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Abstract 

 

Household Changes in Electricity Consumption Behavior Post Solar 
PV-Adoption 

 

Griselda Blackburn, M.S.E.E.R. 

The University of Texas at Austin, 2014 

 

Supervisor:  Varun Rai 

 
 I combine quantitative data on minute-resolved electricity-consumption profiles 

and survey data with qualitative interviews of PV adopters to create a holistic 

understanding of how PV adoption influences behavioral change of electricity use. In 

particular, I examine the information and heuristics consumers use to make energy-

related choices and evaluate how consumption behavior affects the total amount and 

timing of electricity use. Consumption behavior post adoption can significantly alter the 

environmental benefits of solar PV. Post-adoption changes such as decreases in energy 

consumption or load shifting from times of high peak demand to times of lower peak 

demand increase the amount of solar PV generation that is exported to the grid. Higher 

outflows may reduce the need for less efficient peaking generation units during peak 

demand, particularly in the summer when solar PV is at its highest generation capacity 

and electricity demand is greatest.  
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I find that PV adoption does trigger increases in awareness of electricity use.  

However, while adopters report small or insignificant decreases in household 

consumption post-adoption, examination of actual records shows both significant 

increases and decreases in consumption post-PV adoption at the household level. I 

explain this seeming discrepancy by noting that these households were already energy-

conscious prior to PV adoption and had newer, more energy efficient homes, which could 

offset effects of increased awareness. Supporting this, a majority of respondents 

considered PV adoption as one action within a larger electricity conservation campaign 

initiated prior to system adoption. Because they had already implemented several energy 

efficiency measures, respondents could not easily identify additional ways to reduce 

electricity use. Most respondents have a method of monitoring consumption, but their 

attentiveness to monitoring declines after installation-- which could explain the 

awareness gap as well as the consumption increase. In addition, exogenous factors such 

as the purchase of an electric vehicle and changes in household size may explain 

increases in consumption. While I find changes in total consumption after adoption of 

solar PV at the individual household level, the aggregate mean consumption for all 

households is just 1.0% but the change in means is insignificant.  
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1. INTRODUCTION 

The rate of adoption of solar photovoltaic (PV) technology has increased 

dramatically in the residential electricity sector. In 2013, a record year for solar PV, 

installations increased by over 60% from the prior year (GTM 2014). Approximately 

66% of electricity consumed in the U.S. is currently produced using carbon intensive 

fossil fuels such as coal and natural gas (EIA 2014). Residential solar PV generation 

displaces electricity produced from these fuel sources and can reduce carbon emissions in 

the electricity sector (Drury, Denholm et al 2009; Perez, Richard et al 2011, Sivaraman 

and Keoleian 2010). In addition, since such systems generate electricity during times of 

peak grid use, widespread diffusion could reduce the need for ‘peaking’ generation units 

that are typically less efficient and produce higher amounts of carbon emissions per unit 

of generation (Ong, Denholm, et al 2010; Sivaraman and Keoleian 2010). However, the 

environmental benefits of solar PV are influenced by consumer behavior. The benefits 

may increase or decrease if consumers modify their behavior to conserve energy post-

adoption or increase consumption that offsets the incremental benefits of solar PV. 

Understanding the nature of the decision-making process has important practical 

implications for the design of mechanisms that incentivize reduction of harmful 

emissions resulting from energy use. With 22.2% consumption of primary energy and 

21.4% of the total greenhouse gas (GHG) emissions (EIA, 2010), the residential sector is 

one of the key targets for reducing both energy demand and GHG emissions. Among 

other strategies—such as the adoption of energy-efficient appliances and building design 
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and construction—diffusion of microgeneration technologies, particularly rooftop solar 

PV, represents a key option in meeting demand and emissions reductions in the 

residential sector (EPRI, 2007). 

Past studies have investigated how consumers change energy-use patterns after 

adopting efficient technologies (Keirstead 2007; Bahaj and James 2007; Ueno et al. 2006; 

Grønhøj and Thøgersen 2011). The “rebound effect” arises when a switch to more 

efficient technology creates monetary savings on a per-unit basis, resulting in increased 

energy consumption compared to the expected level of consumption with the efficient 

technology (Greening et al. o 2000; Moniz et al. 2012; Borenstein 2014).  This effect is 

estimated at 12-55%, depending on the study and methods (Druckman et al. 2011; 

Sorrell, Dimitropoulos, and Sommerville 2009; Nässén and Holmberg 2009).  Under the 

“ripple effect,” however, adoption of more efficient technology leads to greater 

conservation through load-shifting, abatement, or further efficiency measures 

(Sreedharan et al. 2012; Hertwich 2005).  

The rebound and ripple effect have been extensively studied under rational choice 

theory and behavioral economics. Rational choice theory assumes that consumers have 

ordered, known, consistent, and invariant preferences and the information needed to 

make calculated utility-maximizing decisions (Simon 1955; Tversky and Kahneman 

1986; Smith 1991 Frederick et al 2002; Wilson and Dowlatabadi 2007). Under rational 

choice theory, PV adopters would exhibit behavior that maximizes the value obtained 

from their PV systems, which might include load shifting and information searching to 
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select the optimal electricity rate plan. During the information search process, consumers 

must consider the cost of conducting research (Gabaix et al. 2006; Rai and Robinson 

2013) and account for uncertainty in rate prices over the system’s lifetime, which limits 

the value of the information search process (Borenstein 2007; Rai and Sigrin 2013). 

In contrast to rational choice theory, behavioral economics contends that 

consumer decisions are impacted by factors beyond price, including social norms (Elster 

1989; Other REFs), default options (Kahneman 2003), framing (Levin, Schneider, and 

Gaeth 1998), decision heuristics, and biased information channels (Wilson and 

Dowlatabadi 2007). Salient to PV is the concept of ‘green consumers’ who prioritize the 

environmental impact of their consumption choices to maintain identities as ‘socially 

responsible’ consumers (Brekke, Kverndokk, and Nyborg 2003; Young et al. 2009; 

Nyborg, Howarth, and Brekke 2006). Such consumers are willing to pay a premium for 

electricity generated from renewable and efficient sources (Roe et al. 2001; Zarnikau 

2003; Hartmann and Apaolaza-Ibáñez 2012; Rowlands et al. 2002).  

Whether consumers employ utility-maximizing decisions or other factors to 

inform their energy consumption choices, research indicates that the presence and 

frequent use of feedback and electricity monitoring systems can effectively encourage 

consumers to conserve energy and load-shift (Becker 1978; Keirstead 2007; Van 

Houwelingen and Van Raaij 1989; Petersen et al. 2007; Abrahamse et al. 2005). Studies 

find that automated technology (e.g., programmable two-way thermostats) promote 

conservation and reduce the need for information collection efforts (Faruqui and Sergici 
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2010; Rocky Mountain Institute 2006; Violette, Erickson, and Klos 2007). Through load-

shifting, a demand-side management technique, consumers would ideally move energy 

consumption to times of day when electricity prices are low ⎯   typically nights and 

mornings ⎯  such that they save the most on their electricity bills (Denholm and Margolis 

2007). Load-shifting may be facilitated by dynamic pricing such as time-of-use (TOU) or 

critical peak pricing, which unlike flat rates, produces signals to encourage customers to 

conserve energy and or shift consumption to certain times of the day, though the 

magnitude of this shift differs across empirical studies (Orans et al. 2010; Matsukawa, 

Asano, and Kakimoto 2000; Bartusch et al. 2011; Torriti 2012; Newsham and Bowker 

2010). 

In this thesis I evaluate how PV adoption might catalyze behavioral change in the 

way PV adopters consume electricity, such as load-shifting or the ‘ripple effect’, whereby 

increased awareness of electricity consumption triggers additional electricity 

conservation (Henryson et al, 2000; van Houwelingen and van Raaij 1989). I use 

quantitative and qualitative data on PV adopters in the Texas residential sector to 

determine whether they exhibit significantly different post-adoption electricity 

consumption behavior. I utilize data on how consumer efforts to obtain knowledge on 

household electricity choices and habits, and the related information searching costs, 

affect the total amount and timing of electricity use. I compare post-adoption consumer 

behavior to pre-adoption patterns and investigate effects on the environmental benefits of 

their PV systems. Finally, given that the decision to install a solar PV system is a 
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financial investment for many households, I evaluate how the selection and availability of 

rate plans affect the value of the system. 

