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This work comprises three projects that extend previous models to in-

clude features of practical significance for the statistical analysis of infectious

disease data. In the first, we find from a simulation study how the degree

of heterogeneity in the number contacts that individuals have affects the re-

lationship between estimates of a pathogen’s effective population size based

on coalescent theory and the true prevalence and incidence of that pathogen.

In the second, we find that aggregating data from many small outbreaks al-

lows the parameters of stochastic epidemic models to be consistently estimated

with a generalized linear model. Application of this method to a set of 77 small

norovirus outbreaks reveals interesting differences in the transmission param-

eters between hospital and nursing-home outbreaks. In the third project, we

gain insight into HIV contact networks in the United States by fitting data

from a number of surveys to a simple stochastic model of a dynamic network.
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Chapter 1

Contact heterogeneity and phylodynamics:

How contact networks shape parasite

evolutionary trees

Introduction

Epidemiology is a data-driven field, and it is currently being infused

at an increasing rate with molecular sequence data. This new and growing

data source has led to a call for multi-level models of the relationship between

sequence data and infectious disease dynamics [39, 48], dubbed phylodynamic

models.

By allowing for additional data to be used and integrated, phylody-

namic modeling may lead to improvements in the accuracy and quality of the

surveillance of infectious diseases. For example, the number of norovirus out-

breaks reported increased in 2002. It was not clear, however, whether the higher

reported numbers were a sign of more outbreaks or more frequent reporting

of outbreaks. Case-reporting bias does not affect molecular data, however. So

coalescent-analysis of molecular data [93] provided a valuable and largely in-

dependent line of evidence that the increase in outbreaks was real. Of course,

coalescent analysis will have its own biases, and here we examine those that

result from host heterogeneity in contact.

To model heterogeneity in contact, we represent individuals in a pop-

ulation as nodes, and we represent the potential for two hosts to infect each
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other as an edge that links two nodes. Researchers call the resulting networks

contact networks. Contact-network structure necessarily affects the genealogy

of any replicating infectious agent that is spreading through a host population.

In this work we use the term parasite to refer to all such infectious agents, in-

cluding bacteria and viruses. The genealogy of these parasites must fit inside

the tree of infections that forms as the parasite spreads from host to host, and

this tree of infections must fit inside the host population’s contact network.

While more elaborate elements of contact-network structure may be impor-

tant, we here focus simply on variation in the number of edges coming out of

nodes, which corresponds to heterogeneity in contact rates.

Contact heterogeneity has often not been discussed as a possible bias in

coalescent analyses [e.g., 33, 81, 94]. Researchers performing coalescent anal-

yses have considered contact heterogeneity in a variety of other ways. Hughes

et al. [50] linked it to the phylogenetic clustering of sequence isolates. Biek et al.

[12] mentioned that it may haved contributed to changes in an estimation of

R0 (the expected number of new cases a single case produces in a susceptible

population). Nakano et al. [74] discussed how iatrogenic transmission may have

been an important type of transmission in the spread of hepatitis C. Bennett

et al. [11] pointed out that population-size estimates from coalescent analyses

are really ratios of population size to reproductive variance. But researchers

have rarely quantitatively considered how contact heterogeneity might be di-

rectly influencing the results of their coalescent analyses. Volz et al. [107] did

account for contact heterogeneity in their coalescent model with a saturation

parameter, but this application does not provide a general illustration of how

contact-network structure can affect genealogies.

Our primary goal here is to assess how contact heterogeneity affects the
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accuracy of coalescent-based estimates of population dynamics for epidemic

models. First, we build contact networks with different levels of heterogeneity.

Then, we simulate the spread of parasites through the networks, generating

epidemic dynamics and a genealogy of the parasite with each simulation. Then,

we use the BEAST software package [23] to produce Bayesian skyride recon-

structions of parasite population dynamics based on the simulated genealo-

gies. By reconstruction, we mean an estimated trajectory of population size.

A skyride reconstruction is such a trajectory estimated by adding a smoother

to the non-parametric skyline method of estimation [71]. We use the frame-

work of Volz et al. [107] to predict the skyride reconstructions based on the

simulated epidemic dynamics. We explain how the contact network structure

affects the epidemic dynamics that, in turn, affect the predicted reconstruc-

tions. The close agreement between the predicted skyrides and the skyride

reconstructions validates this explanation. We also examine how much of the

simulated genealogy the skyride reconstruction requires as input in order to

produce a reconstruction that agrees with the theoretical prediction.

Materials and Methods

We simulated infectious disease progression on networks. The nodes of

the networks represented hosts and had states of susceptible, infectious, or

recovered. The edges of the network determined the set of possible transmis-

sion events; infectious hosts transmitted infection across edges shared with

susceptible hosts until the infectious hosts recovered. The number of nodes in

the network was kept at 10,000 and the mean degree (degree is the number

of edges coming out of a node) was kept at 4. The networks were built to be

either regular, meaning that all nodes have the same degree, or with degree
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distributions sampled from Poisson, Exponential, or Pareto distributions. The

minimum degree in the Pareto networks was 1. The regular networks served as

models with zero heterogeneity, Poisson networks as models with heterogeneity

similar to a Poisson process, exponential networks as models with heterogene-

ity similar to a variety of social networks [5], and Pareto networks (scale-free

networks) as models with the extreme levels of heterogeneity that might be

found in sexual contact networks [60]. We used the Erdős-Rényi algorithm [26]

to generate Poisson networks and an edge-shuffling algorithm [102] to generate

the regular, exponential, and Pareto networks.

We simulated epidemics and genealogies in continuous time using a

method based on the Stochastic Simulation Algorithm [36, 37]. Epidemics

began with one node infectious and the rest of the nodes susceptible. Infectious

nodes recovered at a set rate and transmitted infection to susceptible neighbors

(nodes sharing an edge) at a set rate. We drew the time to the next event

from an exponential distribution with a rate equal to the sum of the rates of

all possible events. We then selected an event with probability proportional

to its rate, updated the state of the network accordingly, and drew the time

until the next event. This process was iterated until either the time-evolution

of the epidemic reached a set time point or no more events were possible.

Simulation source code is available from the authors upon request. The

code made use of the GNU scientific library [35, version 1.13+dsfg-1] to gen-

erate random numbers and the igraph library [21, version 0.5.3-6] to construct

networks.

The output of a simulation included a time series of prevalence, that

is, the count of infected nodes (given a fixed population of 10,000 nodes), and

incidence, that is, the sum of the rates of all possible transmissions. Simulations
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also generated infection trees in which each transmission was a bifurcating

node, each recovery was a terminal node, and branch lengths were equal to

the time between events. We sampled the full infection trees to generate the

trees for input in the skyride coalescent analyses. We sampled by selecting a

set of nodes uniformly at random from the full infection tree to become tip

branches of an infection subtree. To generate the subtree, we cut the branches

of the full infection tree at the subset of randomly selected nodes that had

no descendants in the set of randomly selected nodes, and we pruned off any

paths that did not terminate in this subset of nodes.

Using the sampled infection trees as genealogies, we obtained a poste-

rior distribution for the skyride population sizes with the time-aware method

of Minin et al. [71], implemented in BEAST [23, version 1.5.4]. The MCMC

chain lengths were 100,000 states and every 10th state was written to a log file.

We discarded the first 10,000 states as burn-in. In all cases, effective samples

sizes were well above 200. Thus, convergence had occurred. Example BEAST

XML input files are available from the authors upon request.

Using the posterior skryride–population-size distributions, we obtained

the skryride trajectories with Tracer [80, version 1.5]. Using the framework of

Volz et al. [107], we calculated a predicted skyride as described next in the

Results.

To plot time series from different stochastic simulations on a common

time scale, we used the time at which growth became nearly deterministic in

each simulation as time zero for that simulation.
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Results

Theory

Coalescent theory is an area of population genetics that models the

structure of genealogies backward in time from a set of lineages sampled from

a large population. A simple coalescent process turns out to be a good model

for the genealogies of a wide range of scenarios in population genetics [54].

In the coalescent process that occurs in the limit of a large population and

a much smaller sample, each pair of lineages in the sample coalesces into a

common ancestral lineage at a constant rate. When time is measured in units

of generations, this rate is equal to the reciprocal of the effective population

size. The precise definition of the effective population size depends on the

model of the population. In a Wright–Fisher model, the effective population

size is equal to the census population size (i.e., the number of individuals in

the population). So assuming such a model the rate at which any of the pairs

coalesces is equal to the number of pairs of lineages divided by the effective

population size.

The skyride uses this simple relationship between effective population

size and the expected time before coalescence to estimate population size from

the length of intracoalescent intervals in a genealogy. The median of a skyride

reconstruction yrec within an intracoalescent interval is approximately

yrec = Neτ =

(
n

2

)
u, (1.1)

where Ne is the effective population size, τ is the generation time,
(
n
2

)
is the

average number of pairs of lineages in the sample within the intracoalescent

interval, and u is the length of the intracoalescent interval.
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Predicting a skyride from the dynamics of an epidemic model is simply

a matter of calculating the rate at which a pair of lineages will coalesce, that

is, the rate at which two chains of infection merge into a single chain. Volz

et al. [107] have described how coalescence rates follow from prevalence and

incidence. Prevalence, given a fixed population size, refers to the count of cases

of infection, and so we denote it with I. Incidence refers to the rate at which

new cases are occurring, and so we denote it with ri. The rate of coalescence

of a single pair of cases is

riP, (1.2)

where P is the probability that we can trace a particular pair of cases back to

a single case before the last transmission event. We have

P = 1/

(
I

2

)
, (1.3)

making the approximation that the last transmission event was equally likely

to have taken place between any pair of current cases. Therefore, the predicted

skyride ypred satisfies

ypred = 1/(riP ) =

(
I

2

)
/ri. (1.4)

If each pair of lineages in our sample were a randomly selected pair

from the entire set of pairs in the population, then P = 1/
(
I
2

)
would not be an

approximation. Provided that lineages are sampled at random, P is exact up

to the first coalescent event. The coalescent event may alter the set of lineages

in our sample such that the probability that the next coalescent event occurs

between one of the pairs in our sample is different from a randomly selected

pair. For the parameters considered in our simulations, the effect of this error

was not noticeable.
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The similarity of Eqs. (1.4) and (1.1) reflects the similarity of the coales-

cent process to the transmission process in a continuous-time epidemic model.

Ne and τ , however, are often considered as parameters of a discrete-time pop-

ulation model that has non-overlapping generations. The coalescent process

describes the genealogy in such a model when we sample a small fraction of

the lineages in a population. So how do we interpret Ne and τ in the terms of a

continuous-time epidemic model that has overlapping generations? Following

Frost and Volz [34] and the general theory of Wakeley and Sargsyan [108], we

say that generation time τ is equal to the expected time before an infected

individual transmits infection:

τ = I/ri. (1.5)

Then from Eqs. (1.1), (1.4), and yrec = ypred, we have

Ne = (I − 1)/2 ≈ I/2. (1.6)

Simulation

To determine the effect of sampling on the ability of the skyride to

reconstruct prevalence history, we simulated genealogies and pruned off a vari-

able number of branches from the genealogies. We found that small amounts

of pruning rapidly reduced the number of coalescent events in the sampled

genealogy that occurred in the peak and late phases of the epidemic, thereby

restricting accurate reconstruction to the early phase of the epidemic (Figure

1.1).

To demonstrate the effect of network structure on the reconstruction

of prevalence history, epidemics were simulated on networks with varying het-

erogeneity. Keeping the extent of sampling equal and increasing heterogeneity
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Figure 1.1: Low levels of proportional sampling may prevent accurate recon-
struction of prevalence during and after the epidemic peak. We consider re-
construction accurate when the skyride and the predicted skyride match. The
light-blue ribbons are the middle 95% of the posterior density of the skyride
reconstruction. The small bars on the x-axis represents the times of coalescent
events in the sampled genealogy. Panel labels on the right indicate the number
of tips in the sampled genealogy. Parameters: contact-network size = 10,000,
Poisson degree distribution with mean = 4, transmission rate = 2, recovery
rate = 1, proportion of nodes sampled = {0.1, 0.01, 0.001} (top, middle, and
bottom panels).
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compressed the coalescent events in the sampled genealogy into the beginning

of the epidemic. Figure 1.2 shows a representative example of this general trend

that holds across intermediate levels of sampling. Consequently, increasing het-

erogeneity has a similar effect to reducing the proportion of nodes sampled: the

time at which the prediction of the skyride based on prevalence and incidence

diverges from the estimated skyride based on the genealogy occurs earlier.

Figure 1.3 shows how differences in the scaling of prevalence to the

skyride follows from differences in trajectories of prevalence and incidence.

