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Bayesian nonparametric based models are an elegant way for discover-

ing underlying latent features within a data set, but inference in such models

can be slow. Inferring latent components using Markov chain Monte Carlo

either relies on an uncollapsed representation, which leads to poor mixing, or

on a collapsed representation, which is usually slow. We take advantage of

the fact that the latent components are conditionally independent under the

given stochastic process (we apply our technique to the Dirichlet process and

the Indian buffet process).

Because of this conditional independence, we can partition the latent

components into two parts: one part containing only the finitely many in-

stantiated components and the other part containing the infinite tail of unin-

stantiated components. For the finite partition, parallel inference is simple

given the instantiation of components. But for the infinite tail, performing
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uncollapsed MCMC leads to poor mixing and thus we collapse out the com-

ponents. The resulting hybrid sampler, while being parallel, produces samples

asymptotically from the true posterior.
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Chapter 1

Introduction

Bayesian nonparametric (BNP) models are a flexible class of models

whose complexity adapts to the data under consideration. Typical situations

where a nonparametric solution is useful are ones where the complexity of the

model must be specified in advance, like in mixture models or in latent feature

models. Since, in most real situations, we usually do not know the true number

of mixture components or latent features in advance we would then have to fit

competing models and select the best model by some model selection metric.

In contrast, BNP models place priors on infinite-dimensional objects,

such as partitions with infinitely many blocks; matrices with infinitely many

columns; or discrete measures with infinitely many atoms. A finite set of

observations is assumed to be generated from a finite—but random—subset

of these components, allowing flexibility in the underlying dimensionality and

providing the ability to incorporate previously unseen properties as our dataset

grows.

While the flexibility and expandability of these models are a good fit

for large, complex data sets, distributing existing inference algorithms across

multiple machines is challenging. If we explicitly represent subsets of the
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underlying infinite-dimensional object – for example using a slice sampler –

we can face poor mixing and high memory requirements. Conversely, if we

integrate out the infinite-dimensional object, we run into problems due to

induced global dependencies.

In this paper, we focus on two popularly used nonparametric Bayesian

methods, the Dirichlet process and the Indian buffet process. We choose these

because they are the most commonly used nonparametric priors for mixture

models and latent feature models, respectively. However, they are both mem-

bers of a larger class of models based on a Completely Random Measure frame-

work, and the techniques in this paper can easily be extended to apply to

several other members of this class.

In the following section we begin by introducing these two distributions,

using the common framework of completely random measures, and describe

the most techniques for performing approximate inference. We then discuss

existing approaches for distributed inference in these models.
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Chapter 2

Background and Related Work

Many commonly used nonparametric priors, including the Dirichlet

process and the Indian buffet process, can be expressed in terms of a class

of distributions known as completely random measures (CRM) [10]. A com-

pletely random measure is a random measure µ on some space Ω where the

masses µ(Ai), µ(Aj) assigned to disjoint subsets Ai, Aj ⊂ Ω are independent.

A commonly used example of a completely random measure is the

gamma process. If H is some probability measure on Ω, and α > 0, then

the gamma process assigns a Gamma(αH(A)) mass to any subset A ⊂ Ω.

The Dirichlet process is a distribution over random probability measure D ∼

DP(α,H) on Ω that corresponds to the normalization of a gamma process

with parameters α and H. Since the gamma process assigns independent

gamma-distributed masses to disjoint subsets of Ω, the masses assigned by

a Dirichlet process to a finite partition of Ω are necessarily Dirichlet dis-

tributed, i.e. if A1, . . . , AK is a partition of Ω, then (D(A1), . . . , D(Ak)) ∼

Dirichlet(αH(A1), . . . , αH(AK)).

We can use a Dirichlet process-distributed random measure

D :=
∞∑
k=1

πkδθk (2.1)
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to assign parameters to observations:

D ∼DP(α,H)

φn ∼D
(2.2)

The discrete nature of D means that a single atom πkδθk can be associated

with multiple observations, so we will get repeated values of φn, so that we

are partitioning observations into an unbounded number of clusters. If we let

zn be the cluster indicator for the nth data point, we can directly obtain the

predictive distribution over zn+1|z1:n:

P (zn+1 = k|z1:n, α) =

{
mk

n+α
for k ≤ K

α
n+α

for k = K + 1
(2.3)

where K is the number of clusters present in the first n observations, and mk

is the number of observations in the kth cluster. To recover a full mixture

model from Equation 2.3, we can sample a cluster parameter θk ∼ H for each

cluster and set φn := θzn .

