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Abstract 

Integrating Systematic Conservation Planning and Ecosystem Services: 

An Indicators Approach in the Hill Country of Central Texas 

 

Matthew Gerald Fougerat, MSCRP / MSSD 

The University of Texas at Austin, 2014 

 

Supervisor:  Frederick R. Steiner 

 

Ecosystem services are the aspects of the environment utilized to produce human 

well-being and are key elements of landscape sustainability.  Increasingly, measures of 

ecosystem services are being incorporated into conservation decision making.  However, a 

framework for evaluating systematic conservation planning ranked selection scenarios 

with indicators of ecosystem services has not been developed.  Using the Central Texas 

counties of Blanco, Burnet, Hays, Llano, San Saba, and Travis as a study, a suite of 

spatially explicit modeling tools, Integrated Valuation of Ecosystem Services and 

Tradeoffs (InVEST), are used to quantify carbon storage, soil conservation, and water 

provision.  A fourth service metric, ecosystem richness, is derived using Texas Parks and 

Wildlife ecological systems classification data.  The values of these four services are then 

used to evaluate four conservation scenarios, developed in conjunction with a local 

conservation non-profit, Hill Country Conservancy (HCC), and derived using Marxan 

decision-support software.   
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The evaluation process consists of both geographic information system (GIS) and 

statistical analysis.  GIS based overlay analysis is used to identify areas of multiple 

ecosystem service overlap.  Spearman correlation tables are used to test the spatial 

relationship among ecosystem services, as well as the relationship among each of the four 

conservation scenarios.  Wilcox-Mann-Whitney U tests (WMW) are used to assess the 

statistical significance of each scenario’s ecosystem service values as compared to the 

values of a random control scenario.   

The results of this work reinforce the findings that there is often significant 

variability in the spatial congruence of multiple ecosystem services and their provision 

across a landscape.  This work also supports the conclusion that the targeting of ecological 

phenomena for conservation concurrently targets areas supporting multiple ecosystem 

services.  More distinctively, the results verify the capacity of ecosystem service indicators 

to effectively inform an iterative systematic conservation planning process. 

At the local landscape-scale, this work provides HCC with defensible support of 

their conservation decisions based not only on organizational priorities, but also on 

ecosystem service values.  More broadly, this work provides a framework for evaluating 

conservation scenarios with spatially explicit values of ecosystem services which can be 

replicated across a wide range of project scales and objectives.   

 

Keywords: Ecosystem services, Systematic conservation planning, InVEST, Marxan, 

Landscape sustainability, and Central Texas  
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INTRODUCTION 

THE NEED FOR AN INTEGRATED CONSERVATION FRAMEWORK 

The Hill Country of Central Texas is a mosaic of distinct natural and sociocultural 

landscapes.  Like other important places globally, Hill Country landscapes are under threat 

from anthropocentric land-use transformations (Sanderson et al. 2002; Vitousek et al. 1997; 

Theobald 2005; Kjelland et al. 2007).  The consequences of land-use transformations often 

include the degradation of ecological functionality, loss of biological diversity 

(biodiversity), the erosion of rural cultural identity, and overall decreased economic 

productive capacity (MA 2005; Foley et al. 2005; Balmford et al. 2002; Sorice et al. 2012).  

To sustain the well-being of Central Texans over future generations, despite significant 

projected population growth, rapid urbanization, and potential increases in natural 

disturbances due to changes in global climate (Nielsen-Gammon 2011), the integrity and 

diversity of these landscapes must be ensured (WCED 1987; MA 2005).  

Conservation is one of the most cost-effective mechanisms of protecting both 

natural and sociocultural landscapes with a benefit to cost ratio estimated at 100:1 

(Balmford et al. 2002; Costanza et al. 1997). Human societies, however, are complex 

adaptive systems embedded in even more complex adaptive ecosystems (Berkes et al. 

2003; Liu et al. 2007; Walker et al. 2004).  Choosing what to conserve involves making 

decisions under uncertainty, complexity, and substantial biophysical and monetary 

constraints, in addition to conflicting human values and interests (Dietz et al. 2003; 

Salafsky et al. 2002).  The need to build consensus for action, despite these inherent 

difficulties, has evolved into the field of conservation planning.  

Conservation planning is the process of identifying, setting, and implementing 

goals aimed at preserving biodiversity and natural resources within human influenced 

landscapes.  Recently, two tools have emerged within the field to help facilitate decision-
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making and reasoning: 1) systematic conservation planning, and 2) the concept of 

ecosystem services.    

Systematic conservation planning (Margules and Pressey 2000) is a structured step-

wise approach to identifying conservation areas (Margules and Sarkar 2007).  Because it 

explicitly incorporates human influence in determining how conservation goals can be 

achieved, it is also highly iterative with feedback, revision, and reiteration possible at any 

stage in the process (Margules and Sarkar 2007).  The aim of systematic conservation 

planning is to establish quantifiable conservation goals, or targets, and, based on 

constraints, identify a network of optimal priority areas that achieve these targets in the 

most efficient, rigorous, and scientifically credible way possible. 

Ecosystem services are the environmental aspects of a landscape utilized either 

directly or indirectly by society in order to produce human well-being (Fisher et al. 2009).  

For example, the ecological processes that result in clean water, the provision of food, and 

clean air are direct utilizations.  Conversely, the ability of vegetation to sequester and store 

carbon is an indirect service.  Regardless of whether they are utilized directly or indirectly, 

the promise of ecosystem services in regards to conservation is their potential to be 

quantified, mapped, and valued based on the benefits society receives from them (Costanza 

et al. 1997; Daily 1997; de Groot 1992).   

Research in systematic conservation planning and in ecosystem services has 

advanced substantially in the past twenty years.  The development of optimization 

algorithms and software packages, as well as their simultaneous application to multiple 

resource allocation problems has led to a fundamental shift in the who, what, where, how, 

and when of conservation decision-making and implementation (Sarkar et al. 2006).  

Similarly, the inherent interdisciplinary nature of the ecosystem service concept has 

facilitated new ways of defining, classifying, and utilizing them across a broad spectrum 
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of natural, social, and economic science disciplines (Balmford and Bond 2005; Burkhard 

et al. 2010; Fisher et al. 2009; Wallace 2007).   

Consequently, within the last decade research into the use of systematic 

conservation planning and ecosystem services in combination has begun. In most instances, 

the combined application has involved the use of ecosystem services as targets within a 

systematic conservation planning framework (Chan et al. 2006; Izquierdo and Clark 2012).  

Although this method of integration holds potential, empirical evidence suggests a 

sometimes weak, and even negative, spatial correlation between cultural preferences, 

biodiversity richness, and ecosystem services—as well as between discrete ecosystem 

services themselves (de Groot et al. 2010; Cimon-Morin et al. 2013; Anderson et al. 2009; 

Bai et al. 2011; Costanza et al. 2007). This variability can lead to conservation solutions 

biased toward areas with high concentrations of targeted services but poorly suited to 

protect untargeted services, biodiversity richness, cultural identity, or any combination 

thereof.  Thus, structural integration remains a central challenge (Cimon-Morin et al. 2013; 

de Groot et al. 2010).    

Utilizing ecosystem services as spatially explicit performance measures, or 

indicators, rather than as targets, provides a more flexible method of integration in which 

a number of alternative conservation solution scenarios can be compared (Müller and 

Burkhard 2012; Perrings et al. 2011).   Indicators of ecosystem services have been used in 

evaluating scenarios of urban development in Oregon’s Willamette Basin (Nelson et al. 

2009) and rural land-use change scenarios in Minnesota (Polasky et al. 2011).  However, 

there remains a need to develop a similar framework for use in quantitatively comparing 

scenarios of landscape-scale systematic conservation planning ranked selections,—

hereafter referred to as conservation scenarios—specifically within the Hill Country of 

Central Texas. 
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RESEARCH OBJECTIVES 

This thesis is situated within the field of conservation planning.  With it I introduce 

a quantitative, synthesized framework for use by conservation practitioners and planners—

in Central Texas and beyond—in evaluating conservation scenarios with indicators of 

ecosystem services.  

My objectives in developing this framework are twofold.  At the global level, my 

goal is to develop an easily reproducible means to making more informed, efficient, 

reliable, and persuasive conservation decisions in which synergies and tradeoffs between 

conservation goals and ecosystem services are more effectively balanced—ultimately 

facilitating the transition to sustainable landscapes. At the local level, my objective is to 

expand upon a strategic conservation plan commissioned by a local conservation non-

profit, Hill Country Conservancy (HCC), by incorporating spatially explicit values of 

ecosystem services in an iterative decision-support context. 

How best to structurally integrate systematic conservation planning and ecosystem 

services is the overarching question impelling this research.  However, I specifically 

address the following questions: 

 Where within the contiguous Central Texas counties of Blanco, Burnet, Hays, 

Llano, San Saba, and Travis should a local conservation non-profit, Hill Country 

Conservancy (HCC), focus conservation efforts in order to efficiently balance 

regional need with organizational goals? 

 How can multiple ecosystem service values be integrated as indicators in a 

systematic conservation planning process? 

 Can conservation scenarios be effectively evaluated with indicators of ecosystem 

services? 

 How can ecosystem service indicators inform conservation decisions?  



 5

To answer these questions, I have organized this thesis as five chapters.  In Chapter 

1, I review the academic literature in order to situate this work within the context of its 

theoretical and applied underpinnings, including those on nature and its role in society, 

sustainability, and conservation.  In Chapter 2, I review aspects of the ecological landscape, 

the sociocultural landscape, and conservation as presently found within the study area—

the six Central Texas counties of Blanco, Burnet, Hays, Llano, San Saba, and Travis.   

In Chapter 3, I present the materials and methods used to integrate systematic 

conservation planning and ecosystem service indicators within a combined framework.  

Here, I show how Marxan decision-support software is used to develop four conservation 

scenarios: HCC, Water, Agriculture, and Ecology.  Additionally, I show how Integrated 

Valuation of Ecosystem Services and Tradeoffs (InVEST) models are used to quantify, and 

map three ecosystem service indicators: Water Yield, Soil Conservation, Carbon Storage; 

along with a separately calculated indicator of Ecosystem Richness derived using Texas 

Parks and Wildlife Department’s (TPWD) ecological systems classification data.  

Moreover, I also demonstrate how geographic information systems (GIS) based overlay 

analysis, a random control scenario, and statistical analyses—including Spearman’s 

correlations and the Wilcoxon-Mann-Whitney U tests (WMW)—are used to assess the 

application of ecosystem services as indicators in comparing conservation scenarios.   

In Chapter 4, I review and discuss the analysis results.  Within this chapter, I use 

the correlation results to reveal a rather weak spatial relationship among the four ecosystem 

service metrics.  Despite this spatial incongruence, and trusting in the combined results of 

the overlay analysis and WMW tests, I also prove that the conservation scenarios are more 

efficient at targeting areas supporting multiple ecosystem services than the random 

scenario.   I then discuss the implications of these findings, both in relation to similar 

research and also in terms of how they may be interpreted to inform conservation decisions.  
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Specifically, I elaborate on the inability to generalize ecosystem service relationships while 

also verifying the capacity of ecosystem service indicators to effectively inform an iterative 

systematic conservation planning process. 

Finally, I close this thesis with Chapter 5.  This chapter includes a discussion on 

the areas of further research uncovered during this process, explicitly in regards to 

ecosystem services, conservation planning, and conservation and sustainability. Also 

offered within this chapter are my final conclusions in which I reiterate not only the 

importance of continuing to develop efficient ways to incorporate ecosystem services in 

decision-support frameworks, but also on the relevance of this work in informing both 

broad-scale strategies and local planning decisions.    

The field of conservation planning is progressing rapidly to address present and 

future environmental challenges.  Likewise, the concept of ecosystem services is 

increasingly being utilized to justify conservation action.  Yet how best to integrate 

ecosystem services within a landscape-scale systematic conservation planning process 

remains an open question.  This thesis represents one small contribution to the quickly 

accelerating debate.   

 

 

 

 

 

 

 

 

 



 7

CHAPTER 1:  

NATURE, SOCIETY, SUSTAINABILITY, AND CONSERVATION:  
A REVIEW OF THE LITERATURE 

 In this chapter, I review both the theoretical and applied research upon which this 

work is founded in an effort to situate it within the broader knowledge base.  Key topics 

include the role of nature in society, the concept of sustainability, and the theory and 

practice of conservation.  As a result, I have organized this chapter according to three 

primary sub-sections: 1) Nature and Society, 2) Sustainability, and 3) Conservation.     

NATURE AND SOCIETY 

Conservation is contingent upon an understanding of what constitutes nature.  Yet 

the relationship between nature and society is not static but vacillates among cultures and 

time. In this sub-section, I review the literature to define nature—and nature’s role in 

society—in a contemporary theoretical context.   

What is Nature? 

In the broadest sense, nature represents the entirety of the physical universe from 

the subatomic to the cosmic, including the geologic, hydrologic, and chemical cycles which 

allow for the existence of life here on earth.  How humans actually relate to the physical 

world, and thus how they define nature, is commonly much more esoterically nuanced by 

culture, time, and scale (Cronon 1990; Nash 2001).  For example some East Asian, and 

many indigenous cultures, have historically assumed a biocentric perspective in which 

humans are but a single component in a universal nature (Descola and Pálsson 1996).  

Conversely, throughout most of documented Western history, and specifically since the 

industrial revolution, there has been a notable dichotomy between civilization and nature—

in this instance nature most often being identified as wilderness (Nash 2001).   
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Even within the Western perspective, the definition of nature, or wilderness, has 

evolved substantially within the last two-hundred years: from the “taming” of the rugged, 

desolate frontier wilderness of manifest destiny, to the sublime manifestation of natural 

perfection of Thoreau (1854); from the preservationist movement of John Muir (1901), to 

the wise consumption of nature’s wild resources as espoused by the Resource Conservation 

Ethic of Gifford Pinchot (1910); from the shift to wilderness-as-ecological-system of Aldo 

Leopold’s Conservationist Land Ethic (1949), to the modern environmental movement, 

inspired by Rachel Carson (1962), in which anthropogenic impacts on wilderness were 

broadly recognized; and finally, from the pristine wilderness of an indigenous pre-

Columbian America (Sale 1990; Shetler 1991), to William Denevan’s argument that 

wilderness itself is a myth and that indigenous Americans were hardly benign bystanders 

(1992). 

The implication of the disparity among these perspectives is that the human 

relationship with nature varies according to sociocultural values and beliefs.  In other 

words, our conception of nature is not universally built on immutable physical principles, 

but rather is conferred definition and form through cultural filters (Cronon 1990, 1996; 

Demeritt 2002; Gifford 1996; Greider and Garkovich 1994).  In short, nature is socially 

constructed.   

Nature as a Social Construction  

If nature is defined largely by the cultural values ascribed to it, then redefining 

nature is possible through a reexamination of those values.  Assuming the Western 

perspective of nature-as-wilderness—still arguably prevalent in the United States—as a 

point-of-reference, four sources provide compelling arguments for a novel, socially 

constructed definition of nature.   
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The first argument, offered by environmental historian William Cronon, focuses on 

how we temporally relate to nature. To Cronon (1996), nature, in the guise of wilderness, 

is a false premise encouraging us to adopt too high a standard for what we tend to view as 

exclusively nature. A more practical and beneficial approach would be to observe nature 

in the ordinary, thereby serving to temporally ground nature in the everyday (Cronon 

1996).  In this way, the daily societal interaction with nature is made manifest by its relative 

temporal closeness.  In other words, a neighborhood park, or even the trees in the median 

on the drive to work are not only equal in nature to the wilderness of Big Bend National 

Park—or closer in context, The Balcones Canyonlands National Wildlife Refuge—but 

perhaps more so because they are encountered on a daily basis.  

The second argument is provided by environmental philosopher Andrew Light and 

addresses nature in a spatial context.  According to Light (2010), in order to be made 

relevant to everyone, nature must not only be seen in the ordinary—as opposed to the 

perception of nature only as extraordinarily wild—but that its generality, and ultimately its 

utility, must also be tangible through a specific relation to place—“a psychologically robust 

and even morally loaded conception of location imbued with a storied relationship between 

people and the things around them.” This not only serves to locate nature spatially, it also 

emphasizes the local, social connection inherent within a given location.  Thus, a focus on 

place offers the context in which specific problems can be identified, different values 

understood, conflicts resolved, and choices made (Potschin and Haines-Young 2013). 

In coupling nature with a connotation of scale, sociologists Greider and Garkovich 

(1994) put forward a third argument.  To Greider and Garkovich (1994), “landscapes” are 

“symbolic environments” which reflect our own self-definitions of identity and culture in 

relation to our specific biophysical surroundings.  It is through the landscape that we 

incorporate elements of the physical environment into our cultural self-identity and through 
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which biophysical changes to that environment may, in turn, result in a redefinition of 

ourselves.  In short, landscapes are nature as an extension of ourselves. 

Addressing the hierarchical relationship of people and nature, the fourth and final 

argument comes from Steven Vogel in his rejection of Deep Ecology—a still influential 

philosophy within the environmental movement.  Dismissing human exceptionalism and 

the anthropocentric world-view of conservationists, Deep Ecology espouses a holistic, bio-

centric ideology where humans are merely one biotic component of an egalitarian 

ecosystem (Naess 1995). To Vogel (1996), this “soft-science” based, bio-centric point-of-

view is counterproductive.  Because humans are the only species capable of global 

environmental change, an anthropocentric view of nature must be taken so that we may 

fully accept our role as responsible stewards of the planet (Vogel 1996). 

In sum, and for the purposes of this work, nature is the physical universe and all the 

processes, cycles, and forms of life found on Earth, specifically as they relate to Central 

Texas.  Yet, as a social construction, nature is also temporally located in the everyday, 

which is to say it is utilitarian (Cronon 1996).  Nature is local, being spatially located 

through the idea of place (Light 2010).  And nature is symbolically understood as 

landscapes (Greider and Garkovich 1994).  Furthermore, because humans have the 

technological capacity to compress time and space on scales not seen anywhere else in 

nature—often to the detriment of natural systems which do not correspond to the same 

parameters—biocentrism is rejected in favor of a responsible anthropocentrism based on 

environmental stewardship (Vogel 1996).   

Through this combined definition, society and nature are now integrated, not as a 

single system, but rather as separate, inter-linked systems.  As such, the definition of nature 

remains malleable.  It can be both transformed by society, and, reciprocally, used to 

transform society.   
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Of course, to assume the social construction of nature does not mean that nature is 

created by society. Ecological processes and biological life will continue to operate, adapt, 

and evolve with or without human presence.  It also does not mean that all of nature is 

created equal in structure and function.  Much as there exists an urban to rural gradient in 

which social diversity and services increase from largely homogenous rural areas to 

heterogeneous urban centers, nature also exists along a gradient, albeit inversely, from the 

homogenous, highly urbanized, limited, nature of the neighborhood park, to the 

heterogeneous, service rich, highly wild—referred to hereafter as wild nature (McDonnell 

et al. 1997).  Rather, the social construction of nature is simply another mutation in the 

evolution of how society views and defines the natural systems with which it interacts.   

Conversely, humanity is completely reliant upon nature for its welfare and survival 

(Guo et al. 2010; MA 2005).   Society could not exist without the renewable and 

nonrenewable natural resources, or natural capital, that support the production of goods 

and services from which it derives benefit.  As such, understanding nature solely in terms 

of cultural values is insufficient.  To correctly reflect society’s level of dependence, nature 

must also be understood in terms of the value of the benefits humanity receives from it.  

The need to also value nature under these terms has culminated, thus far, in the idea of 

ecosystem services.   

Nature as Ecosystem Services 

The concept of ecosystem services originated two decades ago in collaborative 

attempts between economists and ecologists to build a theoretical framework for 

quantifying and valuing natural capital (Costanza et al. 1997; Daily 1997; de Groot 1992).    

Since that time, numerous definitions and classification schemes of ecosystem services 

have been developed to meet various objectives (Balmford et al. 2011; Boyd and Banzhaf 
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2007; Costanza 2008; de Groot et al. 2002; Fisher et al. 2009; TEEB 2010; Wallace 2007; 

MA 2005).   

The most widely adopted of these comes from the Millennium Ecosystem 

Assessment (MA) (2005) where ecosystem services were broadly defined as “the benefits 

people obtain from ecosystems” and classified into one of four service types: 1) 

“Provisioning services,” which include the provision of food, materials, and drinking 

water; 2) “Regulating services” such as air quality, climate, water, erosion, and pest 

regulation; 3) “Cultural services” such as recreation, aesthetic values, and spiritual and 

religious values; and 4) “Supporting services” including soil formation, photosynthesis, 

and water and nutrient cycling.   

