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Natural scene statistics (NSS) have played an increasingly important

role in both our understanding of the function and evolution of the human vi-

sion system, and in the development of modern image processing applications.

Because depth/range, i.e., egocentric distance, is arguably the most important

thing a visual system must compute (from an evolutionary perspective), the

joint statistics between natural image and depth/range information are of par-

ticular interest. However, while there exist regular and reliable statistical mod-

els of two-dimensional (2D) natural images, there has been little work done on

statistical modeling of natural luminance/chrominance and depth/disparity,

and of their mutual relationships. One major reason is the dearth of high-

quality three-dimensional (3D) image and depth/range database. To facil-

itate research progress on 3D natural scene statistics, this dissertation first

presents a high-quality database of color images and accurately co-registered

depth/range maps using an advanced laser range scanner mounted with a

high-end digital single-lens reflex camera.

vii



By utilizing this high-resolution, high-quality database, this disserta-

tion performs reliable and robust statistical modeling of natural image and

depth/disparity information, including new bivariate and spatial oriented cor-

relation models. In particular, these new statistical models capture higher-

order dependencies embedded in spatially adjacent bandpass responses pro-

jected from natural environments, which have not yet been well understood or

explored in literature.

To demonstrate the efficacy and effectiveness of the advanced NSS mod-

els, this dissertation addresses two challenging, yet very important problems,

depth estimation from monocular images and no-reference stereoscopic/3D

(S3D) image quality assessment. A Bayesian depth estimation framework is

proposed to consider the canonical depth/range patterns in natural scenes,

and it forms priors and likelihoods using both univariate and bivariate NSS

features. The no-reference S3D image quality index proposed in this disserta-

tion exploits new bivariate and correlation NSS features to quantify different

types of stereoscopic distortions. Experimental results show that the pro-

posed framework and index achieve superior performance to state-of-the-art

algorithms in both disciplines.
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Chapter 1

Introduction

1.1 Motivation

Given continuous, rapid advances in three-dimensional (3D) imaging

and display technology, the quantity and quality of 3D and stereoscopic data,

e.g., image, video, movies, geographic models, etc., has increased dramatically.

A substantial amount of research has been conducted towards better under-

standing the perception of 3D content, with the aim of improving the quality

of visual experience delivered by 3D technologies and products. For exam-

ple, impairments in viewing and comfort when using 3D displays has been

studied towards developing auto-stereoscopic 3D displays [1, 2]. There are nu-

merous sources of distortion and visual discomfort that can be experienced

when viewing 3D content. Understanding how the depth sensation is affected

by improper geometry (stereography) and by signal distortion are crucial open

problems [3–5].

Natural scene1 statistics (NSS) have been proven to be important ingre-

dients towards understanding both the evolution of the human visual system

1By ‘natural scenes’ we mean pictures of the real world, both arising in natural as well
as man-made settings, obtained by a good-quality camera under good (photopic) conditions
without distortion.
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and the design of image processing algorithms [6]. Luminance/chrominance

and depth/disparity information all play important roles in the perception of

images of natural scenes and in stereoscopic vision. Likewise, models of the

statistics of natural images and depth maps play an important role in modern

image processing applications. Therefore, reliable statistical models of natural

depth/disparity and luminance/chrominance image information can be used

to not only improve the aforementioned 3D display and viewing experiences,

but also benefit a variety of 3D image/video and vision algorithms.

However, while there exist regular and reliable statistical models of two-

dimensional (2D) natural images, there has been little work done on statistical

modeling of natural luminance/chrominance and depth/disparity, and of their

mutual relationships. One major reason is the dearth of high-quality 3D im-

age and depth/range database. To facilitate the variety of research relevant to

natural scene statistics between 2D images and the depth/disparity informa-

tion, we constructed a high-quality database of color images and co-registered

depth/range maps using an advanced laser range scanner mounted with a

high-end digital single-lens reflex camera. By utilizing this high-resolution,

high-quality database, we develop reliable and robust statistical models of

natural images and depth/disparity information, and show that these joint

natural scene statistical models can be utilized to improve computational

stereoscopic/3D (S3D) and vision problems, e.g., stereo correspondence, depth

estimation, S3D image quality assessment, etc.

2



1.2 Contributions

The contributions of this dissertation are threefold. First, a high-

quality data set of accurately co-registered color images and depth/range maps,

the LIVE Color+3D Database [7, 8], has been presented and made publicly

available. Second, we perform advanced statistical analyses on natural images

and depth/range maps to develop reliable and robust NSS models. Finally,

to demonstrate the efficacy and effectiveness of these new statistical models,

we apply them to solve two practical, yet extremely challenging problems,

depth estimation from monocular images and no-reference S3D image quality

assessment. Experimental results show that with the aid of these advanced

NSS models, we have achieved superior performance to the state-of-the-art

algorithms in both disciplines.

1.2.1 LIVE Color+3D Database

We constructed the LIVE Color+3D Database [7, 8], a high-quality

data set of accurately co-registered color images and depth/range maps, using

an advanced range scanner, RIEGL VZ-400 [9], with a Nikon D700 digital

camera mounted on top of it. This database serves as a solid basis on which

a variety of statistical analysis and modeling of luminance/chrominance and

depth/range data in natural images are performed. The LIVE Color+3D

Database includes two releases. Release-1 contains 12 sets of color images

with corresponding ground-truth range maps at a high-definition resolution

of 1280 × 720, and Release-2 consists of 99 stereoscopic pairs, i.e., left- and

3



right-views, of color images and ground-truth range maps in high-definition

resolution of 1920 × 1080. The natural environments where the image and

depth/range data were collected are in areas around Austin, Texas, including

the campus at The University of Texas, recreational parks, the Texas State

Capitol, etc. These high-quality, high-resolution, and accurately co-registered

color images and depth/range maps make the derived natural scene statistical

models exceptionally robust and reliable.

1.2.2 Advanced Statistical Models of Natural Image and Depth
Data

By utilizing the LIVE Color+3D Database, we first derive marginal and

conditional priors relating natural luminance/chrominance and disparity, and

demonstrate their efficacy with application to a chromatic Bayesian stereo al-

gorithm. In particular, we use the univariate generalized Gaussian distribution

(GGD) to fit the empirical histograms of sub-band coefficients after perceptual

multi-scale, multi-orientation bandpass decomposition. Moreover, there exist

higher-order dependencies between spatially neighboring bandpass responses

that are not yet well understood or utilized in literature. Towards filling this

gap, we further develop new bivariate and spatial oriented correlation models

that capture statistical regularities between perceptually decomposed natural

luminance and depth samples.
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1.2.3 Depth Estimation from Monocular Natural Images

Inspired by psychophysical evidence of NSS-driven visual signal pro-

cessing in HVS, we propose a new Bayesian model, which we call Natural3D,

for estimating depths from single monocular images by employing reliable and

robust NSS models of natural images and depth maps as priors. Specifically,

we utilize the statistical relationships between local image features and depth

variations inherent in natural images. By observing that similar depth struc-

tures may exist in different types of luminance textured regions in natural

scenes, we build a dictionary of canonical depth patterns as the prior, and

fit a multivariate Gaussian mixture (MGM) model to associate local image

features to different depth patterns as the likelihood. Following the develop-

ment of Natural3D, we describe how we trained and tested it on two publicly

accessible databases of natural image and range data, the LIVE 3D+Color

Database Release-2 [8], which consists of 99 pairs of natural images and ac-

curately co-registered ground-truth depth maps of high-definition resolution

(1920 × 1080), and the widely used Make3D Laser+Image Dataset-1 [10–12].

Compared with the state-of-the-art depth estimation method, we achieve su-

perior performance in terms of pixel-wise estimated depth error, but better

capability of recovering relative distant relationships between different objects

and regions in natural images.
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1.2.4 No-Reference Stereoscopic/3D Image Quality Assessment

We propose a no-reference S3D image quality assessment (IQA) frame-

work utilizing both univariate and bivariate NSS models. A new convergent

cyclopean image model is developed to gauge the perceptual quality of 3D per-

cepts formed by HVS when viewing stereoscopic image pairs. The proposed

framework, dubbed Stereoscopic/3D BLind Image Naturalness Quality (S3D-

BLINQ) Index, deploys a novel set of NSS features including both spatial-

domain and wavelet-domain univariate models, as well as recently explored

bivariate and correlation statistics. We validate the robustness and effective-

ness of the bivariate and correlation NSS features extracted from distorted

stereopairs. Experimental results demonstrate that with the aid of convergent

cyclopean images and the augmentation of bivariate and correlation NSS mod-

els, S3D-BLINQ Index outperforms state-of-the-art full- and no-reference 3D

IQA algorithms on both symmetrically and asymmetrically distorted stereo-

scopic image pairs.

1.3 Organization

The rest of this dissertation is organized as follows. We first present

the LIVE Color+3D Database in Chapter 3. Then, Chapter 2 reviews litera-

ture and provides background knowledge on natural scene statistical modeling,

depth estimation, and S3D quality assessment. Next, Chapter 4 and 5 detail

the univariate, bivariate, and spatial oriented correlation models we devel-

oped from natural images and depth/range maps. We describe the proposed
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Bayesian framework of depth estimation from monocular natural images in

Chapter 6. Chapter 7 deals with the proposed no-reference S3D image quality

index. Finally, conclusion and future work are given in Chapter 8.
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Chapter 2

Background

This chapter provides a brief review of previous work and background

knowledge on the topics to be discussed in the rest of this dissertation. It is by

no means exhaustive and only summarizes relevant literature, while pointing

the interested readers to more comprehensive references.

2.1 Natural Scene Statistics

The evolution of the human vision apparatus has involved many dif-

ferent factors and driving forces, such as natural scene statistics, the compu-

tational resources available in the human brain, and the kinds of tasks that

humans need to perform [13]. Natural scene statistics (NSS) have been proven

to be important ingredients towards understanding both the evolution of the

human vision system and the design of image processing algorithms [6].

2.1.1 2D Images

Extensive work has been conducted towards understanding the lumi-

nance statistics of natural scenes [14–17], and the link between natural scene

statistics and neural processing of visual stimuli [18, 19]. It has been discovered
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that the distributions of local quantities such as luminance contrast are scale

invariant, and that the power spectra of natural images vary as 1/f 2 with ra-

dial spatial frequency f . This has been successfully used to explain and predict

early visual processing in both insects and higher vertebrates [14, 15, 20]. The

statistics of natural images have been found to exhibit non-Gaussian behav-

ior, but when projected onto appropriate multi-scale spaces, e.g., using wavelet

bases [21], or 2D Gabor decompositions [14], the resulting coefficients are found

to obey regular statistical models, such as Gaussian scale mixtures [22]. These

statistical models have been successfully applied in a variety of image and

video applications, such as image de-noising and restoration [23], and image

quality assessment [6, 24–26]. Moreover, it has also been suggested that the

spatial receptive fields of the simple cells in mammalian primary visual cortex

(V1) can be characterized as being localized, oriented, and bandpass, which

are comparable with the basis functions of wavelet or Gabor transforms [27].

It is also widely believed that the goal of the early stages of visual signal pro-

cessing is to transform and encode the input stimuli from natural images into

a sparse, efficient representation to utilize the available computation resources

of neurons [18, 28]. This sparse and efficient coding strategy along with its

over-complete basis leads to non-linear relationships between visual stimuli

and neural responses, which can be used to help understand higher stages of

cortical processing in human vision systems [29].
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2.1.2 Stereoscopic/3D Images and Depth/Disparity Maps

Very little work has been done on analyzing the joint statistics of lu-

minance and range in natural scenes, and we haven’t found any relating the

statistics of color and range. One major reason for the lack of studies on

color and range statistics has been limited access to high quality databases

of color images and associated ground-truth range maps. Potetz et al. [30]

constructed a database of co-registered 2D color images and range maps, and

discovered that there is a correlation between range and intensity of luminance

in natural scenes. This negative range-luminance correlation merely reflects

the fact that nearer objects tend to appear brighter than far objects, on aver-

age. The authors also deployed a few convex range filters, selected for specific

structural properties relevant to computer vision, to filter both range and lu-

minance images. Using a canonical correlation analysis, they found a relatively

low degree of strictly linear correlation between the ”structure-filtered” lumi-

nance and range patches. In a later study on the same dataset, Potetz et

al. [31] examined the relationships between luminance and range over multiple

scales and applied their results to shape-from-shading problems. In [32], Yang

et al. explored the statistical relationships between luminance and disparity

in the wavelet domain using a public co-registered database of range maps

and luminance natural images from [30], and applied the derived models to a

Bayesian stereo algorithm. The authors found that the correlations between

bandpass luminance and bandpass disparity are stronger in coarser scales, and

also showed that the statistical models of 3D natural scenes improve the qual-
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ity of computed disparity maps. Recently, Su et al. [33] proposed reliable

statistical models for both marginal and conditional distributions of lumi-

nance/chrominance and disparity in natural images, and used these models to

significantly improve a chromatic Bayesian stereo algorithm.

2.2 Depth Estimation

Given the rapid growth and widespread popularity of 3D films and

entertainment devices, understanding how statistical depth information re-

lates to image luminance and color statistics in real-world images and videos

has gained increased relevance to practical 3D image analysis problems over

the past several years. One such problem that may benefit by a principled

statistical approach, based on natural scene models, is recovering the three-

dimensional structure of visual scenes from single monocular images. Success

in this endeavor could give us a better understanding of the 3D relationships

that exist between objects and their projected 2D images, with potential ben-

efit to the solution of numerous 3D visual tasks, such as robotic navigation,

visual surveillance, 3D cinema, predicting 3D video quality, and so on.

By seamlessly combining binocular and monocular cues, humans are

able to perceive depth and reconstruct the geometry of the 3D visual space so

quickly and effortlessly that an individual rarely feels how difficult and ill-posed

this problem can be. Even given a single color image, or by gazing with one

eye closed, a human viewer can still perceive meaningful depth structures and

3D relationships such as relative distances from the visible environment. Yet
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automatically estimating range (egocentric distance) from a single monocular

image remains a very difficult problem, which is generally attacked by using

a combination of complementary depth cues, such as color, shading, texture,

perspective, etc.

Of course, much of the work on 3D scene reconstruction has focused on

depth from binocular vision, i.e., stereopsis. In [34], Scharstein and Szeliski

provide a comprehensive review and summary of dense two-frame stereo algo-

rithms. Other depth recovery algorithms require multiple images, e.g., struc-

ture from motion [35] and depth from defocus [36]. Such ’multi-view’ algo-

rithms consider geometric/triangulation differences between image samples,

while largely ignoring the variety of strictly monocular cues that contain use-

ful depth information.

Recently, many different methods and algorithms have been developed

to tackle the problem of depth estimation from a single monocular image.

These models typically deploy variants of shape from shading [37, 38] and

shape from texture [39, 40]. However, the efficacy of these algorithms are

limited by the information in the image luminance and texture variations,

unless additional structural assumptions or specific constraints are placed on

their solutions.

One of the first methods to utilize monocular image features to capture

depths [41] reconstructs a simple 3D model of outdoor scenes by making the

assumption that an image could be divided into a few planar surfaces, and

that pixels could be classified using a small number of limited labels, e.g.,

12



ground, sky, and vertical walls. Along similar lines, Delage et al. [42] devel-

oped a dynamic Bayesian network to reconstruct the locations of walls, ceilings,

and floors by finding the most likely floor-wall boundaries in indoor scenes.

In [11, 12], a supervised learning strategy was devised to infer the absolute

depth associated with each pixel of a monocular image. They assumed that

most 3D scenes are made up of small planar surfaces, and used this assumption

in conjunction with a Markov Random Field (MRF) model of textural and lu-

minance gradient cues to infer depth. Nagai et al. [43] used Hidden Markov

Models (HMM) to reconstruct surfaces of known classes of objects such as

hands and faces from single images. In [44], an example-based approach was

proposed by Hassner et al. to estimate the depths of objects given a set of

known categories. In [45], Torralba and Oliva took a very different (but lim-

ited) approach by studying the relationship between the Fourier spectrum of

an image and its mean depth. Specifically, they proposed a probability model

to estimate the absolute mean depth of a 3D scene using information extracted

from the global and local spectral signatures of a 2D image of it. In [46], Liu et

al. incorporated semantic labels to guide a monocular 3D reconstruction pro-

cess, thereby achieving better depth estimates. By conditioning on different

semantic labels, they were able to better model absolute depth as a function

of local pixel appearance. More recently, Karsch et al. [47] presented an op-

timization framework to generate a most likely depth map by first matching

high-level image features to find candidates from a database, then warping the

candidate depth maps under a set of spatial regularization constraints.
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In addition, many static monocular Shape-from-X algorithms have been

devised (too many to survey) that estimate relative local depths by assuming

the presence of one or more specific attributes, e.g., texture or shading gradi-

ents. Our belief is that such cues are embedded in the local, scale-invariant

but space-varying natural statistics of real-world images. Certain natural scene

statistics (NSS) models have been shown to provide good descriptions of the

statistical laws that govern the behavior of images of the world. NSS models

are useful tools for both understanding the evolution of human vision systems

(HVS) [18, 28] and solving diverse visual problems [6, 23, 48, 49]. In particular,

there has been work conducted on exploring the 3D NSS of depth/disparity

maps of the world, how they correlate with 2D luminance/color NSS, and how

such models can be applied. For example, Potetz et al. [31] examined the rela-

tionships between luminance and range over multiple scales and applied their

results to a shape-from-shading problem. Yang et al. [32] explored the statisti-

cal relationships between luminance and disparity in the wavelet domain, and

applied the derived models to improve a canonical Bayesian stereo algorithm.

