z (unimplemented)

// Comparable find( = ) —> Return item that matches =

// Comparable findMin( ) ——> Return smallest item

// Comparable findMaxz( ) ——> Return largest item

// boolean isEmpty( ) —> Return true 1if empty;

// void makeEmpty( ) —> Remove all items

// void printTree( ) —> Print tree in sorted order
// void printTree2( ) ——> Print tree in tree order

// int size( )
// int between(z, y)
// Comparable randElement(n) —> Returns a random tree

—> Returns

——> Returns number of nodes

number of nodes

// Node and forward declaration because g++ does

// mot understand nested classes.

template <class Comparable>

class RedBlackTree;

template <class Comparable>

class RedBlackNode

{
Comparable element ;
///RedBlackNode xleft ;
///RedBlackNode xright ;
RedBlackNode x*link [2]; // Left (0) and right
int red;
double bx ;
double by ;
double x0x;
double x0y ;
double x1x;
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46 double xly;

47

48 // ¢ = 0 should be ¢ = RedBlackTree<Comparable >::BLACK

49 // But Visual 5.0 does not comprehend it.

50 RedBlackNode( const Comparable & theElement = Comparable( ),

51 RedBlackNode *1t = NULL, RedBlackNode xrt = NULL,
52 double thebx = double(), double theby = double(),
53 double thex0Ox = double(), double thex0y = double(),
54 double thexlx = double(), double thexly = double(),
55 int thered = 1 )

56 : element( theElement ), red( thered ), bx(thebx),

57 by (theby), xOx(thex0x), x0y(thex0Oy), xlx(thexlx), xly(thexly)
58 {

59 link [0] = 1t

60 link [1] = rt;

61 ///cout << "element= " << element << ", mem of link[1]=" << link[1] << endl;
62 1

63 friend class RedBlackTree<Comparable >;

64 }s

65

66 template <class Comparable>

67 class RedBlackTree

68 {

69 public:

70 explicit RedBlackTree( const Comparable & neglnf );

71 RedBlackTree( const RedBlackTree & rhs );

72 “RedBlackTree( );

73

74 const Comparable & findMin( ) const;

75 const Comparable & findMax( ) const;

76 const Comparable & find( const Comparable & x ) const;

s bool isEmpty( ) const;

78 void printTree( ) const;

79 void printTree2( ) const;

80 void printTreeVector( ) const;

81 int size( ) const;

82 int between (const Comparable & lower, const Comparable & upper) const;

83 int between2D (const Comparable & lower, const Comparable & upper,

84 const double & ri, const double & thebx, const double & theby) const;
8 // void randElement( const int & n, Comparable & theElement,

86 // double & thebz, double € theby,

87 // double & thezOz, double € thexzOy,

88 // double & thexlz, double & thexzly) const;

89 void randElement( Comparable & theElement,

90 double & thebx, double & theby,

91 double & thexOx, double & thexOy,

92 double & thexlx, double & thexly) const;

93

94 void makeEmpty( );

95 //void insert( const Comparable & = );

96 int insert( const Comparable & x, const double & bx,

97 const double & by, const double & x0x,

98 const double & x0y, const double & xl1x,

99 const double & xly);

100 int remove( const Comparable & x );

101

102 enum { BLACK, RED };

103

104 const RedBlackTree & operator=( const RedBlackTree & rhs );

105

106 private:

107 RedBlackNode<Comparable> xheader; // The tree header (contains neglnf)
108 const Comparable ITEM_NOT_FOUND;

109 RedBlackNode<Comparable> snullNode;

110

111 // Used in insert routine and its helpers (logically static)
112 RedBlackNode<Comparable> xcurrent;