The popularity of the general MA definition is understandable given the inherent 

interdisciplinary nature of the ecosystem service concept.  However, Wallace (2007) argues 

that, in the context of the MA, the use of the term “service” is somewhat ambiguous with 

ecosystem function and processes, such as soil formation, being conceptually indistinct 

from services, such as food provision.  In order to clarify the term “service,” Fisher (2009) 

defines ecosystem services as “the aspects of ecosystems utilized (actively or passively) to 

produce human well-being.” Defined this way, ecosystem phenomena, including structure 

and processes, become services if they are consumed by humans either directly or 

indirectly (Fisher et al. 2009).  The Fisher definition is assumed for use in this study 

because of its capacity to broadly incorporate indirectly utilized ecological phenomena, 

such as carbon storage, within a “service” framework, yet also remain consistent with the 

MA classification scheme.   

Under this framework, the concept of nature is characterized by an undeniably 

complex interaction between society and nature involving ecological processes, socio-

economic processes, and cultural values.  Consequently, what has been structured through 
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the effort to define nature in terms of both its social construction and ecosystem services is 

essentially the ontological underpinnings of a new paradigm of environmental research 

known presently as social-ecological systems (SESs). 

Social-Ecological Systems 

SES theory is an emergent framework for describing and defining the interactions 

between the human and natural worlds.  Although the origins of the SES concept trace back 

to C.S. Holling’s (1973) adaptation of general systems theory as an explanatory device for 

the functioning of ecological processes, most recent theoretical advances have been made 

by interdisciplinary teams of natural and social scientists addressing solutions to common 

property resource conflicts (Berkes 1996; Goulder et al. 1997; Dietz et al. 2003; Ostrom 

1990) and seeking to understand system resiliency (Gunderson and Holling 2002; Walker 

and Salt 2006).   

SESs—also referred to as coupled human-environment systems—are defined as 

complex adaptive systems with interacting and interdependent physical, biological, and 

social components, characterized by reciprocal feedbacks, and emphasizing a “humans-in-

nature” perspective (Carpenter and Folke 2006; Chapin, Kofinas, et al. 2009).  In essence, 

human societies are complex adaptive systems embedded in even more complex adaptive 

ecosystems (Liu et al. 2007).   

According to Chapin, Folke, et al. (2009), SESs demonstrate several fundamental 

characteristics: 1) SESs are self-organizing structures distinguished by the nonlinear 

interaction of a large number of physical components, including soil, water, and rocks; 

organisms, such as plants, microbes, and people; and the products of human activities, such 

as food, money, and buildings; 2) They have both amplifying and stabilizing feedbacks; 3) 

They are adaptive to change, whether through ecological processes or human agency.  For 
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instance, a significant drought may result in transitions of dominance in vegetative 

communities to more drought tolerant species.  Or, in the damming of rivers to create 

reservoirs; 4) They may exist in alternative stable states in a given environment, such as a 

grassland that replaces a patch of forest destroyed by a wildfire; and 5) They are inherently 

unpredictable because of uncertainties arising from internal processes and their often non-

linear response to external influences. 

SESs can be defined at myriad scales, ranging from the entire planet to the 

microscopic (Chapin, Kofinas, et al. 2009; Levin and Harvey 1999).  However, the degree 

to which the components interact is highly dependent on the regional system in which they 

are embedded, including cultural factors, which most often take shape at the landscape 

level (Chapin, Folke, et al. 2009; Greider and Garkovich 1994).  In other words, it is at the 

landscape level that most people typically interact with and intuitively understand the 

natural world.  Subsequently, landscapes have become pivotal scale domains in SES 

research (Wu 2013).   

The assumed importance of the landscape-scale in SES research now begs the 

question: what exactly is a landscape?   

What is a Landscape? 

Given the wide range of land-forms and the fluid composition of biological 

communities, “landscape” is often imprecisely defined in terms of size, composition, or 

defining features.  The intuitive, visceral understanding of the term is of “a large expanse 

of land and water” (Trombulak and Baldwin 2010).  As vague as this innate definition may 

be, scholarly designations are often just as unstructured and varied. From an academic 

perspective, the term landscape typically implies a heterogeneous mosaic of local land-

forms, plant and animal communities, and human land-uses combined over greater and 
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greater areas (Trombulak and Baldwin 2010).  While, some scholars try to place landscapes 

within a nested, hierarchical scale of land forms often below that of regions (Forman 1995), 

many other authors refer to an entire ecoregion, such as the Edwards Plateau, as a single 

landscape (Trombulak 2010). 

More recently, a move has been underway to define a landscape by the parameters 

set forward within the research itself.  For example, Cumming et al. (2013), define 

landscapes as “spatially bounded entities that are heterogeneous in many key elements and 

processes of interest.”  Under this definition, a landscape can be a single square-meter patch 

of grassland, or an entire continent, as long as the scale is appropriate to the patterns or 

processes under examination.   

For the purposes of this work, I assume the Cumming et al. (2013), definition of 

landscape.  With this classification, I am able to designate the geopolitically bounded, six-

county study area a distinct landscape, despite the fact that it encompasses numerous other 

hierarchically-nested landscapes, contains only a portion of Edwards Plateau ecoregion, 

and also includes segments of adjacent ecoregions.  What becomes important under this 

characterization is not the determination of the boundary itself, but rather the spatial-

binding of the SES processes and interactions being examined within the landscape’s 

borders.  In other words, this work’s six-county landscape provides a place-based 

framework for engaging questions involving social and ecological interactions and 

processes; including questions of sustainability in Central Texas. 

SUSTAINABILITY  

Much like the fluid definition of both nature and landscape, sustainability is also 

an amorphous concept.  In the ensuing sub-section, I engage the broad ranging theoretical 
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literature on sustainability in order to define, specifically, what that entails in terms of this 

work.     

Sustainability in Social-Ecological Systems 

In a perfect world, the flow of inputs and outputs in a social-ecological system 

would remain in a relatively stable, steady-state equilibrium between the consumption of 

the Earth’s renewable natural resources, the rate at which those resources are replenished, 

and the equitable rationing of non-renewable resources.  This highly simplified ideal 

represents the concept of sustainability broadly defined by the Brundtland Report (1987) 

as the ability of present generations to meet their needs without compromising the ability 

of future generations to meet their own needs.   

Since its publication, there have been some notable refinements to the Brundtland 

definition.  In the “triple-bottom-line” iteration, sustainability is based on three pillars: 

environment, society, and economy (Elkington 2004).  To achieve sustainability under the 

triple-bottom-line is to simultaneously achieve environmental, economic, and social 

sustainability—the whole is the sum of its parts.   

The concept of “strong sustainability” further refined both the Brundtland 

definition and the triple-bottom-line structure of sustainability (Daly 1995).  In strong 

sustainability, rather than overlapping pillars, the components of sustainability are nested: 

economic activities are nested within the social domain, and both the economic and the 

social are nested within, and constrained by, the environment (Daly 1995).  Strong 

sustainability represents a consistent, albeit, precautionary expression of the Brundtland 

definition in which the environment is necessarily given deference (Wu 2013).  As such, it 

is the conceptualization of sustainability assumed in this work. 
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Figure 1.1 Conceptualization of Strong Sustainability 
In the concept of strong sustainability, social-ecological sustainability is contingent on 
human activities not exceeding the capacity of ecosystems to provide services.  In turn, 
the capacity of ecosystems to provide services is constrained by the earth’s life support 
system. Redrawn from Chapin, Folke, et al. (2009). 

In each of the three iterations of sustainability mentioned,  it is assumed that society 

and nature can reach an optimal state through efficiency, eventually attaining an 

equilibrium between human population, natural resource use, the carrying capacity of the 

planet, and human well-being (Selman 2008).  This definition of sustainability may be 

sufficient at the global scale where remaining within the carrying capacity of the planet is 

an absolute.  However, attaining such an equilibrium at the landscape level is not likely.   

Landscape scale SESs are highly dynamic and unpredictable with frequently 

occurring disturbances, both natural and anthropogenic in origin.  The effects of both large-

scale directional disturbances such as climate change, and non-linear abrupt perturbations 

such as drought, flood, fire, or economic crises, are most acutely felt at this level, leaving 

the affected SESs vulnerable to regime shifts, or the crossing of thresholds into novel, often 

less desirable states (Capra 2002; Chapin, Kofinas, et al. 2009; Walker et al. 2004; Walker 

and Salt 2006).   As a result, the capacity of a landscape scale SES to provide ecosystem 

services is diminished, thereby increasing the likelihood of negative impacts in terms of 
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the local economy (Farber et al. 2006; Haberl et al. 2006), poverty (Adams et al. 2004), 

community development (Roseland 2000; Thin 2002), and agricultural production 

(Bennett et al. 2006; Gabriel et al. 2010).   

If ecosystem services, and thus, human well-being are to be maintained or improved 

within a local context and over the long term, the landscape level SES must be both resilient 

and adaptable to disturbances.  Walker et al. (2004) define resilience as “the capacity of a 

system to absorb disturbance and reorganize while undergoing change so as to still retain 

essentially the same function, structure, identity, and feedbacks of the pre-disturbance 

system.”  Similarly, adaptability is the capacity of human actors in a system to influence 

or manage resiliency, whether intentionally or unintentionally (Walker et al. 2004).  

Together, resiliency and adaptability represent the mechanisms through which natural and 

social systems, respectively, respond to unpredictable change in order to dynamically 

maintain vital processes and services.   

This is not to suggest that sustainability and resiliency are necessarily contrasting 

terms.  Resiliency and adaptability, along with vulnerability—defined by Turner et al 

(2003) as the degree to which a system or system component is likely to experience harm 

as a result of disturbance—are all integral characteristics of a concept of sustainability 

which transcends environmental carrying capacity or the stability of ecological processes 

(Wu 2013).   Rather, it is to suggest that in defining sustainability, notions of scale must 

also be taken into consideration.  As a result, defining sustainability for a landscape level 

SES means defining landscape sustainability.   

Landscape Sustainability 

Numerous scholars have proposed definitions of landscape sustainability within 

recent years.  Variations have been inspired by the Brundtland definition (Forman 1995; 
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Turner et al. 2013), as an extension of the TPL approach (Selman 2008), based on 

multifunctionality in landscape design and planning (Musacchio 2009), and focused on the 

provision of ecosystem services (Nassauer and Opdam 2008; Potschin and Haines-Young 

2006).  For the purposes of this study, a definition developed by Wu (2013), centered on 

landscape-specific ecosystem services, and incorporating resilience and adaptability in a 

manner consistent with the concept of strong sustainability, is assumed:  

Landscape sustainability is the capacity of a landscape to consistently provide 
long-term, landscape-specific ecosystem services essential for maintaining and 
improving human well-being in a regional context and despite environmental and 
sociocultural changes.   

In accepting this definition, the question now becomes: how can the provision of 

landscape-specific ecosystem services be sustained within the Central Texas study area 

despite unpredictable environmental changes due to climate change or drought, and 

sociocultural changes from rapid urbanization and population growth?   

There are two primary solutions to this question.  One solution is ecological 

restoration.  Although restoration will undoubtedly play an increasing role in the move 

toward landscape sustainability, it is limited in scale due to cost, often ineffective due to 

lack of complete ecological knowledge, less productive in terms of biodiversity and 

ecosystem services than lands left intact, and filled with uncertainty in outcomes and 

consequences (Benayas et al. 2009).  At present, the most consistently effective answer to 

this question, in terms of both ecological function and socio-economic costs, is the 

alternative solution: conservation.   

CONSERVATION  

According to Smith and Wishnie (2000), conservation is defined as any action or 

practice that is designed to prevent or mitigate resource depletion, species extirpation, or 
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habitat degradation.  That conservation is an intrinsic component of landscape 

sustainability is largely undebated.  However, conservation requires acceptance by a 

diverse set of participants, often with disparate views and interests.  Thus, it is the 

socioeconomic motivations, implementation mechanisms, and planning strategies that 

beget the majority of conservation research.  In the following sub-section, I explore the 

literature regarding these issues as a means to situate this study within the broader context 

of applied conservation science, specifically within the field of conservation planning.  

The Shifting Conservation Rationale 

Beginning with Egypt at least 3000 years ago, and being noted in passages of the 

Bible’s Old Testament, the concept of setting aside land or resources has been recorded 

through history and across cultures (Alison 1981).  The historical motivations for 

conservation have been in the form of legal decrees citing privileged use, the preservation 

of flora and fauna, spiritual significance, and aesthetic value (Alison 1981; Diamond 2005).  

More recently, the call to conservation action has been most commonly associated with the 

loss of biological diversity (biodiversity)—or the variety of life on the planet.   

By the end of the last century it had become apparent that global biodiversity was 

declining at unprecedented rates estimated at one thousand times higher than historic 

background levels, largely due to land-use transformations associated with expanding 

populations and economic growth (Hoekstra et al. 2005; Sanderson et al. 2002; Steffen et 

al. 2007; Vitousek et al. 1997). Since that time, tremendous effort and resources have been 

aimed at sustaining biodiversity through conservation action (Adams et al. 2010; Naidoo 

and Ricketts 2006).   

Thanks to these efforts, the disproportionate benefits of biodiversity conservation 

to ecosystem health and human well-being—estimated at a benefit to cost ratio of 100:1 
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(Balmford et al. 2002)—are now well understood within the scientific community (Ehrlich 

and Wilson 1991; Naidoo and Ricketts 2006; Odling-Smee 2005; Pimentel et al. 1997).  

Still, these benefits are exceptionally difficult to translate into public policy because they 

are either couched in moral arguments, not fully captured in commercial markets or not 

comparable in terms of economic services and manufactured capital (Costanza et al. 1997).  

As a result, public concern for conservation action aimed exclusively at biodiversity seems 

to be waning (Novacek 2008; Pearce 2007).  Moreover, as the Millennium Ecosystem 

Assessment (MA) (2005) made poignantly clear, the loss of biodiversity is not an end unto 

itself, but rather a symptom of more pervasive ecological degradation. 

In terms of conservation, the MA has had a profound influence on the trajectory of 

research and practice.  Developed by over 1,300 scientists, the MA used a SES framework 

for documenting, analyzing, and understanding the effects of environmental change on 

ecosystems and human well-being (Carpenter et al. 2009).  Rather than view ecosystems 

exclusively in terms of biodiversity, the MA considered them through the lens of the 

services and benefits ecosystems provide society, of which biodiversity plays a key role at 

all levels of service production (Costanza et al. 2007).  In doing so, the MA shifted the 

predominant rationale from one defined by the separation of nature and society, to a 

platform of “conservation for the people” (Kareiva and Marvier 2007).  

This shift has opened the door to new lines of argument, innovative ways of 

identifying, quantifying and valuing nature, and conservation aimed not only at wild nature, 

but aspects of cultural identity such as agriculture, recreation, and aesthetics.  In essence, 

conservation has morphed from a metaphorical wall, to a bridge constructed to ensure that 

the flow of ecosystem services remains unimpeded as it passes from the environment to 

society, and ultimately, the economy—as envisioned by nested hierarchical relationship of 

strong sustainability.   
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Figure 1.2 Conceptualization of Conservation’s Role in Landscape Sustainability 
This conceptualization of landscape sustainability is based on, and adapted from, the 
concept of strong sustainability as presented by Chapin, Folke, et al. (2009).   In this 
version, conservation is a vital extension of the economic and social spheres, acting as a 
bridge into the environmental sphere, and thus, ensuring a sustained supply of ecosystem 
services. 

Mechanisms of Conservation 

At present, conservation action has largely been driven by public policy and 

enforceable laws aimed at preserving aesthetic quality, protecting natural resources, or 

preventing extinctions at a national level.  For example, the United States has been a 

pioneer in federally mandated conservation with the world’s first national park in 1872 

(Yellowstone National Park), the first transnational treaty aimed exclusively at species 

protection in 1918 (Migratory Bird Treaty Act), the preservation of wild nature in 1964 

(Wilderness Act), the protection of common pool resources in 1969 and 1972 (National 

Environmental Policy Act and the Clean Water Act, respectively), and the safeguarding of 

the Nation’s most endangered and threatened species in 1973 (Endangered Species Act).   
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The proliferation of similar policies, both at the State level and around the globe, 

speak to the success of these measures in achieving their stated goals (Andreen 2003; 

Carson and Mitchell 1993; Schwartz 2008; Snape 1996; WDPA 2014).  However, these 

top-down mechanisms, though arguably successful, remain insufficient (Rodrigues et al. 

2004).  As of 2012, approximately 12% of the Earth’s terrestrial surface is currently under 

some form of protected status, yet biodiversity and ecological integrity continue to decline 

(Rands et al. 2010).  It is now well recognized that to adequately protect wild nature, 

biodiversity, and the provision of ecosystem services, mechanisms aimed at the 

conservation of private lands must play an increasing role (Knight 1999; Langholz and 

Lassoie 2001; Wright and Czerniak 2000).   

The methods of private land conservation vary.  Federally mandated direct 

regulation—specifically as enforced under the Endangered Species Act (ESA)—has 

played a significant role in conserving private lands through the designation of critical 

habitat and the proliferation of multiple-species habitat conservation plans (Schwartz 

2008).  Although effective, some have viewed conservation mandated through the ESA as 

placing an undue burden on private landowners rendering it politically unpopular (Innes et 

al. 1998).  In contrast, voluntary conservation programs, such as wildlife management 

cooperatives, are increasing in use, though their long-term effectiveness is still in question 

(Sorice 2008).    

Some of the more novel approaches to conservation include incentive-based 

mechanisms.  For example, tax policies encouraging low-intensity land management 

practices, such as wildlife management (Texas House Bill 1358) or water stewardship 

(Texas Senate Bill 449), in exchange for lower appraised property valuation options were 

passed by the State of Texas in 1995 and 2013, respectively.   Furthermore, policies in 

which individuals or communities are directly compensated for actions that increase the 
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provision of ecosystem services, referred to as payments for ecosystem services, also hold 

great promise (Jack et al. 2008).  Nevertheless, at present, the effectiveness of incentive-

based conservation mechanisms remain unclear (Kosoy and Corbera 2010; McElwee 

2012).   

Within the United States, the most common method of conservation on private land 

is now conservation easements (Kiesecker et al. 2007).  Conservation easements are 

voluntary agreements entered into by property owners in which their development rights 

are transferred to a governmental entity or qualified conservation organization—such as 

HCC—in perpetuity in return for direct payment or tax breaks (Kiesecker et al. 2007).  

Although conservation easements are not free of criticism, their use has grown as a result 

of their flexibility in preserving not only biodiversity, as research suggests, but also 

working and cultural landscapes, yet still allowing private ownership and limited economic 

activity (Kiesecker et al. 2007; Morris 2008).  Furthermore, as Kiesecker et al. (2007) 

indicates, the selection of lands for conservation easements has become increasingly 

deliberate with clear ecological objectives.   

To facilitate landscape sustainability, it is highly likely that Texas, being over 95% 

privately owned, will continue to rely on conservation easements to protect its unique 

natural and sociocultural landscapes.  HCC, along with similar organizations, will play an 

increasingly important role in the future of Texas conservation.  This heightened 

responsibility must be balanced within a highly heterogeneous biophysical landscape, an 

equally diverse set of participants, and limited resources.  Thus, to be effective, 

conservation on private land must be strategic.   
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Conservation Planning 

Conservation planning has developed as a means to optimize conservation and 

land-use decisions within human dominated and natural landscapes.  With roots in island 

biogeography (MacArthur and Wilson 1967), environmental planning (McHarg 1969), and 

conservation biology (Soule and Wilcox 1980), conservation planning explicitly 

incorporates human land-use, laws, regulations, economics, aesthetics, and multiple 

perspectives into a comprehensive framework for determining how conservation goals can 

be achieved (Trombulak and Baldwin 2010).  The traditional aim of conservation planning 

has been to separate elements of biodiversity from processes that threaten their existence 

by establishing protected areas—also referred to as reserves.   

However, questions regarding the overall effectiveness of reserves designed under 

the traditional conservation planning model have emerged.  Empirical evidence began to 

confirm that selection of reserve sites was being driven largely by socioeconomic 

preferences rather than ecological need.  For example, Joppa and Pfaff (2009) showed that 

protected areas tended to be concentrated on land that is too remote or unproductive—

typically at higher elevations and steeper slopes—to be important economically.  In 

contrast, the greatest number and most diverse assemblage of species is often found at 

lower elevation in areas valuable for agriculture or settlement (Rodrigues et al. 2004; Scott 

et al. 2001).   

Furthermore, competition for limited resources has also led to a focus on grand 

scenery and wilderness over the complete representation of biodiversity at all levels of 

organization (Margules and Pressey 2000).  As a result of these socio-economic/socio-

political conflicts, newly established protected areas were likely to be relatively 

unproductive islands, functionally disconnected from landscape level ecological processes, 
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and surrounded by largely unregulated human land-uses which threaten their persistence 

(Rodrigues et al. 2004; Margules and Pressey 2000; Scott et al. 2001).   

