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Heat transfer in nano-composites is of great importance in a variety of 

applications, including in thermoelectric materials, thermal interface and thermal 

management materials, and in metamaterials for emerging microelectronics. In the past, 

two distinct approaches have been taken to predict the effective thermal conductivity of 

composites. The first of these is the class of effective medium theories, which employs 

Fourier conduction as the basis for thermal conductivity prediction. These correlate 

composite behavior directly to volume fraction, and do not account for inclusion 

structure, acoustic mismatch, and sub-continuum effects important in nanocomposites. 

More recently, direct numerical simulations of nanoscale phonon transport in composites 

have been developed. Here the geometry of the inclusion or the particulate phase is 

represented in an idealized way, and the phonon Boltzmann Transport Equation (BTE) 

solved directly on this idealized geometry. This is computationally intensive, particularly 

if realistic particle composites are to be simulated.  
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Here, we develop, for the first time, a volume-averaged formulation for the 

phonon BTE for nanocomposites, accounting for the complex particle-matrix geometry. 

The formulation is developed for a nanoporous domain as a first step and then a 

nanocomposite domain is considered. The phonon BTE is written on a representative 

elemental volume (REV) and integrated formally over the REV using the laws of volume 

averaging. Extra integral terms resulting from the averaging procedure are approximated 

to yield extra scattering terms due to the presence of inclusions or holes in the REV. The 

result is a phonon BTE written in terms of the volume-averaged phonon energy density, 

and involving volumetric scattering terms resulting from both bulk scattering and 

scattering at the interfaces of the inclusions in the REV. These volumetric scattering 

terms involve two types of relaxation times: a volume-averaged bulk scattering relaxation 

time    ̅ resulting from phonon scattering in the bulk matrix material, and an interface 

scattering relaxation time    resulting from volume-averaging scattering due to interfaces 

within the REV. These relaxation times are determined by calibration to direct numerical 

simulations (DNS) of the particle or pore-resolved geometry using the phonon BTE. 

The additional terms resulting from the volume-averaging are modeled as in-

scattering and out-scattering terms. The scattering terms are written as a function of a 

scattering phase function,     , and the interface scattering relaxation time,   . The 

scattering phase function represents the redistribution of phonon energy upon scattering 

at the interface. Both    and      are functions of the interface geometry and the phonon 

wave vector space. The scattering phase function in the model is evaluated in the 

geometric optics limit using ray tracing techniques and validated against available 
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analytical results for spherical inclusions. The volume-averaged bulk scattering relaxation 

time,    ̅  takes in to consideration the effects of the pores on the effective thermal 

conductivity of the composite. It is calibrated using a Fourier limit solution of the 

nanoporous domain.  

The resulting governing equations are then solved using a finite volume 

discretization and the coupled ordinates method (COMET). In the gray limit, the model is 

applied to nanporous geometries with either cylindrical or spherical pores. It is 

demonstrated to predict effective thermal conductivity across a range of Knudsen 

numbers. It is also demonstrated to be much less computationally intensive than the DNS. 

This model is extended to include non-gray effects through the consideration of 

both polarization and dispersion effects. For non-gray transport, the bulk and interface 

scattering relaxation times are now wave-vector dependent. Two different models are 

proposed for determining the interface scattering relaxation times, one assuming a 

constant value of interface scattering relaxation time, and another which accounts for 

variation with wave vector.  As before both bulk and interface relaxation times are 

calibrated with the DNS solution in the Fourier and ballistic limits. The scattering phase 

function developed for gray transport in the geometric limit is expanded to consider the 

appropriate energy exchanges between different phonon modes assuming elastic 

scattering. The non-gray volume-averaged BTE is compared to the DNS for a range of 

porosities at the limits of bulk average Knudsen number and for intermediate average 

Knudsen numbers. The model with variable interface scattering relaxation times is found 



 xii 

to better predict the variation of effective thermal conductivity with wave vector, though 

both models for interface scattering are less accurate than the gray model.  

Further, the volume-averaged BTE is extended for two material composites. We 

solve the volume-averaged BTE model for particle sizes comparable to the phonon 

wavelength in the composite matrix. We employ analytical scattering phase functions in 

the Mie scattering limit for particles to include wave effects. The calibration of model 

relaxation time parameters is conducted similar to that in the gray volume-averaged BTE 

model for nanoporous materials. The composite domain is solved in the Fourier limit to 

calibrate the volume-averaged bulk relaxation time. This relaxation time parameter 

considers the material properties of both the host material and particle. For small particle 

sizes, calibration in the ballistic limit is conducted using a nanoporous domain. This is 

possible as the interface scattering relaxation time is driven primarily by the travel time 

of the phonons between particles, and not by the residence time inside the particle. The 

scattering phase function is computed considering properties of both the host material and 

the particle scatterers. We solve the volume-averaged BTE for the two-material 

composite for a silicon host matrix with spherical germanium particles. We demonstrate 

the gray two-material composite domain for varying porosities over a range of Knudsen 

numbers.  

The present work creates a pathway to model thermal transport in nanocomposites 

using volume-averaging which can be used in arbitrary geometries, accounting for both 

bulk scattering and boundary scattering effects across a range of transport conditions. The 

model accounts not only for the volume fraction of particulates and inclusions, but also 
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their specific shape and spacing. It also accounts for sub-continuum effects. Furthermore, 

the volume-averaging method also allows inclusion of wave effect through the scattering 

phase function so that particles on the order of the phonon wavelength or smaller can be 

considered. The formulation is also generalizable to the limit when the particles are large 

compared to the wavelength; in this limit, geometric optics may be employed to compute 

the scattering phase function. Overall, the volume averaging approach offers a 

computationally inexpensive pathway to including composite microstructure and 

subcontinuum effects in modeling nanoporous materials and composites. 
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Chapter 1: Introduction 

1.1 MOTIVATION AND BACKGROUND 

Nanocomposites are of great scientific interest due to their applications in 

thermal-management, thermal generation and energy storage. Recent focus in 

nanocomposites has been on the manipulation of their thermal and electronic transport 

properties through the use of different material combinations and engineered 

nanostructures [1-4]. In order to design and fabricate engineered nanocomposites for 

thermal applications, it is essential to understand sub-continuum thermal transport in 

these materials. There are limitations and challenges in both the experimental as well as 

theoretical understanding of nanomaterials. The added structural complexities in 

nanoporous materials and nanocomposites introduce further challenges in modeling 

irregular geometries and predicting interface effects accurately.  

Thermal transport in many nanocrystalline solids is through quantized modes of 

vibration in the atomic lattices. These quantized vibrations, also known as phonons, 

determine many of the physical properties of the material, such as heat capacity and 

thermal conductivity. Phonons demonstrate wave-particle duality when analyzed using 

quantum mechanics and, therefore, are quasi-particles [5]. If the length scale of the 

nanostructure, L, is large compared to the phonon wavelength λ, coherence effects can be 

neglected and phonons may be treated as semi-classical particles. In this particle 

viewpoint, the mean free path Λ of the phonon is the average distance travelled by the 

phonon before it experiences a collision. These collisions can be due to a variety of 

interactions: phonon-phonon, phonon-electron, phonon-boundary, phonon-interface or 
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phonon-impurity, among others. Phonon-interface or boundary scattering is elastic and 

phase information is not lost. Phonon-phonon scattering or bulk scattering is central to 

the determination of thermal conductivity, and is inelastic in nature [6]. For typical 

composites of interest, phonon mean free paths are in the range of tens to a few hundred 

nanometers, while wavelengths may be of the order of a few nanometers. Thus, a particle 

treatment is expected to suffice for most nanocomposites of interest. 

When are sub-continuum effects important? 

For simplicity let us consider a nanoporous material of length scale LD composed of unit 

cells or modules of length scale L as shown in Figure 1. Within each module are pores of 

length scale LP separated by distance d, so that LP ~ (L-d).   

 

Figure 1: Schematic of bulk and boundary scattering mechanisms in a nanoporous 

composite domain 

Let us assume that d/>>1 so that coherence effects may be neglected. Phonons traveling 

through the module undergo ~ O(L/) number of scattering events in the matrix material 

Bulk scattering

Boundary scattering

Pores

Nanoporous Composite Domain
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due to phonon-phonon, phonon-carrier and phonon-impurity scattering. The 

corresponding time scale,.i.e., the bulk relaxation time      , is given by 

            

Phonons scatter on interfaces as well as on carriers or impurities. The number of interface 

scattering events is of order L/d, and the interface scattering time scale is given by: 

         

An effective relaxation time,     , accounting for both bulk and boundary scattering is 

given by Matthiessen’s rule [7]: 

 

    
 

 

     
 

 

  
  

We may define an effective Knudsen number Kn as: 

             

Kn is inversely proportional to the number of scattering events (bulk or interface or both) 

that occur over the module length scale L. If Kn<<1, there are sufficient numbers of 

scattering events that diffuse behavior obtains within the module. In this limit, it may be 

shown that the Fourier law is valid, and the effective thermal conductivity of the porous 

material is given approximately by 

      
 

 
   

       

where, C is the specific heat of the composite and    is the phonon group velocity in the 

composite. (A more detailed derivation accounting for material porosity and tortuosity is 

given in Chapter 2). It follows of course that if the density of interfaces is small (d/L~1) 

within the module, 
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then the effective thermal conductivity of the porous material is given approximately by   

  
 

 
      

 

 
   

         

By the same token, if the density of interfaces is sufficiently high (d/L<<1), interface 

scattering would dominate bulk scattering and therefore 

 

    
 

 

  
  

 In this limit, the porous material obeys Fourier diffusion and the effective thermal 

conductivity of the material is given approximately by: 

   
 

 
     

 

 
   

     

If, on the other hand,             1, there are relatively few scattering events within 

the module, either bulk or interface, and Fourier diffusion does not obtain. In this limit, it 

is important to consider sub-continuum effects within the module.   

 If sub-continuum effects are important within the module, but the material length 

scale LD>>L, there are many modules or unit cells in the material. In this limit, bulk 

behavior will nevertheless obtain, but on the length scale LD. The effective thermal 

conductivity of the bulk material will depend on the conductance of the individual 

modules; the latter must account for sub-continuum effects.  If the material length scale 

LD is of the order of the module length scale L, sub-continuum effects are again 

important, but a material property such as effective thermal conductivity cannot be 
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defined. Instead, thermal transport in the material will depend on the size and shape of 

the material, as well as boundary scattering on the boundaries of the material domain.   

 Now, instead of a nanoporous material, let us consider a composite consisting of 

the matrix material in which are embedded particles of a different material. Phonons 

traveling through the matrix material again undergo bulk scattering as before. Phonons 

impinging on the particle-matrix interface are partially reflected and partially transmitted; 

the fraction depends on the mismatch in spectral properties between the matrix material 

and the particle, as captured by, for example, the diffuse mismatch model [8]. The 

physics governing the reflected phonon energy are the same as for scattering in porous 

materials, and the discussion above applies. What is new, however, is transmission. Here, 

a fraction of the phonon energy impinging on the particle undergoes transmission into the 

particle, where, depending on particle size, it may encounter additional thermal resistance 

due to bulk scattering within the particle. However, in many composites of interest, the 

particle length scale LP <<L, and phonons may be assumed to travel nearly ballistically 

within the particle, and to undergo multiple reflection and transmission events at particle-

matrix interfaces.  In such cases, the primary role played by the particle is to decrease the 

interface scattering time scale, and to re-arrange the directional distribution of phonon 

energy.      

1.2 LITERATURE REVIEW 

Researchers have modeled effective thermal conductivity of composite materials 

in the dilute limit. Hashin [9] developed a generalized self-consistent scheme to 

determine the rigorous bounds on effective conductivity of a two-phase material 
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supporting a particle view of the phonon transport and emphasizing interface scattering as 

the dominant phenomenon. The effective thermal conductivity of composites also 

requires a detailed resolution of phonon polarization and frequency. The mean free path 

of phonons in a material like silicon, for example, ranges over many orders of magnitude 

[10]. Thus, the transport of some phonons groups may be mediated primarily by 

scattering in the bulk matrix, while phonons with longer mean free paths may encounter 

scattering on the particle inclusions. Furthermore, the transmissivity of phonons across 

heterogeneous interfaces is a strong function of spectral signatures of the phonons in each 

material.  

Over the years, significant effort has been made to better understand the 

temperature discontinuity at the interface between two dissimilar materials due to 

interface resistance. The earliest work in this area can be traced to Kurti, et al. [11] and 

Kapitza [12]. In 1941, a study by Kapitza [12] on thermal measurement of a solid 

submerged in liquid helium showed dissimilar temperatures at the interface of the two 

different materials in the experiment. In 1952, Khalatnikov [13] developed a model 

proposing the presence of a thermal boundary resistance (TBR) to explain the 

temperature jump at the interface. The TBR or Kapitza resistance is defined as the ratio 

of temperature discontinuity to the power flowing per unit area across the interface. This 

model was the early basis of the acoustic mismatch model (AMM). In 1959, Little [14] 

expanded the acoustic mismatch model to solid-solid boundaries by considering the 

mismatch in the sound velocity in the two media. Both Khalatnikov and Little adopted a 

harmonic model wherein a phonon interacts with a geometrically perfect interface and 
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experiences reflection or transmission that is elastic. The transmission and reflection 

coefficients are determined by the angle of incidence and the acoustic velocities of the 

phonons on either side of the interface. 

Molecular dynamics (MD) simulations were compared with AMM by Schelling, 

Phillpot, and Keblinski [15] at a silicon-silicon interface with modified properties for one 

side. They found that there was a strong polarization dependence of the transmission of 

high frequency transverse acoustic phonons, allowing only specific phonon types to be 

transmitted across the interface. They could then calculate the transmission coefficients. 

Finally, they noted that the AMM and MD simulations agreed with each other for low 

frequency acoustic phonons, whereas at the high frequencies, AMM did not yield 

accurate results.  

Another approach in modeling the interface, known as the Diffuse Mismatch 

Model (DMM), was proposed by Swartz and Pohl in 1987 [8]. Their model for an 

interface with sufficient roughness and high enough temperature predicted that the 

relative density of states of the two interface materials mattered more than the acoustic 

mismatch in the two materials in determining the interface transmission of the phonons. 

They assumed that the phonon was either reflected diffusely or transmitted, both 

elastically, from the rough interface. DMM assumes that a phonon would not know its 

origin once it impinges upon an interface, i.e., it “loses memory”. Consequently, we can 

say that the acoustic correlations at interfaces are assumed to be completely destroyed by  

diffuse scattering, which means that the transmission coefficient is determined solely 

based on the density of states on both sides and can be derived using the principle of 
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detailed balance [6]. Furthermore, the phonon transmission coefficient is found to be  

equal to the reflection coefficient for a phonon traversing the opposing direction. 

The accuracy of DMM varies depending on the mismatch in the Debye 

temperature of the materials sharing the interface. The Debye temperature is a function of 

the maximum frequency. The errors in this model can be attributed to the elastic 

transmission assumption. In materials with a large Debye temperature mismatch, DMM 

underpredicts the thermal conductance.  This error implies the presence of significant 

inelastic scattering at these interfaces [16-19].  

Another approach to modeling interfaces is through the atomistic Green’s 

function (AGF) [20-24]. Here anharmonicity is ignored at the interface and the Landauer 

formulation [25] of the energy transport is adopted. The system is decomposed into the 

device and two contacts and three different Green’s function is computed for these sub-

sections. This makes it possible to simulate the system response to a wave packet 

traveling through the system. AGF focuses on obtaining transmission functions for the 

phonon waves in a given crystal structure. It can handle the presence of boundaries, 

interfaces, defects and connections to bulk contacts by establishing interaction matrices 

between atoms and simulating the transport of plane lattice waves. While it is 

advantageous in capturing wave effects that may be present in phonon transport, AGF 

requires increased effort to incorporate anharmonic three-phonon scattering [26]. In cases 

where scattering is important and for system sizes which are significantly larger than the 

phonon wavelength, AGF is not suitable. This makes is unsuitable for studying thermal 
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conductivity itself [10], but it can be very useful in accounting for interface atomic 

structure in computing interface transmission functions. 

We can identify two basic types of theoretical modeling approaches for phonon 

transport from the composite materials literature: (i) theories based on effective medium 

approximation (EMA) theory, and (ii) direct numerical simulations of a periodic idealized 

cell in the composite. The EMA is derived typically based on the Fourier conduction 

equations, and as we realize from our previous discussion, sub-continuum effects become 

important at the smaller length scales. Originally the EMA theory developed by Maxwell 

and Rayleigh [27], and numerous variants, including that by Maxwell-Garnett have been 

published [28]. 

An improvement to this classical work was made by Hasselman and Johnson 

(1987) [29] when they incorporated interfacial resistance in to this model for the first 

time. In 1991, Benveniste and Miloh [30] developed a model for effective thermal 

conductivity while incorporating thermal boundary resistance by averaging all relevant 

variables such as heat flux and intensity over the composite medium with a matrix and 

with inclusions being treated as a continuum. The Kaptiza resistance was corrected for in 

the EMA formulation by Every et al. [31]. They presented an asymmetric Bruggeman 

type model and solved it for high volume fraction of inclusions. A more general and 

significant EMA-based model was developed by Nan et al. in 1997 [32]. This analytical 

model gives a general form for computing effective thermal conductivity of arbitrary 

particulate composites. They consider the effect of particle size, shape, distribution, 

properties of the matrix and reinforcement and volume fraction in addition to interfacial 
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resistance, as the previous models. The expression for effective thermal conductivity keff 

of a composite in terms of the wire (kSi) and matrix (kGe) thermal conductivities may be 

written as, 
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where α = 2kGeR/LSi , ϕ= volume fraction, and R is the interfacial thermal resistance 

which is a function of the phonon transmissivity and therefore, the geometry and wave 

vector space in the media. More recently, a modified EMA proposed by Minnich and 

Chen [33] takes into consideration size effects in each phase of the composite by 

modifying the bulk mean free path. This accounts for increased boundary scattering of 

phonons when the particle (wire) size and spacing are comparable to the mean free path 

of phonons. The reduced mean free path of phonons in the matrix (Ge) and wire (Si) 

based on the Matthiessen’s rule is given by: 

1 1 1

1 1 1

eff bulk

Ge Ge coll

eff bulk

Si Si SiL

 
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 

   

Here, bulk

Ge and bulk

Si  are the bulk mean free paths of the phonon in the matrix (Ge) 

and wire, (Si), respectively. coll and LSi  represents the reduction in mean free path in the 

matrix and the wire due to diffuse boundary scattering. Λcoll relates phonon boundary 

scattering to the density of nanowires within the matrix. For a square nanowire, Λcoll = 
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φ/LP, where LP is the length of the periodic unit. The calculated effective mean free path 

of phonons in the matrix and the wire are used to compute the reduced thermal 

conductivity of each phase. The modified EMA model uses the reduced thermal 

conductivity to calculate the overall keff.  

The effective medium approximation (EMA) has been successful in predicting 

effective properties of macrostructured composites but fails to make accurate predictions 

for nanocomposites [10]. This is not surprising given the complex nature of phonon 

transport not being supported by theories in the macroscopic limit. EMA theory severely 

overpredicts the effective thermal conductivity for small period lengths but shows closer 

predictions at micron sized nanocomposite unit cells with the inclusion of the interfacial 

thermal resistance. Despite accounting for boundary scattering, the modified EMA theory 

fails to provide accurate estimation of thermal conductivity in the ballistic limit of 

phonon transport. This range of transport in composites is governed by phonon 

transmission at the interface and view factors between scattering surfaces. In this range 

there is significant departure from the predictions of diffusive transport theory even if 

interfacial resistance due to scattering at interfaces is considered. Thus, EMA theory 

which is based on a diffusive transport theory is unable to predict accurately the effects 

that are dominated by surface view factors [32, 33].  

We turn now to a brief review of numerical methods for the simulation of phonon 

transport. Over the last few years, molecular dynamics (MD) has increasingly come to be 

used to explore phonon transport. MD employs a time integration of Newton’s second 

law of motion at the atomic level, where each atom is treated as a point particle 
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interacting with other particles through an interaction potential. The interaction potential 

may be derived through empirical models that fit specific bulk data [34-37]. Another 

approach is to use force constants based on density functional theory [DFT] [38]. Every 

atom is tracked for a set of discrete time steps over a span of a few nanoseconds and this 

data is analyzed to deliver transport parameters such as thermal conductivity. Both 

equilibrium MD (EMD) [39] employing the Green-Kubo formalism and non-equilibrium 

MD (NEMD) [40] have been employed. The dynamical and transport properties of solid 

crystals are obtained in EMD using the history of thermal fluctuations in the system, 

whereas NEMD directly determines the thermal conductance by imposing temperature 

gradients in the system. Both methods are consistent with each other and agree well with 

experiments [41]. MD simulations are inherently limited by the assumption of classical 

oscillators and results below the Debye temperature fail to recognize quantum effects. 