In [33], Su et al. proposed new models of the marginal and conditional statis-

tical distributions of the luminances/chrominances and the disparities/depths

associated with natural images, and used these models to significantly improve

a chromatic Bayesian stereo algorithm. Recently, Su et al. developed new bi-

variate and correlation NSS models that effectively capture the higher-order

dependencies between spatially adjacent bandpass responses to both natural

images and depth maps [50, 51]. In [52], the authors further utilized these
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models to create a blind 3D perceptual image quality model that operates on

distorted stereoscopic image pairs. An algorithm derived from this model was

shown to deliver quality predictions that correlate very highly with recorded

human subjective judgments.

2.3 Stereoscopic/3D Image Quality Assessment

As with other digital visual media [49], the quantity of S3D images and

videos that are delivered by the cinema, television, and online entertainment

industries on a daily basis for human consumption has been growing dramati-

cally over the past few years. According to recent theatrical market statistics

gathered by the Motion Picture Association of America (MPAA) [53], the

proportion of cinema screens that are 3D has reached 35% worldwide, and ap-

proximate half of all moviegoers viewed at least one 3D movie in 2012. As Hol-

lywood director James Cameron, who directed and produced Avatar, stated

in an interview with BBC news in Aug. 2013 [54], ”All forms of entertainment

will eventually be 3D, because that’s how we see the world.” In fact, the wave

of 3D has not been limited to the entertainment industry. Given the develop-

ment of greatly improved acquisition and display technologies, S3D images and

videos can provide natural and versatile visual presentations for numerous ap-

plications, including robot navigation [55], remote education [56], anatomical

exploration [57], therapeutic treatment [58], and so forth. As these large vol-

umes of S3D data are making their way to consumers and other users, a variety

of issues have arisen regarding efficient compression and reliable transmission of
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S3D content, especially when being transmitted over already-stressed wireless

networks. At every stage of capture, compression, storage, and transmission,

it is desirable to maximize the quality of the final visual experience, and in

this regard, incorporating principles of the human perception of S3D quality

is of importance [59, 60].

The ideal way to assess perceived visual quality is to run a subjective

test to gauge human opinions [61]. However, subjective quality assessment has

two obvious disadvantages, making it unsuitable for practical applications.

First, the procedure of subjective quality assessment is expensive, tedious,

and time-consuming as it has to be performed with great care in order to

obtain meaningful results. Second, it is impossible to integrate subjective

image quality assessment (IQA) tasks of any value into nearly any system for

communicating real-time visual data to human users. Therefore, it is desirable

to develop automated algorithms that can predict the perceptual quality of

visual data streams, including S3D image pairs.

As an interesting and important application of the new parametric cor-

relation model [51], we develop an automatic no-reference (NR) S3D image

quality model that is able to automatically predict the perceptual quality of

distorted S3D images, without benefit of any reference signal, making it use-

ful for practical applications. Models that attempt to solve the S3D IQA

problem may be distinguished by whether they utilize computed or measured

depth/disparity information from the stereoscopic pairs. Thus, the simplest

S3D IQA models apply off-the-shelf 2D IQA algorithms to both left and right
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stereo images, then aggregate the two quality scores to form a final predic-

tion of the quality of the fused stereopair. Both full-reference 2D models,

e.g., PSNR [62], SSIM [63], and MS-SSIM [64], and 2D NR models, e.g.,

DIIVINE [25], BLIINDS [65], and BRISQUE [66], can be used in this way.

Yasakethu et al. [67] applied a variety of 2D IQA algorithms to the left and

right views independently, then averaged them to obtain S3D quality scores,

achieving fairly good correlation with both perceived image and depth qual-

ity. Gorley et al. [68] reported a full-reference S3D IQA model that they found

preferable to the PSNR for controlling practical S3D image compression rates.

Recently, there has been increased emphasis on developing S3D IQA models

that utilize the encoding of depth/disparity stimuli from the natural environ-

ment by modeling cortical neurons with disparity-tuned receptive fields [69–

71]. Benoit et al. [72] predict the quality of S3D image pairs using the dispar-

ity information computed from off-the-shelf stereo algorithms [73, 74]. Recent

studies have demonstrated the importance of depth/disparity for understand-

ing perceptual S3D image quality. For example, Chen et al. [75] showed that

when viewing S3D image pairs, subjects tend to agree on perceived image

quality, but have more diverse opinions on their sensations of depth.

Although the depth/disparity information extracted from S3D image

pairs does affect the perceptual quality of viewed stereoscopic images, the ques-

tion of how best to exploit this information remains incompletely answered.

You et al. [76] attempted to quantify the degradation of disparity information

by applying 2D IQA algorithms on the disparity maps computed from both
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reference and distorted left-right image pairs [74]. Disparity information can

also be used indirectly to bolster an S3D IQA algorithm. For example, Saz-

zad et al. [77] utilized disparity information to design an NR IQA algorithm

to predict the quality of both symmetrically and asymmetrically JPEG-coded

stereo image pairs.

However, the ultimate goal of an S3D IQA algorithm is to form pre-

dictions of the quality of the ultimate cyclopean image [78] formed within

an observer’s mind when a left-right image pair is stereoscopically presented.

Towards this end, several recent researchers have attempted to evaluate per-

ceptual quality by synthesizing an intermediate image that more-or-less agrees

with cyclopean perception. Maalouf et al. [79] proposed a reduced-reference

quality metric that compares the sensitivity coefficients [80] extracted from

the two cyclopean images synthesized from the reference and distorted stere-

opairs. Chen et al. [81] proposed a full-reference S3D IQA algorithm exploiting

a perceptually synthesized cyclopean image to account for binocular rivalry.

In [82], the authors extended this framework to create a no-reference model

using 2D and 3D natural scene statistical features extracted from S3D image

pairs.
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Chapter 3

LIVE Color+3D Database

3.1 Data Acquisition

We constructed a high-quality database of color images and co-registered

depth/range maps, the LIVE Color+3D Database [7, 8], using an advanced

range scanner, RIEGL VZ-400 [9], with a Nikon D700 digital camera mounted

on top of it. This dissertation utilize the natural image and depth/range data

contained in the LIVE Color+3D Database. Figure 3.1 shows the flow of con-

structing the database. Since there are inevitable translational and rotational

shifts when mounting the camera onto the range scanner, calibration needs

to be performed before data acquisition. The mounting calibration is done

manually by using the RIEGL RiSCAN Pro software, which is designed for

scanner operation and data processing [83]. Next, to acquire the image and

range data in natural scenes, the range scanner rotates and fires laser beams

to measure distances, and then the digital camera takes the picture with the

same field of view. The acquired range data are exported from the range scan-

ner as point clouds with the three-dimensional coordinate and the range value,

while the image data are stored in the digital camera as JPEG files. Finally,

to obtain the aligned 2D range map with the 2D image, the 3D point clouds

are projected and transformed into the 2D range map by applying the pinhole
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Calibration

Data Acquisition

Projection and 

Transformation

RIEGL VZ-400 range scanner + Nikon D700 digital camera

Downsampling

Cropping

3D point clouds 2D image

aligned 2D range map and 2D image

Figure 3.1: The flow of data acquisition.

camera model with lens distortion [84].

The angular step-width of the RIEGL VZ-400 range scanner can be as

small as 0.0024◦ in both vertical and horizontal directions. However, higher

scanning resolution means longer scanning time as well as higher probability of

inconsistency between the 3D point clouds and the corresponding 2D image in

natural scenes. Therefore, with careful consideration of the trade-off between

the scanning resolution and the quality of range map, the angular step-width
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of 0.04◦ is adopted while acquiring the database. In addition, since the digital

camera is mounted in portrait mode onto the range scanner, the field of view

for the 3D point clouds needs to be adjusted to match the aspect ratio of

the portrait image, resulting in 60◦ and 100◦ field of views in the horizontal

and vertical direction, respectively. As a result, the resolution of the 3D point

clouds from the range scanner equals to 60
0.04
× 100

0.04
= 1500×2500 (points), which

is smaller than the image resolution captured by the digital camera, which is

2823×4256 (pixels). To provide accurate aligned 2D range map and 2D image

while keeping their resolution as high as possible, the 3D point clouds are

projected and transformed into the 2D range map with the same resolution,

and the original 2D image is down-sampled to the same size. Finally, the

inaccurate range values at boundary pixels in the natural scene are removed

by cropping the aligned 2D range map and 2D image into the target resolution,

which is appropriate for display and viewing on digital TV and monitors.

The following equations summarize and explain how the aligned range

and image data are acquired. First, the three-dimensional coordinates of the

point clouds are converted into the undistorted two-dimensional pixel coordi-

nates. xy
z

 = A ·RT ·


X
Y
Z
1

 (3.1)

A =

fx 0 cx
0 fy cy
0 0 1

 (3.2)
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RT =

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

 (3.3)

[
u
v

]
=

[
x/z
y/z

]
(3.4)

where [X Y Z]T is the three-dimensional coordinate of the point cloud, A is

the camera’s intrinsic matrix, RT is the joint rotation-translation matrix, and

[u v]T is the undistorted two-dimensional pixel coordinate. In the intrinsic

matrix A, [cx cy]
T is the coordinate of the principal point, which is usually at

the image center, and (fx, fy) are the focal lengths along the x- and y- axes, all

expressed in the unit of pixels. The parameters in the joint rotation-translation

matrix RT are computed from the manual calibration after mounting the

digital camera onto the range scanner.

Since real lens usually have distortions, ex. radial and tangential, the

distorted two-dimensional pixel coordinates are computed by transforming the

undistorted two-dimensional pixel coordinates as follows:

ud = u+u′fx(k1r
2 + k2r

4 + k3r
6 + k4r

8)+

2fxu
′v′p1 + p2fx(r

2 + 2u′2)
(3.5)

vd = v+v′fy(k1r
2 + k2r

4 + k3r
6 + k4r

8)+

2fyu
′v′p2 + p1fy(r

2 + 2v′2)
(3.6)

u′ = (u− cx)/fx (3.7)

v′ = (v − cy)/fy (3.8)

r = u′2 + v′2 (3.9)
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where [ud vd]
T is the distorted two-dimensional pixel coordinate, (k1, k2, k3, k4)

are the radial distortion coefficients, and (p1, p2) are the tangential distortion

coefficients.

After the distorted two-dimensional pixel coordinate of each point cloud

is computed, the aligned 2D range map is obtained by filling the range value

at each pixel location with the one at the closest distorted two-dimensional

pixel coordinate.

3.2 Example Natural Scenes

The LIVE Color+3D Database includes two releases. Release-1 con-

tains 12 sets of color images with corresponding ground-truth range maps at

a high-definition resolution of 1280× 720, and Release-2 consists of 99 stereo-

scopic pairs, i.e., left- and right-views, of color images and ground-truth range

maps in high-definition resolution of 1920 × 1080. The natural environments

where the image and depth/range data were collected are in areas around

Austin, Texas, including the campus at The University of Texas, recreational

parks, the Texas State Capitol, etc. Figure 3.2 and 3.3 show example natu-

ral scenes, including both color images and corresponding ground-truth depth

maps, in the LIVE Color+3D Database Release-1 and -2, respectively.
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(a) Scene-1: image (b) Scene-1: depth map

(c) Scene-2: image (d) Scene-2: depth map

(e) Scene-3: image (f) Scene-3: depth map

Figure 3.2: Example scenes in the LIVE Color+3D Database Release-1.
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(a) Scene-1: image (b) Scene-1: depth map

(c) Scene-2: image (d) Scene-2: depth map

(e) Scene-3: image (f) Scene-3: depth map

Figure 3.3: Example scenes in the LIVE Color+3D Database Release-2.
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Chapter 4

Univariate Color and Depth Priors1

4.1 Introduction

Color is an important and dense natural visual cue that is used by the

brain to reconstruct both low-level and high-level visual percepts. The cone

photoreceptors, which are densely distributed in the fovea centralis of the

retina, capture and convey rich information both in space and time. While

the cones themselves do not encode color, they do come in three types that

have different spectral sensitivities. Hence, comparisons of the outputs of the

different cone types by the retinal ganglion cells allow dense spatiotemporal

chromatic information to be transmitted from the retina to the primary visual

cortex (V1). Likewise, color can be used at later processing stages to help infer

large-scale shape information to better solve visual tasks by both humans and

machine algorithms [85].

Moreover, it has been demonstrated that the perception of color and

depth are related [86], and that chromatic information can be used to improve

the solution of stereo correspondence problems [87, 88]. Therefore, interaction

1This chapter has been published with co-authors Alan C. Bovik and Lawrence K. Cor-
mack in [33]. Dr. Bovik and Dr. Cormack helped build the database used in this research,
and provided insightful comments on technical details.
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and correlation between color and depth need further examination. Towards

obtaining a better understanding of the statistical relationships between color

and range, we studied both the marginal and joint statistics of color and

range using the co-registered color images and ground-truth range maps in

the LIVE Color+3D Database Release-1 [7]. To better approximate color

perception in human vision systems, all color images in RGB were transformed

into the more perceptually relevant CIELAB color space. We use CIELAB

since it is optimized for quantifying perceptual color difference and it better

corresponds to human color perception than does the perceptually nonuniform

RGB space [89].

An important stereoscopic cue, disparity, comes from the angular dif-

ference between the two different retinal images received by the two frontally

placed, horizontally separated eyes. It has been verified that there exist sim-

ple and complex neurons tuned to binocular disparity in V1 [70, 90], and the

human vision system has very fine stereo acuity, which falls between 2 arc-

sec to 6 arcsec under the best conditions [91]. The visual system also has a

large upper disparity limit, which reaches 7◦ for crossed disparities and 12◦ for

uncrossed disparities [92]. The excellent acuity and broad operating range of

stereopsis indicate that disparity is extensively used for depth perception. Liu

et al. [93] studied the disparity distributions of natural scenes by converting

forest range maps to disparity maps. They found that the disparity distri-

butions at eye level are centered at zero, non-Gaussian, but well modeled as

generalized Gaussian. A similar study on indoor range maps showed similar
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results. Moreover, the authors correlated disparity sensitivity with naturally

available disparities by showing that the proportion of near- and far-tuned

disparity distributions qualitatively agrees with the distribution of disparity-

tuning neurons in V1 [94]. This suggests that the human vision system may

use the rich disparity cues both in near- and far-viewing distances to recover

the depth information in natural scenes.

4.2 Data Pre-processing

Human vision systems extract abundant information from natural envi-

ronments by processing visual stimuli through different levels of decomposition

and interpretation. Since we want to learn and explore the statistical rela-

tionships between luminance/chrominance and range/disparity and how these

statistics might be implicated in visual processing, and subsequently used in

image processing algorithms, some pre-processing was performed on both the

2D color images and the co-registered 2D ground-truth range maps.

4.2.1 Color Space Conversion and Gabor Filter Bank

All color images were transformed into the perceptually relevant CIELAB

color space having one luminance (L*) and two chrominance (a* and b*) com-

ponents. CIELAB color space is optimized to quantify perceptual color dif-

ferences and better corresponds to human color perception than does the per-

ceptually nonuniform RGB space [89]. The coordinate L* of the CIELAB

space represents the lightness of the color, a* represents its position between
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red/magenta and green, and b* represents its position between yellow and

blue. Moreover, the nonlinear relations for L*, a*, and b* mimic the nonlin-

ear responses of human eyes, starting from the cone cells (L, M, and S) in

the retina. Each image was then decomposed by a 2D Gabor filter bank over

multiple scales and orientations, which serves to mimic the receptive fields of

simple cells in V1 [14, 95–97]. Both the luminance and chrominance compo-

nents of the transformed color images and the converted disparity maps were

filtered by the same 2D Gabor filter bank.