Systematic Conservation Planning 

Originally developed by Margules and Pressey (2000) to address inefficient, site-

by-site policy and design of the traditional conservation planning model, systematic 

conservation planning (SCP) is a structured step-wise approach to solving conservation 

problems in a rigorous and scientifically credible manner.  The aim of SCP is to establish 

quantifiable conservation goals, called targets, and, based on constraints, identify a network 

of priority areas that achieve these targets in either the smallest area possible (minimum 

set; Wilson et al. 2009) or to maximize the benefits for a given budget (maximal coverage; 

Church et al. 1996) according to a heuristic (non-exact) or optimal (exact) algorithm.  Key 

advantages of the SCP framework include the fluid integration of multiple disciplines, a 

highly iterative and transparent process, clear goals, and quantifiable success or failure in 

achieving those goals (Margules and Sarkar 2007; Margules and Pressey 2000).   

Following the precedent established by Margules and Pressey (2000), several SCP 

protocols have now been developed (Pressey and Cowling 2001; Groves et al. 2002; 

Margules and Sarkar 2007).  Each include a number of non-unidirectional steps intended 

to guide planners through the complete conservation process; from participant 

identification and data gathering to reserve selection and management; with feedback, 

revision, and reiteration possible at any stage (Margules and Sarkar 2007).  In practice, the 

inclusion of particular steps is highly adaptable and dependent on the nature of the 

conservation problem being addressed, the collective goals of the participants, and the 

intended use of the results.   
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Many of the SCP stages are basic elements of any planning process.  However, for 

explicit problems of ranked selections, such as presented in this work, two fundamental 

steps distinguish SCP from the traditional conservation planning model (Margules and 

Sarkar 2007): 1) The identification of conservation targets; and 2) The selection of 

conservation priorities based on complementarity.    

The setting of conservation targets is one of the unique characteristics of SCP in 

that it allows for measurable results.  In general, targets are either species based or reflect 

social preferences for the landscape, such as multifunctional agriculture or ecosystem 

services (Wilson et al. 2009).  For each biotic, environmental, or sociocultural variable—

collectively termed conservation elements (Margules et al. 2002)—considered within a 

planning area, targets can be specified by absolute number, probability of occurrence, or 

proportional representation (Trombulak 2010).   

For instance, species based targets may be specified as 1500 ha (3,706.6 acres) of 

each vegetation type in order to ensure a comprehensive and representative conservation 

network (Moilanen et al. 2009).  For ecosystem services or other social objectives, targets 

may be at least 50% of all stored carbon (Chan et al. 2006), or to maximize a portfolio of 

cultural resources such as agricultural lands or recreational open space (Stoms et al. 2011).   

Ideally, targets would be based exclusively on empirical evidence, but scientific 

justification is rarely available for all conservation elements.  Thus, defining targets 

remains both art and science, often subjectively—albeit transparently—based on particular 

organizational goals.    

The second distinguishing characteristic of SCP is complementarity.  In order to 

solve either minimum set or maximal coverage conservation problems, SCP relies on the 

concept of complementarity—a step-wise, iterative process in which successive selections 

are prioritized, one-by-one, based on the representation of conservation elements that are 



 28

not adequately represented in the existing selections, and, therefore, “complement” those 

elements already contained (Kirkpatrick 1983; Margules et al. 1988; Vane-Wright et al. 

1991; Nicholls and Margules 1993).  As a result, the sites selected at each iteration are not 

necessarily the most diverse, but those that add the most targeted conservation elements to 

the initial network (Margules and Pressey 2000).   

 

 

Figure 1.3 Simplified Complementarity Example 
This example graphically depicts the concept of complementarity in regards to a 
minimum set problem.  In this simplified version, targets are one occurrence for 
conservation elements (CE) a through g.  Area A is selected first because it has both the 
greatest number of unique elements and the highest element richness.  Area D is 
subsequently selected because it adds a greater “complement” of unique elements to the 
solution set than either Area C or Area B, despite containing fewer elements.  Adapted 
from (Ogren 2008). 
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Numerous algorithms and corresponding software packages have been developed 

for use in computing complementarity including Marxan, C-Plan, and ResNet (Sarkar et 

al. 2006).  Although each return broadly similar results (Carwardine et al. 2007), Marxan—

which utilizes a spatially explicit heuristic algorithm termed “simulated annealing” to solve 

minimum set problems—has become the most commonly used.  The reasons for Marxan’s 

wide adoption are because it is: well documented and supported by its developers, 

continually improved for increased flexibility (Watts et al. 2009), integrated with 

geographic information systems, freely available in a format that runs on personal 

computers, and efficient in simultaneously handling multiple conservation elements and 

targets (Ball et al. 2009; Trombulak 2010).   

The use of SCP and Marxan has most often been applied to the design of species 

based reserve networks (Moilanen et al. 2009). For example, Marxan has been used for the 

ranked selection of avian habitat within a 3200 km (~2,000 mile) corridor (Pearce et al. 

2008), combined terrestrial and freshwater amphibian habitat (Becker et al. 2010), and 

coastal marine fisheries (Klein et al. 2008).  The flexibility of Marxan in incorporating 

multi-criteria targets allow it also to be used to address other natural resource management 

problems such as multifunctional agriculture (Machado et al. 2006; Stoms et al. 2011), 

ecological restoration (McBride et al. 2010), water protection in Central Texas (Siglo 

2012), and more importantly for this study, ecosystem services (Chan et al. 2011; Chan et 

al. 2006; Izquierdo and Clark 2012).   

The Role of Ecosystem Services in Systematic Conservation Planning 

The ecosystem service concept is inherently transdisciplinary, incorporating 

fundamentals of biology, ecology, sociology, and economics into a single conceptual 

framework. With the decrease in global ecosystem service supply, and recognition of the 
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direct impact of ecosystem service loss on human well-being now broadly recognized (Guo 

et al. 2010), much recent research has been focused on quantifying, mapping, valuing, and 

assessing a wide range of ecosystem services, as well as their synergies and tradeoffs (Egoh 

et al. 2008; Reyers et al. 2013; Tallis et al. 2008; Tallis and Polasky 2009; Naidoo et al. 

2008; Plieninger et al. 2013; van Berkel and Verburg 2014).  As a result, measures of 

ecosystem services are increasingly being incorporated into decision-making processes 

such as natural resource management (Liu et al. 2013; Schmitt and Brugere 2013), land-

use planning (Barral and Oscar 2012; Niemelä et al. 2010), sustainable development (Gren 

and Isacs 2009; Vidal-Legaz et al. 2013), design (Jones et al. 2012; Windhager et al. 2010), 

and, perhaps most profoundly, in conservation planning—as suggested by a recent review 

in which 153 peer-reviewed articles were identified as relating measures of ecosystem 

services to biodiversity conservation in some capacity (Cimon-Morin et al. 2013).   

Research directly incorporating ecosystem services into a systematic conservation 

planning process, though showing great promise (Egoh et al. 2008), has thus far been 

limited to a few studies (Chan et al. 2011; Chan et al. 2006; Izquierdo and Clark 2012; 

Larsen et al. 2011; Naidoo et al. 2008; Onaindia et al. 2013; Thomas et al. 2013).  Presently, 

there is no definitive approach for explicitly integrating ecosystem services into SCP 

problems, although developing frameworks compatible with popular tools of reserve 

design, such as Marxan, is widely viewed as beneficial (Chan et al. 2011; Chan et al. 2006; 

Izquierdo and Clark 2012).   

In most previous SCP examples, ecosystem services have been integrated as 

targeted benefits.  In the targeted benefit approach, the reserve-design algorithm considers 

ecosystem services as intrinsically important and attempts to minimize costs while 

maximizing benefit.  The problem with this approach is that there is often a weak, and even 

negative, spatial correlation between ecosystem services and other common targeted 
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benefits such as biodiversity, species, or ecosystems, as well as between discrete categories 

of ecosystem services and scales of measurement (Cimon-Morin et al. 2013).   

For example, on a global scale, regulating services, such as carbon storage, tend to 

be positively correlated with wild nature and biodiversity, yet negatively correlated to 

provisioning and cultural services such as food production (Anderson et al. 2009; Egoh et 

al. 2008; Holland et al. 2011; Maes et al. 2012).  Alternatively, when analyzed at the local 

scale, biodiversity and high carbon storage value may no longer spatially coincide 

(Anderson et al. 2009; Nelson et al. 2009). Thus, using a targeted benefit approach 

increases the risk of biased conservation solutions, unmet targets, or undesirable trade-offs 

between other conservation priorities. 

In response to this issue, Chan et al. (2011) incorporated ecosystem services using 

a co-benefit/cost approach.  Reserve-design algorithms, like Marxan, typically combine 

targeted benefits with a ‘cost surface’ in order to help specify reserve selections while 

minimizing ‘costs’ (Ball et al. 2009).  In the method used by Chan et al. (2011), multiple 

ecosystem service values were combined into the cost function of Marxan creating a 

framework of net-benefit maximization in which the ecosystem services are substitutable.  

Although the results show promise in yielding less costly reserve networks, this approach 

has not been tested at fine scales and remains limited by the inability to simultaneously 

incorporate spatially variable cost values or threats—which are typically used to create the 

‘cost surface’—and co-benefits (Chan et al. 2011).   

An alternative to either the targeted benefit or co-benefit/cost approach is to use 

ecosystem services as indicators to evaluate SCP ranked selections.  In general, indicators 

are communication tools that enable a simplification of highly complex phenomena, 

typically for specific decision-making purposes. According to Heink and Kowarik (2010), 

an indicator in ecology and environmental planning is a “component or a measure of 
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environmentally relevant phenomena used to depict or evaluate environmental conditions 

or changes or to set environmental goals.”  Significantly, the designation of ecosystem 

services as ecological indicators is supported by the Fisher et al. (2009) definition of 

ecosystem services as ecological phenomena.   

There is recent precedent in using ecosystem service indicators to compare 

scenarios, albeit not within a systematic conservation planning context.  Nelson et al. 

(2009) used InVEST derived ecosystem services to evaluate the impact of urban 

development scenarios in the Willamette Basin of Oregon.  Similarly, Polasky et al. (2011), 

used ecosystem service indicators as a means of measuring the effect of land-use change 

scenarios in rural Minnesota.  Yet there remains the opportunity to develop an integrated 

framework for use in evaluating conservation scenarios with spatially explicit values of 

ecosystem services.   

With the remainder of this work, I take the opportunity to present such a framework; 

beginning with a social-ecological system review of the study area’s natural and cultural 

landscapes in the proceeding chapter.    
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CHAPTER 2:  

THE STUDY AREA: BLANCO, BURNET, HAYS, LLANO,            
SAN SABA, AND TRAVIS COUNTIES 

The Texas Hill Country is a distinct biophysical and sociocultural region.  

Demarcated primarily by the Edwards Plateau ecoregion, the Hill Country encompasses 

twenty-one contiguous Central Texas counties.  In 2011, the local conservation non-profit 

Hill Country Conservancy (HCC) initiated a strategic planning process intended to identify 

conservation priorities within these counties based on a thorough assessment of regional 

opportunities and threats.  In the first phase of this process, variables such as boundaries, 

population growth, existing open space, land-use and land-cover patterns, land-market 

values, rare and threatened species, and both ground and surface water quality and quantity 

issues were evaluated and combined with expert opinion, organizational objectives, and 

landowner feedback in order to identify a landscape-scale area of focus for HCC’s 

conservation efforts over the next twenty years (Siglo 2013).   

Completed in January 2012, Phase I resulted in the selection of the following six 

Hill Country counties, as seen in Figure 2.1, comprising over 1.4 million hectares (3.5 

million acres): Blanco (184,722 ha; 456,459 acres), Burnet (264,001 ha; 652,361 acres), 

Hays (175,660 ha; 434,065 acres), Llano (250,118 ha; 618,055 acres), San Saba (294,496 

ha; 727,716 acres), and Travis (265,315 ha; 655,607 acres). 

In this chapter, I provide a general overview of the natural and the sociocultural 

components and processes shaping the landscape of these six counties.  In keeping with 

the social-ecological system framework, I have organized this chapter according to three 

subsections: 1) The Natural Landscape, which focuses on the ecological system; 2) The 

Sociocultural Landscape, which focuses on the social system and aspects of local culture; 

and 3) Conservation, which serves as a bridge between the two systems.  



 34

 

Figure 2.1 The Study Area 
The study area includes Blanco, Burnet, Hays, Llano, San Saba, and Travis counties.  
Sources: USGS NHD (USGS 2013), TNRIS (2013), TPWD (2013), and TLTC (2013). 
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THE NATURAL LANDSCAPE 

Coincidences of geography and geology have resulted in the Hill Country being 

one of the most ecologically diverse, and biologically important regions in Texas (Diamond 

et al. 1997).  The six-county study area represents a significant area of interest critical to 

the sustained provision of ecosystem services to the region’s population centers.  In the 

following sub-section, I review the abiotic and biotic components of this vital natural 

landscape. 

Climate and Weather 

The climate of the study area is broadly defined as humid subtropical, being 

characterized by hot, humid summers and mild winters.  It also represents a transitional 

zone between the humid subtropical east and the semi-arid steppe to the west. Average 

annual temperatures range between 20.2°C (68.4°F) and 17.6°C (63.7°F), generally 

following a southeast (warmest) to northwest (coolest) trend.  Temperatures range from a 

mean of 28.8°C (83.34°F) to 26.1°C (78.98°F) in the warmest quarter to 11°C (51.8°F) to 

8°C (46.4°F) in the coolest quarter.   

Average annual precipitation follows a similar southeast (wettest) to northwest 

(driest) trend ranging from 890 mm (35”) to 667 mm (26.3”).  Typically the wettest periods 

are from April to June and September to October, while December and January are often 

the driest (Nielsen-Gammon 2011).  Like most of Texas, the study area is highly vulnerable 

to short-term variations in rainfall for most of the year as a consequence of potential 

evapotranspiration far exceeding precipitation, particularly in summer (Nielsen-Gammon 

2011). 
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Figure 2.2 Average Annual Temperature and Average Annual Precipitation 
Source: Worldclim: Global Climate Data: Bioclim (Hijmans et al. 2013).  

Due to the geographic position of Texas on the North American continent, weather 

in the study area is highly variable, with severe and high impact events common.  Examples 

of severe weather include: tornadoes, hail, and damaging thunderstorm winds.  The area is 

also highly prone to flash flooding due to the potential of heavy rainfall from hurricanes, 

tropical storms, and moisture-laden gulf air, coupled with the Edward Plateau’s rugged, 

rocky soil, and steep terrain (Nielsen-Gammon 2011).   

Drought is also a common high impact event.  Precipitation reconstruction from 

tree ring analysis dating back to 1650 has identified droughts lasting decades (Cleaveland 

2006).  Within the past century significant droughts have occurred in the 1910s, 1930s, and 

1950s, with the drought of the 1950s now considered the drought of record (TWDB 2012).  

More recently, prolonged droughts have occurred in 1996, 1998, 2000, 2005-6, and 2011—

the worst one year drought in the historical record (Hoerling et al. 2013). 
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The future climate of the study area is difficult to predict with any certainty.  

According to present-day climate models, variations in Texas climate over the past century, 

particularly for precipitation, do not correspond to changes expected from climate change 

(Nielsen-Gammon 2011).  However, by the middle of this century, it is expected the 

processes of warming will overwhelm natural variability resulting in an increase of local 

temperature in the range of 2.2°C (4°F) (Nielsen-Gammon 2011).  Subsequently, this 

increase in temperature is likely to result in rainfall events of heavier, but shorter duration, 

greater rates of evapotranspiration, and ultimately an increase in drought frequency and 

severity (Nielsen-Gammon 2011; TWDB 2012).  

The Terrestrial Surface 

The study area’s predominant geologic foundations were formed during the Early 

Cretaceous period approximately 130 to 90 million years ago.  At that time calcium 

carbonate from marine organisms was deposited in a shallow sea, eventually morphing into 

layers of limestone.  Over the last 40 million years, Upper Cretaceous chalks, soft to hard 

limestones, shales, and claystones have eroded away revealing the resistant Lower 

Cretaceaous limestone of the Glen Rose and Edwards groups and creating the characteristic 

karst topography of caverns, sinkholes, and subsurface hydrology found throughout the 

Hill Country (Woodruff and Wilding 2008).   

The Balcones Escarpment and the Llano Uplift are two other distinguishing 

geologic characteristics of the study area.  Approximately 20 million years ago, the 

Balcones Fault system developed along a northeast-southwest arc stretching from Del Rio 

along the Mexican border north beyond Waco.  Bisecting Hays and Travis counties nearly 

in half, the well-expressed escarpment forms an abrupt transition zone between the Gulf 

Coastal Plain, and its gently rolling Blackland Prairies to the south, and the steep limestone 
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canyons and tablelands of the Edwards Plateau to the north (Woodruff and Wilding 2008).  

Located largely within Llano County, the Llano uplift is characterized by the central 

exposure of Precambrian igneous rocks—primarily granite—in a roughly circular geologic 

dome formation.   

In general, both elevation and slope within the study area are variable.  High 

elevations of 605 meters (~2,000 ft.) above sea level (asl) found along the western edge of 

the area descend into river valleys and canyons at ~350 meters (~1,150 ft.), off of the 

Balcones Escarpment at ~250 meters (~820 ft.), to a low of 112 meters (~367.5 ft.) in the 

Colorado River floodplain in the area’s southeast corner.  Average slope over the area is 

~5%.  Slopes between 15% and 60% occur across 9% of the study area and are generally 

localized to the steep-sided canyons found along waterways to the west of the Balcones 

Escarpment.  Accounting for only .11% of the study area, significant slopes greater than 

60% are not common, but do occur within these canyons.   

 The physical and chemical properties of area soils vary greatly depending largely 

on the underlying bedrock.  For example, the Glen Rose and Edwards limestone based soils 

typically have a slightly to moderately alkaline pH in the range 7.5 to 8.2, whereas soils 

formed from the granite of the Llano Uplift are typically slightly acidic to neutral with a 

pH ranging between 6.5 and 7.0.1  In general, limestone based soils north of the Balcones 

Escarpment are rocky, shallow, alkaline, relatively highly erodible, and poorly suited for 

cultivated crops (Wrede 2010).  In contrast, alluvial soils along river bottoms within the 

plateau, and especially below the escarpment, are often silty-clay-loam up to forty inches 

thick with both high natural fertility and high available water content, making them well 

suited for agricultural production (Woodruff and Wilding 2008).   

                                                 
1 Based on USGS STATSGO 2 Soil database.  The USGS pH scale ranges from ‘Ultra Acidic’ at pH < 3.5 
and ‘Very Strongly Alkaline’ at pH > 9.0.  Neutral values range from pH 6.6 to 7.3.   
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Hydrology 

The central hydrologic feature of the study area is the Colorado River Basin.  Over 

81% of the study area’s land surface drains into the Colorado River through either the 

Middle Colorado-Concho Basin (14%), Middle Colorado-Llano Basin (62%), or the Lower 

Colorado Basin (5%).  Major tributaries within the area include the San Saba River, the 

Llano River, and the Pedernales River.  Sections of each of these rivers, including the 

Colorado, have been designated as “ecologically significant streams” by the Texas Parks 

and Wildlife Department (TPWD 2014), thus protecting them from further impoundment.  

Although no segment of either the Guadalupe River or the Brazos River is located 

within its boundary, the study area does include portions of their basins and tributaries.  

Located in the eastern half of Burnet County, the Lampasas River, the North San Gabriel 

and the South San Gabriel all drain into the Little Basin, part of the Brazos River Basin.  

An important section of the Blanco River, a major tributary of the Guadalupe River, is 

found in southwest corner of Hays County.    

No significant natural lakes exist in the study area, though several large reservoirs 

along the Colorado River—referred to as the Highland Lakes—have been created to store 

fresh water, aid in flood control, and provide hydroelectric power.  Beginning in the north 

with Lake Buchanan and following the river south, additional reservoirs include Inks Lake, 

Lake LBJ, Lake Marble Falls, Lake Travis, Lake Austin, and Lady Bird Lake.  In total, 

these reservoirs comprise ~20,500 hectares (50,722 acres) of the study area.   
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Figure 2.3 Hydrology 
Sources: USGS NHD (2013), and TNRIS (2013). 
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Underground aquifers are one of the Hill Country’s fundamental hydrologic 

characteristics.  The most prominent aquifers found within the study area include the 

Edwards, the Trinity, and to a lesser extent the Marble Falls.  With recharge zones covering 

4.2% and 31.5%, respectively, both the Edwards and the Trinity occur in the southern half 

of the study area directly parallel with and above the Balcones Escarpment, while the 

Marble Falls, covering 2.8%, is located in the northern half, predominately within San Saba 

County.   