The ratio of prevalence to incidence is the expected time until an infected host

transmits infection, and we here define it as the generation time (1.5). In Figure

1.3, we see that generation times are at, or quickly reach, a minimum after an

epidemic begins and then gradually increase until the epidemic ends. In the

regular networks, the decline in the number of susceptible hosts over the course

of the epidemic causes this increase to happen. In the other networks, which

have hosts of varying degree, infection first moves to the high-degree hosts

and then to progressively lower- and lower-degree hosts [6, 7, 103]. Because the

degree of a host determines how much his/her infection increases incidence, this

movement of infection from high- to low-degree hosts translates into generation

times being at first shorter and then longer in heterogeneous networks relative

to regular networks (Figure 1.3).

Discussion

The effects of contact heterogeneity can be important in relating the

structure of genealogies to infectious disease dynamics (Figure 1.3). The strength

of the effect will vary from system to system, and for some systems other as-

pects of contact-network structure such as the frequency of short paths [70]
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Figure 1.2: Contact heterogeneity determines the amount of time over which
the skyride estimated from the geneaology is informative of the skyride pre-
dicted by prevalence and incidence. Contact heterogeneity also affects the re-
lationship between the skyride and prevalence trajectories. The light-blue rib-
bons are the middle 95% of the posterior density of the skyride reconstruction.
The small bars on the x-axis represent the times of coalescent events in the
sampled genealogy. Panels labels on the right indicate the approximate degree
distribution of the contact networks. The variance of the degree distributions
increases from the top panel to the bottom panel. Parameters: contact-network
size = 10,000, degree distribution mean = 4, transmission rate = 2, recovery
rate = 1, proportion of nodes sampled = 0.01.
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Figure 1.3: Contact-network structure, infectious disease dynamics, and ge-
nealogical structure interact. The panels of this figure plot several related
variables from our simulations. The ratio of prevalence to incidence is the gen-
eration time, which scales prevalence to the predicted skyride (up to a constant
factor). Dividing the predicted skyride by the number of pairs of lineages backs
out a smoothed expected length of intracoalescent intervals in the genealogy.
Panels labels on the top indicate the approximate degree distribution of the
contact networks. The variance of the degree distributions increase from left
to right. Parameters: contact-network size = 10,000, degree distribution mean
= 4, transmission rate = 2, recovery rate = 1, proportion of nodes sampled =
0.01.

12



and the dynamics of edge formation [1, 72, 105, 106] may also be important.

More generally, models may also require more detailed models of the course of

infection within hosts (including incubation periods, for example), the effects

of natural selection [76, 110], and other additions before they can make precise

predictions in real-world systems.

But are the data requirements of these more complex models feasible?

To begin answering this question, we next discuss the implications of obtaining

the equivalent of our simulated data from a real-world system.

We knew the true infection tree in our simulations. In typical coalescent

analyses of an infectious disease [e.g., 24, 71] we do not know the true geneal-

ogy and so we must infer it along with the dynamics of the effective population

size. Although there is a large set of methods for the inference of trees from

sequences [30, 59, 115], the variety of methods available reflects the difficulty

of the task. Additionally, as is well known by practitioners of phylogenetics,

substitution rates set fundamental limits on the amount of phylogenetic infor-

mation that sequences may contain. Sequences with common ancestors that

are very recent may not have any polymorphic sites that could suggest the

structure of the branching of the tree connecting them. Sequences with com-

mon ancestors that are too distant similarly contain little information about

the true genealogy [40].

It may be possible to work around the second problem by collecting

sequences over time such that there are no branching points in the tree that

are too far from every pair of tips. For the first problem, there is simply no

information that the sequences alone can provide and additional knowledge of

events in the chain of infection is necessary to determine the infection tree.

The panels labeled “time to coal.” in Figure 3 show that this additional infor-
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mation is most likely to be needed early in the epidemic and when there is a

large amount of variance in the contact network. It is then perhaps fortunate

that contact-tracing methods are practiced by many health departments for

sexually transmitted diseases (STDs) [67, 97], which are thought to have have

higher contact heterogeneity than airborne diseases [60]. However, we prob-

ably need more widespread practice of contact tracing for large genealogies

to be assembled. A recent survey of physicians in the U.S. [95] found that

less than one-third of physicians routinely screen patients for STDs and many

physicians relied on patients to notify health departments and partners, and

similar surveys in other countries [19, 43, 67] likewise indicate that contact

tracing is not routine in general medical care of STDs.

There also may be a need for contact tracing to establish the genealogy

for airborne infections because many airborne transmissions may occur in a

single day during which a single strain may be dominant in a host, as the

super-spreading events in the 2003 SARS-coronavirus outbreak demonstrated

[87]. Contact-tracing is also practiced for airborne diseases. It has been used

to help contain the SARS-coronavirus outbreak [22], smallpox [31], and tuber-

culosis [86]. Given that contacts for airborne disease can be quite transient,

it seems that, even with the addition of contact-tracing data, we may gener-

ally know less about parasite genealogies for airborne diseases compared to

STDs. On the upside, our results suggest that the ability to reconstruct early

parts of the epidemic is robust to much pruning of the full genealogy (Figure

1.1). However, this robustness may depend on our sampling scheme. Using

discrete-time simulations, Stack et al. [96] found that the difference between

reconstructed prevalence and simulated prevalence depended largely on how

the samples were distributed over the course of the epidemic. Also, it is unclear
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how any of our sampling levels might compare to realistic amounts of contact

tracing and molecular data for a specific infectious disease.

In addition to being necessary to fill gaps in molecular data, contact-

tracing may be be necessary because genealogies do not always match infection

trees. Such discordance is likely to occur when there is relatively little time

between transmissions. When there is little time for a mutant to become fixed

between transmissions, the order in which alleles at loci of a sequence appear in

transmitting inocula (or sequence isolates) need not match the order in which

the alleles appeared in the within-host population. Measures of within-host

viral load and sequence diversity may be informative of the chance of such

discordance. If populations tend to be large and diverse, then sequence data

may be useless for reconstructing the recent details of chains of infection but

still useful in reconstructing deeper branches in the tree. Sequence data from

diverse within-host populations could also be useful in parameter estimation

for coalescent models [e.g., 25] that include the within-host dynamics of the

parasite. Two properties that parasites may have that would help increase the

chance that infection trees and genealogies match are a low level of diversity

in tranmsitting inocula (i.e., a strong bottleneck effect at transmission) and

reduction of diversity in an incubation period that precedes all transmission.

In our simulations, we also knew the variance of the degree distribu-

tion. We do have some data about the structure of contact networks for some

systems. We have survey data about human sexual–contact-networks [e.g.,

78, 85] and survey data about networks of close, but not sexual, human con-

tacts [45, 73, 109]. Researchers have used field data to construct hypotheti-

cal contact networks for wildlife and vector-borne diseases [e.g., 20, 88], and

researchers have also used census data to construct hypothetical contact net-
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works for human diseases [e.g., 27, 69]. It seems likely, however, that in the

analysis of real sequence data the heterogeneity of the contact network will be

at least as uncertain as disease incidence and prevalence. Thus, estimation of

contact heterogeneity may be an important goal of the analysis. We note that

previous work [e.g., 89] has also discussed the potential use of sequence data

to estimate contact heterogeneity.

Conclusions

Contact heterogeneity is well-known to have a strong effect on infec-

tious disease dynamics. We have shown how the relationship between infectious

disease dynamics and genealogies is similarly sensitive to the contact hetero-

geneity specified by a network. We have argued that direct knowledge of the

tree of infections is likely needed in addition to sequence data for the accurate

inference of prevalence from sequence data. Thus, it seems that understanding

the structure of the contact networks for various diseases will be important for

progress in phylodynamics.
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Chapter 2

Joint estimation of transmission rate and

initial growth rate with data aggregated from

multiple norovirus outbreaks

Introduction

A common and difficult problem in epidemiology is to estimate rates of

disease spread. Accurate estimates of these and other population parameters

are crucial in the evaluation of disease control measures [2, 41, 53] or biologi-

cal hypotheses [61]. Heterogeneity complicates the problem of obtaining such

estimates. For example, a person’s risk of infection depends on contact rates

and acquired immunity, and these quantities can vary widely between people

and outbreaks.

Norovirus (NoV) epidemiology provides a fine case in point of the need

for models to accommodate heterogeneity. Noroviruses are the most common

cause of diarrheal disease in the United States, causing an estimated 21 mil-

lion cases [90] and 71,000 hospitalizations per year [63]. A genetically diverse

group of strains is often circulating within a population. New strains of the

predominant genogroup 2 genotype 4 (GII.4) taxon appear regularly over time

[38], and a person’s risk of infection, given exposure, likely depends on both

the antigenicity of the virus and the type-specific immunity developed from

the person’s previous exposure [17]. Other important heterogeneities include

innate susceptibility (which depends on a person’s histo-blood group antigens
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and secretor status) and age-specific risks of exposure. Outbreak investigations

[28, 99, 112] have provided convincing evidence that single vomiting incidents

in crowded settings can lead to scores of secondary cases. Models that account

for both between-individual and between-population heterogeneity are needed

to obtain the accurate parameter estimates required for predicting outbreak

dynamics and implementing effective controls. At present, control measures

are based on general infection-control principles [18] and thus are likely to be

somewhat inefficient.

A further complication for modeling norovirus is that it often occurs

in small outbreaks. The transmission and recovery times of cases in small

outbreaks are correlated [82], which makes estimation difficult when using

data from a single outbreak. Some previous work has developed methods for

estimating parameters with data from multiple small outbreaks in different

households [8, 10]. The approach we take here differs from that work in using

maximum likelihood, which is known to be optimal for large data sets; in

being based on full observation of the outbreaks rather than final sizes; and

in modeling variation in the parameters via a linear predictor. Our regression

approach, however, makes this work similar in spirit to Höhle [46].

We account for a simple but fundamental type of heterogeneity between

outbreaks—variation in the initial growth rate of the outbreak. In our model,

the initial growth depends on the number of initially susceptible individuals.

In the case of norovirus, this number is difficult to know as there is no sero-

logical correlate of protection. The incidence rate of new cases in our model is

proportional to the product of the number of susceptibles and the transmis-

sion rate, so estimates of the transmission rate will be highly sensitive to those

of the number of susceptibles in the model. Recent work on joint estimation
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of transmission rates and the initial number of susceptibles with data from a

single outbreak [42, 49, 56, 57] has shown that estimates of the initial num-

ber of susceptibles tend to be low when data sets are small. We see the same

bias when the estimates are based on multiple outbreaks, but obtain accurate

estimates in the limit of a large number of outbreaks even if all outbreaks are

small.

Fitting our model to a large number of outbreaks, we find a distinct

increase in transmission and initial growth rates in long-term–care facilities

relative to hospitals. A simulation experiment shows that our methods perform

well even when some of the data are missing.

Methods

Model

At the beginning of an outbreak, t = 0, a population is made up of

Y (0) infective people and Xi(0) susceptible people of type i for one or more

types. A type of person in this model is defined by the instantaneous rate

at which infectives may infect her, which we call the transmission rate, and

by the mean and dispersion parameter of her gamma-distributed infectious

period, should she become infected. As time moves forward, each infective

person transmits infection to each susceptible person at the points of a Poisson

process such that the rate at which new type-i infections appear is βiXi(t)Y (t),

where βi is the transmission rate for type i. A susceptible person that contracts

infection becomes infective after being in a latent state for a fixed time period.

She then becomes a recovered person after a randomly-distributed infectious

period. No other transitions in state occur.

Our outbreak model departs from the stochastic counterpart of the
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common Kermack–McKendrick susceptible–infective–recovered (SIR) model

in two ways besides the addition of a latent state and multiple types. First, we

do not make our transmission rate depend on the total number of people N in

the population. This departure prevents the need for N to be estimated, and it

is appropriate when an infective person may be able to infect every susceptible

person in the population with approximately the same probability. Second,

we do not assume that latent periods and infectious periods are exponentially

distributed, which is more realistic because it allows the probability of a person

leaving a latent or infectious state to depend on how long she has been in that

state.

It is natural to introduce the likelihood of the data for each type of

person separately because each type of person is defined by different param-

eters. As indicated in our outbreak model description, the rate at which an

infective transmits to a susceptible depends on the susceptible’s type. The type

of a person also determines the parameters of her symptomatic period. With

multiple-outbreak data, we further define types as unique to individual out-

breaks. In other words, we make no general assumption that people in different

outbreaks may be modeled with the same parameters.

It is also natural to introduce the recovery-time and transmission-time

parts of the likelihoods for each type of person separately because these parts

factor apart into common density functions. The simplicity of these functions

belies an involved construction, available in [52], as the product integral of the

likelihood of events in infinitesimal time steps, where the likelihood of each

time step is conditional on the history of the model up until that time step.
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For type i people, the recovery-time part of the likelihood is

lrec(µi, ρ) =

ki∏
j=1

1

Γ(1/ρ)(ρµi)1/ρ
I

1/ρ−1
i,j exp

−Ii,j
ρµi

, (2.1)

where ki is the number of type-i people infected over the course of an out-

break, Ii,j denotes the length of the symptomatic period of the jth type-i

infection, µi is the mean of the symptomatic period of type-i infections, and

ρ is the dispersion parameter, which we take to be the same for all types

of infections. Equation (2.1) represents the standard likelihood function for a

joint distribution of gamma-distributed random variables. Recall that per our

model definition, the symptomatic periods Ii,j are gamma distributed within

each type.

