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To fulfill the needs for developing the alternative energy technologies, searching 

for the adequate electrode materials which catalyze the electrochemical reactions utilized 

in devices such as fuel cell, Li-ion batteries, and related applications such as hydrogen 

generation and storage, has been a longstanding challenge. Among various catalysts, 

transition metal oxides (TMO) draw great attentions due to their low-cost, high stability, 

and, most importantly, a great variety of structures and electrical properties. Nonetheless, 

studying electrochemical reactions catalyzed by TMO is a challenging task due to the 

possible multivalent systems, flexible coordinations of lattice atoms, adjustable surface 

structures and diverse surface species.  In the past decades, many innovative approaches 

have been explored with encouraging results; however, the mechanisms of incorporating 

the bulk/surface TMO structures in various chemical reactions still remain unclear.  In 

this dissertation, using quantum mechanical calculations, we attempt to improve the 

fundamental understandings of how structures and electronic properties of TMO 

materials facilitate the electrochemical reactions of interest. 
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 To identify the possible causes for CuO and Cu structures having different 

selectivity in catalysis, in Chapter 3, we study the CO2 reduction reaction (CO2RR) 

catalyzed by CuO (111) surface structure, and compare the results with the more widely 

studied Cu (100) surface. The roles played by the electronic properties of two materials in 

their selectivity are elucidated. In Chapter 4 and 5, we study the oxygen evolution 

reaction (OER) for LiCoO2 surface structure. The structures and stabilities of Li-, O-, and 

H-terminated surface are investigated comprehensively. Based on the results, the 

formation of H-terminated surface results from Li/H exchange at the solid/liquid interface 

is proposed (Chapter 4). Along with the findings, we explore the possible mechanisms for 

the OER for non-metal terminated LiCoO2 surface (Chapter 5). In Chapter 6, we study 

the oxygen reduction reaction (ORR) for Co3O4 (111) H-terminated surface structure. The 

possible reaction steps for both four-electron and two-electron pathway are investigated. 

In Chapter 7, the PO4-decicient LiFePO4/FePO4 structures are investigated to understand 

how the presence of polyanion defects in the matrices could potentially improve the 

performance of the materials as electrodes in Li-ion batteries. 
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Chapter 1 : Introduction 

Since the mid-20th century, global warming has been observed to occur as a result 

of increasing CO2 emissions. Climate change is expected to cause a series of problems 

such as sea level rise, food shortage and lack of clean water.1 As continuous reliance on 

coal energy is expected, alternative technologies are needed to reduce CO2 emissions 

from energy generation.2,3 In this regard, various electrochemical energy 

conversion/storage systems, such as fuel cells and Li-ion batteries, become crucial. In 

addition, other technologies supporting carbon-neutrality, such as CO2 

capture/conversion/storage, are also being pursued. While the metal-based materials have 

been successfully demonstrated as the catalysts for electrochemical systems, the 

widespread commercialization of their usages is still hindered by the high cost and 

insufficient lifetime. Among the alternative catalysts, transition metal oxides (TMO) is 

considered one of the most promising groups due to its low-cost, durability, and highly 

engineerable structures and electrical properties.   

TMO have been intensely studied for a long period due to their fascinating 

properties, especially these last 20 years. TMO shows extraordinary diversity not only in 

scientific insights but also in the materialized and potential applications. In TMO, the 

natures of metal-oxygen bonds vary among nearly ionic, covalent and metallic.4 The 

varying properties of TMO materials significantly relates to the unique nature of outer d-

electrons, which splits into different energy states when forming bonds with O 2p 

electrons in the matrices. Through manipulating the compositions or applying voltages to 



 2 

the crystals, multivalent TMO systems can be created, which in turn offer greatly diverse 

electronic natures. In addition, the multi-component systems possess a wide variety of 

bulk/surface structures, which largely affect the electrochemical reactions performed 

in/on the matrices. In this dissertation, we use density functional theory (DFT) 

calculations to advance our understanding of how different metal oxide materials 

facilitate electrochemical reactions such as CO2 reduction reaction (CO2RR), oxygen 

evolution reaction (OER), oxygen reduction reaction (ORR), and lithiation process for 

Li-ion batteries. We hope these studies could be examples of how each of these systems 

demonstrates similar fundamental interactions generalizable to TMO. Prior to discussing 

these systems, theoretical background of DFT is introduced in Chapter 2. 

 In Chapter 3, the CO2RR on CuO surface structure is investigated to understand 

the underlying mechanism behind the different selectivity between CuO and Cu surface. 

We first identified the solvated surface structure in the aqueous condition. Based on that, 

we studied the adsorption of polarized CO2 on the neutral and negatively charged 

surfaces. Possible mechanisms for CO2RR creating formate and CO are proposed. 

Finally, the comparison between CO2RR catalyzed by CuO and Cu metal surface is 

discussed. Through this comparative study, we elucidate why CuO has higher selectivity 

toward formate than Co while Cu metal has limited selectivity to formate. 

In Chapter 4, the surface structures of LiCoO2 in aqueous solution are studied 

thoroughly. We identified the most stable termination for LiCoO2 (001) surface structure. 

Based on that, the phase transformation from spinel to layered phases near the surface 

driven by the Li/Co site exchange is proposed. The Li-, O-, and H-terminated surface 
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structures are investigated comprehensively.  In addition, the hydrogenated surface 

structure formed through Li/H exchange at the solid/liquid interface is discussed. The 

findings provide a foundation to explore the possible mechanisms of the OER for non-

metal terminated LiCoO2 surface, as presented in Chapter 5. We found that the hole 

injection could induce deprotonation on the surface. Following that, the hydrogenation 

reaction of the surface may catalyze the OER. 

In Chapter 6, we studied the ORR for Co3O4 structure. Based on the findings in 

Chapter 4, the H-terminated (111) surface structure was employed. The reaction steps of 

four-electron pathway are then investigated. In addition, the possible two-electron 

pathway is also proposed. Influences from the calculation methods are also discussed in 

the work. In Chapter 7, the properties of PO4-decicient LiFePO4/FePO4 structures are 

investigated. As the pristine LiFePO4/FePO4 crystals are used as the cathode materials in 

Li-ion batteries, we study the bulk, electronic and mechanical properties of their defected 

structures to understand how the presence of polyanion vacancies could potentially 

improve the performances. We assess the structure and binding nature of the defected 

matrices, together with the relative stabilities of the PO4-vacancies in various charged 

states. Thereafter, the bulk moduli of the structures are calculated to study the correlation 

between the presences of defects and flexibilities of the crystals. 
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Chapter 2 : Theoretical Background 

2.1 SCHRÖDINGER EQUATION FOR MANY-BODY SYSTEM  

In quantum mechanics, the probability of finding a particle in a finite space at 

time t is provided by Born’s statistical interpretation:5 

|!(r, t) |2 dr"                                                     2.1.1) 

where Ψ is the wavefunction of the particle and r is the coordination of the particle. The 

wavefunction is calculated by solving the Schrödinger equation: 

i!!"
!t

= #
!2

2m
!2"
!r2

+V"
                                        

 (2.1.2) 

where ħ is the Planck’s constant and V is the potential that the particle experiences. 

For finding a stationary state of the particle, the equation is transformed to 

E! = "
!2

2m
#2!
#r2

+V!                                           (2.1.3)  

And if we would like to find the wavefunctions for a many-body system, the equation is 

generalized in to  

H
!

"(R1,R2,!;r1, r2,!) = E"(R1,R2,!;r1, r2,!)                       (2.1.4) 

where {RI} and {ri} correspond to the coordinates of nuclei and electrons, respectively, 

and the spins have been omitted for the simplicity. The Hamiltonian is composed of both 

the kinetic energy (T
!

) and potential (V
!

) operators:  

H
!

= T
!

+V
!

                                                     (2.1.5) 
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T
!

= "
!2

2MII
# $I

2 + "
!2

2mii
# $I

2

                                      
(2.1.6) 

V
!

=
1
2

e2

| ri " rj |ij (i# j )
$ "

ZIe
2

| RI " ri |
+

iI
$ 1

2
ZIZJe

2

| RI " RJ |IJ (I#J )
$                       (2.1.7) 

where M (m) is the mass of nuclear (electron), e is the elementary charge and Z is the 

atomic number of the nuclear. According to the Born-Oppenheimer approximation,6 the 

first term of Eq. 2.1.6 can be ignored due to the relatively enormous mass of nuclei. In 

the description of quantum mechanics, physical observables are calculated to be the 

expectation value of related operators. For instance, the total energy is the expectation 

value of Hamiltonian regarding to the system of interest. Based on that, the ground state 

wavefunction can determined by minimizing the total energy (E = !" |H
#

|"$ ) respect to 

variables of Ψ({ri}). 

 

2.2 HARTREE-FOCK THEORY  

In the Hartree approximation,7 the electronic part of the many-body wavefunction 

is described by a single product of non-interacting single particle wavefunctions: 

!H (r1, r2,!, rN ) =!1(r1)!2 (r2 )!!2 (rN )                                 (2.2.1) 

The total Hartree energy then becomes 

EH = !"H |H
#

|"H $                                               (2.2.2) 
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= !i !
!2

2me

"i
2 +Vion (r)

i
# !i +

e2

2
!i! j

1
r ! r 'ij (i$ j )

# !i! j               (2.2.3) 

The first term of Eq. 2.2.3 contains the kinetic energy and the ion contribution to the 

potential (Vion) while the second term contains the electron-electron interactions.  In order 

to find φi, the variational principle is applied to Eq. 2.2.3, leading to the single particle 

Hartree equation: 

[! !
2

2me

"i
2 +Vion (r)+ e

2 ! j
1

r ! r 'j (i# j )
$ ! j ]!i = "i!i (r)                 (2.2.4) 

Reflecting that solving φi required given φj, the Hartree equation needs to be solved by 

the variational principle and iterating method. To further consider the Pauli exclusive 

principle, the N-body wavefunction is written in a Slater determinant:8 

!H =

!1(r1) !1(r2 ) ! !1(rN )
!2 (r1) !2 (r2 ) ! !2 (rN )
! ! "

!N (r1) !N (r2 ) ! !N (rN )

                                   (2.2.5) 

The wavefunction now fulfills the anti-symmetry with respect to an interchange of any 

position of two electrons. Given the single Slater determinant, the Hartree-Fock (HF) 

equation is written as: 

!
!2

2me

"i
2!i (r)+Vion (r)!i (r)+ e

2 ! j (r ')
2

r ! r '
dr '#

j (i$ j )
%

&

'

(
(

)

*

+
+
!i (r)

!
dr '
r ! r '

! *
j (r ')!i (r ')! j (r)!

*
i (r)#

j (i$ j )
% = !i (r)

             (2.2.4) 
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In the electronic structure calculations, the predictions of the exchange and correlation 

energies are the most challenging part. The exchange energies are related to the anti-

symmetry of electronic wavefunctions as expressed by the last term on the left hand side 

of Eq. 2.2.4. The correlation energies are related to the interaction between all electrons 

in the system. While the interaction between electron carrying parallel spins have been 

counted by the exchange energy term, the single Slater determinant is not sufficient to 

derive the complete correlation energies. Thus, the correlation energy is defined as the 

difference of true energy and energy calculated by using HF method. 

 

2.3 DENSITY FUNCTIONAL THEORY 

 To solve for a better approximation of wavefunctions based on HF method, 

Density Functional Theory (DFT) was proposed in 1970s. The core foundation of DFT is 

Hohenberg-Kohn (HK) theorem,9 which states that: First, the expectation value of energy 

of a wavefunction is a unique functional of the electron density ρ(r). Second, the lowest 

energy is only given by the functional when the ρ(r) is the true ground state density. 

Accordingly, the electron energy functional is expressed as:  

E[!]= T[!]+ V̂ext (r)!(r)dr! +Vee[!]                                (2.3.1) 

where T[ρ] is the kinetic energy of electrons, V̂ext (r)!(r)dr! is the electron-nucleus 

Coulomb potential energy, and Vee[ρ] is the Coulomb potential energy between 

electrons.10 The HK theorem reformulate the many-body problems based on the electron 
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density; yet, the analytic form of kinetic energy and electron-electron Coulomb potential 

energy are still unknown. In 1965, Kohn and Sham proposed to restate the intractable 

many-body problems to an equivalent set of non-interacting electrons under influence of 

effective potentials.11 By introducing a fictitious system to describe N non-interacting 

electrons by single determinant, they rearranged the energy functional as  

E[!(r)]= Ts[!]+Vext[!]+VH [!]+Exc[!]                             (2.3.2) 

VH [!]=
1
2

!(r1)!(r2 )
r1 ! r2

dr1 dr2"                                      (2.3.3) 

where Ts is the kinetic energy of non-interaction electrons and VH is Hartree potential 

which includes a major portion of electron-electron Coulomb potential energy. Most 

importantly, the exchange-correlation functional, Exc[ρ], represents all the omissions of 

energy calculated based on the fictitious wavefunctions. With above, the Kohn-Sham 

equation is written as 

  
!
!2

2me

"i
2 +Vext[!]+VH [!]+Exc[!]

#

$
%

&

'
("i (r) = #i"i (r)                     (2.3.4) 

which can be solved with a self-consistent scheme as briefly illustrated in Fig. 2.1. 
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Figure 2.1 Self-consistent Kohn-Sham equation diagram. 

 

2.4 EXCHANGE-CORRELATION FUNCTION 

 The competence of Exc[ρ] in closing the gap between true and calculated energies 

of the many-body system mostly determines the accuracy of DFT calculations. Two best 

known Exc[ρ] functionals were discussed briefly in this chapter: Local Density 

Approximation (LDA)12 and Generalized Local Gradient Approximation (GGA)13. The 

basic concept of LAD is to treat electrons as a homogeneous electron gas.11 That is, at 

each point in the system, the electron density of the rest of space is assumed to be the 

same at the very position. LDA works fine for the system with slow ρ[r] change; 

however, for the system with steep ρ[r] changes, the inadequate extrapolation of large 

ρ[r] leads to the overestimation of binding energy. Inheriting the rational, GGA considers 

the gradient of the ρ[r] in addition to the ρ[r] itself. By including the gradient, GGA 
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improves the local limit of LAD; however, it is worth mentioning that the overcorrection 

leads to the well-known underestimation of binding energy. Widely used GGA 

functionals include the Perdew-Wang functional (PW91),14 Perdew-Burke-Ernzerhof 

(PBE)15,16 and others. While performing calculations, specifying the employed functionals 

is important as different functionals might provide results with discrepancies.  

 

2.5 PSEUDOPOTENTIAL 

 In general, electrons of an ion can be decomposed into two parts: valence and 

core electrons. As illustrated in Fig 2.2, the wavefunctions of valence electron usually 

oscillate much less rapidly than the core counterpart, where rc is the cut-off radius for 

core region. The differences are created by the change of electron-core binding strength 

spanning from the outer to inner shells. For the outer shells, valence electrons bound to 

the nuclear relatively loose. On the other hand, the core electrons bound strongly to the 

nuclear, leading to a stronger Coulomb interaction. The atomic-like nature of 

wavefunctions requires them to be orthogonal to core states. Thus, the wavefunctions 

rapidly oscillate. To describe these wavefunctions of all electrons (ΨAE) using plane-

waves, a large basis set are needed, corresponding to numerous computational resources. 

To handle the issue, the general concept of pseudopotential is introduced.  
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Figure 2.2 Comparison between pseudo and all-electron wavefunctions and pseudo and 
all-electron potentials.17 

 

Considering that most of chemical reactions involve valence electrons much more 

strongly than core electrons, pseudopotential treats core electrons fixed as part of the 

nuclear, while the valence electrons are partially considered based on the essentiality of 

describing the electronic structures.  As depicted in Fig 2.2, a pseudo-wavefunction, 

Ψpseudo  (pseudopotential, Vpseudo) captures the same shape of ΨAE
 (all-electron potential, 

VAE) outside the rc, while reducing the nodes of ΨAE
 (VAE) inside the rc; hence, reduces the 

computational cost. The pseudopotential built based on a larger rc is considered softer, 

which is adopted for less expensive calculations along with the compromised accuracies.  

 The norm-conserving18 and ultra-soft19 are two common pseudopotentials. The 

former demands a reproduction of electron density beyond rc while the latter looses that 
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criteria. Based on the concept of pseudopotential, the projected augmented method 

(PAW) was proposed to improve the computational efficiency by projecting the rapidly 

oscillating wavefunctions on to a smoother basis set. 
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Chapter 3 : Reaction Mechanisms for the Electrochemical Reduction of 

CO2 on CuO (111) Surface 

3.1 INTRODUCTION 

The CO2 reduction reaction (CO2RR) is a crucial electrochemical conversion 

process in the carbon cycle. In CO2RR, CO2 molecules are transformed to various value-

added carbon hydro compounds. The main problem hindering the application of the 

reaction is the high over-potential. In the past decades, several catalysts (eg. Cu, Fe, Ni, 

Ag, Pd) have been identified with different selectivity toward various products including 

CO, CH4, C2H5OH and formate.20,21 Among these products, formate or formic acid 

(depending on pH values) is an attractive option for carbon-neutral applications. Formate 

salts are considered adequate chemical carriers in hydrogen storage and transportation.22 

While transporting compressed hydrogen in gas or liquid phase is costly, using formate 

salts as chemical carriers provides a practical substitute to materialize the hydrogen 

economy. In the search for adequate catalysts, several recent studies have demonstrated 

the dependence of formate selectivity on the amount of surface oxides, as with the 

following examples. While p-block metals such as In, Sn, Hg and Pb are known for 

having formate as the main product of CO2RR,23,24 removing the surface oxides from 

these structures has been shown to lower product yields.25 Relatedly, increasing surface 

oxidation of electrodes such as tin and indium improves the yield.26 As arguably the best-

known metal catalyst, Cu metal has been shown to posess selectivity toward a large 

variety of products, including all aforementioned chemical compounds;27 however, the 
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efficiencies for products other than the hydrocarbon compounds are relatively low.28 In a 

previous work, Li et al. found that the copper electrodes synthesized with reduced Cu2O 

films catalyze CO2RR to form CO and formic acid with improved faradaic efficiencies 

compared to polycrystalline Cu metal.29 In another recent experiment, Kang et al. found 

that CuO, CuFeO2 and their composite materials photoelectrochemically reduce CO2 to 

the formate anion at high selectivity.30,31 These works all suggest that the conversion of 

CO2 to the formate anion is highly related to the presence of oxides on related host 

materials. In this Chapter, the CuO structure is investigated as a prototype system to 

better understand how incorporating O atoms into the structure could change the catalytic 

properties of Cu surfaces, which in turn facilitate the creation of formate. We first 

predicted the solvated CuO (111) surface structure in water solution to capture the 

adequate active surface for CO2RR. Next, we studied the charged surface structures and 

related CO2 adsorption configurations using both the implicit and explicit solvent models. 

Following that, different scenarios for proton interaction with polarized CO2 to create 

formate or CO are proposed. The selectivity towards different products is then examined 

based on the differences in predicted enthalpies. Based on a similar reaction pathway, the 

selectivity of products for Cu (100) metal surface is also studied for comparison. Finally, 

the underlying mechanisms related to the different selectivity between CuO and Cu 

structures are discussed based on the nature of two materials. 
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3.2 METHODOLOGY 

All atomic structures and energies reported herein were calculated using spin-

polarized DFT within the generalized gradient approximation (GGA-PBE)15,16 as 

implemented in the Vienna Ab initio Simulation Package (VASP)32,33.  The projected 

augmented wave (PAW) method34,35 with a plane-wave basis set was employed to 

describe the interaction between ion core and valence electrons.  To treat the strong on-

site 3d electron-electron interactions on Cu an additional Hubbard-U was added with an 

effective value of Ueff = 7.14 eV36. For the hybrid-DFT calculations, the HSE06 (Heyd-

Scuseria-Ernzerhof)37 exchange-correlation functional was employed with a short-range 

screening factor of 0.2 and the portion of exact HF exchange potential of 25%.  

