
The Report committee for Nathaniel Brett Wiatrek

Certifies that this is the approved version of the following report:

Automatically Extracting Templates for Testing Java JIT Compilers

SUPERVISING COMMITTEE:

Milos Gligoric, Supervisor

August Shi

Automatically Extracting Templates for Testing Java JIT Compilers

by

Nathaniel Brett Wiatrek

REPORT

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2021

Acknowledgments

Thank you to my family for all the support given in pursuit of this degree. Thank

you to all of the friends I’ve made along this journey, and a special thanks to my fiancée.

Without her, I would never have felt confident enough to have applied for this masters

program. Love you, Em.

iii

Automatically Extracting Templates for Testing Java JIT Compilers

Nathaniel Brett Wiatrek, M.S.E.
The University of Texas at Austin, 2021

Supervisor: Milos Gligoric

The Java programming language is widely used in industry and academia. Since

the language is object-oriented and platform independent, it is a perfect solution to deliver

a variety of programs. To increase performance, Java optimizes running software with

the use of just-in-time (JIT) compilation, in which the JIT compiler will generate new

code that is more streamlined. If there is a bug in this newly generated code there could

be significant c onsequences. To validate JIT correctness JITAttack was developed, which

leverages program templates to test compilers (such as Java JIT). These templates are

currently manually-written and time-intensive to create.

We present a tool, JITTEMPLATER, that is designed to take in a Java program and

create templates to be used with JITAttack’s JIT compiler testing. JITTEMPLATER parses

the Abstract Syntax Tree of the given Java file to convert s tatements and expressions to

their equivalent in JITAttack’s API. JITTEMPLATER is part of a larger process that takes

in a real-world Java project to convert into a project of templates for testing purposes. The

automation of template extraction leads to novel and interesting inputs to be used with

JITAttack. To date, we have found three bugs utilizing real-world Java programs that were

extracted by JITTEMPLATER.

iv

Table of Contents

Acknowledgments iii

Abstract iv

List of Tables vi

List of Figures vii

Chapter 1. Introduction 1

Chapter 2. Background 3

Chapter 3. Technique 7
3.1 Crawl Through Java Project and Determine Inputs 8
3.2 Convert Methods to Templates . 10
3.3 Compile Safety . 18

Chapter 4. Evaluation 19

Chapter 5. Related Work 28

Chapter 6. Conclusion 30

Bibliography 31

Vita 35

v

List of Tables

3.1 Java Projects Used To Obtain Templates. 8
3.2 Java Project Method Types. 9

4.1 Statistics for Simple Holes in Each Project. 19
4.2 Statistics for Complex Holes in Each Project. 20
4.3 Project Timings. 23

vi

List of Figures

1.1 End-to-End Process. 2

2.1 A Class from the Apache Math Project [3] Before and After Templatization. 5

3.1 JITTEMPLATER Steps Overview. 7
3.2 For Loop Before and After Loop Limit. 15
3.3 Apcahe Math [3] - Greatest Common Denominator Positive Function Be-

fore Templatization. 16
3.4 Apache Math [3] - Greatest Common Denominator Positive Function Af-

ter Templatization. 17

4.1 Boxplot Showing Lines of Code for Entry Methods by Project. 21
4.2 Checkstyle [8] Bug Template. 25
4.3 Codec [2] Bug Template. 27

vii

Chapter 1

Introduction

The just-in-time (JIT) compiler is a product of software engineering that is de-

signed to increase the efficiency of long running software programs [1, 4, 11]. The JIT

compilers require that the cost of the compilation be offset by the speedup gained from the

optimization [21]. One of the results of these optimizations is that the JIT compiler will

generate new code from the running program [21]. The generated code may be incorrect,

which indicates that there is a bug in the JIT compiler. To check the correctness of the JIT

compiler, JITAttack was developed. JITAttack is a template-based testing framework that

takes in a template and generates concrete programs from that template that get executed

many times to find inconsistencies at different JIT levels. With JITAttack a developer can

write a template, which is a Java program file with holes, that JITAttack will then use to

generate programs by filling in the holes with concrete values [26].

We present a tool, JITTEMPLATER, that streamlines the template creation process

by taking in real-world Java programs and converting them into templates to be used along-

side JITAttack.

Motivation. Manually creating complex and novel templates takes a significant

amount of time. With JITAttack, a developer is given a large and robust application pro-

gram interface (API) to be able to create a complex template. This large API allows for the

1

creation of very expressive templates, but also adds to the amount of underlying knowl-

edge the developer must gain before using the framework to maximum effect.

Automating the creation of templates from real-world Java programs significantly

reduces the time to create many complex and novel templates compared against manually

writing them. By using automation to generate the templates, we also ensure the use of as

many JITAttack APIs as are applicable for the new templates.

With the use of JITTEMPLATER, we can generate thousands of new templates for

JITAttack to consume to find bugs in the JIT compilers. The JITTEMPLATER process was

designed to take in a Java project, find all the opportunities for templates, and then tem-

platize the Java code for use with JITAttack. The end-to-end process of JITTEMPLATER

and JITAttack that we created can be seen in Figure 1.1.

JITAttackJITTEMPLATER
Generated
Programs

crash

fail

pass

Figure 1.1: End-to-End Process.

2

Chapter 2

Background

This Section introduces important concepts related to JITAttack, and its corre-

sponding API that are utilized for creating templates.

JITAttack requires a single entry method that will be used to trigger JIT compila-

tion. There is only one requirement for determining if a method can be used as an entry

method, which is that the method must be static. Having the method be static ensures that

JITAttack does not have to worry about the initialization of a custom object.