A large number of artesian springs spread the ecological influence of the aquifers 

well beyond the study boundary.  In total, there are over 322 documented springs found 

within the area (USGS 2013).  Of these, Barton Springs in Austin, Jacobs Well in 

Wimberley, and Aquarena Springs in San Marcos, are the most well-known.  As is the case 

with Aquarena Springs and the San Marcos River, many of these springs serve as the 

primary water source of area streams and tributaries, providing relatively consistent water 

flow across much of South-Central Texas despite unreliable rainfall patterns (Abbott 

1975).  Moreover, karst springs and caves provide specialized habitat leading to the 

evolution of rare biological life forms (Bowles and Arsuffi 1993; Culver and Sket 2000).  

Vegetation and Wildlife 

The study area is home to a rich diversity of plant and animal communities, many 

of which are regionally endemic (TNC 2004; Diamond et al. 1997).  This diversity is 

largely the result of high variability in climate, geology, topography, and hydrology 

creating numerous ecotones, or areas of steep transition between ecological communities, 

ecosystems, or ecological regions (ecoregions), where species richness and abundance tend 

to peak (Kark 2013).  
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 For example, assuming the United States Environmental Protection Agency’s 

(EPA) ecoregional classification system (EPA 2013), four Level III ecoregions converge 

within the study area: 1) the Edwards Plateau (76% of the study area); 2) the Cross Timbers 

(12.3%) at its north-eastern tip; 3) Texas Blackland Prairies (11.2%) at its southern tip; and 

4) a small portion of the East Central Texas Plains (0.5%).   At the more detailed Level IV 

classification, the number of distinct regions increases to nine with the Balcones 

Canyonlands (31.7%), Llano Uplift (19.7%), and Edwards Plateau Woodland (24.5%) 

dominating, as seen in Figure 2.3 and Table 2.1.   

 

 

Figure 2.4 Level III and Level IV Ecoregions 
Source: US EPA (2013). 

 



 43

Table 2.1 Level III and Level IV Ecoregions 
Source: US EPA (2013) 

Level III Ecoregions Acres Hectares % Total Area 

Cross Timbers (CT) 435,818 176,370 12.3% 

East Central Texas Plains (ECTP) 16,984 6,873 0.5% 

Edwards Plateau (EP) 2,682,810 1,085,700 76% 

Texas Blackland Prairies (TBP) 396,465 160,444 11.2% 

    

Level IV Ecoregions Level III Acres Hectares % Total Area 

Western Cross Timbers CT 266,698 107,929 7.6% 

Limestone Cut Plain CT 169,119 68,441 4.8% 

Southern Post Oak Savanna ECTP 14,439 5,843 0.4% 

Floodplains and Low Terraces ECTP 2,546 1,030 0.1% 

Edwards Plateau Woodland EP 865,817 350,385 24.5% 

Llano Uplift EP 695,978 281,654 19.7% 

Balcones Canyonlands EP 1,121,010 453,660 31.7% 

Northern Blackland Prairie TBP 372,857 150,890 10.6% 

Floodplains and Low Terraces TBP 23,609 9,554 0.7% 
 

In general, the vegetation of the study area is a mix of evergreen savanna, upland 

deciduous, and lowland riparian plant communities (Wrede 2010).  Texas Parks and 

Wildlife (TPWD) has classified these vegetation assemblages and communities into 79 

distinct ecosystems (TPWD 2010).  According to size of distribution, the most prominent 

of these include Edwards Plateau Savanna Grassland (15.66% of the study area), Edwards 

Plateau Ashe Juniper Motte and Woodland (8%), Llano Uplift Grassland (7%), and 
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Edwards Plateau Live Oak Motte and Woodland (7%).  Largely the result of recent land-

use patterns—specifically, high levels of herbivory by domestic animals—and wildfire 

suppression (Van Auken 2000), a large percentage, ~13% in total, is covered in native 

invasives such as Ashe juniper (Juniperus ashei) shrubland and mesquite (Prosopis 

glandulosa) shrubland.   

As seen in Figure 2.4 and Table 2.2, combining the TPWD ecosystem classes into 

land-cover types yields a transitional landscape composed primarily of forest (38%) and 

grassland (32%). 

 

 

Figure 2.5 Land-Use and Land-Cover (LULC) 
Source: modified from TPWD (2010). 
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Table 2.2 Land-Use and Land-Cover (LULC)  
Source: modified from TPWD (2010).  

LULC Class Acres Hectares % Total Area 

Open Water 65,507 26,510 1.8% 

Forest 1,349,870 546,274 38% 

Shrubland 706,008 285,712 19.9% 

Grassland 1,135,070 459,349 32% 

Cropland Agriculture 79,553 32,194 2.2% 

Urban Low Density 183,433 74,233 5.2% 

Urban High Density 31,338 12,682 0.9% 
 

Each of the study area’s ecosystem types provides habitat to a diverse range of 

biological life.  At least 400 game and non-game species are presently found within the 

Edwards Plateau (TPWD 2014).  Furthermore, because it is located within the North 

American Central Flyway, over 420 species of resident and migratory birds, as well as the 

migratory monarch butterfly (Danaus plexippus), can be seen in the area (Lockwood 2001).  

A number of exceptionally rare species are also found within the study boundaries.  

Of these rare species, 21 are currently listed as either endangered or threatened under the 

US Endangered Species Act (ESA).  Most of these are endemic inhabitants of specific karst 

caves and springs and are found nowhere else on earth.  Examples include amphibians such 

as the Barton Springs salamander (Eurycea sosorum), arachnids such as the Bone Cave 

harvestman (Texella reyesi), fishes such as the San Marcos gambusia (Gambusia georgei), 

insects such as the Comal Springs riffle (Heterelmis comalensis), and plants such as Texas 

wild-rice (Zizania texana).  

In terms of amount and distribution of potential habitat within the study area, 

arguably the most important ESA listed species is the golden-cheeked warbler (Setophaga 
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chrysoparia).  The golden-cheeked warbler is a small migratory songbird that nests 

exclusively in old-growth Ashe juniper and live oak slope forests within the Edwards 

Plateau.  According to a species distribution model developed by Loomis Austin, Inc. 

(2008), 411,238 acres, or 11.6% of the study area, is classified as high quality golden-

cheeked warbler habitat, with another 1,108,674 acres (31.3%) listed as moderate quality 

habitat.   

 

THE SOCIOCULTURAL LANDSCAPE  

The sociocultural landscape of the study area is undergoing significant changes.  

Rapid population growth, demographic shifts, urbanization, and development are altering 

local economies and regional culture. In turn, these changes influence patterns of land-use 

and land-tenure across the rural-urban gradient, ultimately affecting the ecological 

functionality of the natural landscape.  In this section, I review some of the patterns and 

processes presently shaping the sociocultural landscape. 

Cultural History and Land-Use 

Archeological evidence suggests that the study area has been continuously 

inhabited by humans for at least the last 11 thousand years (Hester 1986), and perhaps as 

far back as 15.5 thousand years (Waters et al. 2011).  Given resource and technology 

constraints, the indigenous populations remained small prior to the 1500, though there is 

some indication that they did actively transform the land to meet their needs (Hester 1986).   

The arrival of the Spanish in the 16th century not only brought a new culture and 

permanent settlements to the San Antonio area by 1718, they also introduced new 

technology: the horse (Palmer 1986).  With the quick adoption of the horse, the nomadic 

indigenous tribes of the Southern Great Plains, specifically the Comanche, greatly 
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expanded their territory, controlling all of the present-day Hill Country and forcing many 

of the remaining, more sedentary peoples to relocate from the region (Palmer 1986).  

Although the frequency and extent of prescribed burning by bison-based nomadic cultures 

is unknown, there is evidence to suggest the technique was wide-spread enough to have 

some impact on land-cover within the study area (Kimmerer and Lake 2001).   

Despite the short-lived establishment of Spanish missions as far north as present 

day San Saba, permanent settlements did not begin to increase within the Hill Country until 

the arrival of European settlers in the mid-1800s. A number of ethnic groups settled in and 

around the region, but by far the most influential to Hill Country culture has been the 

Germans.  Their language, settlement patterns, and land-uses dominated the area until the 

late 19th century, and remain important to the local culture to this day (Palmer 1986).  

While slowing during the Civil War, settlement and immigration began to both 

increase and diversify after 1870.  During this time, waves of immigrant ethnic groups, 

including recently-freed slaves, Mormons, and Mexicans began to settle within the region.  

Over the last century, aspects of these disparate cultures have combined to form a 

distinctive regional culture collectively bound by its rural identity (Palmer 1986).   

The rural cultural identity of the Hill Country has many aspects, but can be defined 

by several broad characteristics.  The first characteristic is a clear dichotomy between rural 

and urban.  The second is the raising of livestock as the dominant economic driver.  For 

example, as recently as the early 1980s ranching accounted for over 90% of all agricultural 

income within the Hill Country (Palmer 1986).  The third characteristic is the ability to be 

economically self-sufficient through agriculture. Encompassing the previous three, the 

fourth characteristic is a pattern of landownership predicated on privately holding relatively 

large, contiguous tracts of land. 
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This distinctive cultural identity remained largely unchanged for more than a 

century.  However, beginning in the 1980s, new patterns began to emerge.  Rapid growth 

in suburban development increased neighboring land values, altering economic incentives 

away from agriculture and toward the increased subdivision of large properties (Palmer 

1986).  As a result, landownership has shifted from traditional ranchers and farmers 

towards owners who manage the land for wild-game production, or who want to experience 

a rural lifestyle—often on a limited basis—but do not use the land primarily for agricultural 

purposes (Sorice et al. 2012).   

The total effect of the landownership and land-use changes taken place within the 

Hill Country are not yet fully understood.  From an ecological perspective, the shift in 

landownership and the subsequent decrease in land-use intensity may provide certain 

benefits as degradation from agricultural land-uses has been evident across the Hill 

Country from as early as the late 1800s (Palmer 1986; Sorice et al. 2012).  From a cultural 

perspective, it is apparent that the changes taking place have an erosive effect on the 

distinctive rural cultural identity found across the Hill Country and within the study area, 

but to what extent, remains unclear (Sorice et al. 2012).  What is evident from area-wide 

projections of population and density, is that these same patterns are likely to continue in 

the coming decades.   

Present Population and Density 

Today, the study area represents a major portion of one of the fastest growing 

metropolitan areas in the United States (USCB 2013).  According to the most recent United 

States census, as of 2010 the total area-wide population is 1,260,052 (TSDC 2013).  

Representing 81% of the total, Travis County (1,024,266) dominates.  The other five 

counties combined account for only 19% of the total population, with Hays County 
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(157,107) being the second most populous, followed by Burnet (42,750), Llano (19,301), 

Blanco (10,497), and San Saba (6,131).   

Table 2.3 Areas and Population Trends  
Source: TSDC (2013) 

 Hectares 
% Total 

Area Pop. 1950 Pop. 2010 Pop. 2050 
% Increase 
2010-2050 

Blanco 184,723 13% 3,780 10,497 17,672 68% 

Burnet 264,001 18% 10,356 42,750 82,668 93% 

Hays 175,660 12% 17,840 157,107 952,790 506% 

Llano 250,118 17% 5,377 19,301 22,035 14% 

San Saba 294,496 21% 8,666 6,131 6,722 10% 

Travis 265,315 18% 160,980 1,024,266 1,990,820 94% 

Total 1,434,314 100% 206,999 1,260,052 3,072,707 144% 

 

As projected by the Office of the State Demographer, all counties are expected to 

experience population growth in the coming decades (TSDC 2013). The most significant 

growth is set to occur within the Austin-San Marcos area, specifically along the I-35 

corridor, up the Colorado River, and around the Highland Lakes (EPA 2009).  In terms of 

sheer number, Travis County is expected to nearly double its population from a 2010 

estimate of 1,024,266 to 1,990,820 by 2050.   If viewed in terms of percent increase in 

population between 2010 and 2050, growth in Hays County stands out at 506%, followed 

by Travis (94%), Burnet (93%), Blanco (68%), Llano (14%), and San Saba (10%).  Overall, 

total area wide population is estimated to increase 144% over its present 2010 population, 

nearly tripling to over 3 million by 2050.   
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In general, increased population correlates to an increase in natural resource use 

and a decrease in ecological functionality (Guo et al. 2010; MA 2005).  However, the 

impact of a population is not simply based on number, but also on its distribution.  Over 

the last two centuries, population density, typically defined as people per acre, has been 

increasing globally as society has transformed en masse from largely rural to largely urban 

(Meyerson et al. 2007).   

More recently, and particularly here in the United States, population growth, 

coupled with generally unrestricted private property rights, has pushed urban growth back 

out beyond the urban fringe into suburban, and increasingly exurban areas of low relative 

density (Theobald 2005, 2001).  The result is a cultural landscape transformed by increased 

subdivision of large, potentially agriculturally productive parcels into smaller, more 

expensive, low-density, residential and commercial purposed tracts (Sorice et al. 2012). 

Consequently, the natural landscape is increasingly degraded by roads and urban 

infrastructure and is less able to provide ecosystem services (Lindenmayer and Fischer 

2006; MA 2005; McKinney 2002).   

Based on analysis of the US EPA’s ICLUS model projections (EPA 2009), and 

using a population density classification scheme developed by Theobald (2005), similar 

patterns of suburban and exurban transformation are expected to continue within the study 

area.   
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Figure 2.6 Projected Population Density 
Projected population density within the study area for the years (A) 2010, (B) 2030, and 
(C) 2050.  Source: US EPA (2009). 
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As of 2010, areas classified as Urban (5 units per acre to >10 units per acre 

including commercial, industrial, and institutional) equaled 2% of the study area; Suburban 

(1.6 acres per unit to 2 units per acre) equaled 3%; Exurban (1.7 to 19.9 acres per unit) 

equaled 14%; Rural (20 to >160 acres per unit) equaled 59%; and Undeveloped 

(undeveloped private and urban and regional parks) equaled 20%.  By 2050 the amount of 

acres classified as Urban, Suburban, and Exurban are expected to increase by 13%, 183%, 

and 12%, respectively.  Meanwhile, Rural and Undeveloped land densities are projected to 

decrease by -11% and -2%, respectively.   

Unless current trends are altered, these projections suggest the continued loss of 

native habitat and rural cultural identity to urban development, specifically within the 

locales most critical to the production of water related ecosystem services—the aquifer 

recharge zones and reservoir watersheds of Travis, Hays, and Burnet counties.   This 

declining capacity to provide ecosystem services could have negative implications, not 

only in terms of local ecosystems, but also for local economies (Farber et al. 2006; Haberl 

et al. 2006).    

Local Economics  

According to 2008 data, local economic measures such as “Gross Regional 

Product” (GRP) and “Top Industries” tend to reflect these same patterns of population 

growth, development, and land-use within the study area (IMPLAN 2008).  Overall, the 

study area has a GRP of almost $70 billion with technology manufacturing the leading 

industry by output, and state and local governments foremost by employment.   

Home to the state capital, several universities, including the University of Texas at 

Austin, and a majority of the state’s technology sector, the Travis County economy 

accounts for over 92% of the area’s GRP.  Hays County, with a significant public 
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university, large food service industry, and considerable construction sector, follows at 

5.2% of area GRP.  Burnet (1.6%), Llano (.5%), Blanco (.5%), and San Saba (.15%) 

combined account for the remaining ~3% of GRP, with the agricultural sector being a top 

five industry, in terms of employment, in each.   

However, when viewed by economic output, agriculture is a top five industry 

within San Saba County alone.  Rental activity, real estate, construction, and food service—

together with unique sectors like manufacturing in Burnet and electrical power generation 

in Blanco—tend to now be the biggest economic drivers within these four, predominately 

rural counties.   

These broad economic data tend to support the research of Sorice et al. (2012), who 

found that over one-third (39%) of Central Texas landowners hold their property for 

amenities such as recreation, aesthetic quality, or to experience the rural lifestyle, rather 

than exclusively for agricultural production (24%).  This suggests the study area’s rural 

economies are increasingly less dependent on agriculture, but perhaps more dependent on 

sustaining a rural cultural identity in order to maintain their growing service based 

industries (Sorice et al. 2012).   

CONSERVATION 

As I argue in Chapter 1, conservation is the bridge between the ecological and social 

systems and is therefore an intrinsic component of landscape sustainability.  

Approximately 60,727 hectares (150,060 acres), or 4.2% of the study area is presently 

under some form of legal conservation status with the primary drivers being: endangered 

species and biodiversity, recreation and aesthetics, cultural heritage, and increasingly, 

ecosystem services—principally in terms of water.  In the following sub-section, I review 
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the state of conservation within the study area in regard to both public and private 

conservation.    

Table 2.4 Conservation Holdings 
Source: TPWD (2013) and TLTC (2013) 

Land Holder Hectares Acres % Total Area 

Federal 9,016 22,279 0.63 

State of Texas 5,935 14,666 0.41 

County 6,052 14,955 0.42 

Municipal 11,771 29,087 0.82 

River Authority 4,475 11,058 0.31 

Private 23,478 58,015 1.64 

Total 60,727 150,060 4.23 
 

Public Conservation  

In total, public conservation accounts for over 37 thousand hectares (92,044 acres), 

or ~2.6% of the study area.  In this work, public conservation includes publicly owned 

parks, preserves, fee simple holdings, and conservation easements held by public 

institutions at any level of government.  Although the property under conservation 

easements technically remains privately owned, if the easement is owned by a public entity 

it is considered public conservation for the purposes of this work.   

Federal holdings within the study area are not numerous, but they are substantial. 

For example, the US Fish and Wildlife Service holds approximately ~9,015 hectares 

(~22,279 acres) of the Balcones Canyonlands National Wildlife Refuge, which was 

established to protect critical habitat of the endangered golden-cheeked warbler (Setophaga 

chrysoparia) and black-capped vireo (Vireo atricapilla).   
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The State of Texas is also a large contributor to public conservation.  State owned 

holdings account for almost 6,000 hectares (14,700 acres). Examples include state parks 

such as Colorado Bend and Pedernales Falls, state natural areas such as Enchanted Rock, 

nature preserves such as Discovery Well Cave, and state historic sites such as the Lyndon 

B. Johnson homestead.   

However, when combined within the study area, county, municipal, and quasi-

governmental authorities account for the largest percentage of public conservation.  

Together these institutions have holdings of over 17 thousand hectares (42,050 acres), 

including over 10,500 hectares (26,000 acres) held by the City of Austin, and almost 4,500 

hectares (11,057 acres) owned by the Lower Colorado River Authority (LCRA).  

Private Conservation  

In total, private conservation accounts for over 23 thousand hectares (58,015 acres, 

or ~1.6% of the study area.  In terms of this work, private conservation is defined as 

privately owned parks and preserves, and fee simple holdings and conservation easements 

held by non-profit land trusts.  Although private owners, home owners associations 

(HOAs), and non-profit organizations such as the Travis County Audubon Society all play 

a role in private conservation, it is the non-profit land trust that is the primary contributor.   

Based solely on hectares conserved, land trusts and conservation easements are the 

principal components of private conservation within the study area—and are likely to 

continue to be so in the future.  Including fee simple ownership and conservation 

easements, land trust holdings combine for almost 13,100 hectares (32,341 acres) of 

conserved land.  Land trust held conservation easements alone account for over 11,300 

hectares (~28,000 acres).   
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Over the last fifteen years HCC has acquired upwards of 3,200 hectares (8,000 

acres) in both fee simple ownership and conservation easements.  In an effort to 

strategically expand their conservation footprint, HCC commissioned a study in the fall of 

2013 with the explicit intent of identifying conservation priorities, based on organizational 

goals, inside which HCC could proactively focus its resources over the next twenty years 

(Siglo 2013).  As presented in Chapter 3, the systematic conservation planning methods of 

this thesis are an expression of HCC’s objective to continue to increase private 

conservation within the Hill Country of Central Texas.   
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CHAPTER 3:  

MATERIALS AND METHODS 

In this chapter, I describe the materials and methods used to answer the following 

two research questions: 1) Where within the contiguous Central Texas Counties of Blanco, 

Burnet, Hays, Llano, San Saba, and Travis should Hill Country Conservancy focus 

conservation efforts in order to efficiently balance regional conservation need with 

organizational goals; and 2) How can multiple ecosystem services be integrated as 

indicators in a systematic conservation planning process?   

Three primary areas of research characterize this work.  For organizational clarity, 

each is addressed in its own subsection: 1) Systematic Conservation Planning; 2) 

Ecosystem Services; and 3) Analysis.  