Another commonly used CRM is the beta process [6, 15]. The (homoge-

nous) beta process is a completely random measure where the distribution over

atom sizes is given by the limit, as K → ∞, of a Beta
(
c α
K
, c
(
1− α

K

))
dis-

tribution, and whose atom locations are i.i.d. according to some probability

measure H. The beta process can be used as a prior for latent feature models.

If B :=
∑∞

k=1 µkδθk ∼ BP(α, c,H), then we can interpret the µk as the prob-

ability of an observation containing the kth latent feature θk. We can select

a finite subset of these latent features for the nth data point by sampling a

sequence Zn of binary indicator variables zn,k ∼ Bernoulli(µk).
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As with the Dirichlet process, it is possible to integrate out the latent

measure and work directly with the predictive distribution over the binary

sequences. If K is the number of features seen in the first n − 1 data points,

then we can sample the next sequence Zn = (zn,k)
∞
k=1 as

zn,k ∼ Bernoulli
(mk

n

)
, k = 1, . . . , K

J ∼ Poisson
(α
n

)
zn,j = 1, j = K + 1, . . . , K + J

zn,j = 0, j > K + J

K ←K + J

(2.4)

If we stack the sequences Zn into a matrix Z, Equation 2.4 describes a distri-

bution over binary matrices known as the Indian buffet process [4].

2.1 Inference approaches

In Section 2, we saw two complementary representations for the clus-

ter/latent variable allocations obtained using a Dirichlet process and an In-

dian buffet process. We can either explicitly instantiate the latent measure

and sample each data point’s allocations independently given this measure, or

we can integrate out the latent measure and work directly with the predictive

distribution.

When designing an MCMC algorithm, these two options lead directly

to two different inference approaches, which we will refer to as collapsed and

uncollapsed samplers. In an uncollapsed sampler, we alternate between sam-
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pling the random measure given the cluster/latent feature allocations, and

sampling the allocations given the random measure. To avoid having to in-

stantiate the infinitely many atoms of the random measure, we can either

replace the random measure with a finite-dimensional approximation (see [8]

for the Dirichlet process or [12, 18] for the Indian buffet process), or we can

construct a slice sampler that employs a random truncation that maintains

the correct posterior distribution (see [16, 3] for the Dirichlet process or [14]

for the Indian buffet process).

A collapsed sampler (see [7, 11] for the Dirichlet process and [4] for the

Indian buffet process) integrates out the random measure, and works only with

the cluster allocations (Dirichlet process) or latent feature allocations (Indian

buffet process). Since we only observe a finite number of clusters or latent

features, we do not need to introduce approximations or slice variables. We

make use of the fact that the sequences obtained by integrating out the random

variables are exchangeable, meaning we can adapt the predictive distributions

in Equations 2.3 and 2.4 to give a conditional distribution P (Zn|Z−n). This can

be combined with a likelihood term P (Xn|Zn,Θ) to give the full conditional

distribution, which can in term be used to construct a Gibbs sampler.

2.2 Distributed inference methods

A number of parallel inference algorithms have been proposed for the

Dirichlet process and its variants. [13] proposed an approximate distributed

scheme for the hierarchical Dirichlet process, which is easily adaptable to the
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Dirichlet process mixture model. On each local step, each node assumes that

the sufficient statistics from the other nodes are unchanged from the previous

global step. On global steps, the sufficient statistics are updated and new

clusters are (approximately) aligned. As [17] show, this approach works well

where the clusters are large, but when working with small clusters suffers

from alignment issues, due to both problems matching up new clusters, and

the possibility of small clusters drifting in location over the course of a local

iteration.

[17] proposed a distributed method based on partitioning the Dirichlet

process into a mixture of conditionally independent Dirichlet processes. These

conditionally independent Dirichlet processes are updated independently on

separate processors during local steps. Global moves are used to move data

between the conditionally independent Dirichlet processes to ensure correct

mixing. While this approach works well for relatively small numbers of pro-

cessors, its scalability is limited by the fact that each cluster in the overall

DPMM must reside on a single processor (as discussed by [17] and [2]). Fur-

ther, the approach assumes a shared-memory architecture where there is mini-

mal cost to moving data between processors; in a distributed-memory context

this would cause significant communication bottlenecks.