Before discussing the statistical analysis and modeling, we wish to

briefly motivate them by discussing the formation of receptive fields in V1

neurons and their relevance to understanding natural scene statistics. From

physiological evidence [98], it is known that the simple cells in V1 process visual

signals received from LGN (Lateral Geniculate Nucleus) neurons. The simple

cells can be linearly modeled as having elongated, center-surround receptive

fields that are highly selective in spatial frequency and orientation, remarkably

like a Gabor filter. Thus, the physical statistics of the natural environment are

manifested in the spectral responses of neurons in the visual cortex [18, 19],

and likely in the responses of disparity-tuned neurons as well [93].

A complex 2-D Gabor filter can be written

G(x, y, σ1,σ2, ζx, ζy, θ)

=
1

2πσ1σ2

e
− 1

2

[(
R1
σ1

)2
+
(
R2
σ2

)2]
ei(xζx+yζy) (4.1)

where R1 = x cos θ + y sin θ and R2 = −x sin θ + y cos θ, σ1 and σ2 are the
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standard deviations of an elliptical Gaussian envelope along the rotated axes,

ζx and ζy are the spatial center frequencies of the complex sinusoidal carrier,

and θ is the orientation.

Since physiological evidence shows that visual neurons in primary visual

cortex usually have an elliptical Gaussian envelope with an aspect ratio of 0.25-

1.0, with propagating direction along the short axis of the elliptical Gaussian

envelope [99], we use complex 2-D Gabor filters of the form

G(x, y, γ, σ, ω, θ) =
1

2πγσ2
e
− 1

2

[
(R1
σ )

2
+(R2

γσ )
2]
eiωR1 (4.2)

where γ = σy/σx is the aspect ratio of the elliptical Gaussian envelope, σ = σx,

and ω =
√
ζ2
x + ζ2

y is the radial center frequency. To create a suitable set of Ga-

bor filter banks which can cover most of the frequency domain, the two param-

eters of the elliptical Gaussian envelope need to be chosen properly, including

the aspect ratio, γ, and the standard deviation, σ [100]. Here, six spatial cen-

ter frequencies, 0.84, 1.37, 2.22, 3.61, 5.87, and 9.53 (cycles/degree) are used,

with four different sinusoidal grating orientations for each spatial frequency:

horizontal (0-deg), diagonal-45 (45-deg), vertical (90-deg), and diagonal-135

(135-deg) [101, 102]. The aspect ratio, γ, is chosen to be 1.0 [99]. The spatial

frequency bandwidth of each sub-band is 0.7 (octave), and neighboring filters

intersect at half-power point, i.e. 3-dB point [101, 103].

4.2.2 Range and Disparity

In the following sections, we study the statistics of decomposed range

data and explore the statistical relationship of range with decomposed lumi-
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I. INTRODUCTION

Natural scene statistics (NSS) are important factors both towards
understanding the evolution of the human vision system and for
designing image processing algorithms [1], [2]. Extensive research
has been conducted to explore the link between NSS and neural
processing of visual stimuli [3], [4]. With the increasing popularity of
3D image and video content, the statistics between 3D depth and 2D
color image data in natural scenes are of high interest. However, very
little work has been done due to the limited access to high quality
databases of color images and associated ground-truth range maps.

Potetz et al. [5] constructed a database of co-registered 2D color
images and range maps, and discovered that there is a correlation
between range and intensity of luminance in natural scenes. In [6],
Yang et al. explored the statistical relationships between luminance
and disparity in the wavelet domain, and applied the derived models
to a Bayesian stereo algorithm. In addition, it has been suggested
that the perception of color and depth are related [7], and chromatic
information can be useful in solving stereo correspondence problems
[8]. Su et al. [9] constructed a large co-registered database of high-
quality 2D color images and high-resolution ground-truth range maps
(1280x720), and explored the statistical relationships between the
band-pass responses of luminance/chrominance and range gradients
in natural scenes.

In this paper, we examine the statistical relationships between
disparity and luminance/chrominance information in natural scenes,
and derive statistical models for their joint distributions. We also
exploit the derived statistical descriptions of disparity and lumi-
nance/chrominance by applying them to the Bayesian stereo problem.
The simulation results show that the Bayesian stereo algorithm
incorporating the proposed NSS models can improve upon a previous
NSS-based stereo algorithm using only luminance information. The
results also suggest that the statistics between color and range in
natural environments could be helpful in binocular visual processing
and depth perception of human vision system.

The rest of the paper is organized as follows. Section II briefly
describes the acquisition and pre-processing of the image and

range data. Then, the analysis and derivation of statistical mod-
els of the marginal and conditional distributions between lumi-
nance/chrominance and disparity are included in Section III. Next,
Section IV explains how to apply the derived statistical models of lu-
minance/chrominance and disparity to the Bayesian stereo algorithm,
followed by simulation results in Section V. Finally, Section VI gives
the conclusion.

II. DATA ACQUISITION AND PRE-PROCESSING

We obtained a dataset of 2D color images and co-registered
ground-truth range maps, then converted the range maps into disparity
maps. The large co-registered database of range and color images
(dubbed LIVE Color+3D Database) consists of 12 sets of high-
resolution color images and co-registered range maps [9], [10]. The
image and range data in the LIVE Color+3D Database were collected
using an advanced range scanner, RIEGL VZ-400, with a Nikon
D700 digital camera mounted on top of it [11]. Calibration was
performed using the scanner operation software, RIEGL RiSCAN
PRO, to compensate for inevitable translational and rotational shifts
when mounting the camera onto the range scanner [12]. Then, to
obtain the aligned 2D range map with the 2D color image, the 3D
point clouds captured by the scanner were projected and transformed
into the 2D range map by applying the pinhole camera model with
lens distortion [13].

To convert ground-truth range maps into disparity maps, the
parallel-viewing model was used. Figure 1 shows the geometry of
the parallel-viewing model, where two scanners mounted with digital
cameras were set to capture the natural scene in parallel. Based on
this geometry, the disparity value is derived:

dp

fc
=

dio

R
) dp = fc

dio

R
(1)

where dp is disparity, fc is the focal length of the camera, dio is the
inter-ocular distance, and R is the ground-truth range value.

Since we want to learn and explore the statistical relationships
between luminance/chrominance and disparity and how these statis-
tics might be implicated in visual processing, some pre-processing
was performed on both the 2D color images and the converted 2D
disparity maps. All color images were transformed into the more
perceptually relevant CIELAB color space with one luminance (L*)
and two chrominance (a* and b*) components. CIELAB color space
is optimized for quantifying perceptual color difference and better
corresponds to human color perception than does the perceptually
nonuniform RGB space [14]. The images were then passed through
2D Gabor filter bank with multi-scales and orientations as a model of
the reception fields of the simple cells in V1 areas of human vision
systems [15]. Both the luminance and chrominance components of
the transformed color images and the converted disparity maps were
filtered by the 2D Gabor filter banks, and the analysis was performed
on these filter responses. For luminance and chrominance data, the
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I. INTRODUCTION

Natural scene statistics (NSS) are important factors both towards
understanding the evolution of the human vision system and for
designing image processing algorithms [1], [2]. Extensive research
has been conducted to explore the link between NSS and neural
processing of visual stimuli [3], [4]. With the increasing popularity of
3D image and video content, the statistics between 3D depth and 2D
color image data in natural scenes are of high interest. However, very
little work has been done due to the limited access to high quality
databases of color images and associated ground-truth range maps.

Potetz et al. [5] constructed a database of co-registered 2D color
images and range maps, and discovered that there is a correlation
between range and intensity of luminance in natural scenes. In [6],
Yang et al. explored the statistical relationships between luminance
and disparity in the wavelet domain, and applied the derived models
to a Bayesian stereo algorithm. In addition, it has been suggested
that the perception of color and depth are related [7], and chromatic
information can be useful in solving stereo correspondence problems
[8]. Su et al. [9] constructed a large co-registered database of high-
quality 2D color images and high-resolution ground-truth range maps
(1280x720), and explored the statistical relationships between the
band-pass responses of luminance/chrominance and range gradients
in natural scenes.

In this paper, we examine the statistical relationships between
disparity and luminance/chrominance information in natural scenes,
and derive statistical models for their joint distributions. We also
exploit the derived statistical descriptions of disparity and lumi-
nance/chrominance by applying them to the Bayesian stereo problem.
The simulation results show that the Bayesian stereo algorithm
incorporating the proposed NSS models can improve upon a previous
NSS-based stereo algorithm using only luminance information. The
results also suggest that the statistics between color and range in
natural environments could be helpful in binocular visual processing
and depth perception of human vision system.

The rest of the paper is organized as follows. Section II briefly
describes the acquisition and pre-processing of the image and

range data. Then, the analysis and derivation of statistical mod-
els of the marginal and conditional distributions between lumi-
nance/chrominance and disparity are included in Section III. Next,
Section IV explains how to apply the derived statistical models of lu-
minance/chrominance and disparity to the Bayesian stereo algorithm,
followed by simulation results in Section V. Finally, Section VI gives
the conclusion.

II. DATA ACQUISITION AND PRE-PROCESSING

We obtained a dataset of 2D color images and co-registered
ground-truth range maps, then converted the range maps into disparity
maps. The large co-registered database of range and color images
(dubbed LIVE Color+3D Database) consists of 12 sets of high-
resolution color images and co-registered range maps [9], [10]. The
image and range data in the LIVE Color+3D Database were collected
using an advanced range scanner, RIEGL VZ-400, with a Nikon
D700 digital camera mounted on top of it [11]. Calibration was
performed using the scanner operation software, RIEGL RiSCAN
PRO, to compensate for inevitable translational and rotational shifts
when mounting the camera onto the range scanner [12]. Then, to
obtain the aligned 2D range map with the 2D color image, the 3D
point clouds captured by the scanner were projected and transformed
into the 2D range map by applying the pinhole camera model with
lens distortion [13].

To convert ground-truth range maps into disparity maps, the
parallel-viewing model was used. Figure 1 shows the geometry of
the parallel-viewing model, where two scanners mounted with digital
cameras were set to capture the natural scene in parallel. Based on
this geometry, the disparity value is derived:

dp

fc
=

dio

R
) dp = fc

dio

R
(1)

where dp is disparity, fc is the focal length of the camera, dio is the
inter-ocular distance, and R is the ground-truth range value.

Since we want to learn and explore the statistical relationships
between luminance/chrominance and disparity and how these statis-
tics might be implicated in visual processing, some pre-processing
was performed on both the 2D color images and the converted 2D
disparity maps. All color images were transformed into the more
perceptually relevant CIELAB color space with one luminance (L*)
and two chrominance (a* and b*) components. CIELAB color space
is optimized for quantifying perceptual color difference and better
corresponds to human color perception than does the perceptually
nonuniform RGB space [14]. The images were then passed through
2D Gabor filter bank with multi-scales and orientations as a model of
the reception fields of the simple cells in V1 areas of human vision
systems [15]. Both the luminance and chrominance components of
the transformed color images and the converted disparity maps were
filtered by the 2D Gabor filter banks, and the analysis was performed
on these filter responses. For luminance and chrominance data, the
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I. INTRODUCTION

Natural scene statistics (NSS) are important factors both towards
understanding the evolution of the human vision system and for
designing image processing algorithms [1], [2]. Extensive research
has been conducted to explore the link between NSS and neural
processing of visual stimuli [3], [4]. With the increasing popularity of
3D image and video content, the statistics between 3D depth and 2D
color image data in natural scenes are of high interest. However, very
little work has been done due to the limited access to high quality
databases of color images and associated ground-truth range maps.

Potetz et al. [5] constructed a database of co-registered 2D color
images and range maps, and discovered that there is a correlation
between range and intensity of luminance in natural scenes. In [6],
Yang et al. explored the statistical relationships between luminance
and disparity in the wavelet domain, and applied the derived models
to a Bayesian stereo algorithm. In addition, it has been suggested
that the perception of color and depth are related [7], and chromatic
information can be useful in solving stereo correspondence problems
[8]. Su et al. [9] constructed a large co-registered database of high-
quality 2D color images and high-resolution ground-truth range maps
(1280x720), and explored the statistical relationships between the
band-pass responses of luminance/chrominance and range gradients
in natural scenes.

In this paper, we examine the statistical relationships between
disparity and luminance/chrominance information in natural scenes,
and derive statistical models for their joint distributions. We also
exploit the derived statistical descriptions of disparity and lumi-
nance/chrominance by applying them to the Bayesian stereo problem.
The simulation results show that the Bayesian stereo algorithm
incorporating the proposed NSS models can improve upon a previous
NSS-based stereo algorithm using only luminance information. The
results also suggest that the statistics between color and range in
natural environments could be helpful in binocular visual processing
and depth perception of human vision system.

The rest of the paper is organized as follows. Section II briefly
describes the acquisition and pre-processing of the image and

range data. Then, the analysis and derivation of statistical mod-
els of the marginal and conditional distributions between lumi-
nance/chrominance and disparity are included in Section III. Next,
Section IV explains how to apply the derived statistical models of lu-
minance/chrominance and disparity to the Bayesian stereo algorithm,
followed by simulation results in Section V. Finally, Section VI gives
the conclusion.

II. DATA ACQUISITION AND PRE-PROCESSING

We obtained a dataset of 2D color images and co-registered
ground-truth range maps, then converted the range maps into disparity
maps. The large co-registered database of range and color images
(dubbed LIVE Color+3D Database) consists of 12 sets of high-
resolution color images and co-registered range maps [9], [10]. The
image and range data in the LIVE Color+3D Database were collected
using an advanced range scanner, RIEGL VZ-400, with a Nikon
D700 digital camera mounted on top of it [11]. Calibration was
performed using the scanner operation software, RIEGL RiSCAN
PRO, to compensate for inevitable translational and rotational shifts
when mounting the camera onto the range scanner [12]. Then, to
obtain the aligned 2D range map with the 2D color image, the 3D
point clouds captured by the scanner were projected and transformed
into the 2D range map by applying the pinhole camera model with
lens distortion [13].

To convert ground-truth range maps into disparity maps, the
parallel-viewing model was used. Figure 1 shows the geometry of
the parallel-viewing model, where two scanners mounted with digital
cameras were set to capture the natural scene in parallel. Based on
this geometry, the disparity value is derived:
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(1)

where dp is disparity, fc is the focal length of the camera, dio is the
inter-ocular distance, and R is the ground-truth range value.

Since we want to learn and explore the statistical relationships
between luminance/chrominance and disparity and how these statis-
tics might be implicated in visual processing, some pre-processing
was performed on both the 2D color images and the converted 2D
disparity maps. All color images were transformed into the more
perceptually relevant CIELAB color space with one luminance (L*)
and two chrominance (a* and b*) components. CIELAB color space
is optimized for quantifying perceptual color difference and better
corresponds to human color perception than does the perceptually
nonuniform RGB space [14]. The images were then passed through
2D Gabor filter bank with multi-scales and orientations as a model of
the reception fields of the simple cells in V1 areas of human vision
systems [15]. Both the luminance and chrominance components of
the transformed color images and the converted disparity maps were
filtered by the 2D Gabor filter banks, and the analysis was performed
on these filter responses. For luminance and chrominance data, the
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I. INTRODUCTION

Natural scene statistics (NSS) are important factors both towards
understanding the evolution of the human vision system and for
designing image processing algorithms [1], [2]. Extensive research
has been conducted to explore the link between NSS and neural
processing of visual stimuli [3], [4]. With the increasing popularity of
3D image and video content, the statistics between 3D depth and 2D
color image data in natural scenes are of high interest. However, very
little work has been done due to the limited access to high quality
databases of color images and associated ground-truth range maps.

Potetz et al. [5] constructed a database of co-registered 2D color
images and range maps, and discovered that there is a correlation
between range and intensity of luminance in natural scenes. In [6],
Yang et al. explored the statistical relationships between luminance
and disparity in the wavelet domain, and applied the derived models
to a Bayesian stereo algorithm. In addition, it has been suggested
that the perception of color and depth are related [7], and chromatic
information can be useful in solving stereo correspondence problems
[8]. Su et al. [9] constructed a large co-registered database of high-
quality 2D color images and high-resolution ground-truth range maps
(1280x720), and explored the statistical relationships between the
band-pass responses of luminance/chrominance and range gradients
in natural scenes.

In this paper, we examine the statistical relationships between
disparity and luminance/chrominance information in natural scenes,
and derive statistical models for their joint distributions. We also
exploit the derived statistical descriptions of disparity and lumi-
nance/chrominance by applying them to the Bayesian stereo problem.
The simulation results show that the Bayesian stereo algorithm
incorporating the proposed NSS models can improve upon a previous
NSS-based stereo algorithm using only luminance information. The
results also suggest that the statistics between color and range in
natural environments could be helpful in binocular visual processing
and depth perception of human vision system.