For silicon, the Debye temperature is 660 K, and consequently any solution below this 

limit cannot be considered accurate. Moreover, with current computational power, MD is 

not a realistic choice for simulating nanocomposites since a very large number of atoms 

would need to be used.  

The semi-classical phonon BTE is capable of describing the quasi-particle nature 

of the phonons, especially at the length scales of our interest, where phonon mean free 

path may be of the order of the system size [6]. Typical solutions of the BTE make either 

a gray or a non-gray approximation to the phonon dispersion relation. A gray 

approximation means that we ascribe a single group velocity and relaxation time to all the 

phonon groups. Under the gray approximation, the group velocity vg is chosen to reflect 
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the velocity of the dominant phonon groups at the temperature under consideration. 

Relaxation time, τ, is chosen such that we can recover the bulk thermal conductivity of 

2 / 3v gC v   corresponding to Fourier’s law, for Kn << 1. Here vC  is the volumetric specific 

heat capacity of the solid. Non-gray models include the full K-space resolved phonon 

dispersion, the wave-vector and polarization dependence of phonon mean free paths and 

interface transmissivity and reflectivity values. Numerical solutions of the BTE employ 

computational schemes that have a basis in the thermal radiation and neutron transport 

literature [42]. One of the most commonly used solution techniques for the BTE is a 

finite volume based approach, where the physical domain is discretized in to control 

volumes. The Brillouin zone is also discretized into finite volumes. Conservation of 

phonon energy may be imposed by integrating the BTE over physical and wave vector 

space, and discretization and numerical solution carried out using standard linear solvers 

[43-45]. The discrete ordinates method is also widely used and is similar, with the 

quadrature in wave-vector space being based on well-established quadrature schemes [43, 

46, 47].  

Periodic nanocomposites have been studied using multiple methods described 

above, primarily due to their simplicity and significance in predicting effective properties 

and engineering new devices. In 1997 Chen [48] modeled effective thermal conductivity 

of periodic thin-film structures in the parallel direction. This model demonstrated that 

interface roughness causes reduction in thermal conductivity of superlattices. One of the 

findings of this BTE based model was that the non-gray approximation was more 

consistent with the experimental results as opposed to the gray approximation. The non-
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gray model, however, came with an increase in the computational expense. In a separate 

study, Yang and Chen [49] modeled phonon transport in a two-dimensional composite 

with silicon nanowires embedded in a germanium matrix. The BTE based model assumed 

gray dispersion and diffuse scattering at the interface. They used the discrete ordinates 

method with double Gauss-Legendre quadratures for solution procedure. The study 

confirmed that temperature profile in nanocomposites were significantly different from 

the regular composites. It also demonstrated the effects of interface conditions, nanowire 

size and volume fraction of constituents on the thermal conductivity of the 

nanocomposite.  

Monte Carlo methods have been developed for phonon transport in 

nanocomposite structures using a gray dispersion relation by Chen et al. and Yang et al. 

[50, 51]. In [50], a periodic boundary condition is implemented in the Monte Carlo 

simulation to study three-dimensional silicion/germanium nanocomposite periodic 

structures. The study shows that the thermal conductivity of nanocomposites can be 

lower than that of the minimum alloy value, which is important from thermoelectric 

energy conversion point of view. It was also found that randomly distributed 

nanoparticles in nanocomposites can yield a thermal conductivity similar to periodic 

aligned patterns when using the periodic boundary condition. In [51], Tian et al. used the 

same code to simulate compacted nanowire composites simplified as periodic units with 

nanowires embedded in a host matrix. This study showed that further reduction in 

thermal conductivity of nanocomposites was possible for compacted nanowires of the 

same characteristic size and atomic composition. Hseih and Yang [52] studied the effects 
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of nanowire shapes in periodic nanowire composites using a multiblock-structured grid 

based solver for phonon BTE. This study showed that a square approximation of circular 

nanowires overestimates the thermal conductivity. This is important as it shows that 

geometry effects cannot be ignored when phonon transport is in the ballistic limit. 

Singh et al. [53] developed a finite volume based BTE solver to study the effects 

of phonon dispersion on silicon/germanium interfaces for two-dimensional domains. 

Results showed non-gray model of phonon transport leads to higher interfacial thermal 

resistance than that obtained using a gray model. This suggests that phonon frequency 

mismatch in the two materials is critical in determining interface resistance. Using a finite 

volume based BTE solver and an acceleration algorithm COMET, Loy [54] modeled 

phonon transport in silicon, germanium, a silicon/germanium composite with a single 

vertical interface and nanoporous silicon. This study used realistic nanoparticle 

composite geometries and non-gray phonon dispersion relations. 

The above studies make significant assumptions on either the underlying phonon 

dispersion or about the geometry itself. The most commonly employed assumption is the 

gray approximation. Another common assumption is the use of idealized unit cell 

geometries. The extent and directionality of scattering depends on the specific orientation 

of inclusions, and the surface-to-volume ratio that they offer. If these are not represented 

correctly, the balance between interface and bulk scattering cannot be captured 

accurately. Ultimately, our intent is to create a model for nanocomposite transport which 

can be used in arbitrary geometries, accounting for both bulk scattering and boundary 

scattering effects across the range of Knudsen numbers. 
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The similarity between the BTE and the radiative transfer equation (RTE) has 

long been recognized. Further, a generalized equation for phonon radiative transport in a 

particulate media has been studied [55], which draws analogy between the RTE and 

phonon BTE. Thus, one may draw parallels between the development of volume-

averaged models for phonon transport in nanocomposites and those for thermal radiation 

in porous media. In the radiation literature there have been studies on porous media 

where the governing equations (Maxwell’s equations) of electrodynamics for 

heterogeneous media in the wave limit are used to derive volume averaged radiative 

transfer equations [56]. Consalvi et al. developed a volume-averaged formulation for 

multiphase radiative heat transfer equations while considering the various particle and 

phase effects such as particle-phase specific surface, gas scattering phase function and 

particle and wall emissivity [57]. The influence of interfaces on radiation intensity in a 

porous medium has been studied in packed beds, porous media composed of particles of 

different geometry, as well as different phases [58-62]. Anisotropic phase functions have 

been considered in [63]. For different particle sizes relative to the phonon wavelength, 

one needs to consider different scattering limits. Scattering from large reflecting spheres 

and cylinders in the geometric limit has been well studied [63].  In the geometric limit 

(analogous to the particle limit for the phonon BTE), ray tracing techniques can be 

employed wherever analytical expressions are unavailable, i.e., short cylinders or 

arbitrary geometries [64].  In the Rayleigh limit, i.e., for particle sizes much smaller than 

the phonon wavelength in the composite, scattering phase functions and transport cross 

sections for anisotropic scattering have been studied for longitudinal phonons [65]. For 



 17 

particles comparable to the phonon wavelength, scattering phase functions and transport 

cross sections for anisotropic scattering have been developed for transverse phonons in 

the Mie limit [66].  

These studies provide guidance on how we may develop a volume-averaged BTE 

and determine the scattering phase functions associated with them. Availability of 

experimental data for both nanoporous and nanocomposite domains makes the 

comparison process for developed models a possibility. Experimental data by Chen [67] 

on porous silicon shows significant departure from bulk properties. Additional 

experimental results are available for Si-Ge nanocomposites [68]. These composites have 

20-80 nm silicon particle sizes in a germanium matrix. In the above studies, data on 

effective thermal conductivity of the domains are available for specific particle shapes 

and sizes.  

Our primary objective is to develop the first volume-averaged model for BTE for 

nanoporous and nanocomposite materials. In the sections that follow, we outline the 

process of developing and solving the governing equations, the process for determiming 

model parameters, as well as validation. 

1.3 DISSERTATION OBJECTIVES 

The overall objective of this dissertation is to develop a volume-averaged model 

for thermal transport in nanoporous and nanocomposite materials, accounting for the full 

range of phonon Knudsen numbers and non-gray effects. The models will be 

implemented numerically in the MEMOSA software framework of Purdue’s PRISM 

(Prediction of Reliability, Integrity and Survivability of Microsystems) center [69]. The 
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volume-averaged BTE is solved using a solver based on the finite volume method (FVM)   

employing the coupled ordinates method (COMET)  [70]. Comparisons are made with 

direct numerical simulations of a geometrically-resolved composite, as well as with 

experimental data where available. The specific objectives and scope of the dissertation 

are discussed in details below. 

1.3.1 Volume-Averaged Formulation for Nanoporous Materials with Gray 

Approximation 

We will develop a volume-averaged formulation for nanoporous domains based 

on a formal averaging of the phonon BTE over a representative elemental volume (REV). 

As we show in the detailed derivation in chapter 2, this will result in an additional 

boundary scattering term which is a function of the interface geometry and the phonon 

wave vector space. A new relaxation-time like model parameter, B , will be derived 

which is a function of the geometry of the representative elemental volume and varies in 

the phonon wave vector space; it represents interface scattering. We write the extra 

integrals as an in-scattering term using a scattering phase function computed from the 

specific shape of the inclusions and the phonon dispersion. The in-scattering term is 

multiplied by the interface scattering relaxation time parameter,   , which is determined 

by calibration against a direct numerical simulation (DNS) of a periodic composite 

domain in the ballistic limit. We will develop a general ray tracing technique to evaluate 

the scattering phase function. The scattering phase function in the model is evaluated in 

the geometric optics limit and validated against available analytical results. We will use 

this technique to investigate scattering phase functions for both spherical and cylindrical 
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inclusions. Volume-averaging the bullk scattering term in the phonon BTE results in an 

average bulk scattering relaxation time,  ̅ . This is determined by calibration against a 

Fourier solution in the periodic domain, and accounts for tortuosity of the thermal 

pathways due to pores and inclusions, in addition to the intrinsic thermal conductivity of 

the bulk matrix material. 

This framework will be first implemented for gray phonon dispersion.  We will 

solve the developed equations within the MEMOSA framework utilizing the COMET 

algorithm. The gray volume-averaged model for nanoporous composites is used for 

predictions for the full range of phonon transport by varying the Knudsen number. The 

method is used to compute the effective thermal conductivity of nanoporous materials 

and comparisons with DNS of the same material are provided. The model is 

demonstrated to predict effective thermal conductivity for spherical and cylindrical 

inclusions. We will investigate the effects of porosity using cylindrical pores. We 

compare the obtained effective thermal properties. We further make a direct comparison 

of the heat rate contributions of different phonon modes obtained from the volume-

averaged BTE with that of the DNS and demonstrate that good agreement is obtained. 

1.3.2 Volume-Averaged Formulation for Nanoporous Materials with Non-Gray 

Phonon Dispersions 

In this work, we will consider non-gray phonon dispersions and implement a non-

gray version of the volume-averaged model developed above. While the model 

development remains the same, the objective is to ensure anisotropic scattering from the 

inclusion interfaces is determined accurately. For non-gray transport, discretization of the 
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Brillouin zone results in a large number of phonon BTEs to be solved, one for each 

discrete K point. Thus, there are a corresponding number of boundary scattering 

relaxation times       to be determined, along with a number of bulk relaxation times,   . 

The scattering phase function matrix,    , will be computed from the specific shape of 

the inclusions and the phonon dispersion. The general ray tracing technique developed 

above will be expanded to the non-gray case assuming elastic scattering. This model 

addresses anisotropic scattering from inclusion interfaces and considers realistic non-gray 

phonon dispersion accounting for phonon polarization. The resulting governing equations 

are then solved using a finite volume discretization and the coupled ordinates method 

(COMET). Relaxation times related to the interface scattering are geometry-specific and 

are determined by calibration to a DNS of the periodic geometry. The calibration is 

performed while accounting for the complete phonon dispersion in the non-gray limit. 

The calibration of      at the ballistic limit is implemented using an iterative Newton-

Rhapson method. Post-calibration, the heat rate contributions of different phonon modes 

are compared with those from the fully-resolved BTE. The predictions are compared with 

experimental data available for cylindrical inclusions for silicon nanoporous films [71]. 

We compare both accuracy and numerical speed-ups obtained using the volume-averaged 

model for non-gray phonon transport with respect to direct numerical simulation of the 

BTE. 

1.3.3 Volume-Averaged Formulation for Two-Material Composites 

We will extend our nanoporous formulation to consider two-material composites. 

We consider a nanocomposite domain with particles of a second material embedded in 
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the matrix. The phonon BTE is integrated on a representative elemental volume (REV) as 

earlier. The presence of composite particles in the matrix of the REV is modeled using 

the extra integral terms resulting from the averaging procedure and are approximated to 

yield additional scattering terms. The scattering at the inclusions is modeled using an in-

scattering term, a scattering phase function determined using the specific shape of the 

particle, and a relaxation time like parameter,   .  

As discussed previously, relaxation times related to the interface scattering are 

dependent on the particle geometry. The relaxation-time like parameter, B , obtained 

from the volume-averaged formulation, will be calibrated to fit the effective thermal 

conductivity obtained from a detailed DNS of the composite geometry in the ballistic 

limit. Volume-averaged bulk relaxation times are calibrated using DNS in the Fourier 

limit, while accounting for both the matrix and particle geometry and thermal properties. 

The result is a phonon BTE written in terms of the volume-averaged phonon 

energy density, and involving volumetric scattering terms resulting from both bulk 

scattering and scattering at the particle interfaces in the REV.  The model is general and 

can addresses anisotropic scattering from matrix interfaces accounting for interface 

selectivity from acoustic and density-of-states mismatch between composite materials in 

the geometric as well as the Rayleigh and Mie limits. We will employ analytical 

expressions for scattering phase functions in the Mie limit for transverse phonons [66, 

72]. We consider gray phonon dispersion for this study. We solve the resulting governing 

equations using the numerical procedure mentioned in earlier sections. The method is 

used to solve for the intrinsic volume-averaged phonon energy density. Using the above 
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energy density field, we compute the effective thermal conductivity for the two-material 

nanocomposite domain. This gray model is tested for the full-range of phonon transport 

by varying Knudsen number. The study is adapted to determine the effective properties 

for a range of composite particulate volume-fractions in the domain.  

1.4 DISSERTATION ORGANIZATION 

The dissertation is organized as follows:  

Chapter 2: In chapter 2 we present the detailed derivation of the volume-averaged 

model. We will develop additional analytical relations for effective thermal conductivity 

in the limiting cases under the gray approximation of phonon dispersion. We will discuss 

in detail the different model parameters including the calibration procedure for the 

interface scattering relaxation,    and the volume-averaged bulk relaxation time,  ̅. We 

will present our general ray tracing technique used to determine the scattering phase 

function in the geometric limit.  

Chapter 3: We will present formulations relevant to the non-gray or K-resolved volume-

averaged BTE model for nanoporous composites. We will discuss the expansion of the 

scattering phase function for non-gray simulations and the calibration of the volume-

averaged relaxation times,   ̅̅̅, as well as the interface-based relaxation time like 

parameters,      using a Newton Rhapson iterative procedure. 

Chapter 4: We will apply the volume-averaged model developed above on a two-

material nanocomposite domain. We will discuss the assumptions and semi-analytical 

approach to compute the scattering phase function in the Mie scattering limit. We will 
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discuss the calibration procedure for the volume-averaged relaxation time and the 

interface-scattering relaxation time in the Mie limit for a nanocomposite structure.  

Chapter 5: In this chapter we will discretize the equations developed in previous 

chapters and present the numerical technique used to solve the volume-averaged BTE.  

We will discuss the different boundary conditions applied in solving the models. For the 

volume-averaged BTE model to be effective the domain length must be large enough. For 

reduction in computation time, we will instead simulate a periodic unit cell for the 

composite. This is done by implementing a periodic jump boundary condition for a unit 

cell, such that the effective properties thus obtained can be compared to the direct 

numerical simulation.  

Chapter 6: We present results and discussions in this chapter. The volume-averaged 

model will be benchmarked against a direct numerical simulation (DNS) for nanoporous 

structures.  The DNS on the nanporous structure will be solved for both gray and non-

gray limits of the phonon dispersion. For the nanoporous gray model we will compare the 

model with the benchmark DNS solution. For the nanoporous non-gray model, we 

compare the model solution with that of the DNS. The volume-averaged models on 

nanoporous and nanocomposite structures will be validated using experimental data 

available for real geometries and materials [71] where possible. For experimental 

validation we compare the DNS directly to nanoporous silicon measurements. Recent 

experimental work on nanoporous silica by Hopkins et al. [73] has data on 500-nm-thick 

films with a square array of pores with diameters and pitches between 300 and 800 nm. 

Hopkins et al. use the time domain thermo reflectance (TDTR) technique for their 
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measurement. These geometries are easily obtainable and can be solved using the 

volume-averaged formulation. 

For nanocomposites we present results for the gray approximation of phonon dispersion 

in the Mie scattering limit. We will calibrate the nanocomposite gray model at the bulk 

and ballistic limits using the DNS on the composite geometry. We consider realistic 

properties and geometries for these studies.   

Validation with the benchmark solution will allow the theory to be used for the prediction 

of the effective properties in nanoporous and nanocomposite structures without the need 

to fully resolve the geometry. This will ease computational expense and will be an 

invaluable technique for the analysis and design of future nanocomposites.  

Chapter 7: We will conclude the dissertation by summarizing the dissertation 

contributions and limitations. We will discuss the relevance of the dissertation research to 

nanoscale thermal transport. Finally we will layout the future directions for this research.  
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Chapter 2: Theory of Volume-Averaging for Phonon Boltzmann 

Transport Equation (BTE) in Nanoporous Composites 

In this chapter we will consider the phonon Boltzmann Transport Equation (BTE) 

and develop a volume-averaged theory of the BTE for a nanoporous composite. We will 

derive the Fourier law for the volume-averaged BTE model corresponding to the bulk 

and ballistic limits of the model in a gray approximation. We also develop a formulation 

for the interface and boundary conditions. A methodology for determining the model 

parameters in the volume-averaged BTE, including the volume-averaged bulk relaxation 

time    ̅and the interface scattering relaxation time    is presented. The model uses a 

scattering phase function,     , that we compute using a ray tracing algorithm in the 

geometric scattering limit. We discuss in detail the algorithm and validate it against the 

published literature. The fundamentals of the volume-averaged BTE model and the 

procedural framework developed in this chapter will be extended to non-gray transport 

and to nanocomposites in later chapters in this dissertation.  

2.1  PHONON BOLTZMANN TRANSPORT EQUATION 

The semi-classical BTE may be used to describe heat transfer in semi-conductors and 

dielectrics. In the absence of phase coherence,  phonon transport in steady state may be 

described using the phonon Boltzmann transport equation (BTE) in the energy moment, 

as shown below [74]: 
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Where   is the phonon group velocity vector, and    is the non-equilibrium phonon 

energy density, which is dependent on the polarization  , the spatial location,  , and the 

wave vector,  . The magnitude of the phonon group velocity is denoted by   . The 

convective term on the LHS describes phonon free flight and the scattering term on the 

RHS accounts for energy exchange due to inter-phonon and phonon-carrier collisions. 

The scattering term couples the energy densities of all the phonons. It is purely re-

distributive, and energy lost by one phonon group is gained by others through scattering 

interactions [75]. The scattering term is very complex in its entirety, and requires the 

imposition of energy and crystal momentum conservation rules. To overcome the 

challenges in solving the full BTE, the scattering term has been approximated using the 

single-mode relaxation time approximation (SMRT) [46]. We also employ this 

approximation in the present work. SMRT approximates the scattering term [43] as 

follows: 
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where   is an effective relaxation time, ћ is the reduced Planck’s constant,    is 

Boltzmann’s constant,   is the phonon frequency,   is the equilibrium temperature, and 

   is the Bose-Einstein distribution function multiplied by the phonon energy.  

The SMRT approximation is based on the idea that the scattering process perturbs 

the phonon mode under consideration, while the modes that it is interacting with remain 

unperturbed; the interaction serves to drive the mode towards equilibrium.  Using the 
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SMRT approximation, Holland derived the bulk thermal conductivity of a crystal [76]. 

Additionally, using specific functional forms of relaxation time, one can model phonon-

phonon, phonon-carrier, phonon-boundary, and phonon-impurity scattering using 

Matthiessen’s rule [76], with constants in the scattering models being calibrated to bulk 

thermal conductivity data. It is also possible to derive mode-wise relaxation times in a 

more fundamental manner using Fermi’s Golden Rule [74]. A number of papers have 

also published phonon lifetimes computed using classical molecular dynamics [77]. 