The pristine CuO structure was modeled using an 8-atom unit cell. An energy 

cutoff of 450 eV was applied for the plane-wave expansion of the electronic 

eigenfunctions. For geometry optimization and energy calculations, all atoms were fully 

relaxed using the conjugate gradient method until residual forces on constituent atoms 

became smaller than 1×10-2 eV/Å. For Brillouin zone sampling, (6×6×6) k-point mesh in 

the scheme of Monkhorst-Pack38 was used for the structure. For the surface studies, the 

periodic (2×2) and (4×4) slabs with thickness of 5 and 3 Cu-layers are employed for 

different cases, respectively; slab structures are separated by a vacuum of 15 Å in the 

(111) direction. The Monkhorst-Pack type k-point sampling of (3×3×1) and (2×2×1) was 

used for (2×2) and (4×4) surface structures, respectively. To simulate the aqueous 

conditions, the implicit solvent model39 was employed in all the surface calculations, 
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while explicit water molecules were also considered in some cases to study the influence 

on the charge transfer and stability of structures. 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Bulk Properties of CuO Structure 

CuO exhibits a monoclinic structure with each Cu (O) atom connected to four O 

(Cu) atoms, as shown in Fig. 3.1. The crystal structure consists of CuO4 square polyhedra 

formed by Cu2+ and O2- ions. In experiments, the monoclinic CuO phase is reported to be 

antiferromagnetic. The spin ordering adopted in this work [Fig. 3.1] is selected among 

different magnetic arrangements to best predict the bulk properties such as the lattice 

constant and gap energy. The lattice constants are predicted to be a= 4.619, b= 3.549 and 

c= 5.139 Å with γ= 97.57°, in close agreement with experimental data (a= 4.684, b= 

3.423 and c= 5.129 Å with γ= 99.54°).40 Due to the variance of lattice parameters 

predicted by the earlier works41,42, the experiential data of lattice constants is used in this 

work. Meanwhile, no significant difference of total energy and electronic structures are 

found between structures predicted using calculated and experimentally measured lattice 

constants. 



 17 

 

 

Figure 3.1 Atomic configuration of unit cell of CuO structure. Arrows denotes the spin 
alignments. 

 

Figure 3.2 (a) shows the electron density of states (DOS) projected onto the Cu and O 

atoms of CuO structure predicted using the DFT+U method. The top of the valence band 

(VB) mainly consists of O 2p overlapped with minor Cu 3d states, while the bottom of 

the conduction band (CB) is the opposite case, with major Cu 3d and minor O 2p states, 

matching with the the earlier theoretical studies.43,44 An energy gap of ~ 1.44 eV is 

predicted, recapturing experimental measurement (1.2–1.9 eV) well.45,46,47 In the valence 

band, nonbonding Cu 3d states are predicted in the energy range from -8 to -4 eV, while 

overlap of Cu 3d and O 2p states are predicted between -4 to -2 eV. The overlap is mostly 

attributed to the half-filled dx2-y2 state of square planar Cu2+ ion as the electronic state 

being highly directional toward adjacent O 2p states. Relatedly, the hybridization of Cu 

3d and O 2p electrons was also hinted at previous experimental work.48 From -2 eV to 

Fermi level, the O 2p nonbonding states are mostly predicted along with minor overlap 

with Cu 3d states. Compared to DFT+U, the hybrid functional HSE06 predicts more 
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significant overlap of 3d and 2p states is predicted in the energy range from -4 eV to 

Fermi level, likely attribute to that the better localization of electrons reducing the 

antibonding interactions [Fig. 3.2 (b)]. 

 

 

Figure 3.2 Electron density of states (DOS) projected onto Cu (blue) and O (red) atoms 
of CuO structure, predicted using: DFT+U (a) and HSE06 (b). The vertical line indicates 
the Fermi level position. 

 

3.3.2 CuO (111) Surface Structure 

The CuO (111) surface is reported to be one of the most stable facets in both 

experimental and theoretical studies.49,50,51 We predicted the surface energy to be 0.76 
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J/m2, a good match with pervious theoretical workss.52,53 Figure 3.3 shows the atomic 

configuration of the surface structure. 

 

Figure 3.3 Structure of CuO (111) surface. Left: Side-view of the slab structure with 
denotations of 3-fold undercoordinated Cu (Cu3c), 4-fold coordinated Cu (Cu4c), 3-fold 
undercoordinated O (O3c), and 4-fold coordinated O (O4c) atoms. Right: Top-view of the 
surface. Distances (Å) of Co – O and Co3c – Co3c are indicted.   

 

The surface is composed of the same amount of Cu and O atoms with two types 

of coordination for each element: undercoordinated 3-fold Cu (Cu3c)/ O (O3c) or 

coordinated 4-fold Cu (Cu4c)/ O (O4c). Cu and O are arranged in separated rows parallel to 

each other in the 〈010〉 direction. Each row consists of atoms with the same type of 

coordination. Alternating rows in an order of Cu3c-O3c-Cu4c-O4c span the surface. A Cu3c 

atom is adjacent to an O3c, O4c and O atom in the subsurface layer, forming a defected (3-

fold) square planar (∠O3c-Cu3c-O4c≈172°) perpendicular to the surface. Meanwhile, a Cu4c 

atom is adjacent to two O3c and O4c atoms, remaining a square planar parallel to the 
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surface. An O3c atom connected to a Cu3c and two Cu4c atoms is predicted to be the most 

exposed atom. While O4c is also connected to a Cu3c and two Cu4c atoms, the O atom 

connects to a Cu atom in the subsurface layer, making O4c the least exposed atom; O4c is 

located more inward than O3c by about 0.5 Å. 

 

 

Figure 3.4 Electron density of states (DOS) of CuO (111) surface structure, projected 
onto Cu3c (grey), Cu4c (blue), O3c (red) and O4c (green) atoms. The vertical line indicates 
the Fermi level position. 

 

Figure 3.4 shows the DOS projected onto surface Cu and O atoms. The VB and 

CB are consisted of mainly O3c 2p and Cu3c 3d states, respectively. The gap energy is 

predicted to be 1.1 eV (~0.3eV narrower than the bulk structure), indicating the 

undercoordinated square planar Cu3c has a relatively unstable unpaired electron. In 

addition, the smaller coordination number of Cu3c than Cu4c could also contribute to the 

lower CB, as the antibonding interaction related to the perspective excess electron is 
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reduced. On the other hand, the pronounced O3c 2p states are predicted to be pronounced 

at the VB because of the weakened electron localization. 

 

3.3.3 Adsorption of H2O on CuO (111) Surface 

Water solvated surface structures are comprehensively examined using implicit 

solvent model considering 1/4 and 1/2 ML water coverage. Between two types of 

coordinations of Cu2+ ions on the surface, we found that water molecules only adsorb on 

Cu3c
2+ ions. On the 1/4 ML water-solvated surface structure, the distance of H2O and Cu3c 

is predicted to be 2.08 Å. Meanwhile, H2O forms a hydrogen bond with the nearest O3c 

atom, as shown in Fig. 3.5 (a). The adsorption energy is calculated to be -0.42 eV (-0.62 

eV in vacuum). The configuration is the same as predicted by Zhang et al54, while the 

adsorption energy is smaller by about 0.2 eV; the discrepancy could be due to the absence 

of Hubbard correction and different functional employed in the the earlier work. In the 

DOS analysis [Fig. 3.5 (d)], the solvated surface O3c 2p states become less pronounced 

near VB, compared to the unsolvated surface structure, which can be attributed to the 

stabilization out of hydrogen bonding interaction. Meanwhile, a significant overlap of 

Cu3c 3d states and OH2O 2p states are predicted between -6 and -2 eV, suggesting the 

electron sharing between two atoms; the result supports the chemisorption of water on 

CuO surface observed by Chen et al.55  
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Figure 3.5 Structures of H2O-adosorption on surfaces: 0.25 ML H2O (a), 0.25 ML 
dissociative H2O (b), and 0.5 ML non-dissociative/dissociative H2O (c) adsorptions; 
insets are the 0.5 ML cases for related adsorptions. The O atoms of adsorbed H2O and 
OH– and the related adsorbent Cu2+ ions are denoted by OH2O, OOH, CuH2O*, and CuOH*, 
respectively. (d-f) are electron density of states (DOS) of (a-c), respectively, projected 
onto the denoted atoms; the upper/lower parts of (f) are DOS for different projected 
atoms, instead of spins.      
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The inset of Fig. 3.5 illustrates the charge difference created by water adsorption. The 

electron population is increased between H2O and Cu3c
2+ ion, and also near the lattice O 

atoms adjacent to Cu3c
2+, while being decreased around Cu3c ion. Considering that 

defected square planar Cu3c
2+ ion has an unpaired electron in 3dx

2
-z

2 states pointing to the 

solution, the redistribution of electron could be attributed to the recovery of coordination 

due to water adsorption. In fact, the same rational also explains why water molecules do 

not adsorb on Cu4c
2+ ion as the 3dz

2 states pointing to the solution are filled and stable.  

For 1/2 ML H2O solvated surface structure, water molecules form hydrogen 

bonds with neighboring water molecules, as shown by the inset of the Fig. 3.5 (a). The 

adsorption energy per water molecule is calculated to be ~ –0.4 eV, implying the 

adsorption energy is concentration independent. Figure 3.5 (b) shows the configuration of 

1/4 ML dissociative water solvated surface. The dissociation energy of water molecule is 

calculated to be 0.03 eV with OH– and H+ ions being adsorbed on Cu3c
2+ and O3c, 

respectively; the distance of OH– and Cu3c is predicted to be 1.89 Å. The dissociation 

energies are predicted to be the same for 1/2 ML case [inset of Fig. 3.5 (b)], being 

independent of the concentration. Figure 3.5 (e) shows the DOS of the dissociative 

adsorption case. The protonation reaction on O3c atom largely stabilizes the Cu3c
2+-O3c 

antibonding interaction, resulting in a major downshift of the 2p states. Meanwhile, 

unpaired OOH and O4c 2p states are predicted to be pronounced right below Fermi level, 

suggesting that the slight distribution of *OH 2p electrons toward Cu3c
2+ ion could partly 

compromise the overall stability of configuration. On top of that, we found the 

dissociation energy is highly related to the hydrogen bonding networks connected to the 
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created OH– anions. Namely, surrounding water molecules could facilitate the water 

dissociation reaction. For the case of two water molecules paired via hydrogen bond on 

the surface [Fig. 3.5 (c)], the dissociation energy of a H2O molecule is predicted to be –

0.43 eV, much smaller than the 0.25 ML case. As shown in Fig. 3.5 (f), with assistance 

from neighboring water molecule via hydrogen bonding interaction, the overlap of OOH, 

O4c 2p and Cu3c
2+ 3d states are predicted to shift downward, implying the enhancement of 

localization of OH– 2p electrons. The localization is assisted by the OH2-OH hydrogen 

bonding interactions, which in turn weaken the antibonding interaction of O4c and Cu3c
2+ 

ions. Accordingly, the surface terminated with 0.25 ML H2O mixed with 0.25 ML OH/H 

could be the most stable structure in aqueous condition. 

 

3.3.4 Adsorption of CO2 on CuO (111) Surface  

The adsorptions of polarized CO2 molecule on the metal atoms of catalytic 

surfaces is widely considered crucial steps in the CO2 reduction reaction (CO2RR) 

pathway. The configuration provides a relatively low energy for transfer of charge to 

CO2, which in turn facilitate the interaction with the protons in the environment.56,57,58,59 

Here we investigated the interaction between CO2 molecule and Cu atoms at the 

solid/liquid interface while considering surface structure at various charge states. 

In the neutral state (q = 0), we find CO2 molecule does not adsorb on the surface 

structure with either end- or side-on configuration. Therefore, the replacement energy of 

CO2 and an adsorbed water molecule is basically similar to the water adsorption energy, 
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about 0.8 eV for a fully solvated surface as discussed in the Section 3.3.2. The 

energetically unfavorable event implies the importance of water desorption reaction for 

CO2 to approach the surface. 

 

Figure 3.6 Structures of CO2 molecule at the solid/liquid interface of 0, 1 and 2 water 
molecules removed from the CuO surface. Explicit water molecules are illustrated using 
volume-filling clouds.    

 

In the slab structure with an additional electron (q = – 1), the Fermi level is 

predicted to shift up by ~0.7 eV, similar to the overpotential for CO2RR to create CO and 

formate on Cu metals.60 The excess charge is predicted to localize on a 3-fold coordinated 

Cu2+ ion on the extreme surface, reducing the Cu3c
2+ ion to Cu3c

+. The energy difference 

between electron localized in bulk and on the surface structure is predicted to be ~0.7 eV. 

Following that, a H2O molecule is predicted to desorb from the Cu3c
+ ion, creating an 

open-site on the solvated surface structure. Using explicit solvent model, CO2 molecule 

staying near surface via the open-site is calculated to be energetically more favorable 

than in bulk solution by about 0.5 eV [Fig. 3.6 (a)], attributed to the presence of vacuum 

space on top of the open-site [Fig. 3.6 (b)]. We further found that the H2O molecule 

sitting next to the open-site slightly shifts away (outward) from adsorbent Cu2+ ion by 
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Figure 3.7 Structures of the singlet charged (q = –1) surface before (a) and after (b) CO2 
adsorption and doublet charged (q = –2) surface with CO2 adsorption (c). (d-e) are 
electron density of states (DOS) projected onto denoted atoms of (a-c), respectively. The 
dotted vertical line indicates the Fermi level position of (d), while the solid vertical line 
indicates the Fermi level position of (e) and (f). 
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about 0.1 Å, indicating the H2O⋅⋅⋅Cu2+ bond is weakened due to the decreasing of support 

from neighboring H2O molecule. We predicted the desorption of H2O molecule to be 

energetically favorable (~ –0.3 eV). As shown in Fig. 3.6 (c), the extra space created by 

the second water removal better accommodates the CO2 molecule, which has limited 

solubility in the water solution. 

We then looked into the electronic structure of the reduced surface. Figure 3.7 (a) 

shows the surface structure with two H2O molecules removed from Cu+ and Cu2+ ions. An 

excess electron is localized on the Cu+ ion adjacent to a H-terminated O3c; the proton 

stabilizes the related Co+ – O bond. Figure 3.7 (d) shows the DOS projected onto the Co+ 

and Co2+ ions. The VB and CB consist of filled Cu+ and half-filled Cu2+ 3d x2–y2 states, 

respectively. The significant upshift of Cu+ 3d bands implies that the reduction reaction 

reduces the local stability of the surface structure. With the two open-sites of Cu+ and 

Cu2+ ions on the surface, the bidentate CO2
δ- chemisorption is predicted with the C and an 

O atom (Odn) bonding to CuC
(1+δ)- and Cu3c

2+ ions, respectively [Fig. 3.7 (b)]. The C – Odn 

bond is parallel to the surface while C – Oup bond tilts toward the solution, spanning an 

angle of ~ 45° with the surface. The bond length of C – CuC , C – Odn and C – Oup are 

predicted to be 1.94, 1.26 and 1.24 Å, respectively. In the related DOS [Fig. 3.7 (e)], the 

Fermi level is predicted to shift down by ~0.5 eV with respect to the case before the 

adsorption. Both VB and CB are constituted of mainly CuC 3d states hybridized with C 

and O 2p states, indicating the electron transfer from CuC to the CO2 molecule. The 

notably stabilized CuC 3d states suggest that the charge transfer weakens the Cu3c
+–O 

antibonding interaction. Meanwhile, the hybridization of C 2p states and CuC 3d states is 
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predicted to span an energy range of –10 ~ –8 eV below Fermi level. The decomposed 

electron density distribution, as shown in the inset of Fig. 3.7 (e), demonstrates an 

electron sharing between C and CuC ions, implying the bonding-state nature of this 

hybridization. The predicted decreasing (increasing) of antibonding- (bonding-) state 

interactions facilitate the polarization of CO2
δ-. It is worth mentioning that the hydrogen-

bonding network effectively stabilizes the adsorption configuration. Compared with 

solely implicit solvent calculation, the adsorption configuration predicted using explicit 

water molecules is energetically more favorable by ~0.3 eV. Using ab-initio molecular 

dynamics (AIMD), the configuration is predicted to remain at 300K for longer than 9 ps. 

For the injection of a second electron for the surface structure with bidentate CO2 

adsorption, the Fermi level shifts up for about 0.7 eV, similar to the first electron 

injection. Besides the CuC
+ ion, no additional Cu+ ion is predicted in this doublet charged 

slab structure (q = – 2), suggesting that the excess electron does not localize on another 

Cu2+ ion. At the meantime, the adsorption configuration remains similar on the structure. 

In the DOS of q = –2 case [Fig. 3.7 (f)], the VB is predicted as localized states consisted 

of C 2p and Cu 3d electrons, indicating that the excess electron is localized between CuC 

and C atoms. Meanwhile, the bond distances of C – Oup, C – Odn and C – CuC increase by 

0.04, 0.04 and 0.06Å, respectively [Fig. 3.7 (c)], implying the antibonding nature of the 

localized states. Furthermore, the decomposed electron density distribution of VB also 

demonstrates a limited electron sharing between C and Cu ions [inset of Fig. 3.7 (f)]. The 

antibonding interaction weakens the CuC – C bond, which could in turn facilitate the 
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interactions between the adsorbed CO2 and surrounding protons. Additionally, the 

configuration is tested by AIMD to remain stable at 300K for longer than 6 ps. 

 

3.3.5 Selectivity Toward Formate Anion and CO Molecule 

Figure 3.8 and 3.9 illustrate the possible proton transfer reactions near surface to 

polarized CO2
2-, transforming the CO2

2- to formate anion (HCO2
–) and CO molecule, 

respectively. As discussed in Section 3.3.4, the adsorption structures of CO2 molecule are 

stabilized through H-bonding interaction with surrounding H2O molecules. As illustrated 

in Fig. 3.8 (a), the adsorbed H2O molecule on the Cu2+ site (next to the CuC site) could 

interact with the Oup atom of CO2 as a H-bond donor. With an assist of the H-bonding 

interaction on stabilization, a proton could be transferred to CO2
(1 +δ)–, reacting with the 

carbon atom; a HCO2
– anion is then created as the already weakened C–CuC bond being 

broken [Fig. 3.8 (b)]. The reaction is predicted to be exothermic for about –0.2 eV. This 

mechanisms are similar to the CO2RR for Ru-dihydride species discussed by Kovacs et 

al.61 During the reaction, the adsorption of a bridge OH– anion on two Cu2+ ions is 

predicted to stabilize the newly opened Cu2+ site. The total energy drops by another ~0.3 

eV after another water molecule from solution is adsorbed on the Cu2+ site, as shown in 

Fig. 3.8 (c). 
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Figure 3.8 Schematics of the formate (HCO2
–) formation on CuO surface structure 

through the proton transfer.  

 

 

Figure 3.9 Schematics of the carbon monoxide (CO) formation on CuO surface structure 
through the proton transfer.  