The rest of the paper is organized as follows. Section II briefly
describes the acquisition and pre-processing of the image and

range data. Then, the analysis and derivation of statistical mod-
els of the marginal and conditional distributions between lumi-
nance/chrominance and disparity are included in Section III. Next,
Section IV explains how to apply the derived statistical models of lu-
minance/chrominance and disparity to the Bayesian stereo algorithm,
followed by simulation results in Section V. Finally, Section VI gives
the conclusion.

II. DATA ACQUISITION AND PRE-PROCESSING

We obtained a dataset of 2D color images and co-registered
ground-truth range maps, then converted the range maps into disparity
maps. The large co-registered database of range and color images
(dubbed LIVE Color+3D Database) consists of 12 sets of high-
resolution color images and co-registered range maps [9], [10]. The
image and range data in the LIVE Color+3D Database were collected
using an advanced range scanner, RIEGL VZ-400, with a Nikon
D700 digital camera mounted on top of it [11]. Calibration was
performed using the scanner operation software, RIEGL RiSCAN
PRO, to compensate for inevitable translational and rotational shifts
when mounting the camera onto the range scanner [12]. Then, to
obtain the aligned 2D range map with the 2D color image, the 3D
point clouds captured by the scanner were projected and transformed
into the 2D range map by applying the pinhole camera model with
lens distortion [13].

To convert ground-truth range maps into disparity maps, the
parallel-viewing model was used. Figure 1 shows the geometry of
the parallel-viewing model, where two scanners mounted with digital
cameras were set to capture the natural scene in parallel. Based on
this geometry, the disparity value is derived:
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where dp is disparity, fc is the focal length of the camera, dio is the
inter-ocular distance, and R is the ground-truth range value.

Since we want to learn and explore the statistical relationships
between luminance/chrominance and disparity and how these statis-
tics might be implicated in visual processing, some pre-processing
was performed on both the 2D color images and the converted 2D
disparity maps. All color images were transformed into the more
perceptually relevant CIELAB color space with one luminance (L*)
and two chrominance (a* and b*) components. CIELAB color space
is optimized for quantifying perceptual color difference and better
corresponds to human color perception than does the perceptually
nonuniform RGB space [14]. The images were then passed through
2D Gabor filter bank with multi-scales and orientations as a model of
the reception fields of the simple cells in V1 areas of human vision
systems [15]. Both the luminance and chrominance components of
the transformed color images and the converted disparity maps were
filtered by the 2D Gabor filter banks, and the analysis was performed
on these filter responses. For luminance and chrominance data, the

scanner 
mounted with 

camera

Figure 4.1: Geometry of the parallel-viewing model.

nance and chrominance in natural images. First, we examine the conditional

distribution of range gradient data given luminance/chrominance. Since the

depth information acquired by the human vision system is more relative than

absolute, which means that we know which objects are further and which are

closer, but we are not sure about the exact distance of each object from us,

the disparity serves to be an important stereoscopic cue and its statistics is

of most interest towards understanding depth perception. Therefore, in or-

der to be able to examine statistical correlations between range/depth and

luminance/chrominance information in the presence of stereoscopic fixation,

we also convert ground-truth range maps into disparity maps under a parallel-

viewing model. Figure 4.1 depicts the geometry of the parallel-viewing model.
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The disparity values are computed as:

dp
fc

=
dio
R
⇒ dp = fc

dio
R

(4.3)

where dp is disparity, fc is the focal length of the camera, dio is the inter-ocular

distance, and R is ground-truth range. Finally, the converted disparity maps

are decomposed by the same multi-scale, multi-orientation 2D Gabor filter

bank.

4.3 Statistical Analysis

The statistics of 2D and 3D natural scenes have previously been learned

by the human visual apparatus over the eons. These powerful, physically and

perceptually relevant constraints form priors which can be applied to solve

visual tasks. Since acquiring geometric knowledge about the surrounding 3D

environment is a basic element of human visual activity, accurate perception

and consistent interpretation of natural range/depth information is an essential

processing role of the early visual processing pathway.

Towards understanding the statistical basis of such computations, we

first examine the marginal statistics of luminance and chrominance Gabor

responses, and the conditional statistics of range gradients given measurements

of these responses. Our analysis is performed on the (demodulated) magnitude

responses of the Gabor quadrature functions, expressed as rms values of the

sine and cosine responses [14]. Based on these measurements, we form models

of the prior marginal and conditional distributions towards leveraging them in
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Figure 4.2: The mean and standard deviation (STD) of Gabor magnitude
responses against radial spatial frequency: (a) mean for L*, (b) STD for L*,
(c) mean for a*, (d) STD for b*, (e) mean for b*, and (f) STD for b*.

solving model-based visual processing problems.
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4.3.1 Marginal Statistics

All color images were first transformed into the perceptually relevant

CIELAB color space, then decomposed by a multi-scale, multi-orientation 2D

Gabor filter bank. This serves the dual role of supplying optimally conjoint

spatio-spectral decompositions of the data, while also providing a reasonable

approximation of area V1 responses. As a first point of study, we computed

the mean and standard deviations of the luminance and chrominance Gabor

magnitude responses against spatial frequency and orientation. Specifically,

we found the Gabor magnitude responses on the L* channel for all 12 test im-

ages in the LIVE Color+3D Database Release-1. We plot mean and standard

deviation of these responses as a function of spatial frequency and orientation

in Figs. 4.2 (a) and (b). The same computation was performed on the a* and

b* channels as well, and is plotted in Figs. 4.2 (c) to (f).

As generally expected, mean magnitude responses fall off approximately

as 1/f 2 with spatial frequency f . This agrees with findings that the power

spectra of natural images varies as 1/f 2 with spatial frequency [14, 15, 104].

This fundamental model has been successfully used to explain and predict

certain early stages of visual processing in insects and higher vertebrates [20,

105–107]. An interesting observation is that the curves for the diagonal-45

and diagonal-135 orientations nearly overlap in all three channels. For the L*

channel, the curves for the horizontal and vertical orientations also overlap,

while for the a* and b* channels, the curves are distinct.

The standard deviations of the magnitude responses also follows a 1/f 2
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shape for both luminance and chrominance channels. As observed for the

mean magnitude responses, the curves for diagonal orientations overlap across

all three channels. However, the standard deviation curves for horizontal and

vertical orientations are distinct for both luminance and chrominance channels.

The 1/f 2 distribution of mean and standard deviation of the Gabor

responses implies equal energy within equal (octave) bandwidths, and also

equal variation of energy within equal bands over different orientations in

natural images. Moreover, the distribution of spectral energy contained in the

luminance channel is different from that carried by the chrominance channels

in natural environments. These findings can potentially be utilized to better

understand and explain various stages of visual processing.

4.3.2 Conditional Statistics

It may be observed from natural scenes that there is substantial co-

occurrence of luminance/chrominance edges and range/depth discontinuities.

For example, if there is a discontinuity in the range/depth map, it is highly

likely that an edge of the same orientation is co-located in the corresponding

color image. However, the intuition of the other direction is rather weaker;

many image edges must exist without corresponding discontinuities in range

due to the plethora of shadows and textures in the natural environment. In

order to examine the relationship between chromatic image and range singu-

larities, we studied the conditional statistics of range gradients given Gabor

image responses.
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Figure 4.3: The means of range gradient magnitudes against Gabor magnitude
responses over different spatial frequencies with the same horizontal (0-deg)
orientation: (a), (c), and (e) for L*; (b), (d), and (f) for a* and b*.
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Figure 4.4: The standard deviations of range gradient magnitudes against
Gabor magnitude responses over different spatial frequencies with the same
horizontal (0-deg) orientation: (a), (c), and (e) for L*; (b), (d), and (f) for a*
and b*.
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Again, all color images were first transformed into the perceptually

relevant CIELAB color space, then passed through the multi-scale, multi-

orientation 2D Gabor filter bank, and the magnitude responses computed.

We also computed the gradient magnitude matrix, Rg, of each range map, R,

for each corresponding color image in the database, which is given by

Rg(i, j) = ‖∇R(i, j)‖ =

√(
∂R(i, j)

∂x

)2

+

(
∂R(i, j)

∂y

)2

(4.4)

where

∇R(i, j) =

[
∂R(i, j)

∂x
,
∂R(i, j)

∂y

]T
(4.5)

∂R(i, j)

∂x
=
R(i+ 1, j)−R(i− 1, j)

2
∂R(i, j)

∂y
=
R(i, j + 1)−R(i, j − 1)

2

To obtain conditional statistics, we binned the magnitude responses across

all images for each luminance and chrominance channel. Within each bin,

we also collected the corresponding gradient magnitudes for all range maps.

Finally, we computed the conditional mean and standard deviations of magni-

tude of the range gradients given the Gabor magnitude responses for the L*,

a*, and b* channels. Figures 4.3 and 4.4 plot the mean and standard devia-

tion, respectively, of the range gradient magnitudes against Gabor magnitude

responses for luminance and chrominance channels for an exemplar sub-band.

Very similar curves and results are observed at different sub-bands.

The six panels in Fig. 4.3 plot the conditional statistics of mean range

gradient magnitude given magnitude responses of horizontal Gabors at three
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different spatial frequencies. For the luminance channel, the range gradient

magnitude increases monotonically with small Gabor responses, but saturates

with larger Gabor responses over all frequencies. On the other hand, the

magnitude of range gradients increases monotonically with Gabor magnitude

responses at all frequencies for both chromatic channels, and there is no sat-

uration for large Gabor responses. Similar trends are observed for the stan-

dard deviation of range gradients conditioned on the magnitude of horizontal

Gabor responses at three different spatial frequencies, as shown in Fig. 4.4.

These monotonic relationships between range gradients and luminance and

chrominance Gabor responses demonstrate a high correlation between these

quantities, while also strengthening the intuition that, if there are strong vari-

ations in a natural image, i.e. large Gabor responses, there is a high likelihood

of co-located large variations, i.e. large range gradients, in the correspond-

ing range map. Moreover, the luminance channel carries information that

is different from that carried by the chrominance channels in the sense that

the means and standard deviations of range gradient magnitudes both satu-

rate given large luminance Gabor magnitude responses, which implies that the

chromatic components in natural images can also possibly be utilized in depth

perception, a concept that is supported by our prior human study [86].

To further validate the existence of strong correlations between range

gradients and image Gabor responses, we performed a simple hypothesis test

on the sample correlation coefficients between range gradients and luminance/

chrominance Gabor responses using the same sub-band as in Fig. 4.3(c) and
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Table 4.1: Hypothesis Test of Correlation on Conditional Statistics
(frequency = 5.87 (cycles/degree) and orientation = 0-deg)

Channel |t-score| p-value (10−3) Decision

L* 3.342 0.205 Reject H0

a* 2.933 7.681 Reject H0

b* 3.343 0.357 Reject H0

4.4(c). The t-score is given by

t =
r
√
n− 2

1− r2
(4.6)

where r is the sample correlation coefficient and n is the number of sam-

ples. Since there are millions of points within each sub-band, we iterated 100

times, taking 1000 random samples per iteration to compute the correlation

coefficient. The final t-score was obtained by finding the average correlation

coefficient over 100 iterations with the sample size n equal to 1000. Table 4.1

lists the t-scores of the color channels and the corresponding decisions using

a two-sided level of significance α = 0.05. It can be seen from Table 4.1 that

the null hypothesis, H0, that there is no correlation between range gradients

and image Gabor responses was rejected for all three channels. Very similar

results were obtained for all other sub-bands. Note that this corresponds to

a very conservative test. Testing the full data set would yield minuscule p-

values because of the large n. Rather, we did the test using approximately the

number of samples that would be available instantaneously over about 0.005

(mm2) on the primate retina (or about 0.056 (deg2) of visual angle).
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4.4 Statistical Models

The statistical analysis described thus far discovers a link between

range/depth variations and co-located luminance and chrominance variations

in natural images, and by extension, in the neural responses of luminance/

chrominance in primary visual cortex (V1). In this section, we seek to quan-

titatively model the statistical relationships between co-located luminance/

chrominance and range/depth information in natural images. The Gabor mag-

nitude responses were computed as in the previous analysis on both luminance

and chrominance channels. To acquire statistics of the important stereoscopic

cue, disparity, used in the perception of depth by the human vision system, the

ground-truth range maps were converted into disparity maps using the paral-

lel viewing model described in Section 4.2.2. These converted disparity maps

were also subjected to a multi-scale, multi-orientation Gabor decomposition,

from which the disparity Gabor magnitude responses were computed. Since

we want to derive statistical models that relate disparity and color image data,

and demonstrate their usefulness, the marginal distributions of the Gabor mag-

nitude responses to luminance/chrominance and disparity, and the conditional

distributions of luminance/chrominance given disparity Gabor magnitude re-

sponses are of great interest.

4.4.1 Marginal Distributions

In order to examine the marginal distributions of luminance, chromi-

nance, and disparity processed by different sub-bands, the Gabor responses
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Figure 4.5: Marginal distributions of Gabor magnitude responses at one sub-
band for: (a) L* , (b) a*, (c) b*, and (d) disparity.

Table 4.2: Comparison of Marginal Distribution Fits using Sum of Squared
Error (10−2)

Marginal Distribution
L* a* b* Disparity

Exponential Fit 0.116 0.245 0.222 8.569
Rayleigh Fit 1.143 1.141 1.292 12.008
Weibull Fit 0.103 0.202 0.197 0.823

G. Log-Normal Fit 0.078 0.057 0.041 0.785

were first collected across all scenes in the database. The empirical marginal

distributions for all quantities of interest within each sub-band were obtained
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as histograms computed by binning all of the Gabor magnitude responses

within each channel at that sub-band.

Figure 4.5 shows the marginal distributions of the luminance, chromi-

nance, and disparity Gabor magnitude responses for one sub-band. The circle-

dotted, square-dotted, cross-dotted, and triangle-dotted lines depict the best

(least-squares) generalized log-normal, Weibull, Rayleigh, and exponential dis-

tribution fits, respectively, to each marginal distribution. In particular, the

generalized log-normal distribution is given by

pg(x) =


βg

2xαΓ( 1
βg

)
exp

[
−( | ln(x)−µg |

αg
)βg
]

, x ≥ 0

0 , x < 0
(4.7)

where Γ(·) is the gamma function, µg, αg, and βg are the location, scale, and

shape parameters, respectively. The general Weibull distribution is given by

pw(x) =

{
βw
αw

( x
αw

)(βw−1)e−( x
αw

)βw , x ≥ 0

0 , x < 0
(4.8)

where αw and βw represent the scale and shape parameters, respectively, which

allows the model to include exponential (βw = 1) and Rayleigh (βw = 2) dis-

tributions as special cases depending on the shape parameter. The character-

istic shape of the marginal distributions is quite different from the symmet-

ric Gaussian-like distributions used in other studies. These previous models

have captured the statistics of the luminance channel of natural images using

band-pass wavelet filter-banks, e.g., steerable pyramid decompositions, but

without finding the magnitude (envelope) responses. Here we have used the

Gabor filter-bank to match the receptive fields of simple neurons in primary
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visual cortex (V1), and computed the Gabor magnitude responses to mimic

the energy exchange in neural signal communication. It can be seen that the

generalized log-normal fits better capture the shapes of all four marginal dis-

tributions, while the Weibull and exponential fits are not able to match the

positive-skewed bell shapes, and the Rayleigh fits fail to model the heavy tails.

In other words, with the three model parameters, location, scale and shape,

the generalized log-normal function can flexibly adjust both its peak location

and its variance, i.e., the width of distribution, to better fit the characteristic

shape of the marginal distribution of image and disparity magnitude responses.

We also performed a numerical comparison of different distribution fits at the

same sub-band using the sum of squared error, as shown in Table 4.2. In

accordance with the visual comparison in Fig. 4.5, the generalized log-normal

functions yield the best fits among all four marginal distributions, i.e. fixing

the parameters gives much worse fits. Note that the marginal distributions

of the filtered luminance, chrominance, and disparity over different sub-bands

all share similar shapes. For reference, we list the best-fit generalized log-

normal parameters for the marginal distributions of luminance, chrominance,

and disparity Gabor magnitudes at all sub-bands in [7].