2.2 THEORY OF VOLUME AVERAGED PHONON BTE MODEL 

In this section we present the development of the volume averaged form of the gray 

phonon BTE model for a nanoporous composite. For simplicity, we first develop the 

theory for a nanoporous medium where the inclusion is essentially replaced with a 

vacuum, i.e., we consider transport through a matrix material with pores in it. Figure 2(a) 

shows a nanoporous domain and Figure 2(b) is a corresponding representative volume 

(REV).  

The REV is the volume over which the BTE is averaged in order to derive the volume 

averaged equations. A sufficiently large REV consisting of several pores is chosen such 

that averaging over it is equivalent to averaging over any other REV in the domain.  
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Figure 2: (a) Nanoporous medium (b) Representative Elemental Volume (REV) 

Let us define a few operators for clarity: 
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Here,     is the volume of the REV,          is the volume of the solid part of the matrix 

and        is the volume of the pores in the composite matrix. The “‒” variables represent 
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volume averaged quantities and “< >” variables represent the intrinsic volume average of 

the quantity in the solid. For clarity we will use bolds for vectors. 

Integrating the gray steady state BTE over the REV, we obtain:  

 

 
∫ [      

      

 
]   

 
 (5) 

We approximate the right hand side as: 

(
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           (6) 

The volume average of the divergence operator [78, 79] is applied on equation Eq. (5): 
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  (7) 

We now separate the surface integral in Eq. (7) into two parts, corresponding to the 

surface for which phonon transport is pointing from the solid to the interface (    

 )and that for which phonon transport points from the interface to the solid(     ).  

 

Figure 3: Interface, S, of a pore 
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We now consider the first term on the LHS of Eq. (8):  

Phonon leaving 

the interface

Phonon incoming 

to the interface
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 where    ̅̅̅̅   〈  〉   

Writing Eq. (8) in terms of the intrinsic average, and making the approximation    〈  〉 

in the RHS intergrals, we have: 
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The process of volume-averaging produces the surface integral terms in Eq. (10) which 

must be closed through modeling. For the surface integral involving phonons incoming 

from the solid interior to the surface, (     ), we assume: 
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  (11) 

The second surface integral term, for (     ), represents the in-scattering of phonon 

energy to phonons of wave vector   from phonons of other wave vectors    . This is 

modeled as: 
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               (12) 

where the subscript      pertains to a given K-space point in the Brillouin zone and the 

summation over   or    is equivalent to summation over the entire Brillouin zone 

volume    . For clarity, from hereafter, we will use the subscript     for the phonon BTE 

corresponding to a given K-space point in the Brillouin zone. Therefore, we may write 

the volume-averaged BTE as: 
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We now have a volume-averaged equation (13) in terms of the intrinsic energy density of 

the REV. There are two types of scattering terms in equation (13). The first term on the 

RHS, involving    ̅, results from phonon scattering in the bulk matrix.  The second and 

third terms on the RHS, involving     represent interface scattering in the domain due to 

the pores. Of these, the second term represents out-scattering at the interface, i.e., it 

accounts for energy leaving the solid for wave vectors whose group velocities point out 

of the solid domain. The third term on the RHS represents in-scattering at the interface, 

i.e. it represents energy transfer from other wave vectors to the one under consideration 

due to scattering at the interface. The term   is the solid volume fraction of the composite 

matrix, as defined earlier. The variable    is a relaxation time-like parameter. This 

parameter represents the time scale on which phonons scatter on the interface.    is a 

function of both the geometry of the representative volume and the phonon wave vector 

space. To model the composite accurately, we calibrate it from direct numerical 

simulations of the REV in the ballistic limit. The scattering phase function,     , governs 

the fraction of energy from wave vector     that is scattered into wave vector   . We note 

that 〈   〉 and 〈    〉 are distinct from each other. The former is the intrinsic energy 

density corresponding to a given K-space point in the Brillouin zone, and the latter term 

appears within the integral which is to be summed over the entire Brillouin zone. We now 

describe how the different   points are coupled using the conservation of energy 

principle, thereby introducing the concept of the volume-averaged lattice temperature. 
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2.2.1 Volume-Averaged Lattice Temperature 

We now define the volume-averaged lattice temperature. Since scattering is purely a re-

distributive process we can write:   

∫
       

 
    

  
    (14) 

Here,      denotes integration over the Brillouin zone. Integrating over the physical 

volume, we get:  

 

 
∬

       

 
      

    

   

 ∫
 

 
∫

       

 
     

 

  
  

 

 ∫
 

 
∫

   

 
     

 

 ∫
 

 
∫

    

 
     

     

 

 ∫
   ̅̅ ̅̅  

   ̅̅ ̅
   

  
 ∫

    ̅̅ ̅̅ ̅ 

   ̅̅ ̅
   

  
    (15) 

If          or         , we can assume that the specific heat is constant with 

temperature. Thus, we can write the energy density in terms of the specific heat capacity, 

     , as follows: 

   ̅̅̅̅       (   ̅̅ ̅      ) 

 ∑      (   ̅̅ ̅      ) 
   ∑     ̅̅ ̅̅ ̅

          (16) 

Furthermore,    ̅̅̅̅   〈  〉 

Here,    ̅̅ ̅is the volume-averaged lattice temperature, and      is the reference temperature 

datum based on which the energy density is defined. 
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2.2.2 Fourier’s Law for Volume-Averaged BTE 

In the diffuse limit Kn (         ) <<1, we can retrieve the Fourier’s law of 

conduction from the phonon BTE. We begin with the volume-averaged BTE: 
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〈  〉 〈   〉
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We can re-write Eq. (17) as: 
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Under the assumption 〈  〉    ̃      for isotropic scattering and gray phonon dispersion: 

   〈   〉  (〈  〉  〈   〉) [
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] (19) 

For small departures from equilibrium, a thermodynamic temperature may be defined, 

and the phonon energy density may be approximated by its equilibrium value. Thus, 

 〈   〉      ̅̅ ̅  〈   〉

    ̅̅ ̅
     ̅̅ ̅  〈  〉

    ̅̅ ̅
  (20) 

In the diffusion limit, also known as the acoustically thick limit, the volume-averaged 

phonon energy density can be written as: 
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(   ̅̅ ̅      )  (21) 

Differentiating with respect to    ̅̅ ̅, we get: 

 〈  〉
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  (22) 

From equations (20) and (21), we get: 
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    ̅̅ ̅  (23) 
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We assume    and    ̅ to be independent of wave vector  . Multiplying equation (18) by 

( ) and integrating over    , we get: 
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The effective thermal conductivity is based on the entire area, i.e., it is averaged over the 

solid and the pores. The mean heat flux must therefore be multiplied with the volume 

fraction: 

    
 

 
       

         ̅̅ ̅  (25) 

Integrating over the Brillouin zone and all polarizations,  , we obtain the total heat flux: 

  ∑ ∫     
  

       ̅̅ ̅
    (26) 

Where,   ∑ ∫
 

 
       

           

In the limit when   is very large (there is no bulk scattering) and all scattering is due to 

the presence of pores, we obtain: 

           (27) 

Using equation (24), therefore, in the limit when all scattering is due to inclusions, we 

obtain:     
 

 
       

         ̅̅ ̅ 

   ∑ ∫     
  

          ̅̅ ̅
         (28) 

By comparison with the Fourier’s law, and assuming that the group velocity, specific heat 

and boundary scattering time scale are independent of frequency, therefore, we have: 
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            (29) 

This shows that, in the limit when scattering is dominated by boundary scattering on the 

inclusions, the effective thermal conductivity,      predicted by the volume-averaged 

model depends quadratically on the volume-fraction. 

2.3  MODEL METHODOLOGY FOR GRAY PHONON DISPERSIONS 

In this section we will discuss the calibration procedure for determining the 

volume-averaged relaxation time,    ̅ and the interface-based relaxation time,   . We also 

discuss the computation of the scattering phase function,     . 

2.3.1 Fourier’s Law for Volume-Averaged BTE 

 

In the presence of pores, heat must flow around the physical obstruction. The longer heat 

flow path results in a fall in the effective thermal conductivity of the medium compared 

to the intrinsic thermal conductivity of the bulk material. This deviation can be quantified 

in terms of thermal tortuosity [79, 80]. In a volume-averaged BTE model, we consider 

homogenized domains without any structural information. Hence it is of great importance 

to include the deviation from bulk properties due to tortuosity of the domain through the 

volume-averaged relaxation time  ̅ . 

In the Fourier limit when   ̅     and   ̅    , using equations (24)-(28), the 

volume-averaged BTE yields an effective thermal conductivity of: 

     
 

 
    

   ̅     (30) 
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We will further employ the Bruggeman theory for composites in determining a functional 

relationship between the effective and bulk thermal conductivity of a nanocomposite. 

Bruggeman theory for composites is widely used in the battery community for both 

thermal and electrochemical simulations [81, 82]. In the Fourier limit, Bruggeman theory 

[83] for effective thermal conductivity for a composite system with a range of sizes of 

thermally non-interfering spherical inclusions can be expressed as: 

          ( )
   (31) 

Where, the bulk thermal conductivity       is given by    
    ,   is the solid volume 

fraction of the composite and   is the Bruggeman exponent and is equal to 1.5 for 

spherical shapes under the aforementioned assumptions. Without a range of sizes for the 

spheres, we expect departure from the Bruggeman exponent value of 1.5. To account for 

this departure, we solve for heat conduction in the composite domain at the Fourier limit 

for     . A Fourier conduction simulation of a periodic unit cell with inclusions is 

conducted with a solid (intrinsic) thermal conductivity of  
 

 
    

   to obtain an effective 

thermal conductivity.  With known bulk and effective thermal conductivity, we determine 

the exponent,  , using equation (31).  

Using equations (30) and (31), we get: 

   ̅   ( )     (32) 

Where,    ̅ is the volume-averaged relaxation time and   is the bulk relaxation time 

parameter. Thus, the value of  ̅ is found by calibrating it to the effective thermal 

conductivity found from direct numerical simulation of Fourier conduction in a periodic 
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unit cell domain. The value of    ̅ thus computed is an input to the volume-averaged BTE 

model. 

2.3.2 Determination of Interface Scattering Relaxation Time B 

In the diffuse limit  ̅         
    

 
  , i.e., in the limit when transport is dominated by 

boundary scattering on the inclusions, the volume-averaged BTE yields the effective 

thermal conductivity given by Eq. (29). We determine    from equation (29). This may 

be used directly in the volume-averaged BTE model for isotropic scattering. For 

anisotropic scattering, however, this value is only an approximation. It is obtained by 

calibration against the effective thermal conductivity obtained by a direct numerical 

simulation in a fully-resolved periodic unit cell in the limit  ̅    such that: 

                                            (33) 

The value of    thus calibrated is used as an input to the volume-averaged BTE model. 

2.3.3 Scattering Phase Function kk’ 

The scattering phase function,     , in the volume-averaged model is determined using a 

ray tracing technique, similar to that used in radiative transport [64]. This treatment is 

valid in the geometric optics limit, when the wavelength of the dominant phonon groups 

is smaller than the length scale of the inclusions. Alternative treatments accounting for 

wave effects may also be used to deduce      when this condition is not satisfied [63]. 

We verify the ray tracing with an analytical formulation for large diffusely-reflecting 

spheres in the geometric optics limit [63]. The procedure is briefly explained here. 
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Computation of      : Ray Tracing Methodology and Validation 

Consider the computation of      for the case of a large diffusely-reflecting sphere. We 

consider incoming phonons with intensity     (   〈  
 〉)  incident on the sphere from a 

direction,    and reflected into direction,   (Figure 4). 

 

Figure 4: Scattering of incident rays by a large diffusely reflecting sphere 

Here      is proportional to the scattered intensity to the total scattered flux. We consider 

reflection from a differential area    on the sphere with outward normal  . The incident 

rate of phonon energy received by the differential surface is given by: 

  (      )        (  )    (34) 

The rate of phonon energy leaving the surface in the direction   is given by: 

  (      )(    )        (  )    (  )           (35) 

Here    is the angle between the incident ray and the normal, and    is the angle between 

the reflected ray and the normal. The value of      is given by:  
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∑      
          (36) 

where,  

    = Sum of rate of phonon energy in rays reflected in the   direction that are 

contributions of incoming rays from direction   . Note that the rate for each ray is 

computed by Eq. (35) and is determined by the normal at its points of impact.  

 ∑      =Total rate of phonon energy in the reflected rays in all directions that are 

produced by incident rays in   .  

To compute the above formula numerically, we define a spherical surface surrounding 

the inclusion (sphere or cylinder) from which the rays originate. Using a random number 

generator, we pick a location uniformly at random on the external surface as a point of 

origin for the incoming ray (Figure 5).  

 

Figure 5: (a) Points of origin of fired rays on the external sphere. (b) Spherical coordinate 

system for rays. 

(a) Δθ

KX

KY

KZ(b)
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The rays are defined using a spherical coordinate system as shown, where       and 

       . The ray directions belong to the discretization domain         which is the 

same as the phonon discretization of the spherical Brillouin zone (BZ). 

We calculate the point of intersection of the incoming ray with the inclusion surface. For 

every intersecting incoming ray, the reflected ray is chosen randomly in a direction on the 

hyperspace separated by the tangent plane on the sphere (Figure 6). We generate multiple 

rays with different directions from each location of the external surface and repeat the 

process for all locations over the external sphere. We allocate the phonon energy rate for 

all incoming and outgoing ray pairs to their respective discretized  -space bins using Eq. 

(35).  

 

Figure 6: Reflection on the surface of a spherical inclusion 

Finally we compute the scattering phase function       as the ratio of the scattered 

intensity to the total scattering heat flux using Eq. (36).  

X
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Z
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In Figure 7, the value of      obtained through ray tracing is plotted along with the 

average of the analytical value over the solid angle of each discretization. The x-axis is 

/π, where  is the angle between incident and reflected ray directions. This result is for 

a K-space discretization of (Nθ x Nϕ =8x16). A total number           
  rays were used 

for this computation. The scattering phase function obtained through ray tracing 

compares well with respect to the analytical solution. 

 

Figure 7: Comparison of ray traced and analytical scattering phase function for a large 

diffusely reflecting sphere. [63] 

The normalized error with respect to the analytical solution is shown in Figure 8. We 

normalize using the maximum analytical      value.  
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Figure 8: Relative error in      for spherical inclusions 

The scattering phase function for a cylindrical inclusion is determined using the same 

algorithm. Due to lack of analytical expressions for short cylinders in the geometric limit, 

we show      from the ray tracing method alone (Figure 9). The multiple lines is due to 

the same angle being formed by multiple discretized data points. 

 

Figure 9: Scattering phase function for a short diffusely reflecting cylinder (  
 

 
   

                     ) 
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2.4  BOUNDARY CONDITIONS 

For the problems considered in the present work, the volume-averaged phonon BTE is 

solved with the following boundary conditions: specified-temperature, wherein the 

population of phonons is governed by the Bose-Einstein distribution at the specified 

temperature, a reflecting or symmetry condition whereby phonons are reflected 

specularly or diffusely [54], and a periodic boundary condition, whereby the solution is 

performed on a periodic module across which a specified jump in lattice temperature is 

assumed to occur. This boundary condition is intended to model transport through a 

composite consisting of regularly repeating units. These are described below.  

2.4.1 Specified Temperature 

Specified-temperature boundaries are treated as diffusely emitting and completely 

absorbing. For a phonon whose group velocity vector points from the boundary into the 

domain, the boundary value is taken to be the equilibrium energy density at the boundary 

temperature.  For a phonon whose group velocity vector points from the interior of the 

domain to the boundary, the phonon is assumed to be traveling ballistically out of the 

domain at the domain boundary such that: 

〈   〉     (  )  〈  〉(   ̅̅ ̅
    (  ))  

〈   〉     (  )  〈   〉     (  
 )       (37) 

Here,    is the spatial location of the boundary,   is the outward pointing normal of the 

boundary, and   
  is a location in the domain interior just upwind of the boundary. 
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2.4.2 Reflecting Boundary 

Reflecting boundaries may be fully specular, fully diffuse, or partially specular/diffuse.  

For specular reflection, the energy of a phonon incoming to the wall is reflected into a 

phonon with the same tangential wave vector component with opposite normal wave 

vector component. For diffuse reflection, the energy of all incoming phonons to the wall 

is reflected equally to all out-going phonons.  The reflecting boundary condition may be 

written as: 

〈   〉     (  )   〈   〉(        )  (   )〈  〉( ̅       ) 

         (   )  

〈  〉( ̅       )  
  

   (
  

   ̅       
)  

  (38) 

where p is the specularity of the wall, a number between zero and one.        is the 

specular direction corresponding to the   vector of interest. 〈  〉( ̅       ) is the 

equilibrium distribution function at the equilibrium temperature corresponding to the 

incoming energy.  The temperature,  ̅       , is found through a non-linear solution of 

the following conservation equation: 

∫ 〈  〉( ̅       )        
   =∫ 〈   〉        

       (39) 

2.4.3 Periodic Jump Boundary 

A periodic jump boundary condition is used to simulate the heat transfer in periodic 

structures in the bulk limit [10] as shown in Figure 10. In this limit, the temperature of 

each periodic module of length    must fall by a constant amount in the direction of heat 

flow,    .  
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Figure 10: Periodic Unit Cell 

Correspondingly, the energy densities at the unit cell boundaries perpendicular to the heat 

flow direction must be related by: 

                     〈   (   )〉   〈   (     )〉  
 

  
            

                     〈   (    )〉   〈   (    )〉  
 

  
             (40) 

Where,        signifies temperature drop in the unit cell in the heat flow direction   . 

The problem is linear because       is independent of lattice temperature. 

2.5  CLOSURE 

In this chapter we developed the volume-averaged model for BTE for a 

nanoporous composite. We discussed the procedure to determine the different model 

parameters and the boundary conditions under a gray approximation of the phonon 

dispersion. In the next chapter, we will discuss the volume-averaged BTE model for a 

nanoporous composite using a non-gray approximation.  
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Direction of 
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Chapter 3: Non-Gray Volume-Averaged Theory for Phonon Boltzmann 

Transport Equation (BTE) in Nanoporous Composites 

In this chapter we expand the volume-averaged BTE developed in chapter 2 to 

include effects of the full K-space resolved phonon dispersion and the wave-vector and 

polarization dependence of phonon mean free paths. We refer to this as the K-resolved or 

non-gray theory.   For non-gray transport, the Brillouin zone is discretized into a number 

of K points. For each discrete  -point of the Brillouin zone, a phonon BTE needs to be 

solved. This results in as many BTEs as there are are discrete K points in the Brillouin 

zone. Thus, there are an equivalent number of interface scattering relaxation times       to 

be determined, along with a number of volume-averaged bulk relaxation time    ̅ . This is 

in contrast to the gray model, where only a single volume-averaged bulk relaxation time 

and a single interface scattering relaxation times.  This difference is due to the non-gray 

approximation that each phonon mode has different properties based on the material’s 

phonon dispersion curves. We include the effects of non-gray dispersion through 

appropriately calibrating the volume-averaged bulk relaxation times    ̅  to the Fourier 

limit solution and the interface scattering relaxation times,       to the ballistic limit heat 

transfer rate using a Newton Rhapson iterative procedure. Finally, we describe the 

procedure to adapt the scattering phase function evaluated using the ray tracing algorithm 

to account for the different phonon polarizations. Finally, we present an algorithm to set 

up a non-gray volume-averaged BTE problem using the methodology developed in this 

chapter. 
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3.1 K-RESOLVED VOLUME-AVERAGED PHONON BOLTZMANN TRANSPORT EQUATION 

We build upon the derivation of the volume-averaged BTE for nanoporous 

domains under a gray approximation. We begin by considering Eq. (10) in chapter 2. For 

a non-gray phonon dispersion, the surface integral involving phonons incoming to the 

solid matrix (     ) is modeled as: 

 

 
∫ 〈  〉   
       

   
〈   〉

    
  (41) 

The second surface integral term in Eq. (10) for (     ) is modeled as: 

 

 
∫ 〈  〉   
       

    
 

    

 

   
∫      〈   

 〉    
               (42) 

The relaxation time is no longer a single value for all K points in this K-resolved (non-

gray) approximation; therefore, each     point pertaining to a given K-space point in the 

Brillouin zone has a different relaxation time to account for the phonon polarization. 

Therefore, we may write the volume-averaged BTE as: 

    〈   〉   
〈  〉 〈   〉

    ̅̅ ̅̅ ̅
 

〈   〉

    
 

 

   

 

    
∫      〈   

 〉    
       (43) 

We note that the difference in the non-gray volume-averaged BTE from the gray model is 

the number of BTEs to be solved. Each BTE has a unique relaxation time and therefore, 

the total number of equations and model parameters to be determined is equal to the 

discretization of the Brillouin zone. 

