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This work is composed of two independent parts, both addressing problems related

to algebraic curves over finite fields.

In the first part, we characterize all irreducible plane curves defined over Fq

which are Frobenius non-classical for different powers of q. Such characterization

gives rise to many previously unknown curves which turn out to have some inter-

esting properties. For instance, for n ≥ 3 a curve which is both q- and qn-Frobenius

non-classical will have its number of Fqn-rational points attaining the Stöhr-Voloch

bound.

In the second part, we study the arc property of several plane curves and

present new complete (N, d)-arcs in PG(2, q). Some of these arcs (viewed as linear
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(N, 3, N − d)-codes) are just a small constant away from the Griesmer bound and

for some small values of q the bound is achieved. In addition, this part also answers

a question of Voloch about the arc property of a certain family of curves with many

rational points, and another question of Giulietti et al about the arc property of

q-Frobenius non-classical plane curves.
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Chapter 1

Introduction

The theory of algebraic curves over finite fields is of fundamental importance to

mathematics and has essential applications in many areas such as finite geometry,

number theory, error-correcting codes, and cryptography. In many of such applica-

tions it is desirable to count/estimate the number of Fq-rational points of a curve.

A remarkable example is the construction of linear codes using curves over finite

fields discovered by Goppa in the 1970s. It turns out that such codes can have good

parameters if the underlying curve has many points (relative to the genus).

The main purpose of this chapter is to recall some few (but deep) results

related to the number of points on curves over finite fields. We will also give the

definition of (N, d)-arc and briefly present its connection with linear codes. As a

general rule, our discussion here will be limited to the concepts and results that are

relevant to the next chapters. Throughout this text the projective plane P2(Fq) will

be often denoted by PG(2, q).
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1.1 The Hasse-Weil bound

The following theorem, also known as the Riemann hypothesis for curves over finite

fields, is one of the deepest results in the theory of algebraic curves. It was origi-

nally proved by Hasse [9] in the case of elliptic curves and later by Weil [23] in its

generality.

Theorem 1.1. (Hasse-Weil) Let F be a (projective, irreducible, non-singular )

curve of genus g defined over Fq. If N = #F(Fq) is the number of Fq-rational

points of F , then

| N − (q + 1) |≤ 2gq1/2. (1.1)

There are many examples of curves attaining the Hasse-Weil upper bound,

and because this can only happen if g = 0 or q is a square, such curves are usually

called Fq2-maximal. A very well-known example of an Fq2-maximal curve is the

Hermitian curve

H : xq+1 + yq+1 + zq+1 = 0,

which is a non-singular plane curve of genus 1
2(q2 − q) with exactly 1 + q3 points

in PG(2, q2). Actually, Rück and Stichtenoth [17] proved that (up to isomorphism)

the Hermitian curve is the unique Fq2-maximal curve of genus 1
2(q2 − q).

It follows from a result of Serre (see Proposition 6 of [13]) that the Hermitian

curve, together with its large automorphism group, gives rise to many other Fq2-

maximal curves (see [6] for more details). A very simple example of this is given by

the following result.

Theorem 1.2. If q is a prime power and d is a divisor of q + 1, then the curve

xd + yd + zd = 0
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is Fq2-maximal.

If q ≥ 11, the curve corresponding to d = (q + 1)/2 in the above theorem is the

unique (up to Fq2-isomorphism) smooth Fq2-maximal curve of such degree (see [3]).

This particular curve will be considered in Chapther 3.

The next result (see for example Chapter 7 of [11]), which will be used in the

proof of Theorem 3.7, states another interesting property of the Hermitian curve.

Theorem 1.3. Let H be the Hermitian curve, P a point in PG(2, q2)\H(Fq2) and

LP the set of q2 + 1 lines in PG(2, q2) incident with P . If l ∈ LP such that #(l ∩

H(Fq2)) < q + 1 then #(l ∩H) = 1. Moreover, there are exactly q + 1 such lines in

LP .

1.2 Frobenius classicality and the Stöhr-Voloch bound

In 1986, Stöhr and Voloch [18], using a more geometric approach, obtained new

upper bounds for the the number of rational points on curves over finite fields. In

many cases, their method provides improvements on the Hasse-Weil upper bound.

A prototype of their results is the following:

Theorem 1.4. Let q be an odd prime power. If F = Z(f(x, y)) is an absolutely

irreducible plane curve of degree d defined over Fq then

#F(Fq) ≤ d(d+ q − 1)/2,

provided that f does not divide (fy)2fxx − 2fxyfxfy + (fx)2fyy .

Note that the last condition in the theorem above only means that F has finitely

many inflection points.
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For a more general version of their results, we need to develop the notion of

Frobenius classicality for curves. The case of plane curves will be sufficient for our

needs, and for a complete exposition of the theory we refer to [18].

Let X be an irreducible plane curve defined over the finite field Fq. The

curve F is called q-Frobenius non-classical if the image Fr(P ) of each simple point

P of F under the Frobenius map lies on the tangent line at P . A more technical

approach can be used to rephrase this concept:

Let X ⊂ P2 be an irreducible non-linear algebraic curve. The numbers

0 = ε0 < ε1 = 1 < ε2 represent all possible intersection multiplicities of X with

lines of P2 at a generic point of X. Such a sequence is called the order sequence of

X and is also characterized as the smallest sequence (in lexicographic order) such

that det(Dεi
t xj) 6= 0, where Dk

t denotes the k-th Hasse derivative 1 with respect to

a separating variable t and x0, x1, x2 are the coordinate functions on X ⊂ P2. The

curve X is called classical if ε2 = 2.

IfX is defined over a finite field Fq, then there is a smallest integer ν1 ∈ {1, ε2}

such that

det


xq0 xq1 xq2

x0 x1 x2

Dν1
t x0 Dν1

t x1 Dν1
t x2

 6= 0.

The numbers ν0 = 0, ν1 are called the Frobenius orders of X, and such a

curve is called q-Frobenius classical if ν1 = 1 (this is equivalent to the previous

definition).

1 For a field F , we define the k-th Hasse derivative Dk : F [[t]] −→ F [[t]] for k ≥ 1 as follows:

Dk(

∞X
n=0

antn) =

∞X
n=1

an

 
n

k

!
tn−k.
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Theorem 1.5. (Stöhr-Voloch) Let X be an irreducible plane curve of degree d and

genus g defined over Fq. If X has Frobenius orders (ν0, ν1), then

#X(Fq) ≤
ν1(2g − 2) + (q + 2)d

2

Not many q-Frobenius non-classical curves (ν1 > 1) are known. Such curves

are rare but very important; for example, they can have many rational points. Some

additional properties of these curves can be found in [10]. For instance, for p > 2

a q-Frobenius non-classical curve is the locus of its singular and inflection points.

Also, with the additional hypothesis that X is smooth, Hefez and Voloch ( Theorem

1 of [10]) managed to prove that

#X (Fq) = d(q − d+ 2),

where d is the degree of F .

Examples of q-Frobenius non-classical curves are the Fermat curves

xd + yd + zd = 0 (1.2)

where d = q−1
q′−1 and q′ is a power of p > 2. Note that the Hermitian curve, which

is known for many of its special properties, lies in this family of curves.

1.3 (N, d)-arcs and the Griesmer bound

A linear [n, k, r]-code over Fq is a subspace C of dimension k of the vector space Fnq
in which every non-zero vector has at least r non-zero coordinates, and there is a

vector with exactly r non-zero coordinates. The value r is called minimum distance
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of C. The Griesmer bound ( Theorem 5.2.6 of [21] ) states that

n ≥
k−1∑
i=0

d r
qi
e (1.3)

Let G be a k×n matrix whose rows form a basis for C, i.e. G is a generator

matrix for C, and let x = (x1, · · · , xk) ∈ Fkq be the j-th column of G. The codeword

which is a linear combination of the rows of G, given by a vector a = (a1, · · · , ak) ∈

Fkq , has a zero in the j-th coordinate if and only if

k∑
i=0

aixi = 0. (1.4)

Since each codeword has at least r non-zero coordinates, there are at most

n− r columns of G, which are incident with the hyperplane defined by the equation

(1.4). Now, since the columns of G can be viewed as points of PG(k − 1, q), we

see that a linear [n, r, k]-code C over Fq is equivalent to a set A of n points in

PG(k − 1, q) with the property that some hyperplane is incident with d = n − r

points of A and no hyperplane is incident with more. Such a set A is called (n, d)-arc

in PG(k − 1, q). In particular, an (n, d)-arc A in PG(2, q) is a set of n points with

at most d points on any line and with d points on some line. If the (n, d)-arc A is

not contained in an (n+ 1, d)-arc, then we say that A is complete.

Natural examples of (n, d)-arcs in PG(2, q) are frequently obtained from a

set F(Fq) of Fq-rational points of a plane curve F without linear components and

defined over Fq, where n = #F(Fq) and d is the degree of F . If the underlying

curve gives a complete (n, d)-arc, then the corresponding code cannot be extended

to a code with larger minimum distance. In chapter 3 we will present many curves

with such a property and discuss the Griesmer bound for the corresponding codes.

Our reason for considering this particular bound (out of many options) is because

of the values/range of our parameters; we found that the Griesmer bound would be
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the most suitable choice.
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Chapter 2

Multi-Frobenius non-classical

curves

Based on [18], Hefez and Voloch extended the study of the q-Frobenius non-classical

curves in [10], where some interesting arithmetic and geometric properties of such

curves were first pointed out. They also remarked that characterizing all such curves

seemed to be a very involved problem.

In 1990, Garcia [5] characterized (under certain conditions) q-Frobenius non-

classical curves of type yn = f(x). Among such curves, we have the Fermat curves

given in (1.2).

Here, given a prime power q and distinct positive integers k1, · · · , ks, we

address the problem of finding plane curves being qki-Frobenius non-classical for all

i = 1, · · · , s. It turns out that there is no such curve for s ≥ 3, and the case s = 2

gives us a unique plane curve. Our work here will provide a characterization of such

a curve. More precisely, we will prove the following:

Theorem 2.1. For any given triple (q, n,m) where q is a prime power and n > 2

and m ≥ 1 are integers such that n > m and gcd(n,m) = 1, the curve given by
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F :
(xq

n − x)(yq
m − y)− (yq

n − y)(xq
m − x)

(xq2 − x)(yq − y)− (yq2 − y)(xq − x)
= 0

is the unique qn- and qm-Frobenius non-classical irreducible plane curve over Fq.

Moreover, F has Frobenius orders (ν0, ν1) = (0, qm), and if g and F(Fqk) are the

genus and the set of Fqk-rational points of F , respectively, then

g = (qn−m + qm)(
qn

2
− (1 + q + q2)) + (q + 1)(1 + q + q2)

and

#F(Fqk) =


(qm − q2)(qm − q) + (q2 + q + 1)(qm − q), if k = m,

(qn − q2)(qn − q), if k = n,

0, if k = 1.

