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Abstract 

 

Interaction and Marginal Effects in Nonlinear Models: Case of Ordered 

Logit and Probit Models 

 

Sangwon Lee, M.S. Stat. 

The University of Texas at Austin, 2013 

 

Supervisor: Tiffany Whittaker 

Co-Supervisor: Daniel A. Powers 

 

Interaction and marginal effects are often an important concern, especially when 

variables are allowed to interact in a nonlinear model. In a linear model, the interaction 

term, representing the interaction effect, is the impact of a variable on the marginal effect 

of another variable. In a nonlinear model, however, the marginal effect of the interaction 

term is different from the interaction effect. This report provides a general derivation of 

both effects in a nonlinear model and a linear model to clearly illustrate the difference. 

These differences are then demonstrated with empirical data. The empirical study shows 

that the corrected interaction effect in an ordered logit or probit model is substantially 

different from the incorrect interaction effect produced by the margins command in Stata. 

Based on the correct formulas, this report verifies that the interaction effect is not the 

same as the marginal effect of the interaction term. Moreover, we must be careful when 

interpreting the nonlinear models with interaction terms in Stata or any other statistical 

software package.  
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Chapter 1: Introduction 

Researchers are often interested in the estimation of interaction terms to infer how 

the effect of one independent variable on the dependent variable depends on the level of 

another independent variable. They would also like to measure the marginal effect to find 

a good approximation to the amount of change in a dependent variable for each one unit 

change in an independent variable. 

In linear models, the estimation and interpretation of the coefficient associated 

with the interaction term between two variables are not complicated. As demonstrated by 

Ai and Norton (2003) with nonlinear models, however, the estimation and interpretation 

of the coefficient associated with the interaction term becomes more complicated. 

Norton, Wang, and Ai (2004) also pointed out that the marginal effect of a change solely 

in the interaction term is completely separate from that of a change in both the variables 

included in the interaction. 

Moreover, we must be careful of the sign that may be different for different 

observations. Buis (2010) maintained the following:  

“The marginal effect is an approximation of how much the dependent variable is 

expected to increase or decrease for a unit change in an explanatory variable: that 

is, the effect is presented on an additive scale. The exponentiated coefficients give 

the ratio by which the dependent variable changes for a unit change in an 

explanatory variable: that is, the effect is presented on a multiplicative scale.” (p. 

305) 

Thus, it is very important to understand that the marginal effect in a nonlinear model with 

any interaction term differs from the marginal effect in the model without an interaction 

term. When reviewing 13 economics journals between 1980 and 2000, Norton, Wang, 
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and Ai (2004) found 72 articles that mentioned interaction terms in nonlinear models and 

the articles misinterpreted the coefficient associated with the interaction term. The 

complicated marginal effect for a logit or a probit model can be easily computed by using 

Norton’s inteff command which is a user-written add-on module for Stata. However, the 

command is not applicable for ordered logit and probit models which will be discussed in 

this report. Hence, this report will provide the correct mathematical formula and will 

demonstrate the correct computation of the marginal effect for a change in the two 

variables included in the interaction term in ordered logit and probit models. 

This report will first present the estimation of interaction effects for linear models 

and nonlinear models with formulas, followed by an explanation of ordered logit and 

probit models. The report will also employ Korean data drawn from the Asian Barometer 

Survey to correctly estimate interaction effects in ordered logit and probit models using 

Stata. The methods would be applicable to other software packages that estimate ordinal 

response models. The appendix contains the summary for the data used in Chapter 4. 
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Chapter 2: Estimation of Interaction Effects 

To explain a general derivation of interaction effects in both linear and nonlinear 

models, this chapter closely follows Norton, Wang, and Ai (2004). 
 

Linear Models 

Consider that the dependent variable y depends on two independent variables, 𝑥1 

and 𝑥2, their interaction term (𝑥1𝑥2), and a vector of an additional independent variable 

Z, including the constant term. The expected value of the dependent variable y, 

conditional on the independent variable, is 

E: = E[𝑦|𝑥1,𝑥2,𝑍] = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝑍𝛽, 

where the parameters 𝛽s are unknown and the vector Z excludes 𝑥1 and 𝑥2. 

Suppose that two independent variables, 𝑥1 and𝑥2 , are continuous, and the 

marginal effect of 𝑥1 on E depends on 𝑥1 if 𝛽12 is non-zero: 
 

∂𝐸
∂𝑥1

 = 𝛽1 + 𝛽12𝑥2. 