A more recent approach, that is explicitly designed for the distributed-

memory, low-communication setting, was proposed by [3]. Unlike the previ-

ously described approaches, this paper uses an uncollapsed approach, explicitly

instantiating the cluster probabilities and parameters. A slice sampler is used
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to ensure only a finite number of atoms need to be represented. When new

atoms are introduced by the slice sampler, a shared seed is used in the pseudo-

random number generators on each node, to ensure that the same atoms are

proposed without the need for direct communication.

The downside of this approach is that, by necessity, the new atoms

are sampled from the prior, rather than from their conditional distribution

given observations. In high dimensions, this means that the proposed atoms

are likely to be very far from data, and will therefore tend not to be used,

resulting in slow mixing.

Compared with the Dirichlet process, there has been relatively little

work on distributed inference for the Indian buffet process. The main con-

tribution in this area is by [1], who deploy an approach similar to that of

[13]. Each processor approximates the current feature counts from the other

processors with the counts from the previous time step; there is no explicit

merging of new features. As we will see in Section 3, this approach will lead

to over-estimation of the number of new features, and poor mixing.

2.3 Hybrid collapsed/uncollapsed algorithms for distributed
inference

A key goal of a distributed algorithm is to minimize communication

between agents. This can be achieved by breaking the algorithm into indepen-

dent sub-algorithms, which can be run independently on different agents. In

practice, we usually cannot split an MCMC sampler on a Bayesian hierarchi-
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cal model into entirely independent sub-algorithms, since there are typically

some global dependencies implied by the hierarchy. We can either replace

these global dependencies with appropriate approximations, or we can make

use of conditional independencies to temporarily partition our algorithm. In

this paper, we describe methods that take the latter approach.

In Section 2.1, we considered two inference paradigms: collapsed and

uncollapsed samplers. Both these approaches lead to difficulties when attempt-

ing to parallelize inference. In the collapsed setting, we face the problem that,

since the cluster probabilities and parameters are marginalized out, the proba-

bility of the nth data point belonging to the kth cluster depends on the cluster

allocations of all other data points. In particular, we need up-to-date knowl-

edge of the total number of data points in the kth cluster, and the sufficient

statistics associated with that cluster’s distribution. If the kth cluster is in-

stantiated on multiple machines, maintaining these statistics requires frequent

global communication. Algorithms have been proposed that ensure all data

points in a given cluster are associated with the same processor [17]; however

this can lead to bottlenecks and limited scalability due to large clusters. Fur-

ther, we replace near-constant communication about sufficient statistics with

less frequent, yet bandwidth-heavy, reallocation of datapoints to different pro-

cessors. Another approach is to approximate the true counts with “stale”

values, in effect assuming counts on other agents have not changed [1]; how-

ever this introduces errors and suffers from alignment issues, particularly in

the nonparametric section where the number of clusters changes from iteration
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to iteration [17].

On the surface, uncollapsed samplers are much more suited to the dis-

tributed setting. We can make use of the fact that, conditioned on the latent

measure, the cluster/latent feature allocations are conditionally independent.

This means that if we split our data between the available agents and send a

copy of our latent measure to all these agents, then the agents can indepen-

dently sample the allocations for their subset of the data. Global communica-

tion is then required to sample from the conditional distribution of the random

measure given the allocations. Parallelization in an uncollapsed representation

for the Dirichlet process has been proposed by [3].

When working with an uncollapsed representation, we need a way of

introducing new features. One option is to use a random slice variable, and

sample a set of a atoms that are above that slice [16, 3, 9]. Another option

is to combine the probabilities for all the uninstantiated clusters into one,

and sample a set of auxiliary variables from the prior that act as proposal

locations for new clusters [11]. The performance of such algorithms will depend

on how close the proposed new atoms or auxiliary variables are to the true

cluster parameters. For a low-dimensional parameter space, we are likely to

have reasonably good proposals; however as the dimensionality increases our

proposals are unlikely to be near the data.