 
 
On the other hand, the adsorbed H2O molecule next to the CuOdn site could interact with 

the Odn atom of CO2
2- [Fig. 3.9 (a)]. Through the proton transfer reaction, the C – Odn 

bond brakes, resulting in the creation of an end-on adsorbed CO molecule and OH– anion 

on the surface [Fig. 3.9 (b)]. The structure of each adsorption configuration is illustrated 

in Fig 3.10 (a-c). Using the implicit solvent model, the enthalpy (ΔH) of forming HCO2
– 

in CO2RR (∗CO2
2– + H2O → ∗HCO2

– + ∗OH–) for the CuO (111) surface structure is 

predicted to be more favorable than CO molecule (∗CO2
2– + H2O → CO + 2OH–) by 1.09 

eV, corresponding to the experimental results that the CuO structure has a higher 

selectively toward HCO2
– anion.62 A similar result of 1.15 eV is predicted using HSE06 
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functional. (For the consistency of surface structures and adequate comparisons with Cu 

metal, the unsolvated surface structures in the implicit solvent model are considered.) 

Finally, the end-on adsorption energy of HCO2
– anions and CO molecule is predicted to 

be about –0.7 eV and –0.4 eV, respectively. More importantly, when an electron is 

injected to the slab, the adsorbent Cu2+ ion is reduced Cu+, notably weakening the bonds 

of HCO2
– anion or CO molecule to the surface. Therefore, the nature of localization of 

excess charges at adsorbent Cu2+ ions could prevent the possible surface positioning from 

related products during the CO2RR.  

 

3.3.6 Selectivity for CuO (111) and Cu (100) Surface 

Based on the reaction mechanisms, we predicted the reaction enthalpy for CO2RR 

on the Cu (100) metal surface. The structure of each adsorption configuration is 

illustrated in Fig. 3.10 (d-f). The adsorptions on bridging sites are considered as the same 

configuration for CO2 adsorption on Cu metal was also predicted by Cheng et al.59 The 

ΔH of forming HCO2
– anion is calculated to be more favorable than CO molecule by 0.27 

eV. This predicted exothermic reaction corresponds to the fact that Cu metal has small 

selectivity for formate. Meanwhile, the much smaller magnitude than the CuO case (by 

0.82 eV) suggests to the experimental observation that CuO structure has relatively high 

selectivity toward HCO2
– anion than Cu metal.29,63,64  
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Figure 3.10 Adsorption configurations of polarized CO2
2–, HCO2

–, and CO molecule on 
CuO (111) (a-c, respectively) and Cu (100) (d-e, respectively) surface structures, together 
with the top-views as insets. 

 

 

Table 3.1 Adsorption energies of CO and HCO2
– anions on CuO (111) and Cu (100) 

surface structure. Energies calculated using the hybrid functionals (HSE06) are in the 
square parenthesis.  

 
Table 3.1 summarizes the adsorption energy of HCO2

– anion and CO molecule on 

CuO and Cu metal surfaces. First of all, the limited differences between the energies 

predicted using DFT+U and HSE06 suggest that the charge distributions at the cleaved 

surface are described well with Hubbard correction method. Next, we noticed that the 

aforementioned differences of enthalpies for forming HCO2
– and CO are mostly 
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attributed to the discrepancy in CO adsorption energies as the adsorption energies of 

HCO2
– anions are similar in both materials. The more exothermic CO adsorption reaction 

on Cu metal than CuO (by –0.49 eV) supports the CO2RR to be more selective toward 

CO. On the other hand, the weaker binding strength of C – Cu could results in the 

formation of HCO2
– anions. At this point, on top of these findings, three facts 

contributing to the higher selectivity of CO2RR toward HCO2
– anion for CuO than Cu 

metal are summarized: First of all, in spite of the adsorptions of polarized CO2
2– 

molecules are predicted on both materials, injecting additional electrons to weaken the 

related C – Cu bond is found difficult for Cu surface. As matter of fact, excess electrons 

are delocalized in Cu metal. Without the bond weakening process, the stable Cu – C bond 

could lead to the formation CO molecule, as shown in Fig 3.9. In a previous study, 

Peterson and Nørskov have pointed that adequate binding strengths of CO on the surfaces 

are essential for catalysts to create methane.65 Thus, the relatively high adsorption energy 

of CO could also be related to why Cu metal is able to catalyze the CO2RR to create 

derivative hydrocarbon compounds (eg. methanol and ethanol).58,59,66 Second, once HCO2
– 

anions are created on the surface, the desorption of HCO2
– anion from CuO surface could 

be faster than Cu metal, considering that the electron localization facilitates the 

desorption reactions. On the other hand, the excess electrons might tend to further 

catalyze the adsorbates on Cu surface. And finally, considering that C atom of the 

bidentate adsorbed CO2
2– is bounded with CuC, Oup and Odn atoms, for protons to interact 

with C, the assists from surrounding H2O molecules on the proton transfer could be 

crucial. Based on that, the water network on the hydrophilic CuO (111) surface structure 
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[Section 3.3.3] would facilitate the formation of HCO2
– reaction. On the contrary, Cu 

(100) surface has much weaker interaction with water molecules. Without the help from 

the adequate water network, as a result, protons have relatively high probability to 

interact with Odn, leading to the creation of CO molecules and related hydrocarbon 

compounds on Cu metal. 

 

3.4 SUMMARY 

 Based on DFT-GGA calculations, the CO2 reduction reaction (CO2RR) for CuO 

(111) surface structure is investigated. Starting with the surface structure, we identified 

the solvation configuration of CuO (111) surface. In the water solution, H2O molecules 

are predicted to only adsorb on the 3-fold undercoordinated Cu2+ ions, which represent 

half of the Cu2+ ions on the surface. Using implicit solvent model, H2O molecules are 

predicted to dissociate into protons (adsorbed on surface 3-fold O3c atoms) and *OH– 

(adsorbed on the 3-fold Cu2+ ions). We noted that the dissociation is greatly facilitated by 

other adsorbed H2O molecules, which form H-bonds with the *OH– anions. Based on 

that, the surface structure is predicted to be solvated with 50% of both OH– anion and 

H2O molecules adsorbed on the 3-fold Cu2+ ions. As CO2 molecule barely interacts with 

the Cu2+ ions on the neutral surface, the removal of H2O is crucial for CO2RR to happen. 

By injecting an electron to the slab structure, a H2O molecule is predicted to desorb from 

the surface as the adsorbent Cu2+ ion being oxidized to Cu+. Following that, the system 

becomes energetically more favorable when the CO2 molecule stays near the open site 
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(Cu+), compared to being in the bulk solution. The water removal destabilizes the binding 

strength of neighboring adsorbed H2O molecule to the surface Cu2+; the desorption of the 

H2O molecule is then predicted as the extra space near surface better accommodate the 

CO2 molecule spanning two open site (Cu+ and Cu2+). Afterward, the bidentate adsorption 

configuration of CO2 is predicted with the C and an O atom bonded to the Cu+ and Cu2+, 

respectively. The DOS analysis illustrates the C 2p and Cu 3d binding states, implying 

the polarization of CO2 through the charge sharing. Relatedly, the antibonding interaction 

of the original Cu+ – O bond in the lattice is largely reduced. By injecting another 

electron to the surface structure, the C 2p and Cu 3d antibonding states are predicted at 

VB, indicating the weakening of the C – Cu bond. The reactions of the polarized CO2 

transforming to HCO2
– and CO are proposed via proton interacting with C and O of CO2, 

respectively. Based on the difference of enthalpies for both reactions, forming HCO2
– on 

the surface is predicted to be more favorable than CO by 1.09 eV. We then calculated the 

difference of enthalpies for Cu (100) surface based on the same measures. Compared to 

CuO (111) surface, the tendency for Cu metal to create HCO2
– during CO2RR is less 

favorable by ~0.8 eV, implying a higher selectivity toward HCO2
– for CuO than Cu 

metal. Finally, our calculations show that products of CO2RR manage to desorb from 

CuO surface when additional electrons are injected to the structures, due to the reduction 

of adsorbent Cu2+ to Cu+ which weakens the bonding strength of products. Contrarily, the 

desorption of the same products from metal surfaces might be difficult, considering their 

natures of having itinerant charges. 
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Chapter 4 : Structure and Stability of LiCoO2 Surface  

4.1 INTRODUCTION 

 Improving the efficiency of catalytic oxygen evolution/reduction reaction 

(OER/ORR) relies on the development of electrocatalyst with high turnover rates at low 

overpotentials.  Metal-based electrocatalysts such as Pt, RuO2 and IrO2 are known for 

their high performances,67,68,69,70 whereas the rareness of these precious metals keeps the 

catalysts of this kind from being economically attractive.71  Additionally, the formation of 

insulating Pt oxides and poorly performing high-valent RuO2 derivatives also hinder the 

implementation of these materials as catalysts.`70 

 In the search for promising low-cost substitutions, Co-based compounds have 

been studied extensively and proven competitive with precious-metals and their oxides 

for both OER and ORR catalysis.72,73,74,75 As one of the most widely studied Co-based 

metal oxides, LiCoO2 receives great attention regarding its engineerable electronic 

structure based on the tunable lithium content of the matrix and the synthesis flexibility 

through doping with a variety of transition metals. By electrochemically extracting Li 

atoms from the matrix, Lu et al. reported an improvement on the catalyzing performance 

of partially delithiated LiCoO2 structures,76 which were also reported to be able to work 

as OER/ORR bifunctional catalysts by Maiyalagan et al. in a different work.74 In another 

study of delithiated LiCoO2 structure, Augustyn et al. pointed out that the morphology 

and electronic structures of Ni- and Fe-doped matrices change with different doping 

levels, further implying the rich variability of the properties of doped LiCoO2.72 
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 While extensive studies have shed light on the potential of LiCoO2 being a 

promising OER/ORR catalyst, the structure and composition of the active surface and the 

catalyzing mechanism still remain unclear.  Some previous studies suggested that the 

active surface contains Co ions as the active sites, however it could be disputed 

considering undercoordinated metal atoms are reported to induce high surface energies in 

metal oxides.77 In a previous work, the phase transformation of LiCoO2 to Co3O4 surface 

structure was observed after the catalyzing reaction,78 suggesting the environmental 

dependence on surface structure of the metal oxides. Meanwhile, as the incorporation of 

protons into partially delithiated metal oxides in the aqueous conditions has been studied 

in experiments,79 possible hydrogenated surface structures of metal oxides are also within 

the scope of this work. In a study of synthesizing monolayered cobalt oxides, Kim et al. 

successfully exfoliated the protonated partially delithiated layered LiCoO2 to form a thin 

layer of cobalt oxide, suggesting that the protonation reaction could stabilize the cobalt 

oxide thin film due to proton stability on the related surface.80 In a theoretical study, 

Benedic et al. predicted the reaction free energy for the H+/Li+ ion exchange of LiCoO2 to 

be lower than other selected metal oxides such as the layered Li2MnO3 and olivine 

LiFePO4,81 implying possible correlation of the protonation reaction and the host metal 

ion type.  

 In this chapter, we studied the properties of the LiCoO2 surface structure with 

various terminations. LiCoO2 has two well known phases: Layered (L-LCO) and spinel-

like (S-LCO) LiCoO2 structures, which are synthesized at about 900 °C and 400 °C, 

respectively.82 To predict the most stable surface structure of LiCoO2 in aqueous 
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condition, we first studied the bonding nature of the bulk structure for both phases of the 

crystal. Following that, we calculated the surface energy for various terminations, 

influencing the phase transformation of the surface structure. We then looked into the 

properties of delithiated and hydrogenated surface structures. This particularly highlights 

the stabilization due to the hydrogenation reaction of O-terminated. 

  

4.2 METHODOLOGY 

All atomic structures and energies reported herein were calculated using spin-

polarized DFT within the generalized gradient approximation (GGA-PBE)15,16 as 

implemented in the Vienna Ab-initio Simulation Package (VASP).32,33 The projected 

augmented wave (PAW) method34,35 with a plane-wave basis set was employed to 

describe the interaction between ion core and valence electrons.  To treat the strong on-

site 3d electron-electron interactions on Co an additional Hubbard-U was added (with an 

effective value of Ueff = 4.91 and 5.62 eV for layered and spinel-like structures, 

respectively).83 The HSE (Heyd-Scuseria-Ernzerhof)84 exchange-correlation functional 

with a short-range screening factor of 0.2 was employed for the hybrid-DFT calculations. 

The portion of exact HF exchange potential of 15 and 25% are considered. Considering 

the undetermined electrical properties of cleaved surface structure, the electron density of 

states (DOS) of surface structures are calculated using HSE hybrid-functional with 15% 

exact HF exchange potential to better predict the atomic orbitals. Valence configurations 

employed are as follows: 1s22s1 for Li, 3d74s2 for Co, and 2s22p4 for O. An energy cutoff 
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of 450 eV was applied for the plane-wave expansion of the electronic eigenfunctions.  

For geometry optimization and energy calculations, all atoms were fully relaxed using the 

conjugate gradient method until residual forces on constituent atoms became smaller than 

1×10-2 eV/Å.  The pristine LiCoO2 was modeled using a 48-atom (2×2×1) supercell while 

the Li-deficient structures were created by removing a Li atom from expanded (3×3×1) 

and (4×4×1) supercells. For Brillouin zone sampling, (3×3×1) k-point mesh in the 

scheme of Monkhorst-Pack38 was used. 

The surface structure was modeled using a periodic (2×2) slab with a thickness of 

10 oxygen-layers and a vacuum of 10 Å in (001) and (111) directions for layered (L-

LCO) and spinel (S-LCO) LiCoO2 structures, respectively.  Surface relaxations are 

predicted in the region from the top to the forth oxygen-layer and become negligible 

beyond the depth, where the matrices start to exhibit the corresponding bulk-like 

structure.  The terminating atoms, either Li or Co, are evenly distributed on the two 

surfaces to cancel the polar electrostatic field, which often leads to electron redistribution 

and results in high surface energies.85,86,87 While non-polar L-LCO slab structures remain 

stoichiometric, non-polar spinel S-LCO slab structures are built non-stoichiometrically by 

replacing a Co (three Li) with three Li (a Co) atoms for Li- (Co-) rich surface. Non-polar 

S-LCO surface structures terminated by either Li or Co atoms are modeled while the 

valence state of all Co3+ ions are maintained.  

The formation energies of Li2O- (O-) vacancy on the surface structure are 

calculated with the formula: Ef (VLi2O/O)= 1/2 [Eslab (VLi2O/O) + 2E(Li2O/O) – Eslab(Li-/O-

termination)], where Eslab (V) is the total energy of the slab structure with a Li2O (O) 
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vacancy on each side of the 1/2 ML Li- ( 1ML O-) terminated surface, Eslab is the total 

energy of the regarding termination and E is the total energy of Li2O (1/2 O2) molecule.  

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Bulk Properties of LiCoO2 

 As illustrated in Fig. 1, LiCoO2 exhibits the rock salt crystal structure, in which O 

anions form a distorted close-packed array and Li+ and Co3+ cations are located in the 

octahedral sites.  

 

Figure 4.1 Atomic configuration for (a) Layered (L-LCO) and (b) Spinel (S-LCO) 
LiCoO2 structures. 

 

This structure has alternating planes of oxygen and metal ions.  In layered LiCoO2 

(L-LCO) [Fig. 4.1 (a)], each metal layer consists of either Li+ or Co3+ ions.  In spinel 
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LiCoO2 (S-LCO) [Fig. 4.1 (b)], mixed Li3Co and LiCo3 layers alternate; note that the 

spinel structure differs from the layered structure in that a quarter of the metal ions are 

swapped between the different metal layers. The predicted volumes of L-LCO and S-

LCO are 32.97 and 32.89 Å3 per formula unit (f.u.), respectively, in good agreement with 

the experimental values of 32.28 and 32.23 Å3/f.u.88; the small discrepancy in calculated 

and experimental results is due to the well-known underestimation of binding strength in 

the GGA calculation.  The lattice constants and bond lengths calculated by DFT, DFT+U 

and hybrid-DFT methods are summarized in Table 4.1 and Table 4.2. 

 

 

Table 4.1 The bulk properties of layered LiCoO2 (L-LCO) structure (lattice constants, 
bond distances, gap energies and total energy per formula unit) predicted using DFT+U 
and hybrid functionals, together with the experimental data (Exp.) for comparison. The 
portions of excat HF exchange potential are in parenthesises.  
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Table 4.2 The bulk properties of spinel LiCoO2 (S-LCO) structure (lattice constants, 
bond distances, gap energies, and total energy per formula unit) predicted using DFT+U 
and hybrid functionals, together with the experimental data (Exp.) for comparison. The 
portions of excat HF exchange potential are in parenthesises. 

 

 
 

Figure 4.2 Electron density of states (DOS) projected onto Li, Co and O atoms of the 
layered (upper) and spinel (lower) LiCoO2 structures. The insets show the crystal orbital 
overlap population (COOP) analysis for each phase; the positive (negative) value 
indicates bonding (antibonding) characteristic of states at the related energies. The 
vertical lines indicate the Fermi level position. 

 
Figure 4.2 shows the electron density of states (DOS) projected onto the atomic 

orbitals of L-LCO [(a)] and S-LCO [(b)].  In LiCoO2, the t2g and eg states of Co3+ are 
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completely filled and empty, respectively.  The predicted gap of 2.37 and 2.40 eV for the 

L-LCO and S-LCO phases, respectively, shows good agreement with the experimentally 

measured value of 2.4~2.7 eV.89,90 The gaps predicted for L- and S-LCO by hybrid-DFT 

method are 2.70 and 2.97 eV, respectively. The upper valence band (–2 ~ 0 eV) is mainly 

composed of Co 3d nonbonding states with slight 3d-2p antibonding characteristics, 

while the lower valence band (–6 ~ –2 eV) is of 3d-2p bonding states, as demonstrated by 

crystal orbital overlap population (COOP) analysis (see insets of Fig. 4.2).  The S-LCO 

structure has marginally broadened Co 3d and O 2p states near the Fermi level compared 

to the L-LCO structure.  The slightly increased antibonding characteristics in the S-LCO 

structure could be related to the presence of cubane-like Co4O4 units, which have a more 

compact atomic arrangement compared to LiCo3O4 in L-LCO.  Our calculation predicts 

the S-LCO phase to be 0.01 eV/f.u. less favorable than the L-LCO using both DFT+U 

and hybrid-DFT methods (see Table 1 and 2), implying that the S-LCO is less stable than 

L-LCO but to a small degree. 
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Figure 4.3 Left: Atomic configuration of Li0.98CoO2 (1 Li vacancy illustrated as the black 
ball). Co in direct neighborhood to the vacancy (Codir), with linear connection to the 
vacancy via an O atom (Colin), far from the vacancy (Cofar), Co4+ (4+) and Co in direct 
neighborhood to Co4+ (Codir4+) are denoted, as been discussed by Laubach et al91. Right: 
The electron density of states (DOS) projected onto the denoted Co atoms. 

 

To understand the influence of Li removal on the LiCoO2 surface structures, we 

first investigate the Li-deficient bulk structure.  The Li-deficient system is constructed by 

removing a Li atom from the supercell containing 48 Li atoms (2.1% Li-deficiency) [Fig. 

4.3].  Due to the loss of electrostatic attraction from the Li+ ion, six undercoordinated O 

ions adjacent to the vacant octahedral site displace outward from the vacancy center by ~ 

0.04 Å. Figure 4.3 shows the DOS of Li-deficient L-LCO as projected onto the atomic 

orbital of Co at various positions relative to the vacancy and Co4+ ion. In the DOS, an 
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empty state splitting from Co4+ 3d-t2g bands is predicted at the bottom of conduction band 

(CB).  Due to the decreased amount of valence electrons, Co4+ 3d states are in the energy 

range from –6 to –2 eV lower than Co3+ 3d states from –2 to 0 eV and the Co4+ – O bond 

lengths are shortened by averagely 0.04 Å on average.  Both Codir and Colin 3d states shift 

to higher level with respect to the bulk-like Co3+ ion. It is worth noting that Coadj4+ 3d 

states are slightly stabilized because of the shortened Co4+ – O bonds ease of the 

decreasing of Coadj4+ – O bond length, thus reducing the antibonding interaction.  