113 RedBlackNode<Comparable> *xparent;

114 RedBlackNode<Comparable> xgrand;

115 RedBlackNode<Comparable> xgreat ;
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// Usual recursive stuff
void reclaimMemory( RedBlackNode<Comparable> %t ) const;
void printTree( RedBlackNode<Comparable> %t ) const;
void printTree2( RedBlackNode<Comparable> *t ) const;
void printTreeVector( RedBlackNode<Comparable> %t ) const;
int recursiveSize( RedBlackNode<Comparable> %t ) const;

int between(const Comparable & lower, const Comparable & upper, RedBlackNode<Comparable> xt)

const ;

int between2D (const Comparable & lower, const Comparable & upper, RedBlackNode<Comparable> x

t,
const double & ri, const double & thebx, const double & theby) const;
void randElement( RedBlackNode<Comparable> *t, int & countdown, Comparable &
theElement ,
double & thebx, double & theby,
double & thex0Ox, double & thexOy,
double & thexlx, double & thexly, bool & done ) const;
RedBlackNode<Comparable> % clone( RedBlackNode<Comparable> % t ) const;

// Red—black tree manipulations

RedBlackNode<Comparable> % jsw_single(RedBlackNode<Comparable> *root, int dir) const;
RedBlackNode<Comparable> % jsw_double(RedBlackNode<Comparable> *root, int dir) const;

//void handleReorient( const Comparable & item );
//RedBlackNode<Comparable> % rotate( const Comparable & item,

// RedBlackNode<Comparable> xparent ) const;
//void rotate WithLeftChild( RedBlackNode<Comparable> x & k2 ) const;
//void rotateWithRightChild( RedBlackNode<Comparable> % & k1 ) const;

int is_red( RedBlackNode<Comparable> *root ) const;
int mySize;

}s

#include "RedBlackTree4.cpp"
#endif

8.6 RedBlackTree.cpp

#include "RedBlackTree4.h"

#ifndef HEIGHT LIMIT

#define HEIGHT LIMIT 64 /x Tallest allowable tree x/
#endif

VAT

* Construct the tree.

* neglnf is a value less than or equal to all others.

* It i1s also wused as ITEM NOT FOUND.

*/

template <class Comparable>

RedBlackTree<Comparable >:: RedBlackTree( const Comparable & neglnf )
ITEM_NOT_FOUND( neglnf )

{
nullNode = new RedBlackNode<Comparable >;
nullNode—>link [0] = nullNode—>link [1] = nullNode;
header = new RedBlackNode<Comparable>( neglnf );
header—>1link [0] = header—>link [1] = nullNode;
mySize = 0;

}

VAT

% Copy constructor.

*/

template <class Comparable>
RedBlackTree<Comparable >:: RedBlackTree( const RedBlackTree<Comparable> & rhs )
ITEM_NOT_FOUND( rhs.ITEM_NOT_FOUND ), mySize(rhs.mySize)

{
nullNode = new RedBlackNode<Comparable >;
nullNode—>link [0] = nullNode—>link [1] = nullNode;
header = new RedBlackNode<Comparable>( ITEM_NOT_FOUND ) ;
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header—>1link [0]
*this

= header—>link [1]
= rhs;

yAT

* Destroy the
*/

template <class Comparable>
RedBlackTree<Comparable >:: " RedBlackTree ( )

tree.

{
makeEmpty ( );
delete nullNode;
delete header;
}
VA
* Remove item =z from the tree.
* Not implemented in this version.
*/
template <class Comparable>

int RedBlackTree<Comparable >::remove( const

{

= nullNode;

Comparable & x )

if ( header—>link[1] != nullNode ) {
RedBlackNode<Comparable> head; /% False tree root x/
RedBlackNode<Comparable> *q, *p, *g; /*x Helpers x/
RedBlackNode<Comparable> *xf = nullNode; /+x Found item =x/
int dir = 1;
/* Set up our helpers x/
q = &head;
g = p = nullNode;
q—>1ink [0] = nullNode; // added so that looking above the
g—>link [1] = header—>link [1];
/*
Search and push a red node down
to fiz red wviolations as we go
*/
while ( g—>link[dir] != nullNode ) {
int last = dir;
/* Move the helpers down x/
g = P
P = 4a;
q = g—>link [dir];

dir = g—>element < x;