SYSTEMATIC CONSERVATION PLANNING 

This portion of the study was developed in conjunction with a strategic 

conservation plan commissioned by Hill Country Conservancy (HCC) in the Fall of 2013 

(Siglo 2013).  Following the protocols established by Margules and Pressey (2000), and 

using Marxan decision-support software (Ball et al. 2009), a systematic conservation 

planning (SCP) ranked selection process was applied across the six Central Texas counties 

of Blanco, Burnet, Hays, Llano, San Saba, and Travis.  The process was conducted 

iteratively over several months with the explicit intent of identifying priority areas, over a 

range of conservation scenarios, within which HCC could focus its resources over the next 

twenty years.  Similar to The Nature Conservancy’s conservation approach (TNC 2004), 

the strategy of HCC was not to emphasize rarity, but rather to target a comprehensive 

representation of intact and functional ecosystems, specifically, those critical to 

maintaining water supply and quality.  



 58

Here I use the data, selected conservation elements, targets, scenarios, and software 

parameters developed during the HCC planning process as a foundation for additional 

integrative research.  This serves not only to justify potentially subjective conservation 

decisions, such as target levels, but also to ground this study in real-world applicability. 

Data 

A broad range of geographic information systems (GIS) data and procedures were 

used during the SCP portion of this study.  State, county, and municipal boundaries, 

populated places, and public open space data were sourced from the Texas Natural 

Resources Information System (TNRIS 2013).  Data regarding private open space were 

provided by the Texas Land Trust Council in the form of the Conservation Land Inventory 

database (TLTC 2013).  The environmental and biotic data used were acquired from a 

variety of sources (Table 3.1).  Once obtained, all data were converted to the NAD1983 

UTM zone 14N (meter) projection, evaluated for consistency, and tested for usability using 

ESRI’s GIS software ArcMAP 10.0—hereafter referred to as ArcGIS.  The data were then 

categorized as either Water, Ecology, or Culture depending on the most relevant 

representation.    
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Table 3.1 Environmental and Biotic Data

Category Description Source Type 

Water Significant Waterway Buffer TCEQ, TPWD Vector 

Water Public Drinking Water Intakes TFS Vector 

Water Colorado River Watersheds USGS NHD Vector 

Water Aquifer Areas TWDB Vector 

Water Springs  USGS NHD Vector 

Water Wetland USFWS NWI Vector 

Ecology Texas Ecological Systems Phase 1 TPWD Vector 

Ecology Significant Slopes  USGS NED Raster 

Ecology GCWA Habitat Loomis Partners Vector 

Culture Viewshed Texas State University Vector 

Culture Prime Farmland Soils USDA-SSURGO Vector 

Culture Available Water Content NRCS-STATSGO2 Vector 

Culture Soil Depth NRCS-STATSGO2 Vector 
 

Planning Units 

Selecting priority conservation areas requires the use of an evaluation unit to make 

comparisons between locales.  These spatial units are known as planning units.  Planning 

units can either be uniform shapes, such as square or hexagonal grids, or irregular shapes 

derived from land tenure parcels, watersheds, or habitat remnants.  Previous research has 

shown that hexagonal units are slightly more efficient than square, and smaller units tend 

to be more efficient than larger ones—albeit similarly precise (Nhancale and Smith 2011).  

In general, the differences in size and shape are less important than selecting planning units 
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which take into account underlying land-tenure patterns, intended implementation of 

conservation action, and computer processing constraints (Nhancale and Smith 2011).     

Planning units composed of 500m by 500m, or 25 hectare (~62 acres), grid cells 

were selected for use in this study.  At 25 hectares, the planning units are a compromise 

between the study area’s mean parcel size of 13 hectares (~32 acres), HCC’s preferred 

minimum of 40 hectares (~100 acres) for potential conservation priority areas, and the 

generation of solution sets that remain computationally flexible.  Moreover, square grid 

cells were selected over hexagonal, or irregular cells, because of the integrative nature of 

this work.  Specifically, raster data—spatially explicit data represented as a grid of square 

cells—is more precisely scaled and integrated, with less overlap error, to square planning 

units.   

In total the study area has been divided into 57,479 planning units.  Before ranking 

the planning units, it is necessary to categorize each individual unit according to their 

present land use and land management status.  This study uses three categories: available, 

open-space (“locked-in”), and transformed (“locked-out”).   

Planning units with greater than 50% of their area in existing reserves, parks, 

conservation easements, or other conservation management status were defined as open-

space and “locked-in” the solution.  These open-space sites are critical to the ranking 

process because they act as catalysts for the selection of other sites near their boundary. 

Utilizing a selection threshold based on a simple majority of a planning unit’s area ensures 

that units covering a portion of a reserve, but less than a majority, remain available for 

selection.   These adjoining units, and the landholdings they represent, are high priorities 

for conservation organizations, including HCC, because they can be combined with 

existing reserves to produce large contiguous areas of open-space.   
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Under this reasoning, it could be argued that increasing the open-space threshold to 

greater than 60% would allow a larger number of adjacent units to be available for 

selection.  However, at this threshold only 51,385 hectares (126,950 acres), or 85% of the 

60,727 hectares (150,060 acres) of actual open-space, is accounted for in the planning units.  

Whereas a greater than 50% threshold represents 57,500 hectares (142,086 acres), or 95% 

of the actual area.  Thus, a greater than 50% threshold represents a balance between area 

accuracy and selection availability of reserve-adjacent planning units.   

Conversely, a large percentage of the study area has already been developed, or 

significantly altered from its natural state, and should not be considered for conservation 

purposes.  These areas are considered transformed.  Parcels smaller than 20 acres, the 

TPWD ESD Urban high and low land-use classifications (2010), and a manual evaluation 

of the 2010 NAIP aerial imagery were used in combination to designate areas as 

transformed.  Planning units including 30% or more transformed areas were excluded from 

consideration and “locked-out” of the solution set.  The use of 30% (~20 acres) represents 

a precautionary approach based on spatial diffusion theory and the assumption that 

continued development is more likely to occur given proximity to existing development 

(Theobald and Hobbs 1998).  In other words, if a third of a planning unit is presently 

transformed, then the probability of further development within that planning unit is 

greater, thus reducing its overall conservation value, as per HCC’s criteria.   

In addition, planning units with 50% or more of their area classified as open water 

were also “locked-out.”  The decision to “lock-out” open water was made after preliminary 

ranked selections demonstrated that, if classified as available, open water 

disproportionately accounted for the majority of chosen units.  Similarly, if classified as 

“locked-in”, results indicated a heavy bias toward units directly adjacent to open water, to 

the exclusion of other targets.    
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Table 3.2 Planning Unit Classification

 Planning Units Ha Acres % of Area 

Study Area 57,479 1,436,975 3,550,840 100.00 

Open Space1 2,300 57,500 142,085 4.00 

Open Water2 616 15,400 38,054 1.07 

Transformed2 10,201 255,025 630,180 17.75 

Available 44,362 1,109,050 2,740,520 77.18 
1 Planning Units classified as Open Space are “Locked-in” and are included as part of every solution. 
2 Planning Units classified as Open Water and Transformed are “Locked-out” of any potential solution. 

 
Area-of-Occurrence and Conservation Elements 

Area-of-occurrence is the overlap of planning units with mapped conservation 

elements.  Derived from the environmental and biotic spatial data (Table 3.1), conservation 

elements are subsets of the geographic, ecological, or cultural features to be targeted during 

the selection process.  The total number of conservation elements used in this work ranged 

from 58 to 62, depending on the scenario.  

The area-of-occurrence for each conservation element was calculated using the 

“Tabulate Area” tool in ArcGIS.  The final value given representing the total area each 

conservation element occupied in a particular planning unit with a range from 0 to 25 

hectares (0 to ~62 acres).  For instance, if a particular planning unit contained 10 hectares 

(~25 acres) of the Edwards aquifer recharge zone, then its area-of-occurrence for the 

Edwards conservation element also equals a value of 10. Determining the area-of-

occurrence for each conservation element, per each planning unit, is the first step in 

developing quantifiable conservation targets.     
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Targets 

Conservation targets are the desired percentage of the total area-of-occurrence of a 

conservation element to be included in the solution set.  For example, if a conservation 

element occurs over 100 hectares (~247 acres), and the target for that element is set at 50%, 

the solution set should contain 50 (~124 acres) hectares of that conservation element. 

Target levels for individual conservation elements were developed in collaboration 

with local experts and HCC board and staff members in an iterative fashion over several 

months.  Several variables influenced target determination including: 1) Total area: HCC 

was interested in identifying approximately 25% of the study area as a conservation 

priority; 2) Organizational priorities: HCC’s primary project objective was isolating 

ecologically functional land critical to sustaining the City of Austin’s water supply and 

quality.  Secondary concerns included maintaining cultural heritage and aesthetics, as well 

as protecting rare and endangered species and ecosystems; 3) Relative area: because the 

targets applied in this work are percentage based, target levels for each conservation 

element were proportionately scaled to relative area-of-occurrence; 4) Relative rarity: a 

rarity value for all TPWD derived ecosystem types was obtained from botanist and rare 

plant specialist Jason Singhurst of TPWD.  This value, ranging from 1 (common) to 5 

(rare), represents the relative rarity of the ecosystem type across its entire range, not 

exclusively within the study area; 5) Solution feasibility: At least 95% of all targets must 

be met in the Marxan solution for it to be considered feasible; and finally, 6) Indispensable 

patterns: indispensable patterns are the top-priority ecological patterns whose benefits have 

no known substitute (Forman 1995).  These include “a few large natural vegetation patches, 

wide vegetation corridors protecting water courses, connectivity for movement of key 

species among patches, and small patches and corridors providing heterogeneous bits of 

nature throughout developed areas” (Forman 1995).     
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The final target set, represented here as the HCC Target Set (HCC), was selected 

from multiple preliminary target ranges according to how well they fit HCC’s criteria.  

Final values in the HCC set range from 5% to 80%, as seen in Table 3.3.  The HCC target 

set provided the base from which additional, alternative scenarios were generated.  Refer 

to Appendix A for a full range of conservation targets.  

Table 3.3 Abridged Conservation Targets  
Category Conservation Element HCC Water Agriculture Ecology 

Water Aquifer Areas 10 - 40% 15 - 60% 10 - 40% 10 - 40% 
Water Spring Buffers 40% 60% 40% 40% 
Water  Wetlands 30% 45% 30% 30% 

Water 
Significant Stream 
Buffers 

50% 75% 50% 50% 

Water 
Major Waterway 
Buffer 

30% 45% 30% 30% 

Water 
Public Drinking Water 
Intake Watersheds 

30% 45% 30% 30% 

Water 
Colorado River 
Watersheds 

30 - 40% 30 - 40% 30 - 40% 30 - 40% 

Water/ 
Ecology 

Texas Ecological 
Systems Database 

5 - 80% 5 - 80% 5 - 80% 7.5 - 80%

Water/ 
Ecology 

Significant Slopes 15 - 40% 23 - 60% 15 - 40% 23 - 60% 

Ecology GCWA Habitat 10 - 30% 10 - 30% 10 - 30% 15 - 45% 
Culture Viewshed 25% 25% 25% 25% 
Culture Prime Farmland Soil 30% 30% 45% 30% 

Culture 
Available Water 
Content 

5% 5% 7.5% 5% 

Culture Soil Depth 5% 5% 7.5% 5% 
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Scenarios 

In total, four scenarios, each targeting 58 distinct conservation elements, were 

developed for analysis: 1) HCC; 2) Water; 3) Agriculture; and 4) Ecology.  Building on the 

HCC target set, each additional scenario was created by raising the targets within a discreet 

category, i.e., water, culture, or ecology, by a fixed factor of 50%, while maintaining all 

other target values (Table 3.2).   

To determine the factor of increase, a sensitivity analysis was conducted examining 

a range of increase values (i.e., 10%, 25%, 50%, and 75%) per each scenario.  The 50% 

value was ascertained by charting the standardized Z-scores of target shortfall2 and spatial 

correlation3.  As the range of target values increases from 10% to 75%, target shortfall 

increases while spatial correlation decreases, with the point of intersection, i.e., the point 

of optimal compromise between minimizing target shortfall and maximizing scenario 

differences, around the 50% value in all three scenarios.  

 

                                                 
2 Target shortfall is the amount of targets not achieved in the Marxan solution.  Calculated as the average 
shortfall of 100 solutions.    
3 Spatial correlation is the relative difference in spatial distribution and overlap between the most 
frequently selected 11,050 units in the HCC scenario and the most frequently selected 11,050 units per 
scenario (x).  Calculated using Spearman’s correlation with R statistical software.   
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Figure 3.1 Sensitivity Analysis Results 
Sensitivity analysis results testing range of target increases for conservation scenarios:  
A) Water Scenario, B) Agriculture Scenario, and C) Ecology Scenario.  
 

Scenario 1: HCC  

The HCC scenario represents the baseline where all of HCC’s project criteria were 

met.  It must be noted that because water protection was HCC’s primary concern in this 

study, the HCC scenario was developed to be water-centric.   
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Scenario 2: Water  

Pushing the HCC scenario’s focus on water a step further, the Water scenario is 

intended to maximize the conservation of sensitive water elements and features such as 

aquifer recharge zones, significant stream buffers, and wetlands.  All targets within the 

water and water/ecology categories, excluding the coarse filter Colorado River 

Watersheds, were raised by a factor of 50% above the HCC target levels.  

Scenario 3: Agriculture 

The Agriculture scenario represents HCC’s priority to conserve rural cultural 

heritage within the Central Texas Hill Country.  In this scenario, targets for elements such 

as grasslands (a surrogate for potential livestock production), and targets associated with 

agricultural production, such as prime farmland soil, were raised by a factor of 50% above 

the HCC target levels.    

Scenario 4: Ecology 

In the Ecology scenario, priority was given to rare and sensitive ecosystems, 

endangered species habitat, and critical biophysical components such as significant slopes.  

All ecology and water/ecology related targets were raised by a factor of 50% above the 

HCC target levels.   

Marxan Parameterization  

One of the advantages to using Marxan is the wealth of both general documentation 

and published research.  As such, the parameters used here were applied with a heavy 

reliance on the Marxan Good Practices Handbook v2 (Ardron et al. 2010) and reinforced 

through the academic literature (Chan et al. 2006; Izquierdo and Clark 2012; Nackoney 

and Williams 2013).  Significant parameters include the “Boundary Length Modifier” 

(BLM), the “Penalty Factor” (PF), and “Planning Unit Cost” (Cost) value (Table 3.4).  
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Table 3.4 Marxan Parameterization  

Parameter Value Description 

Boundary Length Modifier (BLM) 20 Controls the amount of clustering 

Penalty Factor (PF) 1-15 General weight given to CEs 

Planning Unit Cost (Cost) 1 Cost value assigned per planning unit

Iterations 1 mil # of Simulated Annealing iterations 

Repetitions, or Restarts 100 # of separate runs 

The BLM controls the level of planning unit aggregation, or “clustering,” of the 

solution by minimizing the reserve system boundary length.  A low BLM results in more 

fragmented solutions.  As BLM values increase, solutions become more compactly 

clustered with lower perimeter-to-area ratios.  Here, a BLM of 20 was determined by 

following a process outlined in Ardron et al. (2010).  Starting at a value of 0, the BLM is 

increased incrementally by factors of 10 until a desired level of clustering is reached, i.e., 

clusters smaller than 40 hectares (~100 acres) are minimized, without incurring large 

increases in cost.     

The PF determines the size of the penalty for not meeting a conservation element’s 

targets.  The higher the PF value, the greater importance Marxan places on ensuring the 

element’s targets are met.  PF values in this analysis range from 1 to 15.  Again following 

Ardron et al. (2010), these values were calibrated by first finding a uniform SPF value for 

which all targets are met, and a lower value in which most are not.  The difference between 

these values represents the range explored for each conservation element.  All PF values 

are then set to the low value (1), and, for those features missing their targets, increased 

iteratively in increments of 5 until all targets are met.   
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The “Planning Unit Cost” (Cost) is a relative value assigned to each planning unit.  

Cost values can denote socioeconomic cost, relative area, level of degradation, distance 

from threat, or a combination of multiple metrics combined into a single cost surface 

(Ardron et al. 2010).  Here, a cost value of (1) was universally applied across all planning 

units.  The primary reason being to reduce complexity in the selection algorithm.  Thus, 

because the conservation targets are the sole driving determinate of selection, any 

differences in results can be more easily understood.  According to Marxan best practices, 

this is a common technique, especially when using uniform planning units (Ardron et al. 

2010). 

Additional Marxan parameters of note include “iterations” and “repetitions.”  

Iterations represent the number of times the simulated annealing algorithm is applied 

during a single run and determines how close the algorithm gets to the optimal solution.  

For all but the largest of datasets, 1 million iterations is sufficient (Ardron et al. 2010).  

Repetitions, also referred to as restarts, are the number of independent solutions to the 

reserve problem Marxan will generate.  Using 100 repetitions is an intuitive value from 

which to calculate selection frequency, thus it was used here.  All other parameters were 

left as the default values.   

Solution Sets 

Marxan results are typically viewed and analyzed in one of two ways: as a “Best 

Solution” or as the “Summed Solution.”  The “Best Solution” represents the single run that 

achieved the most targets for the least cost.  However, the “Best Solution” is only one of 

many potential good solutions, any one of which would create an adequate reserve network.  

Instead of representing target achievement per cost, the “Summed Solution” is a measure 

of the frequency of selection across all runs—essentially Marxan’s measure of 
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“irreplaceability.”  For example, assuming 100 restarts, a planning unit with a “Summed 

Solution” value of 90 indicates a unit that was selected 90 out of 100 restarts, thus 

representing a 90% selection frequency.   

The nature of the conservation problem being addressed typically dictates whether 

the “Best” or “Summed” solution is used.  The “Summed Solution” is best suited to address 

the problem presented in this study because the aim of HCC is to identify conservation 

priority areas with the most unique and irreplaceable features across a broad suite of 

categories on an ad hoc basis, rather than to isolate a near optimal reserve network based 

on constraints. 

Using Marxan’s “Summed Solution” output, the final solution sets represent 11,050 

planning units (25% of all “available” units) selected with the highest frequency across 100 

runs per each scenario, i.e., HCC, Water, Agriculture, and Ecology, respectively.     
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Figure 3.2 Systematic Conservation Planning Scenarios  
The four systematic conservation planning scenarios derived using Marxan decision-
support software (Ball et al. 2009).  Large maps illustrate selection frequency, the smaller 
maps show the top 11,050 planning units selected per each scenario. 
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Limitations 

Key limitations exist for both systematic conservation planning in general, and 

Marxan in particular.  In terms of SCP, the problems typically addressed are inherently 

complex involving highly interactive biological, environmental, social, and economic 

variables.  These variables are often represented by incomplete or limited datasets.  

Consequently, there is a large degree of uncertainty at every stage in the process, with the 

quality of solutions a reflection of both the level of present knowledge and the quality of 

the data used (Margules and Sarkar 2007).  An inability to easily integrate stochastic or 

temporally dynamic data, such as the ecological consequences of climate change, as well 

as the restriction to only a single cost surface are constraints specific to Marxan (Ardron et 

al. 2010).  As a result of these limitations, it is important to stress that both SCP and Marxan 

are decision-support tools, not decision-making tools.  Their use must be viewed with a 

critical eye as part of a dynamic, iterative process in which real world decisions are made 

under knowledge, data, time, and resource constraints.   

Nevertheless, SCP and Marxan remain well-suited to answering the questions 

posed in this work for a number of reasons.  First, because they are based on area-of-

occurrence, the conservation elements being assessed are comparatively simple and do not 

explicitly include such hard to quantify measures as future economic land values or exact 

number and locations of rare species.  Second, the study happens to be located within an 

area where accurate, standardized data is easily accessible, detailed ecological interactions 

are well-documented, and many dynamic processes, such as population growth and 

urbanization, are relatively predictable.  Finally, although the study assumes a twenty year 

time horizon, its precise purpose is to locate priority conservation areas as they exist in the 

present.  Thus, although the potential consequences of climate change are important to 

understand and consider, they do not necessarily impact the selection of conservation areas 
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as they relate to the parameters set forth in this work.  Moreover, because SCP and Marxan 

are designed to be a part of an iterative process, new or revised variables can be 

incorporated as they become available.   

 

ECOSYSTEM SERVICES 

Since the publication of the Millennium Ecosystem Assessment in 2005, there has 

been a steady increase in research aimed at developing tools to quantify and geospatially 

map ecosystem services.  In the following subsection, I use one of these tools to map three 

measures of ecosystem services—along with a separately derived measure of ecosystem 

richness.  The aim is to use these metrics as performance measures, or indicators, of the 

four conservation scenarios described in the preceding subsection.    