The interaction effect, which is the impact of a marginal change in 𝑥2 on the marginal 

effect of 𝑥1, comes out by taking the derivative of the above with respect to 𝑥2: 
 

∂2𝐸
∂𝑥1 ∂𝑥2

 = 𝛽12. 
 

From the above result, in linear models, the interaction effect, 
∂2𝐸

∂𝑥2 ∂𝑥1
, is equivalent to 

the marginal effect, 
∂𝐸

∂(𝑥1𝑥2)
, of the interaction term, 𝑥1𝑥2 . For nonlinear models, 

however, this equality generally is not the same, as is demonstrated in the following 

section. 
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Nonlinear Models 

The probit model, one type of nonlinear model, is now used in order to show the 

derivation of the interaction effect. This is similar to the previous example, but the 

dependent variable y is a dummy variable, not a continuous variable. The response is 

modeled as a transformation of the standard normal cumulative distribution function as 

follows: 
 

Pr[𝑦 = 1|𝑥1, 𝑥2,𝑍] = Φ(𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝑍𝛽) 

                              = Φ(u), 
 

where Φ(u) is the standard normal cumulative distribution1 and u represents 𝛽1𝑥1 +

𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝑍𝛽. If two independent variables, 𝑥1 and 𝑥2, are continuous, then the 

marginal effect of just the interaction term 𝑥1𝑥2 is 
 

∂Φ(𝑢)
∂(𝑥1𝑥2)

 = 𝛽12𝜙(𝑢), 

 

where 𝜙(𝑢) is Φ′(𝑢). However, the full interaction effect is the cross partial derivative 

of E[𝑦|𝑥1,𝑥2,𝑍]: 
 

∂2Φ(𝑢)
∂𝑥1 ∂𝑥2

 = 𝛽12𝜙(𝑢) + (𝛽1 + 𝛽12𝑥2)(𝛽2 + 𝛽12𝑥1) 𝜙′(𝑢). 

 

We can see that the full interaction effect is obviously different from the marginal effect 

of the interaction term, 𝑥1𝑥2, 𝛽12𝜙(𝑢). 

Norton, Wang, and Ai (2004) pointed out that there are some crucial implications 

by drawing the above equation for nonlinear models. First of all, even if 𝛽12 is zero, the 

interaction effect could be nonzero. For example, for a probit model including 𝛽12 that 

1 Φ(u) = 1
√2π∫ exp �−t

2

2
� dt𝑢

−∞  
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is equal to zero, the interaction effect could be 𝛽1𝛽2𝜙′(𝑢) which is definitely nonzero. 

Also, the test for determining the statistical significance of the interaction effect is not 

simple. Instead of a conducting a z test for the statistical significance of the coefficient of 

just 𝛽12, we can determine its statistical significance with a test associated with the entire 

cross derivative. Moreover, the interaction effect in nonlinear models is conditional on 

the independent variables. Finally, since there are two additive terms, each of which can 

be positive or negative, the interaction effect may have opposite signs for different 

observations. Therefore, the sign of 𝛽12 does not always reflect the sign of the interaction 

effect. 

Consider F(u) as a nonlinear function of 𝑢 ≔ 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝑍𝛽. For 

example, F is the probability that y equals 1. Also, for logit and probit models, we clarify 

the interaction effect to be the change in the predicted probability that y equals 1 per unit 

change in both𝑥1 and 𝑥2. Now we can think about some of the general formulas for the 

interaction effects resulting from nonlinear models as in the following argument. 

If 𝑥1 and 𝑥2 are both continuous variables, the interaction effect is the double 

derivative with respect to 𝑥1 and 𝑥2: 
 

∂2𝐹(𝑢)
∂𝑥1 ∂𝑥2

 = ∂{𝐹(𝛽1+𝛽12𝑥2)𝐹′(𝑢)}
∂𝑥2

 

                              = 𝛽12𝐹′(𝑢) + (𝛽1 + 𝛽12𝑥2)(𝛽2 + 𝛽12𝑥1) 𝐹′′(𝑢), 
 
where F'(u) and F''(u) denote the first and second derivatives. 

If 𝑥1 and 𝑥2 are both dummy variables, the interaction effect is the discrete double 

difference: 
 

∆2𝐹(𝑢)
∆𝑥1∆𝑥2

 = ∆{𝐹(𝛽1+𝛽2𝑥2+𝛽12𝑥2+𝑍𝛽)−𝐹′(𝛽2𝑥2+𝑍𝛽)}
∆𝑥2
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                           = 𝐹(𝛽1 + 𝛽2 + 𝛽12 + 𝑍𝛽) − 𝐹(𝛽1 + 𝑍𝛽) − 𝐹(𝛽2 + 𝑍𝛽) 

                                                    +  𝐹(𝑍𝛽)2. 