1.1 The Rebound Effect Literature Review 

A rebound effect following the installation of energy efficiency measures has 

been widely analyzed in the existing literature due to its effect on the environmental 

benefits associated with energy conservation; However, little research has been 

conducted on the effect of consumer behavior post PV-adoption. One of the most widely 

referenced papers on the energy efficiency rebound effect (Greening et al. 2000) surveys 

over 75 studies in the residential sector. Greening et al. reports potential rebound effects 

from these studies of 10-30% for space heating, 0-50% for space cooling and 5-12% for 

residential lighting. The wide range in the rebound effects is problematic and arises out of 

a lack of consistency in how the rebound effect is defined within these studies. Four types 

of rebound effects can be used to determine both microeconomic and macroeconomic 

effects: (1) direct rebound effects, (2) secondary fuel use effects, (3) economy-wide 

effects and (4) transformational effects (Greening et al. 2000). 

The direct rebound effect is a pure price effect. It assumes that when the price of a 

good or service declines, consumers will increase their demand for this good or service. 

Under this theory, when a consumer’s energy expenditures decrease, consumers are 

likely to increase their use of the same energy-consuming service. However, this theory 

ignores consumer utility of energy services where consumers may not demand more of 

the same energy service but rather prefer other, potentially energy-consuming, goods or 
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services – also called the secondary fuel use effects. This income effect can lead to 

economic growth due to the increased demand for other goods and services, producing 

economy-wide effects. One of the most recent studies on this matter (Thomas and 

Azevedo 2013) found that while the indirect rebound effect of a single household may be 

large, the economy-wide effects will be less significant as not all households are able or 

willing to make energy efficiency improvements. Finally, the transformational effects, 

most often ignored in the literature, occur when a consumer’s preferences change in 

response to technology shifts.  

While much of the literature suggests a positive rebound effect, a new study 

released by the Energy Institute at Haas, considers the possibility of a negative rebound 

effect. The magnitude of secondary rebound effects is based on the energy intensity of 

the goods bought with an additional dollar of income (Borenstein 2014). According to 

Borenstein, if the energy intensity of the substituted goods and services is lower than the 

current consumed goods and services, the rebound effect will be negative. Another 

example of a negative rebound effect occurs when the net savings of the energy 

efficiency measure is also negative. This occurs when the consumer, knowingly or 

unknowingly invests in energy efficiency retrofits that are not cost effective.  

One of the few studies that evaluated consumption behavior after the installation 

of solar PV focused on nine households in an urban community housing for low- and 

middle-income families (Bahaj and James 2007). This study found that when the 

electricity generation of a PV system was visible and the consumer was aware of the 
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association between the intensity of the system generation and their electricity use, this 

higher awareness resulted in more effective planning of daily energy use. All tenants of 

the housing development studied were given home PV user guides post-installation to 

enable them to take financial advantage. Monthly data on system performance was 

published on a web site to show users’ consumption and export to the grid, and meters 

showing cumulative generation totals were installed in each unit. The results showed 

wide variation in consumption and export levels between households; 8 households 

exported between 40 and 70 percent of generated electricity despite having some of the 

highest demand. Overall, they found an increase in consumption levels over a year (+3 

percent for 3 high-energy households and +34 percent for six lower-energy households) 

and considerable room for load shifting, as consumers’ peak usage occurred early and 

late in the day and did not correspond with peak generation. It appears that consumers 

adopted the rebound effect, using more high-energy electronic devices on constant power 

and switching to less efficient lighting. Consumers failed to efficiently match their loads 

to PV system generation. Bahaj and James suggest more sophisticated household systems 

for load management control that can enhance consumers’ load shifting to optimal 

generation times.  

 1.2 The Ripple Effect Literature Review 

In contrast to the rebound effect, the ripple effect	
  emerges when energy efficiency 

improvements trigger additional benefits such as increased conservation. While the 

rebound effect largely attributes increases in energy consumption to the income effect, 
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the literature credits the ripple effect to increased awareness of energy use. Several 

factors have exhibited the potential to reduce residential energy consumption. Metering 

and tariff arrangements for residential generation offer different incentives for consumers 

to alter energy consumption (Keirstead 2007). Monitoring systems and on-grid vs. off-

grid systems also influence consumption behavior. Keirstead’s study on 118 households, 

which comprised of a questionnaire with a 77 percent response rate and 63 follow-up 

interviews found a ripple effect among respondents, with a reported reduction in 

electricity use of roughly 6 percent from pre-installation levels. Respondents were more 

aware of their usage and showed preference for efficient lighting. The presence of 

monitoring devices in the home (61 percent of devices were in a visible area and a 

majority of respondents checked at least daily) had an effect on the timing of 

consumption as respondents reported that they shifted use to more closely reflect PV 

generation (43 percent reported load shifting).  

In their study of increasing consumer awareness of energy use trends and 

behavioral impact, Ueno et al. (2006) provided consumers with information on energy 

use from various appliances. They monitored usage in 19 households (all occupied by 

married couples with 1-3 children), measuring end-use electric power and room 

temperature at 30-minute intervals. They developed an online energy information system 

and implemented information terminals in 10 of the 19 monitored households to provide 

feedback directly to consumers, and to offer an estimate of financial expenditures for the 

equivalent energy use. Tips on energy savings were included, to which households could 
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respond by clicking a button. Responses were high initially, subsequently declined but 

then rose again about 8 months later. Consumers took particular interest in usage graphs 

comparing their patterns to other households, as it induced their “competitive spirit”. 

Feedback on electricity consumption, but not total house-wide energy, was displayed to 

consumers. Energy use was reduced by 12 percent across the 10 households that had an 

information system, with power consumption throughout the entire house decreasing by 

17.8 percent for these same households. Energy expenditure in major appliances 

(especially space heating) decreased in the feedback group as well. Ueno et al. concluded 

that increased awareness of consumption habits spurred users to make lifestyle changes.  

A similar study implemented feedback mechanisms by way of a small LCD 

screen in twenty Danish households to inform consumers of their electricity usage in real 

time to determine what effects, if any, this new development had (Grønhøj and 

Thøgersen 2011). The LCD setups also gave current on/off status of various appliances 

and historic consumption data for the household. Grønhøj and Thøgersen monitored 

behavior for five months and found that households who took part in the study achieved a 

reduction of 8.1 percent in their usage. This was compared to a control group (163 

households) that did not receive similar feedback, who saved only 0.8 percent, 

presumably because they were not as highly aware of their consumption levels and 

patterns and thus did not find reason to reevaluate their energy-consuming activities. The 

participant households were each comprehensively interviewed at the end of the study to 

gauge their true understanding of the feedback system and its impact on perceptions of 
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energy use. While participants were generally predisposed to conserving electricity 

beforehand, the authors argue that detailed feedback allows consumers to actually 

determine the most effective ways to save electricity. The importance of 

consumption/generation monitoring and feedback has thus been a major factor in studies 

of energy use behavior and is cause for further investigation. They further differentiate 

between direct (real-time) feedback effects, such as via smart meter, and indirect (time-

delayed) feedback, such as information on monthly electricity bills. Direct feedback 

creates a “better connection between behavior an effect”, thus stimulating people to alter 

their behavior as they see the energy savings add up in real time (Grønhøj and Thøgersen 

2011).  

1.3 Rate Structure and PV Value 

The rebound effect theory is underpinned by the savings achieved through the 

introduction of new technologies. Thus, the size of the rebound effect is directly related 

to the level of additional income attained. The financial attractiveness of an investment in 

solar PV is an important consideration for many would-be solar adopters. An electronic 

survey (the “Solar PV Survey”) conducted during August-November 2011 in Texas, 

sought to understand the reasons and experiences of PV adopters in selecting and 

installing a residential solar PV system (Rai and McAndrews 2012).  Respondents were 

asked the importance of five factors in their decision to install PV: (1) General interest in 

energy and electricity generation, (2) evaluation that solar PV is a good financial 

investment, (3) reducing impact on the environment by using a renewable energy source; 
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(4) influence of others in the neighborhood with PV systems; and (5) influence of a close 

acquaintance not from the neighborhood. Respondents found the first three of the five 

factors equally important. 

Consumer investment decisions involve the consideration of the costs and benefits 

of solar PV ownership. Consumers use several tools to analyze the financial 

attractiveness of a solar PV system such as a payback period, a net present value 

calculation or an internal rate of return. The Solar PV Survey found that 87 percent of 

respondents used a payback period calculation, 36 percent used an internal rate of return 

and nearly 12 percent used a net present value calculation to analyze the financial 

attractiveness of a solar PV system (Rai and McAndrews 2012).  

Rate design is fundamental to the economics of commercial and residential solar 

PV and can alter the economic value of solar PV by 25 percent to 75 percent, depending 

on the size of the system relative to building load (Wiser et al. 2007). Differences in rates 

ultimately reflect differences in the revenue requirements of the various utilities, the size 

of the PV system relative to building load, and customer load shapes.  