/%
Save
going;

*/

if ( g—>element
f=q;

the

we Il do remowval tasks

x )

/% Push the
if (
if ( is_red ( g—>link[!dir] ) )
p = p—>link[last] = jsw_single

else if ( !is_red ( g—>link [!dir]

red node down with rotations

( a,

node with matching data and keep
at the

end

dir );
) ) £

RedBlackNode<Comparable> *xs = p—>link [!last ];

if (s != nullNode ) {
if (
/* Color flip x/

p—>red = 0;

s—>red = 1;

gq—>red = 1;
}

else {

94

and color flips
lis_red(q) && !is_red(q—>link[dir]) ) {

root does

*/

lis_red(s—>link [!last]) && !is_red(s—>link[last]) ) {

not

cause problems



102 int dir2 = g—>link[1] = p;

103

104 if ( is_red ( s—>link[last] ) )

105 g—>link [dir2]| = jsw_double ( p, last );
106 else if ( is_red ( s—>link[!last] ) )
107 g—>link [dir2] = jsw_single ( p, last );
108

109 /* Ensure correct coloring x/

110 q—>red = g—>link[dir2]->red = 1;

111 g—>link [dir2]—>1link[0]—>red = O0;

112 g—>link [dir2]—>1link[l]—>red = 0;

113 }

114 }

115 }

116 }

117 } // end while

118

119 /* Replace and remove the saved node */

120 if ( f != nullNode ) {

121 ///tree—>rel ( f—>element );

122 f—>element = g—>element;

123 f—>bx = gq—>bx;

124 f—>by = q—>by;

125 f—>x0x = g—>x0x;

126 f—>x0y = q—>x0y;

127 f—>x1x = g—>x1x;

128 f—>xly = g—>xly;

129 p—>link [p—>link [1] == q] =

130 q—>link [q—>1ink [0] == nullNode];

131 delete (q);

132 mySize ——;

133 }

134

135 /* Update the root (it may be different) x/
136 header—>link [1] = head.link [1];

137

138 /* Make the root black for simplified logic x/
139 if ( header—>link[1] != nullNode )

140 header—>link[l1]—>red = 0;

141

142 ///——tree—>size;

143 }

144

145 return 1;

146 }

147

148  /x*

149 * Find the smallest item the tree.

150 * Return the smallest item or ITEM NOT_FOUND if empty.
151 %/

152 template <class Comparable>
153 const Comparable & RedBlackTree<Comparable >::findMin( ) const
154 {

155 if ( isEmpty( ) )

156 return ITEM NOT_FOUND;

157

158 RedBlackNode<Comparable> *itr = header—>link [1];
159

160 while( itr —>link [0] != nullNode )

161 itr = itr—>link [0];

162

163 return itr —>element;

164 }

165

166 /xx*

167 * Find the largest item in the tree.

168 * Return the largest item or ITEM NOT FOUND if empty.
169 x/

170 template <class Comparable>
171 const Comparable & RedBlackTree<Comparable >::findMax( ) const
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172 {

173 if ( isEmpty( ) )

174 return ITEM_NOT_FOUND;

175

176 RedBlackNode<Comparable> *itr = header—>link [1];
177

178 while( itr—>link [1] != nullNode )

179 itr = itr—>link [1];

180

181 return itr —>element;

182}

183

184  /xx*

185 * Find item x in the tree.