3.2 MODEL METHODOLOGY FOR K-RESOLVED PHONON TRANSPORT 

For non-gray phonon dispersions, we approximate the Brillouin zone as a sphere. 

The sphere is discretized into       discrete solid angles, and the radius of the Brillouin 
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zone     | is discretized into    divisions. Furthermore, there are      phonon 

polarizaitons. Thus there are         discrete points in the Brillouin zone, resulting in 

as many phonon BTEs to be solved. Thus a non-gray problem engenders (       ) 

times more computational expense than a gray approximation for the same physical 

geometry. The volume-averaged BTE model reduces the physical mesh requirement 

since inclusions do not need to be resolved, thereby reducing the overall numerical 

expense. Indeed, the volume-averaged equations are one-dimensional in physical space 

for all the problems presented in this thesis, whereas the DNS solutions are three-

dimensional. For the volume-averaged model to be solved on the representative elemental 

volume, we need to evaluate the model parameters   ̅ and      which are functions of the 

K-space. The scattering phase function      requires evaluation for the non-gray phonon 

dispersion as well. We will describe each of these processes below. 

3.2.1 Determination of Volume-Averaged Relaxation Time  ̅  

 

We will account for thermal tortuosity in the nanoporous domain due to the 

presence of pores using a method similar to that for the gray model. In the non-gray 

volume-averaged BTE model, we need to evaluate the volume-averaged bulk relaxation 

time   ̅ at each  -point. We include this departure from bulk properties using the 

exponent   [Eq. (31)] similar to that in chapter 2. First we solve a Fourier conduction 

problem on a periodic unit cell with fully-resolved inclusions. Using a known bulk 

intrinsic thermal conductivity of the material and having found the effective thermal 
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conductivity from the simulation, we determine the exponent,  , using equation (31).  

From equation (32), we determine   ̅ at each  -point using: 

  ̅    ( )
     (44) 

where,    ̅  is the volume-averaged bulk relaxation time and    is the bulk relaxation time 

parameter at point   in the discretized wave vector space. The details of determining bulk 

relaxation times are discussed in chapter 6. 

The effective thermal conductivity obtained from the direct numerical simulation 

of Fourier conduction in a periodic unit cell domain is, therefore, used to calibrate values 

of  ̅ s. The set of   ̅   thus computed is used as an input to the non-gray volume-

averaged BTE model. 

3.2.2 Determination of Interface Scattering Relaxation Time      

Under the elastic scattering assumption, energy scattered at the interface is assumed to be 

redistributed without a change in wave vector and polarization. Thus, for a given phonon 

polarization (    ) and wave vector discretization(  ), conservation principles dictate 

that phonon energy may be re-distributed between the different angular 

discretizations (     ). Therefore, under this approximation, only  (          ) 

numbers of interface scattering relaxation times are required. Furthermore, it is possible 

to simplify the problem further and ascribe a single boundary scattering time scale,    , 

for all the   points and polarizations if desired. We investigate both options in this thesis. 
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 To determine the interface scattering relaxation times, we calibrate them to the 

thermal conductivity at the ballistic limit. As discussed in chapter 2, the calibration 

requires: 

                                           (45) 

In order to resolve all the N values of     , the individual contributions to the total heat 

rate of each discretized   -point for each polarization also be matched.  

Therefore, 

∑                          ∑          (46) 

 

                              (47) 

The system of Eqs. (47) are coupled in K space through the out-scattering term.  

Therefore, an optimization scheme is required to meet the constraints of Eq. (46) and 

(47). We choose to apply a Newton-Raphson iterative scheme to determine the   number 

of unknown      values, given the N values of the K-resolved DNS heat transfer rates 

      . 

A good starting guess for the      values may be obtained from Eq. (26) in 

Chapter 2. In the isotropic limit, the effective thermal conductivity may be written as:  

     ∑ (
   

  
)
 
      

      
      (48a) 

Assuming each of the N individual BTEs to be independent,      may be estimated from: 

       (
   

  
)
 
      

      
    (48b) 

Since the scattering phase function is not generally isotropic, Eq. (48b) is only 

approximate, and must be improved through Newton Raphson iteration. 
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Newton-Raphson Iterative Procedure 

The Newton-Raphson method is a popular root-finding method which may be applied to 

multivariate problems. For a single-variable problem for function  ( ), the method 

estimates a root,    such that: 

      
 (  )

  (  )
 (49) 

where    is an initial guess and   (  ) is the function’s derivative. The tangent of the 

function  (  ) intersects the x-axis at (    ). The method is iterated until an accurate 

solution is achieved, such that, 

        
 (  )

  (  )
 (50) 

For a multi-variable problem, a Jacobian consisting of the partial derivatives of the 

function with respect to the unknown variable is determined from previous guesses. We 

make an initial guess for a set of     ’s and solve for the heat rate   ’s. Using this data, 

we generate a function  (    ). The system is thus solved for      using: 

                   (        )
  

(          (        ))  (51) 

where   is the Jacobian of function  (    ). The Jacobian is computed as follows: 
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where   is (       ).  The Jacobian in Eq. (52) is approximated by its diagonal for 

simplicity. This does not the final solution for     , only the path to solution. If the off-

diagonal terms are large, slow convergence, or even divergence may occur. For the 

problems computed in this thesis, we found the diagonal approximation to be adequate. 

The derivatives 
,/N B Nq    in Eq. (52) were found using a finite difference 

approximation. We iterate until Eqs. (46) and (47) are satisfied within 2% of the direct 

numerical solution.  

In Figure 11 we demonstrate a Newton-Raphson procedure to predict a set of 

      that satisfies Eqs. (45) – (47) for a periodic unit with a cylindrical inclusion. We 

assume a spherical Brillouin zone with angular discretization of (     )=2x8, a radial 

discretization of      and        as the total number of phonon polarizations. 

Therefore, there are (       )     unique values of      . We pick a constant      for 

all the   –points as an initial guess such that Eq. (45) is satisfied. The solution converges 

within four iterations.  
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Figure 1: Newton-Raphson iteration for      

Figures (12) - (15) show the convergence of the predicted heat rate contribution for each 

polarization with each Newton-Raphson iteration of     . A faster convergence is 

observed for the longitudinal phonon modes [Figures (13) and (15]) compared to the 

transverse modes (Figures (12) and (14)]. 
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Figure 2: Convergence using Newton-Raphson iterative scheme for transverse acoustic 

(TA) branch of phonon dispersion. 
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Figure 3: Convergence using Newton-Raphson iterative scheme for longitudinal acoustic 

(LA) branch of phonon dispersion. 
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Figure 4: Convergence using Newton-Raphson iterative scheme for transverse optical 

(TO) branch of phonon dispersion. 
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Figure 5: Convergence using Newton-Raphson iterative scheme for longitudinal optical 

(LO) branch of phonon dispersion. 

3.2.3 Computation of Scattering Phase Function      

The scattering phase function is computed using the general ray tracing algorithm 

discussed in chapter 2. Under an elastic scattering assumption, phonon-phonon scattering 

is assumed not redistribute energy between phonons of different wave vectors and 

polarizations; all energy re-distribution is between phonons of the the same K value and 

polarization. Thus, in a spherical coordinates discretization of the Brillouin zone, energy 

is redistributed between different angular discretization (     ) for a given radial 

discretization(  ) and for a given polarization     . Therefore the scattering phase 

function matrix needs to be expanded to account for this.  
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For a gray approximation, there is only one phonon mode or polarization and no 

radial discretization of the Brillouin zone. As a result the      matrix is of size 

(     ) (     ). For a non-gray approximation, the       matrix is a block diagonal 

matrix of size (             ) (             ). The block diagonal nature of the 

matrix is due to the lack of interaction between the different polarizations and radial 

discretizations. Since phonons of different angular discretization for a given 

(       ) interact in the same way as for a gray approximation, we can expand the 

scattering phase function matrix to repeat for different polarizations and radial 

discretizations. 

For illustration, in a gray problem with an angular discretization of (     )  (   ), 

the scattering phase function      matrix will have (     ) (     ) number of 

matrix elements.  Under the elastic scattering assumption, phonons in wave vector   are 

reflected into the   direction without a change in phonon frequency and polarization. 

The scattering phase function matrix for a gray approximation will therefore be: 

[    ]  

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

    
 
   
 
    
 
    

 (53)  

In the non-gray limit with four phonon polarization mode,        and a radial 

discretization of     , for the same angular discretization as the gray example, the 

matrix      will be of size (             )   (             )(      ).  
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However, from the assumption of elastic scattering, phonons in     belonging to a given 

(       ) will not be reflected in to a   direction belonging to a different (       ). 

Therefore, we have a sparse block matrix for      of the order     where   

(             ).  

 

 (54) 

Here the index   (       ). 

In the next section, we briefly outline the steps in solving a non-gray volume-averaged 

BTE model on a nanoporous domain. 
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3.3 FLOWCHART FOR A NON-GRAY SOLUTION 

The flow chart for the solution of non-gray phonon transport in a nanoporous domain 

may be summarized by the steps below. 

STEP 1: We solve the BTE in a nanoporous periodic unit in the Fourier and ballistic 

limits 

STEP 2: Determine the scattering phase function,     using the ray-tracing algorithm 

accounting for different polarizations and discretization. 

STEP 3: Using Eq. (32) and the Fourier limit solution we determine the volume-averaged 

bulk relaxation times (  ̅̅̅) for non-gray phonon dispersion. 

STEP 4: We calibrate     using the Newton-Rhapson iterative procedure to match the 

ballistic limit solution 

STEP 5: Solve the volume-averaged BTE under a non-gray approximation by using 

realistic material properties and the relaxation times computed in steps 3 and 4. 

3.4 CLOSURE 

In this chapter we discussed the volume-averaged model for BTE for a nanoporous 

composite using a non-gray approximation. We discussed the procedures to determine the 

different model parameters and presented a flowchart for solving a volume-averaged BTE 

for non-gray transport.  In the next chapter, we will discuss the volume-averaged BTE 

model for a two-material nanocomposite, and include a scattering phase function for 

phonon-phonon scattering in the Mie limit.  
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Chapter 4: Volume-Averaged Theory for BTE in Nanocomposite 

Domains 

In developing the next generation of thermoelectric materials for energy storage and 

conversion, two distinct approaches have been undertaken traditionally [84]. One 

involves developing thermoelectric materials with advanced bulk properties [85]. The 

second approach uses low-dimensional materials [68]. Recent advancements involve 

merging the two efforts by utilizing thermoelectric materials with advanced bulk 

properties as a host in a matrix of engineered nanoscale inclusions [86]. Therefore, 

nanocomposite structuring has become an important technique for optimizing efficiency 

in thermoelectrics [84].  

Characterization of transport properties in engineered nanocomposite thermoelectric 

materials is challenging especially in relation to thermal transport [87]. In designing 

advanced nanocomposites with varying particle geometries, the ability to predict thermal 

properties computationally is, therefore, of great value. The nanocomposites are 

particularly designed to reduce the thermal conductivity by enhancing interface scattering 

and suppressing thermal transport through a mismatch in phonon spectra. This is possible 

through appropriate distribution of composite particles of varying geometries and 

different phonon dispersions in host and particles in the composite matrix. Figure 16 

shows the different phonon dispersion curves for Silicon and Germanium and a 

comparison of the phonon mean free paths. Certain high-frequency phonons in Si are 

absent in Ge along and phonon group velocities in Si, particularly in the LA mode, are 

higher. 
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Figure 6: (a) Phonon dispersion in Si and Ge along [100]. (b) Mean free path of phonons 

in Si and Ge [10] 
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4.1 VOLUME-AVERAGED PHONON BOLTZMANN TRANSPORT EQUATION IN TWO-

MATERIAL COMPOSITE 

In this section we will extend our nanoporous formulation to consider two-

material composites. The nanocomposite under consideration has particles of a second 

material embedded in a host material, as shown in Figure 17. 

 

Figure 7: (a) Particulate nanocomposite medium generated from a CT scan [54]. (b) 

Representative Elemental Volume (REV) 

We consider a nanocomposite domain with particles of a second material embedded in 

the host matrix. In the development of this model, we will consider the phonon BTE of 

the host material and will model the particle in the composite as a scattering site, i.e., 

using the interface scattering relaxation time and the scattering phase function. Similar to 

the nanoporous volume-averaged BTE model development, we integrate the phonon BTE 

of the host material on the representative elemental volume (REV). Instead of the pore, 
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we will now consider the volume of the particle. We re-define a few operators for our 

present model: 

                    

〈 〉  
 

       
∫    
       

 

 ̅  
 

 
∫    
 

 
 

 
∫    
       

 
 

 
∫    
         

  (55) 

 

 

For this model, we consider very small particles, such that 
 

 
∫    
         

  . 

Therefore, 
 

   ̅̅ ̅    〈 〉;           
       

 
   (56) 

Here,     is the volume of the REV,           is the volume of the host material and 

           is the volume of the particles in the composite. The “‒” variables represent 

volume averaged quantities and “< >” variables represent the intrinsic volume average of 

the quantity in the matrix. 

By integrating the gray steady state BTE for the matrix material over the REV similar to 

the process developed in chapter 2 [Eqs. (5) - (9)], the resulting volume-averaged BTE 

for a two-material composite can be written as: 

     〈   〉    
〈  〉 〈   〉

   ̅̅ ̅
 

〈   〉

  
 

 

   

 

  
∫      〈   

 〉    
       (57) 

where the subscript      pertains to a given K-space point in the Brillouin zone of the 

host material and the summation over   or    is equivalent to summation over the entire 
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Brillouin zone volume     of the host.  Equation (57) is the volume-averaged model for 

the composite in terms of the intrinsic energy density of the material in the REV.  

As seen previously for the nanoporous volume-averaged BTE model, two different types 

of scattering terms appear in Eq. (57). The first term on the RHS, consisting of    ̅, results 

from phonon scattering in the bulk of the composite REV. The remaining two terms in 

the RHS consisting of the interface scattering relaxation time,     represent interface 

scattering in the domain due to the particles in the composite. Out-scattering at the 

interface, i.e., energy leaving the specific K phonon group, is represented by the second 

term on the RHS.  The third term represents the in-scattering at the particle interface by 

considering energy transfer from other wave vectors to the current   point. The term    

is the volume fraction of the host material in the composite REV.  

The coupling between the different  -space points in the Brillouin zone is governed 

using the concept of energy conservation as previously stated in chapter 2. The volume-

averaged lattice temperature    ̅̅ ̅ is determined using Eq. (16) as derived earlier. Next we 

discuss the evaluation of the different model parameters.  

4.2 MODEL METHODOLOGY FOR GRAY PHONON DISPERSIONS 

In this section we present the calibration procedure for determining the volume-

averaged relaxation time,    ̅, and the interface scattering relaxation time,   . We also 

discuss the choice and computation of the scattering phase function,      for the two-

composite domain. The model is general and can address anisotropic scattering from the 

particle interfaces. In the particle limit, the scattering phase function obtained through 
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geometric scattering would suffice. We will, however, consider, sparsely distributed 

particle-composite systems and very small particle sizes, where wave effects need to be 

considered. We will evaluate our scattering phase function using existing Mie scattering 

theory. We are using a gray approximation and will consider properties for a single 

phonon mode. Scattering phase functions in the Mie limit have been derived for 

transverse phonons in the literature [66, 72]. 

4.2.1 Determination of Volume-Averaged Relaxation Time  ̅ 

The thermal pathway is modified in the presence of particles of a second material in the 

composite matrix. The volume-averaged bulk relaxation time,    ̅, will therefore need to 

be calibrated using DNS in the Fourier limit, while accounting for the detailed composite 

geometry and the thermal properties of both the materials in the REV. 

Using the method previously discussed, we will compute exponent   [Eq. (31)] for the 

composite problem. We first solve the Fourier conduction problem on a periodic unit cell 

of REV containing the host material and the particle. With known bulk intrinsic thermal 

conductivity of the both materials, the effective thermal conductivity of the composite 

unit cell may be computed from the Fourier solution. We then evaluate the exponent,  , 

using Eq. (31).  From Eq. (32), we determine  ̅. We are using a gray approximation and 

therefore, only a single value of  ̅ is required for the model. We will use this as an input 

to the composite volume-averaged BTE. 
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4.2.2 Determination of Interface Scattering Relaxation Time,    

We will determine the interface scattering relaxation time,   , using the previously 

developed method for the nanoporous volume-averaged BTE model. The interface 

scattering relaxation time,    represents the time scale on which phonons scatter on the 

particle interface. We calibrate    from direct numerical simulations of the REV in the 

ballistic limit, when  ̅    .  

In the ballistic limit, there is no bulk scattering in either the host or the particle. If the 

particle is sufficiently small compared to the domain size, we can perform the calibration 

of    on an equivalent nanoporous domain, where instead of composite particles, we 

consider pores. We estimate the    using Eq. (29), and calibrate against the effective 

thermal conductivity obtained by a direct numerical simulation in a periodic unit cell with 

pore in the limit  ̅    such that Eq. (33) is satisfied. This calibrated value of    is an 

input to the volume-averaged BTE model. 

Next we discuss the scattering phase function for the composite problem. 

4.2.3 Scattering Phase Function,       

In the development of our nanoporous models, we evaluated the scattering phase 

function,     , in the geometric scattering limit using a ray tracing technique [64]. This 

method is valid when we consider pore sizes much larger than the wavelengths of the 

dominant phonon groups. The consideration of the particle size,  , compared with the 

phonon wavelength,   is important in determining the interaction between the phonon 

and the composite particle. For    ,  we are in the Rayleigh limit and geometric 

scattering will not be valid. For    , the scattering is in the geometric optics limit and 
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a ray tracing approach as adopted earlier is relevant. However, for modern 

nanocomposites with bulk and nanoparticles being used simultaneously for new designs, 

the particle sizes can be of the range of the phonon wavelength in the domain, requiring 

an investigation using the Mie scattering theory [66].  It is important to note that in the 

scenario where embedded particles are of comparable dimensions to the phonon 

wavelength of the host material, the particle treatment and hence phonon BTE is still 

valid for the host material as long as the phonon mean free path ( ) is much larger 

compared to the spacing between particles. Here, we employ the assumption that the 

particle acts as a point scatterer. The scattering of phonons in the host material due to the 

particle is represented through a scattering term with a scattering phase function derived 

from Mie theory. A similar treatment may be used for Rayleigh scattering as well. 

To summarize, the following condition must be satisfied for the volume-averaged 

BTE model to be applicable while using a Mie scattering based phase function,     : 

     and L>>a (58) 

where L is a measure of the distance between particles. Moreover, for particle sizes much 

smaller than the mean free path and comparable to the phonon wavelength, Mie 

scattering theory will be necessary as geometric scattering is no longer valid. 

        (59) 

For a composite REV where the particles satisfy the above conditions, we can determine 

the scattering phase function in the model in the Mie-scattering limit. For most 

composites of interest, phonon mean free paths are in the range of tens to a few hundred 

nanometers, while wavelengths may be of the order of a few nanometers [88]. This 
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implies the particle size should be of the order of a few nanometers and interparticle 

distance must be at least of the order of tens of nanometers. Thus, this treatment would 

generally be valid at low particle volume fraction. 

 We will use the analytical expression for the Mie scattering phase function for transverse 

phonons available in the literature to compute the scattering phase function matrix      

[66]. The formulation assumes specular scattering of phonons by spherical particles.  

Mie scattering of phonons is analogous to that of photons. For photons, it is an exact 

solution of the Maxwell’s equations subjected to boundary conditions at the scatterer 

interface, while for phonons it is an exact solution of the elastic wave equations with the 

specified boundary conditions at the interface. Since it is an exact solution to the wave 

equation, in the wave-limit, the Mie scattering will, therefore, be valid for all sizes of 

particles. 

Analytical Mie-Scattering Phase Function 

Phonon scattering in the Mie limit has been studied and a theory analogous to radiation 

Mie scattering has been developed by Prasher [66]. We apply the scattering phase 

function developed for horizontal transverse phonons. The theory used assumes no mode 

conversion. No mode conversion means at the interface only two different types of waves 

are generated [Figure 18]. Mode conversion will be necessary for longitudinal and 

vertically polarized transverse phonons as there will be four different waves generated at 

the interface [66].  
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Figure 8: Scattering by a transverse wave 

  

In radiation, electromagnetic waves are transverse waves. Therefore, the equations of the 

Mie theory for phonon scattering are identical to scattering of transverse waves in 

radiation, except that there is no coupling between horizontal and vertical polarized 

transverse waves in phonons. The development assumes independent scattering and 

neglects multiple scattering effects for specular reflection at a spherical scatterer 

interface.  