The entry method must have the annotation @Entry to signify that it is indeed the

entry method. If there are parameters to the entry method, we must create additional meth-

ods that correspond to the return type of the parameter. These additional methods must

all have the @Argument annotation which corresponds to the position of the parameter

in the method. This position starts at 1 (0 is reserved for this which may be used in the

future) and increasing from there.

The entry method specifications result in the method declaration in Figure 2.1a line

11, being converted into Figure 2.1b line 12. The two added methods nonPrim1() and

nonPrim2() are the methods that define the parameters for the entry method, in this

case the double[][] real and double[][] imag.

At the core of the JITAttack API is the concept of a hole. A hole is simply a

3

1 public class ComplexUtils {
2 public static Complex[] split2Complex(double[] real, double[] imag) {
3 final int length = real.length;
4 final Complex[] c = new Complex[length];
5 for (int n = 0; n < length; n++) {
6 c[n] = new Complex(real[n], imag[n]);
7 }
8 return c;
9 }

10

11 public static Complex[][] split2Complex(double[][] real, double[][] imag) {
12 final int length = real.length;
13 Complex[][] c = new Complex[length][];
14 for (int x = 0; x < length; x++) {
15 c[x] = split2Complex(real[x], imag[x]);
16 }
17 return c;
18 }
19 }

(a) A Class from the Apache Math Project [3] Before Templatization.

4

1 public class ComplexUtilsTemplate {
2 public static Complex[] split2ComplexTemplate(double[] real, double[] imag) {
3 final int length = intVal().eval();
4 final Complex[] c = new Complex[length];
5 for (int n = 0; n < intId().eval(); n++) {
6 c[intVal(0, c.length).eval()] = new Complex(real[n], imag[n]);
7 }
8 return c;
9 }

10

11 @jitattack.Entry()
12 public static Complex[][] split2ComplexTemplate(double[][] real, double[][] imag) {
13 final int length = intVal().eval();
14 Complex[][] c = new Complex[length][];
15 for (int x = 0; x < intId().eval(); x++) {
16 c[intVal(0, c.length).eval()] = split2ComplexTemplate(real[x], imag[x]);
17 }
18 return c;
19 }
20

21 @Argument(1)
22 public static double[][] nonPrim1() {
23 return new double[][] { { intVal().eval(), intVal().eval() }, { intVal().eval(), intVal()

.eval() }, { intVal().eval(), intVal().eval() } };
24 }
25

26 @Argument(2)
27 public static double[][] nonPrim2() {
28 return new double[][] { { intVal().eval(), intVal().eval() }, { intVal().eval(), intVal()

.eval() }, { intVal().eval(), intVal().eval() }, { intVal().eval(), intVal().eval() }};
29 }
30 }

(b) A Class from the Apache Math Project [3] After Templatization.

Figure 2.1: A Class from the Apache Math Project [3] Before and After Templatization.

5

bit of code that is going to be filled in by JITAttack. A program that has holes is called

a template. There are several different types of method calls in the API that can create

holes, and they can cover a plethora of situations. The most simple of calls are those that

describe literal expressions; these method calls are intVal() and boolVal(). With

these API calls, JITAttack will create a hole to be filled by a corresponding random value

described by their search space [26].

More complicated holes are those that involve binary expressions. Binary expres-

sion holes can be created by three types of API calls, 1) relation, 2) arithmetic,

and 3) logic. These calls are used whenever there is an example of the corresponding

binary operator that has smaller API calls on either side. For example if(relation(

intId(), intVal).eval()) could result in a concrete expression such as if(a >

7). The list of complex holes are relation, arithmetic, logic, loop limits,

and arrays.

One thing to note is the use of .eval(). The .eval() corresponds to a hole,

which constructs a valid Java expression and builds an AST. When the .eval() is exe-

cuted, JITAttack converts the entire expression into a concrete Java expression. As such,

.eval() is only used on the outermost hole.

6

Chapter 3

Technique

This Section describes the end-to-end automation process for use with JITAttack,

as well as how the JITTEMPLATER tool is implemented.

The end-to-end process of automating the templates to be used in JITAttack boils

down into the three steps that are shown in Figure 3.1.

Crawl
Through

Java
Project

Java
files and
methods

Convert
Methods to
Templates

1

Program
templates

Feed into
JITAttack

2 3

JIT bug
reports

Figure 3.1: JITTEMPLATER Steps Overview.

The three stages are to first crawl and parse through a real-world Java project. This

stage generates Java files and methods that will be used in the second stage. Second,

JITTEMPLATER will convert an input file into an output template. In the third stage, the

template will be utilized in JITAttack as a program to execute. The result of the third stage

is a JIT bug report.

7

3.1 Crawl Through Java Project and Determine Inputs

The conversion of a real-world Java project to a project of templates for JITAttack

begins with finding all of the methods in the project that can be used as an entry point to

JITAttack.

To find all of the possibilities for templates we created a Java console program

that searches over the entirety of a Java project. This program does a Depth First Search

(DFS) of all the files and folders to find all of the static methods in the project. We ran this

program on thirteen different Java projects, the list of these projects is in Table 3.1.

Project SHA LOC #Files

Checkstyle bdaac14 111242 408
Codec 4de60e8 22825 73
Compress 488425c 53899 221
Configuration e63eeae 64936 261
Gson f319c1b 14731 73
JFreeChart b5affea 221155 637
JXPath 192f4c9 30643 171
Lang 261a579 88047 217
libGDX a10a776 134042 577
Math dff1a09 194050 851
Openfire 565da30 183971 731
Vectorz d9b79ec 61631 295
ZXing d2027d0 38429 231

TOTAL N/A 1219601 4746

Table 3.1: Java Projects Used To Obtain Templates.