In this section, we propose a hybrid approach that offers the advantages

of both a collapsed and an uncollapsed representation. We are able to do this

because of the complete randomness of the underlying random measure (beta
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process in the case of the Indian buffet process; gamma process in the case

of the Dirichlet process). This allows us to split the prior into two indepen-

dent (in the case of the IBP) or conditionally independent (in the case of the

DP) random measures. We choose to split the prior into a finite-dimensional

measure corresponding to the currently observed clusters/features, and an

infinite-dimensional “tail”. We use uncollapsed inference on the finite measure,

allowing straightforward parallelization but avoiding ever needing to expand

our representation. For the infinite tail, we use a collapsed representation that

allows us to efficiently introduce new features even in a high-dimensional set-

ting. We present a hybrid sampler for the Dirichlet process in Section 2.3.1,

and for the Indian buffet process in Section 2.3.2.

2.3.1 Distributed hybrid inference in the Dirichlet process

Assume we wish to perform inference in a Dirichlet process mixture

model with some arbitrary mixture kernel f(θ) parametrized by θ ∈ Ω. We

can write this model as

D :=
∑
k

πkδθk ∼ DP(α,H), φn ∼ D, xn ∼ f(φn).

(2.5)

Let A be some subset of Ω (where A may have measure zero) and let

Ac be its complement in Ω. We can represent this Dirichlet process as the

weighted superposition of two independent Dirichlet processes, one on A and

one on Ac. Concretely, if H|A is the restriction of H to A, i.e.
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H|A(dθ) =

{
H(dθ) θ ∈ A
0 θ 6∈ A

(2.6)

then we can represent the DP(α,H) mixture model described in Equa-

tion 2.5 as

B ∼Beta(αH(A), αH(Ac))

G1 ∼DP(αH|A)

G2 ∼DP(αH|Ac)

φn ∼BG1 + (1−B)G2

xn ∼f(φn)
(2.7)

Conditioned on the current cluster counts mk, the posterior distribution

over D is given by

D|m1, . . . ,mK ∼ DP

(
α +N,

αH +
∑

kmkδθk
α +N

)
(2.8)

Following from Equation 2.9, we can re-write this as

B ∼Beta(N,α)

G1 =
K∑
k=1

πkδθk ∼DP

(
N,

∑
kmkδθk
N

)
G2 =

∞∑
k=K+1

πkδθk ∼DP(α,H)

φn ∼BG1 + (1−B)G2

xn ∼f(φn)
(2.9)

We note that G1 =
∑K

k=1 πkδθk , where K is the number of currently

occupied clusters, and (π1, . . . , πK) ∼ Dirichlet(m1, . . . ,mK). We have parti-

tioned our Dirichlet process into a weighted combination of a finite-dimensional

Dirichlet distribution, with elements corresponding to the currently occupied
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clusters, and an infinite-dimensional Dirichlet process, with atoms correspond-

ing to the currently unoccupied clusters.

We can now instantiate the finite measure G1 on all processors, and

integrate out the infinite dimensional tail. We randomly select one out of P

processors, by sampling P ∗ ∼ Uniform(1, . . . , P ). For every other processor,

i.e. for each processor j 6= P ∗, we perform restricted Gibbs sampling [11], only

allowing observations to choose between the K clusters in G1.

On processor P ∗, we allow observations to pick a cluster from G1 with

probability B, or a cluster from G2 with probability 1 − B. Concretely, the

probability a data point xn on cluster P ∗ being assigned to cluster k, condi-

tioned on B, G1 and the other data points on processor P ∗, is given by

P (φn = θk|−) ∝


Bπkf(xn; θk) k ≤ K
(1−B)mk

N
f(xn; {xi : φi = θk, i 6= n}) K < k ≤ K + J

(1−B)α
N

k = K + J + 1

(2.10)

where J is the number of atoms in G2 which are associated with data.

Note that the only data points that can be associated with atoms in G2 are

those on processor P ∗, so we can evaluate mk

N
f(xn; {xi : φi = θk, i 6= n})

without any knowledge about the other processors.

At each global step, we gather the sufficient statistics from all instan-

tiated clusters – from both G1 and G2 – and sample parameters for those

clusters. We then create a new partition, redefining the support of G1 as the
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set of instantiated cluster parameters, and resample B ∼ Beta(N,α).