If 𝑥1 is a continuous variable and 𝑥2 is a dummy variable, the mixed interaction effect 

is as follows: 
 

∆
∆𝑥2

�
∂𝐹(𝑢)
∂𝑥1

� =  
∆
∆𝑥2

(𝐹′(𝑢)(𝛽1 + 𝛽12𝑥2)) 

                         = 𝐹′(𝛽1𝑥1 + 𝛽2 + 𝛽12𝑥1 + 𝑍𝛽)(𝛽1 + 𝛽12) 

                           − 𝐹′(𝛽1𝑥1 + 𝑍𝛽)𝛽1. 
 

For the probit model, we can use the cumulative normal distribution, Φ(u), instead 

of F(u) mentioned above. Then, F'(u) can be substituted with the density function of the 

standard normal distribution, 𝜑(u), and F''(u) can be substituted with 𝜑′(u) = −𝑢𝜑(u). 

Likewise, we can also apply this to a logit model if F(u) is substituted with Λ(u)3. F'(u) is 

substituted with Λ'(u) = Λ(u)(1 − Λ(u)), and F''(u) is replaced with Λ''(u) = (Λ(u)(1 − 

Λ(u)))' = Λ(u)(1 − Λ(u))(1 − 2Λ(u)) (Frondel and Vance, 2009). 

This report focuses on the most common interaction effect between two variables. 

One may take three derivatives or three discrete differences to find the correct 

interpretation for a model with three interacting variables. 

 

Odds Ratio 

With an estimated regression coefficient in a logit regression model, the 

interpretation of the associated odds ratio renders a more meaningful understanding of 

effects in medical and epidemiological studies (Kutner, Nachtsheim, Neter, and Li, 

2 ∆
2𝐹(𝑢)

∆𝑥1∆𝑥2
 := ∆

∆𝑥2
(∆𝐹(𝑢)
∆𝑥1

) = ∆
∆𝑥2

(E[𝑦|𝑥1 = 1, 𝑥2,𝑍] − E[𝑦|𝑥1 = 0, 𝑥2,𝑍]) 
3 Λ(u) = 1

1 + e−u
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2005). Accordingly, many researchers prefer to fit a logit model rather than a probit 

model because odds ratio are not able to be computed in probit models. The odds is the 

ratio of the probability, π, to one minus the probability: 
 

π = 
1

1+exp (−𝑋𝛽)
, 

 
odds = 

𝜋
1−𝜋

 = 1
exp (−𝑋𝛽)

 = exp(Xβ). 

 

Let us take an example. A researcher would like to look into the probability of 

eating breakfast every morning, which depends on whether the person is female, as well 

as on other explanatory variables (X). The odds ratio for gender is the odds for female 

(female = 1) divided by the odds of male (female = 0)4: 
 

odds for female = 𝜋(eating|female)
1−𝜋(eating|female)

 = exp(βfemale+ Xβ), 

 

odds for male = 𝜋(eating|male)
1−𝜋(eating|male)

 = exp( Xβ), 

 

odds ratio = odds for female
odds for male

 = exp(βfemale). 
 

 Norton, Wang, and Ai (2004) mentioned that there are two main advantages in 

using odds ratios. First, the calculation is simple because the exponentiation of the 

estimated coefficient is only required. Second, with smaller 𝜋, the odds ratio approaches 

the risk ratio, which is easy to figure out conceptually. The risk ratio can be described as 

the ratio of two probabilities. For example, the risk ratio for the eating breakfast example 

is the probability of eating breakfast for female divided by the probability of eating 

breakfast for male: 

4 It is important to assume that all other variables remain constant, since a researcher is able to focus on the 
relation between gender and eating breakfast every morning. 
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risk ratio = 𝜋(eating|female)
𝜋(eating|male)

. 

 

If the risk ratio represents 1.5, for example, females are fifty percent more likely to eat 

breakfast every morning than males, holding all other variables constant. 