Intertemporal variation in PV generation and the consumer consumption patterns 

create opportunities for value creation apart from traditional rate structures. For example, 

Wiser et al. (2007) found time-of-use (TOU) based energy charges with a large price 

spread between peak and off-peak prices offered as much as a 20 percent greater energy 

charge savings compared to seasonal or flat energy charges. While TOU and other novel 
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rate structures can create additional value, their complexity creates consumer uncertainty 

as to which plan is optimal for their consumption patterns. Indeed, some in the utility 

industry have argued that the TOU (and other plans) have discouraged PV adoption 

because of this uncertainty (Borenstein 2007).  

Consumers face risk and uncertainty in their investment decision regarding: (1) 

interannual solar variability and weather trends; (2) PV technical performance and 

maintenance costs; and (3) market uncertainty including future electricity rate escalations 

and net-metering policies (Drury, et al. 2014). Calculations of the financial return of solar 

PV will depend very much on how retail rates will change over the system’s lifetime (20-

30 years), a very difficult path to predict (Borenstein 2007). Drury et al. found that risk 

and uncertainty differs by region. For example, market factors have a higher impact in 

California and Massachusetts while the PV technical performance risk is higher in 

Missouri and Florida.  

1.3.1 TIME OF USE RATE STRUCTURE 

Time-of-use rate can provide substantial value to many PV customers as these 

structures levy high tariffs during ‘peak’ periods of grid use (when production from PV 

arrays is highest) and compensating lower tariffs during ‘off-peak’ periods, when 

production is lowest (Wiser et al. 2007). Assuming these structures exclude demand-

based charges, a TOU generally provides the greatest value to PV users across a wide 
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variety of circumstances. Therefore, expanding the availability of such rates would 

increase the value of many PV systems. 

Borenstein (2007) examined data from 274 residential PV customers in California 

to determine the financial attractiveness of then-mandated time-of-use (TOU) rate 

structures as compared to standard rate plans. Among PG&E customers, whose structure 

is non-tiered, he does indeed find that a large majority would be better off on a TOU 

plan. However, the picture is inverted for Southern California Edison where standard 

non-PV plans are tiered, but TOU plans are not. That is, even though solar PV production 

is greatest during TOU peak periods, many SCE customers’ value from the system is 

maximized on a flat-rate tariff. Overall, his results suggest that a TOU mandate is 

unlikely to be a significant cause of declining demand for solar PV installations.  

1.3.2 NET ENERGY METERING  

Important factors in the solar value proposition are the policies regulating credits 

for any moment-to-moment excesses of PV generation over consumption exported to the 

grid as “outflows”. These policies vary widely based on local regulations. For example, 

in California PV owners benefit from net energy metering (NEM) policies which credit 

outflows at the retail rate. Conversely, the Public Utility Commission of Texas does not 

regulate credits for these ‘outflows’ (PUCT 2012). Texas retail electric providers’ current 

practice is to credit outflows at a rate below the marginal price of electricity. An 

emerging alternative to NEM is the Value of Solar Tariff (VOST), which is designed to 
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pay residential solar generation based on a more nuanced benefit-cost analysis to 

determine the actual value of residential solar to utility operations. Unlike NEM, VOST-

compensated solar generation is not counted against consumption. Rather, generation and 

consumption are treated as two separate functions. 

Wiser et al. (2010) found that eliminating NEM altogether could result in more 

than a 25 percent loss in the rate-reduction value of commercial PV for commercial 

systems that serve a large percentage of building load. In contrast, elimination of NEM 

rarely results in a financial loss of greater than 5 percent of the rate-reduction value of PV 

when annual solar output is less than 25 percent of customer load-- and excess PV 

production can be sold to the local utility at a rate above $0.05/kWh.  

A study that analyzed the bill savings for 215 residential PV customers of 

California’s two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern 

California Edison (SCE) in order to understand the influence that net metering policies 

and rates had on PV value (Darghouth et al. 2010).  Not surprisingly, bill savings under 

NEM were significantly greater for high-usage customers than for those with low levels 

of use. In total, the median bill savings per kWh of PV generation ranged from $0.19-

$0.25/kWh. Furthermore, bill savings declined with PV system size—since at larger 

capacities the customer faces a progressively lower marginal price for its net 

consumption when moving along tiers. Additional value for residential consumers can 

also be created when NEM is combined with TOU rates, especially as the size of the PV 

system increases (Darghouth et al. 2010).  
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The continued existence of NEM policies is threatened by calls for repeal by 

utilities across the U.S. Residential solar PV precipitates reduced customer demand for 

energy from a utility and, consequently, lower revenues. In response to the difficulties 

posed by NEM-backed solar PV to utility revenues, efforts to reduce or eliminate NEM 

have been or are currently underway in Colorado, Virginia, California, Texas, Arizona, 

Louisiana and Idaho, among others (Cardwell, 2013; Copley, 2013; Tracy, 2013). 

Minnesota is the first state to issue a statute requiring the department of commerce to 

develop a methodology for valuing solar electricity generation (Minnesota 2014). 

Minnesota utilities will have an opportunity to use this methodology in lieu of net energy 

metering. According to a proceeding filed before the Minnesota Public Utilities 

Commission, “the methodology values distributed solar PV by considering each utility’s 

solar PV fleet in the aggregate; determining the fleet’s value to the utility, customers, and 

society; and establishing a bill credit for solar PV customers based on that value. A Value 

of Solar tariff, if approved, would apply to future solar PV interconnections.”  The 

elimination or down phasing of NEM policies will have a material effect on the economic 

value of solar PV systems. 

1.4 Rate Structure and Consumer Behavior 

Households in competitive markets such as Texas have a choice in their energy 

service provider and rate plan. Sub-optimal rate selection by customers generally leads to 

a reduction in bill savings of less than 10 percent, but can have a much greater impact for 

some customers at a low PV-to-load ratio (Darghouth et al 2010). Despite this loss, 
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several reasons exist why a consumer may elect for a sub-optimal plan. First, electricity 

comprises only 4 percent of the average household expenditure (EIA 2013). Consumers 

may actively search for an electricity provider only when they move to a new residence 

(Watson et al. 2011). Therefore, unless consumers have a strong motivation to seek new 

suppliers, it is unlikely that they will actively search for information and thus will remain 

loyal to their existing supplier. Second, consumers may use a satisficing heuristic, rather 

than a profit maximizing objective. In other words, they only seek information if 

unsatisfied-- even if there is a possibility that there may be an alternative that would 

derive them greater utility. Complacency may also be a reaction to information overload 

when a large number of options for suppliers and rates exist (Watson et al. 2011). 

Pollitt and Shaorshadze (2011) have explored this issue from a behavioral 

economics perspective. They highlight several factors that influence rate structure 

selection. The endowment effect means that consumers are insulated from variable rates 

during the day; furthermore, individuals are attached to their routines and daily habits and 

may be inflexible to modify them, or demand high compensation to do so. Status‐quo 

bias means that consumers prefer to retain the same rate structure over time, even when 

savings are available through switching. Under time-varying discount rates, new 

structures could create initial “rate shock”, whereby bills dramatically increase in the near 

term before behavioral adjustments kick in that reduce consumption (either overall or 

from the grid). Because individuals tend to have higher discount rates, they might 

undervalue the benefits, especially if the savings are initially small or there is no change. 
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1.5 Load-Shifting 

Load-shifting is a demand-side management technique use by consumers to 

transfer energy consumption to times of day when electricity prices are low to reduce 

energy costs (Denholm and Margolis 2007). The cost effectiveness of load-shifting is 

dependent on site-specific characteristics such as location, installation costs and 

performance (Sreedharan et al. 2012). Targeted approaches to demand response design 

and implementation are a necessity. As applied to solar PV users, this would mean that 

consumers should be encouraged to shift their highest demand to midday hours, when PV 

arrays will be generating at their peak rate. This can lead to decreased use of power from 

the grid and further cost savings as well. 

In their investigation of load shifting under certain pricing schema, Spees and 

Lave (2008) incorporated real data from Pennsylvania, Maryland, and New Jersey to 

ascertain consumer and producer savings from both real-time pricing and time-of-use rate 

structures based on load-shifting behavior. They discovered that peak savings were 7 

times larger under real-time pricing and that half of all customer savings from load 

shifting were obtained by shifting just 1.7 percent of all MWh electricity used to another 

time of day. Larger customers with greater demands need to be responsive and shift a 

sizable amount of their energy use to get most of the short-run savings. 