Table 3.1 contains the Java project that was used, the SHA of the project that we

used in our experiments, the Lines of Code (LOC) in the project, and the total number

of source files in the project. There is a wide range in number of files and LOC in the

8

https://github.com/checkstyle/checkstyle/tree/bdaac140eaf161c3055c7d1fe208f21d5f1c629a
https://github.com/apache/commons-codec/tree/4de60e8b68fb749e5380ecef018511bed946bee8
https://github.com/apache/commons-compress/tree/488425c1b9fb8c8d0f1ef1ce7d665058880870e2
https://github.com/apache/commons-configuration/tree/e63eeaecae03c640790b89ff71897bb0dc7d639c
https://github.com/google/gson/tree/f319c1b8e5ac1135ab253513f91d5ece6719cdf7
https://github.com/jfree/jfreechart/tree/b5affeab1735f241743ee6849d9672aac6ff8688
https://github.com/apache/commons-jxpath/tree/192f4c92727cf5387a8043525a1e1e1533c9ac69
https://github.com/apache/commons-lang/tree/261a5797bdfc3a5012c1475a69f80a12ab2a84cc
https://github.com/libgdx/libgdx/tree/a10a7769a42a36891ba0fb43969c9d5fa23a53fa
https://github.com/apache/commons-math/tree/dff1a0953d97d46290750a46d01be1e1519ae698
https://github.com/igniterealtime/Openfire/tree/565da307327e76a2fa284a872e00aca332405ec5
https://github.com/mikera/vectorz/tree/d9b79ec40f3c858ca7c1aa843f01fe69304df52b
https://github.com/zxing/zxing/tree/d2027d0e0f210d35feda20902315e89dedf311ad

thirteen projects, with LOC ranging from just under 15,000 all the way to over 200,000

and number of files going from 73 to 851. The method types for each of the Java projects,

including a breakdown of static and instance methods, can be found in Table 3.2.

Project #Static M. #Instance M.

Total w/ Generics Total w/ Generics w/ D. Ctor.

Checkstyle 808 3 2531 1 1935
Codec 352 0 310 0 243
Compress 301 5 1678 1 577
Configuration 287 29 2029 101 1342
Gson 85 10 402 23 243
JFreeChart 463 0 7227 0 4861
JXPath 119 0 1364 0 231
Lang 1719 265 1270 15 918
libGDX 861 38 8054 89 5634
Math 878 49 4977 0 2123
Openfire 1014 22 6795 11 4679
Vectorz 746 7 5117 0 2047
ZXing 407 0 926 0 297

TOTAL 8040 428 42680 241 25130

Table 3.2: Java Project Method Types.

Table 3.2 breaks down the specifics of the types of methods that can be found

in each of the Java projects. The w/Generics specifies that the method had generic

type parameters. The specification of instance methods that only have default constructors

(w/D. Ctor.) is an important data point for determining the next direction for JITAt-

tack. Since we see that there are many methods that do not require a special instantiation,

there may be an update in the future that allows these methods to be used by JITAttack as

entry methods.

9

With the requirement of static methods that do not have generics, we are left with

roughly 20% of the total methods in the Java projects to use as an input for extracting

program templates. Creating this many inputs to JITAttack would be excruciatingly time-

intensive if done manually. The output of the first phase of the process is a text file that is

used by JITTEMPLATER, in the second phase.

3.2 Convert Methods to Templates

The second stage of the end-to-end process for testing with JITAttack is the con-

version of a Java file into a template. The goal of the conversion process is to create a

template that preserves the structure and expressiveness of the original, while inserting

applicable holes for JITAttack. The product of this goal results in the template having the

same semantic structure as the original input program, with several holes to be filled by

JITAttack.

JITTEMPLATER, the program that does the conversion of the file, takes in a number

of arguments that allow for the customization of a template. The two arguments that are

required to perform the conversion are the input file (i.e., the source Java file) and the

signature of the method that is going to be used as the entry point for JITAttack. Both of

these inputs are given directly from the output of the console program from the first stage.

Other notable arguments for JITTEMPLATER are the maximum number of holes

to insert into a given template and the boolean flag for making other holes. The

--max-num-holes argument defines the maximum number of holes JITTEMPLATER

should insert. The --make-other-holes argument determines whether or not JIT-

TEMPLATER is allowed to insert holes into methods in the source file that are not the entry

10

method. The default values for --max-num-of-holes and --make-other

-holes are Integer.MAX VALUE and true, respectively.

JITTEMPLATER works by leveraging the Abstract Sytntax Tree (AST) that is

formed by a Java file. With this structure at the core of our implementation we can traverse

the tree to find leaves and branches that are useful for turning into holes with the JITAttack

API.

First, JITTEMPLATER finds the entry method. Determining the entry method is

trivial due to the two required inputs of the program. Once the program has been parsed

into the AST data structure, a pre-order traversal is done on the tree to look for the method

that matches the inputted signature. If the method is not found, or the method is found but

is not static, JITTEMPLATER throws an exception to inform the user of the possible user

error on input.

To generate the parameter methods for the entry method, the general idea is to

convert whatever the input parameter is to be the default of that type. For example, if the

input parameter is a primitive type (e.g., char or boolean) JITTEMPLATER will give it

the default value (e.g., u0000 or false respectively). When the input parameter is not

a primitive type (e.g., a class), JITTEMPLATER will first search the Java project for the

class definition. If JITTEMPLATER finds the class definition, then it determines whether

there is a default constructor or a constructor that has only primitive type arguments. If

the class’s constructor matches either of those requirements we will make a new instance

of that object. If all of the above failed we will use null as the input to the method.