Meanwhile, the Codir 3d states are predicted at slightly higher energy than Colin due to the 

shorter Co – O bond lengths. Similar binding natures are also predicted in the S-LCO 

electronic structure. The delithiation voltage of the L-LCO structure is predicted to be 

3.98 V, slightly lower than S-LCO (4.06 V), in agreement with the result reported by Van 

der Ven et al.92 The higher voltage could be attributed to the more symmetric structure of 

S-LCO which allows less relaxations in the Li-deficient matrix. 

 

4.3.2 Dependence of Surface Energy on Termination 

To search for the most stable [111] LiCoO2 surface structure, we calculated the 

surface energy for different terminations and phases comprehensively. Figure 4.4 

illustrates the atomic configuration of four types of non-polar slab structures: (a) 

stoichiometric 1/2 ML Li-terminated L-LCO structure (Li-L), (b) stoichiometric 1/2 ML 

Co-terminated L-LCO structure (Co-L), (c) non-stoichiometric 3/4 ML Li-terminated S-

LCO structure (Li-S) and (d) non-stoichiometric 1/4 ML Co-terminated S-LCO structure 
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(Co-S).  The surface energy ( ) is calculated by the formula: , where 

is the total energy of the slab structure containing  LiCoO2 units, Eb is the total 

energy per formula unit and A is the area of each surface of the slab structure.  Our 

calculation predicts (Li-L) and (Co-L) to be 1.12 and 2.40 J/m2, respectively, 

indicating that the Li-terminated surface is more stable than the Co-terminated surface. 

The results match the known fact that the coordination loss of transition metal on surface 

often causes a high surface energy for the related compound.  

 

Figure 4.4 Atomic configuration of slab structures with related top-view of surfaces and 
surface energies shown in the middle; (a) Li-terminated L-LCO, (b) Co-terminated L-
LCO, (c) Li-terminated S-LCO, (d) Co-terminated S-LCO, and (e) Li-terminated layered-
spinel composite LiCoO2 structure. 

 
 To calculate the surface energy of stoichiometric S-LCO structure (Li/Co-S), we 

took the average of (Li-S) and (Co-S) as the average stoichiometry is the same as 

! ! = (Es ! nEb ) / 2A

Es n

! !

Es Es
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in pristine S-LCO; (Li/Co-S) is calculated to be 1.60 J/m2. The energy difference of 

0.48 J/m2 between (Li-L) and (Li/Co-S) would indicate the Li-terminated L-LCO slab 

is the more stable surface, rather than S-LCO. We note that the S-LCO slab structure has 

the subsurface metal layer composed of one (1) Li and three (3) Co atoms. In light of the 

tendency of undercoordinated Co ions tend to destabilize the surface, we investigated the 

possible surface reconstruction of switching a Co atom on the surface and a Li atom in 

the subsurface layer. The site switching results in the three atomic layers of the L-LCO 

structure on top of the S-LCO bulk structure, i.e. a layered-spinel composite structure.  

The calculation predicts that the formation of the composite structure decreases the 

surface energy by 0.37 eV compared to the Co-terminated spinel structure, corresponding 

to the occurrence of phase transformation near surface as reported in the earlier 

experiment.74 Therefore, being the most representative surface structure of LiCoO2, the 

properties of the Li-terminated L-LCO surface structure are thoroughly studied in this 

work. 

 

4.3.3 Li-terminated Surface Structure 

Figure 4.5 shows the atomic configuration of the 1/2 ML Li-terminated L-LCO 

surface structure. Li ions on the surface displace toward the slab structure almost 

perpendicularly by ~0.36 Å; three Li-O bonds are shortened by similar amount of 0.25 – 

0.26 Å with respect to bulk structure (2.12 Å). A small inward displacement of the 

second atomic layer (O-layer) by ~0.01 Å, coupled with the recapture of bulk structure 

!

! !
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beyond the third layer, implies a minor adjustment of the Li-terminated surface structure. 

The distances of selected Co – O bonds are summarized in Table 4.3. In the subsurface 

layer, compared to Co – O bonds in bulk structure (1.94 Å), Co445 – and Co554 – O4c are 

decreased by 0.02 – 0.03 Å, while Co445 – and Co554 – O5c distances are predicted to be 

slightly increased by 0.01 – 0.02 Å. The slight shrinkages of Co – O4c bond are attributed 

to the smaller coordination number of O atoms.  Meanwhile, the elongation of Co – O5c 

bonds could be a secondary effect of the shortened Co – O4c bonds. 

 

 
 

Figure 4.5 Left: The 1/2 ML Li-terminated layered LiCoO2 (L-LCO) 2×2 slab structure 
consists of two equivalent Li atoms, connected with three O atoms, on each surface.  Two 
types of O atoms and two types of Co atoms are in the second and third atomic layers, 
respectively: four-fold coordinated O (O4c), five-fold coordinated O (O5c); Co adjacent to 
two O4c and one O5c (Co445), Co adjacent to two O5c and one O4c (Co554). Right: The side 
view of the structure. 
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Table 4.3 Bonding distances of atoms denoted in Fig. 4, 6 and 8 for Li-terminated, O-
terminated and H-terminated surface structures, respectively. 

 
 

 

Figure 4.6 Electron density of states (DOS) projected onto surface Co and O, denoted in 
Fig 4, of the Li-terminated L-LCO (111) surface structure. The vertical line indicates the 
Fermi level position. 

 
 
Figure 4.6 shows the DOS projected onto the aforementioned Co and O atoms of the L-

LCO surface structure. Compared to the bulk structure, the upper valence band remains 
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mostly Co3+ 3d nonbonding states, indicating that the Li+ ions on the surface sufficiently 

stabilize the undercoordinated O 2p electrons, leading to the predicted minor surface 

adjustment. Meanwhile, we note that Co445 (Co554) 3d states are more pronounced at VB 

(CB) than Co554 (Co445) 3d states, attributed to the relatively short Co – O4c bond 

distances. This prediction demonstrates the positive correlation between the stability of 

subsurface Co – O bonds and the coordination number of surface O atoms. 

 

4.3.4 Surface Li-deficiency 

 In a previous experimental study, the delithiation reaction near surface was 

observed during the oxygen evolution reaction (OER) resulting in the phase 

transformation of LiCoO2 to the Co3O4 structure.78 The event relates the instability of Li 

atoms near surface area to oxidizing environments, while also relating the sensitivity of 

surface structure to electrochemical operation. To better determine the active surface 

structure in catalytic OER, we examined the delithiated surface and possible stabilization 

reaction under aqueous conditions. We first calculated the removal energy of a Li atom 

on the surface. The averaged value is predicted to be about 1 eV lower than the bulk 

structure, indicating that the decreasing of coordination number compromises the stability 

of Li atoms. The result is in agreement with the occurrence of the delithiation reaction on 

surface structure under oxidizing environment or at high temperatures.93  

In addition to the redox deintercalation reaction, the Li+/H+ ion exchange on 

surface is also reported in recent experiments.94,95 In the experiment, a notable amount of 

OH groups is measured on the LiCoO2 (001) surface under a high water exposure. Along 
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with a negatively charged water-solid interface being measured, a reaction involving the 

swapping of Li+ ions on surface and protons of H2O molecules was suggested. Differing 

from the removal of a Li atom, the Li+/H+ exchange reaction involves a minor reducing of 

the coordination number of O ions while maintaining the oxidation state of stable Co3+.  

Coupled with the high solubility of Li+ ions in water,96 the corresponding H-terminated 

surface could form with no external bias required. We calculated the energy difference of 

replacing a Li ion on the surface with a proton from a water molecule by the equation of 

ΔE = [Eslab(H-termi) – Eslab(Li-termi)] + [E(LiOH) – E(H2O)]. The ΔE is predicted to be 

1.7 and –0.3 eV in the vacuum and aqueous condition, respectively, implying that the 

switching reaction could be spontaneous in an aqueous solution or humid conditions. 

Atomic configurations and electronic structures of both O- and H-terminated surfaces 

were investigated. It is worth mentioning that the formation energy of a Li2O (VLi2O) 

vacancy on the Li-terminated surface and an O (VO) vacancy on the O-terminated slab 

structures are also calculated as Co3+ ions undergo no redox reaction in the related 

defected structures. The Ef (VLi2O) and Ef (Vo) were calculated to be 7.5 and 2.5 eV, 

respectively. The large Ef (VLi2O) is qualitatively coherent with the the earlier 

experimental result showing that an extremely high temperature of around 1000 °C is 

required to induce the Li2O depletion in LiCoO2 structure.97  That is, the direct Li2O 

removal is unlikely to exist under ambient condition.  On the other hand, the Ef (Vo) of 

the O-terminated surface is smaller than the rutile TiO2 (110) surface (~3.7 eV) predicted 

in earlier theoretical works.98,99 Considering that oxygen defective TiO2 surfaces have 

been widely observed in reducing environments,100,101 the relatively small Ef (Vo) implies 
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that the Vo could form on the O-terminated LiCoO2 surface. The result is consistent with 

the previous experimental finding that partially delithiated LixCoO2 matrices liberate O2 

molecules in high temperature environments.93,102,103 It is worth noting that the O-vacancy 

in metal oxides could be remedied by the dissociative water adsorption occurred at the 

interface, leading to the formation of H-termination.104 

 

4.3.5 O-terminated Surface Structure 

We first study the redox Li-deintercalated surface structure [Fig. 4.7]. The 

selected bond lengths are summarized in Table 3. By removing two Li atoms from each 

surface, four Co3+ ions (two on each side) in the subsurface layer are oxidized to Co4+.  

In comparison to the Li-terminated case, the surface layer (O-layer) shifts inward by 0.04 

Å in average, while the second atomic layer (Co-layer) shifts outward by 0.06 Å.  The 

decreasing of the distance between the two layers is attributed to the absence of the 

attractive (repulsive) interaction of the Li+ cations and the O2- anions (Co3+/4+ cations). 

Co3+ – O3+/O4+ are shortened by 0.03 – 0.05 Å with respect to the Li-terminated surface, 

as bond lengths being depend on the oxidation states of ions, Co4+ – O3+/ O4+ bonds are 

further decreased by ~ 0.03 Å on average, as shown in Fig 6(b). On the third atomic layer 

(subsurface O-layer), Os3+ and Os4+ displace toward the forth atomic layer (subsurface Li-

layer) with Co – Os3+/Os4+ elongated by 0.02 Å and Li-Os3+/ Os4+ shortened by 0.01 – 0.03 

Å, reflecting that the adjustment of O-terminated surface structure is slightly deeper into 

the bulk than the Li-terminated slab. 
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Figure 4.7 Left: 1/2 ML O-terminated layered LiCoO2 (L-LCO) 2×2 slab structure 
consisted of two Co3+ and Co4+ ions in the subsurface layer. The first and third atomic 
layers both contain two types of O ions, and two ions for each type: surface/subsurface O 
adjacent to two Co3+ and one Co4+ (O3+/ Os3+), surface/subsurface O adjacent to two Co4+ 
and one Co3+ (O4+/ Os4+). Right: The side view of (a) marked with the displacements (Å) 
of atoms with respect to the Li-terminates surface structure.  

 

Next, the Li+ ion removed surface structure is simulated by adding four electrons 

to the aforementioned O-terminated slab structure; all Co4+ ions are reducced to Co3+.  

The distance of Co3+ – O bonds between the surface and subsurface layers are predicted 

to be 1.89 Å while between the subsurface and third atomic layers are 1.97 Å. Relative to 

the Co4+ – O bonds in the Li-deintercalated case, Co3+ – O bonds are elongated by about 

0.03 Å in average, indicating the bonding strengths are weakened. 
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Figure 4.8 Electron density of states (DOS) projected onto Co and O denoted in Fig 6(a) 
of (a) Li-deintercalated and (b) Li+-removed O-terminated LiCoO2 surface structure,. The 
vertical line indicates the Fermi level position. 

 
 

Figure 4.8 (a) shows the DOS projected onto surface Co3+, Co4+ ions and O atoms 

of the Li-deintercalated O-terminated surface structure. The VB and CB consist of Co3+ 

and Co4+ 3d states, respectively, as with the Li-deficient bulk structure. A small gap of ~ 

0.3 eV is rendered, suggesting a reducible natured of Co4+ ions exist on the surface. A 

non-bonding feature of Co3+ 3d states is predicted right below Fermi level (−0.5 ~ 0 eV), 

indicating an enhancement of the antibonding interaction of the shortened Co3+ – O3+/O4+ 
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bonds. Meanwhile, Co4+ 3d states are predicted at energy levels about 1 eV lower than 

Co3+, due to the decreasing in total valence electron. The similar shape of O3+ and O4+ 2p 

states indicates the balance between the stronger (Co3+ – O3+/O4+) and weaker (Co4+ – 

O3+/O4+) antibonding states, which could be facilitated by the presence of Co4+ ions. In the 

Li+-removed case, the overlap of pronounced 3d and 2p states is predicted at VB [Fig. 4.8 

(b)], suggesting the elongated Co – O bonds length result from the enhanced antibonding 

interaction. Compared to the Li-terminated case [Fig. 4.6], the pronounced O 2p states 

clearly demonstrate the reduced stability of the surface structure due to Li+ ion removal.  

 

4.3.6 H-terminated surface 

On the H-terminated surface, H atoms attach to the O3c atoms. Depending on the 

concentration of H atoms, the reduction of Co4+ to Co3+ and Co3+ to Co2+ occur in the 

subsurface layer via electron transfer from H atoms. The binding energy of H – O bonds 

on the 1/4, 1/2, 3/4 and 1 ML H-terminated surface are calculated to be −2.0, −1.4, −0.4 

and −0.1 eV, respectively, with the to H2 molecule as a reference. The relatively large 

energy drop between 1/2 and 3/4 ML cases suggests that the 1/2 ML H-terminated 

surface is more likely to be observed in ambient conditions. Nonetheless, a possible low-

spin to high-spin transition of Co2+ ion is predicted in the 3/4 and 1 ML cases. Using 

DFT+U method, the high-spin configuration is predicted to be energetically more 

favorable than the low-spin configuration by ~ 0.7 eV. The same trend is predicted using 

hybrid functional calculation with a smaller energy difference of ~ 0.45 eV. This result 
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could be indirectly supported by the experimental observation of high-spin Co2+ ions in 

the spinel CoFe2O4.105 Adopting the energetically favorable spin state (high spin), the H – 

O binding energy of the third and forth H atoms become −1.1 and −0.8 eV, respectively, 

suggesting a hydrogenated surface structure contains possibly higher H-content. In this 

work, we are focused on the 1/2 ML H-terminated surface with full Co3+ ions at the 

subsurface layer. 

 

 
 

Figure 4.9 Left: 1/2 ML H-terminated 2×2 layered LiCoO2 (L-LCO) slab structure 
consisted of two types of O ions on both first and third atomic layer; two types of Co ions 
on the second atomic layer in between: hydrogenated O (OH), non-hydrogenated O (O3c); 
Co adjacent to one OH and two O3c (Co1OH), Co adjacent to two OH and one O3c (Co2OH); 
subsurface O adjacent to two Co1OH and one Co2OH (Os1), subsurface O adjacent to two 
Co2OH and one Co1OH (Os2). Right: The side view of (a) marked with the displacements 
(Å) of atoms with respect to the O-terminated surface structure.  

 
 
Figure 4.9 illustrates the atomic configuration of 1/2 ML H-terminated surface 

structure. The selected bond lengths are summarized in Table 3. The H – O bond 

distances are calculated to be 0.97 Å, as with alkali hydroxides reported in previous 
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experimental work.106 The Co1OH/2OH – OH distances are calculated to be almost the same 

as the bulk while being 0.06 Å longer than Co1OH/2OH – O3c, implying that the inward 

displacements of the undercoordinated O are restored by the hydrogenation reaction.  

Additionally, the distance of the Co and Os layer is calculated to be similar to the bulk 

structure, supporting the restoration of structural stability. It is worth mentioning that the 

distance of Co1OH – and Co2OH – Os2 are predicted to be shorter than Co – Os1 bonds by 

0.04 Å, likely due to the linear connection of OH – Co – Os2 which helps lower the Co – 

Os2 antibonding interaction. 

 

 

Figure 4.10 Electron density of states (DOS) projected onto H, Co and O, denoted in Fig 
8 (a), of H-terminated LiCoO2 surface structure. The vertical line indicates the Fermi 
level position. 

 
 

Figure 4.10 shows the DOS of the H-terminated surface structure. The electronic 

structure is predicted to be similar to the Li-terminated surface structure composed of full 
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Co3+ ions coupled with the O 2p states which are stabilized via cations (H – O bonds); the 

hybridization of OH 2p and H 1s states at around -9 eV implies the formation of an H – O 

bond. The Co2OH 3d states are predicted to be mostly nonbonding states in the energy 

range from -2 to -1 eV, suggesting that the formation of the H – O bond lowers the Co – 

OH antibonding interaction as the bond distance approaches that of the bulk. Meanwhile, 

Co1OH 3d states are at a higher energy level than Co2OH due to the connection with more 

undercoordinated O3c ions. In comparison to the Li+-removed case, the significant 

downshift of O 2p states supports that the O-terminated surface could be stabilized 

through protonation reaction. Compared to the Li-intercalated case, the absence of the 

non-bonding feature of Co3+ 3d states at VB implies that the restoration of crystal 

structure Co3+ – O ions. It is worth noting that the reduction reaction of Co4+ ions to Co3+ 

is expected to enhance the related antibonding interaction; however, judging by the DOS 

analysis, the Co3+ – O bonds are stabilized by the adjacent protons well. The calculation 

illustrates that the hydrogenation reaction could effectively stabilize the delithiated 

surface. 

 

4.4 SUMMARY 

Using DFT-GGA calculations, we first examined the energetics, structures, and 

electric properties of both the layered (L-LCO) and spinel (S-LCO) LiCoO2 structures. 

Based on the DOS analysis, the S-LCO structure is predicted to have stronger 

antibonding interactions of Co – O bonds than L-LCO, likely attributed to the more 
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compact Co4O4 cubane-like units. Relatedly, the L-LCO structure is thermodynamically 

more stable than S-LCO. Meanwhile, a small energy difference (0.01 eV/f.u.) is predicted 

for two phases, corresponding to the experimental observation that higher temperatures 

are needed for enhancing the kinetics of ion migration to synthesize the L-LCO structure. 

Next, the Li-deficient structure was modeled to investigate the influence of the presence 

of Li-vacancies on the LiCoO2 structures. By creating a Li vacancy in the matrix, our 

calculations show that undercoordinated O atoms adjacent to the vacancy displace 

outward, shortening the Co3+ – O bond distances and weakening the bond strengths. 

Meanwhile, a Co3+ ion is oxidized to Co4+, mitigating the enhanced antibonding 

interactions of Co4+ – O due to the Li removal.  

According to the predicted surface energies of L- and S-LCO surface with 

different terminations, we found that the Li-terminated surface structure is more stable 

than the Co-terminated case for both phases. For the stoichiometric S-LCO (111) surface 

structure having 1/4 ML Co3+ ions on the surface, we predicted that the site switching of 

surface Co3+ and subsurface Li+ ions lowers the surface energy by –0.37 J/m2. The 

stabilization suggests that the site switching could be an influential initiator for the 

spinel-layered phase transformation during the annealing process observed in previous 

experiments. Considering that, the Li-terminated L-LCO (111) structure is employed for 

more comprehensive surface studies. Excepting the decreasing of Li – O bond by about 

0.25 Å, only minor structural adjustments are predicted for the Li-terminated surface 

structure, implying that surface Li+ ions stabilize the underneath Co – O bonds 

effectively. On the other hand, as there are both 4- and 5-fold O atoms in the subsurface 
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layer, the DOS analysis illustrates that Co3+ 3d states are predicted to be more 

pronounced for the Co3+ adjacent to more 4-fold O atoms, indicating a negative 

correlation between surface stability and the coordination loss of O atoms.  