Individuals have a tendency to underestimate energy consumption caused by 

various activities, especially when approximating the expenditure level for high-energy 

products and activities (Attari et al. 2010). There is a related tendency to overestimate the 
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amount of energy saved by cutting back on low-intensity activities, so consumer self-

reporting of consumption behavior may not accurate. Furthermore, consumers choose to 

change behavior in relation to the less intensive options, not realizing the increased 

impact they could make by focusing on other high-intensity activities. Consumers also 

tend to favor abatement options over energy efficiency options (i.e., using less electricity 

in general rather than taking proactive effort to install more efficient appliances and 

redesigning their homes to use less energy). Their results suggest that programs intended 

to improve consumers’ understanding of actual impacts of various activities on energy 

use could pay large dividends (Attari et al. 2010). 
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2. DATA AND METHODOLOGY 

I use three intersecting data sets that form a comprehensive picture of consumer 

behavior after adopting PV (fig 1). The primary data set uses electricity consumption 

profiles for residential households in the Austin, Texas metro area to analyze actual 

consumption patterns. I supplement this data with results from a Solar PV survey 

completed by 858 residential PV adopters in Texas in 2011-2012 (Rai and McAndrews 

2012) and 21 follow-up interviews to reveal behavioral effects. While there is 

coincidence of respondents within each data set, each set is intended to sample from the 

broader population of residential PV adopters in Texas. 

  

Figure 1: Description of data sets 
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2.1 Consumption Profiles 

2.1.1 ELECTRICITY CONSUMPTION DATA 

Consumption profiles were obtained for 245 households in the Austin, Texas 

metro area and are organized into two electricity-consumption time-series data. Of the 

245 profiles, 22 profiles were excluded because of insufficient or irregular data. 

Consequently, only 223 profiles are utilized. The first time series (“dataset 1”  or “DS1”) 

records minute-resolved household patterns of electricity use for the households post PV-

adoption from January 2011 to June 2013. This includes total levels of consumption and 

grid inflows (in kWh) as well as PV system generation levels. Profiles vary in length, 

with a mean length of 16.9 months and interquartile range of 8.1 – 21.0 months, 

reflecting new PV adopters over the period studied. As described below, I was able to 

accurately control for the difference in data lengths in this dataset. The second time series 

(“dataset 2”  or “DS2”) records electrical consumption for a sub-set of the same 

households for the 12 months prior to PV adoption. Pre-adoption data is only available 

for 84 households. For this sub-set, I use observed month-resolved consumption patterns 

for a year prior to PV adoption and the minute-resolved consumption patterns for 6 – 31 

months after adoption as contained in DS1. 

2.1.2 DESCRIPTIVE SYSTEM DETAILS AND DEMOGRAPHICS 

The 223 households in the analysis are typically more affluent than the average 

Austin metro household. The median home value for the data set as of January 2014 is 

$418,159 compared to $224,000 for all Austin homes (Zillow 2014).  The average home 
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square footage is 2,313 with an average home age of 13 years and median of 5 years. The 

average system size is 5.64 kW. Additional demographic data on the households could 

not be obtained for this dataset; however, the Solar PV Survey, which collected 

information on households in the Austin and Dallas area provide insight on the 

characteristics of households in DS1. In the Solar PV Survey, the mean size of the PV 

systems installed by the respondents is 5.85 kW. The median household income in 2011 

is between $85,000 and $115,000 compared to the median household income in 2012 in 

Texas of $51,563. The average home value is $410,287 and the median home value is 

$318,000. Respondents of the Solar PV Survey are also more highly educated and older 

than the average Texas resident. Over 80 percent of PV adopters have a bachelor’s degree 

or higher, compared to just 25.4 percent reported in the 2010 Census report. The mean 

age of all respondents is 52 years. 

2.1.3 DATA PROCESSING 

This analysis uses MATLAB to process the consumption profiles, aggregate the 

data and conduct statistical analysis. Consumption profiles were collected for the 245 

households in DS1 in fifteen minute-resolved values from the first date of available data 

for each profile through June 30, 2013. Consumption profile data was processed to 

correct for some known errors in the data logging process. These can include 

unreasonably large ‘spikes’ in consumption (>100 kWh in a 15-minute period), periods 

of inactivity in the profile, and negative or near-zero consumption. Inactivity can occur 

when the monitoring system is turned off or network connectivity is not available to 
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transmit data to the web-based electric energy and power data aggregation device used 

for logging the data. To correct these errors I exclude any outlier data points (>3σ from 

mean) from each profile, and also exclude the profile entirely if more than 5% of the 

profile length is inactive. Consequently, 22 of the 245 profiles were excluded from the 

analysis following the data processing. Finally, profiles were aggregated from minute-to-

minute to hourly periods of analysis and cropped to include only whole months of 

analysis. Profiles with less than one full month of consumption data were also excluded. 

2.1.4 CONSUMPTION PATTERNS ANALYSIS 

I compare PV-adopter consumption patterns to those of non-PV adopting 

households by generating back-casted profiles. Back-casted profiles were obtained from 

the ERCOT website for each year. I use a load profile for the average consumption of 

electricity by single-unit residences within the south-central region of the ERCOT grid 

from January 2011- June 2013 (ERCOT 2013). Back-casted load profiles are available on 

a quarterly basis and, therefore, June 2013 was most current profile at the time of this 

analysis. Since the ERCOT and PV adopters’ profiles are similarly time-stamped, this 

allows control for annual and seasonal variations in grid-wide electricity use and to 

compare historic patterns of consumption along hourly and seasonal factors. The strategy 

here is two-fold: first, a “within” analysis to compare changes in gross household energy 

consumption pre and post PV-adoption; second, to determine if, post PV-adoption, 

adopters’ hourly and seasonal consumption patterns differ significantly from non-

adopters’. 
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 2.1.4.1 Pre/Post-Adoption Within Analysis 

To compare changes in total household consumption pre and post adoption for 

each adopting household separately, let 𝑐!"# be the gross household consumption for a 

given household occurring in hour i, day in month j (1-31), and month of year k. Then  

	
   𝑐! =    𝑐!"#! ,! 	
   (1)	
  

 

where 𝑐! is the gross electricity consumed for that household in month k. Let 𝑒! be the 

gross electricity consumed in the ERCOT back-casted profile for that same month k. For 

each adopting household, the mean percentage difference (𝑝!) between 𝑐! and 𝑒!   is 

determined for month k: 

 𝑝! =     
!!!!!
!!

  . (2) 

Next, sets pre and post are defined as the sets of months k (unique to each 

adopter) occurring prior and post-system adoption, respectively. Last, the median of 

𝑝!"#and 𝑝!"#$ are calculated, where 𝑝!"#,!and 𝑝!"#$,!  are the medians of 𝑝!"#and 𝑝!"#$ 

for the specific adopter m. That is, 𝑝!"#,! represents the median percentage difference in 

gross monthly consumption of the adopting consumer m prior to adoption and the 

average consumption of ERCOT households in the same months and geographic area. 

Therefore, ∆ (𝑝!"#$ − 𝑝!"#), the difference of 𝑝!"#and 𝑝!"#$ ,  represents the change in 

gross monthly consumption after system adoption after controlling for seasonal factors. I 
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determine ∆ for each consumer in the study (DS2, the 84 PV adopters that allow these 

metrics to be computed), the distribution of ∆, and its summary statistics. 

2.1.4.2 Hourly/Seasonal Variation 

Next, I determine seasonal and hourly variations between the adopter and the 

average ERCOT consumption profiles, but only using the post-adoption data (the 

monthly granularity in the pre-adoption data limits this analysis only to the post-adoption 

period). Because there are many factors that can produce seasonal and hourly variation 

such as the building envelope and incentives that reward consumers for load-shifting, this 

analysis alone cannot explain post-adoption behavior and must be combined with 

qualitative information provided in the Solar PV Survey and interviews. First, the 

difference of an individual adopter and average ERCOT consumption occurring in the 

same time periods is determined: 

 𝑑!"#
! =    𝑐!"#! − 𝑒!"#. (3) 

For hourly pattern analysis I calculate both the mean and median of the set of 

𝑑!"#, where i = 1,2,...,24. That is, 𝑑!
! is the set of all differences in consumption for the 

adopter and equivalent ERCOT consumption occurring in hour i, and 𝑑!
! is the mean or 

median of the set of 𝑑! differences. Finally, 𝑑! is determined for each consumer in the 

study (in DS1) and the distribution of 𝑑! and its summary statistics are determined. 
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For monthly pattern analysis the process is similar, whereby the difference 

(𝑑!)  between the adopter’s consumption in month k (𝑐!)  and the equivalent ERCOT 

consumption in the same month 𝑒!   is determined for all months; then the mean (𝑑!)  or 

median (𝑑!) is taken of all monthly consumption differences. Lastly the distribution of 

𝑑! and 𝑑!   for  all  consumers  and  its  summary statistics are determined. In contrast to the 

hourly pattern analysis, I use monthly consumption from October 2011 through June 

2013 for this analysis due to the small number of profiles with consumption data for the 9 

months prior. Furthermore, to ensure that the seasonal analysis largely includes the same 

households, I include only profiles with an inception date of at least June 2011.  