With array parameters, a new array will be formed in one of two ways. If the array

11

is an integer array we will utilize the JITAttack API of intArrVal() to create it. In

all other situations, a new array will be created with a randomly generated size, but will

always be a square array in the event of multi-dimensional arrays. The creation of these

arrays follows the same rules as the non array, whatever element type the array has will

define the values at each index of the generated array.

All non-entry methods are found in a similar fashion to the entry method, in which

JITTEMPLATER runs a pre-ordered traversal to get all Method Declarations. Each Method

Declaration will be used as the start of its own AST to allow for separate computations. It

is important to note that only the entry method is required to be static, any other method

in the Java file can be templatized without fear of being an instance method.

To traverse the AST for each method we do an in-order traversal. This allows us

to modify the leafs of all the branches before modifying the overall branch. In the tree,

we continue searching down the branches until one of the following is found: 1) Variable

Declaration, 2) Binary Expression, 3) Return Statement, 4) Assign Statement, 5) Array

Access Expression. Each of these five cases are handled differently to create a compilable

template.

With the VariableDeclarationExpression, we get all of the variables

that are being declared and determine if they are a simple declaration or something more

complex. An example of a simple declaration would be int a = 1; while a more

complex declaration would be int a = 1 + variable;. If the initializer is a sim-

ple declaration, we will convert the right hand side of the variable declaration into an

intVal().eval() if it is an int, double, or long. Similarly, if the simple declaration

is a boolean type we will create a boolVal().eval() as the hole. Any other type

12

backing a Variable Declaration is not supported to be a hole in JITAttack. In the event of

a more complex declaration we will prefer a more complex hole to be created. We handle

this case the same way as a BinaryExpression or a MethodCallExpression. If

there was no initializer then the variable is left intact and no hole is created.

With BinaryExpression we utilize recursion to break down a binary expres-

sion into several smaller expressions. If either the left or the right side of the binary

expression is itself an instance of a binary expression we will start this process over. Once

the binary expression has been broken down into two non-binary expressions, we will

convert the left hand side and the right hand side into holes if possible. Instances of

places for valid holes are if the expression is an IntegerLiteralExpression, a

NameExpression that backs an integer, an ArrayAccessExpression,

an AssignStatement, or a MethodCallExpression. The breakdown of handling

each type of hole is described below.

For an instance of an IntegerLiteralExpression, we insert an intVal

hole. This hole is normally wrapped by a more complex hole (e.g., relation or

arithmetic), but can be a standalone hole if necessary.

An ArrayAccessExpression (e.g., arr[index]) is handled by turning the

index of the expression into a hole. To ensure a minimal amount of ArrayIndexOutOf

BoundsException exceptions, we set the range of the hole that is being inserted to be

between 0 and the length of the array we are accessing. The component type of the array

is not considered when making these holes, as all we are concerned with is randomizing

the element that was selected. An example result of the ArrayAccessExpression is

arr[intVal(0, arr.length).eval()].

13

The AssignStatement can be complex, since we have to consider all of the

possibilities for the statement. Examples of these statements are a = b != c;, or a

+= method() + method(int arg);, or a = -int number;. As the Assign

Statement has so many possible ways of being expressed, it requires going through the

following checks to determine how we handle it. First, if the right hand side of the expres-

sion is an instance of a BinaryExpressionwe send it back to the function that handles

the Binary Expression so we can accurately parse the AST and insert as many holes as pos-

sible. Second, if the right hand side of the assign expression is a NameExpression and

is an integer variable, we will insert a intId() hole. Third, if the right hand side is an

integer literal or a boolean literal we insert the corresponding simple hole of intVal()

or boolVal(). Fourth, if the value of the expression is a UnaryExpression we

will handle this by converting the target of the unary expression and then adding back

on the unary operator to the newly created hole. Fifth and finally, if the value of the

AssignStatement is a MethodCallExpression, we will go through each of the

arguments of the method and determine if there is a hole that can be inserted. If none of

the above checks are true then we will insert no hole. The choice of inserting no hole, in-

stead of attempting to force one, is due to ensuring that the template we create accurately

represents the original Java program in terms of structure and expressiveness.

Once the sides of the binary expression have been converted into valid holes we

determine if we can add a more complex hole. The list of these complex holes are those

listed in Section 2. The requirements to be able to create a more complex hole is that both

sides of the operator must be holes themselves. For example, if there is an input of a ==

0, a relation hole will ultimately be created because the input will first be converted

14

into intId() == intVal(). If either side of the binary operator had not been a hole

(e.g., non int var == intVal()), then no higher level hole could be inserted.

After converting a method into a template there exists opportunities for infinite

loops in any kind of loop statement. To handle this we have implemented loop limiters.

These limiters are an addition to the boolean condition in each of the types of loops (do

while, while, and for). Figures 3.2a and 3.2b show how we insert the loop limiter.

1 for (int i = intVal().eval(); relation(intId(), intVal()).eval(); ++i) {
2 ds.data[intVal(0, ds.data.length).eval()] ∗= a;
3 }

(a) Before Loop Limit.

1 int 2071434 = 0;
2 for (int i = intVal().eval(); relation(intId(), intVal()).eval() && 2071434 < 1000; ++i) {
3 2071434++;
4 ds.data[intVal(0, ds.data.length).eval()] ∗= a;
5 }

(b) After Loop Limit.

Figure 3.2: For Loop Before and After Loop Limit.

In 3.2a there is a high possibility of an infinite loop as the hole could easily create

something like 1 < 2. To prevent this we create a variable that is based on the hash of

the loop statement. Using the hash ensures that the variable created will not clash with

another variable that has already been created in the method. In the body of the loop we

immediately increment the created variable by one and only allow for 1000 runs of the

loop.