 Consider the odds ratio when there is an interaction between two dummy 

variables, 𝑥1 and 𝑥2. One may think that the odds ratio for the interaction term is the 

same as exp(β12). However, this is an incorrect assumption. The expression exp(β12) is 

not the odds ratio, but the ratio of odds ratios: 
 

odds ratio for x1│x2 = 1 = 
𝜋(𝑦=1|𝑥1=1;𝑥2=1)

1− 𝜋(𝑦=1|𝑥1=1;𝑥2=1)
𝜋(𝑦=1|𝑥1=0;𝑥2=1)

1− 𝜋(𝑦=1|𝑥1=0;𝑥2=1)

  = 
exp (𝛽1+𝛽2+𝛽12+𝑋𝛽)

exp (𝛽2+𝑋𝛽)
, 

 

odds ratio for x1│x2 = 0 = 
𝜋(𝑦=1|𝑥1=1;𝑥2=0)

1− 𝜋(𝑦=1|𝑥1=1;𝑥2=0)
𝜋(𝑦=1|𝑥1=0;𝑥2=0)

1− 𝜋(𝑦=1|𝑥1=0;𝑥2=0)

  = 
exp (𝛽1+𝑋𝛽)
exp (𝑋𝛽)

, 

 

ratio of the odds ratios for 𝑥1 and 𝑥2 = exp(β12). 
 

From the above result, we can find that exp(β12) is neither a risk ratio nor an odds ratio. 

Since these concepts are confusing, we need to take a closer look at the interpretation of 

the interaction terms. 
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Chapter 3: Ordered Logit and Probit Models 

With empirical data, ordered logit and probit models will be used to show the 

significance of the interaction effect in a nonlinear model in Chapter 4. Thus, 

understanding the concept of ordered logit and probit models is important. One may be 

unfamiliar with these models because of the term ordered. However, the methodology is 

very useful to researchers when handling ordinal responses from survey data. In statistics, 

a regression model for ordinal dependent variables is an extension of logit and probit 

models for dichotomous dependent variables but, has more than two (ordered) response 

variables. 
 

Main Concept 

 Ordered logit and probit models are a useful analysis method in the social 

sciences with various response scales. They are more developed than traditional 

regression models, especially with respect to the handling of survey responses on a Likert 

scale5, a popular scale in the social sciences. The responses on Likert scales are ordered 

with respect to agreement and/or lack of agreement. 

 Traditional regression models often used the mean of the response code as it is to 

estimate a regression equation. However, when a response is code (1 = very satisfied, 2 = 

satisfied, 3 = normal), the mean of 2.5 cannot tell whether the disposition of respondents 

is satisfied or normal. There is no analytical evidence that the mean of 2.5 is significant. 

Hence ordered logit and probit models take care of the response type with the 

probabilistic concepts similar to the way that binary responses are handled. 
 

5 For example, it has the format like strongly agree, agree, disagree, neither agree nor disagree, and 
strongly disagree. A 5 or 7 point scale is usually used in a questionnaire. 
 9 

                                                 



Model Structure 

The form of ordered logit and probit models that we apply now was proposed by 

McKelvey and Zavoina (1975). The structure of an ordered logit or probit model is: 
 

yi
* = Xiβ + ui  for i=1,…,n, 

 

where yi
* is a latent variable; Xi is a vector of independent variables; β is a vector of 

parameters; and ui is an unobserved error term.  

Consider that yi has K possible outcomes (yi = k, with k = 1,…,K). The model is 

appropriate when outcomes have a natural ordering that means that k + 1 is “better” than 

k. Assume that the observed ordinal variable yi is related to the latent variable according 

to the following scheme: 
 

yi = k if μk-1 ≤ yi
* ≤ μk for k = 1,…,K. 

 

Again, it is as in the following: 

yi = 1 if μ0 ≤ yi
* ≤ μ1 

  = 2 if μ1 ≤ yi
* ≤ μ2 

= 3 if μ2 ≤ yi
* ≤ μ3 

. 
. 
. 

 = K if μk-1 ≤ yi
* ≤ μk, 

 

where μ0, μ1,…, μk are thresholds with μ0 = -∞ and μk = ∞. 

 The conditional probability of observing yi = k is 
 

Pr(yi = k│Xi ) = Pr(μk-1 ≤ yi
* ≤ μk) 

                 = Pr(μk-1 ≤ Xiβ + ui ≤ μk) 
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                    = Pr(μk-1 - Xiβ ≤ ui ≤ μk - Xiβ) 

= Pr(ui ≤ μk - Xiβ) - Pr(ui ≤ μk-1 - Xiβ) 
 

for k = 1,…,K. 