2.2 Solar PV Survey 

To bring additional contextual data to bear upon the analysis, I use specific 

portions of the Solar PV Survey (see the opening paragraph of Section 2) ⎯   namely, 

reported changes in awareness of electricity consumption, total amount of consumption, 

and frequency and timing of energy-intensive activities post-adoption. I also use survey 

data relating to adopters’ use of information that enable post-adoption 

monitoring/evaluation of PV system value, such as the prevalence and use of 

consumption-monitoring devices, and home upgrades made concurrently with system 

installation. 
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2.3 Structured Interviews 

Follow-up interviews were held with 21 households who completed the Solar PV 

Survey to elaborate on issues not easily captured within the survey format. Each 

interviewee took part in either the 2011 or 2012 Solar PV Survey, in which they answered 

a range of questions on the motivation for installing PV and electricity consumption 

habits. However, the survey questions that specifically asked about consumption habits 

post-installation were limited in scope, and allowed little opportunity for participants to 

elaborate on their overall approach to electricity use. To cover that gap to some extent, 

the interview topics included: (i) respondents’ motivations for adopting PV; (ii) their 

research (info search) on rate structures available post-adoption, and rebates/subsidies 

available for a system installation; (iii) methods used to monitor their PV system 

generation and electricity consumption trends; and (iv) an explanation of  time-of-day or 

seasonal electricity consumption patterns post-adoption.  

2.3.1 INTERVIEW DESIGN 

The goal was to speak with a small subset of the Solar PV Survey participants, 

from which I had contact information for 181 households located in the Dallas-Fort 

Worth and Austin metro areas. These households specifically consented within the survey 

form to be contacted for additional information. Twelve Round Rock, Texas area 

residents were contacted via email to inquire interest in participating in a telephone 

interview. Eleven responded and agreed to participate in the interview. Furthermore, 20 
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Austin area households were contacted from the Solar PV Survey list by email and 10 

interviews were completed.  

2.3.2 GOALS AND HYPOTHESES 

By interviewing Austin and Round Rock consumers, a comparison of 

consumption and information searching behavior could be made between a deregulated 

market and a regulated market. The city of Austin is served by Austin Energy, a 

municipal utility that is the sole electric provider for households within its service 

territory. Conversely, Round Rock is in a competitive deregulated market where 

consumers can choose their retail electric provider (REP). REPs such as TXU, Green 

Mountain and Reliant each offer different rate plans for PV generation. By comparing the 

responses between consumers in a regulated and deregulated market, I could make 

inferences about how the choice of provider affects the information searching process and 

how different rate plan structures might influence consumption behavior. Given the 

deregulated nature of the market, I hypothesized that Round Rock consumers spend 

considerably more time researching rates and providers and would be more aware of their 

ideal rate plan than those in Austin, who presumably have no incentive to investigate 

different plans to see which one best fits their electric needs. 

Although households residing within Austin Energy’s service territory have no 

choice in electric provider, the utility’s recent adoption of a value of solar tariff (VOST) 

in place of net energy metering would provide insightful information on its potential 
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influence on the rebound/ripple effect given its generous rate. Beginning October 2012, 

Austin Energy offered 12.8 cents per kWh to its solar PV customers, higher than its top 

residential tier rate (Clean Power Research, 2013). (In comparison, as of September 2013 

Austin Energy charged a maximum of 9.6 cents per kWh during the non-summer months, 

and 11.4 cents per kWh during the summer months.) However, the solar credit may be 

adjusted annually as utility costs fluctuate. For example, the re-evaluated VOST for 

Austin Energy in 2014 has been set at 10.7 cents per kWh (Clean Power Research, 2013) 

and took effect in January 2014. One interview question focused on whether this change 

encouraged a change in consumption behavior.  

All interviews followed a prescribed list of questions with accompanying audio 

recording. Interviewees were purposefully chosen to provide perspectives on access to 

both a competitive retail electricity market (11 from Austin/Round Rock, TX  and Dallas-

Fort Worth metro areas) and a regulated non-competitive retail market (10 from Austin 

Energy territory). Each interview was 15-20 minutes long. Some participants provided 

documentation of their electricity usage over time, and a majority claimed to keep 

spreadsheets based on monthly bills detailing their post-installation consumption. 

Interviews covered five topics: (i) changes in household electricity consumption 

after installing PV; (ii) monitoring and feedback mechanisms consumers use to track their 

electricity usage and generation; (iii) energy efficiency or additional investments 

consumers made to reduce their overall consumption; (iv) effect of living in retail choice 

areas on consumer’s awareness of energy issues; and (v) information-searching for a rate 
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plan and/or a retail electricity provider (REP) that would be better suited to meet the 

interviewee's needs post PV-adoption (refer to the Appendix for the list of questions). 

Responses were coded as affirmative/non-affirmative statements based on twenty specific 

research questions; this allows determining the percentage of sample expressing each 

opinion. For questions that could not easily be coded as a binary response, such as 

monitoring mechanisms, clusters of responses within the sample were determined, and 

then individual responses were coded categorically based on these clusters.  
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3. RESULTS OF CONSUMPTION PATTERN ANALYSIS 

As noted before, existing literature suggests that the purchase of energy-saving 

technologies, PV included, could trigger behavioral shifts among consumers such as 

changes in overall electricity consumption and load-shifting to times of peak PV 

generation (Keirstead 2007; Bahaj and James 2007; Ueno et al. 2006; Grønhøj and 

Thøgersen 2011). While on aggregate, the results do not support these hypotheses, at the 

individual level there appears to be some level of ripple and rebound effect (see fig 2). In 

addition, PV adoption appears to have triggered increases in awareness of electricity use 

and relatively low levels of shifting of hourly patterns of consumption. However, there is 

some evidence of additional behavioral changes to support the "ripple effect" hypothesis: 

while in the survey and interviews the vast majority of adopters reported either decreases 

or no change in household electricity consumption post-adoption, examination of actual 

consumption records shows that PV adopters, on the aggregate, do not significantly 

change the gross amount of electricity consumed. However, on the individual level, I 

estimate both increases and decreases in net consumption after PV adoption (see section 

3.1.1) .  
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3.1 Post-Adoption Behavior 

3.1.1 CHANGES IN NET CONSUMPTION 

Gross levels of household electricity consumption1 are compared before and after 

PV adoption. By referencing pre and post-consumption levels to the ERCOT profile, 

annual variances such as weather differences, improving economic outlook, as well as 

seasonal variances are controlled for (see Section 2.1.2.2). Using this method, the 

aggregate household mean consumption for the 84 profiles in DS2 increases by just 1.0% 

and median consumption by 1.9% (fig 2). However, the change in means at the aggregate 

level is insignificant using a paired Student’s t-test (p = 0.6793). 

 

 

Figure 2: Comparison of changes in monthly electricity consumption post-PV adoption 

                                                
1 Total consumption refers to all electricity consumed by the household. This is not net consumption, as I include 
electricity the household consumes that is generated by the PV system. 
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In general, the quantitative findings are consistent with the interview results, 

where I find little evidence of changes to total electricity consumption at the aggregate 

level. However, approximately 20 percent of the sample has decreased consumption by 

10 percent or more while approximately 32 percent of the sample has increased 

consumption by 10 percent or more. Although the analysis appears to support both a 

rebound and ripple effect for some portion of the sample, I cannot directly attribute the 

observed increases and decreases to a behavioral change. The dataset does not provide 

characteristics of the household that would allow me to eliminate the possibility of 

exogenous factors such as changes in household size, the purchase and at-home charging 

of an electric vehicle or the installation of other energy efficient equipment or upgrades.  

Given the minimal overlap between the households in the Solar PV Survey and DS2 (only 

23 profiles could be matched to a survey response), it is not possible to isolate external 

causes for the perceived changes in post-PV adoption consumption. 

These results, however, are inconsistent with changes in overall consumption self-

reported in the Solar PV Survey, in which a large portion of the respondents (48 percent) 

reported a ‘much lower’ or ‘lower’ change in the total amount of electricity used after PV 

adoption (table 2). Further, in both the survey and interview datasets, respondents 

underreport actual increases in post-adoption consumption when ‘more consumption’ is 

defined as an increase of 10 percent or more in mean monthly consumption.  

The findings at the individual level appear to support, in part, prior studies which 

report significant changes in consumption behavior in response to increased energy use 
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awareness. One study (Ueno et al. 2006) found that the use of a monitoring device 

triggered energy conservation behavior over a 9-month period while a second study 

(Bahaj and James 2007) found that the most high-energy users reduced energy 

consumption following an educational discussion; however, in this study, reductions in 

energy use were not sustained.   