An example of a real-world program being turned into a templatized solution can

15

be seen in Figures 3.3 and 3.4. Figure 3.3 is a Java implementation of determining the

greatest common denominator of two numbers (source code provided from Math [3]), and

Figure 3.4 is the resulting template, a program that has multiple holes for JITAttack to fill.

1 private static int gcdPositive(int a, int b) {
2 if (a == 0) {
3 return b;
4 }
5 else if (b == 0) {
6 return a;
7 }
8

9 final int aTwos = Integer.numberOfTrailingZeros(a);
10 a >>= aTwos;
11 final int bTwos = Integer.numberOfTrailingZeros(b);
12 b >>= bTwos;
13 final int shift = FastMath.min(aTwos, bTwos);
14

15 while (a != b) {
16 final int delta = a b;
17 b = Math.min(a, b);
18 a = Math.abs(delta);
19

20 a >>= Integer.numberOfTrailingZeros(a);
21 }
22

23 return a << shift;
24 }

Figure 3.3: Apcahe Math [3] - Greatest Common Denominator Positive Function Before
Templatization.

16

1 @jitattack.Entry()
2 private static int gcdPositive(int a, int b) {
3 if (relation(intId(), intVal()).eval()) {
4 return intId().eval();
5 } else if (relation(intId(), intVal()).eval()) {
6 return intId().eval();
7 }
8 final int aTwos = Integer.numberOfTrailingZeros(intId().eval());
9 a >>= intId().eval();

10 final int bTwos = Integer.numberOfTrailingZeros(intId().eval());
11 b >>= intId().eval();
12 final int shift = FastMath.min(intId().eval(), intId().eval());
13 int 1363917262 = 0;
14 while (relation(intId(), intId()).eval() && 1363917262 < 1000) {
15 1363917262++;
16 final int delta = arithmetic(intId(), intId()).eval();
17 b = Math.min(intId().eval(), intId().eval());
18 a = Math.abs(intId().eval());
19 a >>= Integer.numberOfTrailingZeros(intId().eval());
20 }
21 return arithmetic(intId(), intId()).eval();
22 }

Figure 3.4: Apache Math [3] - Greatest Common Denominator Positive Function After
Templatization.

The templatized version of gcdPositive (Figure 3.4) example showcases sev-

eral interesting holes that were inserted. Lines 3 and 5 show examples of a relation

where we were first able to convert the binary expression to two holes and ultimately ended

up with a more complex hole. Lines 8 and 11 showcase the ability to insert a hole into a

method call. Line 17 shows the implementation of a Loop limiter in a while loop. Each

of the return statements mirror their counterpart in Figure 3.3. In fact, every example of a

hole here perfectly matches the structure and expressiveness of the original program. The

17

output of each templatized class is a new class that has Template appended to the name,

and all possible instances of holes inserted.

3.3 Compile Safety

All templatized files are required to be able to compile. This ideology is a core

staple of the end-to-end process that has been created. To ensure that the templatized

files do compile there are a set of actions that must be done. The three primary actions

are to ensure that 1) All references to the class we are templatizing get the Template suffix

added, 2) there are no ill-placed eval()’s, and 3) that the JITAttack libraries are included

as imports to the class.

We append Template to the end of the class that we are modifying to distinguish

it from the original program (e.g., ComplexUtils to ComplexUtilsTemplate in

Figure 2.1a and 2.1b). To update the class name we do a quick traversal of the AST for the

entirety of the input Java file to find all the instances of this class type. In addition to this,

we update all of the constructors to ensure that they generate the templatized class, using

the same AST traversal.

To ensure the proper use of eval()s, we go through the updated AST one last

time and validate that no complex holes have an .eval() attached to the hole inside of

them. If there is an .eval() inside of a complex hole, we remove that from the method

call. Finally, we import the static reference for the JITAttack API, jitattack.*;. All

of these checks ensure that the template has a very high likelihood of compiling, thus

giving a valid input to the JITAttack process.

18

Chapter 4

Evaluation

This Section describes the result of the JITTEMPLATER end-to-end process, which

automatically extracts templates to be used with JITAttack.

Across the 13 projects all of the hole information was collected and stored. The

types of holes are split out with Int Id, Int Val, Bool Val, Bool Id, Logical, Arithmetic,

Relation, Array, and Loop Limits. Table 4.1 shows the results of the simple holes, Int Id

through Bool Id, that JITTEMPLATER inserted.

Project Int Id Int Val Bool Val Bool Id TOTAL

Checkstyle 1666 1211 1227 430 4543
Codec 5381 8607 20 13 14021
Compress 4623 5542 112 83 10359
Configuration 49 65 49 6 169
Gson 220 177 3 0 400
JFreeChart 6486 5421 337 670 12194
JXPath 1400 2464 82 0 3946
Lang 295619 268969 6563 6816 577967
libGDX 12693 14606 465 494 28258
Math 40362 95823 2082 2623 140890
Openfire 2507 6230 591 137 9465
Vectorz 30571 38318 4 0 68893
ZXing 11152 12312 724 350 14538

TOTAL 412729 459745 12259 11622 896355

Table 4.1: Statistics for Simple Holes in Each Project.