The transmission-time part of the likelihood for type-i people is

ltr(βi, X
(0)
i ) = X

(0)
i !/(X

(0)
i − ki)! exp[−βiτi(X(0)

i − ki)]

×
ki∏
j=1

βiYi j exp(−βihi,j), (2.2)

where τi is the cumulative exposure of such people at the end of an outbreak

(i.e., the total area under Y (t)), Yi,j is the number of infectives present when

the jth such person becomes infected, hi,j is the cumulative exposure of the

jth such person when infected. Further discussion of this likelihood function

is provided in the Appendix.

Examination of (2.2) reveals a few ways in which the data requirements

for estimation may be minimized. The values Yi,j disappear on differentiation

of the log likelihood, which means that they do not need to be known to find

maximum likelihood estimates or Hessian-based (Wald) confidence intervals.

Additionally, the hi,j only affect the likelihood through the sum
∑

j hi,j. Thus

21



some error in our calculation of hi,j should not bias our estimates too much as

long as the average error is close to zero.

The likelihood (2.2) can be parameterized differently as

ltr(βi, ri) = (ri/βi)!/(ri/βi − ki)! exp[τi(βiki − ri)]

×
ki∏
j=1

βiYi j exp(−βihi,j), (2.3)

where ri = βiX
(0)
i is the initial per-infective incidence rate. In our application,

we choose to estimate ri instead of X
(0)
i because ri is easier to interpret in the

context of our data. For brevity, we refer to ri as the initial growth rate.

The full likelihood function that we use for an n-outbreak data set is

then

l(β, r,µ, ρ) =
∏
i

ltr(βi, ri)lrec(µi, ρ), (2.4)

where we use boldface to denote vectors with elements equal to the parameters

for each type i.

To make use of previous results from statistical theory as well as to use

conventional language when writing about our model, we shall next present

our model as a generalized linear model (GLM). GLMs are a broad class

of statistical models that includes many commonly used regression models. A

GLM consists of three components: (i) a density function from the exponential

family, (ii) a linear model that maps predictive variables to a predictor, and

(iii) a link function that maps the predictor to the mean of the density function.

Our likelihood functions, (2.1) and (2.3), fit the definition of exponen-

tial family densities. That is not to say that the transmission and recovery

times from a small outbreak are independent random variables with those
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densities. In fact, they may be highly correlated [82]. In the limit of a large

number of outbreaks, however, we may be assured of sufficient independence

for asymptotic results to apply [52].

We obtain a linear model by associating each infective type with a set

of predictive variables. In the application to norovirus we describe here, such

predictive variables are for example facility type in which an outbreak occurred

(hospital or long-term–care facility) or case type (patient vs. facility staff). We

combine these predictive variables into a design matrix Z, which has a row for

each type i and a column for each predictive variable. The linear mapping from

multiple predictive variables to a linear predictor is achieved by multiplying

the design matrix with a vector of regression parameters c.

As link function, we chose the natural log, which tended to perform

better than other potential link functions in our application. For example, for

transmission-rate estimates βi, we let log βi = Zi,∗cβ, where Zi,∗ is row i of the

design matrix and cβ are our regression parameters for the transmission rates.

Fahrmeir [29] gives conditions for consistency and asymptotic normality

of parameter estimates for GLMs. In the case of our model, asymptotic normal-

ity will not occur for the transmission and growth rate parameters when the

data include an outbreak in which everyone was infected, because in that case

the true value of the parameter lies on the boundary of parameter space. On

the one hand, the probability of such a large outbreak occurring in the model

will be extremely small for many parameter values. On the other hand, some

of the estimates in our application are on the boundary of feasible parameter

space. For this reason, we assessed confidence in our estimates by parametric

bootstrap rather than by relying on asymptotic normality.

We are not aware of previous work giving conditions for consistency
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that is directly applicable to our model. In the Appendix, we provide a proof

of consistency for our model in the simple case that all outbreaks share the

same parameters. Evidence that the model performs well in realistic situations

appears in the Results section. We are able to recover from simulated data the

parameters for the non-trivial model that we fit in our application.

We fit our model to outbreak data by maximizing (2.4) given the data,

using the Newton–Raphson method as implemented by AD Model Builder [32].

To keep the Newton–Raphson search for maximum likelihood estimates in the

feasible parameter space, we add a penalty to the log likelihood whenever the

implied final number of susceptibles x = X
(0)
i − ki for an outbreak is too close

to zero, x < ε. The penalty is of the form C(x− ε)2, where C is an arbitrary

numeric constant which we set to C = 0.01. Likewise, whenever x < ε, we

replace x by ε/(2− x/ε). Throughout this work, we use ε = 0.001.

Data

The norovirus (NoV) data we analyze here originated in a prospective

surveillance program in hospitals and long–term-care facilities in England [64,

65]. We analyzed the dynamics of 77 outbreaks laboratory-confirmed to be

caused by NoV in which a total of 1568 cases of gastroenteritis occurred among

patients and staff. We selected these data from the larger data set produced

by the surveillance program as follows.

In the original data, one outbreak contained three reported symp-

tomatic periods that had a strong influence on the model fit and appeared

likely to be data-entry errors. One symptomatic period began and ended sev-

eral months before the others, one was 34 days long, and the other was 120

days long. Both of these long symptomatic periods were for staff members,
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which makes it unlikely that these protracted periods were real effects of the

frailty of the patients. Rather, it appears that the day and the month were

reversed in two cases and a zero was entered as a one in another case. We there-

fore corrected these putative data-entry errors before analyzing the data. Two

other data-entry errors were noticed in which the date of relief from symptoms

was later than the date of onset of symptoms. We discarded these two records.

Most records of infections that were attributed in whole or in part to

norovirus included the dates of both the onset of and the relief from symptoms.

However, in many records both dates were missing, and in most outbreaks some

records lacked at least one date.

We discarded all records from outbreaks in which more than 55% of the

dates of relief were missing. In the remaining outbreaks, we replaced missing

dates of relief with the corresponding onset date plus the median symptomatic

period from complete records in that outbreak. These replacements were done

as a preparation for the estimation of the transmission rates and were not

included when estimating symptomatic periods.

We discarded all records where the onset date was missing. This practice

is unlikely to introduce a large bias as long as a relatively small number of onset

dates are discarded. So data from outbreaks where the number of discarded

records would have exceeded 7% of the number of retained records are excluded

from analysis.

The thresholds of 55% and 7% were chosen because they allowed the

bulk of the data to be included and not much more data could be included

without drastically increasing these thresholds.

We made several simplifying assumptions. We assumed a person is in-

fective only when symptomatic. We further assumed that staff are infective
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only on day one of a symptomatic period, in accordance with an infection

control policy. We also assumed that the latent period is fixed at 24 hours. We

assumed a small, background hazard of infection (10−8 that of an infective)

triggered illness in cases when no infectives were present. We also assumed

that the number of initial infective people was equal to the number of people

reporting symptoms on the first day of the outbreak. Finally, we assumed that

any changes in state happen at the same time each day.

Predictive variables

The predictive variables that determined our design matrices were as

follows. The data were collected over the course of a 1-year period beginning in

April 2002, and we categorized the data into two groups by the period in which

they began: spring–summer refers to outbreaks that started between April 1

and October 1 of the study year; fall–winter refers to outbreaks that began in

the remainder of the study year. The period variable allows for variation in

transmission rate as a result of seasonality of NoV.

As an additional predictive variable, we include what type of facility

the outbreak occurred in, hospital or long-term–care facility (LTCF).

The third predictive variable we use is size class. We classify units in

which the number of beds is less than or equal to the median number of beds

as small. We classify the other units as large. This classification was done

separately for hospital and LTCF units because LTCF units are usually larger

than hospital units. For the hospitals, the small units have 6–22 beds and the

large units have 24–33 beds. For the LTCF units, the small units have 6–34

beds and the large units have 36–66 beds. The size class variable allows the

number of initial susceptibles to depend on the approximate total number of
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people in each unit. The variable also allows population sizes to affect contact

rates.

The fourth predictive variable we use is case type, the two types being

patient and staff. Case type is the only predictive variable that varied within

outbreaks.

We use a facility–size–period–case-type combination with a relatively

large amount of data as the reference group. Specifically, the reference group

comprises outbreaks that occurred among patients in large care-units of hos-

pitals that began between October 2002 and April 2003. The estimated rate

parameter for the reference group serves as the coefficient of the intercept of

the linear model. Estimates for other coefficients then inform us of how moving

away from the reference group changes rate estimates.

Confidence intervals

To obtain confidence intervals for the estimates, we performed a para-

metric bootstrap. Data were simulated according to our outbreak model with

the estimated parameters. Each simulation produced data from a set of out-

breaks equal in size to the set that we fit, with each outbreak in the simulation

matching an outbreak in the fitted data in terms of initial number of infectives,

predictive variables, fraction of case records with missing onset and recovery

times, and fraction of cases with missing recovery times. Percentile confidence

intervals for regression coefficients were estimated from 10,000 simulation repli-

cates.
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Diagnostics

As a general test of model fit for the transmission rate and growth rate

likelihoods, we calculated the percentile of the log likelihood of the fit to the

real data in the distribution of log likelihoods generated by bootstrapping. Out

of 10,000 bootstrap replicates, our optimization code found estimates in 9809

cases. The log likelihood of the fit to the real data was in the 25th percentile

of the log likelihoods from these estimates. Thus, the log-likelihood of our fit

to the real data is not extreme, consistent with a good model fit.

Our use of the moments estimator for the dispersion parameter ρ in

(2.1) precluded a similar assessment of model fit for the symptomatic periods.

However, inspection of the default diagnostic plots for glm objects in R did

not indicate any problems.

Simulation

We used simulation to investigate how the bias and variance of our

estimates depend on the number of outbreaks that they are based on as well

as the amount of missing information. We also used simulation to generate

bootstrap confidence intervals.

Simulations began with some initial number X
(0)
i of susceptibles of type

i. To initiate the outbreak, some of the susceptibles were moved into a latent

state. All people entering the latent state moved to the infective state after a

fixed time period. People entering the infective state moved on to the recov-

ered state after a gamma-distributed time period with mean µi and dispersion

parameter ρ. Every time the number of infectives or susceptibles changed,

the time of a potential transmission event was calculated by drawing from an

exponential distribution with rate Y
∑

i βiXi, where Y is the number of infec-
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tives and βi is the transmission rate for susceptibles of type i. If the potential

transmission was sooner than the next change in Y , a type of susceptible was

chosen with probability proportional to βiXi and moved into the latent state.

Simulations stopped when the number of latent and infective people reached

zero. The output of the simulations was a record for each person infected giving

transition times.

Our simulation experiment had a full factorial design, with the number

of outbreaks n being 1, 10, or 100; the fraction of recovery times imputed

being either zero or approximately the highest such fraction in our real data

(0.53); the fraction of records missing both onset and recovery times being

either zero or approximately the highest such fraction in our real data (0.05);

and onset and recovery times being either rounded to days or exact. For each

combination of factor levels, we simulated data and attempted to fit it 10,000

times. Simulations were initiated with one infective and had a transmission

rate β of 0.0037, an initial growth rate r of 0.2664, a latent period of 24 hours,

and infectious periods with a mean µ of 3.32 days and a dispersion parameter

ρ of 0.58.

Once-daily observation of the outbreak was simulated by rounding tran-

sition times down to the nearest whole day. Outbreaks were started at random

times in the first day to prevent the rounding from having artificial effects on

the data from small outbreaks.

Our gradient-based optimization code for model fitting, which worked

well at estimating transmission rate parameters when the number of outbreaks

was large, did not work well when the number of outbreaks was small. So we

used specialized code to fit the models of the simulation study, which were more

analytically tractable by virtue of not having linear predictors. The Appendix
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describes the basis for this code, which always finds the maximum likelihood

estimate if it exists and identifies cases in which no such estimate exists.

Software

Our outbreak simulation code made use of the SimPy [100] python

module. The RngStreams C library [58] allowed for the simulations to run

in parallel. We used the AD Model Builder [32] and R2admb [13], an R [79]

interface for it, to optimize the log likelihood. We prepared graphics with the

R package ggplot2 [111]. Code capable of reproducing the results is available

from the authors on request.

Results

Simulation

We used simulation to see how many outbreak data sets may be re-

quired for estimates to be approximately normally distributed around the true

parameter values. The simulations also allowed us to gauge the effects of the

imputation and rounding necessary for our application.