 Ultimately, we can find the conditional probability of observing yi = k. To obtain 

the conditional probability we make assumptions about the distribution of ui. That is, if ui 

is regarded as a logistic random variable, the conditional probabilities will correspond to 

an ordered logit model whereas, if ui is regarded as standard normal random variable, 

they will correspond to an ordered probit model. 

 When ui follows a logistic distribution, then 
 

Pr(yi = 1│Xi ) = Λ(μ1 - Xiβ) - Λ(- Xiβ) 
. 
. 
. 

    Pr(yi = k│Xi ) = Λ(μk - Xiβ) – Λ(μk-1 - Xiβ) 
. 
. 
. 

Pr(yi = K│Xi ) = 1 – Λ(μK-1 - Xiβ). 
 

Likewise, when ui follows a standard normal distribution, it is straightforward to find the 

conditional probabilities using Φ(ui) instead of Λ(ui). This report skips them. 
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Chapter 4: Empirical Study 

Based on the theoretical methodology as mentioned earlier, this chapter 

demonstrates the correct estimation of the interaction effect in ordered logit and probit 

models. 
 

Dataset Description 

The dataset used in this report comes from the Asian Barometer Survey 2005-

20086 conducted by Academia Sinica and National Taiwan University. The unit of 

analysis is individuals in South Korea. In particular, this study demonstrated that the 

national election in South Korea is affected by mass media as a function of demographic 

factors, such as gender, age, and education. The mass media is closely connected with 

voters and plays an important role in the elections. As such, most voters get the 

information about the election and the candidates from the mass media, such as 

television, radio, newspapers, internet, and so on. 

The dependent variable is voter evaluation of the 2007 South Korean presidential 

election7, measured on a four-point ordinal Likert scale, with 1 indicating Not free or fair 

and 4 indicating Completely free and fair. The independent variables considered in the 

models are the frequency of internet use and the demographic factors (gender, age, and 

education). The frequency of internet use is measured by how often individuals use the 

internet, with 1 indicating Never and 6 indicating Almost daily. Gender is coded by 0 if 

6 The survey project involves collaboration among thirteen East Asian countries. Under the data sharing 
agreement among East Asian collaborators, the dataset covers the issues of citizens' attitudes and values 
toward politics, power, reform, and democracy in countries. All the variables contained in core 
questionnaire freely accessible to scholars and experts worldwide upon application. (Source: 
http://www.asianbarometer.org/) 
7 The 17th South Korean presidential election was held on 19 December 2007. The election was won 
by Lee Myung-bak of the Grand National Party. He beat Chung Dong-young who was a United New 
Democratic Party candidate and Lee Hoi-chang who was an independent candidate. Voter turnout was 
63.0% according to the National Election Commission. 
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male and 1 if female, with male chosen as the reference category. Age is divided into a 

four-point scale, ranging from under 30 years old to over 51 years old. Education is 

measured by a ten-point scale, ranging from No formal education to Post-graduate 

degree. These demographic factors are also defined as control variables. 

We can look into the relationship between election (fairness and freeness) 

perceptions and internet use through the data analysis. The primary interests, however, 

are the interaction effects between internet use and gender, between internet use and age, 

and between internet use and education. The interaction between the independent 

variables may imply that the impact of frequency of internet use on individual evaluation 

of election differs depending on gender, age, or education. In other words, we could find 

how the effect of frequency of internet use changes for a unit change in each of 

demographic factors. For these reasons, we need to consider varied models which include 

interaction variables to correctly analyze data. 
 

Model Estimation without Interaction Effects 

Ordered logit or probit models are appropriate when analyzing these data since 

the dependent variable has more than two ordered response level. We can easily fit these 

models using Stata. Then the output of ordered logit or probit models shows the cut-

points (a.k.a. thresholds) unlike binary logit or probit models. In an ordered logit model, 

the cut-points are interpreted as the adjusted log odds of being in category k or lower on 

the response variable (i.e. as conditional cumulative logits). In general, since 

interpretation of the ordered logit or probit model is not dependent on the points, this 

report focuses only on the effects of substantive predictors and their interactions. 

Table 1 shows the estimates for the ordered logit and probit models without 

interaction effects included. We can first focus on the individual coefficients and interpret 
 13 



them. The estimated coefficients of Gender and Age in both models are statistically 

significant at the 5% or 10%-level. The remaining predictor variables (Internet Use and 

Education) are not statistically significant. For the significant Gender effect in the 

ordered logit model, we would say that for a one unit increase in Gender, we expect a 

0.2374 decrease in the log odds of being in a higher level of Voter Evaluation holding 

other variables in the model constant. Female’s odds of a higher evaluation of the 

election are 1 − 𝑒−.237 or about 20% lower than male’s. On the other hand, for a one 

unit increase in Education, we expect a 0.0609 decrease in the log odds of being in a 

higher level of Voter Evaluation holding the other variables in the model constant. Again, 

the coefficients for Internet Use and Education are not statistically significant and thus 

we need to check whether they are involved in an interaction with other variables. 