4.4.2 Conditional Distributions

Similarly, the conditional distributions of luminance and chrominance

given disparity at different sub-bands were obtained by first computing and col-

lecting the filtered luminance, chrominance, and disparity magnitude responses
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Figure 4.6: Conditional distributions of filtered luminance (L*) and chromi-
nance (a* and b*) magnitudes given filtered disparity magnitudes from one
sub-band: (a), (c), and (e) the conditional distributions (solid lines) along
with the best-fit generalized log-normal models (dotted lines); (b), (d), and
(f) their corresponding best-fit generalized log-normal parameters.
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across all scenes, then computing the histograms for each sub-band. For each

sub-band, the conditional histograms of luminance and chrominance given

disparity were computed by first binning the disparity magnitude responses,

then binning the filtered luminance/chrominance magnitude responses within

each disparity bin. Figure 4.6 shows the conditional distributions of all three

luminance and chrominance components (solid lines), as well as their corre-

sponding best-fit generalized log-normal distributions (dotted lines) and their

model parameters. It can be seen that the conditional distributions of lu-

minance and chrominance given disparity are well-fitted by the generalized

log-normal distribution. As discussed in Section 4.4.1, the flexible generalized

log-normal function is a better model than other specific fits, such as Weibull,

exponential, and Rayleigh functions. For the conditional distributions of lu-

minance given disparity, the location parameter (µg) of the fitted general-

ized log-normal model increases monotonically and linearly as the disparity

magnitude response increases, while both the scale (αg) and shape (βg) pa-

rameters decrease monotonically and linearly across the disparity magnitude

responses. On the other hand, for the conditional distributions of chromi-

nance given disparity, all three parameters exhibit a nearly linear relationship

with the disparity magnitude responses. In general, as the disparity magni-

tude response increases, the conditional distributions of both luminance and

chrominance become more heavy-tailed, which implies that if there is a large

disparity variation, i.e. a large range/depth discontinuity, large luminance and

chrominance variations are highly likely to be co-located in the corresponding
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color images. These monotonic correlations between the Gabor responses of

disparity and luminance/chrominance in natural images confirm the observa-

tions as well as the computed conditional statistics between range and lumi-

nance/chrominance variations discussed in Section 4.3.2. Moreover, the linear

relationships between the parameters of the generalized log-normal model and

the magnitude of disparity Gabor responses nicely captures the heavy-tailed

conditional distributions of both filtered luminance and chrominance channels.

Next, we will leverage these new joint NSS models to solve an exemplar 3D

image processing problem: binocular correspondence.

4.5 Application to A Chromatic Bayesian Stereo Algo-
rithm

Given a pair of left and right images, a binocular stereo algorithm com-

putes a disparity map from one image to the other. The basic idea is to

minimize an energy functional which captures differential binocular cues be-

tween left and right images within an optimization framework [34]. A Bayesian

stereo algorithm is able to adapt a likelihood (conditional distribution) and a

prior (marginal distribution) of natural scene statistics (NSS) within the en-

ergy functional to be minimized, thus forcing the solution to be consistent with

the observed statistical relationships that occur between luminance, chromi-

nance, and disparity data in natural scenes, as derived in Section 4.4. Given a

pair of left and right images, Il and Ir, then to estimate the disparity map, D,

from the right (matching) to the left (reference) image, the canonical Bayesian
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stereo formulation takes the form [108]

D = argmax
D′

P (D′|(Il, Ir))

= argmax
D′

P ((Il, Ir)|D′)P (D′) (4.9)

where P (D′|(Il, Ir)) is the posterior probability to be maximized, and P ((Il, Ir)|D′)

and P (D′) are the likelihood and prior probabilities, respectively. Taking the

logarithm of the product of the likelihood and prior, the Bayesian formulation

corresponds to minimization of the energy function:

D = argmin
D′

Ep + λEs (4.10)

where Ep is the photometric energy expressed by the likelihood P ((Il, Ir)|D′),

Es is a smoothness term derived from the prior P (D′), and λ is a weight. Note

that Ep can encapsulate all three luminance and chrominance components, L∗,

a∗, and b∗, and be written

Ep =
∑
i,j

∑
k∈{L∗,a∗,b∗}

|Ilk(i, (j −D′(i, j)))− Irk(i, j)| (4.11)

To incorporate the marginal and conditional NSS distributions that we

have measured and modeled, the Bayesian stereo formulation can be re-written

as

D = argmax
D′

P (D̃′|(Il, Ir), Ĩl)

= argmax
D′

P ((Il, Ir)|D̃′, Ĩl)P (Ĩl|D̃′)P (D̃′) (4.12)

= argmin
D′

Ep + λ(ENSSc + ENSSm) (4.13)
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(taking logarithm of (4.12)), where Ĩl and D̃′ are the magnitudes of the Gabor

filtered responses of Il and D′, respectively, Ep is the photometric energy

derived from P ((Il, Ir)|D̃′, Ĩl), ENSSc and ENSSm are energy terms related to

the conditional and marginal NSS distributions, respectively, and λ is the

constant weight.

Finally, since both the marginal distribution of disparity and the con-

ditional distributions of luminance and chrominance given disparity can be

modeled as generalized log-normal, the complete formulation of the proposed

Bayesian stereo algorithm incorporating the NSS models can be written

D = argmin
D′

∑
i,j

 ∑
k∈{L∗,a∗,b∗}

(
Ep,k + λkENSSc,k

)
+ λmENSSm

 (4.14)

where by introducing Eq. (4.7) and (4.11)

Ep,k =|Ilk(i, (j −D′(i, j)))− Irk(i, j)| (4.15)

ENSSc,k = ln(Ĩlk(i, j)) + ln(
2αkΓ( 1

βk
)

βk
)+

(
| ln(Ĩlk(i, j))− µk|

αk
)βk (4.16)

ENSSm = ln(D̃′(i, j)) + ln(
2αD̃′Γ( 1

β
D̃′

)

βD̃′
)+

(
| ln(D̃′(i, j))− µD̃′|

αD̃′
)βD̃′ (4.17)

where µk, αk, and βk are the location, scale, and shape parameters, respec-

tively, of the best-fit generalized log-normal distributions of filtered luminance

and chrominance conditioned on filtered disparity, µD̃′ , αD̃′ , and βD̃′ are the
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location, scale, and shape parameters of the best-fit generalized log-normal

distribution of filtered disparity, respectively, and λk and λm are their cor-

responding constant weights. Note that the three parameters, µk, αk and

βk, can be further linearly modeled with the disparity Gabor magnitudes, as

illustrated in Fig. 4.6:

µk = mµ,kD̃′ + bµ,k (4.18)

αk = mα,kD̃′ + bα,k (4.19)

βk = mβ,kD̃′ + bβ,k (4.20)

where mµ,k, mα,k, and mβ,k are the slope parameters for µk, αk, and βk, re-

spectively, and bµ,k, bα,k, and bβ,k are the corresponding offset parameters. To

solve the optimization of the proposed Bayesian stereo algorithm, we apply

simulated annealing on the derived energy function (4.14) [109].

4.6 Experimental Results and Discussion

We simulate and evaluate the proposed Bayesian stereo algorithm uti-

lizing the derived NSS models on stereo image pairs from the widely used

Middlebury database [34]. To demonstrate the effectiveness of the derived

statistical models relating luminance/chrominance and disparity in natural

scenes, we compared the computed disparity maps using the Bayesian stereo

algorithm with related formulations and models, including the canonical for-

mulation using (4.10), the NSS model proposed in [32], and the proposed

luminance-chrominance-range NSS model (4.14). In [32], the authors derived
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an NSS model using only luminance information in the wavelet domain, and in-

corporated only the conditional distribution of luminance given disparity into

the Bayesian stereo algorithm. Using the proposed luminance-chrominance-

range NSS model, we implement the Bayesian stereo algorithm using two for-

mulations: one includes only the luminance component (L*), while the other

includes both luminance and chrominance (a* and b*) components.

4.6.1 Comparison with Previous Models

Figures 4.7 to 4.10 show simulation results of the four stereo image

pairs, Tsukuba, Venus, Cones, and Teddy, from the Middlebury database, in-

cluding the original left and right images, the ground-truth disparity map, and

the computed disparity maps obtained by the three different Bayesian formu-

lations. Generally, computed disparity maps delivered by the stereo model

embodying both luminance (L*) and chrominance (a* and b*) NSS priors are

very close to the corresponding ground-truth disparity maps, retaining more

details than the canonical formulation, and better adherence to smooth regions

than the one computed by the previous NSS model. On Tsukuba, the canon-

ical formulation scrubs regions, e.g., around the camera, while the algorithm

using the previous luminance-only NSS model tends to ”over-segment”. The

proposed algorithm using luminance-chrominance-range NSS priors is better

able to find a balance between disparity smoothness and 3D detail with the

aid of the additional regularity supplied by modeling the disparity and lumi-

nance/chrominance channels. For Venus and Teddy, it can be seen that the
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canonical formulation fails to find binocular correspondences in some smooth

regions without edges, while the previous luminance-only NSS model is able

to solve those disparity ambiguities using luminance and disparity priors. By

introducing conditional priors of chrominance given depth, the luminance-

chrominance-range NSS model further improves the accuracy of the computed

disparity map by cleaning up the smooth 3D surfaces. On Cones, both the

canonical formulation and the previous luminance-only NSS model do a good

job matching image details while maintaining disparity smoothness; yet, they

are not able to find binocular correspondences around some of the occluded

regions on the cones. However, the luminance-chrominance-range NSS model

allows most of the binocular correspondences around those occluded regions

to be successfully resolved.

In addition to visual comparison, we also conducted a quantitative eval-

uation to compare the performance of the stereo algorithm embodying the

derived luminance-chrominance-range NSS model with the canonical formula-

tion and the previous luminance-only NSS model. Tables 4.3 through 4.5 give

numerical comparisons between the proposed model and the other two formu-

lations using three different metrics: bad-pixel percentage, including overall,

non-occluded, and textured, for all four test image pairs.

Bad-pixel percentage, Pbp, is a commonly used error metric to measure

pixel-wise differences between computed and ground-truth depth maps [34,
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Table 4.3: Comparison of Bayesian Stereo Algorithm under Different Natural
Scene Models using Overall Bad-Pixel Percentage (%)

Tsukuba Venus Cones Teddy

Canonical Formulation 9.71 11.21 24.31 32.18

Previous NSS Model in [32] 6.45 5.34 20.78 23.35

Proposed NSS Model using only L* 5.19 2.55 18.86 20.58

Proposed NSS Model using L*, a*, and b* 4.91 2.21 18.57 20.37

Table 4.4: Comparison of Bayesian Stereo Algorithm under Different Natural
Scene Models using Non-occluded Bad-Pixel Percentage (%)

Tsukuba Venus Cones Teddy

Canonical Formulation 7.78 9.79 12.72 23.34

Previous NSS Model in [32] 4.26 3.69 8.54 13.20

Proposed NSS Model using only L* 2.92 1.44 7.58 12.37

Proposed NSS Model using L*, a*, and b* 2.64 1.18 7.35 12.15

Table 4.5: Comparison of Bayesian Stereo Algorithm under Different Natural
Scene Models using Textured Bad-Pixel Percentage (%)

Tsukuba Venus Cones Teddy

Canonical Formulation 4.77 3.85 12.49 19.82

Previous NSS Model in [32] 4.70 2.96 8.39 12.20

Proposed NSS Model using only L* 3.34 1.62 7.61 11.10

Proposed NSS Model using L*, a*, and b* 3.30 1.41 7.39 10.93

110]. It takes the form:

Pbp =
1

NS

∑
i,j∈S

(|DC(i, j)−DG(i, j)| > δD) (4.21)

where DC and DG are the computed and ground-truth disparity maps, re-

spectively, S is the image region over which Pbp is calculated, NS is the

number of pixels in S, and δD is a threshold expressing disparity error tol-

erance. Here we use δD = 1.0, which coincides with previously published work

comparing stereo algorithms [111, 112]. The three metrics of bad-pixel per-
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centage used here are distinguished by the different regions S. The overall

bad-pixel percentage in Table 4.3 is calculated over the entire disparity map,

i.e. S = {(i, j) | 1 ≤ i ≤ h, 1 ≤ j ≤ w} where h and w are the height

and width of the disparity map, respectively. For the non-occluded bad-pixel

percentage, S is defined as the region that is not occluded in the matching

image, i.e. pixels appearing in the reference image have correspondences in

the matching image. Finally, the textured bad-pixel percentage is calculated

only over regions where the intensity of image horizontal gradients is beyond

some threshold, i.e. pixels belonging to prominent image details, edges, and

texture in the reference image.

From Tables 4.3 through 4.5, it is apparent that the numerical re-

sults support the visual comparisons: the Bayesian stereo algorithm using the

luminance-chrominance-range NSS model outperforms the other two methods

in terms of all three different metrics of bad-pixel percentage. Taking Venus for

example, with respect to all three bad-pixel percentage metrics, the proposed

luminance-chrominance-range NSS model achieves more than 100% improve-

ment over the previous NSS model, which, in turn, significantly improves on

the canonical formulation. By observing the textured bad-pixel percentage on

Tsukuba in Table 4.5, it is apparent that the Bayesian stereo algorithms using

the canonical formulation and the previous NSS model deliver similar perfor-

mance, while the proposed luminance-chrominance-range NSS model yields

a bolstered Bayesian stereo algorithm that delivers a significantly more ac-

curate disparity map. Moreover, on the complicated image pairs Cones and
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Teddy, while the previous NSS model generates fairly good disparity maps

on non-occluded and textured regions, the new NSS models further improve

the results with fewer pixel errors, demonstrating the utility of the derived

marginal and conditional models that serve to regularize the range/depth and

luminance/chrominance statistics of the stereo solution on natural images.

4.6.2 Augmentation by Chrominance

In Tables 4.3 to 4.5, we also list numerical results from the proposed

luminance-chrominance-range NSS model using only the luminance channel

(L*). It can be seen that for all four image pairs, the results using both the

luminance (L*) and chrominance (a* and b*) channels yields better perfor-

mance than using only the luminance channel with respect to all three differ-

ent performance metrics. For example, the vivid and diverse colored objects

in Teddy increase the difficulty of finding binocular correspondences; however,

the proposed luminance-chrominance-range NSS model is better able to solve

the problem by exploiting the derived conditional model between the natural

depth and chrominance channels, resulting in more accurate disparity maps

with lower non-occluded and textured bad-pixel percentages. Based on this

quantitative comparison, we may conclude that chromatic information not

only augments the performance of Bayesian stereo algorithms, but could also

play a useful role in human binocular visual perception. For example, stereo

processing in human vision systems could possibly leverage the statistical re-

lationship between chrominance and range/depth cues in natural images to
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augment a variety of 3D visual tasks [86–88].

4.7 Summary

By utilizing high-resolution, high-quality color images and co-registered

range maps in the LIVE Color+3D Database Release-1, we examined the sta-

tistical relationships between multi-scale, multi-orientation Gabor decomposi-

tions of luminance/chrominance and range/depth data in natural scenes. We

showed that the marginal statistics of both image and range magnitude re-

sponses follow the well-known 1/f 2 power law, and the conditional statistics

of range gradients given image magnitude responses provide evidences support-

ing the co-occurrence of natural image and range variations. We further de-

rived marginal and conditional priors relating natural luminance/chrominance

and disparity, and demonstrated their efficacy with application to the Bayesian

stereo algorithm. We also demonstrated that including the chrominance-range

models augments the performance of the Bayesian stereo algorithm over us-

ing only the luminance information. More importantly, the superior perfor-

mance incorporating color and range priors to previous luminance-only models

bolsters the psychophysical evidence that not only image intensity, but also

chromatic information is useful in 3D visual processing.
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(a) Left image (b) Right image (c) Ground-truth disparity map

(d) Canonical formulation (e) Previous NSS model (f) Proposed luminance-
chrominance-range NSS model
with L*, a*, and b*

Figure 4.7: Simulation results on Tsukuba from the Middlebury database, in-
cluding the original stereo image pair, the ground-truth disparity map, and
disparity maps using computed Bayesian stereopsis under different NSS mod-
els.
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(a) Left image (b) Right image (c) Ground-truth disparity map

(d) Canonical formulation (e) Previous NSS model (f) Proposed luminance-
chrominance-range NSS model
with L*, a*, and b*

Figure 4.8: Simulation results on Venus from the Middlebury database, in-
cluding the original stereo image pair, the ground-truth disparity map, and
disparity maps using computed Bayesian stereopsis under different NSS mod-
els.
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(a) Left image (b) Right image (c) Ground-truth disparity map

(d) Canonical formulation (e) Previous NSS model (f) Proposed luminance-
chrominance-range NSS model
with L*, a*, and b*

Figure 4.9: Simulation results on Cones from the Middlebury database, in-
cluding the original stereo image pair, the ground-truth disparity map, and
disparity maps using computed Bayesian stereopsis under different NSS mod-
els.