 Solar PV Survey 

n = 717 

Interviews 

n = 21 

Consumption Profiles 

n = 84 
‘Much Lower’ or 

‘Lower 
48.0% 10% 

20.00% decrease 

consumption by 10% 

or less ‘No Change’ 47.4% 76% 54.12% no change 

‘More’ or ‘Much 

More’ 

4.6% 14% 31.76% increase 

consumption by 10% 

or more 
Table 1: Comparison of reported changes in monthly electricity consumption with actual consumption 

changes 

For those interviewed, exogenous factors, rather than behavioral shifts, explain 

the majority of consumption changes. For example, purchase of electric vehicles charged 

at home or installation of energy efficient equipment or home upgrades often coincided 

with PV adoption. I learned from the interviews that PV adoption arose from 

environmental attitudes among interviewees that motivated increases in energy 

efficiency. As such, for most interviewees, PV installation was one of several actions 

taken toward reducing their environmental footprint. Thus, adopting a PV system does 

not prompt adopters to implement further energy efficiency measures post adoption. 
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Austin Energy, the only available electric utility for the majority of households in the 

dataset due to a lack of retail choice, requires homeowners to complete a series of energy 

efficiency home improvements for homes older than 10 years of age in order to qualify 

for solar PV incentives (Austin Energy 2014). Therefore, most homes in the dataset are 

more energy efficient than the average home in the Austin metro area.  

3.1.2 NET CONSUMPTION COMPARISON TO AVERAGE HOUSEHOLD 

While in the aggregate PV adopters do slightly (and statistically insignificantly) 

increase their monthly consumption post-adoption, they still use significantly less 

electricity (mean: -4.7%, median: -13.4%) than the average central Texas household 

(figure 3). The method for this comparison uses equations 1 and 2 and the approach is 

similar to the pre and post comparison made in Section 3.1.1 (figure 2), which controls 

for weather and other time-based effects and thereby isolates differences in overall levels 

and patterns of consumption between the PV adopter and the average Texas household. 

Note, however, that this calculation is based on only post-adoption data and uses all 

records available (n=223, DS2), unlike the analysis shown in figure 2, which only 

includes consumption profiles where both pre and post adoption records are available 

(n=84).  
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Figure 3: Comparison of net monthly consumption compared to ERCOT 

As the distribution of net consumption differences changes is non-normal, a 

Wilcoxon signed-ranks test is used to determine if the median of the sample is 

significantly greater than zero (Z = -4.76, p < 0.001), which it is. This confirms responses 

from the survey and interviews that PV adopters already had taken several steps to reduce 

their household’s electricity consumption prior to adopting PV whether through energy 

efficiency upgrades to satisfy Austin Energy requirements or as part of a campaign to 

reduce household electricity use. 

The following figures display the net consumption relative to ERCOT by home 

characteristics such as square footage, home value and home age. Using the same 

methodology as in figure 3, figures 4 and 5 plot each household. First, I compare 

consumption against home square footage. Larger homes require greater amounts of 

energy for cooling and heating and thus would be expected to consume more energy than 

Mean: -4.66 
Median: -13.38 
Std. Deviation: 42.34% 
N = 223 
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the average home; however there appears to be a weak correlation between the size of the 

home and the amount of energy consumed by the household relative to the average home. 

This may be due to the differing levels of energy efficiency upgrades undertaken by each 

household.  

 

Figure 4: Comparison of net monthly consumption compared to ERCOT by square footage. 

 

Figure 5: Comparison of net monthly consumption compared to ERCOT by home market value. 
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3.1.3 CHANGES IN AWARENESS AND TIMING OF ENERGY-INTENSIVE ACTIVITIES 

Respondents (n=624) in the Solar PV Survey experienced a strong increase in 

their awareness of the amount of electricity they use, their monthly bill, and how they use 

electricity at home (64.4 percent, 62.4 percent, and 71.8 percent ‘higher’ or ‘much 

higher’ awareness, respectively) as a result of adopting PV. I assume that households in 

the consumption profile dataset (DS1 and DS2) are similarly aware. However, based on 

the survey results, increases in awareness do not appear to produce behavioral changes as 

defined by the timing and quantity of energy-intensive activities. A large majority (76.5 

percent) of surveyed consumers reported not changing the frequency or quantity of 

electricity-consuming activities, whereas 18.2 percent reported a ‘small’ or ‘large’ 

decrease, and 5.3 percent reported a ‘small’ or ‘large’ increase in these activities. 

However, there is little incentive for customers within the Austin Energy service territory 

to shift load to other times of the day, as the residential rate structure does not reward the 

shifting of activity to off-peak hours. 

The structured interviews provide detail on specific behavioral changes. Although 

48 percent (n=10) of interview respondents listed the air conditioner as their highest-

consuming appliance, they did not report changing its use. Pool owners changed their 

pool pumps more often than other appliances. Some consumers reported changes in the 

timing of laundry loads, and vehicle charging for those who own an electric vehicle.  
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I note that, although large increases in awareness are reported, interviews and 

other survey responses suggested that these households were already energy-conscious 

prior to PV adoption, which could limit the additional benefits of increased awareness. 

3.1.4 SEASONAL CONSUMPTION PATTERNS 

Seasonal patterns already exist in household consumption of electricity, resulting 

mainly from weather, but variation in system production and in prices of electricity could 

accentuate seasonal variations for PV adopters. The results suggest seasonal variation in 

adopters’ consumption, as there is a consistent inter-monthly pattern of differences 

between the average ERCOT profile and the median adopter’s consumption (figure 6). 

That is, while on the average, adopters do consume less electricity than the average 

ERCOT household, they consume relatively more than the sample average across all 

months from November 2011 to January 2012 and, critically, relatively less during the 

summer months of May 2012 to September 2012 and May 2013 to June 2013 (11.2 

percent). I determine these differences by taking the percentage difference between 

adopter and ERCOT consumption as detailed earlier. Because of data limitations I am 

unable to exactly determine if such differences in seasonal patterns of consumption 

existed prior to system adoption or, in fact, are triggered by technology adoption. 

However, given that I noted above that PV adoption does not appear to trigger significant 

consumption pattern changes and that energy efficiency measures were completed (or 

already in place) for nearly all of the PV-adopting homes, it is likely that these seasonal 
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differences are a reflection of the pre-existing building characteristics. This is explained 

further next. 

I determine that the seasonal variation is likely due to the high energy efficient 

nature of the homes in the dataset. As previously noted, Austin Energy requires homes 

under 10 years old to comply with energy efficiency standards in order to qualify for a 

rebate. Furthermore, the age of the homes in the dataset (average of 13 years) is 

considerably less than the average home in the Austin metro area (29 years). Older homes 

tend to be less energy efficient than newer homes, particularly during the summer months 

due to leakage from air conditioning systems (Rhodes et al. 2011). The amount of energy 

consumption savings from energy efficiency measures is significant. A study by the 

National Renewable Energy Laboratory and a study conducted by GDS Associates on 

behalf of Austin Energy found that energy savings resulting from energy efficiency 

measures can result in summertime energy consumption savings of between 27.6 percent 

and 29.2 percent (Belzer et al 2007; GDS Associates 2012), which is consistent with our 

results. For example, from June through August 2012, the median household 

consumption for the dataset is between 22 percent and 23 percent less than the average 

household in the ERCOT profile. In May 2013 and June 2013, the median household 

consumption is between 19 percent and 25 percent, respectively, less than the average 

household. 

Nevertheless, below average consumption during the summer months has 

significant environmental benefits in the form of peak load reduction. In Texas, 
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electricity demand is at its highest during the months of June through September and can 

be substantially higher than the shoulder months. In 2012, average demand in August was 

25 percent higher than the average demand across the entire year (ERCOT Demand and 

Energy Report). Due to the high energy demand during the summer months, inefficient 

peaking generation units are heavily utilized (FERC Market Oversight 2013). According 

to the Federal Energy Regulatory Commission, the implied heat rate, which refers to the 

inverse of the overall efficiency of power plants, are more than double the average heat 

rate during the winter months (FERC Market Oversight 2013). This translates into 

significantly higher carbon emissions during the summer months as compared with other 

seasons. However, I note that the potential for emission reductions is dependent on the 

fuels being displaced. While I cannot directly assign the adoption of PV as the cause for 

lower electricity consumption of PV adopters during the summer months as compared 

with their average household, I do find that the "collection" of activities, including 

efficiency upgrades and other hardware changes concurrently with a PV installation has a 

significant impact on lowering overall consumption during the summer peak periods. 
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Figure 6: Net monthly consumption for consumer and ERCOT profile 

3.1.5. HOURLY CONSUMPTION PATTERNS 

Electricity consumers traditionally have little economic reason to moderate their 

consumption based on hourly factors other than to maximize bill savings or suit 

convenience. Two factors could explain why PV adopters would actively seek to alter 

their inter-hourly consumption patterns. First, to maximize the economic value of PV 

system generation, particularly if consumers have time-of-use rate plans (Denholm and 

Margolis 2007). Secondly, a greater awareness of electricity issues, specifically, peak 

load issues and the environmental impact of peak generation, which may have catalyzed 

PV adoption  (Orans et al. 2010; Matsukawa, Asano, and Kakimoto 2000; Bartusch et al. 