 
 Ordered Logit Model Ordered Probit Model 

Coefficient Marginal Effect Coefficient Marginal Effect 

Internet Use 0.0287 

(0.0378) 

-0.0028 

(0.0037) 

0.0173 

(0.0216) 

-0.0032 

(0.0040) 

Gender -0.2374* 

(0.1235) 

0.0229* 

(0.0120) 

-0.1450** 

(0.0708) 

0.0269** 

(0.0132) 

Age 0.1872** 

(0.0715) 

-0.0181** 

(0.0070) 

0.1039** 

(0.0408) 

-0.0193** 

(0.0076) 

Education -0.0609 

(0.0391) 

0.0059 

(0.0038) 

-0.0395* 

(0.0226) 

0.0073* 

(0.0042) 

Note: * denotes significance at the 10%-level and ** at the 5%-level 
     Standard errors in parentheses 

Table 1: Ordered Logit and Probit Models for Voter Evaluation 
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The marginal effects in an ordered logit or probit model obtained from Stata’s 

margins command may have opposite signs from their coefficients. The reason is that 

increasing an independent variable actually shifts the distribution to the right while the 

coefficient and threshold estimates are held constant (Greene 2008). The marginal 

effects in Table 1 are calculated at the mean values of the model covariates. The 

marginal effects of the independent variables are the change in the probability of 

observing Voter Evaluation, if the independent variables change by one unit, while all 

the other variables remain unchanged. For example, with a one unit increase in Internet 

Use from its mean8, the probability of evaluating Not free or fair9 is expected to 

decrease by 0.28 percent, holding all other variables constant in the ordered logit model. 

The probability of evaluating Not free or fair from voters is expected to increase by 0.59 

percent for a one unit increase in Education from its mean. 

 

 Odds Ratio Std. Err. 

Internet use 1.0292 0.0389 

Gender 0.7887* 0.0974 

Age 1.2059** 0.0863 

Education 0.9409 0.0368 

Note: * denotes significance at the 10%-level and ** at the 5%-level 

Table 2: Odds Ratios for Ordered Logit Model 

 In Table 2, the results are displayed as proportional odds ratios obtained from the 

ordered logit model.  The interpretation is pretty much the same as that of a binary logit 

8 See Appendix. 
9 Table 1 reports the marginal effect when Y = Pr(Voter Evaluation = 1). Not free or fair is coded as 1 in 
Stata. 
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model.  For Internet Use, we would say that for a one unit increase in Internet Use, (i.e., 

going from Almost daily to At least once a week), the odds of the high evaluation of 

voters versus the lower categories are 1.0292 greater, controlling for the other 

variables.  Likewise, for a one unit increase in Internet Use, the odds of the other 

categories versus low evaluation of voters are 1.0292 times greater, given that all of the 

other higher variables are unchanged. For a one unit increase in Age, the odds of being in 

the higher category of Voter Evaluation versus the lower categories are 1.2059 times 

greater, given that the other variables are held constant. By the proportional odds 

assumption10, the same increase, 1.2059 times, can be found between low evaluation and 

the other categories combined. Actually the calculation is straightforward with the 

exponentiated logit coefficient. In other words, the odds ratio for Age, 1.2059, is obtained 

from e0.1872. 

 

Model Estimation with Interaction Effects 

In the model with interaction terms, we should be careful of analyzing and 

interpreting the marginal effect. As previously stated, the marginal effect in nonlinear 

models is complicated, especially when it involves interactions. If we only consider the 

margins command as before, we will incorrectly estimate the marginal effect for the 

variables included in the interaction term. This chapter verifies it and correctly computes 

the interaction effect with the correct mathematical formula. 

10 Ordered logit or ordered probit regression assumes that the relationship between each pair of outcome 
groups is the same.  That is, the assumption means that the coefficients that explain the relationship 
between, for example, the highest versus all lower categories of the dependent variable are the same as 
those that explain the relationship between the next highest category and all lower categories. We call it the 
proportional odds assumption or the parallel regression assumption (Long and Freese, 2006). 
 16 

                                                 



 First of all, to see whether or not there is a relationship among the independent 

variables in the previous empirical model, we can check the bivariate correlations 

between all possible pairs of variables with Stata. 