186 * Return the matching item or ITEM NOT _FOUND if not found.
187/

188 template <class Comparable>
189 const Comparable & RedBlackTree<Comparable >::find ( const Comparable & x ) const

190 {

191 nullNode—>element = x;

192 RedBlackNode<Comparable> sxcurr = header—>link [1];
193

194 for( ; ;5 )

195 {

196 if( x < curr—>element )

197 curr = curr—>link [0];

198 else if( curr—>element < x )
199 curr = curr—>link [1];

200 else if( curr != nullNode )
201 return curr—>element;

202 else

203 return ITEM_NOT_FOUND;

204 }

205 }

206

207 /xx

208 * Make the tree logically empty.
209 %/

210 template <class Comparable>

211  void RedBlackTree<Comparable >::makeEmpty( )
212 {

213 reclaimMemory( header—>link [1] );

214 header—>link [1] = nullNode;

215}

216

217 /xx

218 * Test i1f the tree ts logically empty.

219 * Return true i1f empty, false otherwise.
220 %/

221 template <class Comparable>

222 bool RedBlackTree<Comparable >::isEmpty( ) const
223 {

224 return header—>link [1] == nullNode;

227 /xx

228 * Print the tree contents in sorted order.

229 «/

230 template <class Comparable>

231 void RedBlackTree<Comparable >::printTree( ) const
232 {

233 if ( header—>link [1] = nullNode )

234 cout << "Empty tree'" << endl;

235 else

236 printTree( header—>link [1] );

239 /xx
240 * Print the tree contents in binary tree order.
241 %/
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251

310
311

template <class Comparable>
void RedBlackTree<Comparable >::printTree2( ) const
{
if ( header—>link [1] == nullNode )
cout << "Empty tree" << endl;
else
printTree2 ( header—>link [1] )3

VAT

* Print the tree contents in order sorted.

*/

template <class Comparable>

void RedBlackTree<Comparable >::printTreeVector( ) const

{

if ( header—>link [1] == nullNode )
cout << "Empty tree'" << endl;
else

printTreeVector( header—>link [1] );

yAT

* Returns the number of nodes in the binary tree
*/

template <class Comparable>

int RedBlackTree<Comparable >::size () const

{

return mySize;

//if( header—>link [1] == nullNode )
// return 0;
//else
// return size( header—>link[1] );
}
VAT
* Returns the number of node elements between lower and upper
*/

template <class Comparable>
int RedBlackTree<Comparable >::between (const Comparable & lower,
{
if ( header—>link [1] == nullNode)
return O0;
else

return between(lower ,upper,header—>link [1]);

VEE

const

Comparable & upper) const

* Returns the number of ode elements between lower and upper and within a radius r_1i

*/

template <class Comparable>

int RedBlackTree<Comparable >::between2D (const Comparable & lower,

const Comparable & upper,

const double & ri, const double & thebx, const double & theby) const

{
if ( header—>link [1] == nullNode)
return O0;
else
return between2D (lower ,upper ,header—>link [1],ri ,thebx ,theby);
}
VAT

* Returns a random element between the 1st and nth nodes (in order)

*/

template <class Comparable>

void RedBlackTree<Comparable >::randElement( Comparable & theElement ,

double & thebx, double & theby,
double & thex0Ox, double & thexOy,
double & thexlx, double & thexly) const

if ( header—>link [1] == nullNode) {
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312 cout << "error, randElement called on empty tree" << endl;

313 return;

314 }

315

316 RandGen gen; // random number generator
317 gen.RandInt( 1,mySize ); // first predictable
318 int random _ integer = gen.RandInt( 1,mySize );
319 bool thedone = 0;

320 return randElement( header—>link[1], random integer, theElement, thebx, theby, thexOx, thexOy,
321 thexlx, thexly, thedone );

322 1}

323

324 /xx

325 * Deep copy.