The scattering phase function is given by: 

 (   )    
 (   )

∫ ∫  (   )        
  

 

 

 

 
   (   )

∑ (    )    ̅̅ ̅̅ 
   

  (60) 

where  (   ) is the dimensionless scattering function and is a function of (   ) in the 

spherical coordinate system, Figure 19.  
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Figure 9: Spherical coordinate system convention usedin      
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The coefficient   can be evaluated by the expression below: 
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  (62) 

The overline     represents complex conjugate. The functions    and    are evaluated 

as follows: 

  (    )  
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  (    )  
 

   
  
 (    )  (63) 

Where   
 is the associated Legendre function of order 1.  The function   is expressed as: 

  
 ( )    ( )     ( )  (64) 
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Where,   
  is the spherical Hankel function of the second kind and of order  , and    is 

the spherical Bessels function of the second kind and of order  . The size parameter   is 

expressed in terms of the radius of the spherical scatterer and the wave number of the 

transverse wave in the media under consideration. Here ‘1’ represents the host material 

and the ‘2’ represents the spherical particle: 

      ;         (65) 

The wave number is computed from the frequency of the transverse phonon under 

consideration and the velocity of the transverse wave: 

   
  

   

;      √
  

  
;     

     

 
  (66) 

The transverse phonon speed in host material is given by    ,    is the wavelength of the 

phonon under consideration,    is the density of the host material and    is the shear 

Lamé constant. The same definitions apply for the particle properties. We assume an 

isotropic medium in determining the Lamé constants from the stiffness matrix of the 

materials under consideration. 

To validate our calculations, we compare the scattering efficiency obtained from the 

study with that of a rigid scatterer from Mie theory in photons. The scattering efficiency 

is expressed in terms of the previously defined parameters: 

  
 

  
 ∑ (    )    ̅̅ ̅ 

     (67) 

In Figure 20, we show the scattering efficiency of rigid scatterers by assuming a very 

dense particle, with a low phonon speed in the medium. We vary the scatterer radius; for 

very large values of   , the scattering efficiency approaches a value of 2, which is 
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consistent with the Mie theory. Large values of   implies geometric scattering. We 

consider 40 terms in the series to ensure convergence in the calculation of the scattering 

efficiency and the phase function. The Mie theory for radiation and the transverse 

phonons compare very well. 

 

Figure 20: Scattering efficiency of a rigid scatterer 

Next we compute the scattering phase function for a realistic silicon-germanium 

composite structure. 

Mie Scattering in Silicon Host with Germanium Particle 

We determine the scattering phase function for transverse phonons for scattering in a 

silicon medium by a spherical germanium scatterer [Figure 21]. Using the following 

properties for Si and Ge for a shear wave propagating in the [1 1 0] direction [89]: 

Rigid Scatterer



 74 

    
          

  
                

                  ;                (68) 

 

Figure 10: Nanocomposite domain with a silicon host matrix containing a germanium 

particle. 

We consider a gray approximation of the volume-averaged model. Therefore we choose 

the phonon group velocity of the transverse wave as the speed of sound wave in silicon 

(           ). In Figure 22, we plot the scattering efficiency [69] in the above 

system as we vary the germanium particle size, keeping other properties constant. 
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Figure 11: Scattering efficiency for varying sizes of germanium scatterers in silicon [66] 

[69]. 

4.2.4 Rotation of the Scattering Phase Function and Computing the      Matrix 

The Mie scattering phase function ( (   )) reported in the literature is generally defined 

for an incoming wave travelling along the Z-axis. For our case, where the input and 

output waves can have different directions, the right   and   must to be computed to 

determine the value of the phase function. These are computed by rotating the incoming 

wave appropriately. Say, the input plane wave is at an angle   with respect to the Z-axis. 

Therefore, we rotate the incoming wave to align with the Z-axis [Figure 23].  

Germanium Scatterer
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Figure 12: Rotation of the incident wave directions to align with the Z-axis. 

 

Now the output wave vectors from this incident wave will also be rotated by   in the 

same direction by using the same rotation matrix. It is known that the rotation matrix for 

rotating the unit vector a to unit vector  b is given by R [90]: 

     [ ]  [ ] 
    

  
;  (69) 

where               ‖ ‖        

Here    is the skew symmetric cross product of matrix  . 
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]  (70) 
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Note that here a is the unit vector in the direction of the incoming wave while b is the 

unit vector in the direction of the Z-axis. After the rotation operation (multiplying R with 

the outgoing wave vector), we determine the angle (   ), and  (   ) corresponding to 

the output direction. This allows us to determine       matrix for any given input and 

output direction.  

 

 

 

Figure 13: Continued next page 

 

(a) 
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Figure 14: Visualization of rotation for a given input direction (in red) and all outgoing 

directions. (a) Shows the wave vectors before rotation, and (b) shows the 

wave vectors after rotation 

Next we outline the steps involved in calculating the matrix. 

4.2.5 Mie Algorithm 

Step 1: Discretize   and   by picking           where              

Step 2: To take values at the centroid of the control angle off-set starting angles by  
 

 
 and 

 

 
 

Step 3: Define incoming direction as (          ̂            ̂        ̂) 

Step 4: Define Z-axis [0 0 1] 

Step 5: Loop over all incoming directions and calculate the rotation matrix 

(b) 
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Step 6: Calculate       and      , the angle between input and Z-axis based on rotation 

and apply that to the output directions while being mindful of the quadrant in which each 

outgoing direction belongs 

Step 7: Compute      using                         for the outgoing directions. 

We align our computation of the scattering phase function with the angular 

discretization of the phonon wave vector space in the silicon in the volume-averaged 

BTE model. We use an angular discretization of (      )  (    ) where        

and       . In Figure 25, we present the scattering phase function values for all 

outputs for three different incident directions of the phonon wave for     . The black 

dotted line represents the case of incidence in the direction of the positive Z-axis. 
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Figure 15: Scattering phase function as a function of output angle θ for three different 

incidence angles and for      

The scattering phase function matrix thus obtained is an input to the volume-averaged 

BTE for the composite. The model parameters are determined based on the geometry and 

properties of the composite materials and are used as an input to equation (57). The 
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model will be discretized using the finite volume method and solved using the coupled 

ordinates method (COMET), as described in the next chapter. 

4.3 CLOSURE 

In this chapter we discussed the volume-averaged model for BTE for a two-material 

nanocomposite using a gray approximation. We discussed the procedure to determine the 

different model parameters and. In the next chapter, we will present the numerical 

procedure to solve the different models developed in the dissertation so far. 
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Chapter 5: Numerical Procedure 

In this chapter we will discuss the discretization of the different volume-averaged 

Boltzmann Transport Equation (BTE) models developed thus far as well as the numerical 

method for their solution.   We will discretize the equations using a finite volume method 

(FVM) [43, 91, 92]. The resulting system of discrete equations will be solved using the 

Coupled Ordinates Method (COMET) [54]. We will discuss in detail the discretization 

procedure for the volume-averaged BTE model for the nanoporous domain using a gray 

approximation. We will then present the discretized equations for the nanoporous non-

gray model and for the two-material composite volume-averaged BTE model.  

5.1 DISCRETIZATION 

The volume-averaged BTE models are discretized using a standard finite volume 

procedure. The physical domain and the wave-vector space are each discretized into 

control volumes. Figures (26) and (27) show a schematic of the control volume in the 

physical and wave vector spaces. The physical space is discretized into arbitrary 

unstructured convex polyhedral. The Brillouin zone is assumed spherical and is 

discretized using a spherical coordinate representation. 

5.1.1 Volume-Averaged BTE Model for a Gray Phonon BTE in a Nanoporous 

Domain 

In this section we focus on the gray model in a nanoporous domain. To discretize, we will 

first integrate equation (13) over both the physical and wave-vector control volumes and 

then apply the divergence theorem. Applying the divergence theorem and discretizing we 

get the following: 
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Figure 16: Schematic of a control volume in physical space [70] 

 

Figure 17:  Schematic of a control volume in wave vector space for a face centered cubic 

lattice [74]. 

We get the following equation: 
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Values associated with the cell centroid have the subscript    ,    is the volume of the 

control volume and     is the outward-pointing area vector of the face  . Equation (72) 

is summed over all faces   of the control volume.      is the extent of the control 

volume in wave-vector space. We make a second-order spatial approximations in 

equation (73) in integrating in   space [44]. The face values in equation (72) are 

computed using a first order upwinding scheme giving us the discrete equation (73). Cells 

neighboring the face cells   of interest are referred with the subscript     . 

Equation (73) represents the discrete form of the BTE at a given discrete point   in 

wave-vector space. The terms on the LHS represent the “advection” or streaming of 

phonons of wave vector   in the direction of the group velocity vector  , and only 

involve spatial coupling between  -type phonons at location    , and  -type  phonons at 

the neighbor locations     . The terms on the RHS represent scattering events, either due 

to bulk scattering or due to scattering on inclusions and interfaces contained in the control 

volume. Here phonons of type   scatter on phonons with other wave vectors through the 

terms 〈    〉 and the third term on the RHS. For low Knudsen number, the scattering terms 

dominate, whereas for high Knudsen numbers, the advection terms dominate. For 
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semiconductors like silicon, the large range of phonon mean free paths (MFPs) implies 

that most problems of practical interest involve a range of Knudsen numbers.  

 Once we have obtained a discrete set of algebraic equations, such as equation 

(73), we must devise a solution procedure to solve them. Typical published methods [43-

45] employ a sequential solution algorithm whereby the BTE corresponding to each 

discrete point in   space is solved over all physical space, holding the energy density 

values at other   points temporarily known. The solution procedure cycles over all   

points in this manner, and updates the coupling term, 〈    〉, once every outer iteration. 

This type of procedure couples spatial points tightly, but   points loosely. Consequently, 

low Knudsen number problems are slow to converge with sequential procedures. In this 

dissertation, we employ an efficient solution procedure called the Coupled Ordinates 

Method (COMET) to ensure efficient coupling, both in the physical space and in   space 

[54].  

5.2 COMET ALGORITHM 

The COMET algorithm is described in detail in [54]. We recapitulate the main 

points here for completeness. COMET seeks to achieve strong coupling in both the 

physical and   spaces through a point-coupled multigrid strategy. At each physical 

control volume or cell, the discrete BTEs at all the   points are solved simultaneously, 

assuming physical neighbor values known. This point-coupled solution is used as the 

relaxation sweep in a full-approximation storage full multigrid (FAS-FMG) procedure 

[93]. The point-coupled procedure ensures strong coupling in   space, whereas the 

multigrid procedure promotes strong coupling in physical space. Previous work [70] has 
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shown that speed-ups over sequential solution algorithms of 10-200 times may be 

obtained. 

5.2.1 Point Coupled Solution 

A direct point-coupled solution for all of the phonon energies and the lattice temperature 

is performed at each physical cell,   [94]. All the equations are written in delta form. 

Thus, we solve for the correction to the current solution approximation.  We cast equation 

(73) (  ) in the delta form: 
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The   ’s are corrections to the previous iteration, referred to as        in equation (75).  

The solution variables are on the left hand side and the right hand is the residual,  , of the 

current solution approximation.  The influence of the neighbor values is treated explicitly.  

Equation (75) uses correction to the equilibrium energy density,  〈    〉. We will now 

apply a Taylor series expansion in temperature for the prevailing temperature such that:  

 〈  〉  [
 〈  〉

    ̅̅ ̅
]
    

    ̅̅ ̅  (76) 
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At a particular physical cell, all phonon modes share the same equilibrium average lattice 

temperature. Therefore, the correction to the current temperature does not vary in wave 

vector space. Hence we can write: 

∑   〈     〉              〈     〉 [
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    (77) 

Scattering is a re-distributive process, and therefore, the net scattering term integrated 

over the Brillouin zone must be zero, following energy conservation in each cell. 

Therefore, from equation (15), we can write: 

∑
〈     〉 

   ̅̅ ̅
      ∑

〈      〉 

   ̅̅ ̅
       (78) 

Here “BZ” refers to a summation over the entire Brillouin zone and over all polarizations. 

The above energy equation can be written in the correction form as follows:  

∑ (
 〈     〉  〈      〉 

   ̅̅ ̅
)       ∑ (

 〈     〉  〈      〉 

   ̅̅ ̅
)
    

          (79) 

 (41) 

As with equation (75), the right hand is the residual,    of the current solution 

approximation and solution variables are on the left hand side. Using equations (76) and 

(79), we can state the energy conservation statement in terms of the average lattice 

temperature: 

    ̅̅̅̅ ∑ [(
 〈    〉

    ̅̅ ̅
)
       

 ̅
]   ∑  〈     〉  

   

 ̅
       (80)  

Using the above forms, we can now relate the volume averaged lattice temperature   ̅ and 

the phonon energy density e”. The point-coupled linear system can then be written as: 
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(81) 

We now have (   ) total number of equations to be solved at each cell, where   is the 

number of   points times the number of polarizations. The Jacobian matrix shown above 

has an “arrowhead” structure which is exploited in the point-coupled solution procedure 

so that the linear system may be solved in O(n) operations. This carefully engineered 

Jacobian is the key to obtaining efficient solutions through the COMET algorithm. 

The last row represents the energy conservation equation in the bulk while 

coupling the lattice temperature to all the phonons. The last column couples the phonons 

to the lattice temperature. The Jacobian in equation (81) is non-linear due to the non-

linear dependence of the Bose-Einstein distribution on the lattice temperature in the last 

column. Multiple direct solutions of the system have to be performed while updating the 

last column. When constant specific heats are assumed, the problem becomes linear, and 

the multiple outer iterations are no longer required. 

In the next section we will present the discretized form of the volume-averaged 

BTE models for the nanoporous domain with a non-gray approximation and the 

nanocomposite model with a gray approximation for completeness. 
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5.3 VOLUME-AVERAGED BTE MODEL FOR A NON-GRAY PHONON BTE IN 

A NANOPOROUS DOMAIN 

We present the discretized system of equations for the non-gray model in a 

nanoporous domain. In a process as described earlier in this chapter, we integrate 

equation (43) over both the physical and wave-vector control volumes and apply the 

divergence theorem.  
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The resulting equations are shown below. 

∑  〈     〉        
〈    〉 〈     〉

    ̅̅ ̅̅ ̅
   

〈     〉

    
   (

 

   

 

    
∑      〈     

 〉    
  )          

(83) 

∑  〈     〉             ∑  〈      〉              
〈    〉 〈     〉

    ̅̅ ̅̅ ̅
   

〈     〉

    
   

(
 

   

 

    
∑      〈     

 〉    
  )       (84) 

Casting the above equations in the delta form, the residual can be written as: 
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 We note that the difference in the previously described discretization equations and the 

present is that along with 〈     〉, the interface and volume-averaged bulk scattering 

relaxation times,       and     ̅̅ ̅̅ , now vary in  -space. Special care has to be taken in 

evaluating the in-scattering term in this   –resolved volume-averaged BTE as      is a 

function of the angular discretization of the wave vector space   and is different for 
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different polarizations. The volume-averaged lattice temperature equation is the same as 

before [Eq. (78) – Eqs. (80)]. The relaxation time parameters are determined using the 

methods described in chapter 3 and are input to the problem. The resulting system of 

equations has the arrowhead matrix structure shown in Equation (81). 

5.4 VOLUME-AVERAGED BTE MODEL FOR A GRAY PHONON BTE IN A 

NANOCOMPOSITE DOMAIN 

We now present the discretization for the gray model in a two-material 

nanocomposite domain. As a reminder, this is obtained by volume-averaging the BTE of 

the host-material in a nanocomposite representative elemental volume. As described 

earlier in this chapter, we integrate equation (57) over both the physical and wave-vector 

control volumes and apply the divergence theorem.  
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The resulting equations are shown below. 
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Casting the above equations in the delta form, the residual can be written as: 
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The difference between these discretized equations and the gray model for the 

nanoporous domain in section 5.1.2 is only in the coefficient,   , which is the volume 

fraction of the host material in the nanocomposite. We determine the volume-averaged 

lattice temperature equation as earlier, using Eq. (78) – Eq. (80). The current set of 

discretized equations is exactly the same as the arrowhead matrix shown in Equation 

(81). 

Now we discuss the solution procedure for the above discretized models. 

5.5 SOLUTION PROCEDURE 

As discussed above, the point-coupled procedure is used as a relaxation sweep in 

a multigrid procedure. A full approximation storage (FAS) [93] geometric multigrid 

method is used, with a point-coupled Gauss-Seidel scheme as the relaxation sweep. A 

standard V-cycle with one pre-sweep and two post-sweeps is used [93] for the work 

presented here, though any of the numerous published multigrid cycling schemes may be 

used as well. 

5.5.1 Single Relaxation Sweep 

Figure 28 is a flow chart of one relaxation sweep for the COMET solution procedure. 

One sweep involves an outer loop over all points in physical space, each point requiring a 

direct solve of equation (81).   



 92 

 

Figure 18:  Flow chart for one relaxation sweep for COMET [54] 

The relaxation sweep shown in the figure is embedded in the multigrid scheme, with 

similar relaxation sweeps at each multigrid level [Fig. 29]. 

 

Figure 19: Cycling strategy in a multigrid scheme with V-cycle 

 The numerical scheme described here is also used for direct numerical 

simulations of the periodic unit cell of the composite, albeit using intrinsic and not 

l = 0 

l = 1 

l = 2 

l = 3 
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volume-averaged quantities. In the next chapter, we present results using this procedure 

for both sets of equations. 

5.6 CLOSURE 

In this chapter we discussed the discretization procedure and presented the discretized 

equations for the models developed thus far in this dissertation. We presented the final 

form of the equation structure and described the underlying numerical algorithm for the 

solution procedure. In the next chapter we will discuss the problems solved using these 

models and present results. 
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Chapter 6: Results and Discussion 

In this chapter we present effective thermal conductivity results obtained by using the 

three volume-averaged BTE models developed in previous chapters. We will structure 

the chapter as follows: first we present model verification and validation. Next we 

consider the volume-averaged BTE model for a nanoporous composite in the gray limit. 

Then we consider the nanoporous model under the non-gray approximation. Finally we 

consider the volume-averaged model for a two-material composite using a gray 

approximation.  

For all three models, we utilize the direct numerical simulation (DNS) of the 

phonon Boltzmann Transport Equation (BTE) in the diffuse and ballistic limits for 

determining model parameters. For the first two models, we compare the accuracy of 

these volume-averaged models with the detailed analysis obtained through the DNS on 

the original composite domain. The DNS results are considered a benchmark solution for 

these cases. For the final model, a direct comparison with the DNS is not applicable since 

the choice of scattering phase function considers wave effects, whereas, the DNS 

considers only scattering in the geometric limit. 

6.1 MODEL VERIFICATION AND VALIDATION 

In this section we discuss model verification and validation. We first establish mesh 

independence in both the physical and wave vector spaces. The volume-averaged BTE 

model is compared to the Heaslet and Warming [95] [63] analytical solution for radiative 

transport equation in an isotropically scattering medium in the gray limit. The DNS under 
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the non-gray approximation is validated against experimental data [71]. This validation 

justifies the use of DNS “data” as a benchmark against which to validate the volume-

averaged BTE model. 

Physical Mesh Independence 

We present a physical mesh convergence study for the volume-averaged BTE model for 

the domain shown in Figure 30. The domain has the left and right boundaries held at 

given temperatures, as shown; the top and bottom boundaries are assumed specularly 

reflecting. CUBIT [96] is used to generate the mesh. Similar convergence studies in the 

physical space are performed for all simulations presented. 

 

Figure 30: Domain for volume-averaged model simulation for mesh convergence study 

The results presented in Figure 31 are for the gray limit. The study is performed in the 

ballistic limit by maintaining high bulk Knudsen number by setting    ̅   . The 

simulation is performed for a K-space resolution of (      )  (   ) in the octant. The 

temperature at the right and left wall are 301K and 300K respectively. Kbulk is computed 

from       . The effective thermal conductivity is non-dimensionalized using      . 

 

Specularly Reflecting 

Specularly Reflecting 

T2 =300K T1 =301K 
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The baseline mesh has 12 cells in the direction of heat flow. We see that mesh 

independence to 0.2% (with respect to the finest mesh) is obtained at 96 cells in the 

direction of the heat flow.  