Table 4.2 shows the result of the complex holes, Logical through Loop Limits,

19

Project Logic Arithmetic Relational Array Loop Limits TOTAL

Checkstyle 80 181 243 50 1084 1638
Codec 0 1261 396 2673 633 4963
Compress 74 984 1100 1205 1289 3662
Configuration 2 4 14 3 25 48
Gson 4 49 46 9 26 134
JFreeChart 32 884 851 1072 2750 5589
JXPath 3 153 540 115 266 1077
Lang 9461 54819 132049 46571 62202 305102
libGDX 396 5094 2529 2255 1674 11948
Math 2124 9713 9272 24619 13091 58819
Openfire 36 343 792 3074 956 5201
Vectorz 12 6446 5665 16835 12175 41133
ZXing 317 2919 2851 2818 2379 11284

TOTAL 12541 82850 156348 101299 98550 421588

Table 4.2: Statistics for Complex Holes in Each Project.

JITTEMPLATER inserted.

These two tables show that some of the projects that were chosen do not have very

many opportunities for holes. A common reason for projects that may have had many

static methods from Table 3.2, but very few holes in Table 4.1 and 4.2, is that the methods

themselves are rather small and primarily deal with custom classes. Some of the projects,

such as Math and Lang, have a large number of multiple types of holes to be able to create

a new template. Figure 4.1 shows the box plots of the length of the entry method used for

every project.

20

C
he

ck
st

yl
e

C
od

ec

C
om

pr
es

s

C
on

fig
ur

at
io

n

G
so

n

JF
re

eC
ha

rt

JX
Pa

th

L
an

g

lib
G

D
X

M
at

h

O
pe

nfi
re

V
ec

to
rz

Z
X

in
g0

50

100

150

Project

N
um

be
ro

fL
in

es

Figure 4.1: Boxplot Showing Lines of Code for Entry Methods by Project.

It is important to disclaim that, while many holes were generated, there is no guar-

antee that JITAttack will fill and utilize all of these holes. This is due to how JITAttack

fills only holes that are reachable from the previously filled holes. The entirety of holes

made are shown to describe the effectiveness of JITTEMPLATER.

It is unsurprising that the number of simple hole types are more evident than arith-

metic holes as the simple holes are the building blocks for these holes. One surprising

result is the very low number of boolean holes that were inserted. These holes are the

fewest by far. The drawn conclusion is that there are very few instances of just a literal

boolean value, but rather they are used in conjunction with relational and logical expres-

21

sions.

In Table 4.3 we see the breakdown in the number of templates that were able to

be generated for each of the projects and the number of generated programs that were

ultimately executed by JITAttack.

22

Project #Methods Mining Time #Templates Convert Time

Checkstyle 805 00:02 193 01:54
Codec 352 00:01 142 01:08
Compress 296 00:01 143 01:02
Configuration 258 00:01 8 00:06
Gson 75 00:01 11 00:06
JFreeChart 463 00:03 159 01:45
JXPath 119 00:01 37 00:21
Lang 1454 00:02 732 11:42
Math 829 00:03 567 05:08
Openfire 992 00:03 138 01:55
Vectorz 739 00:02 398 03:22
ZXing 407 00:02 224 01:54

TOTAL 7612 00:26 3112 32:58

(a) Methods and Template Time.

Project #Generated Gen Time Exec Time At

Lvl 4 Lvl 1

Checkstyle 193 03:13 01:57 04:21
Codec 142 02:35 10:52 11:32
Compress 143 02:29 02:30 03:10
Configuration 8 00:08 00:04 00:06
Gson 11 00:10 00:03 00:08
JFreeChart 159 02:48 03:18 05:19
JXPath 37 00:40 00:10 00:21
Lang 732 22:23 03:57 13:35
Math 567 12:09 41:49 44:58
Openfire 138 03:12 07:01 08:21
Vectorz 398 07:40 21:25 23:48
ZXing 224 04:02 03:25 04:44

TOTAL 3112 01:07:37 01:58:57 02:40:37

(b) Programs Generated and Execution Time.

Table 4.3: Project Timings.

As can be seen from Table 4.3, JITTEMPLATER was able to convert over 3,000

methods into valid templates in 33 minutes. It is important to note that there is a discrep-

ancy between the number of methods and the number of templates. This discrepancy is

23

generally due to either 1) the class references and extends another class (this is not cur-

rently supported by JITTEMPLATER), or 2) there were no holes that could be leveraged

by JITAttack. In the event of no holes that can be leveraged, we throw away that template

as it is not useful for our testing purposes. In the thirteen projects we had 3,555 templates

that had no holes to be filled.

The ultimate test of the process of utilizing JITTEMPLATER as an input to JITAt-

tack is: were any bugs in the JIT compilers found. To date, we have found three bugs

in the Oracle Java JIT compiler that were created from converting a real-world Java pro-

grams into templates. The first JIT bug was produced from the Math project, the second

was produced from the Checkstyle project, the third was produced from the Codec project.

While JITTEMPLATER would still be successful without the uncovering of bugs, due to it

fulfilling its desired purpose, it is excellent to have become a valuable input to the JIT bug

finding process.

The JIT bug resulting from the template made in the Math project was shown

in Figure 2.1b, the bug found was that initializing a very large array (above one bil-

lion in length), then setting a random index to a value of 1 caused a crash in high-level

JIT optimizations. The bug has been confirmed by Oracle and is listed as bug number

JDK-8271130.

The JIT bug resulting from the template made in the Checkstyle project was found

with the template shown in Figure 4.2. The bug found was that compiling a regex pattern

with an empty string, and then trying to match it to a null value results in a crash in

some JIT optimization levels. The bug has been confirmed by Oracle and is listed as bug

number JDK-8271276.