Much previous work has shown that estimation with data from a sin-

gle, small outbreak is unreliable [92, and refs. therein]. Thus one benefit of

aggregating data from multiple outbreaks is that it allows for data from mi-

nor outbreaks to produce reliable estimates. However, using data from minor

outbreaks does represent a worst-case scenario in the sense that each such

outbreak contributes only a small amount of information. For those two rea-

sons, and to keep the simulation study at a manageable size, we restricted our

simulations to one set of parameters that is guaranteed to result in small out-

breaks. To allow for comparison with our fits to the norovirus data, we used
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the parameters estimated for our baseline regression group.

As expected, the estimates were not very good when using data from

single outbreaks (Fig. 2.1). In about 49% of these simulations, the initial in-

fective failed to infect anyone, limiting estimation to the length of the symp-

tomatic period. In about 13% of these simulations, only one transmission oc-

curred and the transmission and growth rate parameters were unidentifiable.

In about 21% of these outbreaks, the estimate of r was on the lower bound of

parameter space, preventing calculation of Wald confidence intervals. In the

remaining 17% of replicates, the coverage probability of the 95% Wald confi-

dence intervals ranged from 80 to 90% (Table 2.1) and the bias and average

standard error for the transmission rate was almost 100 times the true value

of the parameter. The average correlation between the transmission rate and

initial growth rate estimates was 94%. Estimates for the symptomatic period,

although obtained for all replicates, were also not accurate (Fig. 2.1 and Table

2.2).

Rounding, deleting 5% of case records, and imputing 53% of recovery

times all generally increased the average standard error of estimates, with

effects in that order. Effects on the bias were somewhat more variable, but the

asymptotic effects of these procedures on the bias of the estimates appears to

be zero. However, even in the 100-outbreak scenario the imputation caused

coverage probabilities for r to deviate by as many as 13 percentage points

from 95%. (Table 2.1), which recommends the use of confidence intervals that

account for the imputation, such as the ones we used in our application.

On the whole, the estimates were much more accurate in the 10- and

100-outbreak scenarios (Fig. 2.1, Tables 2.1 and 2.2). They were also more

robust. Estimates for r were on the lower bound 5% of the time in the 10-
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Figure 2.1: Estimates versus number of outbreaks. The row names indicate
parameters. Each small black point represents an estimate. The larger gray
points represent the means of the estimates. The horizontal lines represent the
values of the parameters used to simulate the data.

32



T
ab

le
2.

1:
S
im

u
la

ti
on

re
su

lt
s

fo
r

tr
an

sm
is

si
on

ra
te
β

an
d

in
it

ia
l

gr
ow

th
ra

te
r.
n

d
en

ot
es

th
e

n
u
m

b
er

of
ou

tb
re

ak
s

si
m

u
la

te
d

fo
r

an
es

ti
m

at
e.

Im
p
u
te

d
re

fe
rs

to
th

e
fr

ac
ti

on
of

re
co

ve
ry

ti
m

es
d
el

et
ed

an
d

th
en

im
p
u
te

d
as

d
es

cr
ib

ed
in

th
e

M
et

h
o
d
s.

M
is

si
n
g

re
fe

rs
to

th
e

fr
ac

ti
on

of
ca

se
re

co
rd

s
d
el

et
ed

b
ef

or
e

fi
tt

in
g

th
e

d
at

a.
R

ou
n
d
ed

in
d
ic

at
es

w
h
et

h
er

th
e

on
se

t
an

d
re

co
ve

ry
ti

m
es

w
er

e
ro

u
n
d
ed

to
w

h
ol

e
d
ay

s.
In

th
e

si
m

u
la

ti
on

s,
β

w
as

se
t

to
0.

00
37

tr
an

sm
is

si
on

s
p

er
in

fe
ct

iv
e–

su
sc

ep
ti

b
le

d
ay

an
d

th
e
r

w
as

se
t

to
0.

26
64

tr
an

sm
is

si
on

s
p

er
in

fe
ct

iv
e

d
ay

.

n
im

p
u
te

d
m

is
si

n
g

ro
u
n
d
ed

b
ia

s(
β̂

)
av

.
s.

e.
(β̂

)
β

co
ve

r.
(%

)
b
ia

s(
r̂)

av
.

s.
e.

(r̂
)

r
co

ve
r.

(%
)

1
0.

00
0.

00
0

0.
19

8
0.

13
1

82
0.

52
0.

83
4

87
1

0.
19

6
0.

12
9

82
0.

52
0.

83
0

88
0.

05
0

0.
21

0.
13

0
81

0.
55

0.
84

87
1

0.
20

6
0.

12
7

83
0.

53
0.

83
90

0.
53

0.
00

0
0.

25
1

0.
13

2
80

0.
67

0.
95

8
81

1
0.

23
4

0.
13

7
80

0.
65

0.
96

6
81

0.
05

0
0.

23
1

0.
14

9
83

0.
63

0.
98

84
1

0.
21

4
0.

13
4

81
0.

61
0.

96
84

10
0.

00
0.

00
0

0.
01

54
0.

04
56

89
0.

03
89

0.
28

82
95

1
0.

01
55

0.
04

57
90

0.
03

78
0.

28
88

95
0.

05
0

0.
01

60
0.

04
71

90
0.

03
70

0.
29

32
96

1
0.

01
60

0.
04

70
89

0.
03

73
0.

29
19

96
0.

53
0.

00
0

0.
01

58
0.

05
25

93
0.

06
02

0.
31

16
91

1
0.

01
62

0.
05

33
93

0.
06

08
0.

31
34

91
0.

05
0

0.
01

68
0.

05
58

92
0.

05
83

0.
31

9
92

1
0.

01
70

0.
05

62
93

0.
05

87
0.

31
9

92
10

0
0.

00
0.

00
0

0.
00

05
5

0.
00

57
1

94
0.

00
27

0.
07

38
0

95
1

0.
00

05
3

0.
00

56
9

94
0.

00
25

0.
07

37
0

95
0.

05
0

0.
00

06
6

0.
00

61
4

94
-0

.0
00

1
0.

07
53

3
95

1
0.

00
06

7
0.

00
61

7
93

-0
.0

00
4

0.
07

53
5

95
0.

53
0.

00
0

-0
.0

00
33

0.
00

66
8

96
0.

01
95

0.
08

03
6

82
1

-0
.0

00
34

0.
00

65
3

96
0.

01
31

0.
07

84
4

86
0.

05
0

-0
.0

00
18

0.
00

72
4

97
0.

01
74

0.
08

22
2

85
1

-0
.0

00
24

0.
00

70
7

97
0.

01
03

0.
08

01
8

87

33



T
ab

le
2.

2:
S
im

u
la

ti
on

re
su

lt
s

fo
r

sy
m

p
to

m
at

ic
p

er
io

d
m

ea
n
µ

an
d

d
is

p
er

si
on

p
ar

am
et

er
ρ
.
n

d
en

ot
es

th
e

n
u
m

b
er

of
ou

tb
re

ak
s

si
m

u
la

te
d

fo
r

an
es

ti
m

at
e.

M
is

si
n
g

re
fe

rs
to

th
e

fr
ac

ti
on

of
ca

se
re

co
rd

s
d
el

et
ed

b
ef

or
e

fi
tt

in
g

th
e

d
at

a.
R

ou
n
d
ed

in
d
ic

at
es

w
h
et

h
er

th
e

on
se

t
an

d
re

co
ve

ry
ti

m
es

w
er

e
ro

u
n
d
ed

to
w

h
ol

e
d
ay

s.
C

ov
er

.
re

fe
rs

to
th

e
co

ve
ra

ge
p
ro

b
ab

il
it

y
of

W
al

d
co

n
fi
d
en

ce
in

te
rv

al
s.

L
ow

er
ρ̂

an
d

u
p
p

er
ρ̂

re
fe

r
to

th
e

b
ou

n
d
s

of
a

b
o
ot

st
ra

p
co

n
fi
d
en

ce
in

te
rv

al
.

In
th

e
si

m
u
la

ti
on

s,
µ

w
as

se
t

to
3.

32
d
ay

s
an

d
th

e
ρ

w
as

se
t

to
0.

58
.

n
m

is
si

n
g

ro
u
n
d
ed

b
ia

s(
µ̂

)
av

.
s.

e.
(µ̂

)
co

ve
r.

(%
)

b
ia

s(
ρ̂
)

lo
w

er
ρ̂

u
p
p

er
ρ̂

1
0.

00
0

-0
.6

0
3.

76
83

-0
.0

67
0.

01
1.

46
1

-0
.5

9
3.

75
84

-0
.0

37
0.

00
2.

00
0.

53
0

-0
.6

5
4.

13
80

-0
.0

96
0.

01
1.

47
1

-0
.5

9
4.

26
80

-0
.0

27
0.

00
2.

00
10

0.
00

0
-0

.1
04

1.
51

1
91

-0
.0

05
0.

31
0.

98
1

-0
.1

06
1.

53
4

91
0.

00
8

0.
32

0.
98

0.
53

0
-0

.1
08

2.
12

3
90

-0
.0

16
0.

23
1.

12
1

-0
.1

06
2.

16
1

90
0.

00
2

0.
24

1.
15

10
0

0.
00

0
-0

.0
10

0.
47

03
94

-0
.0

00
6

0.
49

0.
68

1
-0

.0
10

0.
47

72
95

0.
01

57
0.

50
0.

70
0.

53
0

-0
.0

07
0.

68
53

94
-0

.0
01

2
0.

46
0.

73
1

-0
.0

10
0.

69
28

94
0.

01
32

0.
47

0.
76

34



outbreak scenario and never on the lower bound in the 100-outbreak scenario.

The likelihood was divergent about 7–10% of the time in the 10-outbreak sce-

nario 0.1–2% of the time in the 100-outbreak scenario. The average correlation

between the estimated transmission rate and growth rate was about 0.83 and

0.74 for replicates in the 10- and 100-outbreak scenarios, respectively.

In sum, the method works well with a sufficiently large data set. Mod-

erate amounts of imputation, missing data, and rounding will have mostly

modest effects on estimates.

Estimates for norovirus in health-care settings

We fitted our generalized linear model to data from a large prospective

study of gastroenteritis in health-care settings [65]. In this one-year study,

patients and the care staff assigned to any of about 4500 beds in health-

care facilities in the county of Avon, England, were under active surveillance.

Trained staff members recorded the dates over which people were symptomatic

and took samples that allowed for laboratory confirmation of the causes of

outbreaks. Fig. 2.2 shows the cases histories that were used to fit our model.

The predictors in our model were facility type, which indicated whether

an outbreak took place in a long-term–care facility (LTCF) or a hospital; size

class, which indicated the number of patients and staff in the unit; period,

which indicated the time of the study year when the outbreak began; and case

type, which indicated whether a case was a patient or a member of the care

staff. See the Methods for more details.

For our baseline regression group of patients in large hospitals in the fall

and winter, the estimates (95% bootstrap confidence interval) of the transmis-

sion rate was 0.0037 (0.0026–0.0052) transmissions per infective–susceptible
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Figure 2.2: Case histories. Each horizontal bar represents the history of a
person. The interval between onset of symptoms and relief from symptoms is
filled in. Case IDs were assigned by sorting the cases first by onset time, then
by relief time, and then by a random ordering. Initial infectives were given
negative case IDs. The panels are arranged so that the outbreak size increases
from top to bottom and the outbreak length increases from left to right. Case
histories from long-term–care facilities (LTCFs) are in light gray. Some of the
times of relief from symptoms were imputed as described in the Methods.
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day, that of the initial growth rate was 0.27 (0.23–0.30) transmissions per in-

fective day, that of the symptomatic period was 3.35 (3.09–3.57) days, and that

of the dispersion parameter ρ for the symptomatic period was 0.57 (0.54–0.65).

Fig. 2.3 shows the effects on these estimates of moving away from the

reference group with respect to a predictive variable. The largest effects are the

increase in transmission and growths rates in long-term–care facilities (LTCFs)

and the reduction in these rates in staff. It appears that transmission rates are

higher in the smaller units. Symptomatic periods were estimated to be about

25% shorter for outbreaks in LTCFs and 20% shorter for cases among staff.

Discussion

We have shown that estimation of parameters from many small out-

breaks can be done using a generalized linear model. A simulation study

demonstrated that we are able to accurately estimate parameters when the

data stem from small outbreaks even when the data set is missing some data

and about half of recovery times are imputed. Fitting the model to a large

number of outbreaks of norovirus, we found that facility type, facility size,

and case type seem to have significant effects on outbreak dynamics.

The most striking result of our regression estimates (Fig. 2.3) are the

approximately 7-fold increase in transmission rates and 3-fold increase in initial

growth rates in the long-term–care facilities (LTCFs) relative to hospitals. Fig.