 

Figure 31: Mesh convergence for nanoporous gray volume-averaged BTE model 

K-Space Mesh Independence 

 

In addition to physical space, we ensure convergence is obtained in the wave 

vector space. We present the convergence test for a square domain with a square pore for 

a direct numerical simulation of the phonon BTE. A periodic square domain of side 

         is considered, with a single square pore of side    , giving a solid volume 
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fraction of        (Figure 10). A temperature difference of 1K is applied across the 

periodic boundaries at the left and right wall. A specular reflecting boundary condition is 

applied at top and bottom wall. A converged physical mesh is used and has 110592 cells. 

The study is performed in the ballistic limit. The bulk Knudsen number is held high by 

keeping the volume-averaged bulk relaxation time   ̅   . The presented effective 

thermal conductivity is non-dimensionalized using       .  

 

Figure 32: Effective thermal conductivity as a function of K-space refinement 

As shown in Figure 32, for a physical mesh converged domain we find that wave 

vector space convergence is attained at a K-space discretization of 8x32 in the octant. 
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Volume-Averaged BTE Model Verification 

For model verification, we compare the model solution in the Fourier limit to the 

analytical solution of Heaslet and Warming [63] [95] for radiative transport equation in a 

gray isotropically scattering medium with Dirichlet boundaries as shown in Figure 33. 

We further verify that the volume-averaged model with isotropic scattering predicts the 

correct effective thermal conductivity in the limit of low Knudsen number, i.e. it 

reproduces the Fourier limit to within 1%. 

 

Figure 33: Validation of volume-averaged BTE model with Heaslet and Warming 

analytical solution [63] of the radiative transport equation for a gray 

isotropically scattering medium 
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Validation of Direct Numerical Solution of BTE 

We validate the direct numerical solution of the BTE with experimental results [71] for 

in-plane thermal conductivity of nanoporous silicon films with cylindrical pores. The 

characteristic dimensions of the periodic nanoporous blocks are thickness, pore 

separation   and pore diameter   as shown in Figure 34.  

 

Figure 34: Top view of a nanoporous material with an array of through cylindrical pores 

The direct numerical solution with a non-gray approximation and periodic boundaries is 

performed. The boundary conditions are applied as shown in Figure 35.  

 

200 nm < d < 500 nm

400 nm <  a < 900 nm
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Figure 35: Boundary conditions on periodic domain for DNS 

Figure 36 compares the direct numerical solution of the BTE with experimental thermal 

conductivity measurements by El Kady et al. [71] and free path sampling technique by 

McGaughey et al. [97] for varying porosities. The effective thermal conductivity is non-

dimensionalized using the experimental bulk thermal conductivity value of 144 W/m-K 

for silicon. 
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 Figure 36: Validation of direct numerical solution of phonon BTE  

The maximum difference of the DNS with the experimental results is 6.7% and average 

difference is 3.4%. The maximum difference with the free sampling model [97] is 9.2% 

and the average difference is 6.2%. Since the DNS reproduces experimental data well, it 

is used as a benchmark for validating the different volume-averaged BTE models in this 

dissertation. 

6.2 GRAY VOLUME-AVERAGED BTE MODEL FOR NANOPOROUS COMPOSITE 

In this section we present the predictions of the effective thermal conductivity for 

nanoporous materials using the volume-averaged theory. The results are validated using 

the direct numerical solution of the composite.   
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COMPUTATIONAL DOMAIN  

We consider periodic nanoporous blocks with thickness, pore separation and pore 

diameters such as shown in Figure 34. The problem domains and hence the representative 

elemental volume (REV) geometries are based on available experimental studies[71, 73]. 

We will present results obtained from the volume averaged BTE model for nanoporous 

blocks with: (i) spherical inclusions, and (ii) cylindrical inclusions. 

In order for us to be able to benchmark our volume-averaged theory we need 

direct numerical simulations (DNS) of the nanoporous material. Such a simulation 

provides the baseline against which approximations such as volume averaging can be 

evaluated. Furthermore, DNS results provide “data” which can be used to calibrate 

unknowns in the volume averaged theory. 

NANOPOROUS DOMAIN WITH SPHERICAL INCLUSIONS 

For our study of spherical inclusions, we first consider a periodic block of 700 nm 

x 700 nm x 500 nm with inclusion diameter of 360 nm. The mesh is generated using the 

CUBIT software [96] and consists of hexahedral cells, although the numerical method 

admits arbitrary convex polyhedral cells. A spherical Brillouin zone is assumed and the 

wave vector space is discretized as (     ) in the angular direction, where       

and       . In addition to physical space, we ensure convergence is obtained in the 

wave vector space.  

DIRECT NUMERICAL SOLUTION 

We first solve for the domain using DNS of the phonon transport BTE. We apply 

periodic boundary conditions on left and right walls, symmetry conditions on front and 



 103 

back walls and diffusely reflecting conditions on top, bottom and the inclusion interface. 

Figure 35 depicts the boundary conditions on a domain with cylindrical pores for 

visualization purposes. The converged physical mesh has 1,323,824 cells. A spherical 

isotropic Brillouin zone is considered. For a physical mesh-converged domain we find 

that wave vector space convergence is attained at a K-space discretization of 8x16 in the 

octant. For all gray nanoporous DNS simulations we use this converged physical and K-

space discretization. We compute the effective thermal conductivity of the nanoporous 

unit from the solution to the BTE. 

For verification we compare the DNS solution for the periodic unit with the 

Fourier solution in the thick limit, i.e.      . The DNS predicts the effective thermal 

conductivity within 3.3% of the Fourier solution. Using the Fourier solution we 

determine the volume-averaged bulk relaxation time,    ̅ using Eq. (32) in Chapter 2. We 

then solve the DNS in the ballistic limit and calibrate the value of model parameter,   , 

using Eq. (33) in Chapter 2. These two parameters will be used as an input to the volume-

averaged BTE model. 

VOLUME-AVERAGED BTE MODEL IMPLEMENTATION 

We present simulation results for the volume-average model. We solve Eq. (13) 

on a 2D rectangular domain of dimensions 700 nm x 500 nm, which is a 2-D equivalent 

of the homogenized periodic REV. The geometry is prepared in CUBIT [96] using 

quadrilateral cells. The converged mesh used in the following studies has 1000 cells in 

the direction of heat flow and 50 cells in the direction perpendicular to the heat flow. The 

converged K-space is 8x16 in the octant. We use these meshes for all the following 
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simulations. We apply periodic boundary conditions on the left and right walls and 

diffuse reflecting conditions on the top and bottom walls as shown in Figure 37. The 

parameter   is based on the periodic unit used in the DNS simulation, and is equal to 

0.89. The parameters    ̅ and    determined from DNS in the previous section are used as 

input to the model. 

 

Figure 37: Boundary conditions on simulation domain for volume-average BTE model 

The scattering phase function,      for the spherical inclusion is calculated using 

the ray tracing method as discussed in chapter 2 and is an input to the model. The 

numerical solution is obtained using COMET algorithm [70]. 

Next, we perform simulations for the full range of Knudsen numbers based on    ̅ 

and pore separation  ,    ̅ ( 
   ̅

 
), while keeping   constant. The value of the Knudsen 

number based on   ,     ( 
    

 
) in these simulations is 1.14.  In Figure 38 we present 

a comparison of the predicted effective thermal conductivity obtained from DNS with the 

volume-average BTE model for spherical inclusions. The results presented are non-
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dimensional and the non-dimensionalizing parameter for thermal conductivity is 

             
     . 

 

Figure 38: Comparison of volume-averaged BTE model with DNS for varying Knudsen 

number for a periodic domain with spherical inclusions and solid volume 

fraction        and           

As expected, in the acoustically thick limit, i.e., the low Knudsen number limit, 

when bulk scattering dominates, we see excellent agreement between the DNS and the 

model. This is expected because    ̅ was calibrated to the Fourier thermal conductivity, 

and the DNS in the limit of low Kn recovers the Fourier solution. Similarly, at the other 

extreme, i.e., at the ballistic limit (large Kn) we obtain excellent agreement with DNS. 
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This too is expected since    was calibrated to the ballistic DNS solution. In the mid-

range of Knudsen numbers, when both bulk and interface scattering have influence, we 

see good agreement. The average relative error over the full range of Knudsen number is 

3.28% and the maximum relative error is 9.26%. This indicates that the volume averaged 

model performs quite well with respect to the DNS solution across the range of Knudsen 

numbers, at least as far as effective thermal conductivity is concerned. 

We now turn to the question of how well the model predicts the details of the 

mode-wise heat transfer. In Figure 39, since the model is gray, we consider transport in 

the different angular directions and compare the predictions of the heat rate at the left 

wall from the DNS and the volume-averaged BTE model. The x-axis represents the 

various discrete points in K-space. In our case, we have (     )  (   )     points. 

The individual heat rate contributions are non-dimensionalized using the net heat rate 

obtained from the DNS at the left wall.  

We see from Figure 39 that the mode-wise predictions from the volume-averaged 

model match those from DNS quite well. The maximum error in the mode-wise rate 

presented is 1.12%. The volume–averaged model takes approximately 0.5 CPU hours to 

converge to a solution. The corresponding DNS solution takes 8 CPU hours. Thus, 

reasonably accurate solutions may be obtained from the volume-averaged model at far 

less computational cost than the DNS solution. 
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Figure 39: Comparison of volume-averaged BTE model with DNS at different K-space 

points.   

NANOPOROUS DOMAIN WITH CYLINDRICAL INCLUSIONS 

We now demonstrate the model for periodic domains with cylindrical pores based 

on the geometry from experimental studies by El Kady et al. [71]. The domain under 

consideration is an REV of a periodic nanoporous thin film with through cylindrical 

holes. The characteristic lengths of the domain are the interpore distance, pore diameter 

and the thickness of the film. We first chose a periodic unit of domain size 700 nm x 700 

nm x 500 nm with a through cylindrical hole of diameter 360 nm. 
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DIRECT NUMERICAL SOLUTION 

We perform a DNS of phonon transport on a 3-D periodic domain of dimensions 

as described above. The boundary conditions are applied as shown in Figure 35. The 

mesh is generated using CUBIT. The solution is verified for mesh and K-space 

independence as before. The converged mesh has 1,471,500 cells. The rest of the 

parameters and solution procedure are the same as previously stated.  

VOLUME-AVERAGED BTE MODEL  

The simulation domain and boundary conditions for the model are similar to those 

in the previous section on spherical inclusions. Hence we use the converged physical and 

K-space meshes as before. The input solid volume fraction is       , corresponding to 

the DNS solution. The scattering phase function, , is determined using the ray tracing 

method for a cylinder of the same aspect ratio as in the DNS problem. We determine the 

model parameters   and     from the Fourier and ballistic limit solutions of the DNS as 

earlier. We verify the model as described in previously. 

We compare the non-dimensional effective thermal conductivity obtained from the 

volume-averaged model with that of the DNS. The solution is plotted as a function of the 

bulk Knudsen number in Figure 40. The Knudsen based on interface scattering      is 

held constant at 0.7. In the Fourier and ballistic limits we observe excellent agreement 

between DNS and volume-averaged model because the volume-averaged model 

parameters were calibrated to these two limiting solutions, as before. For Knudsen 

'kk
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numbers in between, we observe an average error of 3.25% and a maximum error of 

10.2% in the effective thermal conductivity relative to the DNS solution. 

 

Figure 40: Comparison of volume-averaged BTE model with DNS for varying Knudsen 

number for periodic domain with cylindrical inclusions and solid volume 

fraction       ,          

We now investigate the accuracy of the volume-averaged BTE model for varying 

porosities over a range of Knudsen numbers. The range of porosities considered and the 

number of cells in the physically converged mesh for the DNS solution are shown in 

Table 1. The boundary conditions are applied as previously stated.  
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Table 1: Geometries considered for cylindrical inclusions for studying the effect of 

porosity on effective thermal conductivity. 

The Knudsen numbers based on the calibrated values of volume-averaged bulk and 

interface scattering relaxation times are shown in Table 2. The Knudsen numbers are 

calculated based on pore separation, L. The model parameters are documented for all the 

porosities considered. 

 

Table 2: Knudsen numbers based on calibrated volume-averaged BTE model parameters 

for varying porosities 

Thickness 

(nm)

Width

(nm)

Diameter 

(nm)

Porosity
( )

Number of 

Cells

500 700 209 0.07 1239840

500 500 213.6 0.14 1327761

500 700 360.5 0.21 1471500

500 500 303.3 0.29 854832

500 700 486.5 0.38 1657854

0.93 7.89E-03 1.76

0.86 7.44E-03 1.05

0.79 7.05E-03 0.71

0.71 6.57E-03 0.75

0.62 6.19E-03 0.92
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Figure 41 shows the comparison of the effective thermal conductivity predicted 

by the volume-averaged BTE model with that from the DNS solution for different 

porosities for cylindrical inclusions. Comparisons are shown at ballistic and Fourier 

limits and at      ̅̅ ̅      and 0.17. The effective thermal conductivity is non-

dimensionalized by the effective thermal conductivity obtained from DNS for 

porosity=0.07 for the corresponding    ̅ . The Knudsen numbers based on the interface 

scattering relaxation time      for the different porosities in Figure 36 are shown in 

Table 2.  

 

 

Figure 41 (a): Comparison of volume-averaged BTE model with DNS at ballistic limit 
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Figure 41 (b): Comparison of volume-averaged BTE model with DNS at    ̅       

 

Figure 41 (c): Comparison of volume-averaged BTE model with DNS at    ̅       
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Figure 41 (d): Comparison of volume-averaged BTE model with DNS at the Fourier limit 

The volume-averaged theory compares well with the DNS for all the porosities 

considered at the low Kn and ballistic limits [Figures 41 (a) and 41 (d)], as expected, 

since the volume averaged model was calibrated to the DNS at these limits. For mid-

range Knudsen numbers, the maximum relative error with respect to the DNS solution is 

14% [Figures (41 (b) and 41 (c)].  

6.3 NON-GRAY VOLUME AVERAGED BTE MODEL FOR NANOPOROUS 
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under a non-gray approximation. We assume an isotropic spherical Brillouin zone for 
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environment-dependent interatomic potential (EDIP) [34]. We use the dispersion curves 

corresponding to the [1 0 0] direction in bulk silicon as shown in Figure 42.  

 

Figure 42: Dispersion relation for silicon in the [100] direction at 300 K [34] 

The lattice constant   for the spherical Brillouin zone is adjusted to attain the correct 

specific heat for silicon [54]. It is the diameter of the approximated spherical Brillouin 

zone. A conceptual representation is shown in Figure 43. 
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Figure 43: Representation of lattice constant, a, with respect to the Brillouin zone volume 

Four different polarizations corresponding to the longitudinal acoustic (LA), 

transverse acoustic (TA), longitudinal optical (LO) and transverse optical (TO) modes are 

considered as shown in Figure 42. In this high symmetry direction [1 0 0], the two 

transverse modes are degenerate [99]. The relaxation times are found using the relations 

below [100].  
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The impurity scattering relaxation time     and the Umklapp scattering relaxation 

time    yield the effective relaxation time using Matthiessen’s rule [76]. Here the values 

of the constants A, B and C are 1.32x10
-45

 s
3
, 1.73x10

-19
 s/K and 137.36 K respectively 

[100]. These constants are determined from curve-fits to bulk properties found 

Lattice 
Constant, a
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experimentally [100]. In the present work, relaxation times used are determined at 300K. 

In general, for non-gray problems, there is a range of Knudsen numbers, one for each K 

point. For reporting purposes, following [54], we define an average Knudsen number 

defined as follows: 

   
 

 

∑ ∑ | |       
       

∑ ∑        
  (91) 

Here   is the characteristic length of the domain, | | is the magnitude of the group 

velocity of the phonon mode,     is computed as above. The sum is over all polarizations 

  and the spherical Brillouin zone,   .  

We orient the unit vectors (        ) for the wave vector space along the physical 

space unit vectors(     ). Figure 44 shows a schematic of the discretization of the 

Brillouin zone for a non-gray phonon dispersion [54]. The wave vector space is 

discretized in the angular and radial directions. For all our non-gray problems, we will be 

using an angular discretization of (     )  (   )  and a radial discretization of the 

wave vector magnitude of (    ). The discretization of the  -space along with the 

four polarizations yield (2x8x8x4 =) 512 discrete algebraic equations in each physical 

cell in the computational domain.  
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Figure 44: Discretization of the Brillouin zone for a non-gray dispersion [54] 

For the non-gray problem, we consider a nanoporous silicon film with cylindrical 

through holes, as before. An REV is shown in Figure 45 (a). To reduce computational 

expense, our non-gray DNS simulations employ one quarter of the actual REV and apply 

the boundary conditions appropriately as shown in Figure 45 (b). 
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Figure 45: Problem domains for DNS. (a) Geometry of the REV with boundary 

conditions, and  (b) quarter geometry with appropriate boundary conditions  

For the DNS, we first chose a domain with a cylindrical inclusion of porosity, 

       and determine the exponent, d in equation (31). We consider a block of 

dimension 700 nm x 700 nm x 500 nm with a cylindrical hole of radius 243 nm; this 

yields a porosity of 0.38. The meshing is done in CUBIT and the domain has a physical 

mesh size of 92,208 cells. The  -space discretization used is               . The 

silicon bulk thermal conductivity used is          
 

 
   and the specific heat, 

            

    .  

First we solve for Fourier conduction in the REV geometry volume-averaged bulk 

relaxation times,     ̅̅ ̅̅  for the volume averaged model. For the Fourier-limit solution, we 

use temperature boundary conditions and compute the effective thermal conductivity of 

the composite structure. The procedure is described in detail in chapter 3. Next we 

perform DNS in the ballistic limit. We use the effective thermal conductivity so 

computed to calibrate the interface scattering relaxation time,     . We determine the 
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anisotropic scattering phase function      using the ray tracing algorithm discussed in 

chapters 2 and 3. We use the corresponding diameter of the cylindrical inclusion as an 

input to the ray tracing algorithm. 

CALIBRATION AT THE BALLISTIC LIMIT 

Two distinct approaches are undertaken to calibrate the interface scattering relaxation 

time at the ballistic limit. One involves employing constant values of      for all  - 

points. The other requires calibration of the individual     s at the ballistic limit to the 

DNS solution using the Newton-Raphson method described in chapter 3. 

  CONSTANT      APPROACH 

We first compare the effective thermal conductivity predictions obtained from 

volume-averaged theory with that using DNS using the constant      approach. We 

calibrate the volume-averaged BTE model using a single value of      for all  -points. 

Then we investigate how the non-gray volume-averaged BTE model compares with the 

DNS for the same geometry for Knudsen numbers in between the ballistic and Fourier 

limits.  

Figure 46 shows a comparison of the overall thermal conductivity comparison 

with DNS for three different porosities and Knudsen numbers. The effective thermal 

conductivity is non-dimensionalized using the effective thermal conductivity at the 

ballistic limit, as defined in equation (29).  
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Figure 46: Comparison of effective thermal conductivity for DNS and non-gray volume-

averaged BTE model with a constant      calibration for porosity (a) 

       (b)       , and (c)        

The maximum error in the predicted effective thermal conductivity with respect to the 

DNS is 11.9%. However, the individual heat rate contribution of the phonon modes is not 

captured accurately. We compare the mode-wise heat rates obtained using both constant 

and variable      approach in the next section. 

  VARIABLE      APPROACH 

The constant      approach does not predict the individual contributions 

accurately. An alternative is to calibrate for individual     s at the ballistic limit using the 

Newton Raphson method as described in chapter 3. We determine (            

)    different values of the interface scattering relaxation time      .  
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To verify that the Newton-Raphson calibration procedure is working well, we 

compare the heat rate contribution of each phonon polarization for the DNS and the 

volume-averaged BTE in the ballistic limit.  The maximum absolute error in the total heat 

rate is 0.19%. The maximum and minimum error in the modewise heat rate is 1.8% and 

0.03% respectively. The calibrated solution is presented in Figures 47 (a)-(d). The heat 

rate is normalized using the net heat rate. 

 

(a) 

Figure 47: Continued on next page 
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(b) 

(c) 

Figure 47: Continued on next page 
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Figure 47: Comparison of DNS and volume-averaged BTE model at the ballistic limit for 

heat rate contribution of (a) TA modes, (b) LA modes, (c) TO modes, and 

(d) LO modes. 

In Figure 48 we compare the mode-wise heat rate contributions of the above two 

approaches with the DNS at the ballistic limit for a porosity of 0.38. The green line 

represents the volume-averaged BTE model with the constant      approach. The red 

dotted line represents the volume-averaged BTE model with the variable      approach 

and the blue dots represent the DNS. The DNS and the variable      approach match very 

well as expected. Although the overall heat rate matches with the DNS, the mode-wise 

heat rate contributions obtained using the constant      approach do not match the DNS. 