Corollary 2.1. Let q be a prime power and k1 > k2 > · · · > kr (r > 1) be positive

integers. If F is a qki-Frobenius non-classical plane curve for all i = 1, · · · , r, then

r = 2, k1 6= 2k2, and F can be given as in Theorem 2.1.

In addition to the above assertions, we point out some of the special proper-

ties of these curves obtained for particular cases of q, n and m.

For m = 1, F has Frobenius orders (ν0, ν1) = (0, q), degree d = qn − q2, and

it can be checked that its number of Fqn-rational points is given by

N = (ν1(2g − 2) + (qn + 2)d)/2.

In other words, the curve attains the upper bound of Theorem 1.5. In particular, for

q = 2, the curve is classical Frobenius non-classical of genus g = 4n−1 − 5 · 2n−1 + 7

and N = 4n−6 ·2n+8 F2n-rational points. Furthermore, n = 3 gives a curve having
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affine equation

x4 + x2y2 + y4 + x2y + xy2 + x2 + xy + y2 + 1 = 0,

genus g = 3, and with N=24 F8-rational points. This curve, which is the unique

(up to isomorphism) curve of genus 3 with more than 22 F8-rational points (proved

by Top in [19]), carries the additional property of being the unique non-singular

multi-Frobenius non-classical plane curve (Remark 2.11). One more special curve is

obtained for the case n = 4: the curve has genus g = 31 and N = 168 F16-rational

points, and this beats the current record (N = 165) on the number of F16-rational

points for curves of genus 31 (see [20]).

Another interesting aspect (from the Finite Geometry viewpoint) of the case

m = 1 lies with the fact F(Fqn) gives rise to a complete ((qn− q)(qn− q2), qn− q2)-

arc in PG(2, qn). This is not obvious but can be easily verified, for instance, while

proving Lemma 2.10. More details about plane curves giving rise to complete arcs

will be given in the next chapter ( see also [7]).

For n−m = 1, the set of singular points of F is the whole PG(2, q) (Propo-

sition 2.8), and from Remark 2.9, we have that all such sigularities are ordinary.

In this case, F gives one more example of curves attaining the lower bound in the

theorem below (see Theorem 1.4 of [12]).

Theorem 2.2. (Hirschfeld-Korchmáros) Let F be a non-classical irreducible plane

curve of degree d and genus g. If F is q-Frobenius non-classical, and has only tame

branches, then

Bq ≥ (q − 1)d− (2g − 2),

where Bq is the number of branches of F with centre in PG(2, q). Also, equality

holds if and only if every non-linear branch of F is centred at a point of PG(2, q).

With some further calculation, it can also be shown that #F(Fqn−m) =
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q2(n−m) + qn−m− q2− q and that (observed by Voloch) the dual curve of F , denoted

by F∗, is the unique (qn, qn−m)-Frobenius non-classical plane curve over Fq.

The proof of Theorem 2.1 will be deduced through a series of steps given

in the next sections. In Section 2.1, we construct the curve F and establish some

immediate properties. In Section 2.2, we characterize the singular points of F and

prove its irreducibility. In Sections 2.3 and 2.4, we obtain explicit formulas for the

number of Fqk -rational points (k ∈ {n,m, 1}) and genus of F , respectively. We end

Section 2.4 by proving Corollary 2.1.

2.1 The curve F

From now on, n > 2 and m ≥ 1 will be integers such that n > m and gcd(n,m) = 1.

Also, any plane curve which is qk-Frobenius non-classical for all k ∈ {n,m} will be

referred to as a (qn, qm)-Frobenius non-classical curve.

Lemma 2.2. If F is a (qn, qm)-Frobenius non-classical curve with affine equation

given by f(x, y) = 0, then the polynomial f(x, y) is a factor of

g(x, y) = (xq
n − x)(yq

m − y)− (yq
n − y)(xq

m − x).

Proof. It may be assumed that x is a separating variable, and for k ∈ {n,m}, the

qk-Frobenius non-classicality of F gives

0 = det


1 xq

k
yq

k

1 x y

0 1 D1
xy

 = (xq
k − x)D1

xy − (yq
k − y).

Now we have (xq
n−x)D1

xy = (yq
n−y) and (xq

m−x)D1
xy = (yq

m−y), which

gives (xq
n − x)(yq

m − y) = (yq
n − y)(xq

m − x) and finishes the proof.

11



If we let G(x, y, z) be the homogenization of g(x, y) in Lemma 2.2, it is easy to check

that every projective line defined over Fq is a component of zG(x, y, z) = 0. In other

words, F (x, y, z) =

(xq
n − xzqn−1)(yq

m − yzqm−1)− (yq
n − yzqn−1)(xq

m − xzqm−1)
(xq2 − xzq2−1)(yq − yzq−1)− (yq2 − yzq2−1)(xq − xzq−1)

(2.1)

is a polynomial in Fq[x, y, z].

The curve F , given by F (x, y, z) = 0, will be the main object of study in this

chapter.

The statements of the next proposition will be used throughout our proofs.

Proposition 2.3. (i) F (x, y, z) is symmetric; that is, it is invariant under per-

mutations of x, y and z.

(ii) gcd(n,m) = 1 implies Fqi∩Fqj = Fq for i and j distinct elements of {n,m, n−

m}.

(iii) g(x, y) = (xq
n −xqm

)(yq
k − y)− (yq

n − yqm
)(xq

k −x) for k ∈ {n,m}, including

the case (n,m) = (2, 1).

(iv) If gcd(r, s) = 1 and a, b ∈ Fqr , then µ =
aq

s − a
bqs − b

∈ Fqs implies µ =
aq − a
bq − b

∈

Fq.

Proof. Statements (i),(ii) and (iii) are easy to prove, and our proof will be limited to

statement (iv). Note that from (ii), we have that µ ∈ Fq, which gives (µb− a)q
s

=

µb − a. Once again (ii) implies µb − a ∈ Fq, i.e. (µb − a)q = µb − a, and thus

µ =
aq − a
bq − b

∈ Fq.

We should mention that our proofs will often take the symmetry of F (x, y, z)

into account. In particular, we will only work with affine points, and F (x, y, 1) and

12



P = (x0 : y0 : 1) will be referred to as F (x, y) and P = (x0, y0) respectively. Also,

from now on, the set of points in PG(2,Fq) lying on the union of all lines defined

over Fq will be denoted by S; that is, S is the set of zeros of

H(x, y, z) = z((xq
2 − xzq2−1)(yq − yzq−1)− (yq

2 − yzq2−1)(xq − xzq−1))

in PG(2,Fq).

Lemma 2.4. If S is the set defined above, then

F ∩ S =


(PG(2, qn−m)\PG(2, q)) ∩ S, if m = 1,

PG(2, qn−m) ∩ S, otherwise.

In particular, F has no linear components defined over Fq.

Proof. From (2.1), it is clear that

F (x, y) =

(xq
n − x)(yq

m − y)
(xq − x)(yq − y)

− (yq
n − y)(xq

m − x)
(xq − x)(yq − y)

xq
2 − x

xq − x
− yq

2 − y
yq − y

, (2.2)

and if we define gk(t) = tq
k−2+···+q+1+tq

k−3+···+q+1+· · ·+tq+1+t+1 (with g1(t) ≡ 1)

and

R(x, y) =
gn(x)gm(y)− gn(y)gm(x)

x− y
,

then it can be easily checked that

(i) F (x, y) = R((xq − x)q−1, (yq − y)q−1).

(ii) R(x, x) = g′n(x)gm(x)− g′m(x)gn(x).

(iii) gk((xq − x)q−1) =
xq

k − x
xq − x

and g′k((x
q − x)q−1) = (

xq
k−1 − x
xq − x

)q.

13



Now consider a line given by y = ax+ b, with a, b ∈ Fq. If a 6= 0, then from

(i) we have F (x, ax + b) = R((xq − x)q−1, (xq − x)q−1), and using (ii) and (iii) we

find

F (x, ax+ b) =
(xq

n−m − x)q
m

(xq − x)q
(2.3)

Also, using
xq

k − x
xq − x

(λ) = 1 for all λ ∈ Fq, it can be verified directly from

(2.2) that (2.3) also holds true for a = 0, and the result follows.

Lemma 2.5. The set of points of PG(2, qn−m) lying on F is either PG(2, qn−m)\PG(2, q)

or the whole PG(2, qn−m). The latter case occurs if and only if m > 1.

Proof. If P ∈ PG(2, qn−m)\S, then Remark 2.3.(iii) implies that P is a point on

F . For P ∈ PG(2, qn−m) ∩ S, the result follows directly from Lemma 2.4.

If P = (x0, y0) is a point of F , and ` : (x, y) = (x0 + aT, y0 + bT ) is a line

through P , then it follows from (2.1) that F (x0 + aT, y0 + bT ) =

α1T
qn+qm

+ α2T
qn+1 + α3T

qn
+ α4T

qm+1 + α5T
qm

+ α6T

β1T q
2+q + β2T q

2+1 + β3T q
2 + β4T q+1 + β5T q + β6T + β7

(2.4)

where αi and βi are given in Table 1 below. This arrangement will be very useful

i αi βi
1 aq

n
bq

m − aqm
bq

n
aq

2
bq − aqbq2

2 abq
n − aqn

b abq
2 − aq2b

3 aq
n
(yq

m

0 − y0)− bqn
(xq

m

0 − x0) aq
2
(yq0 − y0)− bq2(xq0 − x0)

4 aq
m
b− abqm

aqb− abq

5 bq
m

(xq
n

0 − x0)− aqm
(yq

n

0 − y0) bq(xq
2

0 − x0)− aq(yq
2

0 − y0)
6 b(xq

m

0 − x
qn

0 )− a(yq
m

0 − yq
n

0 ) b(xq0 − x
q2

0 )− a(yq0 − y
q2

0 )
7 0 (xq

2

0 − x0)(yq0 − y0)− (yq
2

0 − y0)(xq0 − x0)

Table 2.1: Coefficients
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to prove the next assertions.

Lemma 2.6. The polynomial F (x, y, z) is square-free and has no linear factors.

Proof. For the first part, it suffices to prove that g(x, y) is square-free, and this can be

easily done by considering suitable lines given by either x = x0 or y = y0. Next, we

will prove that any linear component of F is defined over Fq. For this, using Table 1,

it suffices to show that (α1, · · · , α7) = (0, · · · , 0) implies (β1, · · · , β7) = (0, · · · , 0).