InVEST  

Developed as part of the Natural Capital Project, InVEST (Integrated Valuation of 

Ecosystem Services and Tradeoffs) is a suite of spatially explicit simulation models used 

to generate estimates of the levels and economic values of ecosystem services (Tallis et al. 

2013).  In the InVEST models, inputs of land-use, land cover, land management, and 

environmental conditions are combined with biophysical and/or economic information in 

ecological production functions from which, and depending on research need and data 

availability, the spatially explicit biophysical, or monetary, ecosystem service estimates are 

obtained.  InVEST was selected over other options because it is freely downloaded, 

integrates easily with ArcGIS, requires relatively few inputs, and is well documented in 

both use guidelines (Tallis et al. 2013) and applied research (Izquierdo and Clark 2012; 

Nelson et al. 2009; Tallis and Polasky 2009). 
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Ecosystem Service Metrics 

In this study, InVEST is used to estimate and map ecosystem services across the 

six-county Central Texas study area.  Three terrestrial models were chosen for this 

application: 1) carbon storage, 2) soil conservation, and 3) water provision.  These three 

services were selected because their use is well represented in the academic literature (Bai 

et al. 2011; Chan et al. 2006; Izquierdo and Clark 2012; Sánchez-Canales et al. 2012; 

Nelson et al. 2009), they tend to show a positive correlation between services (Bai et al. 

2011; Chan et al. 2006), and they are emblematic of the social and ecological phenomena 

HCC is targeting in its Strategic Conservation Plan (Siglo 2013).  Although each InVEST 

model also estimates economic value, the valuation estimates tend to be highly variable, 

with little empirical reinforcement.  Thus, they were not included in this analysis. 

In addition to the three InVEST ecosystem services metrics, a measure of 

Ecosystem Richness (ER) was also calculated to test the relationship between ecosystem 

services and biodiversity within the study area.  This is beneficial to the analysis because 

prior research has demonstrated that measures of ecosystem services and biodiversity are 

not always positively correlated, with weak, and even negative, correlations common 

(Chan et al. 2006; Cimon-Morin et al. 2013).  Therefore, understanding the relationship 

between ecosystem services and biodiversity is critical to making informed decisions.      

Data 

Each InVEST model requires numerous data inputs, including biophysical value 

tables and spatially explicit environmental raster and vector data.  Prior to use in InVEST, 

and using ArcGIS, all spatial input data were projected to NAD1983 UTM zone 14N, and 

clipped to the dissolved planning unit outline.  Additionally, all raster data were aligned 

with the planning unit cells.  For a complete list of ecosystem service metric data and data 

sources, refer to Appendix B.    
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The InVEST model allows the user to determine the cell size of the output rasters.  

For this study, all rasters were given a cell size of 100 m2 (~1,076 ft2), or exactly 1 hectare 

(~2.5 acres).  This cell size was chosen for two reasons.  First, because most InVEST 

services are calculated as value of service (x) per hectare, regardless of raster cell size, it is 

easy to evaluate the output per cell.  Second, it incrementally fits the planning unit size, 

i.e., 25 InVEST raster output cells fit into 1 planning unit cell.   

Carbon Storage 

In order to estimate the amount of stored carbon in the landscape, the InVEST 

“Carbon Storage and Sequestration” model couples land-use and land-cover maps with 

stocks in four carbon pools: aboveground biomass, belowground biomass, soil, and dead 

organic matter.  In this application, sequestration—or the continued accumulation of 

carbon in plants and soil over time—was excluded in favor of the more simple carbon 

storage value because of the uncertainty regarding sequestration and the importance of 

preventing the loss of stored carbon (García-Oliva and Masera 2004; Lövbrand 2004).  

Outputs from the InVEST carbon storage model are given as tons of carbon stored per 

hectare and range in value from a low of 0 to a high of 90.     

Soil Conservation 

The InVEST soil conservation model estimates the capacity of a land parcel to 

retain sediment.  Based on the Universal Soil Loss Equation (USLE) (Wischmeier and 

Smith 1978), the rate of soil retention is a function of geomorphology, climate, vegetation 

and management practices (Tallis et al. 2013).  Outputs from the soil conservation model 

are given as tons of soil retained per hectare and range in value from a low of 0 to a high 

of 4,996.   
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Water Provision 

Using an approximation of the Budyko curve (Zhang et al. 2001), InVEST 

calculates water provision as the difference between precipitation and actual 

evapotranspiration on each pixel derived from data on mean annual precipitation, annual 

reference evapotranspiration, and correction factors for vegetation type, soil depth, and 

plant-available water content (Tallis et al. 2013).  Outputs from the water provision model 

are given as cubic millimeters of water per hectare and range in value from a low of 22 to 

a high of 781.     

Ecosystem Richness 

Ecosystem richness was calculated for use as a biodiversity surrogate using the 

TPWD Ecosystems Classification Phase 1 Dataset in raster format (TPWD 2010).  Using 

the “Zonal Statistics” ArcGIS tool, the number of TPWD ecosystem types were summed 

per 25 hectare planning unit.  The ER metric offers a straightforward method to identify 

areas with the largest range of ecosystem types. This is based on the assumption that a large 

number of ecosystem types represent greater overall biodiversity, as other studies have 

demonstrated (Ferrier and Watson 1997; Rodrigues and Brooks 2007). Ranging in value 

from 1 to 28, output from the ecosystem richness metric is given as the number of 

ecosystem types per planning unit.   
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Figure 3.3 Ecosystem Service Metrics 
The three InVEST derived ecosystem service metrics and “hotspot” maps, along with the 
separately measured “Ecosystem Richness” metric and “hotspot” map (Tallis et al. 2013).  
Hotspots are classified as the richest 25% of planning units for each service.  
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Indicators 

Once calculated, the outputs from the ecosystem service rasters can be tabulated to 

compare the performance of each of the four conservation scenarios.  Using the “Zonal 

Statistics as Table” ArcGIS tool, each ecosystem service metric was tallied within the 

planning units of each respective conservation scenario.  To use carbon storage as an 

example, the “Zonal Statistics as Table” tool was used to sum the values of the cells in the 

carbon storage output within each of 11,050 planning units of the HCC scenario.  The sum 

of all HCC planning units were then totaled.  This process was repeated for each scenario 

until all had a summed carbon storage total, thus allowing a straightforward comparison.  

The entire process was repeated again for each of the remaining three ecosystem service 

metrics.   

Limitations 

The InVEST suite of models have well recognized limitations (Tallis et al. 2013).  

This is largely the result of a reliance on the mathematical simplification of complex 

ecological functions and non-standardized data.  In general, all InVEST models show high 

sensitivity toward the LULC classes used in input maps, including spatial resolution and 

accuracy.  Second, the carbon cycle is greatly oversimplified assuming fixed storage levels 

according to LULC type without considering gains or losses between types or over time.  

Third, the USLE method used in the soil retention model has only been verified on slopes 

of 1 to 20 percent and only considers the individual effect of each variable, while in reality, 

factors often interact, potentially altering erosion rates.  And fourth, based on annual 

averages, the water yield model overlooks extreme events and does account for 

precipitation seasonality.   

Despite these limitations, the InVEST suite of models is useful to this application 

for several reasons.  First, the models are flexible, requiring relatively little data inputs, yet 
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are also well-grounded in science (Tallis and Polasky 2009).  Second, although steep slopes 

and extreme events do occur within the study area, average slope and seasonality are both 

relatively low.  Finally, this analysis is not intended for devising detailed ecosystem service 

management plans, but rather for their potential use in evaluating conservation scenarios.    

 

ANALYSIS 

In this subsection, I describe the methods of analysis used to evaluate the 

conservation scenarios and the ecosystem service indicators.  These methods include 

overlay analysis using ArcGIS, the creation of a random scenario, and statistical analyses 

using Spearman’s correlations and Wilcoxon-Mann-Whitney U tests (WMW).   

Overlay Analysis 

In order to determine the spatial distribution of ecosystem service overlaps, both in 

total across the study area, and as a comparative measure between conservation scenarios, 

an overlay analysis was performed using ArcGIS.  The first step in the process is to isolate 

the areas with the highest concentration of a particular service.  In the literature these areas 

are often termed hotspots, with hotspot generally being characterized as “an area that 

provides large components of a particular service” (Bai et al. 2011).  

Although hotspots have been specifically defined as “5% or less” in some studies 

(Egoh et al. 2009; Orme et al. 2005), and as the “richest 10% of grid cells for each service” 

in others (Bai et al. 2011), using either of these thresholds in this study resulted in an 

insignificant amount of hotspot overlaps—specifically of four-service overlaps.  In order 

to obtain a sufficient percentage of four-service overlaps, the threshold was decreased in 

increments of five until a more desirable distribution was achieved.  Thus, hotspots are 

defined here as the richest 25% of planning units for each service.   
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In order to calculate the amount of overlap, the sum of the four hotspots were 

tallied.  To do so, all planning units representing a hotspot for each of the four ecosystem 

service metrics were given a value of (1), with all non-hotspot planning units given a value 

of (0).  The values between each of the four metrics were then summed per planning unit.  

The result is 57,479 planning units with a value ranging between zero and four.  The values 

from the summed overlap tally were then extracted per each of the 11,050 planning units 

of the four conservation scenarios, as well as the random scenario, for purposes of 

comparison. 

Random Scenario 

In comparing conservation scenarios, it is important to have either a baseline 

measure, or a control, from which to judge the impact of alternatives.  Borrowing a 

common quantitative method in landscape ecology (Turner and Gardner 1991), in this 

study a neutral alternative of 11,050 planning units was randomly selected from the 44,362 

“available” units—or 25% of all “available” units—using the ‘Subset Features’ tool in 

ArcGIS.  Hereafter this random selection is referred to as the Random scenario.   

Statistical Analysis 

In addition to the overlay analysis, statistical analyses are also performed.  To test 

the spatial relationship among variables in this study, Spearman’s rank correlation is 

calculated using R statistical software.  Spearman’s rank correlation is a non-parametric 

measure of statistical dependence between at least two variables.  Separate Spearman 

correlations are calculated among the four ecosystem service metrics, the four ecosystem 

service hotspots, as well as among the random scenario and the four Marxan conservation 

scenarios per each ecosystem service metric.  Prior to calculating the correlations among 

the ecosystem service metrics, the values for each metric were standardized with Z-scores.  
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Standardizing the values for the scenario correlations is not necessary because they already 

reflect a standard unit, i.e., the measure of a particular ecosystem service.  

Again employing R statistical software, the Wilcoxon-Mann-Whitney U test 

(WMW) is used to test the hypothesis that the Marxan conservation scenarios are 

statistically distinct from the random scenario in regards to the ecosystem service 

indicators.  Null hypothesis being: there is no significant shift between the median of the 

random control and the median of the targeted scenario. The WMW was selected over a 

conventional t-test because the distribution of most variables are non-normal and a non-

parametric test, such as the WMW, is considered more appropriate, and more powerful, in 

such circumstances (Fay and Proschan 2010).  Furthermore, although the distribution of 

the data could be normalized through a transformation, it is unnecessary when using the 

WMW test.  This is because the WMW test is based only on the rank order of the 

observations, not on their value.  Therefore, any transformation of the values that does not 

change the order will not affect the statistic.   

Limitations 

 As there were with both systematic conservation planning and ecosystem service 

quantification, there are also limitations to the methods of analysis.  One of the general 

limitations includes the selection of a study area based on political boundaries, i.e. Texas 

counties.  Because ecological processes do not typically correspond with geopolitical lines, 

the analyses are applicable only to the defined boundary, not to the broader scale at which 

the specific processes are taking place.  This scale mismatch is especially germane to the 

analysis of ecosystem services.  For example, if the overlay analysis was conducted at the 

ecoregional level (Edwards Plateau), the spatial congruence of ecosystem services may be 
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significantly different, and perhaps the relaxation of the hotspot threshold would not have 

been necessary.   

Nevertheless, the analytic constraints imposed by scale-mismatched boundaries are 

not specific to this project.  Instead, they are typical of planning processes in which areas 

must be defined according to the scale of the decisions being made and actions being 

implemented.  In this study, the counties selected were based on their inclusion of 

watersheds deemed critical to Austin-area water quality, as well as the areas within which 

HCC is most likely to find expansion opportunities outside its historic base of operations.  

Thus, even though the six-county study area may not be fully representative of the 

interactions occurring within the Edwards Plateau as a whole, the results remain relevant 

to the decision-making of HCC.   

Similarly, general limitations also exist in terms of the data upon which the analyses 

are based.  Namely, each analysis technique is constrained by the assumption that the 

underlying data is accurate.  Since varying scales of fine-grain spatial data were aggregated 

into larger areal units, specifically in regards to the creation of the ecosystem service 

metrics, this assumption must be tempered with the understanding that aggregation of data 

in this manner may lead to different values and inferences.  In geography this is known as 

the modifiable areal unit problem (MAUP) (Jelinski and Wu 1996).  However, because 

each of the InVEST outputs were aggregated to the planning units individually, and based 

strictly on the sum of the underlying cells, the MAUP has little—if any—affect in altering 

the overall spatial relationship of variables in this application.   

Limitations specific to the statistical analyses are also noted in this study.  Foremost 

is the random selection of planning units for use as a control (Random Scenario).  Land-

use decisions, including those intended for conservation, do not occur randomly.  Patterns 

of location, time, and scale can be determined from past trends.  In turn, projected futures 
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of past trends can be used as plausible baselines for comparing proposed alternatives—a 

technique common in scenario planning (Vanston et al. 1977).  As a result, the random 

control is limited by its implausibility in regard to actual land-use planning decisions.    

However, this limitation does not mean that the random scenario is inappropriate 

for the purposes of this work.  The present rate of conservation acquisition within the study 

area is insufficient for the creation of a projected, past-trend baseline scenario covering the 

same amount of area—within the same twenty-year timeframe—as the HCC conservation 

scenarios, rendering a plausible, yet comparable baseline infeasible.   Alternatively, a 

conservation scenario developed from the criteria of an organization other than HCC—The 

Nature Conservancy, for example—could be used for purposes of comparison but would 

otherwise be inadequate as a baseline measure.  More importantly, the question being asked 

is not which conservation scenario provides the most services, but instead, are indicators 

of ecosystem services effective comparative tools of conservation scenarios.  As used in 

this work, the random control offers an unconstrained starting point from which to answer 

the latter question.    

An additional limitation of the statistical analysis methods is the lack of singular 

explanatory power.  The WMW test only proves whether a shift in the median between the 

control and conservation scenario is statistically significant.  Spearman’s correlation only 

shows the spatial proximity of values.  On their own, neither provide conclusive enough 

evidence to inform land-use decisions.  When used in combination—along with spatially 

explicit techniques such as overlay analysis—the separate limitations of each are mitigated.   
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CHAPTER 4:  

RESULTS AND DISCUSSION  

The final research questions posed by this study ask: 1) Can conservation scenarios 

be effectively evaluated with indicators of ecosystem services; and 2) How can ecosystem 

service indicators inform conservation decisions?  In this chapter, I attempt to answer these 

questions through a review of the overlay and statistical analysis results, as well as a 

subsequent discussion of the results and their conservation implications.  Consequently, I 

have divided this chapter into two subsections: 1) Results, and 2) Discussion.   

RESULTS 

The work described in this sub-section is the result of multiple methods of analysis. These 

methods include both ArcGIS based overlay analysis, and statistical analyses in the form 

of Spearman’s correlation and Wilcoxon-Mann-Whitney U tests (WMW).  The results 

from these analyses are presented in the following three categories: 1) Overlay Analysis, 

2) Statistical Analysis, and 3) Comparing Scenario Results 

Overlay Analysis 

 Overlay analysis provides a means to determine the spatial distribution of 

ecosystem service hotspots as well as a method of comparison between conservation 

scenarios.  In total, 23% of the study area include hotspot overlaps ≥ 2, 8% ≥ 3, and less 

than 1% with 4 the maximum of four overlaps.  As seen in Figure 4.1, the greatest 

proportion of overlaps ≥ 3 are located just west of the Balcones fault zone, beginning at the 

northwest corner of both Hays and Travis County and extending into the southern portions 

of Blanco and Burnet.  When viewed as a percentage of county area (Figure 4.2), Blanco 

(20%), Hays (16%), and Burnet (8%) have the greatest proportion of ecosystem service 
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hotspot overlaps ≥ 3.  At 3% of its area, Hays represents the greatest proportion of four 

overlaps, followed by Blanco with 1%.   

 

 

Figure 4.1 Overlay Analysis Results 
A) Spatially explicit representation of ecosystem service “hotspot” overlaps.  B) Number 
of overlaps by Planning Units (PUs).  
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Figure 4.2 Ecosystem Service Hotspot Overlaps by Percent of County Area 

In terms of the conservation scenarios, each share a similar hotspot overlap 

distribution range, as seen in Table 4.1.  Hotspot overlaps ≤ 1 constitute approximately 

60% or more of each scenario, with overlaps ≥ 3 representing less than 20% for all 

scenarios, and overlaps of four representing less than 2% for all scenarios.  For hotspots ≥ 

2, Water represents the greatest percentage (43.7%), followed by Ecology (42.4%), and 

HCC (41.1%).  For hotspots ≥ 3, Ecology becomes the top scenario (17.2%), followed by 

Water (17%), and HCC (16.3%).  Of all four scenarios, Agriculture represents the smallest 

percentage of overlaps ≥ 2 (32.8%), and ≥ 3 (13.2%).  Most significantly, all four 

conservation scenarios were found to have higher overlap percentages ≥ 2 and ≥ 3 when 

compared with Random. 
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Table 4.1 Percentage of Conservation Scenario by Number of Ecosystem Service 
Hotspot Overlaps 
Overlaps Random HCC Water Agriculture Ecology 

None 39.4 24.1 20.7 33.6 22.4 

1 33.7 34.8 35.7 33.6 35.2 

2 17.3 24.8 26.7 19.6 25.2 

3 8.8 14.9 15.3 12.0 15.5 

4 0.8 1.4 1.7 1.2 1.7 

Total 100 100 100 100 100 

≥ 2 26.9 41.1 43.7 32.8 42.4 

≥ 3 9.6 16.3 17 13.2 17.2 

 

Statistical Analysis 

 Statistical correlation analysis tests the spatial correspondence between variables.  

The results presented here indicate that the four ecosystem service functions, i.e., Water 

Yield, Soil Conservation, Carbon Storage, and Ecosystem Richness, have relatively distinct 

spatial distributions across the total study area (Table 4.2).  The overall average correlation 

is positive but low (0.09), with the correlation between Soil Conservation and Ecosystem 

Richness (0.33), and Soil Conservation and Carbon Storage (0.32) found to be highest, 

though still relatively weak.  In contrast, a negative correlation was found between Water 

Yield and Soil Conservation (-0.29) and between Water Yield and Ecosystem Richness  

(-0.19).  While unexpected, this spatial incongruence can be explained by the known 

positive relationship between forested land-cover and both Soil Conservation and 

Ecosystem Richness, and the negative relationship between forest cover and Water Yield 

due to increased evapotranspiration and soil retention (Chan et al. 2006).  
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Table 4.2 Spearman’s Correlation between Ecosystem Services 

 
Water Yield 

Soil 
Conservation 

Carbon 
Storage 

Ecosystem 
Richness 

Water Yield 1    

Soil Conservation -0.29 1   

Carbon Storage 0.16 0.32 1  

Ecosystem Richness -0.19 0.33 0.17 1 

 

 The spatial correlation of the four ecosystem service function hotspots show a 

similar outcome (Table 4.3).  Overall average correlation remains both positive and low 

(0.15).  Notable exceptions include an increase in correlation between the hotspots of 

Carbon Storage and Ecosystem Richness (0.32) and a reversal from a negative overall 

correlation between Water Yield and Ecosystem Richness (-0.19) to a positive correlation 

between the hotspots of those same functions (0.14).  These deviations can be understood 

as a matter of geography, namely that the increase in topographic variation and slope found 

just west of the Balcones escarpment, when coupled with rainfall patterns which increase 

from northwest to southeast, facilitates greater ecological richness, discourages wholesale 

clearing of forest cover, while also increasing water yield.    