59



(a) Left image (b) Right image (c) Ground-truth disparity map

(d) Canonical formulation (e) Previous NSS model (f) Proposed luminance-
chrominance-range NSS model
with L*, a*, and b*

Figure 4.10: Simulation results on Teddy from the Middlebury database, in-
cluding the original stereo image pair, the ground-truth disparity map, and
disparity maps using computed Bayesian stereopsis under different NSS mod-
els.
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Chapter 5

Bivariate and Spatial Oriented Correlation

Statistical Models

5.1 Introduction

Most prevalent statistical models of natural, photographic images char-

acterize only the univariate distributions of divisively normalized bandpass

responses or wavelet-like decompositions of them. However, the higher-order

dependencies between spatially neighboring responses are not yet well under-

stood. Towards filling this gap, we propose new bivariate and spatial oriented

correlation models that capture statistical regularities between perceptually

decomposed natural image luminance samples. We validate the new model on

a variety of natural images. As a demonstration of its usefulness, we deploy

the new correlation model to solve the problem of image interpolation. The

experimental results show that the proposed interpolation algorithm utilizing

our new statistical model achieves comparable performance with bicubic image

interpolation.

61



5.2 Univariate Natural Scene Statistical Models

A variety of natural scene statistical models have been developed in the

vision science literature, both in the spatial [15] and wavelet domain [14]. Early

on, Ruderman [15] showed that a simple non-linear operation of local mean

subtraction followed by variance divisive normalization on natural image lumi-

nance results in a decorrelating and Gaussianizing effect. While the statistics,

i.e., marginal distributions, of natural image pixels exhibit non-Gaussian be-

havior, after projection onto appropriate multi-scale spaces, e.g., using wavelet

bases [17] or 2D Gabor filter banks [14], the resulting coefficients are found to

obey regular statistical models, such as Gaussian scale mixtures [22]. These

natural scene statistical models have been deployed in perceptual and compu-

tational image/video applications with great success, such as image denoising

and restoration [23], and image/video quality assessment [25, 66, 100, 113].

However, efforts to date have focused on the use of first-order univariate

statistical models, although there certainly exist significant dependencies be-

tween spatially neighboring bandpass image responses, which are not yet well

understood or modeled. Specifically, little work has been conducted on mod-

eling joint/bivariate relationships embedded in spatially oriented natural im-

age luminances. In [21], Simoncelli found that the coefficients of orthonormal

wavelet decompositions of natural images are fairly well-decorrelated; however,

they are not independent. He also showed that the empirical joint histograms

of adjacent coefficients produce contour plots having distinct ‘bowtie’ shapes.

This was observed on coefficient pairs separated by different spatial offsets,
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across adjacent scales, and at orthogonal orientations. However, quantitative

models that characterize these bivariate distributions are not available.

Here we make progress towards filling this gap by introducing new

bivariate and correlation models of spatially neighboring bandpass image re-

sponses. The models use a versatile multivariate generalized Gaussian distri-

bution combined with a new exponentiated sine function model of correlation.

We statistically validate the robustness of the new NSS models, and demon-

strate their usefulness by application to image interpolation.

5.3 Bivariate and Correlation Natural Scene Statistical
Models

Human vision systems (HVS) extract abundant information from natu-

ral environments by processing visual stimuli through different levels of decom-

position and interpretation. Since we want to learn and explore the statistical

relationships that are embedded in natural images, and how these statistics

might be implicated in visual processing and used for practical image pro-

cessing, we apply certain perceptually relevant pre-processing steps on natural

image luminance, and develop our new bivariate and correlation models from

the empirical response distributions.

The basic resources on which we perform bivariate and correlation sta-

tistical modeling are the pristine images from the popular and widely used

LIVE IQA Database [114].
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5.3.1 Perceptual Decomposition

We acquire luminance by transforming pristine color images into the

perceptually relevant CIELAB color space, which is optimized to quantify

perceptual color differences and better corresponds to human color perception

than does the perceptually nonuniform RGB space [89]. Each luminance im-

age (L*) is then transformed by the steerable pyramid decomposition, which

is an over-complete wavelet transform that allows for increased orientation se-

lectivity [115]. The use of the wavelet transform is motivated by the fact that

its space-scale-orientation decomposition is similar to the bandpass filtering

that occurs in area V1 of primary visual cortex [14, 116].

After applying the multi-scale, multi-orientation decomposition, we

perform the perceptually significant process of divisive normalization on the

luminance wavelet coefficients of all of the sub-bands [117]. The divisive nor-

malization transform (DNT) used in our work is implemented as follows [118]:

u(xi, yi) =
w(xi, yi)√
s+ w>g wg

=
w(xi, yi)√

s+
∑

j g(xj, yj)w(xj, yj)2
(5.1)

where (xi, yi) are spatial coordinates, w are the wavelet coefficients, u are

the coefficients after DNT, s is a semi-saturation constant, the weighted sum

occurs over neighborhood pixels indexed by j, and {g(xj, yj)} is a finite-extent

Gaussian weighting function.
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5.3.2 Bivariate Statistical Model

We study the joint distribution of spatially adjacent luminance wavelet

coefficients subjected to DNT, i.e., u in Eq. (5.1). Specifically, we use the

steerable pyramid decomposition with five scales, indexed from 1 (finest) to 5

(coarsest), and twelve frequency-tuning orientations: 0, 1
12
π, . . . , 11

12
π.

Here we mainly focus on the bivariate distributions and correlations

of horizontally and vertically adjacent pixels. Specifically, for horizontally

adjacent pixels, we sample pairs from locations (x, y) and (x+1, y) in an image.

Since we have observed that very similar statistics arise from horizontally and

vertically adjacent pixels, we will only discuss the results for the horizontal

case.

To model the bivariate joint histogram of spatially adjacent band-

pass responses, we utilize a multivariate generalized Gaussian distribution

(MGGD), which includes both the multivariate Gaussian and Laplace dis-

tributions as special cases. The probability density function of a multivariate

generalized Gaussian distribution that we use is:

p(x; M, α, β) =
1

|M| 12
gα,β(x>M−1x) (5.2)

where x ∈ RN , M is an N × N symmetric scatter matrix, α and β are scale

and shape parameters, respectively, and gα,β(·) is the density generator:

gα,β(y) =
βΓ(N

2
)

(2
1
β πα)

N
2 Γ( N

2β
)
e−

1
2

( y
α

)β (5.3)
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where y ∈ R+. Note that when β = 0.5, Eq. (5.2) yields the multivariate

Laplacian distribution, and when β = 1, Eq. (5.2) corresponds to the multi-

variate Gaussian distribution. Moreover, when β →∞, the MGGD converges

to a multivariate uniform distribution.

To fit an MGGD model to the bivariate histogram of spatially adjacent

sub-band coefficients of a natural image and to find the corresponding model

parameters, we adopt the maximum likelihood estimator (MLE) algorithm

[50, 119]. Specifically, when the shape parameter, β, of the MGGD model is

unknown, the MLEs of parameters M, α, and β can be obtained by differenti-

ating the log-likelihood of p({x1, · · · ,xK}|M, α, β), where {x1, · · · ,xK} are K

independent and identically distributed (i.i.d.) MGGD random vectors, with

respect to M, α, and β. This yields the MLEs of the parameters M, α, and

β, as below.

M =
1

K

K∑
k=1

[
NK

yk + y1−β
k

∑K
j 6=k y

β
j

xkx
>
k

]
(5.4)

α =

[
β

NK

K∑
k=1

yβk

] 1
β

(5.5)

f(β) =
NK

2
∑K

k=1 y
β
k

K∑
k=1

[
yβk ln(yk)

]
− (5.6)

NK

2β

[
Ψ

(
N

2β

)
+ ln

(
2β

NK

K∑
k=1

yβk

)]
−K = 0

where yk = x>k M−1xk and Ψ(·) is the digamma function, which is the loga-

rithmic derivative of the gamma function, i.e., Ψ(x) = d
dx

ln(Γ(x)).

Note that the MLEs of M and β depend on each other, while α can be
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Algorithm 1 Estimate the MGGD parameters using the MLEs

1 Initialize M and β
2 for i = 1 to max num iter do
3 Estimate M using Eq. (5.4).
4 Estimate β using Eq. (5.7) via the Newton-Raphson method:

βi = βi−1 −
f(βi−1)

f ′(βi−1)
(5.7)

5 if |βi − βi−1| ≤ fitting error then
6 break
7 end if
8 end for
9 Estimate α using Eq. (5.5).

estimated directly from β. The iterative algorithm as shown in Algorithm 1

yields MLEs of the MGGD model parameters.

We model the bivariate empirical histograms of horizontally adjacent

sub-band coefficients in natural images as following a bivariate generalized

Gaussian distribution (BGGD), viz., using Eq. (5.2) with N = 2. The BGGD

parameters are obtained using the maximum likelihood estimator (MLE) al-

gorithm described above.

Figure 5.1 shows the empirical joint distributions of horizontally adja-

cent sub-band responses and their corresponding BGGD fits on pristine image

‘building2’ from the LIVE IQA Database [114]. As may be seen in the three-

dimensional illustrations shown in the top row, where the blue bars represent

the actual histograms and the colored meshes represent the BGGD fits, the

joint distributions of L* sub-band responses are well modeled as bivariate gen-
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(a) 0 (rad) (b) 1
4π (c) 1

2π (d) 3
4π (e) 11

12π

(f) 0 (rad) (g) 1
4π (h) 1

2π (i) 3
4π (j) 11

12π

(k) 0 (rad) (l) 1
4π (m) 1

2π (n) 3
4π (o) 11

12π

Figure 5.1: Joint histograms of horizontally adjacent bandpass coefficients
from a pristine image and the corresponding BGGD fits at the finest scale
with different orientations. From left column to right column: 0 (rad), 1

4
π, 1

2
π,

3
4
π, and 11

12
π. Top row: 3D illustration of bivariate histogram and BGGD fit,

middle row: 2D iso-probability contour plot of histogram, and bottom row:
2D iso-probability contour plot of BGGD fit.

eralized Gaussian. The 2D illustrations, which depict iso-probability contour

maps of the joint distributions and the fits in the middle and bottom rows,

respectively, also demonstrate the close fits of the BGGD model. The most

important observation here is that both the shape and height of the bivari-

ate distributions and fits vary with the tuning orientations of the sub-band

responses. In particular, when the spatial relationship between bandpass sam-
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Figure 5.2: Plots of the two BGGD model parameters and the correlation
coefficients as a function of relative orientation.

ples, e.g., horizontal, matches the sub-band tuning orientation, e.g., 1
2
π, then

the joint distribution becomes peaky and extremely elliptical, meaning the

horizontally adjacent bandpass responses are highly correlated at sub-band

orientation 1
2
π. Conversely, when the spatial relationship and the sub-band

tuning orientation are orthogonal, e.g., horizontal and 0 (rad), then the joint

distribution becomes nearly a circular Gaussian, implying almost uncorrelated

sub-band responses.

To further examine this spatial orientation dependency, in Figure 5.2

(a) we plotted the BGGD model parameters, i.e., α and β, as a function of

relative orientation at the same scale as in Figure 5.1. Here we define relative

orientation as the difference between the sub-band tuning orientation and the

spatial orientation of adjacent responses. For example, if the sub-band tuning

orientation is 0 (rad), and the pixels are horizontally adjacent, i.e., the spatial
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orientation is 1
2
π, meaning that they are orthogonal, then the corresponding

relative orientation is equal to 0− 1
2
π = −1

2
π. Figure 5.2 (a) clearly shows that

there is strong orientation dependency of both parameters. We have also stud-

ied the behavior of the correlation coefficients of spatially adjacent responses

as a function of relative orientation. These are contained in the scatter matrix

M of the BGGD model (Eq. (5.2) with N = 2). Figure 5.2 (b) shows the

correlation coefficients between horizontally adjacent bandpass responses as a

function of relative orientation. The horizontally adjacent bandpass responses

are most correlated when the sub-band tuning orientation aligns at 1
2
π, and

become nearly uncorrelated at orientations 0 (rad) and π, substantiating the

spatial relative orientation dependency observed in Figure 5.1.

5.3.3 Spatial Oriented Correlation Model

Motivated by this observed regular, periodic behavior, we have de-

ployed an exponentiated sine function to model the correlation coefficients as

a function of relative orientation:

ρ = f(θ1, θ2) = A

1 + sin
(

2π(θ2−θ1)
T

+ ϕ
)

2

γ + c (5.8)

where ρ is the correlation coefficients between spatially adjacent bandpass re-

sponses, θ1 and θ2 represent spatial and sub-band tuning orientations, respec-

tively, A is the amplitude, T is the period, ϕ is the phase, γ is the exponent,

and c is the offset. Since the correlation coefficient is period-π in relative

orientation and reaches maximum when θ2 − θ1 = kπ, k ∈ Z, we obtain a
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Figure 5.3: The exponentiated sine function and its fit to correlation coeffi-
cients as a function of relative orientation.

three-parameter exponentiated sine model by fixing T = π and ϕ = π
2
:

ρ = f(θ1, θ2) = A

[
1 + cos (2(θ2 − θ1))

2

]γ
+ c

= A [cos (θ2 − θ1)]2γ + c (5.9)

Figure 5.3 (a) shows exemplar exponentiated sine curves for different sets of

parameters. The exponentiated sine model is able to capture a wide range of

periodic curves having bell-shaped lobes of varying relative slopes. Figure 5.3

(b) plots an empirical correlation coefficient curve as a function of relative

orientation and its overlaid exponentiated sine fit for horizontally adjacent

bandpass responses, i.e., θ1 = 1
2
π. From both the curve overlap and associated

mean squared error (MSE), it is apparent that the exponentiated sine model

fits the spatial oriented correlations between adjacent bandpass luminance

responses extremely well.
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Figure 5.4: The box plots of the exponentiated sine model parameters.

To gain more insight of this exponentiated sine model, we computed

the correlation coefficients between horizontally adjacent bandpass responses

as a function of sub-band tuning orientation for all 29 pristine images in the

LIVE IQA Database, and found the corresponding exponentiated sine model

parameters, i.e., amplitude A, exponent γ, and offset c. In Figure 5.4 (a),

we present the box plots of the three model parameters at the finest scale
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across all pristine images with whiskers expressing the 1.5 interquartile range

(IQR). Figure 5.4 (b) to (d) show the box plots of amplitude, exponent, and

offset obtained from all pristine images across different scales, respectively.

Clearly, both the amplitude and offset parameters hold fairly consistent values

across image content and scales, i.e., A ≈ 0.9 and c ≈ 0.05, while the exponent

parameter varies roughly within the range of [1, 1.4]. Based on these statistics,

a succinct one-parameter model may be arrived at:

ρ = f(θ1, θ2; γ) = 0.9 [cos (θ2 − θ1)]2γ + 0.05 (5.10)

Indeed, little is lost and simplicity gained by taking A = 1 and c = 0, wherein

Eq. (5.10) becomes

ρ = f(θ1, θ2; γ) = [cos (θ2 − θ1)]2γ (5.11)

In each of (5.8)–(5.11), the model parameters are estimated with non-linear

least squares using the Levenberg-Marquardt algorithm [120].

5.4 Validation of the Exponentiated Sine Model

To validate the robustness of the new spatial-oriented correlation model

(Eq. (5.11)), we performed a statistical hypothesis test on the 29 pristine im-

ages in the LIVE IQA Database. In particular, we used a chi-squared test

for goodness of fit. First, we computed the exponentiated cosine model pa-

rameter γ at each scale by fitting the mean correlation coefficients between

horizontally adjacent bandpass responses as a function of sub-band tuning
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orientation for all LIVE pristine images. Then, we obtained the correspond-

ing exponentiated cosine function, i.e., ργ ∈ RD where D is the number of

sub-band tuning orientations, using Eq (5.11). Finally, we computed the chi-

squared statistic χ2 to determine if the null hypothesis H0, i.e., the correlation

coefficients as a function of sub-band tuning orientation are drawn from a

population with mean equal to ργ, is supported. Specifically, if H0 is rejected,

it means that the exponentiated cosine function is not a statistically robust

model for natural spatial-oriented correlations; otherwise, we can conclude

that the spatial-oriented correlations of all LIVE pristine images can be sta-

tistically represented by the exponentiated cosine model ργ. The chi-squared

statistic χ2 is computed as:

χ2 =
N∑
i=1

D∑
j=1

(ρij − ργj)2

ργj
(5.12)

where {ργj} = ργ ∈ RD is the model, {ρij} = ρi ∈ RD are the correlation

coefficients as a function of sub-band tuning orientation for the i-th pristine

image, and N is the number of pristine images. We repeated this procedure

to perform chi-squared statistical tests on all five scales, from 1 (finest) to 5

(coarsest). The test results are summarized in Table 5.1. We can see that the p-

values for all five scales are larger than a significance level α = 0.05, indicating

that the new spatial-oriented exponentiated cosine correlation model holds well

for the tested natural images. In addition, the model parameter γ estimated

for each scale varies slightly around 1.2, which supports the box plot of γ in

Figure 5.4 (c).
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Table 5.1: Chi-Squared Statistical Test Results
Scale Model Parameter γ χ2 p-value > α = 0.05?