If ab = 0, say a = 0, then we have β1 = β2 = β4 = 0. Also, α3 = α5 = 0

and Proposition 2.3.(ii) imply xq0 = x0 which gives (β1, · · · , β7) = (0, · · · , 0). For

ab 6= 0, α2 = α4 = 0 implies (a/b)q = a/b, and thus β1 = β2 = β4 = 0. If

x0 ∈ Fq, we can easily finish the proof, so we assume xq0 6= x0. Now α3 = 0 implies
b

a
=
yq

m

0 − y0

xq
m

0 − x0

∈ Fq, and Proposition 2.3.(iv) gives
b

a
=
yq0 − y0

xq0 − x0
∈ Fq, which implies

(β1, · · · , β7) = (0, · · · , 0). On the other hand, by Lemma 2.4, the curve F has no

linear components defined over Fq. Hence, the result follows.

Theorem 2.3. Any irreducible component F̃ of F has order sequence (0, 1, qm).

Moreover, if k ∈ {n,m} and F̃ is defined over Fqk , then F̃ is a qk-Frobenius non-

classical curve.

Proof. Let F̃ be an irreducible component of F . Suppose ` : (x, y) = (x0 + aT, y0 +

bT ) is the line tangent to F̃ at P = (x0, y0), a simple point that satisfies

(xq
2m

0 − xq
m

0 )(yq
m

0 − y0)− (yq
2m

0 − yq
m

0 )(xq
m

0 − x0) 6= 0 (2.5)

and

(xq
m

0 − x
qn

0 )(yq
m

0 − yq
n

0 )(yq
m

0 − y0)(yq
n

0 − y0) 6= 0 (2.6)

Note that, because F has no linear components, only a finite number of points is
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being excluded. Also, since ` is the tangent line, (2.4) implies α6 = 0, and we claim

that α5 6= 0. In fact, if α5 = α6 = 0, then Proposition 2.3.(iii) and (2.6) yield

(
a

b
)q

m
=
xq

n

0 − x0

yq
n

0 − y0

=
xq

m

0 − x0

yq
m

0 − y0

=
xq

n

0 − x
qm

0

yq
n

0 − y
qm

0

=
a

b

which implies (
xq

m

0 − x0

yq
m

0 − y0

)q
m

=
xq

m

0 − x0

yq
m

0 − y0

, contradicting (2.5). Therefore, we have

α5 6= 0. Now, since (2.5) implies β7 6= 0, from (2.4) we obtain

F (x0 + aT, y0 + bT ) =
α5

β7
T q

m
+ a1T

qm+1 + · · · (2.7)

On the other hand, by Lemma 2.6, we have F (x, y) = F1(x, y) · · ·Fs(x, y), where Fi

are irreducible non-linear polynomials, and gcd(Fi, Fj) = 1 for i 6= j. Thus it may

be assumed that F̃ is the component corresponding to F1(x, y), and P = (x0, y0)

does not lie on the remaining components of F . Again, by Bezout’s theorem, we

are neglecting only a finite number of points, and thus (2.7) gives

F1(x0 + aT, y0 + bT ) = γT q
m

+ b1T
qm+1 + · · ·

for some γ 6= 0, which finishes the first part.

For the other part, using the same point P and α6 = 0, from (2.6) and Table

1 we obtain ab 6= 0 and b = (
yq

n

0 − y
qm

0

xq
n

0 − x
qm

0

)a. Now setting T1 =
xq

n

0 − x0

a
, we obtain

x0+aT1 = xq
n

0 and y0+bT1 = y0+(
yq

n

0 − y
qm

0

xq
n

0 − x
qm

0

)(xq
n

0 −x0) = yq
n

0 +(
yq

n

0 − y
qm

0

xq
n

0 − x
qm

0

)(xq
m

0 −

x0) − (yq
m

0 − y0) = yq
n

0 , where the last equality follows from Proposition 2.3.(iii) .

Therefore, P q
n

(the image of P under the Frobenius map) lies on the tangent line

at P . A similar argument, with T2 =
xq

m

0 − x0

a
, shows that P q

m
also lies on the

tangent line at P , which completes the proof.
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2.2 The Singular Points

In this section, we investigate the singular points of F . A characterization of such

points is obtained and used to prove that F (x, y) is absolutely irreducible.

Let P = (x0, y0) be a point on F and consider f(x, y) = F (x+ x0, y + y0) =
7∑
i=0

gi

7∑
i=0

hi

= f1 + · · ·+ fd, where gi, hi, given in Table 2 below, are obtained from (2.1),

and the fi’s are homogeneous components of f of degree i.

i gi hi
1 xq

n
yq

m − xqm
yq

n
xq

2
yq − xqyq2

2 xyq
n − xqn

y xyq
2 − xq2y

3 xq
n
(yq

m

0 − y0)− yqn
(xq

m

0 − x0) xq
2
(yq0 − y0)− yq2(xq0 − x0)

4 xq
m
y − xyqm

xqy − xyq

5 yq
m

(xq
n

0 − x0)− xqm
(yq

n

0 − y0) yq(xq
2

0 − x0)− xq(yq
2

0 − y0)
6 y(xq

m

0 − x
qn

0 )− x(yq
m

0 − yq
n

0 ) y(xq0 − x
q2

0 )− x(yq0 − y
q2

0 )
7 0 (xq

2

0 − x0)(yq0 − y0)− (yq
2

0 − y0)(xq0 − x0)

Table 2.2: Components gi and hi.

Lemma 2.7. Let P = (x0, y0) ∈ PG(2, qn−m)\PG(2, q) be a point on F . If

gcd(g4, g5) 6= 1, then h7 = 0 and gcd(g4, g5) = h6. Also, h7 = 0 implies h6 | h5.

Proof. This follows from a straightforward calculation using the data from Table 2

and Proposition 2.3.

Henceforth, for any point P on F , we will denote by JP = {j1, · · · , jk}, with

ji < ji+1, the set of all intersection numbers given by the pencil of lines through P .

Note that j1 = mP , the multiplicity of P on F . Also, for the next theorem, recall

from Section 2.1 that S is the set of points in PG(2,Fq) lying on the lines defined

over Fq.
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Proposition 2.8. If (m, q) 6= (1, 2), then the set of singular points of F is either

PG(2, qn−m) or PG(2, qn−m)\PG(2, q). The latter case occurs if and only if m =

1. If (m, q) = (1, 2), then the set of singular points is given by PG(2, 2n−1)\S.

Moreover, if P ∈ PG(2, qn−m) lies on F , then

JP =


{qm, qm + 1}, if P /∈ S,

{qm − 1, qm}, if P ∈ S\PG(2, q),

{qm − q, qn − q}, if P ∈ PG(2, q).

Proof. Let P = (x0, y0) be a point of F . Table 2 gives P ∈ PG(2, qn−m) if and only

if g6 = 0. Now if P is a singular point, then f1 = 0 and from (
7∑
i=0

hi)(f1 + · · ·+fd) =

7∑
i=0

gi we have g6 = 0, i.e. P ∈ PG(2, qn−m). Conversely, for P ∈ PG(2, qn−m), we

have following two cases:

(i) P /∈ PG(2, q): Since g6 = 0, Proposition 2.3.(ii) implies g5 6= 0 and h6 6= 0,

and after a simple computation using

(· · ·+ h6 + h7)f(x, y) = · · ·+ g4 + g5,

we have

f(x, y) =



g5
h7

+ (
g4
h7
− h6

g5
h2

7

) + · · · , if h7 6= 0,

g5
h6

+ (
g4
h6
− h5

g5
h2

6

) + · · · , if h7 = 0 and q = 2,

g5
h6

+
g4
h6

+ · · · , if h7 = 0 and q 6= 2,

(2.8)

where · · · represents the terms of higher degree. Note that, from Lemma

2.7, the first two homogeneous components of f(x, y) given in (2.8) have no

common factors. Now, since h7 = 0 if and only if P ∈ S, the decomposition
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in (2.8) implies

JP =


{qm, qm + 1}, if P /∈ S,

{qm − 1, qm}, if P ∈ S.
(2.9)

On the other hand, from Lemma 2.5, all points of PG(2, qn−m)\PG(2, q) are

points on F . Now (2.9) shows that all such points are singular, except in the

case (q,m) = (2, 1), where the singular points are restricted to PG(2, 2n−1)\S.

(ii) P ∈ PG(2, q): Table 2 and (· · ·+ h4)f(x, y) = · · ·+ g4 give us

f(x, y) =
xq

m
y − xyqm

xqy − xyq
+ f̃(x, y), (2.10)

where f̃(x, y) comprises the homogeneous terms of higher degree. Since f(x, y) =
g1 + g2 + g4
h1 + h2 + h4

, for λ ∈ Fqm\Fq, we have f(x, λy) = f̃(x, λx) = cxq
n−q+· · · with

c 6= 0, and hence

JP = {qm − q, qn − q}. (2.11)

Since P ∈ PG(2, q) is a point on F , from Lemma 2.5, we have m > 1, and

thus all points of PG(2, q) lie on F . Now (2.11) implies that all such points are

singular, which completes the proof.

Remark 2.9. Note that if P = (x0, y0) ∈ PG(2, qn−m) is a singular point of F , then

Table 2 with (2.8) and (2.10) in the proof of Proposition 2.8 characterize the tangent

lines at P , i.e. the lines giving maximum intersection number. For instance, since

g5 = yq
m

(xq
n

0 −x0)−xqm
(yq

n

0 −y0) is a power of a linear form, (2.8) implies that the

singular points P ∈ PG(2, qn−m)\PG(2, q) have only one tangent line, which will be

named ` in the proof of the next theorem. Also, if m > 1, then (2.10) implies that

all points of PG(2, q) are ordinary singularities of F . Such points have multiplicity

mP = qm − q and their tangent lines are defined over Fqm but not over Fq.
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Theorem 2.4. The curve F is irreducible and is the unique (qn, qm)-Frobenius

non-classical plane curve over Fq. Also, F has Frobenius orders given by (ν0, ν1) =

(0, qm).

Proof. Once we prove irreducibility, Lemma 2.2 gives the uniqueness, and Theorem

2.3 gives the remaining parts. Suppose F has multiple components. Clearly, such

components will intersect at singular points of F . Let P /∈ PG(2, q) be a common

point of two irreducible components, say F1 and F2. Now Remark 2.9 implies that

the branches of Fi centred at P have the same tangent line, say `, and by (2.9) we

have I(P,F ∩ `) ≤ qm + 1. On the other hand, by Theorem 2.3, each component Fi

has order sequence (0, 1, qm) which gives I(P,Fi ∩ `) ≥ qm, and then

qm + 1 ≥ I(P,F ∩ `) ≥ I(P,F1 ∩ `) + I(P,F2 ∩ `) ≥ 2qm,

a contradiction. Therefore, F has no components meeting at a singular point P /∈

PG(2, q).