326 */

327 template <class Comparable>

328 const RedBlackTree<Comparable> &

329 RedBlackTree<Comparable >::operator=( const RedBlackTree<Comparable> & rhs )
330 |

331 if ( this != &rhs )

332 {

333 makeEmpty ( ) ;

334 header—>link [1] = clone( rhs.header—>link [1] );
335 s

336

337 return xthis;

338 1}

339

340  /*x

341 * Internal method to print a subtree t in sorted order.
342 x/

343 template <class Comparable>
344 void RedBlackTree<Comparable >::printTree( RedBlackNode<Comparable> *t ) const
345

346 if( t !'= t—>link [0] )

347 {

348 printTree( t—>link [0] )3
349 cout << t—>element << endl;
350 printTree( t—>link[1] );
351 }

352 }

353

354 /xx

355 * Internal method to print a subtree t in binary tree order.
356 x/

357 template <class Comparable>
358 void RedBlackTree<Comparable >::printTree2( RedBlackNode<Comparable> *t ) const
359

360 if( t !'= t—>link [0] )

361 {

362 cout << t—>element << endl;
363 printTree2( t—>link [0] )3
364 printTree2 ( t—>link [1] );
365 }

366 }

367

368 /xx

369 * Internal method to print a subtree t in sorted order.
370 x/

371 template <class Comparable>
372 void RedBlackTree<Comparable >::printTreeVector( RedBlackNode<Comparable> xt ) const

373 {

374 if( t != t—>link[0] )

375 {

376 printTreeVector ( t—>link [0] )3

377 cout << t—>element << " " << t—>bx << " " << t—>by << " " <<

378 t—x0x << " " << t2x0y << " "K< t—oxlx << " " << t—>xly << endl;
379 printTreeVector ( t—>link [1] )3

380 3

381}
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382

383  /xx
384 * Internal method to return the number of nodes in the binary tree
385 o/

386 template <class Comparable>
387 int RedBlackTree<Comparable >::recursiveSize ( RedBlackNode<Comparable> *t ) const

388

389 if (t == t—>link [0] )

390 return O0;

391 else

392 return 14size( t—>link [0] )+size( t—>link[1] );

393}

394

395 /xx

396 * Internal method to return the number of node elements between z and y
397 x/

398 template <class Comparable>
399 int RedBlackTree<Comparable >::between(const Comparable & lower, const Comparable & upper,
RedBlackNode<Comparable> %t) const

400 |

401 if( t == t—>link [0] )

402 return O0;

403 else if( t—>element > lower && t—>element < upper)

404 return l+between( lower ,upper,t—>1link [0] )+between( lower ,upper,t—>link[1]);
405 else if( t—>element > lower )

406 return between( lower ,upper,t—>link [0]) ;

407 else if( t—>element < upper )

408 return between( lower ,upper,t—>link [1]);

409 else

410 {

411 cout << "error" << endl;

412 return O0;

413 }

414}

415

416 /x*

417 * Internal method to return the number of node elements between z and y and within radius r_1
418 */

419 template <class Comparable>
420 int RedBlackTree<Comparable >::between2D (const Comparable & lower, const Comparable & upper,

421 RedBlackNode<Comparable> *t, const double & ri, const double & thebx, const double & theby)
const

422

423 if( t == t—>link [0] )

424 return O0;

425 else if( t—>element >= lower && t—>element <= upper) {

426 ///if( t—>hasSplit == 0 ) {

427 double dist = pow(pow(thebx — t—>bx,2) + pow(theby — t—>by,2) ,.5);

428 if( dist <= ri/2 ) { // check vector distance

429 return l+between2D (lower ,upper,t—>link [0],ri ,thebx ,theby)+

430 between2D (lower ,upper ,t—>link [1],ri,thebx,theby);

431 1

432 else { // not within vector distance, keep looking

433 return O+between2D (lower ,upper ,t—>1ink [0], ri ,thebx ,theby)+

434 between2D (lower ,upper ,t—>link [1],ri ,thebx ,theby);

435 !