Following that, two types of O-terminated surface structure created by removing 

1) Li atoms (50% of Co3+ ions reduced to Co4+ in the subsurface layer) and 2) Li+ ions (all 

Co3+ ions remained) are studied. For the Li-removal case, the subsurface Co3+ – O bonds 

are shortened by 0.03 – 0.05 Å compared to the Li-terminated surface. Meanwhile, Co4+ – 

O bond lengths are shorter than Co3+ – O by another 0.03 Å; the above trends are similar 

to the Li-deficient bulk structure. On top of that, the DOS analysis illustrates a similar 

energy density distribution of O 2p states from O adjacent to different number of Co3+ 

and Co4+ ions, suggesting a balance between antibonding interactions of Co3+ – O and 

Co4+ – O bonds on the surface. For the Li+-removal case, Co3+ – O bond distances are 

predicted to be similar to the Li-removal case. Relatedly, the DOS analysis also illustrates 

significant overlap of 3d and 2p states at the VB. As the subsurface layer contains more 

Co3+ ions, the stability of the surface structure is further compromised.  

On the H-terminated surface structure, protons bond with the 3-fold coordinated 

O atoms. According to our calculations, the Co3+ – O bond lengths in the subsurface layer 

are predicted to be similar to the Li-terminated case, implying the protons function 

effectively to stabilize the Co – O bonds. Compared to the Li-removal case, the DOS 

analysis illustrates that the total Co3+ 3d states become more pronounced as Co4+ ions are 

reduced to Co3+. At the same time, the original Co3+ 3d states are stabilized as the 

adjacent O 2p states are stabilized through forming bonds with protons. Compared to the 



 61 

Li+-removal case, the aforementioned stabilization of Co3+ 3d states are even more 

significant than the Li-removal case when coupled with O 2p states. 

Last but not the least, the formation energy of 1/4 ML O-deficiency on O-

terminated and Li2O-deficiency on Li-terminated surface structures were calculated to be 

about 2.5 and 7.5 eV, respectively, suggesting that the O-deficient surface structure could 

be formed in a reducing environment, while the Li2O-deficient case might be difficult. 

Nonetheless, the O-deficiency could be eliminated through water adsorption reaction in 

solution, leading to the formation of an H-terminated surface. 

These fundamental findings add to the understanding of the properties of surface 

structure of LiCoO2, especially in aqueous conditions. While various terminations are 

investigated, the importance of cations (Li+ and H+) on the surface with regards to the 

stability of surface structure is particularly demonstrated. On top of that, the formation of 

H-terminated surface structures in aqueous solution through either Li-

deintercalation/hydrogenation or Li+/H+ ion exchange reactions are discussed. Following 

that, our studies of oxygen evolution reaction (OER) facilitated by the hydrogenation 

reaction are introduced in Chapter 5.  
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Chapter 5 : Reaction Mechanisms for the Oxygen Evolution Reaction 

on LiCoO2 (001) Surface 

5.1 INTRODUCTION 

The oxygen evolution reaction (OER) is an important electrochemical energy 

technology for photoelectrochemical water splitting and Li-air batteries. Precious metal-

based electrocatalysts such as Pt, RuO2 and IrO2 are considered typical electrode 

materials due to their high performances;107,108,109,110 however, the commercialization has 

long been hindered by the scarcity of raw materials. To search for substitutes, metal-

oxides are studied intensively due to their low-cost and high stability. More importantly, 

the diverse valence states of metal cations in the matrices could facilitate charge transfer 

conducted in the catalytic reaction.111 Among various metal-oxides, LiCoO2 receives 

special attention regarding to that its tunable Li-content which observed to benefit the 

catalytic performance.76 In addition, LiCoO2 performance as an OER/ORR bifunctional 

catalyst after surface structure transformation is reported in earlier experiment work.74 To 

further improve the performance of materials, a comprehensive understanding reaction 

mechanisms is necessary. On various metal and oxides surface structures, the OER is 

widely described by the well known four-electron pathway along with the water 

adsorption reaction on metal ions; 112,113,114 nonetheless, the discussions about non-metal 

terminated surface structure are limited. As the OER for Co-based hydroxides has been 

reported in some recent studies, the existence of non-metal catalytic surface could also be 

suggested.115,116 In this chapter, we attempt to propose the possible mechanisms of the 
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catalytic OER for surfaces absent of metal elements. The H-terminated LiCoO2 (001) 

surface structure, as discussed in Chapter 4, is employed for the investigation. (The 

atomic configurations of Li-, O-, and H-terminated surface structures are introduced in 

detail in Chapter 4) Therefore, the active surface structure is composed of only protons 

and O atoms. Starting with the oxidation-induced deprotonation reaction on surface, we 

investigated the catalyzing reactions driven by the subsurface Co3+/4+ redox reaction 

combined with the re-protonation reaction. Without being limited to the LiCoO2 

structure, we hope this work could provide new perspective towards explaining the OER 

on metal oxides in general.   

 

5.2 METHODOLOGY 

All atomic structures and energies reported herein were calculated using spin-

polarized DFT within the generalized gradient approximation (GGA-PBE)15,16 as 

implemented in the Vienna Ab initio Simulation Package (VASP)32,33.  The projected 

augmented wave (PAW) method34,35 with a plane-wave basis set was employed to 

describe the interaction between ion core and valence electrons.  To treat the strong on-

site 3d electron-electron interactions on Co an additional Hubbard-U was added (with an 

effective value of Ueff = 4.91 eV for Co atoms in the structure).83 Valence configurations 

employed are as follows: 1s22s1 for Li, 3d74s2 for Co, and 2s22p4 for O. An energy cutoff 

of 450 eV was applied for the plane-wave expansion of the electronic eigenfunctions.  

For geometry optimization and energy calculations, all atoms were fully relaxed using the 
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conjugate gradient method until residual forces on constituent atoms became smaller than 

1×10-2 eV/Å. The surface structure was modeled using a periodic (4×4) slab with a 

thickness of 4 oxygen-layers and a vacuum of 15 Å in the (111) direction. For Brillouin 

zone sampling, (3×3×1) k-point mesh in the scheme of Monkhorst-Pack38 was used for 

the slab structures. The H-bond network on the solid/liquid interface was modeled using 

the ab-initio molecular dynamics simulation (AIMD). A total of 1.93 nm of liquid water 

was included, enough to approximate the ambient density of liquid water at the point 

furthest from the two surfaces. The implicit solvent model117 was employed for the 

prediction of binding energies of intermediate products on the surface structure. A 

smaller (2×2) surface structure connected to a four-water H-binding network was used to 

model the oxidation-induced deprotonation reaction. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 H-terminated Surface in Aqueous Solution 

We employed the H-terminated surface structure to study the oxygen evolution 

reaction (OER) structure for the layered LiCoO2 (001) surface. Considering the 

experiments are practiced in aqueous conditions, we first simulated the interaction of 

water and the surface structure at the solid/liquid interface. The ab-initio molecular 

dynamics simulation (AIMD) predicts constant rearrangements of hydrogen atoms on the 

surface through water network at 300 K, suggesting that the stability of surface structures 

are similar among various H-coverage configurations in the water solution. As shown in 
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Fig. 5.1 (a), at the interface, H2O molecules behave as either H-bond donors (HO – 

H⋅⋅⋅O3c) or accepters (H2O⋅⋅⋅H – O3c) by forming H-bond with the either 3-fold 

undercoordinated O atoms (O3c) or protons, respectively. The averaged H-bond distances 

between water and surface O3c atoms are predicted to be about 1.5 Å, slightly shorter than 

the average distance of intermolecular hydrogen bonds by 0.2 Å. At the same time, H 

atoms on the surface are slightly pulled away by the water molecules by about 0.05 Å 

compared to the case in vacuum. 

 

 

Figure 5.1 (a) Structure of the solid/liquid interface of H-terminated LiCoO2 (111) 
surface structure in the explicit solvent model. (b)-(e) Electron density of states (DOS) 
projected onto the undercoordinated (O3c) and hydrogenated (O3c(H)) O3c atoms. The 
vertical line indicates the Fermi level position. 

 
 

Figure 5.1 (b) – (e) show the electron density of states (DOS) projected onto H 

and O atoms on the H-terminated surface structure in the water solution.  First, we 
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compared the surface H – O3c bond with the H interacting [Fig. 5.1 (b)] and not 

interacting [Fig. 5.31 (c)] with the H2O molecule from the solution. Clearly, when H 

interacts with a water molecule, both the H 1s and O 2p states shift upward in terms of 

energy, suggesting the stability of a slightly elongated H – O bond is reduced. On the 

other hand, the DOS illustrates that the non-hydrogenated O3c 2p states shift downward 

while interacting with a water molecule [Fig. 5.1 (d) and (e)], implying the H-bond 

interaction stabilizes the O3c.  It is worth mentioning that a small overlap of O3c 2p and H 

1s states (of donors) suggests marginal atomic orbital interactions between the lattice 

oxygen atom and water molecule [Fig. 5.1 (d)]. These findings indicate that water 

molecules could stabilize the O3c atoms as H-donors along with assisting proton 

rearrangement on the surface. The resulting high mobility of proton could accelerate the 

proton coupled electron transfer (PCET)118, which in turn facilitates the catalytic reactions 

at the solid-liquid interface. 

 

5.3.2 Oxidized Surface Structure 

To investigate the OER for the LiCoO2 structure, the effect of hole injection on 

the H-terminated slab structures was studied. As illustrated in Fig. 5.2, we used four 

water molecules to simulate the local water networks on the 1/2 and 1/4 ML H-

terminated 2×2 slab structures. The intermolecular hydrogen bonds between four water 

molecules range from 1.60 to 1.84 Å, sufficiently capturing a water network. In the 

neutral state, a proton on the 1/2 ML H-terminated surface forms a hydrogen bond with 
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an oxygen ion of a water molecule at the interface; the HOH⋅⋅⋅O3c distance is predicted to 

be 1.81 Å [Fig. 5.2 (a)]. After removing an electron from the slab structure, a proton is 

predicted to detach from an O atom and move to the water network [Fig. 5.2 (b)]; a 

hydronium ion (H3O+) with H – O bond lengths of 1.01, 1.03 and 1.12 Å is formed in the 

water solution.   

 

Figure 5.2 Structures of H-terminated surface connected to H-bond networks (4 water 
molecules) in the neutral (a,c) and positively charged (b,d) states.  

 

At the meantime, a Co3+ ion adjacent to the newly formed O3c atom is oxidized to Co4+ as 

the Co – O bond distance is reduced by about 0.03 – 0.04 Å. Compared to the case with 

protons fixed on the surface, the creation of an H3O+ ion lowers the total energy by 1.22 

eV, indicating the deprotonation reaction is spontaneous in the positively charged system. 

The same deprotonation reaction is also predicted on the positively charged 1/4 ML H-

terminated surface [Fig. 5.2 (c) and (d)], implying the independence of the reaction on the 

proton concentration.  At this point, our calculations have revealed the possibility of 

creating H-removals and corresponding O3c sites on the H-terminated surface structure. In 
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Chapter 4, we have discussed the stabilization of O-terminated LiCoO2 surface structure 

achieved by the hydrogenation reaction in water solutions. Accordingly, the potential 

mechanisms of OER driven by the hydrogenation reaction of the surface structure are 

investigated.  

 

5.3.3 Reaction Pathway for OER 

The four-electron pathway of the OER catalyzed by LiCoO2 (111) H-terminated 

surface is proposed as follow: 

2H2O + 2 ∗ → H2O2 + 2H∗ + 2e-                                    (1) 

H2O2 + 2 ∗ → O2 + 2H∗ + 2e-                                         (2) 

, where ∗ denotes a surface O3c site created by removing H atoms and X∗ indicates an 

adsorbed X species. 

In this scheme, each reaction step happens along with two proton/electron 

transfers from solution to O3c/Co atoms on the surface/subsurface layer. That is, the 

recovery of valence state of Co3+/4+ (4+ → 3+) ions and the stabilization of adjacent Co3+ 

– O bonds are proposed to be the main driving forces of the mechanisms. In step 1, a 

hydrogen atom from water interacts with an O3c atom (HOH⋅⋅⋅O3c), resulting in the 

creation of hydroxyl radical (OH). The OH could first adsorb on another O3c atom (water 

dissociative adsorption), and then react with another H2O molecule, or directly react with 

another H2O molecule to form a H2O2 molecule (as another H atom bounds to the surface 
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O3c). In a previous experimental study, the observation of H2O2 molecules as intermediate 

products in the OER (four-electron pathway) has also been reported for the oxy-

hydroxide iron electrode by Lyons et al.119 In step 2, H2O2 is oxidized to O2, as both H 

atoms transfer to the surface O3c atoms. Relatedly, in a recent experiment, Takashima et 

al. reported the oxidation reaction of H2O2 to O2 through a chemisorption reaction at the 

solid/liquid interface of metal oxides.120  

5.3.4 Dependence of H and OH Binding Energy on H-removal Concentration 

Known to be the major indicator of reaction activities, the predicted hydrogen 

binding energies on H-terminated surface structures with various concentrations and 

distributions of H-removals are summarized in Table 5.1 (with respect to half of an H2 

molecule). For the purpose of clarity, the removal energy is defined as the negative value 

of the corresponding binding energy from hereafter.  

 

 
 

Table 5.1 Predicted hydrogen binding and water dissociative adsorption energies on the 
H-terminated surface structure with various amounts of clustered H-removals. The 
energies for separated H-removal cases are in the square brackets. 
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Starting with the 0.5 ML H-terminated surface structure, the removal energy of 

the first H atom is predicted to be 1.43 eV, which is similar to removing another (second) 

H atom when two H-removals are separated from one another. The similarity suggests the 

creation of an H-removal does not have a long-range effect on the structure. In addition, 

the removal energies could remain alike as the H-coverage rate remains higher than 0.25 

ML (corresponding to 50% H removed). On the other hand, for the clustered H-removal 

case, the energy of removing the second H atom is predicted to be 1.65 eV, higher than 

the separated case by 0.18 eV. To explain what causes the difference, we need to look 

into the stability of Co3+ ions in the subsurface layer. During the dehydrogenation 

reaction, after O3c is created, two types of Co3+ ion are created in the subsurface layer: (1) 

CoOH
3+ ion adjacent to two O3c and an OH atom and (2) CoO3c

3+ ion adjacent to three O3c 

atoms on the surface. The removal energy is highly dependent on the type of Co3+ ions 

adjacent to the resulting O3c atom. For the first H-removal, O3c atom is adjacent to two 

CoOH
3+ and a Co4+ ion. As CoOH

3+ is more stable than Co3c
3+, the removal energy is the 

lowest. For the separated 2H-removal case, the types of adjacent Co3+ ions of both O3c 

atoms are the same. Thus, the removal energies are similar to each other. On the other 

hand, in the clustered 2H-removal case, the created O3c atom is adjacent to CoOH
3+, CoO3c

3+ 

and Co4+ ions; the presence of CoO3c
3+ results in the higher removal energy. Following the 

same rational, for the third H-removal, the created O3c atom is adjacent to two CoOH
3+ and 

a Co4+ ion, resulting in the highest H removal energy (2.08 eV). The removal energies of 

the forth H atom is predicted to be 2.11 eV, almost the same as the third H removal, due 
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to the process also creating another CoO3c
3+. Based on that, for the clustered case with 

three H-removals and beyond, the removal energies could be similar. 

Figure 5.3 shows the DOS projected onto O3c atom of the surface containing H-

removals. Depending on the amount of H-removals, the 2p states of O3c adjacent to (1) 

two CoOH
3+ and a Co4+ ion, (2) CoOH

3+, CoO3c
3+and Co4+ ion, and (3) two CoOH

3+ and a Co4+ 

ion are illustrated. A continuous upshift of positions of the VB corresponds to the 

positive correlation between the H-removal energy and the dehydrogenation level. 

 
 

 
 

 
 

Figure 5.3 Electron density of states (DOS) projected onto the 3-fold undercoordinated O 
atoms (yellow cross) on the surface structure of clustered 1H-removal (grey shaded), 2H-
removal (blue), and 3H-removal (red) cases. The vertical line indicates the Fermi level 
position of the 1H-removal case.  Insets are the zoom-in images indicated by white dotted 
line. 
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According to our calculations, for a proton to transfer from an H2O molecule to 

O3c on the surface, an electron is required to transfer to a Co4+ ion in the subsurface layer 

at the same time. That is also the concept of PECT. As the H-terminated surface structure 

has no metal cation exposed to the solution, H2O molecules mostly interact with the 

surface structure via H-bonds at the solid/liquid interface. In pervious studies, charge 

transfer through H-bond has been reported in organometallic complexes;121,122 though, 

with small magnitudes. On top of that, in another study about the charge redistribution of 

the water dimer, Bartha et al. pointed out that the valence electrons of an H-bond donor 

shift in the opposite direction of the H-bond acceptor.123 This tendency of charge 

distribution could lower the probability of the PCET via H-bond directly. Nevertheless, 

while the charge transfer via H-bond is jeopardized, the increase of electron density near 

the O side of water may enhance the interaction between the H – O bond of water and the 

O3c, i.e. [H2O⋅⋅⋅O3c], leading to the dissociative water adsorption with a related proton and 

OH– adsorbed on separated O3c atoms. In fact, in a previous study Grimaud et al. also 

reported the OER involves the adsorption of OH– ions onto lattice O atoms of the Co-

based perovskite oxides.124 

Table 5.1 also summarizes the dissociative water adsorption energy based on the 

related H+ and OH– ions being adsorbed on the O3c atoms. The energies are predicted to 

be 3.03, 0.45, –0.22 eV, and –0.38 eV based on the O3c created for 1, 2, 3, and 4 clustered 

H-removal cases, respectively. The continuously decreasing energy indicates the stronger 

tendency for water dissociation on the surface. Considering the larger increments of the 

H2O dissociation energy compared to the H-removal energy for each additional H-
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removal, the adsorption energy of OH– anion is predicted to increase along the way. As 

shown in Fig. 5.4 (a), the HO – O3c bond distance is predicted to be 1.46 Å, implying the 

peroxyl nature of the O – O bond. The lengths of three Co – O bonds adjacent to the O – 

OH are predicted to be 1.92, 1.92, and 1.94 Å, similar to the H-terminated case (1.92, 

1.92, 1.94 Å) [Fig. 5.5 (b)], indicating that the OH stabilizes the Co – O bonds as protons 

do. Figure 5.5 shows the DOS projected onto the Co and O atoms adjacent to the removal 

site of the clustered 3H-removal surface before (a) and after (b) the OH adsorption. In 

Fig. 5.5 (a), the top of the valence band (VB) and bottom of the conduction band (CB) 

consist of Co3+ and Co4+ 3d states, respectively. 

 

 
 

Figure 5.4 Structures of the adsorption configuration of *OH (a) and *H (b) on H-
terminated surfaces. 
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Figure 5.5 Electron density of states (DOS) projected onto Co and O atoms adjacent to 
the H-removal site on the surface structure before (a) and after (b) *OH adsorption on the 
3-fold undercoordinated O (O3c) atom. The vertical line indicates the Fermi level position 
of the 1H-removal case.   