In order to capture the physics accurately, contributions of different phonon modes 

towards the overall heat rate is of significance along with the overall thermal conductivity 

(d) 
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match. Therefore, we will be using the variable      approach to predict mode-wise and 

overall heat rates for different porosities.  

 

Figure 48: Comparison of DNS and volume-averaged BTE model with constant and 

variable       approach at the ballistic limit for heat 

 VERIFICATION AT ISOTROPIC SCATTERING LIMIT 

For verification, we compare the volume-averaged BTE model with the calibrated      

values at the isotropic scattering limit with the analytical expression for isotropic 

scattering: 

     ∑ (
   

  
)
 
      

      
      (3) 

The calculation assumes that bulk scattering is absent. The solution matches within 2% of 

the analytical formulation at the isotropic scattering limit. Figure 49 shows a comparison 
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of the isotropic scattering solution to the isotropic analytical formulation and the 

anisotropic scattering results. The black line represents the heat rate computed using 

equation (3) for the calibrated values of     . The blue line represents the volume-

averaged BTE solution using an isotropic scattering phase function. The red line 

represents the volume-averaged BTE solution using the anisotropic       at the ballistic 

limit. 

 

(a) 

Figure 49: Continued on next page 
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Figure 49: Comparison of volume-averaged BTE solution at the ballistic limit using 

isotropic and anisotropic       with the isotropic theory at the ballistic limit for different 

phonon modes: (a) TA,  (b) LA,  (c) TO and (d) LO. 

(b) 

(c) 
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Next we compare the DNS and the volume-averaged BTE model using this 

approach to compare at an average Knudsen number of 59. The Knudsen number in the 

domain ranges from 0.4 to 14x10
3
.  There is a significant spread in the Knudsen number 

due to the different scales of the relaxation times and group velocities in the silicon 

dispersion. We use the calibrated values of the volume-averaged bulk relaxation times, 

    ̅̅ ̅̅  and interface scattering relaxation times,      . The scattering phase function      

corresponding to the geometry is used.   

Using the solution of the DNS, we compute the heat rate contributions of each 

phonon polarization and compare that with solution obtained from the volume-averaged 

BTE model. In Figure 50 (a)-(d) we compare the solution obtained from the variable      

approach with the DNS. In the ballistic limit, calibrating      at each mode, yields better 

results at individual modes than assuming a constant value of the interface scattering 

relaxation time. We compare the DNS and the volume-averaged BTE with variable      

for three different porosities. The maximum error in the overall prediction is 26%. 

Although the overall heat rate match is better with the constant      approach, the 

variable      approach gives a more accurate depiction of the individual phonon mode 

contributions.  Figures 51 and 52 show a condensed form of the comparison between the 

DNS and volume-averaged BTE model for the four different phonon modes. 

In general, the match with the DNS solution at intermediate Kn is poorer than in 

the gray case. The reason is likely the large spread in Kn in non-gray calculations. This 

means that our DNS simulations are not equally resolved at all K-points, especially with 
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the coarse mesh we are using for these non-gray calculations. Thus, there may be 

significant discretization error in the low Kn calculations. The volume-averaged BTE is 

likely far better resolved than the DNS, and these differences in resolution add to the 

uncertainty in the calibrated parameters. Unfortunately, further spatial resolution of the 

non-gray DNS problem is not possible with available computational power.   

 

(a) 

Figure 50: Continued on next page 
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(b) 

(c) 

Figure 50: Continued on next page 
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Figure 50: Comparison of volume-averaged BTE with DNS at a porosity of 0.38 for 

different phonon modes: (a) TA (b) LA (c) TO (d) LO 

(d) 
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Figure 51: Comparison of volume-averaged BTE with DNS at a porosity of 0.29 for 

different phonon modes 
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Figure 52: Comparison of volume-averaged BTE with DNS at a porosity of 0.07 for 

different phonon modes 

6.4 VOLUME AVERAGED BTE MODEL FOR TWO-MATERIAL 

NANOCOMPOSITE 

We consider silicon medium with a spherical germanium particle. We solve 

equation (57) in the domain for a spherical particle of diameter 5 nm. We vary the 

porosity by increasing the length scale of the outer domain. The geometries considered 

are listed in Table 3.  

The results presented are for the gray limit with a phonon group velocity of 5843 

m/s, frequency of 2e12 rad/s and a constant specific heat of 1.6x10
6
 J/m

3
-K for the matrix 

material, in this case silicon. The bulk relaxation time for the matrix material is computed 

based on a bulk thermal conductivity of 137W/m-K using    
     . The material 
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properties of the particle need to be considered for computing the scattering phase 

function. Additionally, the thermal properties of the particle material are considered in 

calculating the effective thermal conductivity of the composite at the Fourier limit.  The 

Fourier limit solution is used to calibrate the volume-averaged bulk relaxation time,    ̅. 

Thus, both the silicon host material and the germanium particles contribute to the model 

parameters. 

 

Table 3: Geometries and Knudsen numbers at calibrated model parameters for volume-

averaged model simulation 

The list of different properties [89] used for this computation is provided in Table 

4. The velocity of the wave in Germanium is computed using Eq. 66 in Chapter 4. The 

discretization of the K-space used for the solution is (     )  (    ). The boundary 

Film 

Dimension 

(nm x nm)

Particle 

Volume 

Fraction ( )

10x10 0.065 9.21 2.69

11x11 0.049 7.34 2.18

12x12 0.038 6.62 2.33

14x14 0.024 5.12 2.27



 135 

conditions are applied as earlier. At the composite interface we have a diffuse reflection 

condition. A temperature jump of 1K is applied between the right and left walls.  

 

Table 4: Material properties for two-material volume-averaged BTE composite model 

For Fourier limit, the actual REV composite geometry is solved, considering a 

background silicon matrix with germanium particles. The Fourier conduction equation is 

solved in this composite, and the value of    ̅ is calibrated to effective thermal 

conductivity of the composite. To determine the value of   , we consider a nanoporous 

material with pores equal in size to the particles. The DNS is performed on nanoporous 

geometry in the ballistic limit to determine   . The boundary conditions for the DNS at 

the ballistic limit are the same as for the nanoporous domain DNS. Figure 53 shows the 

boundary conditions as applied on the Si-Ge composite domain under consideration. 

Properties Silicon Germanium

, 

, 
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Figure 53: Boundary conditions on a composite domain of Si host with Ge particle for 

DNS  

From these DNS, the volume-averaged bulk relaxation time and the interface 

scattering relaxation time are determined as previously done for the gray model. Such a 

treatment is justified because the particles are much smaller than the length scale of the 

bulk material, and may be considered point particles. Thus, the interface scattering time 

    is determined primarily by the travel time of the phonon between particles, and this is 

captured by the computation in the nanoporous domain. 

We determine the scattering phase function using Mie scattering theory as 

discussed in chapter 4. The volume-averaged model is solved on physical mesh 

consisting of 1000 cells. The volume-averaged BTE is solved on a corresponding 2D 

domain using the boundary conditions as stated previously. A periodic boundary 
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condition is applied with a positive temperature gradient of 1K from left wall to right 

wall. 

The DNS cannot be used as a benchmark to the volume-averaged BTE at these limits 

because the wave nature of the transport in the vicinity of the particle cannot be captured 

by the DNS. We therefore present the effective thermal conductivity for a range of 

Knudsen numbers for varying porosities.  

The following porosities are considered: 0.06, 0.024, 0.038, and 0.049 as shown in 

Table 4. The Knudsen numbers are calculated based on pore separation. The resulting 

volume-averaged BTE solutions are shown below in Figure 54. In each of the figures 

below, the Knudsen number based on   , i.e.,       , is held constant, and the Knudsen 

number based on bulk scattering,    ̅, is varied from the Fourier to the ballistic limit. 

When bulk scattering is small, i.e., high    ̅, the ballistic solution is recovered; in this 

limit, scattering is purely due to the presence of the particle.  As    ̅ is decreased, bulk 

scattering increases in dominance, and the effective thermal conductivity falls. 

Ultimately, bulk scattering dominates over particle scattering, and the Fourier limit for 

the composite is recovered. 
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Figure 54: Volume-Averaged BTE model for a two material composite for varying 

Knudsen number for periodic domain with a spherical particle (a)        

(b)         (c)         (d)         

6.5 CLOSURE  

In this chapter we presented the verification, validation and results for the different 

volume-averaged BTE model developed in previous chapters. We considered the gray 

model for nanoporous silicon geometries with two different inclusion shapes. We 

computed the effective thermal conductivity of the porous medium for a range of 

Knudsen numbers for varying porosities. The gray nanoporous volume averaged BTE 

model predicted the DNS benchmark thermal conductivity solution to within a maximum 
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error of 14%. For the gray model, we compared the heat rate contributions of different K-

space points in the Brillouin zone with the DNS solution, and good agreement was 

obtained. In the non-gray model, we considered realistic phonon dispersions and 

geometries for our simulations. We considered two different approaches to calibrate the 

interface scattering relaxation time. The constant interface scattering term approach 

yielded better overall thermal conductivity predictions within 11.9% but the contributions 

of individual phonon modes was not captured accurately. The multiple interface 

scattering relaxation time approach yielded better comparison with the individual phonon 

mode heat rate contributions but overall thermal conductivity was under predicted by 

26%. The volume-averaged BTE model in the two-material composite was demonstrated 

for a silicon host with germanium spherical particles. Solutions were presented for 

varying porosities and Knudsen numbers.  
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Chapter 7: Summary and Future Work 

7.1 SUMMARY 

In this chapter we summarize the main contributions of the dissertation and 

discuss future directions for this research. The semi-classical phonon Boltzmann 

Transport equation (BTE) is proven to be an effective predictive tool for nanocomposites 

due to its ability to describe the quasi-particle nature of the phonons at length scales 

comparable to phonon mean free path [6]. Due to its computational expense, the direct 

numerical simulations of the BTE can be limiting for complex nanocomposite domains. 

In this work, we have developed for the first time volume-averaged models for the 

phonon BTE to simulate heat transfer in nanocomposites. These models can be used in 

arbitrary geometries, accounting for both bulk scattering and boundary scattering effects 

across the range of Knudsen numbers. The model is demonstrated for gray and non-gray 

approximations in nanoporous composites in the geometric scattering limit. For two-

material composites we solve the model in the Mie scattering limit for composites with 

small nanoparticulate inclusions. Significant speed ups are achieved over direct 

numerical simulation (DNS) by using the volume-averaged BTE models. The major 

contributions of this work are summarized below.  

7.1.1 Volume-Averaging for Gray Phonon Boltzmann Transport Equation (BTE) in 

Nanoporous Materials  

We developed a volume-averaged formulation for nanoporous domains by 

formally averaging the phonon BTE over a representative elemental volume (REV) of a 
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nanoporous material. We modeled the additional terms resulting from the volume-

averaging as in-scattering and out-scattering terms. The in-scattering term is written as a 

function of a scattering phase function,     , and a new parameter,   . This new 

parameter    is interface scattering relaxation time and captures the scattering effects due 

to the presence of inclusions in the domain. Both    and      are functions of the 

interface geometry and the phonon wave vector space. We developed a generalized ray 

tracing algorithm to compute the phase function in the geometric scattering limit, 

analogous to that used in radiative transport [63] [64]. We further take in to consideration 

the effects of pores on the effective thermal conductivity of the composite by calibrating 

the volume-averaged bulk scattering relaxation time,    ̅ using a Fourier limit solution of 

the nanoporous domain.  

We write the volume-averaged BTE in terms of the intrinsic average of the 

phonon energy density over the solid volume of the composite. The model parameter   is 

calibrated using a direct numerical solution of the phonon BTE at the ballistic limit. For 

domain sizes satisfying    (
    

 
)    in the gray, isotropic limit, the interface 

scattering relaxation time can be predicted using equation (29) and the effective thermal 

conductivity obtained from the ballistic limit solution of the phonon BTE.  

We solve the volume-averaged BTE for a nanoporous domain under the gray 

approximation using a finite volume method. We employ the MEMOSA framework and 

the COMET algorithm to promote convergence. We implemented a periodic boundary 

condition to model transport through a composite consisting of regularly repeating units.  
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We solve for two types of nanopores: spherical and cylindrical. We demonstrate 

that the model predicts effective thermal conductivity well by comparing with a 

benchmark direct numerical solution of the BTE for the full range of Knudsen numbers. 

We further compare the contributions of the discrete K points for DNS and volume-

averaged BTE models. The average relative error in effective thermal conductivity 

prediction of the volume-averaged BTE with respect to the DNS is 3.25% for spherical 

inclusions and the maximum relative error is 10.2%. We conduct the study over varying 

range of porosities for cylindrical inclusions and observe an average relative error of 5% 

and a maximum relative error of 14% accounting the full range of Knudsen numbers.  

The accuracy of the model is higher closer to the Fourier and ballistic limits, as expected.   

For cylindrical inclusions, the gray volume-averaged BTE model requires 16 

times less CPU time than the DNS computation at a Knudsen number of 0.17. This is due 

to the high physical mesh requirement by the DNS for the actual REV geometry. The 

advantage of volume-averaging is in solving a effectively 1-D problem in a homogenized 

domain versus the full detailed 3-D problem in a DNS. 

7.1.2 Non-Gray Volume-Averaged Theory for Phonon Boltzmann Transport 

Equation (BTE) in Nanoporous Materials 

We implemented a non-gray version of the volume-averaged BTE model for 

nanoporous composites. We considered realistic non-gray phonon dispersions in silicon. 

The non-gray BTE when discretized in the K-space yield a large number of phonon BTEs 

to be solved, one for each discrete K point. We determine the interface scattering 

relaxation time parameter in this model using two different approaches. In the first 
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method, a constant value of    is calibrated to match the DNS in the ballistic limit. In the 

second approach, a number of boundary scattering relaxation times      s corresponding 

to the Brillouin zone discretization are determined, along with a number of bulk 

relaxation times,   ̅̅̅.  The non-gray BTEs are coupled using the conservation of energy 

equation. Therefore, we use a Newton Raphson method to calibrate the     number of 

unknown     s. The scattering phase function matrix is extended to the non-gray model 

assuming elastic scattering. The model is solved for varying porosities of nanoporous 

silicon film with cylindrical inclusions.  

The constant interface scattering relaxation time approach predicts effective 

thermal conductivity within 12% accuracy of the corresponding benchmark DNS. 

However, the contribution of individual phonon modes was not captured accurately in 

this approach. The second approach with multiple values interface scattering relaxation 

time,      underpredicted effective thermal conductivity by 26% compared to the DNS 

solution. Although underpredicting significantly, this method resulted in better 

comparison in the form of the heat rates contributions of individual phonon modes. This 

reduced order model needs to be further improved to predict the DNS solution more 

accurately. 

7.1.3 Volume-Averaged Theory for BTE in Nanocomposite Domain 

We extended the volume-averaged model for nanoporous domains for gray 

phonon dispersions to two-material composites. We consider nanocomposite domains 

with particles of a second material embedded in a matrix. The scattering due to the 
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particle presence is modeled using a scattering term similar to the nanoporous domains 

employing a scattering phase function. We determined the scattering phase function for 

particle sizes comparable to the phonon wavelength using the Mie scattering theory for 

transverse phonons [66, 72].  The volume averaged bulk relaxation times and interface 

scattering relaxation times were determined using the established calibration procedure.  

The volume-averaged BTE model for the domain was discretized using a finite 

volume approach using COMET algorithm. We compute the effective thermal 

conductivity for the two-material nanocomposite domain for a range Knudsen numbers 

for different particle volume fractions in the domain.  

7.2 FUTURE WORK 

We can build upon the volume-averaging theory for BTE developed in this 

dissertation to explore different problems as well as improve upon the current machinery. 

7.2.1 Parallelization of Volume-Averaged BTE and DNS for Periodic Boundaries 

The present software to apply periodic boundary conditions necessary to simulate 

periodic nanocomposites is currently only available on single processor platforms. A 

significant computational advantage can be attained if the software were parallelized. 

Although the volume-averaging approach involves reduced mesh sizes, the solution of 

the fully resolved BTE is a computationally intensive process.  This is especially so when 

non-gray transport is considered. 
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7.2.2 Geometric Scattering for Two-Material Model Including Non-Gray Effects 

The volume-averaged BTE for two-material composites is general and can be 

extended to include non-gray effects. The model for scattering considered in this thesis 

was Mie scattering, valid when the particle inclusions are comparable in length scale to 

the wavelength of phonons.  An obvious extension is to consider the geometric scattering 

limit, where ray-tracing approaches can be employed.  Such a ray tracing model would 

account for interface reflectivity and transmissivity by employing models such as the 

diffuse mismatch model (DMM). This will allow for comparison of the two-material 

volume-averaged BTE composite model with the direct numerical solution of the 

composite. 

7.2.3 Mie and Rayleigh Scattering for Two-Material Model Including Non-Gray 

Effects 

The generalized volume-averaged BTE for two-material composites can be extended 

to include non-gray effects in Mie and Rayleigh scattering limits. Using the analytical 

scattering phase functions for longitudinal and transverse phonon modes in this limit [65, 

66, 101], a scattering phase function matrix can be generated to include these phonon 

modes. The available theory considers independent scattering. This will allow inclusion 

of non-gray dispersions in a two-material composite. Although, this model will be limited 

by absence of benchmark solutions, experiments using equivalent nanocomposite 

geometries can be used for validation. 
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7.2.4 Generalization of Calibrated Parameters 

 An important area to explore will be to develop calibration curves for the different 

model parameters for standard inclusion shapes. This will require benchmarking with the 

DNS solutions for the specific shapes, which will be a significant but achievable 

undertaking. This will allow the volume-averaged BTE model to be readily usable as a 

reduced order model for predicting effective thermal properties in composites. 

7.2.5 Two BTE System for Two-Material Composite 

In the presence of significant thermal disequilibrium between the two materials in the 

composite, it may be necessary to carry two different volume averaged BTEs for the two 

materials in a homogenized domain. They will be coupled through the interface condition 

using a diffuse mismatch model. Thus: 

BTE for Material 1: (      
      

 
)
 
   (94) 

BTE for Material 2: (      
      

 
)
 
 (95) 

We have the following model equation for a nanoporous domain: 

    〈   〉   
〈  〉 〈   〉

    ̅̅ ̅̅ ̅
 

〈   〉

    
 

 

   

 

    
∫      〈   

 〉    
       (96) 

The transmission of energy between the two materials is represented through a 

transmission term, as shown below:  

Material 1: 

     〈   〉   
〈  〉  〈   〉 

      ̅̅ ̅̅ ̅̅ ̅
 

〈   〉 

      
 

 

     

 

      
∫      〈   

 〉  
   

      [〈  〉  

〈  〉 ]    (97) 
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Material 2: 

     〈   〉   
〈  〉  〈   〉 

      ̅̅ ̅̅ ̅̅ ̅
 

〈   〉 

      
 

 

     

 

      
∫      〈   

 〉  
   

      [〈  〉  

〈  〉 ] (98)  

7.2.6 Generalized Volume-Averaged BTE for Complex Composite Domains 

A more generalized volume-averaged BTE model with more than two types of composite 

materials can be explored. Scattering phase functions involving multiple materials and 

geometries can be computed, while considering the mismatch in the phonon dispersions 

between the different composite materials. This will put the burden on the scattering 

phase function calculation. Models for anisotropic conduction for inclusions with 

pronounced asymmetries are another area of interest.  Once resolved, these approaches 

can be valuable in predictive modeling of the thermal properties in interesting 

nanostructured geometries. 

  



 151 

References 

1. Lu, W. and C.M. Lieber, Nanoelectronics from the bottom up. Nature Materials, 

2007. 6(11): p. 841-850. 

2. Joshi, G., Lee, H., Lan, Y. C., Wang, X. W., Zhu, G. H., Wang, D. Z., Gould, R. 

W., Cuff, D. C., Tang, M. Y., Dresselhaus, M. S., Chen, G., Ren, Z. F., Enhanced 

Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium 

Bulk Alloys. Nano Letters, 2008. 8(12): p. 4670-4674. 

3. Dresselhaus, M.S., Chen, G., Ren, Z. F., Fleurial, J. P., Gogna, P., Tang, M. Y., 

Vashaee, D., Lee, H., Wang, X. W., Joshi, G., Zhu, G. H., Wang, D. Z., Blair, R., 

Bux, S., Kaner, R., Nanocomposites to enhance ZT in thermoelectrics, in 

Thermoelectric Power Generation, T.P. Hogan, et al., Editors. 2008. p. 29-41. 