Now suppose F = F1F2, and P ∈ PG(2, q) is a point lying on the intersection of the

two corresponding components, F1 and F2. We may assume P = (0, 0), and using

(2.10) in the proof of Proposition 2.8 we have f(x, y) = f1(x, y)f2(x, y), where

• f(x, y) =
∏

αi∈Fqm\Fq

(x− αiy) + · · ·

• f1(x, y) =
s∏
i=1

(x− αiy) + · · ·

• f2(x, y) =
qm−q∏
i=s+1

(x− αiy) + · · ·

and · · · represents homogeneous components of higher degree. For i = 1, 2, let `i

be a tangent line of Fi at P . It is clear that `1 6= `2, and from (2.11) in the proof

of Proposition 2.8 we have I(P,F ∩ `i) = qn − q. Therefore, if d1 and d2 are the

degrees of f1 and f2, respectively, then
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qn − q = I(P,F ∩ `1) = I(P,F1 ∩ `1) + I(P,F2 ∩ `1) ≤ d1 + qm − q − s

and

qn − q = I(P,F ∩ `2) = I(P,F1 ∩ `2) + I(P,F2 ∩ `2) ≤ s+ d2

Now, since d1 +d2 = qn+ qm− q2− q, we have qn+2qm− q2−2q ≥ 2qn−2q,

which implies n ≤ m, a contradiction. Hence, the result follows.

2.3 The Rational Points

Here, for k ∈ {n,m, 1}, we will compute the number of Fqk -rational points of F .

For this, we will first look at Mqk(F) which will denote the set of solutions of

F (x, y, z) = 0 in PG(2, qk).

With simple combinatorial arguments, one can easily prove the following:

Lemma 2.10. Let q be a prime power and k a positive integer. If N is the number

of points in PG(2, qk) lying on the complement of the union of all lines defined over

Fq, then

N = (qk − q2)(qk − q).

Remark 2.11. Note that Lemma 2.10 is a statement about the set S (defined in

Section 2.1) and gives us #(PG(2, qk) ∩ S) = qk(q2 + q + 1) + 1− q3 which will be

used in Theorem 2.6. Also, since N = #(PG(2, qk)\S) = 0 if and only if k ∈ {1, 2},

it follows from Proposition 2.8 that F is smooth if and only if (q, n,m) = (2, 3, 1).
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Lemma 2.12. If k ∈ {n,m, 1}, then

#Mqk(F) =


(qk − q2)(qk − q), if m = 1,

(qk − q2)(qk − q) + q2 + q + 1, otherwise.

Proof. Since F (x, y) =
(xq

n − x)(yq
m − y)− (yq

n − y)(xq
m − x)

(xq2 − x)(yq − y)− (yq2 − y)(xq − x)
, it is clear that for

k ∈ {n,m, 1} we have PG(2, qk)\S ⊂Mqk(F). Also, Lemma 2.10 gives #(PG(2, qk)\S) =

(qk − q2)(qk − q), and since Fqk ∩ Fqn−m = Fq, Lemma 2.4 finishes the proof.

Theorem 2.5. If F(Fqk) is the set of Fqk-rational points of F , then

#F(Fqk) =


(qm − q2)(qm − q) + (q2 + q + 1)(qm − q), if k = m,

(qn − q2)(qn − q), if k = n,

0, if k = 1.

Proof. Since Fqk ∩ Fqn−m = Fq, by Proposition 2.8 the (qk − q2)(qk − q) points of

PG(2, qk)\S are non-singular points of F . This gives us (qk−q2)(qk−q) Fqk -rational

points. For m > 1, from Remark 2.9, we have that the extra 1 + q + q2 points of

Mqk(F), given by Lemma 2.12, are ordinary singularities of F . Since the qm − q

tangent lines are defined over Fqm but not over Fqk , with k ∈ {n, 1}, the result

follows.

2.4 The Genus

To compute the genus of F , we first recall a genus formula based on the notion of

infinitely near points.
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Suppose F is an irreducible plane curve and P is a singular point of F . Let

F1 be the blowing up of F at P and E be the exceptional curve of the blow up. If

P1 ∈ F1 ∩ E is a singular point of F1, then P1 is called an infinitely near singular

point of F over P . In a similar way, the infinitely near singular points of F1 over P1

are also called infinitely near singular point of F over P , and so on. Regarding P

itself as an infinitely near singular point of F over P , we consider the integer given

by

δP =
∑
Q

mQ(mQ − 1)
2

where Q runs over all infinitely near singular points of F over P , and mQ is the

multiplicity of each point Q. If d is the degree of F , it turns out that the genus of

F is given by

g =
(d− 1)(d− 2)

2
−

∑
P

δP (2.12)

where the sum is taken over all singular points P of F . For a more detailed discussion

on this topic we refer to chapter V of [8].

Here, we will make use of (2.12) to compute the genus of the curve F , and

for this we also recall the following.

Lemma 2.13. Let F : f(x, y) = 0 be an irreducible plane curve of degree d and

P be a singular point of F of multiplicity mP . If the tangent lines 2 `1, · · · , `mP

of F at P are all distinct, or if I(P,F ∩ `i) = mP + 1, for i = 1, · · · ,mP , then

δP = mP (mP − 1)/2.

Proof. We will prove that the infinitely near points P1, · · · , Ps in the first neighbor-

hood of P are smooth points of F̃ , the blowing up of F at P . It may be assumed

that P = (0, 0) and that x = 0 is not a tangent line at P . We set with r = mP , and
2 Here, a line ` is called tangent to F at the point P if I(P,F ∩ `) > mP .
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from f(x, y) = fr(x, y) + fr+1(x, y) + · · · + fd(x, y), we have f(x, xy) = xrf̃(x, y),

where f̃(x, y) = fr(1, y) + xfr+1(1, y) + · · ·+ xd−rfd(1, y).

Now we claim that the points Q = (0, α) such that fr(1, α) = 0 are smooth

points of f̃(x, y) = 0. In fact, since f̃y(0, α) = g′(α) (where g(y) = fr(1, y)) and

f̃x(0, α) = fr+1(1, α), we have:

• If the tangent lines are all distinct, then fr(1, y) = 0 has no repeated roots,

which gives g′(α) 6= 0, and thus f̃y(0, α) 6= 0.

• If I(P,F∩`i) = r+1 for all the tangent lines `i, then gcd(fr(x, y), fr+1(x, y)) =

1. Therefore, fr(1, α) = 0 implies fr+1(1, α) 6= 0, which gives f̃x(0, α) 6= 0.

Hence, in either case, Q = (0, α) is a smooth point of f̃(x, y) = 0 and we

obtain δ(P ) = mP (mP − 1)/2.

Theorem 2.6. The curve F has genus given by

g = (qn−m + qm)(
qn

2
− (1 + q + q2)) + (q + 1)(1 + q + q2).

Proof. If P /∈ PG(2, q) is a singular point of F , then Proposition 2.8 implies JP =

{mP ,mP+1} and Lemma 2.13 gives δP = mP (mP−1)/2. For P ∈ PG(2, q), Remark

2.9 and Lemma 2.13 also give δP = mP (mP − 1)/2. Now, based on Proposition 2.8,

the number of points of multiplicity mP = qm can be obtained from Lemma 2.10

for k = n −m. The number of singularities with mP = qm − 1 and mP = qm − q

in the other two cases can also be easily deduced (see Remark 2.11). In summary,

each singular point P of F satisfies δP = mP (mP − 1)/2, and lies in PG(2, qn−m),

which can the be partitioned into

1. (qn−m − q)(qn−m − q2) points of multiplicity qm,

2. (qn−m − 1)(1 + q + q2) + 1− q3 points of multiplicity qm − 1,
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3. q2 + q + 1 points of multiplicity qm − q.

Now, using this data together with d = qn + qm − q2 − q and (2.12), we obtain the

above value of g.

Finally, putting together Theorems 2.3, 2.4, 2.5 and 2.6, we have a proof of

Theorem 2.1. We finish this section with the following:

Proof of Corollary 2.1. Note that for any prime power q and k1 > k2 positive

integers with k1 6= 2k2, one can replace q by qgcd(k1,k2) and apply Theorem 2.1 for

n = k1/ gcd(k1, k2) and m = k1/ gcd(k1, k2). That is, if k1 6= 2k2, then we have a

unique (qk1 , qk2)-Frobenius non-classical plane curve, and such a curve has Frobenius

orders given by (0, ν1) = (0, qk2).

Now suppose k1 > k2 > k3 are positive integers, and F is a (qk1 , qk2 , qk3)-

Frobenius non-classical plane curve. Thus F is automatically both, a (qk1 , qk2)- and

(qk1 , qk3)-Frobenius non-classical plane curve, which implies ν1 = qk2 = qk3 and

contradicts k2 > k3. Hence, the result follows.
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Chapter 3

Complete (N, d)-arcs derived

from plane curves.

In this part, we will be mainly interested in (N, d)-arcs arising from plane curves. As

a matter of terminology, we shall say that a curve F of degree d has the arc property

whenever F gives rise to a complete (#F(Fq), d)-arc in PG(2, q). Deciding whether

or not certain curves have the arc property is, in general, a difficult problem. With

the exception of conics, cubics and Hermitian curves, very little is known about the

arc property of curves in general. In Theorem 3.5 of [7], the authors give sufficient

conditions for a Frobenius non-classical curve to have the arc property 3. They

also present new complete arcs arising from plane curves, most having irreducible

components given by q-Frobenius non-classical curves. In contrast, our work here

presents new complete arcs which are mostly derived from curves with q-Frobenius

classical components.

In [16], the authors constructed plane curves over Fp, with the number of Fp-

rational points attaining the upper bound on Theorem 1.4. In [22], Voloch remarked
3It should be noted that not all q-Frobenius non-classical curves have the arc property. For

instance, one can check that the curve x13 = y9 + y3 + y is 27-Frobenius non-classical and does not
have the arc property. This gives a negative answer for a question raised in [7].
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that such curves would be somewhat large as (N, d)-arcs, and asked whether or not

those (N, d)-arcs are complete.

In Section 3.1, after extending the construction of such curves to non-prime

fields Fq, we answer Voloch’s question.

In Section 3.2, we consider a particular case of Theorem 3.1 and construct

complete (N, d)-arcs of parameters ((q2+4q−5)/4, (q−1)/2) and ((q2+4q+7)/4, (q+

3)/2) in PG(2, q).

In Section 3.3, we intersect the Hermitian curve with certain conics, and

prove that the Fq2-maximal curve x
q+1
2 + y

q+1
2 + z

q+1
2 = 0 gives rise to a complete

((q3+3q+4)/4, (q+1)/2)-arc in PG(2, q2). We also present complete (q3+q+2, q+3)-

arcs in PG(2, q2) by considering the union of the Hermitian curve with some conics.

In Section 3.4, we present a small complete (N, d)-arc of parameters (2q −
√
q − 1,

√
q − 1) in PG(2, q) obtained from another Fermat curve.