2011; Torriti 2012; Newsham and Bowker 2010).  

To explore this hypothesis, I aggregate hourly differences in adopter and ERCOT 

consumption into a 24-column matrix corresponding to the 24-hour day (equation 1 
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Section 2.1.2). Thus, the first column is the collection of all consumption differences 

occurring from 0:00 – 1:00, for all adopters simultaneously; and so on. In other words, 

following the convention developed in Section 2.1.2, for a particular hour i all di for 

every adopter form the ith column of this difference matrix. The central tendencies of 

each of the columns is plotted in figure 7. Note that this process does not consider 

seasonal variations (all months are collated) and that all hourly analysis uses only post-

adoption data, as the pre-adoption data is aggregated at the monthly level. That is, within 

the dataset there are no means of determining whether inter-hour patterns existed prior to 

PV system adoption.  

 

 

Figure 7: Mean Hourly Difference in Consumption 

PV consumers do demonstrate evidence of different patterns of consumption than 

ERCOT, specifically they have lower consumption from 11:00 – 22:00 relative to the 
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ERCOT profile and have higher consumption for other times. Because of the large 

sample size, results are highly significant for each hour (and thus confidence are not 

shown), but are small overall—on the order of 0.06 kW shifts per hour. While these shifts 

are small on an hourly basis, when combined for all hours and days in a month, the 

magnitude of the shift is significant at the monthly level. 

While the hourly consumption analysis above shows some evidence of load 

shifting, a majority of interviewees (71 percent) said they do not actively shift usage to 

different times of day. Furthermore, 75 percent reported that they did not actively shift 

consumption to match peak system generation, and thus were indifferent to any value this 

behavior would create. Many interview participants cited a lack of a TOU rate in Austin 

Energy’s service territory as a reason for not actively shifting energy intensive activities. 

However, a TOU rate plan option was implemented by Austin Energy after the interviews 

were held. 

3.2 The Role of Information in PV Consumerism 

Past studies have addressed heuristics and processes consumers use to search for 

data to inform decision-making (Conlisk 1996; Gigerenzer & Todd 1999; Todd & 

Gigerenzer 2003; Tversky & Kahneman 1974). In this study, this refers to consumers’ 

search for information about PV systems, installers, and feedback mechanisms, which 

shape the financial attractiveness of PV investment. The non-monetary cost of this 

information-searching significantly influences the path chosen (Wilson & Dowlatabadi 

2007; Rai & Robinson 2013). Therefore, I study consumer use of monitoring and 
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feedback mechanisms to track post-adoption consumption and generation habits to 

evaluate the potential influence on consumption behavior. 

3.2.1 MONITORING AND FEEDBACK FOR ELECTRICITY HABITS 

Exposure to monitoring devices and feedback from behavior has consistently been 

shown to induce behavioral change (Henryson et al, 2000; van Houwelingen and van 

Raaij 1989; Alahmad et al 2012; Grønhøj et al. 2011). I determine, first, how many PV 

adopters have access to monitoring or feedback devices, such as smart meters or web 

monitors; next I determine if access to such devices does catalyze changes in 

consumption behavior and through which channels.  

Through the survey, I determined that 86 percent (n=18) of adopters interviewed 

have access to some monitoring device that provides feedback on their electrical 

consumption and system generation. These devices are primarily online monitoring tools 

(62 percent, n=13), in-house displays (5 percent, n=1), and smartphone apps (19 percent, 

n=4), though outdoor meters and inverter displays were also common. High cost and lack 

of interest were the most commonly stated reasons for those without monitoring devices. 

In contrast to the previous studies noted above, the monitoring devices were used 

infrequently and did not appear to significantly influence energy consumption patterns. 

Save for a post-adoption “honeymoon” period—in which adopters are highly attentive to 

their monitoring device, adopters appear to rarely utilize monitors and did not prioritize 

tracking their system’s performance. A large majority (78 percent, n=14) of those with a 
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monitor check it infrequently (once every 1-2 months or less) or have stopped entirely. 

Only 17 percent check regularly (once a month or greater). Most respondents indicate 

that monitoring devices were used initially to monitor the performance of their PV 

system and not to track energy consumption. While monitoring devices are largely left 

alone once consumers are comfortable with PV, most do track their consumption through 

monthly bill statements ⎯  which all consumers review prior to submitting payment to 

their utility. These statements report excess generation credits, consumption and 

generation levels – a crude monitoring device. The interviews showed that consumers 

scrutinize bills more closely than monitoring devices. 90 percent of interviewees assess 

bills to some degree, looking at savings and amount of net metering credits accumulated. 
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4. RATE STRUCTURES ANALYSIS 

The rate structure analysis seeks to examine two fundamental questions: First, 

how do rate structures provide value to solar consumers? Second, how can competing 

rate structures influence consumption behavior?  The existing body of literature has 

extensively analyzed how rate structures provide value to solar consumers but offers very 

little coverage on the latter. According to Wiser et al (2007), rate design is fundamental 

to the economics of commercial and residential PV and can alter the value of PV by 25 

percent to 75 percent, depending on the size of the PV system relative to building load. I 

test this assumption by calculating the range of savings that can be achieved under 

competing rate structures in the ERCOT deregulated retail electricity market and within 

the regulated, monopolistic Austin Energy market.  

4.1 Rate Structure Data 

The rate structure analysis uses two sources of data. First, I use a database of 

leading electricity rate structures in the ERCOT market and those available to Austin 

Energy consumers. Secondly, I use the consumption profiles in DS1 to evaluate the value 

provided by the electricity rate structures available to PV adopters.  

The rate structures used in the analysis comprise six rate plans offered by TXU 

Energy, Reliant Energy, Green Mountain Energy and Austin Energy.  The rate plans vary 

in terms of price tiers, customer base charge and the solar price credited for customer’s 

solar PV generation.  All rate plans offer a solar credit for the excess generation that is 

supplied to the grid with the exception of Austin Energy, which credits customers for the 
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entire amount of solar PV generated from its customer’s systems.  The solar credit is 

billed against the customer’s monthly charge which bills  customers for all energy 

consumption including energy delivered by Austin Energy and energy consumed from 

the customer’s own solar PV system.  

Rate Plan Rate Price Tiers ¢/kWh Customer 
Base 

Charge 
$/Month 

Solar Credit $/kWh 

Green 
Mountain 
Renewable 
Rewards Buy-
Back Program 

10.8¢/kWh at all times $0.00 

0-500 kWh: 10.8¢ 
>500 kWh:  5.4¢ 
for excess 
generation supplied 
to grid 

Reliant e-Sense 
Sell-Back 12 

9am – 4pm: 7.2¢ 
4pm – 9am: 5.4¢  $9.95 

0-500 kWh: 7.5¢ 
>500 kWh:  5.0¢ 
for excess 
generation supplied 
to grid 

TXU Energy e-
Saver 12 7.5¢/kWh at all times $6.95 

7.5¢ for excess 
generation supplied 
to grid 

TXU Energy 
Free Nights 18 

10pm – 6am: 0.0¢ 
6am – 10pm: 12.0¢   
 

$4.95 
7.5¢ for excess 
generation supplied 
to grid 

TXU Energy 
SureStart 

Month(s)  Usage (kWh) ¢/kWh 
Oct-Jun 0-1400  8.9¢ 
Oct-Jun 1401-2000  8.8¢ 
Oct-Jun > 2000  10.0¢ 
Jul-Sep 0-1400   8.8¢ 
Jul-Sep 1401-2000  7.0¢ 
Jul-Sept  >2000  10.0¢ 

$4.95 
7.5¢ for excess 
generation supplied 
to grid 

 

 

Table 2: continued, next page.  
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Rate Plan Rate Price Tiers ¢/kWh Customer 
Base 

Charge 
$/Month 

Solar Credit $/kWh 

Austin Energy 
Residential 
Rate 
 

Month(s)  Usage (kWh) ¢/kWh 
Oct-May 0-500  1.8¢ 
Oct-May 501-1000  5.6¢ 
Oct-May 1001-1,500  7.2¢ 
Oct-May 1501-2,500  8.4¢ 
Oct-May >2,500  9.6¢ 
Jun-Sep 0-500  3.3¢ 
Jun-Sep 501-1000  8.0¢ 
Jun-Sep 1001-1,500  9.1¢ 
Jun-Sep 1501-2,500  11.0¢ 
Jun-Sep >2,500  11.4¢ 
 

$10.00 

12.8¢ for all 
generation whether 
supplied to grid or 
consumed on site 
(as of December 
2013) 

Table 2: Rate structures terms for six competitive rate plans and one regulated rate plan. 