 

The pronounced nonbonding Co3+ 3d states below the Fermi level are attributed to the 

strong antibonding interaction with the adjacent O3c 2p states, as with the aforementioned 

CoO3c
3+ – O3c bond. In Fig. 5.5 (b), with OH adsorbed on the O3c site, the VB is predicted 

to be Co3+ 3d states, implying the reduction reaction of Co4+ to Co3+ ions. Relatedly, the 

downshift of O3c 2p states corresponds to the p-electron redistribution which result from 
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the peroxyl nature of the O – OH bond. Following that, the stabilization of Co3+ 3d states 

at the upper valence band is also predicted.  

 

 
 

Table 5.2 Predicted enthalpies of reactions for the proposed OER pathway. The 
calculations are based on the binding energy of *H on surface with various amounts of 
clustered H-removals. 

 

5.3.5 Reaction Enthalpies 

Table 5.2 summarizes enthalpies of reaction for OER on the H-terminated LiCoO2 

(111) surface structure with various amounts of H-removals (∗). Each enthalpy is 

calculated by considering an *H to be adsorbed on the specified type of H-removal 

defined in the Section 5.3.4. For step 1 (2H2O + 2 ∗ → H2O2 + 2H∗ + 2e–), the enthalpies 

are predicted to be 1.08, 0.48, and –0.38 eV for the clustered 1H-, 2H-, and 3H-removal 

cases, respectively. As the binding energy of *H atoms increases (in the negative 

direction) along with the creation of H-removal, the reaction becomes more favorable. 

The reaction is predicted to be exothermic for the 3H-removal case, implying two O3c 

sites both adjacent to two CoO3c
3+ ions are needed to trigger the oxidation reaction. As 

shown in Table 5.1, forming the coupled 3H-removal is predicted to be energetically less 

favorable than the separated case by 0.65 eV using implicit solvent model; however, as 
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discussed in Section 5.3.1, the rearrangement of *H on the surface in the water solution is 

predicted using AIMD under ambient conditions. Therefore, the clustered 2H- or 3H-

removals are still expected on the oxidized surface structure, especially in the presence of 

high H-removal contents. For step 2 (H2O2 + 2 ∗ → O2 + 2H∗ + 2e–), the enthalpies are 

predicted to be –0.77, –1.37, and –2.23 eV for the clustered 1H-, 2H-, and 3H-removal 

cases, respectively, implying that H2O2 could be oxidized to O2 by the surface with even 

low concentrations of H-removal. Based on that, step 1 is suggested to be the rate-

limiting step for the OER. Overall, the smallest enthalpy (in absolute value) for the full 

reaction of catalytic OER (2 H2O + 4∗ → O2 + 4 H∗ + 4 e–) on H-terminated LiCoO2 

surface is predicted to be –1.15 eV.  

 

5.4 SUMMARY 

 Using DFT-GGA calculations, we introduced a four-electron pathway for OER 

catalyzed by the H-terminated LiCoO2 (001) surface structure. First of all, our 

calculations predict that protons detach from the surface structure into the solution when 

the subsurface Co3+ ions are oxidized to Co4+ ions. That is, injecting holes to the slab 

structure leads to the creation of additional 3-fold undercoordinated O atom (O3c) on the 

surface. Next, a two-step reaction pathway driven by the hydrogenation of the surface is 

proposed. In the first step, H2O molecules undergo the dissociative water adsorptions 

onto surface O3c atoms. The related *OH then further interacts with another H2O 

molecule to form an H2O2 molecule. To predict the reaction enthalpies, the binding 
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energy of H atoms and the dissociative adsorption energy of H2O molecules are 

calculated for the surfaces with various amounts of H-removals. Accordingly, the 

dissociative adsorption is predicted when there are two sets of clustered 3H-removals on 

the surface. On top of that, the reaction of H2O transforming to H2O2 (as H atoms are 

transfers to the surface) is predicted to be exothermic in the presence of the same type of 

H-removals. In step 2, the exothermic reaction of H2O2 being oxidized to O2 by the 

surface containing a low concentration of H-removal is predicted, indicating that the 

H2O2 could be a strong reducing agent on the oxidized H-terminated surface. On top of 

that, the formation of H2O2 is suggested to be the rate-limiting step of this proposed 

pathway. 
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      Chapter 6 : Mechanisms for the Oxygen Reduction Reaction on 

Co3O4 (111) Surface  

6.1 INTRODUCTION 

The oxygen reduction reaction (ORR) is a crucial electrochemical process in fuel 

cells. Its efficiency and reaction pathway have been widely studied; they are reported to 

be highly dependent on the electrode materials. Precious-metal electrodes (PMD) (eg. Pt, 

Ir and Ru) are the best catalyst known so far;125,126,127 however, the application of PMD is 

hindered by their high-cost and limited stability. Among the non-precious-metal-based 

catalysts, Co3O4 structures are reported to be one of the most promising materials for 

ORR.75,128 The performance of Co3O4 is found to be highly dependent on the incorporated 

system. While the pristine Co3O4 structure is reported to catalyze the ORR through the 

two-electron pathway, the presence of a carbon-based support was found to change the 

related reaction pathway to the more active four-electron pathway.129 On top of that, 

carbon-supported Co3O4 structure could also perform as OER/ORR bifunctional catalysts. 

In addition to carbon, transition metal dopants such as Mn and Cu are also reported to 

improve the catalytic performances.130,131,132 To fully understand how carbon-based 

structure and dopants facilitate the electrochemical ORR, it is necessary to identify the 

active sites and their possible mechanisms for the catalytic reaction. Nonetheless, the 

determination of active sites for ORR on the carbon-supported Co3O4 structure has been a 

longstanding question still under debate. In earlier experimental works, Xu et al. reported 

that the ORR catalytic activity is sensitive to the content of exposed Co3+ ions on the 



 79 

surface,133 while Xiao et al. described the Co2+ ions as the active sites for ORR.134 In a 

recent experimental work, Liu et al. suggested the N-doped carbon nano-web in the 

composite structure should be the primary catalyst for ORR to take four-electron 

pathway.  

In this chapter, we first looked into the properties of bulk structure to understand 

the nature of Co – O bonds in the matrix. In doing so, we noticed the predicted electronic 

structures are sensitive to the U-value employed in the DFT calculation; the dependence 

of spin states of Co3+ on U-values is thus examined. For the surface study an O-

terminated surface structure is assumed considering the high surface energy caused by the 

presence of undercoordinated metal atoms on surface. In addition, based on the 

discussion of hydrogenated LiCoO2 surface structure in Chapter 4, the hydrogenated 

Co3O4 surface structure is also employed. The reaction steps of the four-electron pathway 

for ORR on the (111) surface structure composed of H and O atoms are investigated. 

Lastly, the possible two-electron pathway is also discussed.  

 

6.2 METHODOLOGY 

All atomic structures and energies reported herein were calculated using spin-

polarized DFT within the generalized gradient approximation (GGA-PBE)15,16 as 

implemented in the Vienna Ab initio Simulation Package (VASP)32,33.  The projected 

augmented wave (PAW) method34,35 with a plane-wave basis set was employed to 

describe the interaction between ion core and valence electrons.  To treat the strong on-
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site 3d electron-electron interactions on Co an additional Hubbard-U was added with an 

effective value of Ueff = 4.4 and 6.7 eV for the tetrahedral and octahedral Co atoms in 

bulk structures, respectively135. For the hybrid-DFT calculations, the HSE (Heyd-

Scuseria-Ernzerhof)136 exchange-correlation functional with a short-range screening 

factor of 0.2 was employed. The portion of exact HF exchange potential of 15 and 25% 

are considered. An energy cutoff of 450 eV was applied for the plane-wave expansion of 

the electronic eigenfunctions. For geometry optimization and energy calculations, all 

atoms were fully relaxed using the conjugate gradient method until residual forces on 

constituent atoms became smaller than 1×10-2 eV/Å.  The pristine Co3O4 was modeled 

using a 56-atom unit. For Brillouin zone sampling, (3×3×3) k-point mesh in the scheme 

of Monkhorst-Pack38 was used for the structure. 

The surface structure was modeled using a periodic (2×1) and (2×2) slabs with a 

thickness of 5 and 3 Co-layers, respectively, and a vacuum of 15 Å in the (111) direction. 

The Monkhorst-Pack type k-point sampling of (3×6×1) and (3×3×1) was used for (2×1) 

and (2×2) surface structures, respectively. Considering the undetermined electrical 

properties of cleaved surface structure, U = 5.9 eV, corresponding to the weighted 

average of U values for Co2+ and Co3+ ions, was used in the surface studies, as in the 

earlier theoretical study.135 To simulate aqueous conditions, the implicit solvent model137 

was employed in the surface calculation, while explicit water molecules were also 

considered in certain cases to study the influence on the charge transfer. 
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6.3 RESULTS AND DISCUSSION 

6.3.1 Bulk Properties of Co3O4 structure 

Co3O4 exhibits a spinel structure with Co2+ and Co3+ ions on tetrahedral and 

octahedral sites, respectively [Fig. 6.1]. The lattice constants are predicted to be a= b= c= 

8.17 Å, in close agreement with the experimental data (a= b= c= 8.084 Å).138 The 

tetrahedral Co2+ and octahedral Co3+ ions are known to have high- (3d6: (eg)4(t2g)6) and 

low-spin (3d6: (t2g)6) configurations, respectively.139  

 

 
 

Figure 6.1 Atomic configuration of spinel Co3O4 structure; Co and O atoms are 
illustrated by blue and red balls, respectively.   

 

Figure 6.2 (a) shows the electron density of states (DOS) projected onto Co2+, 

Co3+ and O atoms of the bulk structure. The top of valence band (VB) mainly consists of 

Co2+ 3d minority-spin eg states mixed with small amounts of Co3+ 3d-t2g and O 2p states, 

while the bottom of conduction (CB) band consists of the hybridization of major Co3+ eg 

and minor Co2+ t2g states. The bands are separated by an energy gap of 2.0 eV in 
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agreement with the experimental data (ranged from 1.5 ~ 2.2 eV140,141,142). In the valence 

band, the filled Co3+ t2g states are predicted over an energy range from -5 ~ -1 eV 

overlapping with the Co2+ majority-spin t2g states from -4 ~ -2 eV; here an intersection 

suggests interaction between the related states. 

 
 

 
 

Figure 6.2 Electron density of states (DOS) of Co3O4 bulk structure composed of high-
spin (a) and low-spin (b) Co3+ ions, projected onto Co2+ (red), Co3+ (blue) ion and O 
(grey shaded). The vertical line indicates the Fermi level position (EF). 

 

Based on our further investigations of the electronic structures, the predicted spin 

configuration for the Co3+ ion is actually dependent on the U values used in the 
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calculations. Using the same U values (4.4/6.7 eV for Co2+/Co3+), we predicted the high-

spin Co3+ (t2g
4eg

2) to be more favorable than the low-spin state (t2g
6) by ~0.4 eV per ion. 

From there, we summarized the energy differences between high- and low-spin 

configurations calculated using various U values in Table 6.1. The high-spin 

configurations are successfully predicted when the U value for Co3+ ions is smaller than 

4.5 eV. Here, the inadequate prediction of the correct spin configuration could be 

attributed to the overestimation of electron localization in Co3+ 3d states, which is 

explained shortly. Figure 6.2 (b) shows the DOS of matrix for the high-spin Co3+ ion. 

Compared to the low-spin case, Co3+ 3d states are predicted to shift downward; the 

energy gap is narrowed to about 0.5 eV. The majority-spin Co3+ 3d states are predicted 

below Co2+ 3d states, implying the absence of the aforementioned interaction with Co2+ 

3d t2g states.  

 

 
 

Table 6.1 Energy difference between a low- and high-spin Co3+ ion in Co3O4 bulk 
structure calculated using various U values. 

 
According to the molecular orbital theory, the half filled eg states of high-spin Co 

in the octahedral site have strong antibonding interactions with surrounding O 2p states. 
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Therefore, the scenario implies that U values larger than 4.5 eV might overestimate the 

localization of d-electrons, leading to erroneously stable half-filled eg states. Thus, the 

energetic penalty for switching from low- to high-spin to avoid the aforementioned 

interaction with Co2+ 3d states is underestimated. In fact, in a previous study of Co3O4 

electronic structures, Qiao et al. also points out concern over the possibility of 

overestimating the U values of Co ions in the Co3O4 structure.143 Since applying U = 

4.4/6.7 eV for Co2+/Co3+ ions still well captures properties of the Co3O4 structure 

composed of low-spin Co3+ ions, the set of U values are used in this work. Meanwhile, 

for the comprehensiveness of this study, results calculated using different U values are 

also reported.  

 

6.3.2 Co3O4 (111) Surface Structure  

As it is reported to have the lowest surface energy and highest catalytic activity 

for the oxygen reduction reaction (ORR), Co3O4 (111) surface is employed in this 

study.134 The slab structure with (111) surface is composed of alternating planes of 

oxygen and metal ions. Each metal layer consists of either three CoO6 octahedra (Oct) or 

a CoO6 octahedron and two CoO4 tetrahedra (Oct/Tet); the Oct and Oct/Tet layers stack 

alternatingly, as shown in Fig. 6.3 (a). The stoichiometric slab structure 

([Cotet
2+]m[Cooct

3+]2mO4m) is naturally polarized due to different terminations of the two 

opposite surfaces: Co-termination and O-termination [Fig 6.3 (a)]. 
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Figure 6.3 (a) Stoichiometric polar (111) surface structure. (b) Nonstoichiometric 
nonpolar (111) O-terminated surface structure and the related top view (c). (d) Top view 
of 7/8 ML (d) H-terminated surface structure. (e) Top view of fully H-terminated surface 
structure. 

 
Both terminations have been reported in earlier experiments.144,145 Reflecting the 

reported tendency of undercoordinated metal atoms on the surface to have high surface 

energies,77 the O-termination is chosen over Co-termination. To build a non-polar slab 

structure, two Co2+ and a Co3+ ion are removed from one side of the surface [Fig. 6.3 (b)]. 

Meanwhile, 7 Co3+ ions are oxidized to Co4+ to balance the charge ([[Cotet
2+]m-2[Cooct

3+]2m-

1O4m]7+). In order to ensure the absence of polarity, a 2×1×1 supercell is employed in this 

work to create an equal charge distribution on both surfaces; the subsurface layer on each 

side of the surface contains 7 Co4+ ions. Considering that the ORR of interest is operated 

in aqueous conditions, the H-terminated surface structure is utilized. The O-terminated 
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surface on top of the reducible Co4+ ions may be stabilized by the hydrogenation reaction 

as discussed in Chapter 4. 

Before the hydrogenation reaction, the O-terminated 2×1×1 surface structure has 

six 2-fold (O2c) and two 3-fold (O3c) undercoordinated O atoms on extreme surface layer, 

as shown in Fig 6.3 (c). Six octahedral Co atoms reside in the subsurface layer, each of 

them adjacent to two O2c and an O3c atom. On the H-terminated surface structure, all 8 O 

atoms on each surface are hydrogenated, excepting an O3c atom [Fig 6.3 (d)]. While all 7 

Co4+ ions on each subsurface layer are reduced to Co3+ (H7[Cotet
2+]m[Cooct

3+]2m-1O4m). The 

average H-binding energy is predicted to be –2.0 eV per H atom, with respect to half of 

an H2 molecule; the magnitude is similar to the LiCoO2 (111) H-terminated surface (~ –

1.8 eV) studied in Chapter 4. Next, for the fully hydrogenated surface structure, the 

aforementioned O3c atom is also hydrogenated. Following that, an octahedral Co3+ ion is 

predicted to be reduced to Co2+ in the subsurface layer (H8[Cotet
2+]m[Cooct

3+]2m-

2[Cooct
2+]O4m]), as shown in Fig 6.3 (e). The length of the resulting Co2+ – O bonds 

increase by 0.13 Å with respect to Co3+ – O. The hydrogenation energy is calculated to be 

–1.71 eV. This magnitude is comparable with the aforementioned average H-binding 

energy, suggesting that the presence of fully hydrogenated surface structure is practical in 

experiments.  
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Table 6.2 H-bonding energies on fully H-terminated surface structure; U(TET) and 
U(OCT) are U-values applied for the tetrahedral and octahedral Co atoms, respectively. 
The portion of Hartree-Fock exchange energy in HSE06 is marked in percentage.   

 

Table 6.2 summarizes the H-bonding energies predicted using various U-values. 

As the U-values applied to the octahedral Co atoms are decreased, the H-binding energy 

decreases; the hydrogenation reaction of the surface becomes less favorable. The trend is 

attributed to the less localized 3d states enhancing the antibonding interaction of the 

newly reduced Co2+ ion and O. The fully hydrogenated 2×1×1 surface structure has six 

hydrogenated O2c (O2c-H) and two hydrogenated O3c (O3c-H) atoms. It is worth mentioning 

that for every three HO2c surrounding a void on the surface, a hydrogen bond is predicted 

to exist between two of them, providing a possible proton-shuttling route between two 

O2c-H atoms. 
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Figure 6.4 Electron density of states (DOS) of partially (a) and fully (b) H-terminated 
Co3O4 (111) surface structure. In (a), the DOS is projected onto Co3+ adjacent to 
1O3c/2HO2c (green), 1HO3c/2HO2c (blue) and in the bulk (gray shade), and O3c (red) 
atom. In (b), the blue denotes Co2+ ion adjacent to 1O3c/2HO2c. 

 

Figure 6.4 shows the DOS of partially (H7[Cotet
2+]m[Cooct

3+]2m-1O4m) and fully 

(H8[Cotet
2+]m[Cooct

3+]2m-2[Cooct
2+]O4m]) H-terminated surface structures. In the partially H-

terminated case [Fig. 6.4 (a)], the VB and CB mainly consist of O3c 2p and well-

coordinated Co3+ 3d states (Co3+ ion adjacent to a O3c-H and two HO2c-H), respectively. An 

energy gap of 2.1 eV is predicted, almost the same as the bulk, suggesting the H-

terminated surface structure is well stabilized. Right below the Fermi level, the 

hybridization of O3c 2p and Co3+
O3c 3d states (Co3+ ion adjacent to a O3c and two O2c-H) is 

attributed to the stronger antibonding interaction induced by unstable 2p electrons. For 
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the same reason, the empty eg states of Co3+
O3c are predicted to be higher than those of 

well-coordinated Co3+. In the fully H-terminated surface structure [Fig. 6.4 (b)], the VB 

consists of Co2+ 3d states, implying that the hydrogenation reaction reduces a Co3+ ion to 

Co2+; this Co2+ ion is predicted to have high-spin states (t2g
5eg

2). The prediction of nearly 

non-bonding 3d states is consistent with the elongated Co2+ – O bond. Compared to the 

partially H-terminated case, the O3c-H 2p states are largely shifted downward as the H – O 

bond stabilizes the 2p electrons. Meanwhile, the CB remains constituted of surface Co3+ 

3d states, indicating that additional electrons could be injected to the surface. 

 

6.3.3 Reaction Pathway 

Next, a four-electron ORR reaction pathway for the Co3O4 (111) fully 

hydrogenated non-polar surface structure at the cathode in alkaline condition is proposed 

(overall process O2 + H2O + 4e- → 4OH-). 