436 }

437 ///else {// already split, don’t count for saturation

438 /// return O+between2D (lower ,upper,t—>link [0],ri thebz , theby )+

439 /// between2D (lower ,upper ,t—>link [1],ri,thebz ,theby);

440 ///}

441 else if( t—>element > lower )

442 return between2D (lower ,upper,t—>1link [0], ri ,thebx,theby);

443 else if( t—>element < upper )

444 return between2D (lower ,upper,t—>link [1],ri ,thebx,theby);

445 else

446 {

447 cout << "error, between2D failed" << endl;

448 return 0;

449 3
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450 }

451

452 /xx

453 * Internal method to return the randomly chosen dipole
454 =/

455 template <class Comparable>
456 void RedBlackTree<Comparable >::randElement ( RedBlackNode<Comparable> xt, int & countdown,
457 Comparable & theElement ,

458 double & thebx, double & theby ,

459 double & thex0Ox, double & thexOy,

460 double & thexlx, double & thexly, bool & thedone ) const

461 {

462 if ( thedone = 1) return;

463 countdown ——;

464 if( t == nullNode ) {

465 countdown-+-+;

466 return;

467 }

468 else if( countdown =— 0) {

469 theElement = t—>element;

470 thebx = t—>bx;

471 theby = t—>by;

472 thex0x = t—>x0x;

473 thex0y = t—>x0y;

474 thexlx = t—>x1x;

475 thexly = t—>xly;

476 ///countdown = —1000;

477 thedone = 1;

478 return;

479 }

480 else {

481 randElement ( t—>link [0], countdown, theElement, thebx, theby, thexOx, thexOy, thexlx, thexly,
thedone );

482 randElement ( t—>link [1], countdown, theElement, thebx, theby, thexOx, thexOy, thexlx, thexly,
thedone );

483 return;

484 3

485 }

486

487  /x%

488 * Internal method to clone subtree.

480 %/

490 template <class Comparable>
491 RedBlackNode<Comparable> =x
492 RedBlackTree<Comparable >::clone( RedBlackNode<Comparable> * t ) const

493 |

494 if( t == t—>1link [0] ) // Cannot test against nullNode!!!

495 return nullNode;

496 else

497 return new RedBlackNode<Comparable>( t—>element, clone( t—>link[0] ),
498 clone( t—>link[1] ), t—>color, t—>bx, t—>by,

499 t—>x0x, t—>x0y, t—>xlx, t—>xly);

500 }

501

502

503 /%

504 <summary>

505 Performs a single red black rotation in the specified direction

506 This function assumes that all nodes are wvalid for a rotation

507 <summary>

508 <param name="root">The original root to rotate around</param>

509 <param name="dir">The direction to rotate (0 = left, 1 = right)</param>
510 <returns>The new root ater rotation </returns>

511 <remarks>For jsw_rbtree.c internal use only</remarks>

512 x/

513 template <class Comparable>

514 RedBlackNode<Comparable> * RedBlackTree<Comparable >::jsw_single( RedBlackNode<Comparable> xroot ,
int dir ) const

515 |

516 RedBlackNode<Comparable> xsave = root—>link [!dir];
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517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567

568
569
570
571

573
574
575
576
577
578
579
580
581
582
583
584

/*

*/

te

root—>link [! dir] = save—>link [dir];

save—>link [dir] = root;
root—>red = 1;
save—>red = 0;

return save;

*
<summary>
Performs a double red black rotation
This function assumes that all nodes
<summary>

<param name="root">The original root

in the specified direction

are

valid for a rotation

to rotate around</param>

<param name="dir">The direction to rotate

<returns>The new root

<remarks>For jsw_rbtree.c internal us

mplate <class Comparable>

(0 = left, 1 = right)

after rotation </returns>

e only</remarks>

</param>

RedBlackNode<Comparable> * RedBlackTree<Comparable >::jsw_double( RedBlackNode<Comparable> xroot,