2.2 shows that LTCF outbreaks do indeed include many of the larger and faster

growing outbreaks in the data set.

The higher transmission rates for occupants of LTCFs may be a con-

sequence of occupants having more opportunity to socialize in large groups.
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Alternatively, we may be seeing the effects of our model assumptions being vi-

olated. Perhaps foodborne transmission is more common in LTCFs. Hospitals

have more rapid turnover of patients, and the exposure of people who arrived

in the care unit after the outbreak started will be overestimated in our model.

Occupants of LTCFs may vary more in contact rates by virtue of personality

differences, and such variation in exposure could lead to a higher initial growth

rate [9, pp. 133–138].

The estimates for NoV transmission dynamics we calculated comple-

ment results from previous epidemiological analyses of NoV in health-care

settings. Previous analyses of our data set [64, 65] had examined how risk of

NoV infection or particular symptoms of NoV infection varied with age and

other characteristics of people. The current analysis adds to these results by

providing estimates for a mechanistic transmission model.

Analysis of a 2003–2006 study of NoV outbreaks in long-term–care

facilities (LTCFs) in Oregon [83] suggested that larger facilities may have a

higher risk of experiencing outbreaks. Our result that transmission rates are

lower in larger facilities suggests that any increased risk that larger facilities

have is not caused by increased transmission rates.

A few previous studies have estimated individual-level parameters for

NoV that are comparable to our estimates. Using data from a NoV outbreak

in a primary school and nursery in Derbyshire, England, O’Neill and Marks

[77] estimated that the probability of a susceptible person avoiding infection

from an infective person in the school for a day was 0.998. Using the formula

Pr(avoidance) = exp(−β × 1 susceptible × 1 infective × 1 day), our estimates

yield Pr(avoidance) that ranges from about 0.959 for patients in small LTCFs

to 0.999 for staff in large hospitals.
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Heijne et al. [44] estimated the basic reproduction number of NoV in

boy-scout camps to be about 14 and 7, respectively, under two different sets of

assumptions. The basic reproduction number R0 is the initial number of new

infections that a single infection will cause. Using the formula R0 = (rpatient +

rstaff)µpatient, our highest R0 was approximately equal to 3. The relative lowness

of our R0 might reflect contact rates being higher in the camp setting, and it

may also reflect the effect of better hygiene in the health-care settings. Heijne

et al. [44] estimated that the implementation of an enhanced hygiene protocol

drove the reproduction number in the camps down to about 2 and 1, values

on par with our own estimates. Our estimates may be more generalizable than

the estimates from the boy-scout outbreaks because our data set was larger

and included data from both large and small outbreaks.

Zelner et al. [116] used data from a Stockholm outbreak to estimate

that the average infectious period was 1.2 days. The setting of these outbreaks

was households that included children in daycare centers. Thus, the infectious

period may have been shorter in these outbreaks because many of the infec-

tives were likely healthy people between the ages of 5 and 70, whereas people

below the age of 5 and, to an even greater degree, people over the age of 70

were overrepresented in our data [65]. In our data, people in these extreme age

groups had average symptomatic periods of 3 days [65]. Moreover, the Stock-

holm estimate is based on imputed infectious periods rather than symptomatic

periods, which were not reported. As a result, if the assumed initial number

of susceptibles for the Stockholm analysis was too high, the infectious period

would have been underestimated.

Although our estimates of the symptomatic period may be relatively

long, it is possible that some of the patients were discharged into the commu-
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nity before they became asymptomatic. Thus, for patients, our estimates most

accurately reflect the period of being symptomatic while simultaneously being

in a health-care facility.

The daily transmission rates estimated from the Stockholm data, 0.14

transmissions per infective–susceptible day, are more than 3-fold higher than

our highest estimated transmission rate, which was 0.04 transmissions per

infective–susceptible day for patients in small LTCFs. The joint estimation ap-

proach we used could be applied to the Stockholm data to determine whether

the higher transmission-rate estimates may have resulted from underestima-

tion of household sizes. However, the transmission rates may well be different

because of differences in hygiene measures and contact rates. Additionally,

time-series analysis of outbreak incidence [62] has suggested that transmission

rates generally may vary with host, weather, and virus factors. Taken together,

these differences may explain the large discrepancy in estimated transmission

rates.

In our application, we made the simplifying assumption that the latent

period was fixed at its mean, which allowed us to directly calculate infection

times from the reported onset of symptoms. The infection times determine

the cumulative exposures hi,j in (2.3). Because the cumulative exposure is a

non-linear function of time and the mean of a non-linear function of a random

variable does not always equal the function evaluated at the random variable’s

mean, the extent to which latent periods varied in reality likely introduced bias

into our calculated cumulative exposures and the estimates based on them. The

bias could be either positive or negative depending on whether cumulative ex-

posure usually increases more quickly before or after the assumed transmission

times.
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Another simplifying assumption we made was that people were only

infectious when they were symptomatic. The effect of this and the fixed latent

period assumption could be tested by making the infectious period a latent

variable that we integrate over to evaluate the likelihood, as in Hohle et al.

[47], or by using a kernel-smoothing method, as in Lau and Yip [57]. However,

even without such calculations it is clear that if, in reality, the infectious period

extends beyond the symptomatic period, our estimates of transmission rates

have been inflated by our underestimation of exposure.

From the numerical results displayed in Tables 2.1 and 2.2, we see that

highly reliable estimation depends on collection of an extensive data set. The

Centers for Disease Control and Prevention (CDC) has recently established

a National Outbreak Reporting System that, with the contributions of state

health departments, will provide more comprehensive surveillance for all U.S.

gastroenteritis outbreaks [18]. However, the data we have analyzed here is more

detailed than what is routinely reported to this system. More outbreak inves-

tigations are needed to collect detailed data and further characterize modes of

transmission. The collection of NoV genomic data may also be of great value

[98].

What data are required? Our method can be applied to estimate trans-

mission rates for any data set for which the total number of cases and the

average cumulative exposure of individuals in each outbreak can be estimated.

To additionally estimate the initial growth rate, we further require an estimate

of the area under the curve of the number of infectives over time. If only the

times at which individuals stop being infectious are known, these quantities

could be estimated using a kernel-smoothing method [57]. Of course, it is also

desirable to have data about important covariates for the regression.
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Why bother collecting more data? We submit that, for norovirus and

many other diseases, there are several use cases for the types of regression

estimates for transmission and initial growth rates that we have presented

here. Policy-makers can use such estimates to compare the efficacy of different

control strategies such as hygiene protocols, isolation measures, prophylactic

treatments, and vaccination policies. Those monitoring the small outbreaks of

zoonotic diseases may be able to use such estimates to identify variables that

make transmission more likely.
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Chapter 3

Maximum likelihood estimation of HIV-risk

network dynamics from multiple surveys

Introduction

HIV surveillance is a major component of public health efforts around

the world. One hundred eighty-six countries contributed data about the HIV

epidemic to the 2012 UNAIDS global report [101]. This great effort reflects

the great burden of HIV. Based on these data, UNAIDS estimates that, word-

wide, 0.8% of adults in the age range of 15-49 years are living with HIV [101,

p. 8].

The UNAIDS report also contains reports about the relative risk of

different population segments for HIV. Based on data from 50 countries, female

sex workers are estimated to be 13.5 times more likely to have HIV than other

women [101, p. 21]. In 49 countries, injecting drug users (IDUs) are at least

22 times more likely to have HIV than the general population [101, p. 34].

However, the report also shows substantial variation in estimates from region

to region. For example, there are 11 countries in which prevalence among IDUs

is at least 50 times the national average prevalence and 2 countries with almost

no difference in prevalence between the groups [101, p. 35]. Thus as valuable

as group estimates may be about the overall state of the HIV epidemic, they

are not necessarily informative of how one particular person’s behavior affects

her risk of acquiring HIV. Intervention efforts directed at her that are designed

44



to change population averages may well be wasted efforts.

Many authors [55, 85, e.g.] have pointed out that a person’s risk of

acquiring HIV depends critically on her position in the network of transmission

routes in relation to infected people. We refer to such network as contact

networks. Contact network structure may also determine large scale trends in

prevalence as well. For example, Morris and Kretzschmar [72] examined the

effect of the frequency of concurrent partnerships on the growth and overall size

of epidemics, and Volz and Meyers [105] looked at how epidemic trajectories

varied with different rates of partner replacement conditional on a set network

structure. It is clear from such studies that both concurrency and rates of

partner change both may have strong effects on the course of an epidemic.

Although the work of Morris and Kretzschmar [72] and Volz and Meyers

[105] clearly demonstrate the importance of network structure, the models used

in some sense invert the processes involved because the behavior of individuals

is determined by high-level network parameters. It seems more realistic to

model the network as a consequence of decisions made by different people

that make no special attempts to coordinate their actions. Thus in this paper

our main approach is to not consider the number of edges a node has as a

model parameter, but rather to consider that the edges between nodes are the

realization of simple stochastic processes. We can thus fit this model to survey

data by estimating rates at which nodes acquire new neighbors and rates at

which nodes lose neighbors, which we refer to as on- and off-rates, respectively.

This approach is a good way to model this data for a number of rea-

sons. First, the rate parameters can be interpreted in terms of the behavior

of individuals. Because HIV control measures often have the goal of changing

the behavior of individuals, the parameter estimates could be useful as a mea-
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surement of how effective such programs are or need to be. Second, standard

statistical methods are often available or can be adapted to fit these models.

Third, there are analytic results about several properties of this type of net-

work model [14, 15]. For example, a skewed degree distribution, which often

characterizes sexual networks, occurs in this type of network when there is

wide variation in the on-rates of nodes [14].

Britton and Lindholm [14] describe two possible relationships between

a node’s on-rate and its individual propensity for forming new edges, which

is called its social index. We use what they call the modified model in our

analyses. In this model, a node sprouts new edges at a rate proportional to

its social index and the free end of this new edge connects to any node in the

network with probability proportional to that node’s social index.

By fitting the above model to data, we are able to answer several epi-

demiological questions: For each of needle sharing and unprotected hetero-

sexual relationships, at what rates are people starting and breaking off risky

relationships? How do these rates vary between studies? How much variation

is there from person to person?

Methods

Data

The data come from a number of different behavioral surveys: Project

90 [114] in Colorado Spring, CO; the Urban [85], Adolescent [84], and Geogra-

phy studies in Atlanta, GA; and the HAART and Clustering studies. In each

of these studies, participants were interviewed one or more times and asked to

report the identities of the individuals with whom they had engaged in sex or

needle sharing in the last 3 months (6 months for Project 90).
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Data preparation

Sexual relations for which perfect condom use was reported were re-

moved. Sexual relations in which the gender of the participant and the re-

ported contact were listed as male were considered MSM (Males who have Sex

with Males). Sexual relations in which the gender of the participant and the

reported contact were a male–female pair were considered heterosexual. We

did not include the MSM contacts in our analysis here.

Two studies in the original data set, Urban2 and ARRA, were removed

from analysis because they had little information about break-up rates in

them. The needle-sharing data were zero-inflated, which made them difficult

to fit as our model had no zero-inflation parameter. We therefore removed

people reporting zero needle-sharing and MSM contacts from the data when

estimating rates for those parameters.

Model

We consider the number of contacts that a person has over time as

following an immigration–death process where λ is the on-rate, or the immi-

gration rate, and µ is the per-contact off-rate, or the death rate. Therefore,

the probability Pn(a) that a person has n contacts at age a satisfies the master

equations

dPn
da

= −(λ+ µn)Pn(a) + λPn−1(a) + µ(n+ 1)Pn+1(a). (3.1)

The age a in this expression is the age since the person began any risk-taking

activity such that a person of age less than zero always has zero edges.

The probability generating function π(z, a) of the master equations
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satisfies
∂π

∂a
+ µ(z − 1)

∂π

∂z
− λ(z − 1)π = 0 (3.2)

with initial conditions π(z, 0) = zn(0). This initial value problem can be solved

using the method of characteristics, yielding

π(z, a) = exp[−λ(1− e−µa)(z − 1)/µ](1 + e−µa(z − 1))n(0), (3.3)

which shows that the number of contacts at age a is the sum of a Poisson

random variable with mean given by

λ(1− e−µa)/µ (3.4)

and n(0) Bernoulli random variables with success probability of e−µa.

If we observe a person at two ages, a1 and a2, the log-likelihood of the

proportion y1 of the number n(a1) of contacts observed at a1 that remain at

a2 and the number of new contacts y2 that were observed only at a2 is then

` = ln

(
n(a1)

n(a1)y1

)
+ n(a1)y1 ln p+ n(a1)(1− y1) ln(1− p)

+ y2 lnm−m− ln y!, (3.5)

where m = λ(1−e−µ(a2−a1))/µ and p = e−µ(a2−a1). We can, in fact, use a similar

log-likelihood for the data from every interview because at the first interview

we can assume that the person had zero contacts at some earlier age that we

consider to be age zero.