While asymptotically correct, an unfortunate consequence of this sam-

pler is that it is slow to instantiate new clusters. With only 1/P of the data

points eligible to start a new cluster, the rate at which new clusters are added

will decrease with the number of processors. While this is of less concern

once we have converged to an appropriate number of clusters, it can lead to

slow convergence if we start with too few clusters. To avoid this problem, we

initialize our algorithm by allowing all processors to instantiate new clusters.

At each global step, we decrease the number of randomly selected processors

eligible to instantiate new clusters, until we end up with a single processor.

This warm start allows us to expand our initial state space with data-driven

cluster proposals.

We note that a sampler with multiple processors instantiating new clus-

ters will not converge to the true posterior; instead it will tend to over-estimate

the number of clusters. However, the procedure acts in a manner similar to

simulated annealing, by encouraging large moves early in the algorithm but

gradually decreasing the excess stochasticity until we are sampling from the

correct algorithm.

2.3.2 Distributed hybrid inference in the Indian buffet process

If B ∼ BP(α, c,H) and Zn ∼ BeP(B), then the posterior distribution

over B is given by

14



B|Z1, . . . , Zn ∼ BP

(
cα +

∑
kmk

c+ n
, c+ n,

cαH +
∑

kmkδθk
cα +

∑
kmk

)
(2.11)

Since the beta process is a completely random measure, we can partition

this into the superposition of two independent completely random measures,

so that

B1 :=
K∑
k=1

µkδθk ∼BP

(∑
kmk

c+ n
, c+ n,

∑
kmkδθk∑
kmk

)
B2 :=

∞∑
k=K+1

µkδθk ∼BP

(
cα

c+ n
, c+ n,H

)
B =B1 +B2

(2.12)

We note that the distribution over the atom sizes µ1, . . . , µk of B1 is

simply a sequence of K Beta(N −mk,mk + c) random variables. This allows

us to split the IBP into two independent feature selection mechanisms: one

(controlled by B1) with a finite number of currently instantiated features, and

one (controlled by B1) with an unbounded number of currently uninstantiated

features.

This observation allows us to construct a distributed MCMC sampler

where, at any given time, only data on a single processor is allowed to sample

from the full conditional distribution over features. On all the other processors,

data points can only use features fromB1. Ergodicity is ensured by periodically

re-defining B1 to include all instantiated features, and randomly resampling

the single processor that is able to instantiate new features.
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Concretely, at each global iteration, we randomly select one processor

with indicator P ∗ ∼ Uniform(1, . . . , P ). For every other processor, i.e. for each

processor j 6= P ∗, we perform restricted Gibbs sampling [11], only allowing

data points to select subsets of the K features in B1. The probability that

znk = 1 for such a data point is given by:

P (znk = z|−) ∝

{
µkf(xn|znk = 1, zn,−k, θ1, . . . , θk) z = 1

(1− µk)f(xn|znk = 0, zn,−k, θ1, . . . , θk) z = 0.
(2.13)

On processor P ∗, data points can select features from B1 or B2. Let

K be the number of atoms in B1, and let J be the number of instantiated

features in B2. The first K features are selected according to Equation ??. If

we are able to marginalize over the feature locations θk, the next J features

are selected according to

P (znk = z|Z−nk, xn) ∝

{
mkf(xn|znk = 1, Z−nk) z = 1

(N −mk)f(xn|znk = 0, Z−nk) z = 0.
(2.14)

If we are unable to marginalize over the θk, we can instantiate them as

described in [1] and include them in the appropriate likelihood term. Finally,

we propose adding Poisson(α/N) new features, using a Metropolis-Hastings

step.

At each global step, we gather the sufficient statistics from each instan-

tiated feature, and sample a feature value θk for each one conditioned on the

data points exhibiting that feature. We redefine B1 and B2 so that B1 contains

all (and only) instantiated features, and sample µk ∼ Beta(mk, N −mk + c)
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for each feature in B1. We then sample a new processor indicator P ∗ ∼

Uniform(1, . . . , P ) and repeat.

As with the Dirichlet process sampler described in Section 2.1, the

distributed sampler will be slow to add features, since to ensure correctness

of the transition distribution, only one processor can add features at a time.