1 1.2515 14.6661 0.1983 Yes
2 1.2691 8.3057 0.6857 Yes
3 1.1846 16.4710 0.1245 Yes
4 1.1491 16.1336 0.1362 Yes
5 1.1759 9.9386 0.5359 Yes

5.5 Application to Image Interpolation

Image interpolation/up-sampling is a common operation on digital pho-

tographs. As an example application, we developed a simple image interpo-

lation algorithm using the new spatial-oriented correlation model. Assume

we want to up-sample an image by a factor of 2 along both dimensions. We

first compute the correlation coefficients between spatially adjacent bandpass

responses and acquire the exponentiated cosine model of the given image. We

record the corresponding correlation coefficients as a function of sub-band tun-

ing orientation as the target model. Then, we insert zeros between neighboring

pixels to achieve factor-2 up-sampling. Next, at each pixel location, we com-

pute the correlation coefficients as a function of sub-band tuning orientation

between spatially adjacent pixels within a local neighborhood, e.g., an n-by-n

window. Finally, we interpolate the best pixel value that generates a spatial-

oriented correlation model closest to the recorded target model in terms of the

L2 norm.

Figure 5.5 shows an example of an interpolated image by a factor of

4 along both dimensions utilizing the new spatial-oriented correlation model,
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Table 5.2: Image Interpolation Results

Method
PSNR

Median Standard Deviation

Bicubic 22.19 3.28
Proposed 22.62 3.20

along with the results of the commonly used method, bicubic interpolation.

We can see that the proposed interpolation method using the new correlation

model generates a better result than the bicubic interpolation both visually

and in terms of the PSNR error metric. Table 5.2 summarizes the image

interpolation results for all 29 pristine images in the LIVE IQA Database,

where the new spatial-oriented correlation model achieves higher PSNR with

better consistency across image content.

5.6 Summary

We have proposed new natural scene statistical models that express

the bivariate joint distributions and correlations between spatially neighbor-

ing bandpass responses of natural images. The new model was statistically

validated as able to model the relative oriented correlations of natural lumi-

nance images. A simple application to image interpolation demonstrated the

effectiveness of the new spatial oriented correlation NSS model.
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(a) Pristine

(b) Bicubic (PSNR = 18.71)

(c) Proposed (PSNR = 19.25)

Figure 5.5: Example image interpolation result.
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Chapter 6

Depth Estimation from Monocular Natural

Images

6.1 Introduction

Estimating an accurate and naturalistic dense depth map from a single

monocular photographic image is a difficult problem. Nevertheless, 2D im-

ages of the real-world environment contain significant statistical information

regarding the 3D structure of the world. Towards exploiting this information

to solve the problem, we propose a Bayesian model, termed Natural3D, that

recovers detailed 3D scene structures by extracting reliable and robust statis-

tical features. These features are derived from standard marginal univariate

natural scene statistics (NSS) models as well as new bivariate/correlation NSS

models that describe the relationships between 2D photographic images and

their associated depth maps. This is accomplished by building a dictionary

of canonical depth patterns from which NSS features are extracted as prior

information. The dictionary is used to create a multivariate Gaussian mix-

ture (MGM) likelihood model that associates local image features with depth

patterns. The resulting Bayesian model is then used to form spatial depth

predictions. As compared with state-of-the-art depth estimation methods,

superior performance is obtained in terms of correlations with ground-truth
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Figure 6.1: Block diagram of Natural3D.

depths and estimated depth errors.

6.2 Proposed Bayesian Depth Estimation Model

We begin by summarizing Natural3D and the contributions we make.

As shown in Fig. 6.1, Natural3D is partitioned into two phases, training and

testing. In the training phase, shown below the dotted line in Fig. 6.1, patches

of size M ×M are collected from a set of real-world photographic images and

their corresponding ground-truth depth maps. From each patch pair, a vector

of natural scene statistics (NSS) features is extracted and stored. Then, to

capture valuable statistical relationships that are embedded in the luminances

and depths of the natural images, we learn priors and likelihoods from these

perceptually relevant image and depth features. In the testing phase, an input

image is also partitioned into overlapping M×M patches, and the same vector
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of features is extracted from each image patch. A corresponding depth patch

is then estimated for each image patch using a Bayesian model driven by

the learned priors and likelihoods. Finally, all the depth patches are stitched

together to form an estimated depth map. The details of each element of

Natural3D are explained in the following subsections.

Our contributions are three-fold. First, Natural3D is the first NSS

model-based depth-from-2D estimation algorithm. It employs both marginal

univariate and new bivariate/correlation NSS models to extract ‘depth-aware’

features. Bayesian inference is used to achieve one-shot depth recovery without

using high-level semantics, imposing smoothness constraints or iterative opti-

mization methods. Second, we have created a new, high-quality 3D database,

the LIVE Color+3D Database Release-2 [8], which contains high-resolution

stereoscopic color image pairs with accurately co-registered dense depth maps.

It provides a rich source of information regarding natural depth statistics, as

well as an excellent resource for developing and evaluating a variety of stereo-

scopic/3D image processing and vision algorithms, such as depth estimation

and quality assessment. We are making this database publicly available free

of charge. Finally, Natural3D delivers superior performance relative to top-

performing state-of-the-art depth estimation algorithms. We have made code

for Natural3D available for independent evaluation and further academic re-

search at [121].
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6.2.1 Perceptual Decomposition

Human vision systems (HVS) extract abundant information from nat-

ural environments by processing visual stimuli through massively parallel and

pipelined levels of decomposition and interpretation. By analyzing the nat-

ural statistics of the 2D and 3D visual world, and by learning how the HVS

processes natural image and depth information, a variety of statistical mod-

els have been proposed that capture the behavior of perceptually motivated

bandpass responses of luminance/chrominance and depth/disparity on natural

scenes [30, 32, 33]. Since the philosophy underlying our approach is to learn

and employ good models of the statistical laws that describe the relation-

ships between depth perception and the structure of natural images, we apply

certain perceptually relevant preprocessing steps to the recorded image data,

including biologically-motivated linear bandpass decompositions and nonlin-

ear divisive normalization processes. Then, ‘depth-aware’ NSS features are

extracted from the univariate and bivariate empirical distributions of these

responses.

Our work is therefore admittedly perceptually motivated, and hence is

defensible as a type of image engineering to create 3D presentations suitable

for human viewing, as for example in the creation of 3D cinematic or televi-

sion content from archived 2D movies. However, as we show in the sequel, the

method delivers highly competitive objective results, and we envision that,

given its conceptual and computational simplicity, it could find other (e.g.

‘robotic’) applications. In its current form, we utilize only luminance informa-
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tion in our model, although there are definite statistical relationships between

image color and depth [33] as well as in the perception of depth on color

images [86].

We acquire luminance from color images by transforming them into

the perceptually uniform CIELAB color space [89]. Each luminance image

(L*) is then decomposed by a steerable pyramid decomposition, which is an

over-complete wavelet transform that allows for increased orientation selec-

tivity [115]. The use of the wavelet transform is motivated by the fact that

its space-scale-orientation decomposition is similar to the bandpass filtering

that occurs in area V1 of primary visual cortex [14, 116]. In our experimen-

tal implementation, we deploy a steerable pyramid decomposition with five

scales, indexed from 1 (finest) to 5 (coarsest), and twelve frequency-tuning

orientations: 0, 1
12
π, . . . , 11

12
π (rad).

After applying the multi-scale, multi-orientation decomposition, we

perform the perceptually significant process of divisive normalization on the

luminance wavelet coefficients of all of the sub-bands [117]. Divisive normal-

ization, also termed adaptive gain control, has been developed in the psy-

chovisual literature to account for the nonlinear behavior of certain cortical

neurons [122]. The divisive normalization transform (DNT) that we use is

defined as [118]:

u(xi, yi) =
w(xi, yi)√
s+ w>g wg

=
w(xi, yi)√

s+
∑

j g(xj, yj)w(xj, yj)2
(6.1)
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where (xi, yi) are spatial coordinates, w are the wavelet coefficients, u are the

coefficients following the DNT, s is a semi-saturation constant, {g(xj, yj)} is a

finite-extent Gaussian weighting function, and the weighted sum occurs over

neighborhood pixels indexed by j.

In the following subsections, we explain the details of how the image

and depth features are extracted from the divisively normalized sub-band re-

sponses, and how features are used to learn the prior and likelihood models

for depth estimation.

6.2.2 Image Feature Extraction

It is well-established that there exist statistical relationships between

image luminances and depths information in natural scenes [30], and a va-

riety of univariate statistical models have been proposed to fit the bandpass

responses of luminance/chrominance and disparity [32, 33]. Very recently, new

closed-form bivariate and correlation statistical models have been developed

that effectively capture spatial dependencies between neighboring sub-band re-

sponses in natural images [51]. Natural3D exploits these NSS features to learn

the relationships that exist between projected image luminances and depths

information that is embedded in them.

6.2.2.1 Univariate NSS Feature

Considerable work has been conducted on modeling the statistics of

natural images that have been passed through multi-scale, multi-orientation
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bandpass transforms, e.g., Gabor filters, wavelets, etc [16, 18]. A common

and well-accepted model of the empirical histograms of divisively normalized

luminance sub-band responses, i.e., u in Eq. (6.1), is the univariate generalized

Gaussian distribution (GGD). The probability density function of a univariate

GGD with zero mean is:

p(x;αu, βu) =
βu

2αuΓ( 1
βu

)
e−(

|x|
αu

)βu (6.2)

where Γ(·) is the ordinary gamma function and αu and βu are scale and shape

parameters, respectively. For pristine, undistorted natural images, it is com-

monly assumed that βu = 2 (i.e. Gaussian), while distortions tend to create

structural degradations that modify βu (typically βu < 2). We estimate the

GGD parameters on small M × M patches, so βu locally varies. The two

GGD parameters of each sub-band (scale and shape) are estimated from each

bandpass patch histogram (using the method in [123]) and are included in the

feature set of the patch.

6.2.2.2 Bivariate NSS Feature

We also capture dependencies that exist between spatially neighbor-

ing bandpass image responses by modeling the bivariate distributions of hor-

izontally adjacent sub-band responses sampled from all locations (x, y) and

(x+ 1, y) in each image patch. Since we have observed similar statistics from

both horizontally and vertically neighboring responses [50], and used sub-band

orientations covering 0 to π (rad), we exploit only horizontally adjacency to

achieve the same efficacy with reduced computational complexity. This also
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applies to the correlation NSS feature, which will be detailed in Sec. 6.2.2.3.

To model these empirical joint histograms, we utilize a multivariate gener-

alized Gaussian distribution (MGGD), which includes both the multivariate

Gaussian and Laplace distributions as special cases. The probability density

function of a multivariate generalized Gaussian distribution is defined as:

p(x; M, αb, βb) =
1

|M| 12
gαb,βb(x

>M−1x) (6.3)

where x ∈ RN , M is an N ×N symmetric scatter matrix, αb and βb are scale

and shape parameters, respectively, and gαb,βb(·) is the density generator:

gαb,βb(y) =
βbΓ(N

2
)

(2
1
βb παb)

N
2 Γ( N

2βb
)
e
− 1

2
( y
αb

)βb
(6.4)

where y ∈ R+. Note that when βb = 0.5, Eq. (6.3) becomes the multivari-

ate Laplacian distribution, and when βb = 1, Eq. (6.3) corresponds to the

multivariate Gaussian distribution. When βb → ∞, the MGGD converges

to a multivariate uniform distribution, and when βb < 0.5, it becomes a 2D

heavy-tailed ‘sparsity’ density. In our implementation, we model the bivari-

ate empirical histograms of horizontally adjacent sub-band coefficients of each

image patch using a bivariate generalized Gaussian distribution (BGGD) with

N = 2 in Eq. (6.3). The parameters of the BGGD can be obtained on the

bandpass coefficients of image patches using the maximum likelihood estima-

tor (MLE) algorithm described in [50]. The scale and shape parameters, αb

and βb, are included in each image patch’s feature set.
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6.2.2.3 Correlation NSS Feature

We also model the correlation structure that exists between spatially

neighboring bandpass luminance responses. In particular, we have found that

the correlation coefficients between spatially adjacent bandpass responses pos-

sess strong orientation dependencies [51]. For example, horizontally adjacent

bandpass responses are most correlated when the sub-band tuning orientation

aligns at 1
2
π (rad), and become nearly uncorrelated at orientation 0 and π

(rad). The correlation is periodic in relative orientation between spatial and

sub-band tuning orientation. This relative orientation regularity of correlation

implies that there exist powerful constraints on spatially neighboring bandpass

image responses.

Indeed, the periodic relative orientation dependency of the correlation

coefficients between spatially adjacent bandpass responses can be well modeled

in a closed form by an exponentiated sine function:

ρ = f(θ1, θ2) = A

1 + sin
(

2π(θ2−θ1)
T

+ ϕ
)

2

γ + c (6.5)

where ρ is the correlation coefficient between spatially adjacent bandpass re-

sponses, θ1 and θ2 are spatial and sub-band tuning orientations, respectively,

A is amplitude, T is the period, ϕ is the phase, γ is an exponent, and c is the

offset. When measured on naturalistic photographic images, the correlation co-

efficient is found to be π-periodic, reaching maximum when θ2−θ1 = kπ, k ∈ Z,
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yielding a three-parameter exponentiated sine model:

ρ = f(θ1, θ2) = A

[
1 + cos (2(θ2 − θ1))

2

]γ
+ c

= A [cos (θ2 − θ1)]2γ + c (6.6)

In our implementation, we compute the correlation coefficients between all hor-

izontally adjacent sub-band responses within each image patch over all scales,

fit each with the exponentiated sine model, and include all three fitting param-

eters, A, γ, and c, into the feature set. The fitting parameters are estimated

via non-linear least squares using the Levenberg-Marquardt algorithm [120].

At this point, all of the NSS-based features that drive Natural3D have

been described. As a result, the ‘depth-aware’ image feature vector fI that is

used to characterize each image patch is formed as:

fI = [{αu,s,r, βu,s,r}, {αb,s,r, βb,s,r}, {As, γs, cs}]> (6.7)

where s ∈ {1, 2, . . . , S}, S is the number of scales, and r ∈ {1, 2, . . . , R}, R is

the number of sub-band orientations.

6.2.3 Depth Feature Extraction

To a much greater degree than image luminances, range/depth maps

captured from natural environments are smooth surfaces with relatively few

textures. Based on this observation, and since we are interested in capturing

depth differentials, we use the histograms of the gradient magnitudes [124]

of debiased and normalized patch depths extracted from ground-truth depth
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maps as features in the depth prior model. The center-left part of Fig. 6.1 sum-

marizes this process. The mean value is subtracted from each depth patch,

then the result is divisively normalized by the depth patch standard deviation.

The gradient magnitudes of the resulting normalized depth patches are com-

puted and the corresponding histograms found. Specifically, the histograms of

depth gradient magnitudes are computed along eight canonical orientations:

0, 1
8
π, . . . , 7

8
π (rad), resulting in an eight-bin histogram for each depth patch.

In addition to the gradient histograms, the histograms of bandpass

response magnitudes are also computed on the perceptually decomposed depth

patches. Specifically, we compute the divisively normalized wavelet responses

using the same steerable pyramid and the same normalization (Eq. (6.1)), and

obtain histograms by binning the responses within each depth patch along the

same eight canonical sub-band tuning orientations as used to define the image

gradient magnitude histograms. In sum, a 16-dimensional depth feature vector

fD characterizing each depth patch is arrived at. These are used to create the

prior and likelihood models, as explained next.

6.2.4 Prior

It has been observed that discontinuities in depth maps are usually co-

located with luminance edges occurring in the corresponding optical images

[125]. Depth patches having similar depth patterns may be expected to exhibit

similar luminance distributions [32]. Moreover, depth maps tend to possess

simpler, more regular patterns than natural luminance images. Based on these
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(a) Pattern-1

(b) Pattern-2

(c) Pattern-3

(d) Pattern-4

(e) Pattern-5

Figure 6.2: Examples of different canonical depth patterns.