4. Poudel, B., Hao, Q., Ma, Y., Lan, Y. C. Minnich, A., Yu, B., Yan, X. A., Wang, D. 

Z., Muto, A., Vashaee, D., Chen, X. Y., Liu, J. M., Dresselhaus, M. S., Chen, G., 

Ren, Z. F., High-thermoelectric performance of nanostructured bismuth antimony 

telluride bulk alloys. Science, 2008. 320(5876): p. 634-638. 

5. Ziman, J.M., Electrons and phonons: The theory of transport phenomena in 

solids. 1960, New York: Oxford Univerity Press, Inc. 

6. Chen, G., Nanoscale Energy Transport and Conversion : A Parallel Treatment of 

Electrons, Molecules, Phonons, and Photons. 2005: Oxford University Press. 560. 

7. Matthiessen, A., Rep. Brit. Ass., 32, 1862. 144. 

8. Swartz, E.T. and R.O. Pohl, Thermal-Resistance At Interfaces. Applied Physics 

Letters, 1987. 51(26): p. 2200-2202. 

9. Hashin, Z., Assessment Of Self Consistent Scheme Approximation - Conductivity 

Of Particulate Composites. Journal of Composite Materials, 1968. 2(3): p. 284-&. 

10. Singh, D., Frequency And Polarization Resolved Phonon Transport In Carbon 

And Silicon Nanostructures. 2011, Purdue University. 

11. Kurti, N., B.V. Rollin, and F. Simon, Preliminary experiments on temperature 

equilibria at very low temperatures. Physica, 1936. 3: p. 266-274. 

12. Kapitza, P.L., The study of heat transfer in helium II. Journal of Physics-Ussr, 

1941. 4(1-6): p. 181-210. 



 152 

13. Khalatni.Im and I.N. Adamenko, Theory Of Kapitza Temperature Discontinuity At 

A Solid Body Liquid Helium Boundary. Zhurnal Eksperimentalnoi I 

Teoreticheskoi Fiziki, 1972. 63(3): p. 745-752. 

14. Little, W.A., The Transport Of Heat Between Dissimilar Solids At Low 

Temperatures. Canadian Journal of Physics, 1959. 37(3): p. 334-349. 

15. Schelling, P.K., S.R. Phillpot, and P. Keblinski, Phonon wave-packet dynamics at 

semiconductor interfaces by molecular-dynamics simulation. Applied Physics 

Letters, 2002. 80(14): p. 2484-2486. 

16. Costescu, R.M., M.A. Wall, and D.G. Cahill, Thermal conductance of epitaxial 

interfaces. Physical Review B, 2003. 67(5). 

17. Hopkins, P.E., P.M. Norris, and R.J. Stevens, Influence of inelastic scattering at 

metal-dielectric interfaces. Journal of Heat Transfer-Transactions of the Asme, 

2008. 130(2). 

18. Stevens, R.J., A.N. Smith, and P.M. Norris, Measurement of thermal boundary 

conductance of a series of metal-dielectric interfaces by the transient 

thermoreflectance technique. Journal of Heat Transfer-Transactions of the Asme, 

2005. 127(3): p. 315-322. 

19. Stoner, R.J. and H.J. Maris, Kapitza Conductance And Heat-Flow Between Solids 

At Temperatures From 50 To 300 K. Physical Review B, 1993. 48(22): p. 16373-

16387. 

20. Mingo, N. and L. Yang, Phonon transport in nanowires coated with an 

amorphous material: An atomistic Green's function approach. Physical Review B, 

2003. 68(24). 

21. Zhang, W., T.S. Fisher, and N. Mingo, Simulation of interfacial phonon transport 

in Si-Ge heterostructures using an atomistic Green's function method. Journal of 

Heat Transfer-Transactions of the Asme, 2007. 129(4): p. 483-491. 

22. Zhang, W., T.S. Fisher, and N. Mingo, The atomistic Green's function method: An 

efficient simulation approach for nanoscale phonon transport. Numerical Heat 

Transfer Part B-Fundamentals, 2007. 51(4): p. 333-349. 

23. Tian, Z.T., K. Esfarjani, and G. Chen, Enhancing phonon transmission across a 

Si/Ge interface by atomic roughness: First-principles study with the Green's 

function method. Physical Review B, 2012. 86(23). 



 153 

24. Li, X.B. and R.G. Yang, Size-dependent phonon transmission across dissimilar 

material interfaces. Journal of Physics-Condensed Matter, 2012. 24(15). 

25. Jeong, C., S. Datta, and M. Lundstrom, Full dispersion versus Debye model 

evaluation of lattice thermal conductivity with a Landauer approach. Journal of 

Applied Physics, 2011. 109(7). 

26. Miao, K., Sadasivam, S., Charles, J., Klimeck, G., Fisher, T. S., Kubis, T., Buttiker 

probes for dissipative phonon quantum transport in semiconductor 

nanostructures. Applied Physics Letters, 2016. 108(11). 

27. Milton, G.W., The Theory of Composites 2002: Cambridge University Press, New 

York. 

28. Maxwell-Garnett, J.C., Colours in metal glasses and in metallic films. 

Philosophical Transactions of the Royal Society of London, Series A, Containing 

Papers of a Mathematical or Physical Character, 1904. 203: p. 385-420. 

29. Hasselman, D.P.H. and L.F. Johnson, Effective Thermal-Conductivity Of 

Composites With Interfacial Thermal Barrier Resistance. Journal of Composite 

Materials, 1987. 21(6): p. 508-515. 

30. Benveniste, Y. and T. Miloh, On The Effective Thermal-Conductivity Of Coated 

Short-Fiber Composites. Journal of Applied Physics, 1991. 69(3): p. 1337-1344. 

31. Every, A.G., Tzou, Y., Hasselman, D. P. H., Raj, R., The Effect Of Particle-Size 

On The Thermal-Conductivity Of Zns Diamond Composites. Acta Metallurgica Et 

Materialia, 1992. 40(1): p. 123-129. 

32. Nan, C.W., Birringer, R., Clarke, D. R., Gleiter, H., Effective thermal conductivity 

of particulate composites with interfacial thermal resistance. Journal of Applied 

Physics, 1997. 81(10): p. 6692-6699. 

33. Minnich, A. and G. Chen, Modified effective medium formulation for the thermal 

conductivity of nanocomposites. Applied Physics Letters, 2007. 91(7). 

34. Bazant, M.Z., E. Kaxiras, and J.F. Justo, Environment-dependent interatomic 

potential for bulk silicon. Physical Review B, 1997. 56(14): p. 8542-8552. 

35. Rossky, P.J., Perspective on "Correlations in the motion of atoms in liquid argon" 

- Rahman A (1964) Phys Rev 136 : 405. Theoretical Chemistry Accounts, 2000. 

103(3-4): p. 263-264. 



 154 

36. Tersoff, J., New Empirical-Approach For The Structure And Energy Of Covalent 

Systems. Physical Review B, 1988. 37(12): p. 6991-7000. 

37. Stillinger, F.H. and T.A. Weber, Computer-Simulation Of Local Order In 

Condensed Phases Of Silicon. Physical Review B, 1985. 31(8): p. 5262-5271. 

38. Gonze, X. and C. Lee, Dynamical matrices, born effective charges, dielectric 

permittivity tensors, and interatomic force constants from density-functional 

perturbation theory. Physical Review B, 1997. 55(16): p. 10355-10368. 

39. Zhong, Z.R., X.W. Wang, and J. Xu, Equilibrium molecular dynamics study of 

phonon thermal transport in nanomaterials. Numerical Heat Transfer Part B-

Fundamentals, 2004. 46(5): p. 429-446. 

40. MullerPlathe, F., A simple nonequilibrium molecular dynamics method for 

calculating the thermal conductivity. Journal of Chemical Physics, 1997. 106(14): 

p. 6082-6085. 

41. Schelling, P.K., S.R. Phillpot, and P. Keblinski, Comparison of atomic-level 

simulation methods for computing thermal conductivity. Physical Review B, 2002. 

65. 

42. E. E. Lewis, W.F.M., Computational methods of neutron transport. 1984, United 

States: John Wiley and Sons, Inc. 

43. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon, Submicron heat transport 

model in silicon accounting for phonon dispersion and polarization. Journal of 

Heat Transfer-Transactions of the Asme, 2004. 126: p. 946-955. 

44. Murthy, J.Y. and S.R. Mathur, Computation of sub-micron thermal transport 

using an unstructured finite volume method. Journal of Heat Transfer-

Transactions of the Asme, 2002. 124: p. 1176-1181. 

45. Murthy, J.Y. and S.R. Mathur, An improved computational procedure for sub-

micron heat conduction. Journal of Heat Transfer-Transactions of the Asme, 2003. 

125(5): p. 904-910. 

46. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon, Comparison of different 

phonon transport models for predicting heat conduction in silicon-on-insulator 

transistors. Journal of Heat Transfer-Transactions of the Asme, 2005. 127: p. 713-

723. 



 155 

47. Narumanchi, S.V.J., J.Y. Murthy, and C.H. Amon, Boltzmann transport equation-

based thermal modeling approaches for hotspots in microelectronics. Heat and 

Mass Transfer, 2006. 42(6): p. 478-491. 

48. Chen, G., Size and interface effects on thermal conductivity of superlattices and 

periodic thin-film structures. Journal of Heat Transfer-Transactions of the Asme, 

1997. 119: p. 220-229. 

49. Yang, R.G. and G. Chen, Thermal conductivity modeling of periodic two-

dimensional nanocomposites. Physical Review B, 2004. 69. 

50. Jeng, M.S., Yang, R. G., Song, D., Chen, G., Modeling the thermal conductivity 

and phonon transport in nanoparticle composites using Monte Carlo simulation. 

Journal of Heat Transfer-Transactions of the Asme, 2008. 130. 

51. Tian, W.X. and R.G. Yang, Thermal conductivity modeling of compacted 

nanowire composites. Journal of Applied Physics, 2007. 101. 

52. Hsieh, T.Y. and J.Y. Yang, Thermal conductivity modeling of circular-wire 

nanocomposites. Journal of Applied Physics, 2010. 108. 

53. Singh, D., J.Y. Murthy, and T.S. Fisher, Effect of Phonon Dispersion on Thermal 

Conduction Across Si/Ge Interfaces. Journal of Heat Transfer-Transactions of the 

Asme, 2011. 133. 

54. Loy, J.M., An Efficient Solution Procedure for Simulating Phonon Transport in 

Multiscale Multimaterial Systems. 2013, The University of Texas at Austin. 

55. Prasher, R., Generalized equation of phonon radiative transport. Applied Physics 

Letters, 2003. 83(1): p. 48-50. 

56. Travkin, V.S. and A.T. Ponomarenko, Electrodynamic equations for 

heterogeneous media and structures on the length scales of their constituents. 

Inorganic Materials, 2004. 40: p. S128-S144. 

57. Consalvi, J.L., B. Porterie, and J.C. Loraud, A formal averaging procedure for 

radiation heat transfer in particulate media. International Journal of Heat and 

Mass Transfer, 2002. 45(13): p. 2755-2768. 

58. Singh, B.P. and M. Kaviany, Independent Theory Versus Direct Simulation Of 

Radiation Heat-Transfer In Packed-Beds. International Journal of Heat and Mass 

Transfer, 1991. 34(11): p. 2869-2882. 



 156 

59. Singh, B.P. and M. Kaviany, Modeling Radiative Heat-Transfer In Packed-Beds. 

International Journal of Heat and Mass Transfer, 1992. 35(6): p. 1397-1405. 

60. Singh, B.P. and M. Kaviany, Effect Of Solid Conductivity On Radiative Heat-

Transfer In Packed-Beds. International Journal of Heat and Mass Transfer, 1994. 

37(16): p. 2579-2583. 

61. Quintard, M., M. Kaviany, and S. Whitaker, Two-medium treatment of heat 

transfer in porous media: Numerical results for effective properties. Advances in 

Water Resources, 1997. 20(2-3): p. 77-94. 

62. Moyne, C., Two-equation model for a diffusive process in porous media using the 

volume averaging method with an unsteady-state closure. Advances in Water 

Resources, 1997. 20: p. 63-76. 

63. Modest, M.F., Radiative Heat Transfer. 1993, New York, NY. 

64. Glassner, A.S., An Introduction to ray tracing. 1989, San Francisco, CA: Morgan 

Kaufmann Publishers, Inc. 

65. Prasher, R., Transverse thermal conductivity of porous materials made from 

aligned nano- and microcylindrical pores. Journal of Applied Physics, 2006. 100. 

66. Prasher, R.S., Mie scattering theory for phonon transport in particulate media. 

Journal of Heat Transfer-Transactions of the Asme, 2004. 126(5): p. 793-804. 

67. Song, D. and G. Chen, Thermal conductivity of periodic microporous silicon 

films. Applied Physics Letters, 2004. 84(5): p. 687-689. 

68. Dresselhaus, M., Chen, Gang, Tang, M. Y., Yang, R. G., Lee, H., Wang, D.Z., 

Ren, Z. F., Fleurial, J. P., Gogna, P., New directions for nanoscale thermoelectric 

materials research. in MRS Proceedings. 2005. Cambridge Univ Press. 

69. https://memshub.org/infrastructure/memosa. 

70. Loy J. M., Mathur S.R., and Murthy J. Y.,, A Coupled Ordinates Method for the 

Convergence Acceleration of the Phonon Boltzmann Transport Equation. J. Heat 

Transfer, 2013. 137(1): p. 012402. 

71. I. El-Kady, R.H.O.I., P. E. Hopkins, Z. C. Leseman, D. F. Goettler, B. Kim, C. M. 

Reinke, and M. F. Su, Phonon Manipulation with Phononic Crystals, P.r. 

SAND2012-0127, Editor. 2012: Sandia National Laboratories, California, CA. 



 157 

72. Hulst, H.C.v.d., Light Scattering by Small Particles. 1981, New York: Dover 

Publications, Inc. 

73. Hopkins, P.E., Reinke, C. M., Su, M. F., Olsson, R. H., Shaner, E. A., Leseman, Z. 

C., Serrano, J. R., Phinney, L. M., El-Kady, I., Reduction in the Thermal 

Conductivity of Single Crystalline Silicon by Phononic Crystal Patterning. Nano 

Letters, 2011. 11(1): p. 107-112. 

74. Kittel, C., Introduction to Solid State Physics. 1996, New York, NY: Wiley. 

75. Pascual-Gutierrez, J.A., J.Y. Murthy, and R. Viskanta, Thermal conductivity and 

phonon transport properties of silicon using perturbation theory and the 

environment-dependent interatomic potential. Journal of Applied Physics, 2009. 

106. 

76. Holland, M.G., Analysis Of Lattice Thermal Conductivity. Physical Review, 1963. 

132: p. 2461-&. 

77. Thomas, J.A., Turney, J. E., Iutzi, R. M., Amon, C. H., McGaughey, A. J. H.,  

Predicting phonon dispersion relations and lifetimes from the spectral energy 

density. Physical Review B, 2010. 81(8). 

78. Slattery, J.C., Momentum, Energy, and Mass Transfer in Continua. 1981, 

Huntington, N.Y: Robert Krieger Publishing. 

79. DeVidts, P. and R.E. White, Governing equations for transport in porous 

electrodes. Journal of the Electrochemical Society, 1997. 144: p. 1343-1353. 

80. Vadakkepatt, A., Trembacki, Bradley, Mathur, Sanjay R., Murthy, Jayathi Y., 

Bruggeman's Exponents for Effective Thermal Conductivity of Lithium-Ion 

Battery Electrodes. Journal of the Electrochemical Society, 2016. 163(2): p. 

A119-A130. 

81. Doyle, M., T.F. Fuller, and J. Newman, Modeling Of Galvanostatic Charge And 

Discharge Of The Lithium Polymer Insertion Cell. Journal of the Electrochemical 

Society, 1993. 140(6): p. 1526-1533. 

82. Newman, J. and W. Tiedemann, Porous-Electrode Theory With Battery 

Applications. Aiche Journal, 1975. 21(1): p. 25-41. 

83. Bruggeman, V.D., Berechnung verschiedener physikalischer konstanten von 

heterogenen substanzen. i. dielektrizit¨atskonstanten und leitf¨ahigkeiten der 

mischkorper aus isotropen substanzen. Annalen der Physik, 1935. 416(7): p. 636. 



 158 

84. Chen, Z.G., Han, Guang, Yang, Lei, Cheng, Lina, Zou, Jin, Nanostructured 

thermoelectric materials: Current research and future challenge. Progress in 

Natural Science: Materials International, 2012. 22(6): p. 535-549. 

85. Morelli, D.T., Caillat, T., Fleurial, J. P., Borshchevsky, A., Vandersande, J., Chen, 

B., Uher, C., Low-temperature transport properties of p-type CoSb3. Physical 

Review B, 1995. 51(15): p. 9622-9628. 

86. Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., 

Polychroniadis, E. K., Kanatzidis, M. G., Cubic AgPbmSbTe2+m: Bulk 

thermoelectric materials with high figure of merit. Science, 2004. 303(5659): p. 

818-821. 

87. Weathers, A., Shi, L., Thermal transport measurement techniques for nanowires 

and nanotubes. Annual Review of Heat Transfer, 2013. 16: p. 101-134. 

88. Henry, A.S. and G. Chen, Spectral phonon transport properties of silicon based 

on molecular dynamics Simulations and lattice dynamics. Journal of 

Computational and Theoretical Nanoscience, 2008. 5(2): p. 141-152. 

89. Auld, B.A., Acoustic Fields and Waves in Solids. Vol. 1. John Wiley & Sons. 

90. Thornton, J.B.M.a.S.T., Classical Dynamics of Particles and Systems. 1995: 

Harcourt Brace. 

91. Chai, J.C., H.S. Lee, and S.V. Patankar, Finite-Volume Method For Radiation 

Heat-Transfer. Journal of Thermophysics and Heat Transfer, 1994. 8: p. 419-425. 

92. Patankar, S.V., Numerical Heat Transfer and Fluid Flow. 1980, New York, NY: 

Taylor & Francis. 

93. Livne, A.B.a.O.E., Multigrid Techniques. 2011, Philadelphia, PA.: SIAM. 

94. Mathur, S.R. and J.Y. Murthy, Coupled ordinates method for multigrid 

acceleration of radiation calculations. Journal of Thermophysics and Heat 

Transfer, 1999. 13: p. 467-473. 

95. Heaslet, M.A. and R.F. Warming, Radiative transport and wall temperature slip in 

an absorbing planar medium. International Journal of Heat and Mass Transfer, 

1965. 8(7): p. 979-994. 

96. https://cubit.sandia.gov/. 



 159 

97. Jain, A., Y.J. Yu, and A.J.H. McGaughey, Phonon transport in periodic silicon 

nanoporous films with feature sizes greater than 100 nm. Physical Review B, 

2013. 87(19). 

98. Born, M., and Huang, K., Dynamical theory of crystal lattices. 1954: Clarendon 

Press, Oxford. 

99. de Gironcoli, S., Phonons in Si-Ge systems: An ab initio interatomic-force-

constant approach. Physical Review B, 1992. 46(4): p. 2412-2419. 

100. Mingo, N., Yang, L., Li, D., Majumdar, A., Predicting the thermal conductivity of 

Si and Ge nanowires. Nano Letters, 2003. 3(12): p. 1713-1716. 

101. Prasher, R.S., Thermal transport cross section and phase function of longitudinal 

phonons for scattering by nanoparticles and microparticles. Journal of Applied 

Physics, 2004. 96(9): p. 5202-5211. 

 

 

  



 160 

 

Vita 

Columbia is from Malda, India, and received her B.S. in Mechanical Engineering 

in 2006 from Jadavpur University, Kolkata, India, in 2006. She received her M.S. in 

Mechanical Engineering from Texas Tech University in 2008. Prior to joining the 

graduate program at The University of Texas at Austin, Columbia worked as an Analyst 

at Stress Engineering Services, Inc., in Houston, Texas. During graduate school she 

worked as intern at Apple, Inc., Cupertino, California. Columbia is the author of four 

peer-reviewed journal articles and three conference publications. Columbia is a recipient 

of the competitive 2014 Qualcomm Innovation Challenge Fellowship. She is a recipient 

of the Bruce J. Heim Foundation scholarship from American Society of Mechanical 

Engineers and Warren A. and Alice L. Meyer Endowed Scholarship in engineering from 

Cockrell School of Engineering. During her tenure as a graduate student, Columbia held 

several leadership roles on campus and served as president of the Graduate Engineering 

Council and the Graduate Student Assembly. She was awarded the Cockrell School of 

Engineering Student Leadership Award for her services to the graduate student 

community. Columbia will be joining the Research & Development team at Intel 

Corporation in Hillsboro, Oregon, upon graduation. 

 

 

Permanent Email: columbia.mishra@gmail.com 

This dissertation was typed by the author 

 

 

 

 