S-[Cooct
2+]-OH + O2 + e- → S-[Cooct

2+]-O2 + OH-               (1) 

 S-[Cooct
2+]-O2 + H2O + e- → S-[Cooct

2+]-OOH + OH-                      (2)    

 S-[Cooct
2+]-OOH + e- → S-[Cooct

3+]-O + OH-                         (3) 

 S-[Cooct
3+]-O + H2O + e-→ S-[Cooct

2+]-OH +  OH-               (4) 

For the simplicity, the chemical formula of H8[Cotet
2+]m[Cooct

3+]2m-2[Cooct
2+]O4m is written 

in S-[Cooct
2+]-OH, where S denotes the rest of the slab structure ( H7[Cotet

2+]m[Cooct
3+]2m-

2O4m-1), as the active site is identified as the octahedral Co atoms on the surface. 

 



 90 

 
 

Table 6.3 Removal and adsorption energies of *OH and *O2 on Co3O4 (111) H-
terminated surface, respectively, and enthalpies of each reaction steps are calculated 
using various U values. 

 

Table 6.3 summarizes the predicted enthalpies for each reaction calculated using different 

U values. The reaction scheme is intuitively similar to that suggested for the perovskite 

LaBO3 structure in a previous study.146 The total energy of the OH– anion is calculated as 

the difference in energies of a H2O and half of H2 molecule (E(OH) = E(H2O) – 1/2 E(H2) 

) as defined in ref 140.147 Removing a *OH bounded to two Co atoms on a (111) Co3O4 

surface structure creates an active site for the ORR. We first calculate the *OH removal 

energy as a Co3+ is reduced to Co2+. Next, the adsorption energy of an O2 molecule (*O2) 

is predicted. Next, the injection of a second electron and subsequent formation of *OOH 

through the interaction of *O2 with a proton from a water moleculeis studied. As the third 

electron is injected, we calculate the energy needed to break the *O–OH bond and form 

*O. Finally, the ORR cycle is closed by the hydrogenation reaction of *O creating a fully 

hydrogenated surface structure as discussed in Section 6.3.2. 
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6.3.4 Mechanisms for ORR 

In this section, we discussed the mechanism of these reaction steps in detail. For 

each step, an additional electron is first injected to the surface structure. The Fermi shift 

for injecting an excess electron to the fully hydrogenated structure is predicted to be 0.47 

eV. In all cases, the excess electron is predicted to reduce a surface Co3+ ion to Co2+ 

before the reaction takes place.   

 

Figure 6.5  *OH removal (0.13 ML) on Co3O4 (111) H-terminated surface structure 

 
 

The H-terminated surface structure with an additional electron contains two Co2+ 

ions; they are separated to reduce the repulsive interaction. Using the explicit solvent 

model, an H-terminated O2c (HO2c) is predicted to be further hydrogenated to form a 

water molecule; this weakens the binding strength between HO2c and the adjacent Co2+ 

ion greatly. Thus, the reaction is equivalent to the desorption of an OH– ion from surface 

structure [Fig. 6.5]. The OH– anion removal energy is calculated to be –1.02 eV, implying 

that removing an OH– ion from a reduced surface structure is energetically favorable. The 

removal energy is predicted to decrease with decreasing U values applied to octahedral 

Co atoms [Table 6.3], which is attributed to the stronger Co2+-O antibonding interaction 
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as discussed in Section 6.3.2. After the OH– anion is removed from the surface, two 

neighboring 5-fold undercoordinated Co2+ ions are predicted to exist on the surface, 

implying that excess electrons tend to localize on undercoordinated Co atoms. This could 

be due to stabilization of the direct Co2+ – O antibonding interaction by the slight 

distortion in the electron distribution. 

 

Figure 6.6 Structures and electron density of states (DOS) of Co3O4 (111) H-terminated 
surface with adsorbate (a) *O2 and (b) *OOH, projected onto Co3+ (blue), Co2+ (grey 
shaded) adjacent to the adsorbate, O of the adsorbate adjacent to the surface (red) and 
exposed to the solution (green).  
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Next, the adsorption reaction of an O2 molecule (*O2) on two neighboring 5-fold 

coordinated Co2+ ions is predicted [Fig. 6.6 (a)]. We found that the charge state of *O2 

depends on (1) the type of model used to describe the water solutions and (2) the U-

values. Using the implicit solvent model, the bond length of the adsorbed oxygen 

molecule is predicted to be ~ 1.3 Å, suggesting an incomplete electron transfer from a 

Co2+ ion to the superoxyl-like O2 molecule (*O2
δ–). On the other hand, when using the 

explicit solvent model, the bond length is predicted to be ~1.35 Å, implying the 

formation of a superoxyl (*O2
–) anion. Meanwhile, one of the two Co2+ ions adjacent to 

the *O2
– anion is oxidized to Co3+. These predictions suggest that the water network is 

important in facilitating the charge transfer for O2 adsorption. 

 

 
 

Table 6.4 Difference of adsorption energies of partially (*O2
δ-) and fully (*O2

-) charge 
transfer to the superoxyl anion on Co3O4 (111) H-terminated surface structure; the 
enthalpies of step 1 and 2 are calculated based on the fully charge transfer case. 

 

The energy differences between the predicted *O2
δ– and *O2

– anions on surface 

using the implicit solvent model are summarized in Table 6.4. When smaller U-values are 



 94 

applied to Co3+ ions, the formation of *O2
– gradually becomes more stable due to the less 

localized valence electron on the Co2+ ion. It is worth mentioning that having a peroxyl 

(*O2
2–) anion on the surface is predicted to be energetically less favorable than *O2

– by 

about 0.4-0.6 eV. 

For consistency, the adsorption energy predicted using the implicit solvent model 

is used to study the ORR reaction here. The adsorption energy of an O2 molecule bound 

to two 5-fold coordinated Co2+ ions is calculated to be –0.23 eV, close to the O2 

adsorption on perovskite metal oxides (~ –0.2 eV) studied in previous works.148 Table 6.3 

summarizes the adsorption energies calculated using different U values for octahedral Co 

ions. The adsorption of O2 becomes more favorable with decreasing U-values, which is 

expected as charge transfers more easily when it is less localized. By combining the *OH- 

removal with *O2
δ– adsorption, the enthalpies of step 1 (*OH/*O2 exchange) are 

summarized in Table 4., while the enthalpies calculated by assuming the formation of 

*O2
– (full charge transfer) on surface are summarized in Table 6.5.   

Figure 6.6 (b) shows the DOS of the structure with O2 adsorbed on the surface 

projected onto O2, Co2+ and Co3+ ions adjacent to the O2 molecule. The VB consists of 

*O2
– 2p and Co2+ 3d states, while the CB is mainly *O2

– 2p states; the formation of the 

superoxyl anion is confirmed. Meanwhile, the presence of filled Co3+ t2g states in the 

valence bands implies an electron transfers from one of the two initial Co2+ ions (adjacent 

to O2) to *O2-. 

Based on this adsorption configuration, the interaction of water molecules with 

the *O2
– anion via a hydrogen bonding network is predicted using explicit solvent. In step 
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2, upon the addition of an electron the free energy change of creating a *OOH– anion 

along with an OH- anion in solution is calculated to be around –0.8 eV, similar to the 

number predicted for perovskite (from –0.40 to –0.73 eV) by Wang et al.148 The atomic 

configuration of the surface structure with *OOH– is illustrated in Figure 6.6 (c). The 

reaction is predicted to be more favorable as the U-value decreases as the enhanced 

charge transfer from Co2+ ion to *O2
 facilitates the formation of OOH. Figure 6.6 (d) 

shows the DOS of the surface structure with *OOH adsorbed on the surface. The VB and 

CB consist of Co2+ and Co3+ 3d states, respectively. In comparison to the case of *O2
– on 

the surface, the downshift of *OOH– 2p states indicates stabilization due to the 

hydrogenation reaction. Meanwhile, the absence of O 2p states above Fermi level implies 

that the excess electron transfers from a Co2+ ion on surface to the *OOH– anion. 

In step 3, by removing an OH– anion from *OOH–, an excess electron transfers to 

the newly created 2-fold undercoordinated O atom as both Co2+ ions in the subsurface 

layer are oxidized to Co3+. This reaction enthalpy is calculated to be –1.28 eV. In 

addition, we found that moving a proton from a 3-fold coordinated O atom to the 2-fold 

undercoordinated O atom lowers the total energy by 0.58 eV. The presence of 3-fold 

undercoordinated O atom after step 3 is considered assuming the shuttling of a proton via 

the hydrogen-bonding network on the hydrophilic surface structure. 

In addition to step 3, a possible two-electron pathway for ORR to form an H2O2 

molecule is also examined here. As HO2c on the surface forms a hydrogen bond with 

*OOH [Fig. 6.7], the creation of an H2O2 molecule through proton transport is 

considered. The enthalpy of S-[Cooct
2+]-OOH + H2O + e- → S-[Cooct

2+] + H2O2 + OH- is 
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predicted to be –0.96 eV. The exothermic reaction could be related to the two-electron 

pathway for ORR in some cases of carbon-supported Co3O4 in the previous experimental 

work;149 however, considering that the predicted enthalpy of step 3 is more favorable than 

the H2O2 formation by 0.32 eV, the four-electron pathway for ORR still holds while 

ignoring the charge-transfer barrier during reactions. 

 
 

Figure 6.7 Illustration of in-plan H-bonding between HO2c and OOH on Co3O4 (111) H-
terminated surface structure. 

 

Finally, as discussed in Section 6.3.2, injecting an electron to the partially H-

terminated surface structure (with subsurface layer composed of only Co3+ ions) leads to 

the formation of a fully hydrogenated surface. The hydrogenation reaction creates an OH– 

ion in solution, closing the ORR reaction cycle. 

  

6.3.5 The Free Energy Diagram 

The free energy diagram is calculated based on the computational hydrogen 

electrode model proposed by Nørskov et al.150 The change in Gibbs free energy for each 
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reaction step involved in the proposed mechanism for ORR is calculated using the 

following equation: 

ΔG = ΔE + ΔZPE – TΔS + eΦ                                  (4.3.1) 

where ΔE is the reaction energy, ΔZPE is the change in zero point energy, T is the 

reaction temperature, and ΔS is the change in entropy, and eΦ is the product of the 

elementary charge (e) transferred and the applied potential (Φ) versus reversible 

hydrogen electrode (RHE). The ΔZPE are calculated using VASP by considering 

operation within the harmonic approximation while ΔS is cited from the NIST 

database.151,152 The equilibrium potential (Φeq) is defined as the theoretical maximum cell 

voltage for the ORR, i.e. [ΔG(H2O) –ΔG(H2) – 1/2 ΔG(O2)]/2e. The ORR potential 

(ΦORR) corresponds to the highest potential at which all reaction steps are predicted to be 

exothermic, i.e. the free energy diagram is downhill along the pathway. The overpotential 

is then calculated by η = Φeq – ΦORR. 
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Figure 6.8 Free energy diagrams of the four-electron pathway for ORR on the Co3O4 
(111) H-terminated surface structure. The red line represents the reaction at equilibrium 
(Φeq) potential corresponding to the zero electrode potential (0 V vs. RHE). The blue 
line represents the ORR potential (ΦORR) corresponding to the over potential (η) where all 
reaction steps along pathway are predicted downhill regarding to the free energies. The 
dashed line represents the theoretical open circuit potential. 

 
Figure 6.8 shows the free energy pathway of the ORR on the Co3O4 (111) surface. 

The pathway is calculated based on the discussed reaction steps in this work using the 

implicit solvent model. At the equilibrium potential, Φeq, step 1 and 2 are predicted to be 

uphill while step 3 and 4 are downhill, indicating that the first two steps of the ORR 

process, i.e. *OH/*O2 exchange and hydrogenation of *O2, are the rate-limiting steps; the 

result is similar to the case of perovskite oxide surfaces studied in ref 11 as well as in the 

case of the Pt (111) surface studied by Nørskov et al.150 As the applied potential is 

increased to 0.54 V, step 1 becomes the only rate-limiting step, implying that the 
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*OH/*O2 is the potential-determining step of the ORR. The overpotential for the ORR is 

predicted to be 1.12 V (ΦORR) when all reaction steps are predicted to be downhill along 

the pathway, suggesting that the proposed four-electron pathway is physical in terms of 

conducting an exothermic ORR in alkaline condition. It is worth mentioning that the 

enthalpies of step 1 and step 2 become comparable when U=4.4 eV is applied to the 

octahedral Co atoms [Table 6.4]. Meanwhile, complete charge transfer to *O2
– is also 

predicted. The results suggest that the determination of potential-limiting step is related 

to the tendency of charge to localize on the surface. Following that, the enthalpy of step 1 

and 2 calculated by considering the fully charge transferred case (*O2
–) are summarized 

in Table 6.5. In this case, the enthalpies of the two steps are actually similar when 

moderately lowering the U-values (5.5 eV) for octahedral Co atoms. Considering the 

possible overestimation of U values for the Co3O4 structure discussed in Section 6.3.1, 

the *OH/*O2 exchange and hydrogenation of *O2 could be similar in regards to 

determining the overpotential of the ORR.  

6.4 SUMMARY 

 Using DFT-GGA calculations, a four-electron pathway for the Co3O4 (111) 

surface structure is investigated. Starting with the bulk structure, we found the U values 

(Co2+: 4.4, Co3+: 6.7) adopted by previous theoretical studies might be overestimated 

based on the prediction of high-spin octahedral Co3+ ions in the matrices. Based on that, 

different U values were examined; the low-spin states are predicted by applying U values 

smaller than 4.4 eV for Co3+ ions. Considering that applying 4.4/6.7 eV for Co2+/Co3+ ions 
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still well captures the bulk properties of the Co3O4 structure (composed of low-spin Co3+ 

ions), the set of U values are used in this work. Meanwhile, for the comprehensiveness of 

the studies, we reported results calculated using different U values. 

Considering the ORR is performed in aqueous conditions, the H-terminated surface 

structure is employed. For a fully H-terminated surface structure, the ratio of Co3+ and 

Co2+ ions in the subsurface layer is 5:1. Based on the surface structure, reaction steps 

related to the charge injection are discussed and the related enthalpies are calculated. 

Using the implicit solvent model, we first predicted the exothermic reaction of creating 

an OH– removal on the surface by injecting an electron to the slab structure; two adjacent 

undercoordinated Co2+ ions are formed.  The adsorption of an O2 molecule (*O2) bound 

to the two Co2+ ions is then predicted. To simulate a full charge transfer from a Co2+ ion 

to *O2, forming superoxyl, the explicit solvent model is required. This suggests that the 

prediction of charge transfer is sensitive to the H-bond network. Next, the second injected 

electron induces proton transfer from a H2O molecule to the *O2, creating *OOH on the 

surface. The DOS analysis illustrates the downward shift of *O2 2p states, indicating that 

the protonation stabilizes the adsorption configuration. For the injection of the third 

electron, removing an OH– anion from *OOH is calculated to be exothermic. Moreover, 

the surface structure is further stabilized as a proton transfers from a 3-fold coordinated 

O3c to the newly formed 2-fold undercoordinated O2c atoms. Finally, along with the 

injection of the fourth electron, the undercoordinated 3-fold oxygen is protonated; hence, 

the surface structure resturns to the fully H-terminated surface. It is worth mentioning 

that we also examined the possible two-electron pathway involving the oxidation of 
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*OOH to an H2O2 molecule. Our calculation shows the reaction step is energetically less 

favorable than the desorption of OH– (step 3), implying the four-electron pathway is 

preferred. Nonetheless, the formation of H2O2 is actually predicted to be exothermic, 

suggesting the possibility for ORR occurring through the two-electron pathway; this 

finding could be related to the experimental observation that a certain carbon support is 

needed for Co3O4 to catalyze ORR via four-electron pathway. Finally, the free energy 

diagram of the above intermediate steps for ORR is constructed. The diagram illustrates 

that the *OH/*O2 exchange reaction is the potential limiting step. 
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Chapter 7 : Investigation of Metal-Oxide Cathode Materials for 

Lithium Ion Batteries: Phosphate Deficient LiFePO4 and FePO4 

7.1 INTRODUCTION 

Lithium iron phosphate LiFePO4 (LFP) has recently emerged as an attractive cathode 

material for next-generation lithium ion batteries (LIBs) because of its remarkable 

thermal and chemical stability, nontoxicity, low cost, and high intercalation voltage (≈ 

3.5 V) as well as theoretical capacity (≈ 170 mAh/g).153,154 However, the practical use of 

LFP is hampered by its intrinsically poor electrical and ionic conductivities.155,156  

Considerable efforts have been made to overcome these drawbacks, including 

heterogeneous doping and defect engineering. For instance, aliovalent doping with Nb, 

Mg, Zr, Ti has been demonstrated to enhance the LFP electrical conductivity by eight 

orders of magnitude up to about 10-2 S/cm157 (which is comparable to that of the most 

commonly used LiCoO2 and LiMn2O4.)158. In addition, proper control of naturally 

occurring defects (such as Li vacancies/interstitials) and Li-Fe ion exchanging antisite 

defects has been also suggested to have positive impacts on Li mobility 

enhancement.159,160,161 While the underlying mechanisms still remain a controversial topic, 

the above findings seed the idea of enhancing the electronic and ionic conduction 

simultaneously in LFP via structural modifications at the atomic level. Very recently, a 

viable synthesis method was proposed to control the polyanion deficiency in a lithiated 

metal phosphate matrix, but the atomic details have not been explored. In this work, we 

assess the structure, stability and mechanical properties of phosphate (PO4) -deficient 
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LFP and FP based on density functional theory (DFT) calculations.   

 

7.2 METHODOLOGY 

All atomic structures and energies reported herein were calculated using spin-

polarized DFT within the generalized gradient approximation (GGA-PBE)15,16 as 

implemented in the Vienna Ab initio Simulation Package (VASP)32,33. The projected 

augmented wave (PAW) method162,163 with a plane-wave basis set was employed to 

describe the interaction between ion core and valence electrons. To treat the strong on-

site 3d electron-electron interactions on Fe an additional Hubbard-U term was added 

(with an effective value of Ueff = 4.3 eV)83. Valence configurations employed are as 

follows:  3d64s2 for Fe, 3s23p2 for P and 2s22p4 for O. An energy cutoff of 450 eV was 

applied for the plane-wave expansion of the electronic eigenfunctions. For geometry 

optimization and energy calculations, all atoms were fully relaxed within periodic 

supercell considered, using the conjugate gradient method until residual forces on 

constituent atoms became smaller than 1×10-2 eV/Å. The pristine LiFePO4 (FePO4) was 

modeled using a 28(24) -atom unit cell while the PO4-deficient structure was created by 

removing a PO4 unit from an expanded (1×2×3), 168(144)-atom LiFePO4 (FePO4) 

supercell. For Brillouin zone sampling, (3×4×5) and (3×3×1) k-point mesh in the scheme 

of Monkhorst-Pack164 was used for the pristine and PO4-deficient FePO4, respectively. 
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7.3 RESULTS AND DISCUSSION 

7.3.1 Pristine Bulk Structure 

Figure 7.1 shows the optimized structure of orthorhombic olivine LiFePO4 (LFP) 

and FePO4 (FP) (space group Pnma) using GGA+U functional. In LFP matrix, Li+ and 

Fe2+ ions occupy M1 and M2 octahedral sites, respectively, which form layers spanned on 

(100) plane and are ordered alternately with planes formed by (PO4)3- tetrahedra in [100] 

direction, where each PO4 unit is connected to 5 FeO6 units. Delithiated FePO4 has the 

same structure to LiFePO4 with only difference from empty Li octahedral sites. The 

calculated lattice constants: a = 10.45 Å, b = 6.08 Å, c = 4.76 Å for LFP and a = 9.97 Å, 

b = 5.91 Å, c = 4.88 Å for FP are in good agreement with the experimental values of 

10.34 Å, b = 6.06 Å, c = 4.7 Å and a = 9.76 Å, b =5.75 Å, c = 4.76 Å, respectively.165 The 

slight overestimation of lattice constant is mainly attributed to the well-known tendency 

of GGA to underestimate the bond strength. 