24

1 public final class SuppressionsStringPrinterm106Template {
2 private static final Pattern VALID SUPPRESSION LINE COLUMN NUMBER REGEX =

Pattern.compile(”ˆ([09]+):([09]+)$”);
3 private static final String LINE SEPARATOR = System.getProperty(”line.separator”);
4
5 @jitattack.Entry()
6 public static String printSuppressions(File file, String suppressionLineColumnNumber, int

tabWidth) throws IOException, CheckstyleException {
7 final Matcher matcher = VALID SUPPRESSION LINE COLUMN NUMBER REGEX.

matcher(suppressionLineColumnNumber);
8 if (!matcher.matches()) {
9 final String exceptionMsg = String.format(Locale.ROOT, ”%s does not match valid

format ’line:column’.”, suppressionLineColumnNumber);
10 throw new IllegalStateException(exceptionMsg);
11 }
12 // removed for brevity...
13 return generate(fileText, detailAST, lineNumber, columnNumber, tabWidth);
14 }
15
16 private static String generate(FileText fileText, DetailAST detailAST, int lineNumber, int

columnNumber, int tabWidth) {
17 final XpathQueryGenerator queryGenerator = new XpathQueryGenerator(detailAST,

lineNumber, columnNumber, fileText, tabWidth);
18 final List<String> suppressions = queryGenerator.generate();
19 return suppressions.stream().collect(Collectors.joining(LINE SEPARATOR, ””,

LINE SEPARATOR));
20 }
21
22 @Argument(1)
23 public static File nonPrim1() {
24 return null;
25 }
26
27 @Argument(2)
28 public static String nonPrim2() {
29 return null;
30 }
31
32 @Argument(3)
33 public static int intArg3() {
34 return intVal().eval();
35 }
36 }

Figure 4.2: Checkstyle [8] Bug Template.

25

The JIT bug resulting from the template made in the Codec project was found with

the template shown in Figure 4.3. The bug in Codec was that creating a StringBuilder

with a capacity of -1 should always result in an exception being thrown. In some levels

of JIT optimization this was not always the case. The bug has been confirmed by Oracle

and is listed as bug number JDK-8271459.

26

1 public class Sha2Cryptm292Template {
2
3 @jitattack.Entry()
4 public static String sha256Crypt(final byte[] keyBytes) {
5 return sha256Crypt(keyBytes, null);
6 }
7
8 public static String sha256Crypt(final byte[] keyBytes, String salt) {
9 if (salt == null) {

10 salt = SHA256 PREFIX + B64.getRandomSalt(intVal().eval());
11 }
12 return sha2Crypt(keyBytes, salt, SHA256 PREFIX, SHA256 BLOCKSIZE,

MessageDigestAlgorithms.SHA 256);
13 }
14
15 private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix,

final int blocksize, final String algorithm) {
16 final int keyLen = intVal().eval();
17 int rounds = intVal().eval();
18 boolean roundsCustom = boolVal().eval();
19 // removed for brevity...
20 final String saltString = m.group(intVal().eval());
21 final byte[] saltBytes = saltString.getBytes(StandardCharsets.UTF 8);
22 cnt = keyBytes.length;
23 // removed for brevity...
24 byte[] tempResult = altCtx.digest();
25 final byte[] pBytes = new byte[keyLen];
26 int cp = intVal().eval();
27 final StringBuilder buffer = new StringBuilder(saltPrefix);
28 // removed for brevity...
29 buffer.append(saltString);
30 buffer.append(”$”);
31 return buffer.toString();
32 }
33
34
35 @Argument(1)
36 public static byte[] nonPrim1() {
37 return new byte[] { 0, 0, 0, 0, 0, 0, 0, 0 };
38 }
39 }

Figure 4.3: Codec [2] Bug Template.

27

Chapter 5

Related Work

Source code manipulation. Source code manipulation has been studied and uti-

lized in research for quite some time [6, 7, 13]. The main purpose of these source code ma-

nipulators is to run analysis and make adjustments for other software engineering tools to

utilize. JITTEMPLATER uses these source code manipulations. We utilize JavaParser [15]

to show us the Abstract Syntax Tree of a Java program so we can modify the source code

to be used with JITAttack’s testing framework.

Automated test generation. There are many tools in the realm of software engi-

neering that are designed to automatically create test suites. However many of these tools

are focused on code coverage as opposed to being primarily about bug detection [5, 12].

Fuzzing has been used as a popular and effective method to find bugs [18], and this seems

to be where the core of JITAttack testing ideology stems from. JITTEMPLATER is not

concerned with a specific coverage criteria, but rather the amount of holes that can be fed

into the system running the tests to determine correctness.

JVM testing. Testing the Java Virtual Machine (JVM) is similar to testing compil-

ers, in that each JVM must adhere to specifications for JVMs [19]. There has been work

to utilize differential testing along with mutation of code to reveal bugs inside of JVM

implementations [10]. JITTEMPLATER creates inputs for JITAttack which leverages dif-

28

ferential testing to determine correctness of a JIT compiler, similar to how Chen et al. [10]

utilize differential testing for JVM implementation.

Compiler testing. There have been several research projects devoted to specifi-

cally testing compilers [9]. Mutation-based fuzzing has been widely used for testing com-

pilers [9]. In this approach, existing programs are mutated and run through the compiler

to determine if there are any bugs in the compiler, e.g., the compiler crashes or outputs

a wrong compiled program. There has been work to mutate not only the live code of a

program but also dead code [22]. Sun et al. found that allowing for mutation of dead code

increased the variant space and allowed for a more thorough stress test of a compiler [22].

Equivalence Modulo Inputs (EMI) is another testing technique that has been used

to test compilers [9]. EMI takes in code and transforms it into different, yet equivalent,

versions of the original code to be tested on a single compiler [16]. EMI was utilized in

CLsmith [24] to great success, finding over 50 compiler bugs [9].