In Section 3.5, we have a table summarizing the (N, d)-arcs and compare

some of our parameters with others previously obtained. The Griesmer bound is

also discussed.

A special set of lines will play an important role in the development of the

first section. Some of the basic properties of such a set are presented next .

Theorem 3.1. Let q be a prime power and k be a divisor of q−1. If L is the set of

3(k+1) lines in PG(2, q) given by the components of xyz(xk−yk)(xk−zk)(yk−zk) =

0, then the number of points in PG(2, q) comprised by the union of such lines is given

by

3q(k + 1)− 3k − 2k2. (3.1)

In addition, if we define the sets

A = {(ξi : ξj : 1)|1 ≤ i, j ≤ k and ξki = ξkj = 1}
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B = {(ξi : 1 : 0), (ξi : 0 : 1), (0 : 1 : ξi)|1 ≤ i ≤ k and ξki = 1}

C = {(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)},

then the following holds:

(1) A ∪B ∪ C is the set of all points that occur as the intersection of lines in L.

(2) Each point in C lies on exactly k + 2 lines in L.

(3) Each point P in A lies on exactly three lines in L. These three lines are the

ones connecting P wih each point in C.

(4) Each point P in B lies on exactly two lines in L. One such line connects the

two points of C collinear with P , and the other line connects P with the third

point of C.

Proof. Let L1, L2 and L3 be the sets of lines corresponding to the linear components

of yk − zk = 0, xk − zk = 0 and xk − yk = 0 respectively. It is clear that the k

lines in each of the three sets are incident with a point in C = {(1 : 0 : 0), (0 :

1 : 0), (0 : 0 : 1)}. Therefore, the union of lines in each set Li comprises kq + 1

points of PG(2, q). Also, intersecting the lines from any two different sets Li and

Lj , gives us the same set of k2 points, namely A = {(ξi : ξj : 1)|1 ≤ i, j ≤ k

and ξki = ξkj = 1}. Thus, by the inclusion-exclusion principle we have collected

3(kq + 1) − 2k2 points in PG(2, q) comprised by the union of the lines in the sets

Li, i = 1, 2, 3. One can also see that the line x = 0 intersects the lines from L1

in a set of k points, namely {(0 : 1 : ξi)|1 ≤ i ≤ k and ξki = 1} and intersects the

lines from L2 and L3 at (0 : 1 : 0) and (0 : 0 : 1) respectively. Thus, including
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the line x = 0 will only give us (q + 1) − (k + 2) = q − k − 1 extra points. By

symmetry, including the three components of xyz = 0 will give us 3(q − k − 1)

extra points. Therefore, the union of the 3(k + 1) lines of L will provide a set of

3(kq+ 1)−2k2 + 3(q−k−1) = 3q(k+ 1)−3k−2k2 points in PG(2, q). Finally, one

should note that the counting process above automatically reveals the properties

claimed for the sets A,B and C.

Corollary 3.1. If S ⊂ PG(2, q) is the set of points comprised by the union of the

3(k+ 1) lines in L, and l is a line in PG(2, q) which is not in L, then the following

holds:

(1) S = PG(2, q) if and only if k = (q − 1)/2 or k = q − 1.

(2) If #(l ∩ C) > 0, then #(l ∩A) = #(l ∩B) = 0 and #(l ∩ S) = 2k + 2.

(3) If #(l ∩ C) = 0, then #(l ∩ S) = 3(k + 1)− (2#(l ∩A) + #(l ∩B)).

Proof. (1) This follows directly from #S = 3q(k + 1)− 3k − 2k2.

(2) We may assume l∩C = {(1 : 0 : 0)}, with l given by y−αz = 0 and α 6= 0. It

is clear that if we have either #(l∩A) > 0 or #(l∩B) > 0, then we get αk = 1

which implies l ∈ L, a contradiction. Therefore, #(l ∩ A) = #(l ∩ B) = 0.

Now, by Theorem 3.1(2), l intersects k + 2 lines in L at P = (1 : 0 : 0), and,

by Theorem 3.1 (1), l intersects the remaining 2k + 1 lines at 2k + 1 distinct

points. That gives #(l ∩ S) = 2k + 2.

(3) Since l /∈ L, items (3) and (4) of Theorem 3.1 imply that, for each P ∈ l ∩A,

l intersects three lines in L meeting at P , and for each Q ∈ l ∩B, l intersects

two lines of L meeting at Q. Therefore l intersects 3#(l∩A) + 2#(l∩B) lines

in L in a set of #(l ∩ A) + #(l ∩ B) points. Since #(l ∩ C) = 0, Theorem

3.1(1) implies that l intersects the remaining 3(k+1)−(3#(l∩A)+2#(l∩B))
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lines in exactly 3(k + 1)− (3#(l ∩A) + 2#(l ∩B)) points. Hence, #(l ∩ S) =

3(k + 1)− (2#(l ∩A) + #(l ∩B)).

3.1 Arcs obtained from curves with many points

A construction of curves (over Fp) attaining the upper bound in Theorem 1.4 is

presented in [16]. Here, we present the corresponding construction over non-prime

fields Fq, and referring to such curves as “Ck”, we investigate Ck(Fq) viewed as

(N, d)-arcs.

Theorem 3.2. Let q = pu be an odd prime power and k < (q− 1)/2 be a divisor of

q − 1 such that p - (k + 1). If m = q−1−2k
k , then the plane curve

Ck :
∑

r+s+t=m

(xryszt)k = 0

is smooth of degree d = q − 1− 2k, and #Ck(Fq) = d(d+ q − 1)/2.

Proof. Defining h(t) = (tq−1 − 1)/(tk − 1), we can see that f(x, y) = (h(x) −

h(y))/(xk − yk) is a polynomial of degree d = q − 1 − 2k. Also, since d = mk,

one can check that zdf(
x

z
,
y

z
) =

∑
r+s+t=m

(xryszt)k.

The smoothness part can be derived from the fact that f(x, y) = Gm(xk, yk, 1),

where Gm(x, y, z) = 0 is the curve in Theorem 1 of [?], which is smooth whenever

p - (m+ 1)(m+ 2).

To count the Fq-solutions of f(x, y) = 0, note that h(α) = h(β) = 0 with

αk 6= βk implies f(α, β) = 0. Therefore, all the pairs (α, β) ∈ Fq ×Fq satisfying 1 6=

αk 6= βk 6= 1 and αβ 6= 0 will be solutions of f(x, y) = 0. Since k(m+2) = q−1, the

m+1 choices of αk followed by the m choices of βk give (m+1)mk2 = d(d+q−1)/2

such solutions.
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To show that Ck is attaining the upper bound in Theorem 1.4, it suffices to prove

that Ck has finitely many inflection points. This is indeed the case because p - (d−1),

and we can apply Corollary 2.2 of [15]. Hence, #Ck(Fq) = d(d+ q − 1)/2.

We point out that because the upper bound was achieved, f(x, y) = 0 has no

solution (α, β) ∈ Fq × Fq with either coordinate being zero or a k-th root of unity.

An immediate consequence is that the 3(k + 1) lines given by the components of

xyz(xk − yk)(xk − zk)(yk − zk) = 0 do not intersect Ck(Fq). This fact will be used

later in Proposition 3.2.

The next theorem is the main result of this section.

Theorem 3.3. Let q = pm be a prime power, p > 5, and let k < (q − 1)/2 be a

divisor of q − 1. If N is the number of Fq-rational points and d is the degree of the

curve Ck, then Ck(Fq) is a complete (N, d)-arc if and only if k=1, 2, 4, 6, (pr − 1)/2

or 2(pr − 1), where r|m, r < m and m/r is assumed to be even in the last case.

Moreover, if k = 3 6= (p − 1)/2, then one can always adjoin exactly 9 points and

have a complete (q2 − 11q + 37, q − 7)-arc.

The proof of this theorem will be given through a sequence of several partial

results. The first partial result provides a very useful way of seeing the Fq-rational

points of the curves Ck.

Proposition 3.2. The set of Fq-rational points of a curve Ck is the complement,

in PG(2, q), of the union of the 3(k+ 1) lines given by the components of xyz(xk −

yk)(xk − zk)(yk − zk) = 0.

Proof. Note that we have the same set L of the 3(k + 1) lines of Theorem 3.1 and

#(l ∩ Ck(Fq)) = 0 for each line l ∈ L. Now, using (3.1) and

3q(k + 1)− 3k − 2k2 + #Ck(Fq) = 1 + q + q2,
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we get the result.

We will stick to the notation used in Theorem 3.1 and Corollary 3.1 for the

remaining of this section. The sets A,B,C, L and S will be used throughout, and

the points in the sets A,B and C will be often referred to as A-points, B-points

and C-points respectively. Also, for future purposes, the following remark (based

on Proposition 3.2) should be kept in mind:

Remark 3.3. For any line l of PG(2, q), since d = q− 1− 2k, we have #(l ∩ S) ≥

2k + 2. Equality holds if and only if #(l ∩ Ck(Fq)) = d.

Now, if N = #Ck(Fq) and d is the degree of Ck, the next result shows that

Ck(Fq) is indeed an (N, d)-arc. In addition, we will also see that the check for the

arc property can later be restricted to the points of A ∪ B. Recall thatt A,B and

C are given in Theorem 3.1.

Proposition 3.4. If P ∈ PG(2, q) is a point in the complement of Ck(Fq) such that

P /∈ A ∪B, then there exists a line l containing P such that #(l ∩ Ck(Fq)) = d.

Proof. Since P /∈ A ∪B by Theorem 3.1 we can pick a line l /∈ L containing P and

a point in C. Since #(l ∩ C) > 0, Corollary3.1(2) gives #(l ∩ S) = 2k + 2. Now,

Remark 3.3 completes the proof.

Later on, we will notice that there is a set of Fermat curves associated with

each curve Ck. It turns out that requiring our (N, d)-arcs to be complete is nearly

equivalent to requiring such Fermat curves to have “many” Fq-rational points. Con-

sidering this, we will first recall some results regarding upper bounds on the number

of Fq-rational points on Fermat curves.

The following lemma is a consequence of inequality (4′) and Theorem 3 of [4].
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Lemma 3.5. Let Fpm be a finite field of characteristic p > 5, and n > 2 be a divisor

of pm − 1 not satisfying any of the following conditions:

(i) p | (n− 1).

(ii) n = 2(pm − 1)/(pr − 1) for some divisor r of m, with r < m.

(iii) n = (pm−1)/2(pr−1) for some divisor r of m, where m/r is an even number.

If q = pm and a, b ∈ F?q, then the number Nn(a, b, q) of Fq-rational points of

the Fermat curve axn + byn + zn = 0 satisfies:

Nn(a, b, q) ≤ n2b2(q − 1 + 2n− δ)
5n

c+ δ

where δ is the number of such points with xyz = 0.