 

Figure 7.1 The atomic configuration of LiFePO4 and FePO4 with brown octahedra and 
pink tetrahedra represent FeO6 and PO4 units, respectively; Green and red balls represent 
Li and O atoms, respectively. 
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Figure 7.2 shows the electron density of states (DOS) projected onto Fe, P, and O 

atoms of pristine LFP and FP. The Fermi level is used as a reference energy, which is set 

to zero. In FP, the top of valance band (VB) is mainly occupied by filled O 2p states (− 4 

~ 0 eV) with limited hybridization with half-filled Fe 3d states, while the later states are 

mostly shown in energy range of −8 ~ −6 eV; The bottom of conduction band (CB) is 

occupied by empty minority-spin Fe 3d-t2g states, rendering a gap of 1.75 eV very close 

to experimental value (1.7 eV).166 

 

Figure 7.2 The electron density of states (DOS) projected onto Li, Fe, P and O atoms in 
(a) LiFePO4 and (b) FePO4 with Fermi level indicated by dash line. 
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A strong ionic character of Fe3+− O2- bonds predicted in FP suggests the half-filled 

Fe 3d bands are relatively more stable than O 2p bands, preventing the two bands from 

hybridization. In the energy range of −6 eV ~ –4 eV, P 3p and O 2p states are predicted 

largely overlapped, suggesting the strong covalent P − O binding interaction. As such, 

PO4 units can play an important role in stabilizing LFP/FP structures. In LFP, Fe3+ ions 

are reduced into Fe2+ with electrons donated by Li atoms during the lithiation reaction.  

The partially filled minority-spin Fe 3d-t2g states split and are predicted to be the VB and 

CB, opening up a gap predicted to be 3.8 eV in an agreement with experimental result 

(3.8 – 4.0 eV).166,167 As depicted in the DOS, the VB is highly localized and barely 

hybridized with O 2p orbitals. The same result has also been reported in the earlier study, 

in which Zaghib et el. explained that Madelung energy raise redox energy of Fe2+/3+ above 

O-/2- to stabilize the Fe2+ and O2- ions of the LFP structure.168 Moreover, splitting from the 

t2g states, the overlap of the VB and O 2p orbitals would also naturally be less significant. 

Compared with the FP, LFP has a more significant overlap of Fe 3d and O 2p states in 

the energy range of −5.5 ~ −0.5 eV. The rise of the Fe 3d bands could result from the 

interaction between the VB and the spin-majority Fe 3d states. At the mean time, our 

calculations show that the Coulomb interaction between Li+ and O2- can bring down the 

energy of O 2p bands, which may further increase the overlap.  
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7.3.2 PO4-deficient FePO4 Structure 

We examined how the deficiency of phosphate (PO4) polyanions alters the 

electronic structure and geometry of FePO4. As depicted in Fig. 7.3 (a) (inset), a PO4-

deficient structure was created by removing a neutral PO4 unit ( ) from a FePO4 

supercell with 24 PO4 units. While neighboring atoms are noticeably displaced, four of 

the five Fe atoms adjacent to become fivefold coordinated and the rest is fourfold 

coordinated. The removal of a neutral PO4 unit leaves three unpaired electrons which 

tend to localize on adjacent Fe atoms.  

 

Figure 7.3 (a) The DOS of PO4-deficient FePO4 [note the intensity of O 2p state is 
rescaled by 1/3]. (b) and (c) The band-decomposed charge densities corresponding to 
defect states I and II are plotted with an isosurface value of 0.005 electron/Å3. 

 
As presented in Fig. 7.3 (a), the projected DOS of the PO4-deficient structure 

exhibits two distinct defect states within the band gap. One defect level (indicated as I) 

lies just above the VB, and the other (II) is in the middle of the gap. The defect state I 

VPO4
0

VPO4
0
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shows overlap between spin-up Fe 3d and O 2p orbitals while spreading over neighboring 

Fe and O atoms (as demonstrated by the band decomposed charge density plot in Fig. 7.3 

(b); this suggests that the defect level is associated with the lattice distortions around 

. On the other hand, as shown in Fig. 7.3 (c), the excess electrons associated with 

defect state II seem to be highly localized on three neighboring Fe atoms; this is not 

surprising considering that Fe 3d states dominate the bottom of the CB in FePO4, and 

thus they readily accept excess electrons. 

 

 

Table 7.1 Valence states of the indicated Fe (left of slash) and distances (Å) from the Fe 
to PO4 vacancy center (right of slash) of in optimized structures of pristine and PO4-
deficient FePO4 under various charge states. 

 

To better understand the defect-induced changes on the bonding environment, we 

examined the structures for  of different charge states (q). For q = 1−, 0, 1+ and 2+, 

VPO4
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the variations in Fe valence state and distances from Fe to the vacancy center (Fe− ) 

are summarized in Table 7.1, together with values from the pristine case for comparison. 

In neutral state, due to the aforementioned charge localization, the neighboring three Fe 

atoms (a, c and d) are reduced to Fe2+. The local lattice surrounding  exhibits an 

outward expansion, and the adjacent PI atom is displaced slightly in [010] direction 

towards ; consequently, the PI−Fe distance increases from 3.22 Å (in the pristine 

case) to 4.08 Å. It is worth noting that the -induced lattice distortion appears to be 

asymmetrical with respect to the (010) plane spanned by Fe (a, d and e) as the − Feb 

and − Fec distances are different (3.34 and 3.46 Å, respectively). The slight deviation 

from symmetry is likely attributed to the unequal charge redistribution among the five Fe 

ions adjacent to , resulting in their differences in charge state and bond environment. 

For , with the additional hole, one of the three Fe2+ ions in  is oxidized to Fec
3+. 

The lattice distortion becomes symmetrical as two Fe ions (b and d) locating on the 

positive sides of the (010) plane have the same charge state (3+); in addition, we also 

found the displacement of the adjacent P atom to be much smaller if the lattice distortion 

was symmetrical. For , the additional electron tends to localize on Fe, and the lattice 

distortion is asymmetrical. For , with the additional two electrons, all five Fe3+ ions 

surrounding the PO4 vacancy are reduced to Fe2+, thus the symmetric configuration is 

restored, and the P-Fe (I) distance of 3.31 Å is very close to the pristine case (3.22 Å). 
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7.3.3 Relative Stability of Defected FePO4 in Various Charged States  

Figure 7.4 shows the relative formation energy of ,  and  with 

respect to , which is calculated by 

                      (7.3.1) 

where  is the total energy of the supercell, q is the charge state,  is valence band 

maximum (VBM), and  is the Fermi level. In the periodic approach, a homogeneous 

background charge is included to maintain the overall charge neutrality of a charged 

supercell. To account for the electrostatic interaction with the background charge, a 

monopole correction was made to the total energy of the charged system.169 For a point-

like charge in the 144-atom FePO4 supercell, the monopole correction is estimated to be 

smaller than 0.1 eV, which is reasonable given the considerably large dielectric constant 

of 17.5170.  Our calculation predicts the relative formation energies of ,  and  

to be -0.77, 0.76 and 1.83 eV at the VBM, respectively. Given the calculated FePO4 

bandgap around 1.75 eV, the first donor (+/ 0) and acceptor (0/ −), and the second 

acceptor levels (−/ 2−) are predicted to be 0.7, 0.87, and 1.08 eV, respectively. At the 

midgap ( ≈ 0.88 eV), has the lowest formation energy around -0.15 eV, suggesting 

that  may easily accommodate an additional electron under the intrinsic condition; 
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considering their small formation energy difference,  and  may coexist in the 

matrix. 

 

Figure 7.4 Variation in the relative formation energy of PO4-deficient FePO4 in different 
charge states with respect to as a function of the Fermi level relative to the valence bend 
maximum (Ev) for the computed FePO4 bandgap around 1.75 eV. 

 

7.3.4 PO4-deficient LiFePO4 Structure 

The PO4-deficient LFP structure considered in this work was created by removing 

a PO4 unit from a periodic 168-atom supercell containing 24 PO4 units, corresponding to 

4 at.% PO4-vacancy. The creation of a neutral PO4-vacancy ( ) leaves three unpaired 

electrons, which are predicted to localize on three of the five adjacent Fe ions as 

confirmed by the DOS and band-decomposed charge density analysis. 
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Table 7.2 Valence states of the indicated Fe (left of slash) and distances (Å) from the Fe 
to PO4 vacancy center (right of slash) of in optimized structures of pristine and PO4-
deficient LiFePO4 under various charge states. 

 

Table 7.2 summarizes the variations in Fe valence state and distances from Fe to 

the vacancy center (Fe− ) with q = 0, 1+, 2+ and 3+, together with values from the 

pristine case for comparison. While all Fe ions are 2+ in pristine LFP, three of the Fe ions 

adjacent to  are oxidized to 1+, which in turn reduces the (i) Coulomb repulsion 

between Fe ions, and the (ii) Coulomb attraction between Fe ions and neighboring 

(PO4)3− polyanions. Consequently, the Fe −  distances are shortened in comparison to 

the pristine case, leading to inward displacements of Fe+ towards .  Following this 

rational, the local structure is affected by the intricate interplay between aforementioned 
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Coulomb interactions. The adjacent Fe ions then exhibit inward or outward displacements 

depending on the excess electron distribution pertains to  of specific charges. 

 

Figure 7.5 The DOS of PO4-deficient LiFePO4 in charge state (a) neutral, (b) 1+, (c) 2+ 
and (d) 3+, respectively.  The insets are enlarged DOS detail of localized states indicated 
by green arrow.  The band-decomposed charge densities corresponding to those localized 
states are plotted with an isosurface value of 0.01electron/Å3. 

 

Figure 7.5 shows the DOS projected onto Fe, P and O atoms in PO4-deficient LFP 

of different charge states, together with the band-decomposed charge density plots shown 

in the insets (on the right). For [Fig. 7.5 (a)], two distinct defect states are found 

within the band gap; one defect level (indicated as I) lies right below the conduction band 

(CB), and the other (indicated as II) is around the middle of the gap. The defect state I is 

mainly composed of Feb and Fec 3d while state II shows some overlap between Fed 3d 
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and 4s, and O 2p (as also demonstrated by the band-decomposed charge density plots). 

This suggests the excess electrons are highly localized, such that the three Fe ions (b, c 

and d) are reduced to Fe+ as mentioned before, and the small degree of charge spreading 

to neighboring O atoms is likely due to the lattice distortion around . Furthermore, 

we see that at the top of the valence band (VB), Fe 3d states are split into three distinct 

peaks.  The blue arrow indicates the two peaks from Fe+ 3d, which are destabilized by the 

increasing repulsive force from Fe+−O2- antibonding states due to additional valence 

electrons from , and thus the upshift in energy. On the other hand, the two peaks 

from two undercoordinated Fe2+ ions (indicated by the red arrow) become relatively more 

stable (downshift in energy) due to the polyanion removal reduces the overlap between 

Fe2+ 3d and O2- 2p states.  As  becomes more positively charged [Fig. 7.5 (b-d)], the 

number of defect states within the gap decreases, and with each undercoordinated Fe+ 

oxidized to Fe2+, the Fe 3d at the top of VB tends to be further stabilized and shifts down 

in energy.  

 

7.3.5 Relative Stability of PO4-defected LiFePO4 in Various Charged States  

 To understand the stability of LFP matrix with electrons left by PO4-vacancy, we 

calculated the relative formation energy of with q = 0 to 4+ by Eq. 1, as shown in 

Fig. 7.6. In the periodic approach, a homogeneous background charge is included to 

maintain the overall charge neutrality of a charged supercell. For a point-like charge in 
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the 168-atom LFP supercell, the monopole correction is estimated to be smaller than 0.1 

eV, which is the same value to aforementioned 144-atom FP and reasonable given the 

considerably large dielectric constant of 19.817.   

 

Figure 7.6 Variation in the relative formation energy of PO4-deficient LiFePO4 in 
different charge states with respect to as a function of the Fermi level relative to the 
valence bend maximum (Ev) for the computed LiFePO4 bandgap around 3.8 eV. 

 

Our calculation predicts the relative formation energies of , ,  and  to be 

−7.9, −7.3, −4.8 and −2.6 eV at the VBM, respectively. Given the calculated LiFePO4 

bandgap around 3.8 eV, the first (+/ 0), second (2+/ +) and third (3+/ 2+) donor levels are 

predicted to be 2.55, 2.35 and 0.5 eV, respectively. At the middle gap ( ≈ 1.9 eV),  

has the lowest formation energy around −2.1 eV, suggesting that the PO4-deficient LFP 

matrix can easily lose three electrons.  
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Figure 7.7 The relative formation energy of PO4-deficient LiFePO4 with q = 0 to 4+ as a 
function of Li content (x) in the LixFeN(PO4)N−1 supercell (N = 24) with respect to the x = 
N−3 neutral case (q = 0). 

  

Previously, we predicted  to be the most favorable charge state in FP.171 

Interestingly, in the case of LFP,  appears to be the most favorable, indicating the 

relative stability of  varies depending on the Li content. That is, while the stability of 

 is presumably related to the Fe2+/Fe+ oxidation-reduction (redox) reaction governed 

by changes in stoichiometry (LiNFeN(PO4)N à LiNFeN(PO4)N−1), variations in Li content 

would influence the Fe oxidation and thereby affect the stability. Figure 7.7 shows the 

relative formation energy Ef(x) of  (q = 0 to 4+) as a function of Li content (x) in the 

LixFeN(PO4)N−1 supercell (N = 24) with respect to the x = N−3 neutral case (q = 0).  Here, 

we re-define the formation energy as 

    (7.3.2) 
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where  is the total energy of PO4-deficient supercell with q and x denoting the 

charge state and Li content, respectively,  is the formation energy defined earlier 

in Eq. 7.3.1 where x equals to N, and Etot(Li) is the per-atom energy of body-centered-

cubic (bcc) Li metal. 

In the case of x ≤ N−3, the system would always be most stable under neutral 

charge state since the formation of only results in Fe3+ → Fe2+ reductions.  As x 

increases from N−2 to N, Ef (x) of neutral states are predicted to be negative and continue 

to decrease in value with respect to the x = N−3 case, suggesting the PO4-deficient 

supercell remains stable approaching the fully lithiated composition (x = N = 24).  

Moreover, we find that the PO4-deficient matrix of varying Li contents can be further 

stabilized via Fe+ à Fe2+ oxidation, such that for x = N−2 and N−1, q = 2+ and 1+ are the 

most stable charge states, respectively. For the fully lithiated case (x = N), q = 3+ is 

predicted to be most energetically favorable as aforementioned. These results suggest that 

PO4-polyanion deficient matrices would be stable in all Li composition range up till the 

fully lithiated phase (x = N = 24), and the stability would be further enhanced if the 

system were positively charged. In either case, the lithiation capacity of LFP is not 

compromised via the creation of the PO4 polyanion vacancies.   
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7.3.6 Mechanical Properties 

Finally, we looked at how the PO4 deficiency affects the mechanical properties.  

Here we only considered the bulk modulus (B) which can be estimated by fitting the 

Murnaghan equation of state172 to the corresponding energy versus volume curve.  

Uniform tensile and compressive strains were imposed on the pristine, neutral ( ) 

PO4-deficient FP and triply positive charged ( ) PO4-deficient LFP structures to 

achieve ± 0.66 − 1 % volume changes. 

           (7.3.3) 

where E and E0 refer to the total energies of pristine and PO4-defficient FP/LFP at volume 

V and V0 (equilibrium), respectively, and B' is the pressure derivative of the bulk 

modulus; here, we increased the cut-off energy to 550-600 eV and force tolerance to 0.01 

eV/Å to refine energy variations with applied strain. While the predicted B values of 68.1 

(96.1) GPa for pristine FP (LFP) is in close agreement with previous theoretical results of 

73.6 (94.7) GPa,173 our calculations show a 20% (8.8%) reduction in B of 53.2 (87.6) GPa 

with only 4.2 at.% PO4-vacnacy in the matrix. These results suggest that both lithiated 

and delithiated FePO4 can be significantly softened by the presence of PO4 deficiency. 

We anticipate the softer/more flexible matrixes can in turn enhance the strain 

accommodation capability during cycling and thereby improve the cathode. Based on the 

aforementioned results of fundamental properties of PO4-deficient LFP/FP, we will 
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examine the influence on lithiation process from the formation of PO4-vacancy, and 

search for potential improvements on this cathode material.   

  

7.4 SUMMARY 

Spin-polarized DFT+U calculations were performed to investigate the structures 

and properties of PO4-deficient FePO4 and LiFePO4 at various charge states ( ).  Our 

calculation shows the PO4-deficient FePO4 structure has a limited distortion under the 

presence of . The excess electrons from was predicted to be localized on Fe 

which have broken bonds near the vacancy and stabilize the structure. The additional 

electrons and holes added in the matrix were also predicted to have similar tendency. The 

formation energy of with different charged states (q) were then calculated. The 

results show the first donor (+/ 0) and acceptor (0/ −), and the second acceptor levels (−/ 

2−) are predicted to be ranged from 0.7 to 1.08 eV, which suggests  can be 

stabilized with q equals to +1, 0, −1 in the matrix. 

In the PO4-deficient LiFePO4, three electrons left by one PO4 removal ( ) are 

predicted localized on three Fe+ ions adjacent to the vacancy. The reduction of Fe2+ ions 

to Fe+ lowers the attractive Coulomb force between the Fe+ ions and surrounding (PO4)3- 

polyanions, leading to inward displacement of Fe ions to the vacancy center. The DOS 

analysis illustrates a series of non-bonding states below the CB, which are related to the 

presence of . First of all, localized Fe+ 3d states consist of the unpaired electrons 
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from creating  are predicted in the gap. Below that, certain valence states of Fe+ are 

found shift to higher energies as being destabilized by the unpaired electrons. Meanwhile, 

valence states of two Fe2+ ions adjacent to the vacancy shift to lower energies, which are 

attributed to the stabilization of Fe − O antibonding states due to the decrease of overlap 

between Fe2+ 3d and O2- 2p states.  According to the relative formation energies for 

various charge states,  is predicted to be the most energetically favorable. For q = 3+, 

three aforementioned Fe+ ions in  case are oxidized to Fe2+. Thus, no high-energy 

localized state is predicted in the gap. It is worth mentioning that the reduction reaction of 

Fe+ → Fe2+ increases the attractive (repulsive) force to the surrounding (PO4)3- polyanions 

(Li+ cations) near the vacancy, resulting in an outward relaxation.  

Our calculations show that, for LixFeN(PO4)N−1, the most stable charge state is 

predicted to be q = 0, 1+, 2+, and 3+ with x = N-3, N-2, N-1 and N, respectively. 

Therefore, the capacity of PO4-deficient LiFePO4 as a cathode is not influenced by the 

excess charges in the matrix as the most energetically favorable charge states change 

during the lithiation process. Finally, we calculated the bulk modulus (B) of both FePO4 

and LiFePO4 structures with and without the presence of  vacancy. Our calculations 

show a 20% (8.8%) reduction in the bulk modulus of FePO4 and LiFePO4, respectively, 

with only 4.2 at.% PO4-vacnacy in the matrix. These results suggest that both lithiated 

and delithiated FePO4 can be significantly softened by the presence of PO4 deficiency.  

We anticipate the softened matrices could enhance the strain accommodation capability 

during cycling and improve the cathode performance. These fundamental findings 
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suggest the performance of the LFP cathode for Li-ion batteries can be engineered 

through creation of PO4 polyanion vacancies, which may increase the electrical 

conductivity as well as Li+ ion diffusivity. 
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