We cannot use exactly Eq. 3.5 for our data because we do not know the

identities of contacts at exact time points. Rather, we know all the contacts

that a person had within a reporting period of 3 to 6 months preceding the

interview. Thus we have to consider that any contacts reported may have
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begun either before or during the reporting period. Of course, we do know

that contacts that were first reported before the last interview began sometime

before they were reported. So the times of up to three successive interviews

may figure in to the likelihoods. Let ta denote the interval between the first

interview and the beginning of the reporting period for the second interview,

tb the reporting period for the second interview, tc the interval between the

second interview and the third interview, and td the reporting period of the

third interview.

For the data from interview k of the wq interviews of participant q,the

log-likelihood of the proportion y1 of the ñ contacts present at both the first

and second interviews that remain at the third interview, the proportion y2 of

the y3 contacts that were first reported at the second interview that remain at

the third interview, and the number y4 of contacts that are new at the third

interview is

`k,q = ln
[ y3∑
i=0

mi
1m

y3−i
2

exp(−m1 −m2)

i!(y3 − i)!

×
min(y3y2,i)∑

j=0

(
i

j

)(
y3 − i
y3y2 − j

)
pj1p

y3y2−j
2 (1− p1)i−j(1− p2)y3−i−y3y2+j

]
+ ln

(
ñ

ñy1

)
+ ñy1p1 + ñ(1− y1)(1− p1)

+ 1[k=wq ] ln

y4∑
i=0

mi
3m

y4−i
4

exp(−m3 −m4)

i!(y4 − i)!
, (3.6)

where m1 = λ(1 − e−µta)/µ, m2 = λtb, p1 = e−µ(tb+tc), p2 = e−µtc(1 −
e−µtb)/(µtb), m3 = λ(1 − e−µtc)/µ, and m4 = λtd. We go through each in-

terview of each participant and calculate `k,q by considering an interview as

the third in the above scheme of three interviews. In the case of the first real

interview, we imagine a previous interview that took place at the time when
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the person was age zero at which they reported zero contacts. Because ñ and

y3 are necessarily equal to zero in this case, it does not matter that ta and tb

are undefined.

To model variation from person to person, we use linear predictors for

lnλ and lnµ. We assume a model in which there is a fixed effect for each survey

and a random effect for each person. For example, lnλq = Xq,∗β + U , where

Xq,∗ is row q of a design matrix based on the study in which each participant

is from, β is a column vector of unknown regression coefficients, and U is a

normally distributed random variable with mean zero and unknown variance.

For lnµ, we add one extra term to the predictor when predicting y1

because we observed that predicted values of y1 were consistently above ob-

served values without this term. This additional parameter is a change in the

off-rate that occurs after the first interview.

Results

Distribution of exposure

The contacts a person has are of interest to us only so far as they inform

us of risk for an infectious disease. Such risk would be proportional not to the

number of contacts someone reports at a particular time, but rather to the

total amount of exposure in contact-time a person has. Thus we calculate the

distribution of that exposure in the remainder of this section.

In this section, we denote random variables with capital letters and

particular values that they may take with corresponding lower-case letters.

We assume that the number of edges incident to a node N (i.e., the

node’s degree) evolves as an immigration–death process with immigration rate
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λ and death rate µ. Our goal is to find the distribution of the cumulative

exposure C =
∫ a

0
N(t) dt for nodes of a given age a. Because the lifetimes of

different edges are independent of each other, we can express that area as a

mixture of convolutions of lifetime distributions.

A node of age a may have had two types of edges incident to it: (1)

those edges that are currently incident to it, and (2) edges that were incident

to it only over some interval in [0, a). For the first type of edge, we require time

since it became incident to the node. We refer to this as the partial lifetime

Tp of the edge and find that its probability density function (p.d.f.) is

fTp(t) = µe−µt[u(t)− u(t− a)]/(1− e−µa), (3.7)

where u(·) is the Heaviside step function. For the second type of edge, we find

its complete lifetime Tc has the p.d.f.

fTc(t) = µ2(t− a)e−µt[u(t)− u(t− a)]/(µa− 1 + e−µa). (3.8)

Using Laplace transforms, it is straightforward to find that the sum of

np partial lifetimes and nc complete lifetimes had the p.d.f.

f
n∗
p

Tp
∗ fn

∗
c

Tc
(t) =

(
µ

1− e−µa

)np
(

µ2

µa− 1 + e−µa

)nc

×
[ np∑
i=0

nc∑
j=0

j∑
k=0

(
np
i

)(
nc
j, k

)
anc−j(−1)i+2j−k [t− a(i+ j − k)]np+nc+j−1

(np + nc + j − 1)!

× e−µtu(t− a(i+ j − k))
]
. (3.9)

Henceforth, we abbreviate N(a) as N for brevity. The number of edges

N incident to a node of age a is Poisson distributed with mean

m = λ(1− e−µa)/µ.

51



This Poisson distribution results from a Poisson number Y of immigration

events with mean λa in which the number of surviving immigrants X out of

the total immigrants y is binomially distributed with probability m/(λa). The

p.d.f. for the cumulative exposure C is then

fc(n, a, t) =
∞∑
y=n

fY (y)fX(n)fn
∗

Tp ∗ f
(y−n)∗

Tc
(t)/fN(n), (3.10)

or, more explicitly,

fc(n, a, t) =
n!

mye−m

×
∞∑
k=0

(λa)k+ne−λa

(k + n)!

(
k + n

n

)
[m/(λa)]n[1−m/(λa)]kfn

∗

Tp ∗ f
k∗

Tc (t)

(3.11)

= em
∞∑
k=0

(λa)ke−λa

k!
[1−m/(λa)]kfn

∗

Tp ∗ f
k∗

Tc (t). (3.12)

The distribution function that follows from fc agrees well with simulation (Fig.

3.1).

Goodness of fit

We assessed goodness of fit as follows. After obtaining the maximum

likelihood (ML) estimates for the regression coefficients and the variance of the

random effect, we obtained empirical Bayes estimates for the specific values of

the random effect for each individual. As the left most column in Fig. 3.2 shows,

these values were approximately in agreement with the assumed normality of

the model. There are probably fewer lower quantiles than expected for both

fits as an artifact of the methods; the likelihood of a Poisson distribution

producing zero counts does not always increase as fast as the likelihood of a

normal deviate decreases as it moves away from the normal’s mean.
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Figure 3.1: Simulated and analytically calculated exposures agree. The dashed
lines are the empirical cumulative distribution functions of the areas under
the number of contacts from age 0 to 3 conditional on observing from 0 to
5 contacts (lines from left to right) at age 3. The solid lines are distribution
function based on fc (Eq. 3.12). The on-rate is 2 and the off-rate is 1.
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According to our model, the observed numbers of contacts and propor-

tions of remaining contacts all may come from different distributions. There-

fore, quantile-quantile plots are not of any use for checking distributional as-

sumptions. However, we can put the information in the quantiles on a similar

scale by plugging the quantiles into a distribution function. The resulting prob-

abilities should be approximately uniformly distributed. Columns 2 to 4 in Fig.

3.2 thus provide confirmation that no distributional assumptions are grossly

violated. We used the empirical Bayes estimates of on-rates and off-rates as

the parameters in numerically-evaluated distribution functions.

Estimates

For Project 90, which was the intercept in our linear predictor, the max-

imum likelihood (ML) estimate of the median daily on-rate (Wald standard

error) for heterosexual and needle-sharing contacts were 0.005 07 (0.000 22)

and 0.005 21 (0.000 38), respectively, where we have used the delta method

to calculate standard errors. The corresponding daily off-rates were 0.004 13

(0.000 15) and 0.004 91 (0.000 33). The standard deviation of the random effect

(the standard deviation on the log scale) was about 0.760 (0.022) for heterosex-

ual contacts and 0.755 (0.052) for needle-sharing contacts. Fig. 3.3 illustrates

the fitted density of heterosexual on-rates for Project 90.

The estimates for changes from these baseline values are displayed in

Fig. 3.4. For heterosexual contacts, the ML on-rates for all other studies were

significantly lower than those of Project 90. The off-rates for heterosexual con-

tact appear to be about the same in the other studies except for the Urban

and Clustering studies, which have higher off-rates. The small number of sig-

nificant difference in off-rates as compared to on-rates may reflect the smaller
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Figure 3.2: Diagnostic plots of the model fits. In column 1, studentized quan-
tiles from the estimated random effect are plotted against standard normal
quantiles. All of the panels in each row are from the same model. The his-
tograms in columns 2 to 4 display how the observed data is distributed on the
fitted models’ distribution functions.
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Figure 3.3: Fitted density of on-rates for heterosexual contacts in Project 90.
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are for heterosexual contacts, triangular for needle-sharing. The horizontal
lines are 95% Wald confidence intervals.
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amount of information in the data to estimate them, which is evident in the

larger error bars for off-rates (Fig. 3.4). For the needle-sharing contacts, the

rates in the Urban study did not differ significantly from those of Project 90.

A significant second-interview effect was found for both types of con-

tact. For heterosexual contacts, the multiplicative effect was 0.312 (0.030). For

needle-sharing, the multiplicative effect was 0.374 (0.082). Thus our model de-

tects the presence of distinct long- and short-term risky contacts.

Discussion

We have derived an expression for how the total contact-years a person

has may vary given her total time active, her current number of risky con-

tacts, and her rates of gaining and losing partners (on- and off-rates). This

result contributes to our ability to account for the volatility of people’s con-

tacts when investigating the relationship between risk-taking behavior and

infection. Further to that end, we have estimated on- and off-rates with data

from multiple surveys and identified significant differences in these parame-

ters between surveys, between people within surveys, and across interviews

for the same person. The on-rates in Project 90 tend to be about twice those

of the other studies. The off-rates are about the same in all studies with the

exception of the Urban study, which had an off-rate that was roughly twice

that of Project 90’s. The dispersion of on-rates among people within a sur-

vey was about the same for both sexual and needle-sharing contacts. Also, a

significant decrease in off-rates was found for both needle-sharing and sexual

contacts following the second interview in which they were reported.

The estimated on- and off-rates for our baseline group of Project 90

participants were often in an approximately one-to-one ratio and the median
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of on-rates was about 1 partner gained every 200 days. Parameters in this

range result in the number of contacts over time a person has being highly

volatile. The situation is similar to what is depicted in Fig. 3.1, wherein inter-

quartile ranges of cumulative exposure in contact-years are on the order of

one to five times the medians. The implication is that a stochastic model of

exposure is vital to accurately calculate the variance of estimates of exposure.

Underestimating the variance could lead to underestimating the association

between contact and HIV infection, as a consequence of regression dilution

[51].

Although Britton and Lindholm [14] discussed the importance of allow-

ing for both long- and short-term contacts when fitting the model we used to

real data, they did not attempt to do so in the toy data analysis they included

in the paper that introduced the model. And although the surveys collect data

about the nature of the reported relationships which provides some indication

of whether they are likely to be long-lived, our estimates are likely the first that

quantify the difference in the lengths of these relationships for these data. Such

quantification is necessary to accurately model the spread of HIV through a

contact network.

Our estimated on-rates seem low compared to comparable estimates

from some previous studies. For example, in a sample of 78 MSM AIDS patients

early in the U.S. epidemic, more than 64.1% of patients reported having 50 or

more partners in the year before AIDS onset, and 52.6% of patients reported

1000 or more sexual partners in their lifetime [4]. Klovdahl [55] cites William

[113] as estimating the average number of partners for MSM to be 1000 over the

course of their lives. If we assume activity takes place over a 50 year period, we

obtain an on-rate estimate of 0.055, whereas our ML means are about 0.007 for
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both needle and sexual contacts. Of course, we may expect MSM, particularly

those infected early in the epidemic, to have higher on-rates than heterosexuals

or needle-sharers. However, preliminary analysis of the MSM contacts in our

data has not led to estimates 10-fold higher than what we present here. What

seems to explain the difference better is that we remove a significant fraction

of sexual contacts because condoms were always used.

If we applied a correction to our estimates that accounted for how peo-

ple with many contacts are more likely to be participants in the surveys, our

mean estimates would almost certainly be lower. We have decided not to ap-

ply such a correction for several reasons. First, methods of recruitment varied

between studies. For example, the Urban study had two sampling chains of

respondents [85]. In one, the chains were extended by selecting a contact at

random from the respondent’s set of contacts. In the other, the chains were ex-

tended by contacts selected by the investigators. In the HAART study, patients

at a large metropolitan hospital constituted the sample. None of the stud-

ies had sampling methods that fully satisfied the assumptions of respondent-

driven sampling (RDS) estimators [104], which use a person’s network size (i.e.,

degree) as an importance sampling weight to calculate overall population aver-

ages. For example, putative partners that are interviewed do not always report

each other as contacts, which can lead to significant bias [66]. Another reason

we decided not to attempt correcting for sampling is that a recent evaluation

of RDS [68] in one real-world population found that it failed to remove the

bias caused by non-representative sampling. Altogether, it seems likely that

correcting for sampling may make our estimates worse. Nevertheless, caution

must be taken not to generalize our estimates beyond the populations they are

sampled from, which are admittedly somewhat haphazardly determined but
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are surely high-risk populations.