We can dramatically improve the time to convergence by using a warm-start

procedure as described in Section 2.3.1, where we initially allow all processors

to instantiate new features, and gradually reduce the number of processors

adding new features until we have the correct sampling distribution.
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Chapter 3

Experimental evaluation

We begin by showing that, while parallelizable, an entirely uncollapsed

sampler is a poor choice when dimensionality increases. We go on to compare

our distributed hybrid samplers with a range of other parallel methods for the

DP and the IBP.

3.1 Limitations of an entirely uncollapsed approach

In an entirely uncollapsed sampler, we must ensure that a global set

of atom sizes and locations is shared across all processors. This means that

we must sample new parameters from the prior. One method of doing so is

obtained by modifying Algorithm 8 of [11]. Algorithm 8 describes a scheme for

Gibbs sampling a Dirichlet process mixture with a non-conjugate likelihood,

where we can integrate out the atom sizes but must sample the atom locations.

We can modify this to give a fully uncollapsed algorithm, where both atom

sizes and atom locations are instantiated.

At each global step, let K be the total number of occupied clusters,

and let m = m1, . . . ,mK be the cluster counts. We can proceed as follows:

• Discard any atoms that are not associated with any data points, leaving
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only K instantiated atoms.

• Sample new atom locations θ1, . . . , θK for the K atoms, using the condi-

tional distribution given the associated data points.

• Sample J new atom locations θK+1, . . . , θJ from the base measure, where

J ≥ 1.

• Sample atom weights for all K + J atoms

π := (π1, . . . , πK , . . . , πK+J) ∼ Dirichlet(m1, . . . ,mk, α/J, . . . , α/J)

• For each data point xn, sample a cluster indicator cn according to

P (cn = k|π,θ) ∝ πkf(xn; θk)

where θ = (θ1, . . . , θK , . . . , θK+J).

The final, time-consuming step, where we sample the cluster indicators, can

be parallelized.

Unfortunately, we can run into problems when it comes to proposing

new parameter values θK+1, . . . , θK+J . In high dimensions, it is unlikely that

a proposed parameter will be near our data, so the associated likelihood of

any given data point will be low. This is in contrast to the collapsed setting,

where we integrate over all possible locations.

Figure 3.1 shows convergence plots for three algorithms: The uncol-

lapsed algorithm described above; a standard collapsed Gibbs sampler; and
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the single-processor version of our hybrid algorithm. The data set is a D

dimensional synthetic data set consisting of 100 observations of Gaussian mix-

tures with 2 true mixture components centered at 5 × {1}D and −5 × {1}D

with an identity covariance matrix. We can clearly see that the collapsed sam-

pler performs better than the uncollapsed sampler for 10 dimensional data.

Since the hybrid sampler only uses collapsed sampling for newly introduced

features, the performance of the hybrid sampler in this situation is expected

to be similar to the uncollapsed sampler although the hybrid sampler reaches

its maximum F1 score faster than the uncollapsed sampler.

Figure 3.1: Comparison of F1 scores over iteration for the collapsed, uncol-
lapsed and hybrid samplers
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3.2 Experimental evaluation: Dirichlet Process

In this section, we show how our inference algorithm can speed up in-

ference in a Dirichlet process mixture of normals. To evaluate our algorithm,

we generated parameter weights given the α parameter from the stick break-

ing Dirichlet process prior. Then, we sample locations for the clusters from a

Normal-Inverse Wishart prior and for n observations we sample a cluster in-

dicator from the cluster weights and then sample from the cluster parameter.

Our experiment shows the F1 score of test set data as the number of proces-

sors increases. As we can see in Figure 3.2, our hybrid method is capable of

achieving a higher F1 score faster than the lower processor runs.

Next, we evaluate the performance of our DPMM sampler by adjusting

the separability of the true cluster locations. Intuitively, we observe that our

algorithm performs poorly when there is little separation between the clusters

(Figure 3.3) and performs well when there is large separation between clusters

(Figure 3.4).

3.3 Experimental evaluation: Indian Buffet Process

Next, we show how our inference algorithm can speed up inference

in an Indian buffet process latent feature model. We use a linear Gaussian

likelihood, modeling the data as
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Figure 3.2: F1 score for test set synthetic data.
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Figure 3.3: F1 score over iterations for synthetic data set with small separation

Figure 3.4: F1 score over iterations for synthetic data set with large separation
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Z ∼IBP(α, 1)

Ak ∼Normal(0, σ2
AI)

Xn ∼Normal

(∑
k

znkAk, σ
2
XI

) (3.1)

Figure 3.5: Top: The true features present in the synthetic data set. Bottom:
Examples of observations in the synthetic data set.