/%

*/
te

in

int dir ) const

root—>link [! dir] = jsw_single ( root—>link [!dir], !dir );

return jsw_single ( root, dir );
*
<summary>

Insert a copy of the user—specified
data into a red black tree

<summary>

<param name="tree"">The tree to insert
<param name="data">The data value to

<returns>

into </param>

inse

1 if the value was inserted successfully,

0 1f the insertion failed for any reason

</returns>

mplate <class Comparable>

t RedBlackTree<Comparable >::insert ( const Comparable & x,

const double & by, const double & x0x,

const double & xly )

rt </param>

const double & bx,

const double & x0y, const double & xl1x,

header—>link [1] = new RedBlackNode<Comparable>( x, nullNode,

if ( header—>link [1] == nullNode) {
/%
We have an empty tree; attach the
new node directly to the root
*/
xly )3
if ( header—>link [1] == nullNode )
return O;
}
else mySize++;
}
else {

///jsw_rbnode t head = {0}; /x Fals

{

e tr

ee root */

nullNode ,

//RedBlackNode<Comparable> head = new RedBlackNode<Comparable>;
RedBlackNode<Comparable> head; /* False

//RedBlackNode<Comparable> xhead; /x

RedBlackNode<Comparable> *g, =xt;
RedBlackNode<Comparable> *p, =xq;
int dir = 0, last = 0;

/* Set up our helpers x/
t = &head;

/*
/*

tree root *x/

False tree root x/

Grandparent & parent
Iterator & parent x/
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bx ,

by,

x0x ,

x0y ,

xlx,



585 ///cout << "hi5" << endl;

586 g = p = nullNode;

587 q = t—>link [1] = header—>link [1];

588 ///cout << "hi6" << endl;

589

590 /* Search down the tree for a place to insert x/

591 for ( 5 ;5 ) {

592 if ( g = nullNode ) {

593 /% Insert a new node at the first null link x/

594 p—>link [dir] = g = new RedBlackNode<Comparable>( x, nullNode, nullNode, bx, by, x0x, x0y,
xlx, xly );

595

596 if ( g = nullNode )

597 return O0;

598 else mySize++;

599 }

600 else if ( is_red ( gq—>link[0] ) && is_red ( g—>link[1] ) ) {

601 /* Simple red violation: color flip x/

602 g—>red = 1;

603 q—>1link [0]—>red = 0;

604 q—>link[1l]—>red = 0;

605 }

606

607 if (is_red ( q ) && is_red ( p ) ) {

608 /% Hard red violation: rotations necessary x*/

609 int dir2 = t—>link [1] == g;

610

611 if ( g = p—>link|[last] )

612 t—>link [dir2] = jsw_single ( g, !last );

613 else

614 t—>link [dir2] = jsw_double ( g, !last );

615 }

616

617 /%

618 Stop working if we inserted a node. This

619 check also disallows duplicates in the tree

620 %/

621 if ( g—>element =— x )

622 break ;

623

624 last = dir;

625 dir = g—>element < x;

626

627 /* Move the helpers down x/

628 if ( g != nullNode )

629 t = g;

630

631 g =P, P = d;

632 q = q—>link [dir];

633 }

634

635 /* Update the root (it may be different) x/

636 header—>link [1] = head.link[1];

637 }

638

639 /% Make the root black for simplified logic %/

640 header—>link[l]—>red = 0;

641

642 return 1;

643 }

644

645 /) /x*

646 // x Insert item =z into the tree. Does nothing if z already present.

647 /) x/

648 //template <class Comparable>
649 //void RedBlackTree<Comparable >::insert( const Comparable & =z, const double & bz,

650 // const double & by, const double & z0xz, const double & z0y, const double & zlz,
651 // const double & zl1y )
652  //{

653 // current = parent = grand = header;
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654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

// nullNode—>element = z;

//

// while( current—>element != z )

/7 A

// great = grand; grand = parent; parent = current;

// current = z < current—>element ? current—>left current—>right ;
//

// // Check if two red children; fiz if so

// if( current—>left—>color == RED €6 current—>right—>color == RED )
// handleReorient( = );

/)

//

// // Insertion fails if already present

// if( current != nullNode )

// return ;

// current = new RedBlackNode<Comparable>( z, nullNode, nullNode, bz,
//

// // Attach to parent

// if( z < parent—>element )

// parent—>left = current;

// else

// parent—>right = current;

// handleReorient( = );

//}

[/ [ *x

// * Internal routine that is called during an insertion

/) * if a node has two red children. Performs flip

/) * and rotatons.