There are many possible covariates for our rates parameters in the data

that were not included in the model. For example, the age of the respondent,

whether the respondent identified themselves as a person who receives money

or drugs in exchange for sex, and the year of the study could all conceiv-

ably affect the parameters. Multi-model inference (using the model-averaging

methods described by Burnham and Anderson [16], for example) on a collec-

tion of models that are epidemiologically plausible would lead to more reliable

estimates.

The network information in the data also remains untapped by our

current methods of estimation. Many social networks exhibit assortativity [75],

with like people being more likely to be found together. Thus we might expect

people with high on-rates to be more likely to have relationships with other

people with high on-rates. Alternatively, we might expect disassortativity if,

for example, the highest on-rates are estimated for sex workers that rarely

have relationships with each other. We could test such hypotheses by using

methods from spatial statistics. One approach would be a geospatial approach

of adding a random effects to the on-rates with covariances that depend on

the geodesic distance between people in the contact network. Another would

be a conditional autoregressive (CAR) approach of making the random effect

of a person’s on-rate have an expected value that is equal to the on-rates of

that person’s neighbors. Simulation may be necessary to determine which of

these approaches represents the best balance of computational tractability and

estimation performance. These spatial methods could of course also be used

with the geographic data collected to estimate correlations in physical space.
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Appendix: Supplement to Chapter 2

First, we describe a simple method of finding maximum likelihood esti-

mates for the transmission rate and initial number of susceptibles in the case

of a single outbreak. Second, we extend this method to the case of multiple

outbreaks. We finish with a proof of consistency for the multiple outbreak case.

Model

To make the appendix self-contained, we repeat some of the model

description of the main text here, except that we do not distinguish between

multiple infective types for simplicity.

At the beginning of an outbreak, t = 0, a population is made up of

Y (0) infective people and X(0) susceptible people. Each person in this model

has the same instantaneous rate at which infectives may infect her, which we

call the transmission rate. Each person, if infected, will experience an infectious

period of random length drawn from a gamma distribution. As time moves

forward, each infective person transmits infection to each susceptible person

at the points of a Poisson process such that the rate at which new infections

appear is βX(t)Y (t), where β is the transmission rate. A susceptible person

that contracts infection becomes infective after being in a latent state for a

fixed time period. She then becomes a recovered person after a randomly-

distributed infectious period. No other transitions in state occur.

Our outbreak model departs from the stochastic counterpart of the

common Kermack–McKendrick susceptible–infective–recovered (SIR) model,
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which is often called the general stochastic epidemic model, in two ways besides

the addition of a latent state. First, we do not make our transmission rate

depend on the total number of people N in the population. This departure

prevents the need for N to be estimated, and it is appropriate when an infective

person may be able to infect every susceptible person in the population with

approximately the same probability. Second, we let the latent period and the

infectious period be non-Markovian, which is more realistic.

We have described our model above in terms of how infection spreads.

To analyze the model, we find it helpful to formulate it differently. We imagine

that each of the X(0) susceptibles at time zero has a threshold to exposure

drawn from an exponential distribution with rate β. We refer to these values

as the scaled transmission times for each person. The time-evolution of the cu-

mulative exposure of susceptible people to infective people relates the scaled

transmission times to observed transmission times. The value of that cumu-

lative exposure at some time t is given by the area under the curve Y from

the beginning of the outbreak up until t. We use h(t) as shorthand for that

integral. A person with a scaled transmission time b becomes latently infected

when h is equal to b. This view of an epidemic model was described by Sellke

[91] and has been called a Sellke construction [3].

The single outbreak case

As described in the main text, transmission and recovery times observed

with data from a single outbreak are not, in general, independent random

variables. However, in the case of a major outbreak the correlations become

small. Loosely speaking, a major outbreak is an event in which a small number

of infective people cause a significant fraction of a large population of initial
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susceptibles to become infected. In this case, the scaled transmission times

that we can observe are approximately independent and identically distributed

(IID) exponential random variables. The likelihood of a parameter vector θ =

(β,X(0)) is then

l(θ) = X(0)!/
(
X(0) − k

)
! exp (− βτ(X(0) − k))

×
k∏
i=1

[βY (ei) exp (− βh(ei))], (A.1)

where X(0) is shorthand for the number of initial susceptibles X(0), τ is short-

hand for the cumulative exposure of people who remain susceptible throughout

the entire outbreak, k is the number of initial susceptibles that are infected

during the outbreak, and ei is the time at which the ith infection occurs in

the outbreak. The product over i in Equation (A.1) is the joint density of the

transmission times. The factor of exp (− βτ(X(0)− k)) is the probability that

all (X(0) − k) susceptible people remaining at the end of the outbreak were

able to avoid infection for as long as they did. The factor of X(0)!/(X(0)−k)! is

the number of ways to label the X(0) initial susceptibles with k unique labels

(one label for each transmission event) and X(0)− k identical labels (the label

for remaining susceptible throughout the outbreak).

We maximize the likelihood in Equation (A.1) by minimizing the neg-

ative log-likelihood function f(θ):

f(θ) = − ln l(θ) = − ln Γ(X(0) + 1) + ln Γ(X(0) − k + 1)

+ βτ(X(0) − k)−
∑

i lnY (ei)

− k ln β + β
∑

ih(ei), (A.2)

where Γ(·) is the Gamma function. As will become clear below, the maximum
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of l(θ) occurs at one of the two integers that bracket the X(0) that minimizes

f(θ).

Equation (A.2) is defined on the space X(0) ≥ k, β > 0 and the model

definition implies that k ≥ 0,
∑

i h(ei) > 0, and τ > 0. To find the minimum,

we use the partial derivatives

fβ =
∂f

∂β
= −k/β + τ(X(0) − k) +

∑
ih(ei), (A.3)

fX(0) =
∂f

∂X(0)
= −ψ(X(0) + 1) + ψ(X(0) − k + 1) + βτ, (A.4)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. The critical points (X(0)∗, β∗)

satisfy

β∗ = m(X(0)∗), (A.5)

β∗ = [ψ(X(0)∗ + 1)− ψ(X(0)∗ − k + 1)]/τ, (A.6)

where

m(X(0)) = k/[τ
(
X(0) − k

)
+
∑k

i=1h(ei)]. (A.7)

We next deduce from fβ β = ∂2f/∂β2 = k/β2 > 0 that m(X(0)) gives the value

of β that minimizes f along the line X(0). Thus, our minimization problem is

effectively one-dimensional along X(0).

Equations similar to (A.5) and (A.6) have been used in earlier work.

For example, after some algebra, it is possible to see that Equations (A.5) and

(A.6) are approximately the same as the equations that Huggins et al. [49] de-

rived using martingales to jointly estimate β and X(0). Rida [82] demonstrates

that Equations (A.5) and (A.6) do not hold in the case of a minor outbreak.

However, as described in the main text, generalizations of Equations (A.5) and

(A.6) become valid in the limit of a large number of outbreaks.
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Minimization procedure

We wish to find a reliable way of minimizing the negative log-likelihood

function Equation (A.2) on the space X(0) ≥ k, β > 0. We know from the

definition of our model that k ≥ 0,
∑

i h(ei) ≥ 0, and τ > 0. All symbols are

as defined in the description of the model.

The Jacobian of f is given by Equations (A.3) and (A.4). In the case

that k = 0, we have simply

fβ = X(0)τ, (A.8)

fX(0) = βτ. (A.9)

Thus f increases with both β and X(0) in this case, and we minimize f by

minimizing X(0) and β.

When k > 0, stationary points occur at the points (X(0)∗, β∗) that

satisfy Equations (A.5) and (A.6). Because we are considering k > 0, fβ β =

k/β2 > 0. Therefore, f is a convex function of β along the line X(0) = C for

some C ≥ k. Therefore, m(X(0)) gives the value of β that minimizes f along

the line X(0) = C. Thus, our minimization problem is effectively a matter of

finding the X(0) that minimizes

f̃(X(0)) = − ln Γ(X(0) + 1) + ln Γ(X(0) − k + 1)

+
(X(0) − k)kτ

X(0)τ − kτ +
∑
h(ei)

−
∑
i

lnY (ei)

− k ln
k

X(0)τ − kτ +
∑
h(ei)

+ k

∑
h(ei)

X(0)τ − kτ +
∑
h(ei)

(A.10)

on the interval [k,∞).

Taking the derivative of f̃ with respect to X(0), we have

f̃X(0) =
k

X(0) − k + U
− ψ(X(0) + 1) + ψ(X(0) − k + 1), (A.11)
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where U =
∑

i h(ei)/τ . When k = 1, f̃X(0) = 0 for all feasible X(0), and f is

equally low all along a trough traced out by the parametric curve (X(0),m(X(0))).

AsX(0) increases, the sign of f̃X(0) may change from negative to positive,

but it never changes from positive to negative. To see this, we first use a few

identities to rewrite some terms in f̃X(0) :

−ψ(X(0) + 1) + ψ(X(0) − k + 1) = −
∫ 1

0

1− yk

1− y
yX

(0)−k dy (A.12)

= −
∫ 1

0

(1 + y + y2 + · · ·+ yk−1)yX
(0)−k dy.

(A.13)

Plugging the last expression into Equation (A.11), we obtain

f̃X(0) =
k

X(0) − k + U
−
(

1

X(0)
+

1

X(0) − 1
+ · · ·+ 1

X(0) − k + 1

)
=

(
1

X(0) − k + U
− 1

X(0)

)
+

(
1

X(0) − k + U
− 1

X(0) − 1

)
+ · · ·

+

(
1

X(0) − k + U
− 1

X(0) − k + 1

)
=

k − U
(X(0) − k + U)X(0)

+
k − U − 1

(X(0) − k + U)(X(0) − 1)
+ · · ·

+
k − U − k + 1

(X(0) − k + U)(X(0) − k + 1)
. (A.14)

The numerators of the terms in Equation (A.14) decrease from left to

right such that any positive values will be in the left-most terms. The de-

nominators in Equation (A.14) must all be positive and they also decrease

from left to right. Therefore, the farther to the right we go, the more weight

terms in the numerator have on the value of f̃X(0) . So more negative terms al-

ways have relatively more weight. But as X(0) increases, the relative difference

1− (X(0)−a−1)/(X(0)−a) between denominators that are a and a+ 1 terms
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to the right of the first term decreases at the rate of 1/(X(0) − a)2. Therefore,

the weighting of terms becomes more uniformly distributed, and as the more

negative terms lose their disproportionate influence, the sign of f̃X(0) can only

change from negative to positive.

The sign of f̃X(0) will be positive for sufficiently large X(0) if the sum-

mation of the numerators in Equation (A.14) is positive. This fact follows from

the relative difference of the denominators approaching zero and the weight-

ing of the numerator terms becoming uniform. Thus we have the following

necessary condition for f̃X(0) to be positive: U < (k + 1)/2.

We now can determine the sign of f̃X(0) for all X(0) ≥ k after considering

the sign of f̃X(0) when X(0) = k. When X(0) = k, f̃X(0) = k/U −Hk, where the

harmonic number Hk =
∑k

i=1(1/i). Therefore, for U ≤ k/Hk < (k+1)/2, f̃X(0)

is non-negative for all feasible X(0), having a root at X(0) = k if U = k/Hk.

For k/Hk < U < (k + 1)/2, f̃X(0) is negative on [k,X(0)∗) and positive on

(X(0)∗,∞). For U ≥ (k + 1)/2, f̃X(0) is negative for all feasible X(0).

Our procedure for minimizing f when k > 1 follows from our knowl-

edge of f̃X(0) . If U ≤ k/Hk, the minimum of f(X(0), β) occurs at (k,m(k)) =

(k, k/
∑

i h(ei)). If k/Hk < U < (k + 1)/2, the minimum occurs at the unique

solution to Equations (A.5) and (A.6), which we can find by using a grid-

based search for the root of f̃X(0) . If U ≥ (k + 1)/2, we know that f always

decreases along the parametric curve (X(0),m(X(0))) as X(0) increases. Fig-

ure A1 contains plots of representative curves for each of the three cases in

our minimization procedure.