Lemma 3.6. Let q = pm be a prime power, p > 5, and k a divisor of q − 1 such

that n = (q − 1)/k satisfies the same hypotheses as in the previous lemma. If l is a

line given by ax+ by + z = 0 with a, b ∈ F?q, then the following holds

(1) l contains at most b2(k + 2− ε(l))
5

c A-points, where ε(l) is the number of B-

points on l.

(2) for p > 7, if k = 3 and ε(l) ≥ 2 then l does not contain an A-point.

(3) for k = 5, if ε(l) ≥ 2 then l contains at most one A-point.

Proof.

(1) This follows directly from Lemma 3.5.
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Note that the last two statements do not follow from the first one. Also,

ε(l) ∈ {0, 1, 2, 3} for every line l.

(2) Suppose we have two B-points of l given by (0 : 1 : −b) and (1 : 0 : −a). It

follows that −a and −b are cubic roots of unity and therefore the line l can be

given by x+y = z. If l contains an A-point, then the equation x+y = 1 has a

solution for x and y in {1, ω, ω2}, the cubic roots of unity. Since 1+ω+ω2 = 0,

we clearly see there is no solution for x 6= y. On the other hand, a solution for

2x = 1 implies p = 7, contradicting one hypothesis.

If the B-points are not the ones we considered, we may assume they are given

by (0 : 1 : −b) and (1 : −a/b : 0). This implies that a and −b are cubic roots

of unity, and the line equation may be given by x + z = y . The result then

follows from an equivalent argument given in the previous case.

(3) Again, suppose l contains the B-points given by (0 : 1 : −b) and (1 : 0 : −a).

It follows that −a and −b are fifth roots of unity, and the equation of l can be

given by x + y = z. If l contains two A-points, then the equation x + y = 1

has two solutions for x and y in {1, ω1, · · · , ω4}, the fifth roots of unity. It

is clear that we have x 6= 1 6= y. If x 6= y for both solutions, then we may

assume the two solutions are given by ω1 + ω2 = 1 and ω3 + ω4 = 1. This

implies ω1 +ω2 +ω3 +ω4 = 2 and then p = 3 ≤ 5, a contradiction. If we have

a solution with x = y, then we get 2x = 1, which implies p = 31. However,

the fifth roots of unity for this case are given by {1, 2, 4, 8, 16}, and there is no

way we can have a second distinct solution. Similarly to the previous case, for

a different choice of B-points, we get an equivalent situation, and again the

result follows.
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In the next two results, k satisfies the hypotheses of Lemma 3.6. We also recall that

N and d will stand for the number of Fq-rational points and the degree of the curve

Ck, respectively.

Lemma 3.7. For k > 6, Ck(Fq) is not a complete (N, d)-arc.

Proof. We will argue by contradiction. Let P be an A-point and l a line containing

P such that #(l ∩ Ck(Fq)) = d. If l contains m A-points and ε(l) B-points, then by

Corollary 3.1(3) we have #(l ∩ S) = 3k + 3− 2m− ε(l) points. By Remark 3.3, we

have 3k+3−2m−ε(l) = 2k+2, which gives m = (k+1−ε(l))/2. Now, from Lemma

3.6(1), we have (k + 1− ε(l))/2 ≤ 2(k + 2− ε(l))/5 which gives k ≤ ε(l) + 3 ≤ 6.

Lemma 3.8. If k = 3 or k = 5, then Ck(Fq) is not a complete (N, d)-arc. However,

in the first case, we can always adjoin 9 points to Ck(Fq) and obtain a complete

(q2 − 11q + 37, q − 7)-arc.

Proof.

(i) Case k = 3. Note this implies p > 7. In fact, if p = 7, we have k = (p− 1)/2,

violating our hypotheses on k. Assume the arc is complete. Let P be a B-

point, and suppose l is a line through P such that #(l ∩ Ck(Fq)) = d. Since

ε(l) ≥ 1, by Lemma 3.6(1), l contains at most one A-point. If the number of A-

points is zero, then Corollary 3.1(3) gives #(l∩S) ≥ 3(k+1)−3 = 9 > 2k+2.

If l contains one A-point, then by Lemma 3.6(2) the line contains only one B-

point and then #(l∩S) = 3(k+1)−2−1 = 9 > 2k+2. Both cases contradict

Remark 3.3. Hence, the arc is not complete. On the other hand, one can easily

check that any line l /∈ L connecting two A-points satisfies #(l ∩ Ck(Fq)) = d.

Since by Lemma 3.6(1) such a line does not contain a B-point, we can use
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Lemma 3.6(2) to include all 9 B-points into our set without having d + 1

collinear points. That will finally give us a complete (q2− 11q+ 37, q− 7)-arc.

(ii) Case k = 5; Again we suppose the arc is complete and take a line l containing

an A-point P and satisfying #(l ∩ Ck(Fq)) = d. If ε(l) ≥ 2, then by Lemma

3.6(3) l contains only one A-point, which implies #(l∩S) ≥ 3(k+1)−2−3 =

13 > 2k + 2. If ε(l) ≤ 1, then Lemma 3.6(1) states l contains at most two

A-points, and we have #(l ∩ S) ≥ 3(k + 1) − 4 − 1 = 13 > 2k + 2. In either

case, we contradict Remark 3.3. Therefore, the arc is not complete.

Next, we will prove that we have complete (N, d)-arcs in the remaining cases.

Lemma 3.9. If there exists a line l in PG(2, q) connecting an A-point to a B-point

such that #(l ∩ Ck(Fq)) = d, then Ck(Fq) is a complete (N, d)-arc.

Proof. This follows directly from the fact that H ∼= (Z/kZ)2 o S3 is a subgroup of

Aut(Ck), and H acts transitively on the sets A and B.

Proposition 3.10. Let p > 5 be a prime and m and r be positive integers such that

m > r and r|m.

1. If m/r is even and k = 2(pr − 1), then the line l : x + y + z = 0 contains

exactly pr − 2 A-points and three B-points defined over Fpm.

2. Let χpr : F×pr −→ {±1} be the quadratic character, and consider the line l :

x+ χpr(−1)y = z . For k = (pr − 1)/2, the line l contains exactly (pr − 5)/4

A-points and three B-points if χpr(−1) = 1, and l contains exactly (pr − 3)/4

A-points and two B-points if χpr(−1) = −1. Such points are also defined over

Fpm.
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Proof. The statements follow directly from the computation of the number of Fpm-

rational points on the curves axe/2 + bye/2 + ze/2 = 0 ( with a2, b2 ∈ Fpr) and

ax2e + by2e + z2e = 0 (with a, b ∈ Fpr ), where e = (pm − 1)/(pr − 1). For such

computation, see Examples (vii) and (viii) of [4].

The proof of Theorem 3.3 is completed by the following lemma.

Lemma 3.11. If k = 1, 2, 4, 6, (pr − 1)/2 or 2(pr − 1), then Ck(Fq) are complete

(N,d)-arcs. In particular, using the two last values of k and q = pm, we prove the

existence in PG(2, q) of a complete

(
2q2 − (3pr + 1)q + p2r + pr

2
, q − pr)-arc, where r | m and r < m, (3.2)

and a complete

(q2+(4−6pr)q+8p2r−10pr+3, q−4pr+3)-arc, where r | m and
m

r
is even. (3.3)

Proof. For each given k, it suffices to find a line l fulfilling the conditions of Lemma

3.9.

• Case k = 2(pr − 1): We consider the line l : x + y + z = 0. By Proposition

3.10, l contains pr − 2 A-points and ε(l) = 3. Thus, using Corollary 3.1(3),

one can check that #(l ∩ S) = 2k + 2. Therefore, by Remark 3.3, we have

#(l ∩ Ck(Fq)) = d, and Lemma 3.9 completes the proof.

• Case k = (pr − 1)/2: We take the line l : x+ χpr(−1)y = z from Proposition

3.10, and similar to the previous case, one can check that #(l ∩ Ck(Fq)) = d

and the result follows.
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• Case k = 6: Let {±1,±ω,±ω2} be the set of the sixth roots of unity. It is

clear that the line l : ωx + ω2y + z = 0 contains the A-points P = (1 : 1 : 1),

Q = (ω : ω2 : 1) and the B-points (−ω : 1 : 0), (−ω2 : 0 : 1), (0 : −ω : 1). The

usual check shows that #(l ∩ S) = 14 = 2k + 2, and the result follows again.

The cases k = 1, 2 and 4 can be handled in a similar (or even simpler) way.

3.2 Arcs of parameters ((q2+4q−5)/4, (q−1)/2) and ((q2+

4q + 7)/4, (q + 3)/2) in PG(2, q).

In the previous section, we considered the (N, d)-arcs in PG(2, q) given by the com-

plement of the union of the 3(k + 1) lines in L. Now, we will be interested in the

case where such a complement is empty, i.e., the set S is the whole PG(2, q). By

Corollary 3.1(1), this happens if and only if k = q − 1 or k = (q − 1)/2. We will

consider the case where k = (q − 1)/2 and use the sets A, B and C to construct

complete (N, d)-arcs. The same can be done in the case k = q − 1, but we will get

either the trivial complete (1 + q+ q2, q+ 1)-arc or the complete ((q− 1)2, q− 1)-arc

arising from the curve xq−1 + yq−1 = 2zq−1, which was already considered in [?].

Theorem 3.4. Let q > 11 be an odd prime power. If Γ is the curve given by

(xk + yk − 2zk)(xk + zk − 2yk)(yk + zk − 2xk) = 0 where k = (q − 1)/2, then Γ(Fq)

is a complete ((q2 + 4q − 5)/4, (q − 1)/2)-arc.

Proof. Let F be the curve given by xk + yk − 2zk = 0. It is easy to check that

F(Fq) = A∪{(ξi : 1 : 0) : ξki = −1}, where A is given as in Theorem 3.1. Therefore,

by symmetry, we have #Γ(Fq) = k2 + 3k = (q2 + 4q− 5)/4. It is clear that we have

k collinear points in Γ(Fq), and we now suppose the existence of a line incident with
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k + 1 points of this set. Note that Γ(Fq)\A is a subset of the lines given by the

components of xyz = 0. So, any line containing k + 1 points of Γ(Fq) would take

at most three points from this subset and at least k − 2 points from A. Suppose

l : ax+ by + cz = 0 is such a line. If abc = 0, then it is easy to check that l is a line

in L intersecting Γ(Fq) in exactly k points. Therefore, we may assume l is given by

ax+ by+ z = 0, and ab 6= 0. On the other hand, such a condition implies that each

A-point in l gives rise to four affine points on the conic ax2 + by2 + z2 = 0. This

fact yields 4(k − 2) ≤ q + 1 and thus q ≤ 11, a contradiction. Therefore Γ(Fq) is a

((q2 +4q−5)/4, (q−1)/2)-arc. The arc property follows from the fact that PG(2, q)

is covered by the 3(k + 1) lines of L and that Γ(Fq) has k points on each one of

those lines.