We evaluated the model on a synthetic data set consisting of 10,000

observations. This dataset was an extension of the “Cambridge” dataset, used

in the original IBP paper [5], where each data point contains a randomly

selected subset of 4 binary features, plus Gaussian noise (σX = 0.5). In the

IBP experiments, we ran the hybrid sampler for 1000 total observations with

a synchronization step every 5 iterations and we run the hybrid sampler for 4,

8, 16, 32, 64 and 128 processors.

We run the Hybrid IBP sampler under a “cold start”, where only one

processor is allowed to introduce new features for the entire duration of the

sampler. We can see that the cold start results in the test set log likelihood of

the higher processors failing to converge properly (Fig. 3.6). Since the number
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of features in each experiment is fixed at 2, we observe that the sampler, over

8 processors, accepts few features than in subsequent examples (Fig. 3.7).

Figure 3.6: Test set log likelihood on synthetic data without warm-start ini-
tialization.

Next, we evaluated the effect of warm-start initialization, where initally

all processors could propose new features; we reduced the number of processors

able to add new features by 0.99 at each global step. Figure 3.8 shows the

predictive log likelihood over time (shown on a log scale), for 4, 8, 16, 32,

64, and 128 processors. Clearly, the convergence rate for high processor trials

is better than in the cold-start trials and the number of features is generally

close to the true number of features, 4. Additionally, we can see that the 128

processor run converges the fastest and all the other processor runs converge

in descending order of number of processors.

Finally, we allowed all the processors to propose new features for the
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Figure 3.7: Number of features over iterations for synthetic data without
warm-start initialization.

entire duration of the sampler (“always-hot”). Using the same experimental

synthetic data scenario described earlier, we can see that all the processor

runs roughly converge to the same test log likelihood. However, the number

of features introduced is much greater than the warm start experiment, and

the number of features introduces as the number of processors increase too.

Moreover, the difference in convergence rates between processors is not as

dramatic as in the warm-start trials. The results of the always-hot trials

approximately replicate the behavior of the parallel IBP sampler in [1].

26



Figure 3.8: Test set log likelihood on synthetic data with warm-start initial-
ization.

Figure 3.9: Number of features over iterations for synthetic data with warm-
start initialization.
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Figure 3.10: Test set log likelihood on synthetic data with all processors in-
troducing features.

Figure 3.11: Number of features over iterations for synthetic data with all
processors introducing features.

28



Chapter 4

Conclusion

As seen in the previous experiments, we now have a general strategy of

parallelizing inference for a potentially wide class of Bayesian nonparametric

models. Due to the conditional independence between the infinite dimensional

latent components in the BNP models considered in this paper, we can parti-

tion the latent components into the finite-sized instantiated partition and the

infinite-sized uninstantiated partition. We can take advantage of the inherent

parallelizability of the uncollapsed sampler on the finite partition, which per-

forms adequately for popular features. But collapsed sampling will perform

better for proposing new components and allocating observations to newly

added components. Thus, we restrict collapsed sampling only to the infinite

dimensional partition of the latent components. After partitioning the data

across P processors, each processor will independently sample the allocation

of the latent components to observations of the data and on a global step, a

master processor will gather summary statistics from each machine and send

new features and posterior values for parameters to all other machines.

In a distributed setting, we must restrict collapsed sampling to only

one processor to have a valid MCMC algorithm. But we have seen that con-
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vergence will generally be poor under a large number of processors because the

sampler can only propose new features on 1/P -th of the data. To overcome

this issue, we suggest using a “warm-start” procedure where all processors

may introduce new features and we gradually reduce the number of processors

introducing features each global step until only one processor may perform

collapsed sampling.

One of the major issues regarding MCMC inference methods is that

they are generally slow, especially as the size of the data increases. Big data

is an increasingly important concern for machine learning tasks because the

nature of the data available now has grown to such a massive size that the

scalability of an algorithm needs to be a primary concern in developing machine

learning tools. Inference in the Bayesian nonparametrics, especially for the

IBP, has generally been difficult but we have developed an inference algorithm

that has made BNP models amenable for huge data sets.
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