68



−13

−12

−11

−10

−9

−8

10 20 30 40 50

Initial susceptibles

N
e
g
a
ti
v
e
 l
o
g
 l
ik

e
lih

o
o
d

Figure A.1: Representative curves of the negative log-likelihood function,
Equation (A.10), for each of the three cases in our minimization procedure.
Magenta curves continuously decrease towards an asymptote, which is drawn
with a black line. Olive curves have a minimum at an X(0) that is some fi-
nite distance above the minimum of the range of X(0). Blue curves have a
minimum at the lower limit of the range of X(0). Parameters: k = 8; τ = 1;∑

i lnY (ei) = 1;
∑

i h(ei) = {1.1c2, c2, c1 − 0.75(c1 − c2), c1 − 0.5(c1 − c2), c1 −
0.25(c1 − c2), c1, 0.9c1}, where c1 = k/Hk and c2 = (k + 1)/2.
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The multiple outbreak case

Extension of the estimators above to the case where we have data from

multiple outbreaks, with each outbreak being a realization of a model with

the same parameters, is straightforward. In this case, our objective function

generalizes to

f(θ) = − ln l(θ) =
n∑
j=1

[− ln Γ(X(0) + 1) + ln Γ(X(0) − kj + 1)]

+
n∑
j=1

[βτj(X
(0) − kj)−

∑
i lnYj(ei j)]

+
n∑
j=1

[−kj ln β + β
∑

ihj(ei j)], (A.15)

where the value of the subscript j indicates which outbreak a datum is from

and n is the number of outbreaks. The Jacobian of f is now

fβ = −
∑

jkj/β +
∑

jτj(X
(0) − kj) +

∑
i jhj(ei j), (A.16)

fX(0) =
∑

j[−ψ(X(0) + 1) + ψ(X(0) − kj + 1)] +
∑

jβτj. (A.17)

If all k are equal to zero, then

fβ = X(0)
∑

jτj, (A.18)

fX(0) = β
∑

jτj, (A.19)

and we minimize f by minimizing X(0) and β.

When kj > 0 for any j, stationary points occur at the points (X(0)∗, β∗)

that satisfy

β∗ = m(X(0)∗), (A.20)

β∗ =
∑

j[ψ(X(0)∗ + 1)− ψ(X(0)∗ − kj + 1)]/
∑

jτj, (A.21)
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where

m(X(0)) =
∑

jkj/
∑

j[X
(0)τj − kjτj +

∑
ihj(ei j)]. (A.22)

Because we are considering that some kj > 0, fβ β =
∑

jkj/β
2 > 0. Therefore,

f is a convex function of β along the line X(0) = C for some C ≥ max{kj}.

Therefore, m(X(0)) gives the value of β that minimizes f along the line X(0) =

C. Thus, our minimization problem is effectively a matter of finding the X(0)

that minimizes

f̃(X(0)) =
n∑
j=1

[− ln Γ(X(0) + 1) + ln Γ(X(0) − kj + 1)]

+
n∑
j=1

[m(X(0))τj(X
(0) − kj)−

∑
i lnYj(ei j)]

+
n∑
j=1

[−kj lnm(X(0)) +m(X(0))
∑

ihj(ei j)] (A.23)

on the interval [max{kj},∞).

Taking the derivative of f̃ with respect to X(0), we have

f̃X(0) =

∑
j kj
∑

j τj∑
j[τj(X

(0) − kj + Uj)]
+
∑
j

[−ψ(X(0) +1)+ψ(X(0)−kj+1)], (A.24)

where Uj =
∑

i hj(ei j)/τj. When max{kj} is equal to one, f is at its minimum

all along the parametric curve (X(0),m(X(0))).

As X(0) increases, the sign of f̃X(0) may change only from negative to

positive. After using Equation (A.13) to rewrite each term in the summation
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over digamma functions in Equation (A.24), we can regroup terms to obtain

f̃X(0) =
∑
J,kJ>0

kJ∑
i=1

( ∑
j τj∑

j τj(X
(0) − kj + Uj)

− 1

X(0) − i+ 1

)

=
∑
J,kJ>0

kJ∑
i=1

∑
j τjkj −

∑
j Ujτj − i

∑
j τj +

∑
j τj∑

j τj(X
(0) − kj + Uj)(X(0) − i+ 1)

=

max{kj}∑
i=1

npi

∑
j τjkj −

∑
j Ujτj − i

∑
j τj +

∑
j τj∑

j τj(X
(0) − kj + Uj)(X(0) − i+ 1)

, (A.25)

where pi =
∑

J,kJ>i
n−1 is the fraction of outbreaks in which k exceeds i.

The last expression in Equation (A.25) shares several properties with

that of Equation (A.14): numerators decrease from left to right, denominators

are all positive and decrease from left to right, and relative differences between

successive denominators decrease as X(0) increases. It follows that the right-

hand side of Equation (A.25), like that of Equation (A.14), can only change

sign from negative to positive.

Equation (A.25), like Equation (A.14), tells us that f̃X(0) can only be

positive if the numerators add up to a positive number. The necessary condi-

tion for positive f̃X(0) in the case of multiple outbreaks is then: (
∑

j kj)
∑

j(τjkj−

Ujτj)− (
∑

j τj)
∑

j[(kj − 1)kj/2] > 0.

The minimum feasible value for X(0) is max{kj} in the multiple out-

break case. We see no simple and general expression for the condition for a

positive f̃X(0) at this boundary. But the lack of an analytic expression here

does not change our general procedure for finding the minimum of f̃X(0) . We

can numerically evaluate f̃X(0)(max{kj}) and then know that the minimum

occurs there if the sign is non-negative. If the sign of f̃X(0)(max{kj}) is nega-

tive, then we can evaluate the condition for positive f̃X(0) and know that f̃X(0)
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always decreases towards an asymptote if the condition is not satisfied. If the

condition for positive f̃X(0) is satisfied, we can numerically find the root of

f̃X(0) to find the minimum of f̃ .

Consistency

In this section, we show that the estimates (X̂(0), β̂) are consistent.

That is, we show that (X̂(0), β̂) converge in probability to the true values as

the number of outbreaks n goes to∞. To be consistent with common statistical

notation, we denote the true values of (X(0), β) with subscript zeros. Thus they

are written (X
(0)
0 , β0), where the subscript does not indicate type 0 as it would

in the main text. We consider the case in which β0 > 0, X
(0)
0 > 1, and β0 and

X
(0)
0 are both finite.

As n → ∞, an outbreak that infects the entire susceptible population

will occur almost surely (i.e., with probability 1). In this limit, therefore, X
(0)
0 is

the minimum feasible value for X̂(0) and our estimation procedure will begin

by evaluating f̃X(0) at X
(0)
0 . Our estimates will be consistent if f̃X(0)(X

(0)
0 )

converges to a non-negative value as n → ∞ and m(X
(0)
0 ) is a consistent

estimator of β0.

Our expression for m, Equation (A.22), is the maximum-likelihood es-

timator for the rate parameter of independent exponential random variables

that are right-censored. The standard result for the asymptotic consistency of

maximum likelihood estimates applies [52].

Next, we will show that f̃X(0)(X
(0)
0 ), Equation (A.24), converges in prob-

ability to a positive value. Because m(X
(0)
0 )

p−→ β0, application of the contin-
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uous mapping theorem yields

f̃X(0)(X
(0)
0 )/n

p−→ β0〈τj〉+ 〈−ψ(X
(0)
0 + 1) + ψ(X

(0)
0 − kj + 1)〉, (A.26)

where 〈·〉 denotes an average over outbreaks. Thus, our claim is equivalent to

β0〈τj〉 > 〈ψ(X
(0)
0 + 1)− ψ(X

(0)
0 − kj + 1)〉.

For notational convenience in the following argument, we introduce new

notation here. Denote ψ(X
(0)
0 + 1) − ψ(X

(0)
0 − kj + 1) = 1/X

(0)
0 + 1/(X

(0)
0 −

1) + · · · + 1/(X
(0)
0 − kj + 1) as 〈Q(kj)〉, the expected value of the kjth order

statistic from X
(0)
0 exponential variables with a rate of unity. For consistency,

we let 〈Q(0)〉 = 0.

We introduce additional notation based on the Sellke construction of

our outbreak model. Because we are interested in the final state of the model

and not the dynamics, we consider the progress of the outbreak in terms of

generations to further simplify matters. In the first generation, generation 0,

the infective people realize their infectious periods. We define infection pressure

of a generation t as A(t) = β0

∑
i≤t
∑

0<j≤Y (i) I(i,j), where I(i,j) is the length of

the infectious period of the jth infective person in generation i. Susceptible

people that have a threshold to infection that is less than the infection pressure

will become infective in the next generation and contribute to A(t+1). People

are only infective for one generation such that Y (t+1) + X(t+1) = X(t). Thus,

X(t+1) < X(t) until t = T , where Y (T+1) = 0 and X(T ) = X(T+1), and we say

that generation T is the final generation of the outbreak.

Using our newly introduced notation, the difference between β0〈τj〉 and

〈ψ(X
(0)
0 + 1)− ψ(X

(0)
0 − kj + 1)〉 can be written as

E(A(T ) − 〈Q
(X

(0)
0 −X(T+1))

〉), (A.27)
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where E(·) denotes an average over realizations of the model. To be precise,

E(A(T ) − 〈Q
(X

(0)
0 −X(T+1))

〉) =∫ ∞
y=0

X(0)∑
i=0

Pr(A(T ) = y,X(T+1) = i)(y − 〈Q
(X

(0)
0 −i)
〉) dy. (A.28)

Now, according to our model

E(A(t)|A(t−1)) = A(t−1) +

∫ ∞
y=0

Pr(
∑

0<j<Y (t)I(t,j) = y)y dy (A.29)

and

E(〈Q(X(0)−X(t+1))〉|X(t)) =
X(t)∑
i=0

Pr(Y (t+1) = i)〈Q(X(0)−X(t)+i)〉. (A.30)

Subtracting Equation (A.30) from (A.29) yields

E(A(t) − 〈Q
(X

(0)
0 −X(t+1))

〉|A(t−1), X(t)) = A(t−1)+∫ ∞
y=0

X(t)∑
i=0

Pr(
∑

0<j≤Y (t)I(t,j) = y, Y (t+1) = i)
(
y − 〈Q

(X
(0)
0 −X(t)+i)

〉
)

dy.

(A.31)

Consider the case in which
∑

0<j≤Y (t) I(t,j) = c/β0 for some positive

constant c. Then the probability that A(t) − A(t−1) exceeds the threshold of i

of the remaining susceptibles is

Pr(Y (t+1) = i) =

(
X(t)

i

)
[1− exp(−c)]i[exp(−c)]X(t)−i. (A.32)

From the model definition, we haveA(−1) = 0.Also, as c→ 0, Pr(Y (t+1) =

0) → 1 for t ≥ 0. Thus none of the initial susceptibles are ever infected and

we have
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lim
c→0

E(A(t) − 〈Q
(X

(0)
0 −X(t+1))

〉) = 0. (A.33)

For any A(t−1) and finite X(t), Equation (A.31) diverges as c → ∞. Thus we

have

lim
c→∞

E(A(t) − 〈Q
(X

(0)
0 −X(t+1))

〉) =∞. (A.34)

Differentiating Equation (A.31) with respect to c yields

d

dc
E(A(t) − 〈Q

(X
(0)
0 −X(t+1))

〉|A(t−1), X(t)) = (1− e−c)X
(t)

. (A.35)

Equation (A.35) can be proven by induction. It can also be proven using

the binomial theorem as follows. Expanding (1−e−c)i and letting a = X(t)+`−i
yields

d

dc
E(A(t) − 〈Q

(X
(0)
0 −X(t+1))

〉|A(t−1), X(t)) =

X(t)∑
a=0

(
X(t)

a

)
e−ac

a∑
`=0

(
a

`

)
(−1)`(a〈Q(X(0)+`−a)〉+ 1− ac), (A.36)

Using the integral representation of 〈Q(k)〉 implied by Equation (A.12), we find

a∑
`=0

(
a

`

)
(−1)`a〈Q(X(0)+`−a)〉 = (−1)a.

It follows that

d

dc
E(A(t) − 〈Q

(X
(0)
0 −X(t+1))

〉|A(t−1), X(t)) =
X(t)∑
a=0

(
X(t)

a

)
(−e−c)a, (A.37)

which is equivalent to Equation (A.35).

Equation (A.35) is positive for all positive c regardless of the values of

X(t) and A(t−1). Therefore,

d

dc
E(A(t) − 〈Q

(X
(0)
0 −X(t+1))

〉) > 0. (A.38)
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Equation (A.38) holds when
∑

0<j≤Y (t) I(t,j) is randomly distributed among

positive numbers. Equations (A.33), (A.34), and (A.38) together show that

E(A(T )−〈Q
(X

(0)
0 −X(T+1))

〉) > 0. It follows that β0〈τj〉 > 〈ψ(X
(0)
0 +1)−ψ(X

(0)
0 −

kj + 1)〉, f̃X(0)(X
(0)
0 ) converges in probability to a positive value, and our esti-

mates are consistent.
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