With a similar reasoning using the sets A,B and C, the next result presents

another complete (N, d)-arc. However, unlike Theorem 3.4, the underlying set is

not apparently given by the Fq-rational points of a curve.

Theorem 3.5. Let q be an odd prime power and k = (q − 1)/2. If W = {(x0 : x1 :

x2) ∈ PG(2, q) | xki ∈ {0, 1}}, then W is a complete ((q2 + 4q+ 7)/4, (q+ 3)/2)-arc.

Proof. It is clear that W = A ∪ B ∪ C and #W = k2 + 3k + 3 = (q2 + 4q + 7)/4.

Note that each of the 3(k + 1) lines of L is incident with k + 2 = (q + 3)/2 points

of W . Suppose we have (q + 3)/2 + 1 = k + 3 points in W incident with a line

l : ax + by + cz = 0, l /∈ L. Observe that B ∪ C is a subset of the union of lines

given by xyz = 0 and A is a subset of the Fq-rational points of xk + yk − 2zk = 0.

Therefore, l must be incident with three points in B ∪ C and k points in A. Now,

from an argument similar to the one used in the proof of the previous theorem, we

conclude 4k ≤ q + 1 and thus q ≤ 3. On the other hand, one can easily check that

such a line does not exist for q = 3. Therefore, W is an ((q2+4q+7)/4, (q+3)/2)-arc.

Completeness also follows similarly to Theorem 3.4.
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3.3 An Fq2-maximal curve

Recall from Theorem 1.2 that for any divisor d of q + 1 the curve xd + yd + zd = 0

is Fq2-maximal. Given that such curves are somewhat large as (N, d)-arcs, it is

natural to ask about their arc property. Among these curves, we consider a special

one given by

x(q+1)/2 + y(q+1)/2 + z(q+1)/2 = 0, (3.4)

which was previously mentioned in chapter 1.

In this section, after investigating the intersection of the Hermitian curve with cer-

tain conics, we prove the following :

Theorem 3.6. Let q be an odd prime power. If Γ is the curve given by x(q+1)/2 +

y(q+1)/2 + z(q+1)/2 = 0, then Γ(Fq2) is a complete ((q3 + 3q + 4)/4, (q + 1)/2)-arc.

Theorem 3.7. If q > 3 is an odd prime power, and H : xq+1+yq+1+zq+1 = 0 is the

Hermitian curve, then there exists a conic C, defined over Fq2, such that H(Fq2) ∩

C(Fq2) = ∅. Moreover, H(Fq2)∪C(Fq2) gives rise to a complete (q3+q2+2, q+3)-arc

in PG(2, q2).

We proceed by presenting a list of preliminary results that will lead to the

proof of both theorems. The following notation will be carried out for the rest of

this chapter.

For i = 1, 2, we set Ni := {ξ ∈ Fq2 : ξ(q+1)/2 = (−1)i}, and the quadratic

character χqi : F×
qi 7→ {±1}. Note that N = {ξ ∈ Fq2 : ξq+1 = 1} = N1 ∪ N2 and

N2 = {ξ2 : ξ ∈ N}.

Lemma 3.12. If χq2(r) = −1, then {(r − ξ)q+1 : ξ ∈ N1} = {(r − ξ)q+1 : ξ ∈ N2}.
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Proof. For ξ ∈ N1, the condition χq2(r) = −1 implies
1

ξrq−1
∈ N2. Now we have

(r − ξ)q+1 = (r − ξ)q(q+1) = (rq − 1
ξ

)q+1 = (rq−1(r − 1
ξrq−1

))q+1 = (r − 1
ξrq−1

)q+1,

from which we conclude that the two sets are the same.

The following remark will be a useful tool in the proofs of the next results.

Remark 3.13. If N = {ξ ∈ Fq2 : ξq+1 = 1} and ε ∈ Fq2 is such that εq−1 = −1,

then N = { t+ ε

t− ε
: t ∈ Fq ∪ {∞}}.

Proof. First we identify N with the Fq-rational points of the conic x2 + εq+1y2 = z2.

More precisely, if (x0 : y0 : 1) is such a point, then we have ξ = x0 + εy0 ∈ N .

Now, if we consider the parametrization t 7→ (xt, yt) = (
t2 + ε2

t2 − ε2
,

2t
t2 − ε2

) of the

affine conic, we can endow the elements of N with such a parametrization and write

ξt = xt + εyt =
t+ ε

t− ε
.

Proposition 3.14. For every r ∈ Fq2\Fq, there exists ξ ∈ N such that χq(1− (r −

ξ)q+1) = 1.

Proof. We need to find ξ ∈ N such that χq(rqξ + rξ−1 − rq+1) = 1. By Remark

3.13, it suffices to find t ∈ Fq such that

χq(
t+ ε

t− ε
rq +

t− ε
t+ ε

r − rq+1)

= χq(
(rq + r − rq+1)t2 + 2ε(rq − r)t+ ε2(rq + r + rq+1)

t2 − ε2
)

= χq((t2 − ε2)((rq + r − rq+1)t2 + 2ε(rq − r)t+ ε2(rq + r + rq+1))) = 1.

Now, it is just a matter of finding a lower bound on the number of Fq-solutions for
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u2 = f(t), where

f(t) = (t2 − ε2)((rq + r − rq+1)t2 + 2ε(rq − r)t+ ε2(rq + r + rq+1)) ∈ Fq[t] (3.5)

Note that since rq− r 6= 0, the above equation is not of the form u2 = µg(t)2, where

χq(µ) = −1. Therefore, if q is not too small, we can find a solution we need. In fact,

if f(t) has repeated roots, we can replace the above equation by a conic’s equation.

If the roots are all distinct, we will have an elliptic curve, and using the Hasse-Weil

bound (| N − (q + 1) |≤ 2q1/2), we find q > 9 provides a solution we need. Finally,

a quick computer check reveals that such fact also holds true for q ≤ 9.

Corollary 3.15. If χq2(r) = −1 and s ∈ N1, then there exist b and c in F?q2

satisfying the following:

1. r − b2s = c.

2. bq+1 = 1.

3. χq(1− cq+1) = 1.

Proof. Since we have χq2(r/s) = −1, by Proposition 3.14, there exists ξ′ ∈ N such

that χq(1 − (r/s − ξ′)q+1) = 1. On the other hand, because of Lemma 3.12, we

may assume ξ′ ∈ N2, which implies ξ′ = ξ2 for some ξ ∈ N . Therefore, we have

χq(1− (r/s− ξ2)q+1) = χq(1− (r− ξ2s)q+1) = 1. Now, taking b = ξ and c = r− ξ2s,

we get the result .

PROOF OF THEOREM 3.6.

Let P = (x0 : y0 : z0) ∈ PG(2, q2) be a point in the complement of Γ. If one

of its coordinates is zero, for instance z0 = 0, then we take the line z = 0 which
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clearly intersects Γ(Fq2) in d = (q+ 1)/2 distinct points. Suppose the point is given

by P = (x0 : y0 : 1) with x0y0 6= 0, and consider the following possibilities:

• χq2(x0) = 1 or χq2(y0) = 1.

Without loss of generality, we assume χq2(y0) = 1, and since y(q+1)/2
0 ∈ Fq,

the line y = y0z intersects Γ in d distinct points, unless y(q+1)/2
0 = −1. On

the other hand, if we also have χq2(x0) = 1, then this problem can be fixed

by taking either the line x = x0z or x =
x0

y0
y. Thus, we only need to consider

the case y(q+1)/2
0 = χq2(x0) = −1.

• χq2(x0) = χq2(y0) = −1.

Since P = (x0 : y0 : 1) = (1 : y0
x0

: 1
x0

), using the symmetry of the curve, one

can see that we fall on the previous case.

Based on this, we may assume that P = (r : s : 1) with r, s satisfying

χq2(r) = s(q+1)/2 = −1.

We take the values b and c provided by Corollary 3.15, and consider the line

l containing P and given by x− b2y = cz. In order to prove that l is incident with

(q+1)/2 distinct points of Γ(Fq2), it suffices to prove that the conic C : x2−b2y2 = cz2

intersects the Hermitian curve H : xq+1 + yq+1 + zq+1 = 0 in 2(q+ 1) distinct points

P = (x : y : 1) ∈ PG(2, q2). One can check that (t : u) 7→ (bct2+bu2 : ct2−u2 : 2btu)

parametrizes C, and that the intersection restricted to the affine points of both curves

yields:

bq+1(ct2 + 1)q+1 + (ct2 − 1)q+1 + 4bq+1tq+1 = 0
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Since bq+1 = 1, we have

cq+1t2(q+1) + 2tq+1 + 1 = 0. (3.6)

For ∆ = 4(1 − cq+1), Corollary 3.15(3) gives us χq(∆) = 1, which implies

that (3.6) has 2(q + 1) distinct nonzero roots in Fq2 . Since this gives 2(q + 1) affine

points of (H ∩ C)(Fq2), the result follows.

In the previous computation, we noted a way to find conics not intersecting

the Hermitian curve in PG(2, q2). Also, it is well-known that the intersection of

these curves with lines in PG(2, q2) can be easily characterized. These two facts

will be the tools to prove Theorem 3.7.

PROOF OF THEOREM 3.7.

Since q > 3, we can find c ∈ F?q2 such that χq(1 − c2(q+1)) = −1, and we

claim the conic C : x2 − y2 = (cz)2 does not intersect the Hermitian curve H :

xq+1 + yq+1 + zq+1 = 0 in PG(2, q2). In fact, considering the same parametrization

used in the proof of Theorem 3.6, one can check that we end up with the following:

c2(q+1)t2(q+1) + 2tq+1 + 1 = 0. (3.7)

For ∆ = 4(1−c2(q+1)), we have χq(∆) = −1, which implies C intersects H in 2(q+1)

points defined over a non-trivial extension of Fq2 . Now, Bezout’s theorem implies

our claim.

For the arc property, we consider a point P ∈ PG(2, q2) in the complement

of the two curves. Among the q2 + 1 lines incident with P , we know that there

are q + 1 lines tangent to H, and each of the remaining q2 − q lines intersects the
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Hermitian curve in q + 1 distinct points (see Theorem 1.3). On the other hand, we

also know that there are at most (q2 + 3)/2 lines through P which are not secant to

C. Therefore, if we have q2− q > (q2 + 3)/2, which means q > 3, then the (N, d)-arc

is complete.

3.4 A Fermat Curve

Here, we obtain a small complete (N, d)-arc in PG(2, q2) given by the Fq2-rational

points of the Fermat curve C : xq−1 + yq−1 + zq−1 = 0. In [14], Moisio presented an

explicit formula for the number of Fq2-rational points of a certain family of Fermat

curves. It turns out that C lies in this family. However, to make our future discussion

clearer, the computation of F(Fq2) is also presented here.