 

 Voter Evaluation Internet Use Gender Age Education 

Voter Evaluation 1.0000     

Internet Use -0.0576 1.0000    

Gender -0.0524 -0.1307 1.0000   

Age 0.1186 -0.6187 0.0228 1.0000  

Education -0.0883 0.5571 -0.2307 -0.5259 1.0000 

Table 3: Dataset Correlations  

 From looking at Table 3, we would examine the high correlations among these 

variables and guess the interaction effects from those correlations. If there is any 

interaction effect between variables, we can produce a better model specification and an 

improved interpretation of the relationship in the data than before. 
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 Ordered Logit Model Ordered Probit Model 

 
Model 1 
Coeff. 

Model 2 
Coeff. 

Model 3 
Coeff. 

Model 4 
Coeff. 

Model 1 
Coeff. 

Model 2 
Coeff. 

Model 3 
Coeff. 

Model 4 
Coeff. 

Internet Use 0.0287 
(0.0378) 

0.1217 
(0.1221) 

-0.1732 
(0.1111) 

0.0333 
(0.0381) 

0.0173 
(0.0216) 

0.0706 
(0.0700) 

-0.1041 
(0.0647) 

0.0198 
(0.0217) 

Gender -0.2374* 
(0.1235) 

-0.2292* 
(0.1239) 

-0.2336* 
(0.1234) 

-0.2427** 
(0.1236) 

-0.1450** 
(0.0708) 

-0.1412** 
(0.0710) 

-0.1435** 
(0.0709) 

-0.1481** 
(0.0709) 

Age 0.1872** 
(0.0715) 

0.3362* 
(0.1996) 

0.1968** 
(0.0718) 

0.4662 
(0.2957) 

0.1039** 
(0.0408) 

0.1895* 
(0.1140) 

0.1084** 
(0.0409) 

0.2681 
(0.1726) 

Education -0.0609 
(0.0391) 

-0.0510 
(0.0410) 

-0.1474** 
(0.0594) 

0.0665 
(0.1367) 

-0.0395* 
(0.0226) 

-0.0335 
(0.0238) 

-0.0903** 
(0.0341) 

0.0360 
(0.0804) 

Internet Use 
& Age  

-0.0292 
(0.0366) 

   
-0.0168 
(0.0209) 

  

Internet Use 
& Education   

0.0301* 
(0.0156) 

   
0.0180** 
(0.0091) 

 

Age 
& Education    

-0.0370 
(0.0380) 

   
-0.0218 
(0.0222) 

Note: * denotes significance at the 10%-level and ** at the 5%-level 
Standard errors in parentheses 

Table 4: Ordered Logit and Probit Models with Interaction Term
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 Based on the results in Table 3, we can have ordered logit and probit models with 

interaction terms included (see Table 4). Model 1 shows the estimated coefficients 

without any interaction as before. Model 2 includes the interaction term involving 

Internet Use and Age and Model 3 includes the interaction term associated with Internet 

Use and Education. Also, there is the interaction between Age and Education included in 

Model 4. As shown in Table 4, the interaction between Internet Use and Education is 

statistically significant in Model 3 and in both the ordered logit and probit model. In fact, 

Internet Use does not have a strong influence on Voter Evaluation in all models. In 

addition, Education is statistically significant only when interacted with Internet Use as 

seen in Model 3. From the results, we can conclude that there is an interaction effect 

between Internet Use and Education in this model, even though Internet Use is not 

statistically significant in Model 3. 

Now let us take a look at the problem of the magnitude of the interaction effect, 

which is the primary interest in this report. As mentioned earlier, it is a little complicated 

to compute the marginal effect of an interaction term compared to that of the main effects 

in a nonlinear model. In Chapter 2, we saw that the interaction effect is equivalent to the 

marginal effect of the interaction term in a linear model. Using the margins command in 

Stata, we can simply find the interaction effect considered as the marginal effect of that. 