// * item 1is the item being inserted.

/) xS

//template <class Comparable>

//void RedBlackTree<Comparable>::handleReorient( const Comparable & item )

at

// // Do the color flip

// current—>color = RED;

// current—>left—>color = BLACK;

// current—>right—>color = BLACK;

//

// if( parent—>color == RED ) // Have to rotate

/7L

// grand—>color = RED;

// if ( item < grand—>element != item < parent—>element )
// parent = rotate( item, grand ); // Start dbl rotate
// current = rotate( item, great );

// current—>color = BLACK;

/) }

// header—>right—>color = BLACK; // Make root black

//}

//

/) ) x*

// * Internal routine that performs a single or double rotation.
// * Because the result is attached to the parent, there are four
// * Called by handleReorient.

// * item 1is the item in handleReorient.

// * parent is the parent of the root of the rotated subtree.
// * Return the root of the rotated subtree.

YVanvd

//template <class Comparable>
//RedBlackNode<Comparable> x
//RedBlackTree<Comparable >::rotate( const Comparable & item,
RedBlackNode<Comparable> xtheParent ) const

//
Val
//
//
//
//
//
//

if ( item < theParent—>element )
{
item < theParent—>left —>element 2
rotate WithLeftChild( theParent—>left )
rotate WithRightChild( theParent—>left )
return theParent—>left;

// LL
;5 // LR
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724 /) O}
725  // else

™6 /) of
2T /) item < theParent—>right—>element ?

728  // rotate WithLeftChild( theParent—>right ) : // RL
29 // rotate WithRightChild( theParent—>right ); // RR
730 // return theParent—>right;

3L/}

732 //}

733 //

734 )/ /%%

735 // % Rotate binary tree node with left child.

736 /) x/

737 //template <class Comparable>

738 //void RedBlackTree<Comparable>::

739 //rotate WithLeftChild( RedBlackNode<Comparable> x & k2 ) const
140 //{

741 // RedBlackNode<Comparable> xk1 = k2—>left;

742 // k2->left = ki1—>right;

743 // kl1—>right = k2;

744 // k2 = ki1;

745 //}

746 //

74T )/ )xx

748 // % Rotate binary tree node with right child.
749 /) x/

750 //template <class Comparable>

751 //void RedBlackTree<Comparable >::

752  //rotate WithRightChild( RedBlackNode<Comparable> % & k1 ) const
53 //{

754 // RedBlackNode<Comparable> xk2 = kl1—>right;

755  // kl—>right = k2-—>left;

756  // k2—>left = ki1;

757 /) k1 = k2;

58 //}
759

760

761 /%

762 * Internal method to reclaim internal nodes
763 * in subtree t.

764 %/

765 template <class Comparable>
766 void RedBlackTree<Comparable >::reclaimMemory( RedBlackNode<Comparable> xt ) const

767 {

768 if( t != t—>link [0] )

769 {

770 reclaimMemory ( t—>link [0] );

771 reclaimMemory ( t—>link [1] );

772 delete t;

773 }

774}

775

776

7T E*

778 <summary>

779 Checks the color of a red black node

780 <summary>

781 <param name="root'"">The node to check</param>

782 <returns>1 for a red node, 0 for a black node</returns>
783 <remarks>For jsw rbtree.c internal use only</remarks>
784 %/

785 template <class Comparable>
786 int RedBlackTree<Comparable >::is_red ( RedBlackNode<Comparable> *root ) const

787 {
788 return root != nullNode && root—>red == 1;
789}
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