Table 4.3 Spearman’s Correlation between Ecosystem Service Hotspots4.3 

 
Water Yield 

Soil 
Conservation 

Carbon 
Storage 

Ecosystem 
Richness 

Water Yield 1    

Soil Conservation -0.12 1   

Carbon Storage 0.21 0.24 1  

Ecosystem Richness 0.14 0.12 0.32 1 

 



 89

 Testing the spatial correlation between scenarios is also crucial to ensure outcomes 

are based on variation in conservation targets, rather than influenced largely through spatial 

distribution.  Correlation between conservation scenarios, not including the Random 

scenario, is positive with a relatively high average (0.59).  Because each scenario was based 

on the HCC target set, this outcome is to be expected.  Not surprisingly, the Water and 

Ecology scenarios, which share a number of cross categorical targets, has the highest 

correlation (0.71).  More critically, the spatial correlation between Random and the four 

conservation scenarios is insignificant.  With values ranging from a low of 0.06 to a high 

of 0.07, statistical insignificance is verified.  

Table 4.4 Spearman’s Correlation between Scenarios 

 Random HCC Water Agriculture Ecology 

Random 1     

HCC 0.07 1    

Water 0.06 0.65 1   

Agriculture 0.07 0.60 0.46 1  

Ecology 0.07 0.66 0.71 0.46 1 

 

In addition to the correlation analysis, hypothesis tests, in the form of the Wilcoxon-

Mann-Whitney U test, offer a verification tool to ensure that each of the four conservation 

scenarios are sufficiently distinct from Random for each of the four ecosystem service 

indicators, based on the difference in respective sums (Table 4.5).  In eleven of the sixteen 

tests, the null hypothesis—being that there is no statistical difference between Random and 

conservation scenario (x)—could be rejected with over 99% confidence.  In an additional 

two tests, both within Water Yield (Table 4.5A), the null hypothesis for both the Agriculture 

and the Ecology scenarios could be rejected with over 95% confidence.  It is worth noting, 
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however, that the Ecology scenario is statistically significant, not by its increase over 

Random, but rather in its decrease below Random, in regards to Water Yield.   

In contrast, the null cannot be rejected in three of the sixteen tests, including both 

the HCC and the Water scenario in Water Yield (Table 4.5A), and the Agriculture scenario 

within Carbon Storage (Table 4.5C).  Because of the spatial incongruence found in the 

correlation analysis, these outcome can be explained by the focus on forest cover and 

riparian ecosystems in the HCC scenario, the intensification of that focus in the Water and 

Ecology scenarios, and a decrease in targeted forest cover, and hence carbon storage, within 

the Agriculture scenario.   

Table 4.5 Descriptive Statistics and p-values by Ecosystem Service Indicator 

 Sum Mean Min. Max. p-value1 

(A) Water Yield (mm3 of water/year) 

Random 50,822,785 4,599 591 10,590 — 

HCC 50,864,169 4,603 691 10,590 0.636 

Water 50,585,473 4,578 591 10,590 0.441 

Agriculture 51,454,142 4,656 691 10,590 0.03* 

Ecology 50,115,106 4,535 591 10,590 0.04* 

(B) Soil Conservation (tons of retained soil/year) 

Random 30,929,857 2,799 12 32,408 — 

HCC 38,200,665 3,457 15 32,408 < 2.2e-16** 

Water 37,591,045 3,402 12 32,408 < 2.2e-16** 

Agriculture 31,410,333 2,843 12 32,408 7.011e-6** 

Ecology 37,236,677 3,370 26 37,712 < 2.2e-16** 

(C) Carbon Storage (tons carbon/year) 

Random 16,474,224 1,491 258 2250 — 

HCC 17,804,934 1,611 258 2250 < 2.2e-16** 

Water 18,234,465 1,650 218 2250 < 2.2e-16** 

Agriculture 16,616,807 1,504 258 2250 0.057 

Ecology 18,288,368 1,655 258 2250 < 2.2e-16** 
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(D) Ecosystem Richness (ecosystem types/planning unit) 

Random 88,753 8.032 1 26 — 

HCC 110,993 10.04 1 27 < 2.2e-16** 

Water 112,826 10.21 1 27 < 2.2e-16** 

Agriculture 101,351 9.172 1 26 < 2.2e-16** 

Ecology 113,925 10.31 1 26 < 2.2e-16** 
1 Wilcox-Mann-Whitney non-parametric two-sample test comparing each conservation scenario to the 
random scenario.   
* > 95% Confidence  
** > 99% Confidence 

 

Comparing Scenario Results 

To be informative within a broader systematic conservation planning process, the 

analysis results must be easily comparable between alternative options.  Here the Random 

scenario provides the baseline from which the conservation scenarios can be compared 

according to the overlay and statistical analysis results.   

Concerning ecosystem service hotspots, the performance of each of the four 

conservation scenarios represents a significant improvement over Random in terms of 

percent increase (Figure 4.3).  For example, in overlaps ≥ 3, Ecology (79%), Water (76%), 

and HCC (70%) each represent at least a 70% increase over Random.  Although the 

Agriculture scenario (37% ≥ 3) does not meet the same standard, it nonetheless represents 

an almost 40% increase over Random.  Compared solely in terms of the maximum number 

of overlaps (4), the percent increase over Random is even more exaggerated, with Ecology 

(126%) and Water (121%) showing the greatest increase, followed by HCC (82%) and 

Agriculture (52%).  
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Figure 4.3 Ecosytem Service Hotspot Overlaps by Percent Increase over Random 
Scenario   

In terms of statistical analysis, the conservation scenarios, including Random, can 

be directly compared by the statistical sum of each ecosystem service.  Here the sum 

represents the total amount of each ecosystem service calculated across the 11,050 planning 

units comprising each scenario. In Soil Conservation (Table 4.5B), Carbon Storage (Table 

4.5C), and Ecosystem Richness (Table 4.5D), each of the conservation scenarios have sums 

greater than Random.  In all but the Agriculture scenario in Carbon Storage, these 

differences are statistically significant.  Conversely, in Water Yield (Table 4.5A) the sums 

of Ecology and Water are less than the sum of Random, while HCC and Agriculture are 

greater than Random, with only Agriculture significantly so.   

As illustrated in Table 4.5, the leading scenarios, by statistical sum, vary between 

each ecosystem service.  In Water Yield, Agriculture (51.45 million mm3) denotes the top 

service provider, followed by HCC (50.86 million mm3).  Whereas HCC (38.2 million 

tons) is the top providing scenario of Soil Conservation, followed by Water (37.6 million 

tons).  In terms of Carbon Storage, Ecology (18.29 million tons) is the leading scenario, 

trailed by Water (18.23 million tons).  This same pattern holds for Ecosystem Richness as 
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well, with Ecology (10.31 mean ecosystem types per planning unit) the top scenario, 

followed again by Water (10.21 mean ecosystem types per planning unit).   

Each ecosystem service sum noted above represents a different unit of analysis 

thereby making intra-service comparisons, and specifically visualizations between 

scenarios, challenging.  For comparative purposes, standardized values, or z-scores, of the 

statistical sums of each ecosystem service are calculated by subtracting the ecosystem 

service mean of all scenarios from an individual scenario and then dividing the difference 

by the standard deviation.  The resultant z-score is the number of standard deviations a 

scenario is above (reflected as a positive number) or below (reflected as a negative number) 

the mean (Figure 4.4).   

 

 

Figure 4.4 Ecosystem Service Standardized Values by Conservation Scenario 
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Furthermore, a standard overall “score” is obtained by summing the ecosystem 

service z-scores of each scenario.  As seen in Figure 4.5, although HCC was the top 

scenario in only one of the four ecosystem service categories, its overall score of 2.28 

makes it the leading scenario followed by Water (2.19), Ecology (1.29), and Agriculture  

(-0.83).  As should be expected, Random’s overall score of -3.53 is significantly lower than 

the scores of all four targeted conservation scenarios.   

  

 

 

Figure 4.5 Summed Ecosystem Service Standardized Values by Conservation 
Scenario 
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DISCUSSION  

The results presented in the preceding sub-section contribute to an emerging 

literature in which multiple ecosystem services are not only quantified at the landscape-

scale through ecological production functions, but also incorporated into decision-making 

contexts.  In contrast to previous work, this research is distinguished by its use of ecosystem 

service indicators to evaluate a range of conservation scenarios.  In the following sub-

section I discuss the results of this research, and their implications, in terms of the following 

three categories: 1) Spatial Congruence, 2) Statistical Significance, and 3) Conservation 

Implications and the Decision-Making Process. 

Spatial Congruence  

This study offers evidence to the inherent complexity in attempting to quantify 

spatially explicit ecological phenomena for use in decision-making.  Although the four 

ecosystem service functions, i.e., Water Yield, Soil Conservation, Carbon Storage, and 

Ecosystem Richness, were selected because previous research had indicated a high positive 

correlation between them (Bai et al. 2011; Chan et al. 2006), this same pattern was not 

replicated across the Central Texas study area.   

Similar to the findings of Izquierdo and Clark (2012), I found negative correlations 

between Water Yield and biodiversity.  Yet unlike Izquierdo and Clark (2012), who also 

noted a negative correlation between “Water” and “Carbon,” I found Water Yield to be 

negatively correlated with Soil Conservation when measured across the entire site.  Adding 

further complexity, when compared in terms of hotspots, I discovered the negative 

correlation between Water Yield and Ecosystem Richness became positive.  Additional 

analysis indicates this shift is partially attributable to the relaxation of the hotspot threshold 

from 10% to 25%, as a result of the tendency of correlation to increase in conjunction with 

threshold.  For example, assuming the top 10% hotspot, Water Yield and Ecosystem 
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Richness have a correlation value of 0.10—with 1.0 being perfect correlation.  At 15%, the 

correlation rises to 0.12.  Even with a tightened threshold of 5%, the correlation remains 

positive with a value of 0.05.   This evidence suggests a true, albeit weak, correlational 

shift from negative to positive for Water Yield and Ecosystem Richness.  

Regardless of whether the correlations are positive or negative, they remain 

relatively weak in all instances. This is in direct contrast to the work of Bai et al (2011), 

who found average correlation between ecosystem service values equal to 0.56.  

Conversely, I found average positive correlation values of 0.25, when measured across the 

entire study area.  When measured in terms of ecosystem service hotspots, the positive 

correlation became even less pronounced, with an average value of 0.21.   

These weak or negative spatial correlations support the general conclusion that 

ecosystem services, including biodiversity, often co-occur with certain services, but do not 

co-occur with other services (Naidoo et al. 2008; Turner et al. 2007).  This conclusion can 

be taken a step further to suggest that ecosystem services which tend to co-occur at one 

location or scale, may not co-occur at another location or scale (Anderson et al. 2009).  

Further still to suggest that ecosystem services may co-occur in total across a single 

location and scale, but that the hotspots of those same services may not co-occur.  Thus, 

these findings underscore the inability to broadly generalize ecosystem service 

relationships, and, therefore, the necessity of conducting place-specific, comprehensive 

analyses when incorporating ecosystem services into any decision-making context. 

However, the ability of each conservation scenario to outperform Random in terms 

of ecosystem service provision supports another general conservation conclusion, despite 

the lack of spatial congruence.  Namely, that the targeting of biophysical attributes for 

conservation concurrently targets areas supporting multiple ecosystem services (Chan et 

al. 2011; Chan et al. 2006; Larsen et al. 2011; Onaindia et al. 2013; Thomas et al. 2013).   
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Statistical Significance 

Although the use of a random, or null, model is commonly used to test the 

significance of hypotheses in landscape ecology (Turner and Gardner 1991), to date it has 

not been applied in a multi-scenario comparison of ecosystem service provision.  In the 

context of this study, I found the method to be a beneficial verification tool which yielded 

unexpected, yet decisive results.  Specifically, the failure to reject the null hypothesis in 

two of the four scenarios in Water Yield indicate that the conservation scenarios are no 

better at selecting units of high value for Water Yield than a random sampling of planning 

units.   

This result is partially explained by the negative spatial correlation found between 

Water Yield and other services, though a negative correlation should be expected to result 

in statistically significant sums below the random scenario sum.  This occurred in only one 

of the four scenarios (Ecology), and only with 95% confidence.  Without further analysis—

such as a comparison between alternative measures of Water Yield, a sensitivity analysis 

of the variables used by the InVEST model (Sánchez-Canales et al. 2012), or testing the 

impact of recalibrating the conservation targets—to verify the results, it cannot be said with 

confidence that the conservation scenarios perform better than random in this instance.  

Thus, at the least, greater caution must be taken in the incorporation of Water Yield into 

conservation decisions made within the study area.  Moreover, to avoid adding increased 

uncertainty to the process, and potential undesired outcomes, it may be more prudent to 

simply omit Water Yield as a decision consideration.   
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Conservation Implications and the Decision-Making Process  

As with any planning process, the ultimate goal is to use analysis results to inform 

actual decisions.  Subsequently, the results of this integrated research framework suggest 

a range of conservation implications at both the landscape-specific, local level, and more 

broadly at the generalized, global level.    

The primary driver of this work is the identification of conservation priority areas 

for a local conservation non-profit, Hill Country Conservancy (HCC), across the six-county 

Central Texas study area.  As such, the research results are intended to bolster the 

understanding of complex ecological phenomena, specifically as they relate to ecosystem 

services, in order to more robustly compare conservation alternatives and thereby inform 

conservation decisions.  Each method of analysis, i.e. ecosystem service hotspot overlap, 

spatial correlation, and statistical significance, convey distinct implications in terms of the 

study area, and the conservation planning process set within it.   

The ecosystem service hotspot analysis provides some of the most salient results of 

this work, explicitly in terms of landscape sustainability.  As shown in Figure 4.1, the 

spatial distribution of hotspot overlaps is prominently situated within the same geographic 

area—namely northwestern Travis County, all of Hays County, and southern portions of 

both Blanco and Burnet counties—projected to undergo the greatest land-use changes in 

the coming decades (EPA 2009), largely as a result of increased urbanization and 

development (refer to Figure 2.6).  The implication being that the portion of the landscape 

most critical to the regional provision of ecosystem services, and therefore landscape 

sustainability, is also the most vulnerable to transformation.   

With this understanding, the systematic conservation planning process can be 

adapted in one of two ways.  First, conservation targets can be revised to select either at-

risk areas or biophysical conservation elements correlated with ecosystem service hotspots.  
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Alternatively, or in conjunction, cost values can be calculated for each planning unit, with 

the planning units in the threatened area considered most likely to undergo land-use change 

issued the lowest cost values.  Incorporating a cost surface in this manner would increase 

the likelihood that the most vulnerable planning units would be selected by the Marxan 

minimum set algorithm.   

The lack of spatial congruence between ecosystem services, as identified in the 

spatial correlation analysis, also has conservation implications. Namely, the negative 

correlation between Water Yield and other ecosystem services compounds the likelihood 

of significant tradeoffs occurring between services.  More importantly, the lack of strong 

spatial congruence across all ecosystem services increases the difficulty in maximizing a 

suite of ecosystem services within a single conservation scenario.  Because this study 

utilizes ecosystem services as indicators rather than as targets, this does not pose a 

structural problem and the effects of spatial incongruence can still be mitigated in a number 

of ways. 

First, discreet ecosystem services can be isolated and conservation targets adapted 

to maximize that specific service.  For example, if viable incentives for carbon storage and 

sequestration—such as a carbon market or a cap-and-trade policy—are implemented as a 

response to climate change, conservation targets can be adapted to maximize the provision 

of carbon storage across the landscape.   

In contrast, additional metrics of ecosystem services can be calculated, and 

subsequently “bundled” according to their spatial correlations in a similar method to that 

proposed by Bai (2011). Conservation targets, and ultimately alternative scenarios, can 

then be developed to either emphasize a specific bundle of services, or to minimize 

tradeoffs between groups—both of which are comparable using the overall summed 

ecosystem service “score” developed in this work (Figure 4.5 represents a comparison of 
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the minimization of tradeoffs by conservation scenario; Figure 4.6 the scenario best able 

to provide a spatially correlated bundle of services).   

Finally, the statistical analysis and random control can be used to identify any 

ecosystem service function which does not provide statistically significant results.  

Consequently, those services which are not reliable can be omitted from decision 

consideration.  This action can significantly alter the rank order of the conservation 

scenarios, thereby affecting side-by-side comparison, and ultimately, conservation 

decisions.   

For example, by excluding Water Yield from the overall summed ecosystem service 

“score,” the negative correlation between Water Yield and the other services is ameliorated.  

Whereas with Water Yield included, HCC (2.28) was the leading scenario, followed by 

Water (2.19), and Ecology (1.29); excluding Water Yield results in Ecology (2.81) leading, 

followed by Water (2.76), and HCC (2.28), as illustrated in Figure 4.6.  This new order 

now mirrors the results of the hotspot overlay analysis.   

 

 

Figure 4.6 Summed Ecosystem Service Standardized Values (excluding Water Yield) 
by Conservation Scenario  
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Thus, if recommendations are ultimately required, they can be given based on 

which solution is most relevant to the problem being asked.  For instance, if Water Yield is 

omitted, it is possible to confidently recommend the Ecology and Water scenarios as 

optimum solutions in terms of both their inclusion of ecosystem service hotspots, and their 

bundled spatially correlated ecosystem service summed “scores.”  Conversely, based on 

the summed ecosystem service “score”—tabulated using all four ecosystem service 

indicators—HCC represents the scenario best able to successfully balance a range of 

service trade-offs.  However, because the Water Yield results were not statistically 

significant, any recommendation of the HCC scenario would also include a cautionary 

caveat.  Regardless, this framework is flexible and adaptable enough to strategically assist 

conservation decisions on the basis of the provision of ecosystem services.  
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CHAPTER 5:  

AREAS OF FURTHER RESEARCH AND CONCLUSIONS 

In the preceding chapters, I reviewed this work’s theoretical foundations (Chapter 

1), analyzed the six-county Central Texas study area (Chapter 2), described the multiple 

methods of analysis (Chapter 3), and presented and discussed the analysis results, along 

with the conservation implications of those results (Chapter 4).  The subsequent product is 

a research framework that offers a novel and robust approach for integrating ecosystem 

services into conservation planning methods by utilizing them as indicators to compare the 

performance of conservation scenarios.  In this, the final chapter, I explore the areas of 

further research uncovered through the process, as well as offer my final conclusions, in 

two respective subsections: 1) Areas of Further Research, and 2) Conclusions. 

AREAS OF FURTHER RESEARCH 

As with most scientific research, the search for one answer often leads to myriad 

additional questions.  In the following sub-section I discuss the areas of further research 

identified during the development of this work.  I have classified these areas of additional 

inquiry into three distinct categories to be discussed in turn: 1) Ecosystem Services, 2) 

Conservation Planning, and 3) Conservation and Sustainability.   

Ecosystem Services 

 Through the course of this work, several broad categories of research opportunities 

were identified in relation to the concept of ecosystem services.  These opportunities 

include additional research specific to the work presented here, and more general studies 

concerning the quantification and mapping of services, as well as those related to their 

economic valuation.   
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 Several research areas were identified as possible extensions to the framework 

developed in this study.  Foremost, the framework is intended to be highly adaptive, 

therefore a greater quantity of ecosystem services can be incorporated, and their effect on 

outcomes and potential tradeoffs compared.  For example, additional ecosystem service 

metrics such as pollination, recreation, crop production, or forage production can be 

measured, mapped, analyzed, and bundled according to patterns of spatial correlation.  

Subsequently, alternative scenarios intended to accentuate specific bundles of services can 

also be developed and compared.  Furthermore, the use of indictors, as developed in this 

project, could be compared to alternative methods of ecosystem service integration such as 

targets (Chan et al. 2006; Izquierdo and Clark 2012), or as costs (Chan et al. 2011).   

Research opportunities concerning the quantification and mapping of ecosystem 

services were also discovered.  Although the InVEST models used in this study are well-

recognized tools for spatially explicit ecosystem service quantification, they are not 

without limitations.  Further sensitivity analysis of all InVEST terrestrial models across a 

broad range of environments and land-uses—similar to the water yield sensitivity analysis 

conducted by Sanchez-Canales et al. (2012)—is necessary to better gauge the relative 

importance of individual biophysical parameters and their effect on final outputs.  More 

specific to this work, the InVEST water yield model needs to be tested for accuracy and 

precision when applied to unique geologic substructures, such as the highly porous karst 

limestone dominate throughout Central Texas.  Moreover, the InVEST models are only 

one method, among many, attempting to quantify and map ecosystem services.  A study 

directly comparing multiple quantification methods in terms of overall accuracy in output 

values, and precision in providing them at the place-specific, landscape level, is also 

needed.   
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 Perhaps most importantly, more research is needed regarding the economic 

valuation of ecosystem services.  The promise of the ecosystem service concept is the 

potential to value ecological phenomena in standard economic terms such as the US dollar.  