Verified compilers. Verified compilers ensure preserving the semantics of the

original source code to the compiled code [22]. These compilers have a guarantee of

preserving the correctness of the original program. Leroy previously used a proof assistant,

Coq, to implement a compiler that is intended to be both certified with a proof as well as

be useful and practical for a plethora of programs [17]. The correctness guarantee of a

verified compiler is critical for ensuring a program does not have bugs due to incorrect

translation of source code to byte code.

29

Chapter 6

Conclusion

Automatically extracting program templates from real-world Java projects allows

for very expressive and widely varying input templates for JITAttack. The automation of

such templates is incredibly beneficial, reducing the manual labor of making templates

from hours to minutes, as well as allowing for a standard way to implement JITAttack

APIs. To date, we have found three bugs using templatized versions of real-world Java

projects. Utilizing the data from the console program to gather inputs, the JITTEMPLATER

solution to convert methods, and finally JITAttack to run the tests, we believe that many

more bugs will be found with our approach, with minimal manual effort.

30

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-

niques, and tools. Addison-Wesley, 2002.

[2] Apache. apache/commons-codec at 4de60e8b68fb749e5380ecef018511bed946bee8.

[3] Apache. apache/commons-math: Miscellaneous math-related utilities.

[4] Andrew W. Appel and Jens Palsberg. Modern compiler implementation in Java.

Cambridge University Press, 2009.

[5] Alberto Bacchelli, Paolo Ciancarini, and Davide Rossi. On the effectiveness of

manual and automatic unit test generation. In International Conference on Software

Engineering Advances, pages 252–257. IEEE, 2008.

[6] Marat Boshernitsan and Susan L Graham. ixj: interactive source-to-source trans-

formations for Java. In Conference on Object-oriented programming systems, lan-

guages, and applications, pages 212–213, 2004.

[7] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a code manipulation

tool to implement adaptable systems. Adaptable and extensible component systems,

30(19), 2002.

[8] Checkstyle. checkstyle/checkstyle at bdaac140eaf161c3055c7d1fe208f21d5f1c629a.

31

[9] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao,

and Lu Zhang. A survey of compiler testing. ACM Computing Surveys (CSUR),

53(1):1–36, 2020.

[10] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. Coverage-

directed differential testing of JVM implementations. In Conference on Program-

ming Language Design and Implementation, pages 85–99, 2016.

[11] Keith D. Cooper and Linda Torczon. Engineering a compiler. Morgan Kaufmann,

2011.

[12] Christoph Csallner and Yannis Smaragdakis. Jcrasher: an automatic robustness

tester for Java. Software: Practice and Experience, 34(11):1025–1050, 2004.

[13] Mark Harman. Why source code analysis and manipulation will always be impor-

tant. In Conference on Source Code Analysis and Manipulation, pages 7–19. IEEE,

2010.

[14] Itti Hooda and Rajender Singh Chhillar. Software test process, testing types and

techniques. International Journal of Computer Applications, 111(13), 2015.

[15] Javaparser. javaparser/javaparser: Java 1-15 parser and abstract syntax tree for java,

including preview features to java 13.

[16] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence

modulo inputs. ACM Sigplan Notices, 49(6):216–226, 2014.

32

[17] Xavier Leroy. Formal certification of a compiler back-end or: programming a com-

piler with a proof assistant. In Conference on Principles of Programming Lan-

guages, pages 42–54, 2006.

[18] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. Fuzzing:

State of the art. IEEE Transactions on Reliability, 67(3):1199–1218, 2018.

[19] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. Java Virtual Machine Specifica-

tion: Java SE 8 Edition. 2015.

[20] William M. McKeeman. Differential testing for software. DIGITAL TECHNICAL

JOURNAL, 10(1):100–107, 1998.

[21] Toshio Suganuma, Takeshi Ogasawara, Mikio Takeuchi, Toshiaki Yasue, Motohiro

Kawahito, Kazuaki Ishizaki, Hideaki Komatsu, and Toshio Nakatani. Overview of

the ibm Java just-in-time compiler. IBM systems Journal, 39(1):175–193, 2000.

[22] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code

mutation. In Conference on Object-Oriented Programming, Systems, Languages,

and Applications, pages 849–863, 2016.

[23] Maneela Tuteja and Gaurav Dubey. A research study on importance of testing and

quality assurance in software development life cycle (sdlc) models. International

Journal of Soft Computing and Engineering (IJSCE), 2(3):251–257, 2012.

[24] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding

bugs in C compilers. In Conference on Programming language design and imple-

mentation, pages 283–294, 2011.

33

[25] T. Yoshikawa, K. Shimura, and T. Ozawa. Random program generator for Java

JIT compiler test system. In International Conference on Quality Software, 2003.

Proceedings., pages 20–23, 2003.

[26] Zhiqiang Zang, August Shi, and Milos Gligoric. Test templates for Java JIT compil-

ers. 2021.

34

Vita

Nathaniel ”Nathan” Wiatrek is currently a Software Engineer at United Services

Automobile Association (USAA). In this position he designs and implements automation

to reduce Computer Engineer work loads. Nathan received his undergraduate degree from

Texas A&M University in Electronic Systems Engineering, focusing on Embedded sys-

tems development. He currently lives in Houston, Texas.

Permanent address: 2727 Revere St. Apt 5010
Houston, Texas 77098

This report was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald
Knuth’s TEX Program.

35

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Background
	Chapter 3. Technique
	Crawl Through Java Project and Determine Inputs
	Convert Methods to Templates
	Compile Safety

	Chapter 4. Evaluation
	Chapter 5. Related Work
	Chapter 6. Conclusion
	Bibliography
	Vita