I calculate the cost of consumption for every 15-minute interval across all 223 

consumer profiles and six rate plans by applying the rate plan tier criteria and 

corresponding price.  By aggregating the 15-minute intervals into one month blocks, I 

calculate a monthly consumption cost for each consumer.  Using a similar methodology, I 

calculate the related solar credit for each consumer under each rate plan. I subtract the 

monthly solar credit from the monthly consumption cost to obtain a monthly bill for each 

consumer.  For each month, I compute the average monthly bill under each rate plan.  

Finally, I calculate the average monthly bills to obtain an average bill under each rate 

plan using the equation      

C
!"!  

!!!!!   !!!!"!!!!!
!!! ! !!"!

  (4) 
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where p is the monthly bill , r is the rate plan, i is the set of periods for which data exists, 

for each consumer, k is the price for a particular rate plan, n is the month, c is the 

consumer’s profile data and g is the amount of solar PV generation. 

4.2 Impact of Rate Structure on Behavior and Value of Solar 

Competing rate plans can produce significantly different economic value for a PV 

system. If PV adopters are aware of this phenomena, I would expect to see an influence 

on the information searching process and consumption behavior. To explore this 

hypothesis I utilize results from the qualitative interviews as well as our analysis on the 

range of savings that can be achieved under various rate plans. The contrast of Austin 

Energy—a non-competitive market, and the ERCOT deregulated market acts a control 

variable to evaluate whether consumers in competitive markets are more aware of their 

consumption behavior than consumers in regulated markets and how rate structures 

influence consumption behavior. Because the households in the dataset are largely 

located in Austin Energy service territory, a direct analysis of the impact of rate structure 

on consumption behavior cannot be made. Instead, this analysis attempts to evaluate the 

total economic value of the PV systems under different rate structures and compare these 

savings to the observed consumption behavior described above. 

4.2.1. RANGE OF SAVINGS UNDER COMPETING RATE STRUCTURES 

The results show a wide range in the expected monthly bill under the six rate 

plans analyzed.  Notably, Austin Energy customers would expect an average bill of just 
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over $17 compared to the highest average bill of over $66 for TXU’s SureStart rate plan.  

Austin Energy’s value of solar plan, which credits customers for the entire amount of 

electricity produced by a consumer’s solar PV provides an attractive value proposition for 

consumers.  The solar credit of 12.8 cents per kWh (in place at the time of this analysis) 

is greater than the highest energy price tier resulting in immediate savings to solar PV 

consumers.  Among the options available in competitive markets, consumers can achieve 

30% savings from switching from the highest cost rate plan to the lowest cost plan to 

reduce their monthly bill from over $66 to approximately $46. 

 

Figure 8: Comparison of average monthly bill under different rate plans. 

4.2.2. CONSUMER AVERAGE COST COMPARED TO ERCOT 

Comparing the consumption cost excluding credits for solar generation for the 

consumers in the dataset against the average consumption cost for the ERCOT profile, I 
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find that consumers in our data set should expect an average savings of approximately 

$30 or 32 percent over the average ERCOT monthly bill. Savings are a result of the lower 

energy consumption of households in the dataset as compared to the average household. 

While the savings is relatively small when compared to other household expenditures, the 

inclusion of a generation credit, particularly Austin Energy’s value of solar tariff, 

increases the value significantly. Austin Energy households should expect to save 

approximately $82 per month over non-solar PV adopters.  

4.3 Rate Searching 

The interviews, surveys, and rate plan analysis each studied the impact of rate 

structures on PV adopter decision making. Given a selection of flat and time-of-use rates, 

would consumers recognize which option is most beneficial financially? This leads to an 

assessment of whether consumers’ choice of provider depends more on the rate paid for 

grid electricity or the rate received for exported PV electricity. 

Interview responses suggest that the rate received for excess generation weighs 

most heavily in the adopter’s choice of provider. When asked whether they switched 

providers, 36 percent of deregulated customers listed their provider’s favorable 

generation credits as the main reason they stayed or switched, while only 9 percent 

mentioned a better retail rate. Only 25% of those who spent time researching providers 

actually switched-- in part because they found their current provider offered the most 

favorable excess generation credit. 
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The Solar PV Survey responses support this notion that consumers prioritize 

generation credits when selecting providers. Out of 113 adopters from deregulated 

markets, 87 percent of responders reported that excess generation credits were either 

‘extremely’ or ‘very’ important to their decision. Comparatively, only 65 percent 

reported that provider retail rates were ‘extremely’ or ‘very’ important. Half of 

respondents switched providers, a much higher frequency than those interviewed. Both 

interviews and surveys appear to indicate that PV adopters seriously consider the 

financial worth of system outflow credits separately from the retail rate paid when 

choosing a plan. However it appears that consumers primarily seek value through selling 

excess PV generation, as opposed to lowering inflow rates, and look to maximize this 

benefit when researching providers. 
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5. CONCLUSION 

The adoption of PV represents a major investment of time and resources for 

consumers. Past literature has suggested that owning a PV system could impact 

electricity consumption decisions through behavioral effects of PV technology and 

related electricity monitoring systems.  

My analysis found that while awareness of patterns and level of electricity was 

significantly enhanced, gross levels of electricity consumption on an aggregate level did 

not significantly change among PV adopters after installation; However, some significant 

increases (as well as decreases) are observed at the individual household level. This 

contrasted with the survey and interview responses among a majority of adopters, who 

reported decreased or unchanged consumption after installation. I explain this 

discrepancy by noting that consumers took several efforts to reduce their environmental 

impact and implement efficiency upgrades to reduce consumption prior to installing PV, 

leaving few options to further reduce consumption after adoption. Further, consumers 

who increase electricity use tend to underreport the amount of increase, which I explain 

as a behavioral cognitive dissonance.  Adopters’ disinterest in monitoring their long-term 

electricity use could also contribute to underestimating how much PV system generation 

they use. 

Moreover, the electricity rate structures studied provide widely varying financial 

value to PV adopters, affected by interaction between pricing, excess generation credits, 

and consumption levels. Both survey and interview responses indicate that consumers 
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understand the particular significance of solar credits to the value received from PV, and 

apply this knowledge in their rate plan choices.  

These findings provide informative lessons for future research and solar-policy 

design. Policymakers should not expect substantial ‘ripple’ effects from PV adopters. 

Rather, they should direct conservation policy efforts that targets households with low 

levels of awareness of electricity use, and have the most room for ‘low hanging’ gains in 

conservation habits. Furthermore, compelling solar PV adopters to implement energy 

efficiency measures as a pre-requisite to financial incentives produces real benefits in the 

form of reduced energy consumption during the critical peak load periods. 
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Appendix A 
List of Structured Interview Questions 

Questions posed to deregulated customers only: 

1. How much time did you spend researching different electricity providers and rate 

plans? 

2. Did you stay with the same provider when you installed your PV system, and if 

you switched what was the reason? 

3. What type of rate plan do you have? 

4. What were the most important factors in choosing a provider? 

5. What is your overall satisfaction with your net metering plan and provider 

services? 

6. If you leased your system, what are the advantages you gain from leasing as 

opposed to purchasing a PV system? 

Questions posed to Austin Energy customers only: 

1. How aware are you of the details of the Value of Solar plan, and what are your 

thoughts on the rate change? 

2. What is your overall satisfaction with Austin Energy services, and would you 

switch providers if able? 

Questions posed to all customers: 

1. How much time did you invest in researching the installation process for your PV 

system, and did you prioritize calculating a payback period? 



 56 

2. What were your main incentives for installing a PV system, and which was the 

primary influence? 

3. How did your overall electricity consumption change after installing a PV 

system? 

4. Were there any changes in the timing of your electricity use after installing your 

PV system? 

5. Which household appliances or activities consume the most electricity, and which 

were most affected by changes in consumption post-installation? 

6. What other energy efficiency measures did you implement, and how were these 

actions timed in relation to the PV system installation? 

7. Apart from your monthly bills, what types of monitoring devices do you have to 

track your electricity use habits? 

8. How often do check these devices, and has this changed since you first installed a 

PV system? 

9. How closely do you check monthly bills, and what particular items do you 

evaluate? 

10. How closely do you match your electricity consumption to what your PV system 

generates? 

11. What effect do your monthly savings have on electricity consumption decisions?    
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