Presently, most ecosystem services do not have explicit market value, and thus comparison 

remains difficult.  For this reason, economic valuation was omitted from this work, despite 

being an optional component of the InVEST models.  As markets become more universal 

and standardized, as demonstrated by the continued rise in transaction volumes in the 

global carbon market (Kossoy and Guigon 2012), and valuation models become more 

proficient at appraising externalities, the economic valuation of ecosystem services can be 

more easily incorporated into multiple research contexts.  Until that time, more place-

specific economic analyses identifying the net social value—defined as the aggregate 

benefit to society, not simply its market value, of a particular service (Tol 2011)—of 

multiple ecosystem services are needed.  Furthermore, potential options for payments for 

ecosystem services, such as tax-based incentives, subsidies, or direct payments to 

communities, institutions, or individuals, must continue to be developed (Jack et al. 2008). 

Conservation Planning 

 Further research opportunities, relating more specifically to the field of 

conservation planning, are also identified in this work.  The incorporation of dynamic 

processes, conservation targets, and integrative methods of output are all areas of potential 

inquiry.   

 One of the main limitations of systematic conservation planning methods is the 

inability to fully account for dynamic processes, such as urban growth and development or 

the impacts of climate change on biotic communities, within a selection algorithm.  More 

research is needed to develop and compare methods which incorporate these elements in 
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some capacity—whether through existing methods such as using a Marxan “cost” layer, or 

through novel integrative methods using future land-use scenarios or ecological modeling 

techniques to represent dynamic processes.     

 Conservation targets also present a range of potential research opportunities. 

Overall, to mitigate subjectivity in the selection process, more research is needed to 

develop both generalized and place-specific conservation target protocols derived from 

empirical evidence.  More specifically, an additional opportunity includes a direct 

comparison between multiple target sets based on distinct ecological functions or 

structures.  For example, targets based on maintaining ecological functionality, such as in 

this work, can be compared to alternative sets based on ecosystem service hotspots, 

maintaining geologic diversity, referred to as “geodiversity” (Gray 2013), or based on the 

concept of “land facets”—recurring landscape units with uniform topographic and soil 

attributes (Beier and Brost 2010).  In turn, they can be evaluated according to their 

provision of ecosystem services using the framework developed in this work.   

 Furthermore, there remains the prospect of integrating systematic conservation 

planning results with other geographic information system (GIS) based scenario planning 

tools.  For instance, Envision Tomorrow is an open-source GIS based suite of urban and 

regional planning software tools and indicators developed by Fregonese Associates 

(Fregonese 2014).  Using the Envision platform, Marxan selection outputs could be 

automatically linked to indicators of ecosystem services.  As a result, the impacts of 

scenarios of urban growth—or increased conservation measures—on the provision of 

ecosystem services could be ascertained in real-time, thereby increasing the potential 

engagement of private clients or the public and greatly aiding informed decision-making 

capabilities.   
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Conservation and Sustainability 

 Finally, this research also highlighted a range of research potentials relating more 

broadly to the concepts of conservation itself, as well as to sustainability.   

Increasingly, the impacts of urban development and, thus, the need for conservation 

action, are well understood.  However, the dynamics of land-use change are inherently 

complex.  More research is needed to understand the drivers of large-scale, land-cover 

change, particularly as they relate to land-use preference and landowner motivations.  More 

specifically, research addressing the effectiveness of current incentives for conservation, 

the feasibility and continued development of potential incentives for conservation such as 

payments for ecosystem services, individual landowner motivations toward conservation, 

and governmental motivations toward conservation—at the national, state, county, and 

municipal levels—are all essential.   

Moreover, as I have argued previously, the ultimate purpose of conservation is to 

not only protect threatened species and ecosystems, but also to sustain human well-being.  

A number of research opportunities relating to landscape sustainability were uncovered in 

this work.  Namely, more study is needed to understand the dynamics of localized natural 

disturbances such as floods, drought, and wildfire, localized human disturbances resulting 

from population growth and urbanization, and global disturbances related to climate 

change, on the provision of ecosystem services.  Subsequently, more effort is needed to 

understand the attributes that contribute to resiliency, as well as how best to enhance those 

attributes through planning and design. Place specific research comparing ecosystem 

service outputs to proxies of human demand is also needed as it would help develop an 

understanding of whether the ratio between landscape level services and social demand are 

sustainable.   Lastly, because equity is intrinsic to sustainability, more research is needed 

to evaluate the social equity of conservation, specifically in regards to the conservation of 
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private lands and the resultant impact on local economies in terms of employment, food 

cost, and property values.    

 

CONCLUSIONS 

Within the field of conservation planning, the integration of ecosystem services is 

an emergent area of research with the potential to significantly shift the foundation of 

conservation from the separation of wild nature and society to that of  “conservation for 

the people” (Kareiva and Marvier 2007). Inherent in this shift lies the promise of a 

sustainable landscape shared by both.  

With this work, I offer a novel contribution to this growing body of literature.  

Although there are recognized limitations in both the materials and methods, the integration 

of spatially explicit indicators of ecosystem services into a systematic conservation 

planning process results in a flexible, adaptable framework well suited to supporting the 

iterative, data-driven nature of decision-making processes.   

As the results suggest, this framework is highly place-specific. Yet, in its use of 

readily available data, it is easily replicated across a wide range of project scales and 

objectives.  This work reinforces the finding that there is often a substantial amount of 

variability in the spatial congruence of multiple ecosystem services and their provision 

across a landscape (Cimon-Morin et al. 2013; Izquierdo and Clark 2012), while also 

supporting the conclusion that the targeting of ecological phenomena for conservation 

concurrently targets areas supporting multiple ecosystem services (Bai et al. 2011; Chan et 

al. 2006).   

Ultimately, conservation planning is about fostering decisions which lead to 

informed action.  As such, the most important contributions of this work are at the local, 
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landscape-scale.  In the application of this framework to the six-county Central Texas study 

area, it is possible to not only determine where HCC should allocate their resources based 

on a range of organizationally defined conservation scenarios, but also to verify which 

scenarios best provide a range of ecosystem services—whether that is the scenario best 

able to optimize the tradeoffs between spatially incongruent services or to maximize an 

amount of bundled services.  Having this knowledge allows HCC to make, and iteratively 

adapt, conservation decisions as well as lends transparent, scientific defense to those 

choices.   

As we progress further into the twenty-first century, it is likely that our current 

environmental challenges and land-use conflicts will continue to increase along with 

human population and global temperature.  If landscape sustainability is to be achieved, in 

Central Texas and beyond, research and conservation action will have to keep pace.  The 

integration of ecosystem services into conservation planning methods has tremendous 

potential for introducing and developing new tools for researchers, planners, practitioners, 

and decision-makers.  Yet that integration is just beginning, with many questions left 

unanswered.   This research provides one solution for integration in which indicators of 

ecosystem services contribute to strategic conservation decisions, thus taking into account 

the ecological phenomena necessary for human well-being and sustainable landscapes. 
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APPENDICES  

Appendix A 

Systematic Conservation Planning: Conservation Elements and Targets 

Conservation Elements Conservation Targets 

Conservation Element Category Source General1 Water2 Agriculture3 Ecology4 
Edwards Aquifer 
Recharge Zone 

Water 
USGS 
NHD 

0.4 0.6 0.4 0.4 

Trinity Aquifer Recharge 
Zone 

Water 
USGS 
NHD 

0.15 0.225 0.15 0.15 

Marble Falls Aquifer 
Recharge Zone 

Water 
USGS 
NHD 

0.1 0.15 0.1 0.1 

Major Waterway 1200ft 
buffer 

Water 
USGS 
NHD 

0.3 0.45 0.3 0.3 

Significant Stream 1200ft 
buffer 

Water TPWD 0.5 0.75 0.5 0.5 

Springs 350ft buffer Water TPWD 0.4 0.6 0.4 0.4 

Wetlands 150ft buffer Water TFS 0.3 0.45 0.3 0.3 

Public Water Supply Well 
1200ft buffer 

Water TWDB 0.3 0.45 0.3 0.3 

Public Water Supply 
Surface Intake HUC 12 
Watersheds 

Water TWDB 0.3 0.45 0.3 0.3 

Colorado River-Lake 
Buchanan HUC 10 
Watershed 

Water 
USGS 
NHD 

0.35 0.35 0.35 0.35 

Sandy Creek HUC 10 
Watershed 

Water 
USGS 
NHD 

0.35 0.35 0.35 0.35 

Inks Lake-Lake Lyndon B 
Johnson HUC 10 
Watershed 

Water 
USGS 
NHD 

0.375 0.375 0.375 0.375 

Hickory Creek-Llano 
River HUC 10 Watershed 

Water 
USGS 
NHD 

0.375 0.375 0.375 0.375 

San Fernando Creek-
Llano River HUC 10 
Watershed 

Water 
USGS 
NHD 

0.325 0.325 0.325 0.325 

Little Llano River-Llano 
River HUC 10 Watershed 

Water 
USGS 
NHD 

0.35 0.35 0.35 0.35 

Lake Marble Falls-Lake 
Travis HUC 10 
Watershed 

Water 
USGS 
NHD 

0.35 0.35 0.35 0.35 

Cow Creek-Lake Travis 
HUC 10 Watershed 

Water 
USGS 
NHD 

0.325 0.325 0.325 0.325 

City of Austin-Colorado 
River HUC 10 Watershed 

Water 
USGS 
NHD 

0.325 0.325 0.325 0.325 
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Conservation Elements Conservation Targets 

Conservation Element Category Source General1 Water2 Agriculture3 Ecology4

Onion Creek-Colorado   
River HUC 10 Watershed 

Water 
USGS 
NHD 

0.3 0.3 0.3 0.3 

North Grape Creek-
Pedernales River HUC 10 
Watershed 

Water 
USGS 
NHD 

0.4 0.4 0.4 0.4 

Pedernales River-Lake 
Travis HUC 10 
Watershed 

Water 
USGS 
NHD 

0.3 0.3 0.3 0.3 

Edwards Plateau: Ashe 
Juniper Motte and 
Woodland 

Ecology 
TPWD 
ESD 

0 0 0 0.025 

Edwards Plateau: Live 
Oak Motte and Woodland 

Ecology 
TPWD 
ESD 

0 0 0 0.05 

Edwards Plateau: 
Deciduous Oak / 
Evergreen Motte and 
Woodland 

Ecology 
TPWD 
ESD 

0 0 0 0.075 

Edwards Plateau: Oak / 
Hardwood Motte and 
Woodland 

Ecology 
TPWD 
ESD 

0 0 0 0.075 

Edwards Plateau: Post 
Oak Motte and Woodland 

Ecology 
TPWD 
ESD 

0.075 0.075 0.075 0.1125 

Edwards Plateau: Savanna 
Grassland 

Ecology 
TPWD 
ESD 

0.05 0.05 0.075 0.075 

Edwards Plateau: Ashe 
Juniper Slope Forest 

Ecology 
TPWD 
ESD 

0.05 0.075 0.05 0.075 

Edwards Plateau: Live 
Oak Slope Forest 

Ecology 
TPWD 
ESD 

0.8 0.8 0.8 1.2 

Edwards Plateau: Oak / 
Ashe Juniper Slope Forest 

Ecology 
TPWD 
ESD 

0.1 0.15 0.1 0.15 

Edwards Plateau: Oak / 
Hardwood Slope Forest 

Ecology 
TPWD 
ESD 

0.2 0.3 0.2 0.3 

Llano Uplift: Live Oak 
Woodland 

Ecology 
TPWD 
ESD 

0.15 0.15 0.15 0.225 

Llano Uplift: Post Oak 
Woodland 

Ecology 
TPWD 
ESD 

0.05 0.05 0.05 0.075 

Llano Uplift: Grassland Ecology 
TPWD 
ESD 

0.05 0.05 0.075 0.075 

Edwards Plateau: 
Floodplain Ashe Juniper 
Forest 

Water/ 
Ecology 

TPWD 
ESD 

0.4 0.6 0.4 0.6 

Edwards Plateau: 
Floodplain Live Oak 
Forest 

Water/ 
Ecology 

TPWD 
ESD 

0.5 0.75 0.5 0.75 

Edwards Plateau: 
Floodplain Hardwood / 
Ashe Juniper Forest 

Water/ 
Ecology 

TPWD 
ESD 

0.5 0.75 0.5 0.75 
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Conservation Elements Conservation Targets 

Conservation Element Category Source General1 Water2 Agriculture3 Ecology4

Edwards Plateau: 
Floodplain Hardwood 
Forest 

Water/ 
Ecology 

TPWD 
ESD 

0.25 0.375 0.25 0.375 

Edwards Plateau: 
Floodplain Ashe Juniper 
Shrubland 

Water/ 
Ecology 

TPWD 
ESD 

0.25 0.375 0.25 0.375 

Edwards Plateau: 
Floodplain Deciduous 
Shrubland 

Water/ 
Ecology 

TPWD 
ESD 

0.4 0.6 0.4 0.6 

Edwards Plateau: 
Floodplain Herbaceous 
Vegetation 

Water/ 
Ecology 

TPWD 
ESD 

0.5 0.75 0.5 0.75 

Edwards Plateau: 
Riparian Ashe Juniper 
Forest 

Water/ 
Ecology 

TPWD 
ESD 

0.25 0.375 0.25 0.375 

Edwards Plateau: 
Riparian Live Oak Forest 

Water/ 
Ecology 

TPWD 
ESD 

0.5 0.75 0.5 0.75 

Edwards Plateau: 
Riparian Hardwood / 
Ashe Juniper Forest 

Water/ 
Ecology 

TPWD 
ESD 

0.5 0.75 0.5 0.75 

Edwards Plateau: 
Riparian Hardwood 
Forest 

Water/ 
Ecology 

TPWD 
ESD 

0.4 0.6 0.4 0.6 

Edwards Plateau: 
Riparian Ashe Juniper 
Shrubland 

Water/ 
Ecology 

TPWD 
ESD 

0.2 0.3 0.2 0.3 

Edwards Plateau: 
Riparian Deciduous 
Shrubland 

Water/ 
Ecology 

TPWD 
ESD 

0.4 0.6 0.4 0.6 

Edwards Plateau: 
Riparian Herbaceous 
Vegetation 

Water/ 
Ecology 

TPWD 
ESD 

0.35 0.525 0.35 0.525 

Edwards Plateau: Ashe 
Juniper / Live Oak 
Shrubland 

Ecology 
TPWD 
ESD 

0.05 0.05 0.05 0.075 

Edwards Plateau: Shin 
Oak Shrubland 

Ecology 
TPWD 
ESD 

0.075 0.075 0.075 0.1125 

Edwards Plateau: Ashe 
Juniper / Live Oak Slope  
Shrubland 

Ecology 
TPWD 
ESD 

0.05 0.075 0.05 0.075 

Edwards Plateau: Shin 
Oak Slope Shrubland 

Ecology 
TPWD 
ESD 

0.1 0.15 0.1 0.15 

Edwards Plateau: Wooded 
Cliff/Bluff 

Ecology 
TPWD 
ESD 

0.4 0.6 0.4 0.6 

Significant Slope 15 to 
60% 

Ecology 
USGS 
NED 

0.15 0.225 0.15 0.225 

Significant Slope over 
60% 

Ecology 
USGS 
NED 

0.4 0.6 0.4 0.6 
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Conservation Elements Conservation Targets 

Conservation Element Category Source General1 Water2 Agriculture3 Ecology4

Golden-cheeked Warbler 
Moderate Quality Habitat 

Ecology Loomis 0.1 0.1 0.1 0.15 

Golden-cheeked Warbler 
High Quality Habitat 

Ecology Loomis 0.3 0.3 0.3 0.45 

Endangered Species 
Critical Habitat 

Ecology US FWS 0.5 0.5 0.5 0.75 

Prime Farmland Soil Cultural 
NRCS 
SSURSG
O 

0.3 0.3 0.45 0.3 

Scenic Views Cultural 
Texas 
State  

0.25 0.25 0.25 0.25 

Available Water Content Cultural 
NRCS 
SSURSG
O  

0.05 0.05 0.075 0.05 

Soil Depth Cultural 
NRCS 
SSURSG
O 

0.05 0.05 0.075 0.05 

1 General Scenario targets developed in consultation with Hill Country Conservancy  
2 Water Scenario increased selected water related conservation element targets (dark grey cells) by a 
factor of 50%   
3 Agriculture Scenario increases selected agriculture related conservation element targets (dark grey cells) 
by a factor of 50% 
4 Ecology Scenario increases selected ecology related conservation element targets (dark grey cells) by a 
factor of 50% 
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Appendix B 

InVEST Data and Sources 

Model Source Type 

Carbon Storage   

LULC 
TPWD: Texas Ecological Systems Database: Phase 1 (TPWD 
2010) 
http://www.tpwd.state.tx.us/gis/gallery/ 

Raster 
~10m 

Future LULC 
EPA ICLUS model for year 2030 (EPA 2009) 
http://cfpub.epa.gov/ncea/global/recordisplay.cfm?deid=205305 

Raster 
~1km 

Carbon Pools 
Intergovernmental Panel on Climate Change (IPCC) 2006 
methodology (IPCC 2006) 
http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html 

values 

Carbon Value: 
Social Cost of 
Carbon 

The economic effects of climate change (Tol 2009) values 

Water Provision  

DEM 
USGS NED DEM 
http://ned.usgs.gov/index.asp 

Raster 
~30m 

Soil Depth 
NRCS STATSGO2; NRCS Soil Data Viewer   
http://soils.usda.gov/survey/geography/ssurgo/description.html; 
http://soils.usda.gov/sdv/ 

Vector 

Precipitation 
Prism Climate Data 
http://www.wcc.nrcs.usda.gov/climate/prism.html 

Raster 
~1km 

Plant Available 
Water Content 
(AWC) 

NRCS STATSGO2; NRCS Soil Data Viewer   
http://soils.usda.gov/survey/geography/ssurgo/description.html; 
http://soils.usda.gov/sdv/ 

Vector 

Average Annual 
Potential 
Evapotranspiration 
(PET) 

MODIS 16 Global Evapotranspiration Project  
http://www.ntsg.umt.edu/project/mod16 

Raster 
~1km 

LULC 
TPWD: Texas Ecological Systems Database: Phase 1 (TPWD 
2010) 
http://www.tpwd.state.tx.us/gis/gallery/ 

Raster 
~10m 

Watersheds 

USGS, National Hydrography Dataset (NHD): HUC 8 
http://nhd.usgs.gov/index.html; 
http://nhd.usgs.gov/wbd_data_citation.html  
accessed via TNRIS: www.tnris.org  

Vector 

Subwatersheds 

USGS, National Hydrography Dataset (NHD): HUC 12 
http://nhd.usgs.gov/index.html; 
http://nhd.usgs.gov/wbd_data_citation.html  
accessed via TNRIS: www.tnris.org 

Vector 

Stream Flow Lines 

USGS, National Hydrography Dataset (NHD): flowlines 
http://nhd.usgs.gov/index.html; 
http://nhd.usgs.gov/wbd_data_citation.html 
 accessed via TNRIS: www.tnris.org 

Vector 

Biophysical Table 

Adapted from the INVEST 2.5.5 example dataset 
http://www.naturalcapitalproject.org/ 
On mf laptop > 
C:\InVEST_2_5_5_x64\Base_Data\Freshwater\biophysical table 

values 
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Model Source Type 

Water Purification 
Threshold (Nutrient 
Loading)  

Modeling Phosphorus loading and lake response under uncertainty: 
A manual and compilation of export coefficients (Reckhow et al. 
1980) 

values 

Soil Conservation  

DEM 
USGS NED dem  
http://ned.usgs.gov/index.asp 

Raster 
~30m 

Rainfall erosivity 
index (R)  

USDA Predicting Soil Erosion by Water (USDA 1997) 
ESRI shapefile created from hardcopy map; converted to raster 

Raster 
~30mS 

Soil Erodibility (K)  
NRCS STATSGO2; NRCS Soil Data Viewer   
http://soils.usda.gov/survey/geography/ssurgo/description.html; 
http://soils.usda.gov/sdv/ 

Vector 

LULC 
TPWD: Texas Ecological Systems Database: Phase 1 (TPWD 
2010) 
http://www.tpwd.state.tx.us/gis/gallery/ 

Raster 
~10m 

Watersheds 

USGS, National Hydrography Dataset (NHD): HUC 12 
http://nhd.usgs.gov/index.html; 
http://nhd.usgs.gov/wbd_data_citation.html  
accessed via TNRIS: www.tnris.org 

Vector 

Subwatersheds 

USGS, National Hydrography Dataset (NHD): HUC 12 
http://nhd.usgs.gov/index.html; 
http://nhd.usgs.gov/wbd_data_citation.html  
accessed via TNRIS: www.tnris.org 

Vector 

Biophysical Table 
P and C coefficients: (USDA 1997) 
Sediment retention value: Adapted from the INVEST 2.5.5 
example dataset, http://www.naturalcapitalproject.org/ 

values 

Sediment Threshold 
Table 

NA; values of (1) were given for each variable  
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