Theorem 3.8. Let q ≡ 2 mod 3 be a power of a prime p > 2. If C is the Fermat

curve xq−1 + yq−1 + zq−1 = 0, then #C(Fq2) = 2q2 − q − 1.

Proof. It is clear that C has 3(q − 1) points in PG(2, q2) with xyz = 0. To count

the points with non-zero coordinates, it suffices to count the number of solutions of

x+ y + 1 = 0 for x and y in N = {ξ ∈ Fq2 : ξq+1 = 1}.

Recall from Remark 3.13 that if we fix ε ∈ Fq2 , such that εq−1 = −1, then

we have N = { t+ ε

t− ε
: t ∈ Fq ∪ {∞}}. Since p 6= 3, the pairs (u, v) ∈ N × N with

u+ v + 1 = 0 correspond to the pairs (t1, t2) ∈ Fq × Fq with

t1 + ε

t1 − ε
+
t2 + ε

t2 − ε
+ 1 = 0

and thus

3t1t2 − ε(t1 + t2)− ε2 = 0. (3.8)

Since ε /∈ Fq, (3.8) gives t1 = −t2 and ε2 = −3t21. Note that ε2 = −3t21
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is consistent only if −3 is a non-square in Fq, which turns out to be equivalent to

3 | (q+ 1). From t1 = −t2 we have 1 + u+ u2 = 0, i.e. u is a primitive cubic root of

unity. Therefore, (u, u−1) and (u−1, u) are the only solutions of x+ y + 1 = 0 for x

and y in N (such characterization will be important in the proof of Theorem 3.9).

Clearly, each solution above gives rise to (q − 1)2 points in C(Fq2) with non-

zero coordinates. Hence, we have #C(Fq2) = 2(q − 1)2 + 3(q − 1) = 2q2 − q − 1.

Theorem 3.9. Let q be an odd prime power such that 3 | (q+1). If C is the Fermat

curve xq−1 + yq−1 + zq−1 = 0, then #C(Fq2) is a complete (2q2 − q − 1, q − 1)-arc.

Proof. Let P = (x0 : y0 : z0) ∈ PG(2, q2) be a point in the complement of C. If one

of the coordinates of P is zero, say z0 = 0, then the line z = 0 obviously contains

P and intersects C in q − 1 distinct points of PG(2, q2). Therefore, we can assume

P = (r : s : 1) with rs 6= 0; The following claim excludes several more possibilities

for P = (r : s : 1).

Claim I. Let µ be a fixed element of Fq2 satisfying µ2(q−1) + µq−1 + 1 = 0.

If r, s ∈ F?q2 such that {µr/s, µ2/s, µ/r} ∩ Fq 6= ∅, then there exists a line l incident

with P = (r : s : 1) with #(l ∩ C(Fq2)) = q − 1.

Proof. Suppose we have µr/s = α ∈ Fq and consider the line l : x = (r/s)y. Clearly

P ∈ l, and since 1 + µq−1 + µ2(q−1) = 0, the polynomial ((α/µ)y)q−1 + yq−1 + 1

has q − 1 distinct roots in Fq2 which implies #(l ∩ C(Fq2)) = q − 1. The other two

cases can be handled in an identical way if we consider the lines y = sz and x = rz

respectively.

From now on, we will use the same fixed µ defined in Claim I and assume r, s ∈ F?q2

do not satisfy the hypotheses of that claim. To deal with the remaining cases, we

will prove the existence of λ ∈ Fq2 such that the polynomial f(x) = xq−1 + (λ(x −
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r) + s)q−1 + 1 has q − 1 distinct zeros in Fq2 . Suppose f(x) has a zero x0 ∈ Fq2

corresponding to an Fq2-rational point of C with nonzero coordinates. Based on such

points of C (characterized in Theorem 3.8), we can find x1 and y1 in F?q2 such that

one of the following holds:

1. x0 = µxq+1
1 and λ(x0 − r) + s = µ2yq+1

1 , and thus λ(µxq+1
1 − r) + s = µ2yq+1

1 .

2. x0 = µ2xq+1
1 and λ(x0 − r) + s = µyq+1

1 , and thus λ(µ2xq+1
1 − r) + s = µyq+1

1 .

Note that in each case, such a zero of f(x) gives rise to (q+1)2 Fq2-rational solutions

(with nonzero coordinates) of the equations given by

λµXq+1 − µ2Y q+1 + s− λr = 0 (3.9)

and

λµ2Xq+1 − µY q+1 + s− λr = 0 (3.10)

respectively. Conversely, we can also see that such (q + 1)2 solutions for (3.9) or

(3.10) give rise to a unique zero of f(x).

Now, the idea is to find λ ∈ Fq2 such that either (3.9) or (3.10) has the

maximum possible number of Fq2-solutions. This will be achieved if the coefficients

of either equation can be replaced by elements of F×q .

Claim II. There exist m, n in F×q such that s− µrm = µ2n.

Proof. Since s, µr, µ2 ∈ F?q2 , we can certainly find α1, α2, α3 in Fq, not all zero, such

that

α1s+ α2µr + α3µ
2 = 0

On the other hand, it is easy to check that if αi = 0 for some i ∈ {1, 2, 3}, then r, s

will satisfy the hypotheses of Claim I, violating our assumption. Finally, defining
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m = −α2/α1 and n = −α3/α1 completes the proof.

Using the previous claim, we take λ = µm, and after some scaling (if necessary),

(3.9) and (3.10) can be replaced by

Xq+1 + Y q+1 + 1 = 0 (3.11)

and

µXq+1 + µ2Y q+1 + 1 = 0 (3.12)

Lastly, counting the number of Fq2-solutions with non-zero coordinates of the

above equations, one can check that the (q − 2)(q + 1)2 solutions of (3.11) together

with the (q + 1)2 solutions of (3.12) provide (q − 2) + 1 = q − 1 distinct roots for

f(x). Hence, we have a complete (2q2 − q − 1, q − 1)-arc.

3.5 The Parameters

Here, we present a table summarizing our (N, d)-arcs and briefly compare some of

our parameters with others previously obtained. We also provide an upper bound

on the distance of the corresponding codes to the Griesmer bound.

It can be easily checked that an (N, d)-arc in PG(2, q), with N > (d−2)q+d,

is equivalent to a code meeting the Griesmer bound. Table 1 of [1] lists many of the

known families of such (N, d)-arcs, and, more recently, Ball and Montanucci (see [2]

) presented new [N, 3, N − d]-codes over Fq, with d = q − 3 and d = q − 4, meeting
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the Griesmer bound. Despite the given examples, constructing codes meeting the

Griesmer bound is a difficult problem. Actually, obtaining (N, d)-arcs with N/q

large, say N/q > d− 2, is not easy in general. As mentioned in Section 5 of [1], the

best that can be done in general is to take (a) for d < q/2 the union of bd/2c conics,

which gives N/q > d/2, and (b) for d > q/2 large the complement of the union of

2(q−d)+1 lines of a dual (2(q−d)+1, 2)-arc, which gives N/q > q−2d+(2d2−d)/q.

After comparing parameters, we see the (N, d)-arcs obtained from our work

here are smaller than the ones from Table 1 of [1], and in general larger than the

ones obtained from the above procedures. For instance, each (N, d)-arc derived

from Theorem 3.3 satistifies N/q > d − α for some constant α ≥ 2. To give a

better idea of the general scenario, we present a table that displays the parameters

of the (N, d)-arcs constructed in the previous sections. The last column shows an

upper bound for the difference of N and the Griesmer bound G =
2∑
i=0
dN − d

qi
e of

the corresponding [N, 3, N − d]-code.

d q = pm odd N N −G ≤
1 q − 3 p > 5 q2 − 5q + 6 1
2 q − 5 p > 5 q2 − 8q + 15 2
3 q − 7 3 | (q − 1) and p > 5 q2 − 11q + 37 3
4 q − 9 4 | (q − 1) and p > 5 q2 − 14q + 45 4
5 q − 13 6 | (q − 1) and p > 7 q2 − 20q + 91 6

6 q − ph h | m and p > 5
2q2 − (3ph + 1)q + p2h + ph

2
pr − 1

2
7 q − 4ph + 3 m/h is even and p > 5 q2 + (4− 6ph)q + 8p2h − 10ph + 3 2(ph − 1)
8

√
q + 3 q > 9 square q

√
q + q + 2 1

9 (q − 1)/2 q > 11 (q2 + 4q − 5)/4 d(q − 11)/4e
10 (q + 3)/2 q (q2 + 4q + 7)/4 d(q − 3)/4e
11 (

√
q + 1)/2 q square (q

√
q + 3

√
q + 4)/4 d(√q − 5)/4e

12
√
q − 1 q square and 3 | (√q + 1) 2q −√q − 1

√
q − 4

Table 3.1: Complete (N, d)-arcs

49



Note that for d = (q − 1)/2 the (N, d)-arc from procedure (a) above and the one

from row 9 in Table 1 give similar values for N . On the other hand, after a careful

analysis of the configuration of our points (Theorem 3.4 ), we see that such a set can

never be given by a union of conics. This leads us to suspect that the (N, d)-arcs

will not be the same in general.

It is also worth noting that, in contrast with the other cases in Table 1, row

12 presents a very small (N, d)-arc. We have N/q < 2, and as far as we know, there

is no construction of arcs with similar parameters.

Table 1 above also shows that, in general, the codes corresponding to our

(N, d)-arcs will not meet the Griesmer bound. However, in many cases, they are

just a constant away from this bound. It can be checked that, with the exception

of rows 6 and 7, the numbers on the last column are the actual value of N −G if q

is sufficiently large.

For another comparison, we point out that Ball and Montanucci (see [2])

also presented a (non-explicit) construction of (N, d)-arcs where, under certain con-

ditions, the corresponding codes are one away from the Griesmer bound. It can be

checked that the (N, d)-arcs from rows 1 and 8 in Table 1 are not particular cases

of this construction. In the case of row 1, we have a smaller value for N . In the

case of row 8, our (N, d)-arc does not have the parameters satisfying the required

conditions of their construction.

We have noticed that, out of the explicit constructions of (N ′, d′)-arcs in

PG(2, q) where the parameter d′ matches with our d, our N has a different value

and, in some cases, it is slightly smaller. This means we indeed have new parameters.

Of course, we are not including the cases where q is too small.

We end this section by presenting three particular cases where some of our

(N, d)-arcs (d ≥ 4) have the corresponding codes meeting the Griesmer bound. The

notation [N, d]q will stand for an (N, d)-arc in PG(2, q). Such arcs are: [20, 4]7 ,
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[63, 6]13 and [32, 4]13, and they are obtained from rows 1, 3 and 4 respectively. We

have not seen such (N, d)-arcs listed in the most recently updated tables.
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