However, this idea does not work in nonlinear models. For example, the the interaction 

effect between 𝑥1 and 𝑥2 should be calculated as 
∂2𝑃𝑟(𝑌=𝑘)
∂𝑥2 ∂𝑥1

, not as 
∂𝑃𝑟(𝑌=𝑘)
∂(𝑥1𝑥2)

, which 

is the marginal effect for the interaction term, 𝑥1𝑥2. That is, the result will be incorrect, if 

we use simply the margins command in Stata to estimate the interaction effect in a 

nonlinear model. 
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Ordered Logit Model Ordered Probit Model 

Incorrect Correct Incorrect Correct 
Internet Use 

& Education 

-0.0029* 

(0.0015) 

0.0006** 

(0.0013) 

-0.0033** 

(0.0017) 

0.0004** 

(0.0010) 

Note: * denotes significance at the 10%-level and ** at the 5%-level 
     Standard errors in parentheses 

Table 5: Interaction Effects for Voter Evaluation 

 The correct and incorrect interaction effects are reported in Table 5 for both 

ordered logit and probit models. Correct values are obtained by 

computing ∂2𝑃𝑟(𝑌=1)
∂𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛∂𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 𝑈𝑠𝑒, and they come from using the predictnl command 

after invoking the margins command in Stata. Also, incorrect values come from merely 

the margins command in Stata by computing ∂𝑃𝑟(𝑌=1)
∂𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛∗𝐼𝑛𝑡𝑒𝑟𝑛𝑒𝑡 𝑈𝑠𝑒. We can see from 

the results that the interaction effect is clearly distinct between the correct and the 

incorrect formulations. The correct value, in both logit and probit models, has a smaller 

standard error and a positive sign. Therefore, for nonlinear models with interaction terms, 

we must carefully estimate the model with respect to the marginal and interaction effects. 

 

Study Results 

In this chapter, we have estimated interaction effects in two nonlinear models (i.e. 

ordered logit and probit models) using data from a survey of Voter Evaluation from 

Korea. The data contain an explanatory variable (Internet Use) and several demographic 

factors. Data analysis carried out using Stata shows that the interaction term between 

Internet Use and Education is statistically significant in both ordered logit and probit 

models. Simply looking at it, we can interpret this interaction effect to infer that the 
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impact of Internet Use depends on the level of Education or that the impact of Education 

depends on the level of Internet Use. Estimation of the marginal effect of an interaction 

term, however, is not an issue to be taken lightly. This report discussed and demonstrated 

problems inherent with interaction effects in nonlinear models. Applying a general 

derivation of interaction effects in nonlinear models as outlined by Norton, Wang, and Ai 

(2004), we were able to correct misleading results obtained from Stata’s margins 

command. Fortunately, invoking the predictnl command after the margins command in 

Stata provided the correct marginal effects. For these data, the correct interaction effect 

has a smaller standard error and opposite sign compared to the incorrectly estimated one. 

Therefore, this chapter has illustrated the importance of carefully interpreting the terms 

involved in an interaction in nonlinear models, as mentioned in previous chapters. 
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Chapter 5: Conclusion 

This report introduced the general derivation of marginal and interaction effects in 

nonlinear models as well as in linear models in Chapter 2. The interaction term in linear 

models is sufficient to infer the interaction effect that is the influence of a variable on the 

marginal effect of another variable. However, the marginal effect of an interaction term 

in nonlinear models is not the same as the interaction effect in linear models. That is, for 

nonlinear models we must distinguish 
∂Pr(𝑌=𝑘)
∂(𝑥1𝑥2)

 from 
∂2Pr(𝑌=𝑘)
∂𝑥2 ∂𝑥1

 when variables 

interact with each other. In Chapter 4, it was demonstrated that the correct interaction 

effect in ordered logit and probit models is substantially different from the results 

obtained directly from Stata’s margins command without the subsequent correction using 

the predictnl command. We saw the wrong magnitude and standard error of the 

interaction term (with opposite sign in the demonstration in this report). We have 

confirmed that the interaction effect is very different from the marginal effect of an 

interaction term in nonlinear models. When fitting the nonlinear models with interaction 

terms in Stata and other standard software, we have to be cautious of their interpretation. 

Also, extra effort is required to estimate the correct values. This is because the inference 

of interaction terms in linear models does not extend to that in nonlinear models. Special 

purpose routines such as margins and predictnl commands can be very helpful for 

researchers who use Stata. But similar types of utilities may be lacking in other popular 

software packages. 
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Appendix 

 
 Obs Mean Std. Dev. Min Max 

Voter Evaluation 1023 2.7263 0.8586 1 4 

Internet Use 1196 4.1881 2.1377 1 6 

Gender 1212 1.5091 0.5001 1 2 

Age 1212 2.6469 1.1338 1 4 

Education 1212 6.7995 1.9814 1 10 

Table A1: Summary of Variables 
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