89



observations, we build a dictionary of canonical depth patterns by clustering

the processed, characteristic depth features that are extracted from depth

patches as explained in the preceding section. As a simple method of data

reduction, we employ the centroid-based k -means algorithm.

Figure 6.2 shows examples of several canonical depth patterns (near

cluster centroids) extracted by the k -means algorithm assuming five clusters,

each with eight examples. For each canonical depth pattern, the top row

shows the clustered depth patches (normalized residues) using the extracted

features, while the bottom row shows the co-registered image patches. The

depicted canonical depth patterns contain a variety of geometric structures,

including depth discontinuities along the horizontal direction (pattern-1), and

along the vertical direction (pattern-2), smoother variation of depth along the

horizontal direction (pattern-3), and along the vertical direction (pattern-4),

and a busier, more complex pattern of depth changes (pattern-5). Complex

depth patterns like pattern-5 are relatively uncommon, and appear in scenes

containing rough objects, such as trees and grass. As the number of clusters

is increased, these five canonical depth patterns still exist in similar form, al-

though other clusters of depth patches emerge having similar structures that

differ in some ways, such as orientation. In sum, the depth prior of Natural3D

consists of the normalized residual depth patch dn, i.e., the cluster centroid

associated with each canonical depth pattern, and the ratio p(n) of each canon-

ical depth pattern among all processed depth patches, where n ∈ {1, 2, . . . , N}

and N is the number of canonical depth patterns, i.e., the number of clusters
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used by the k -means algorithm.

The above procedure may be viewed as a way of finding a ‘sparse’ set of

representative depth patches. This suggests that a more sophisticated ‘sparse

basis’ might be found from which depth estimates could be computed. As a

proof of concept, here we use the k -means algorithm owing to its simplicity

and efficacy.

6.2.5 Likelihood

As may be observed from the canonical depth patterns shown in Fig. 6.2,

depth discontinuities in range maps consistently align with luminance edges

in co-registered natural images of the same scene [32, 125]. However, tex-

tured areas in photographic images that present significant variations in lumi-

nance/chrominance may not necessarily correspond to depth changes. In other

words, there exist high correlations between image edges and depth disconti-

nuities, although the relationship is asymmetric. If the bandpass response to

an image patch contains significant energy, then there is a relatively high like-

lihood of co-located variations, i.e. large depth gradients, in the corresponding

range map. Conversely, if the range map contains large variations, then the

co-located image bandpass response is even more likely to be large. To better

utilize these relationships between image and depth variations in naturalistic

settings, we derive a likelihood model which associates image patches with

appropriate canonical depth patterns.

Assume that N canonical depth patterns have been obtained defining
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the prior using k -means clustering. Assign each image patch a label indicating

its associated canonical depth pattern (cluster centroid) for its corresponding

depth patch. Then, using these labeling results, the depth-aware feature vec-

tors, i.e., fI in Eq. (6.7), that are extracted from each image patch are used to

train a classifier using a multivariate Gaussian mixture (MGM) model. The

reason that the MGM model is well suited to this classification task is that,

as may be observed in Fig. 6.2, image patches presenting different appear-

ances and/or textured surfaces may yet be associated with the same canonical

depth pattern. Therefore, we exploit the multi-modal Gaussian mixture model

trained on each canonical depth pattern to be able to handle the heterogeneity

of its image patches. An MGM model is defined as:

p(x;θ) =
M∑
m=1

wmN (x;µm,Σm) (6.8)

where θ is the model parameter vector, x is a multi-dimensional data vec-

tor, e.g., some measurement or a feature, N (x|µm,Σm) is the m-th Gaus-

sian component, and wm is the m-th mixture weight with the constraint that∑M
m=1wm = 1. Note that the complete MGM model is parametrized by

θ = {wm,µm,Σm},m ∈ {1, . . . ,M}, which includes the mean vectors, covari-

ance matrices, and mixture weights from all Gaussian components. Finally,

the m-th Gaussian component density function is given by:

N (x;µm,Σm) =
1

(2π)K/2|Σm|1/2
e[−

1
2

(x−µm)>Σ−1
m (x−µm)] (6.9)

where K is the dimensionality of x. Here the depth-aware image feature vector

is modeled: x = fI ∈ RK . Therefore, the likelihood of encountering an image
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patch with a specific extracted feature fI given a particular canonical depth

pattern indexed by n can be expressed as:

p(fI ;θn) =
M∑
m=1

wn,mN (fI ;µn,m,Σn,m) (6.10)

where θn = {wn,m,µn,m,Σn,m},m ∈ {1, . . . ,M}.

6.2.6 Regression on Mean Depth

As discussed in Sec. 6.2.3 and 6.2.4, a preprocessing step is performed

prior to the extraction of features from depth patches to learn the prior,

whereby each depth patch is normalized by removing the mean and standard

deviation to homogenize the depth patterns and to better reveal their essen-

tially distinguishing characteristics. In order to be able to add the mean value

of each depth patch back when estimating the true range values of test image

patches, it is necessary to learn a mapping from the image feature space using

a regression model. In other words, given an input image patch, the trained

regressor can be used to estimate the mean range of the corresponding depth

patch using the extracted depth-aware image feature vector fI . Since we ob-

served negligible influences, both numerically and visually, of patch standard

deviations on the estimated depth maps, Natural3D is able to attain the same

degree of performance without recovering depth patch standard deviations.

In addition to fI , we exploit two other useful monocular depth cues

to assist with recovery of true range values. As shown in [30], there exists

a general dependency between the intrinsic image brightness and co-located
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distance in natural scenes. We use this ”the brighter the nearer” law to fur-

ther guide the estimation of the mean patch depth value using the average

luminance of the corresponding image patch. Moreover, in natural scenes, the

distance from the nodal point to any point in the scene tends to increase as its

height increases. Specifically, if we assume that the y-coordinate of a pixel in-

creases from the bottom to the top of an image, the range values of pixels with

larger y-coordinates are generally larger than those with smaller y-coordinates.

Thus, we introduce as a second additional feature into the regressor on mean

depth values, the normalized y-coordinate of each patch in the image:

fy =
py
Ih

(6.11)

where py is the y-coordinate of the image patch, and Ih is the height of the

image. Thus, in sum, the aggregate feature vector characterizing each image

patch used in the regression model to learn mean patch depth values includes

the depth-aware feature set fI , the average patch luminance, and the nor-

malized y-coordinate fy. In Natural3D, we utilize a standard support vector

regressor (SVR) [126] to implement the training and testing processes, using

multiple train-test sets as described in Sec. 6.3. SVR is generally noted for

being able to effectively handle high dimensional data [127]. We implement

the SVR model with a radial basis function (RBF) kernel using the LIBSVM

package [128].
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6.2.7 Bayesian Model

We now describe how Natural3D incorporates the canonical depth pat-

tern prior model, the likelihood model that associates image patches with dif-

ferent canonical depth patterns, and the regression model that recovers mean

patch depth values. Given a test image, the model algorithm first divides

it into overlapped patches of size M ×M as in the training phase, where a

1
4

overlap (stride) is used, i.e., the patches overlap each other by M
4

pixels

along both dimensions.1 Next, the depth-aware feature vector fI is extracted

from each image patch, as well as the average luminance and the normalized

y-coordinate, which are used, as described earlier, for mean depth regression.

Then, the extracted feature vector fI is fed into the trained prior, likelihood,

and regression models to form a Bayesian inference of the corresponding es-

timated depth patch. Specifically, the estimated depth patch D of an image

patch is formed as follows:

D = dn + µn (6.12)

where dn (obtained in Sec. 6.2.4) is the normalized residual depth patch asso-

ciated with the estimated canonical depth pattern n, µn is the corresponding

mean depth value obtained from the regression model, and n is the index of

the estimated canonical depth pattern derived from the prior and likelihood

1In the results described later, we chose M = 32, although we have found the model to
be robust to this choice.
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models, which is given by:

n = argmax
n′

{p(n′|fI)} = argmax
n′

{p(fI |n′)p(n′)}

= argmax
n′

{p(fI ;θn′)p(n′)} (6.13)

where p(fI |n′) = p(fI ;θn′) is the likelihood (Eq. (6.10)) of encountering an

image patch having the extracted feature vector fI given a canonical depth

pattern n′, as was derived in Sec. 6.2.5, and where p(n′) is the corresponding

prior probability (ratio) of the estimated canonical depth pattern n′, as was

obtained in Sec. 6.2.4.

6.2.8 Stitching

The last stage of the overall depth estimation system is to stitch all of

the depth patches together to create a final estimated depth map using only

the monocular test image as input. Seeking simplicity, we define the stitching

operation to simply average the estimated range values of overlapped pixels

across the assembled depth patches.

6.3 Experimental Results

To evaluate the performance of Natural3D, we trained and tested the

proposed Bayesian model on two publicly accessible databases, the LIVE

Color+3D Database Release-2 [8] and the Make3D Laser+Image Dataset-

1 [10–12].
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6.3.1 Databases

The LIVE Color+3D Database Release-2 consists of 99 pairs of color

images and accurately co-registered ground-truth depth maps, all with a high-

definition resolution of 1920 × 1080. The database was constructed using

an advanced range scanner, RIEGL VZ-400 [9], with a Nikon D700 digital

single-lens reflex camera mounted on top of it. Careful and precise calibration

was executed before data acquisition, and a transformation was applied to

achieve an accurate depth-image registration [84]. The dense depth maps in

the database provide a rich source of information regarding natural depth

statistics, and are also an excellent resource for evaluating depth estimation

algorithms (including binocular, since co-registered stereopairs are included).

To avoid overlap between training and testing image/depth content, we split

the entire database into 80% training and 20% testing subsets at each train-

test iteration with no content shared between the training and testing subsets.

This train-test procedure was repeated 50 times to ensure that there was no

bias introduced due to image/depth training content.

The Make3D Laser+Image Dataset-1 contains a total of 534 pairs of

color images and corresponding ground-truth depth maps, where 400 are used

for training and 134 for testing with no content overlap. The color images

are high resolution 2272× 1704, while the ground-truth depth maps are only

available at a very low resolution of 55×305. These sparse ground-truth depth

maps with the unmatched aspect ratio to color images make the Make3D

Laser+Image less than ideal for developing and testing contemporary dense
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depth estimation algorithms. However, due to its early availability, it has been

widely used for evaluating monocular depth estimation methods. To make a

complete comparison, we also trained and tested Natural3D on the Make3D

database.

We compared Natural3D with a top-performing state-of-the-art depth

estimation method, Depth Transfer [47], which has delivered the best recently

reported performance on the Make3D Laser+Image Dataset-1. Depth Transfer

first selects candidates from a database by matching a high-level image feature,

GIST [129], then it optimizes an energy function to generate the most likely

depth map by considering all of the warped candidate depth maps under a set

of spatial regularization constraints.

6.3.2 Quantitative Evaluation

We performed a quantitative evaluation on the two examined monoc-

ular depth estimation algorithms in terms of four different objective metrics.

We report the results obtained using two common error metrics, the relative

error (Rel.):

P∑
i=1

|D(xi, yi)−D∗(xi, yi)|/D∗(xi, yi)
P

(6.14)

and the root-mean-square error (RMS):√√√√ P∑
i=1

[D(xi, yi)−D∗(xi, yi)]
2

P
(6.15)

where D(xi, yi) and D∗(xi, yi) represent the estimated and ground-truth depth

map at pixel location (xi, yi), respectively, and P is the number of pixels. In
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addition, to examine how well a depth estimation method is able to recover

relative distances from natural scenes, we also report two different correla-

tion coefficients between the estimated and ground-truth depth values: the

Pearson’s linear correlation coefficient ρp and the Spearman’s rank order cor-

relation coefficient ρs. These metrics are complementary: ρp and ρs measure

the accuracy and monotonicity, respectively, of the estimated range values by

a depth estimation algorithm against the ground-truth range values, where a

value of 1 indicates perfect correlation.

As is evident from Table 6.1 and 6.2, which show the median metric per-

formance on the LIVE Color+3D Database Release-2 (across train-test splits)

and the Make3D Laser+Image Dataset-1 (across test scenes), respectively,

Natural3D outperforms Depth Transfer in terms of all four objective metrics.

The higher correlation performance of Natural3D indicates that it is capable of

recovering more accurate relative distances between the distinct objects and

regions that occur in natural scenes. In addition, Natural3D achieves both

lower relative and RMS errors than Depth Transfer, meaning that the depth

maps estimated by Natural3D are closer to the ground-truth values. Table 6.3

and 6.4 show the standard deviations of the different performance metrics on

the two 3D databases, which reflect the performance consistencies of the two

examined depth estimation algorithms. Clearly, Natural3D delivers more con-

sistent performance in terms of both linear and rank order correlation, while

providing similar or better performance than Depth Transfer.
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Table 6.1: Performance Comparison of Monocular Depth Estimation Algorithms
on the LIVE Color+3D Database Release-2 (Median across 50 Train-Test Splits)

Algorithm
Metric

ρp ρs Rel. RMS

Depth Transfer 0.4196 0.5197 0.6399 13.0671
Natural3D 0.4404 0.5654 0.5969 12.8417

Table 6.2: Performance Comparison of Monocular Depth Estimation Algorithms
on the Make3D Laser+Image Dataset-1 (Median across 134 Test Scenes)

Algorithm
Metric

ρp ρs Rel. RMS

Depth Transfer 0.5184 0.7572 0.6840 17.3187
Natural3D 0.5892 0.7670 0.5548 16.6251

Table 6.3: Performance Comparison of Monocular Depth Estimation Algorithms on
the LIVE Color+3D Database Release-2 (Standard Deviation across 50 Train-Test
Splits)

Algorithm
Metric

ρp ρs Rel. RMS

Depth Transfer 0.2205 0.2461 0.3891 8.3052
Natural3D 0.1987 0.2253 0.3858 8.3921

Table 6.4: Performance Comparison of Monocular Depth Estimation Algorithms on
the Make3D Laser+Image Dataset-1 (Standard Deviation across 134 Test Scenes)

Algorithm
Metric

ρp ρs Rel. RMS

Depth Transfer 0.2016 0.1882 0.4929 7.8353
Natural3D 0.1976 0.1563 0.4524 5.6753

6.3.3 Visual Comparison

In addition to the quantitative comparison, we also supply a visual

comparison by showing examples of the depth maps estimated by the two
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compared depth estimation algorithms along with the corresponding ground-

truth depth maps, as shown in Figs. 6.3 to 6.6 (from the LIVE Color+3D

Database Release-2) and Figs. 6.7 to 6.10 (from the Make3D Laser+Image

Dataset-1). Note that for the Make3D Laser+Image Dataset-1, the ground-

truth and estimated depth maps are scaled to match the image resolution for

display purposes. We also supply scatter plots between the estimated and the

ground-truth range values to gain a broader perspective of performance.

Generally, Depth Transfer tends to over-smooth the estimated depth

maps due to its smoothness constraint, while Natural3D is able to capture

more detailed depth structures in the scene. For example, in Fig. 6.3, Depth

Transfer is not able to capture the tree trunks in the foreground, while it also

incorrectly merges the tree trunks in the background. By comparison, Natu-

ral3D creates a clearer representation of the foreground tree trunks, achieving

much higher linear and rank order correlations against the ground-truth depth

map. Figure 6.5 shows a number of human objects and a tree branch, posing

more challenging content for monocular depth estimation algorithms. Natu-

ral3D successfully captures details such as the intersection of the human hand

and the tree branch, while Depth Transfer fails to recover such complicated

structures due to over-smoothing. Similarly, Figure 6.6 shows that Natural3D

accurately reconstructs the main tree structures, while Depth Transfer incor-

rectly combines separate tree trunks.

In Fig. 6.7, Depth Transfer incorrectly extends the ground over the

building and the sky, while Natural3D is able to separate the ground and the
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Table 6.5: Computational Complexity of Monocular Depth Estimation Algorithms
Algorithm Runtime per Estimated Depth Map (s)

Depth Transfer 1490.53
Natural3D 161.05

building, as well as most of the sky. Similarly, the trees and sky in the back-

ground of Fig. 6.8 are missing in the estimated range map by Depth Transfer,

but Natural3D successfully reconstructs most of them. In both Fig. 6.9 and

6.10, Natural3D is capable of recovering the tree depth structures, as well as

identifying the sky in the background, while Depth Transfer only captures the

ground.

The correlation coefficients shown in all of the figures support the re-

sults of visual inspection, confirming that Natural3D achieves superior perfor-

mance at recovering relative distances in natural scenes. This is accomplished

without introducing a smoothness constraint or other iterative procedure into

the Bayesian model.

The complete experimental results, including quantitative and visual

comparison, of the two examined monocular depth estimation algorithms on

every image in both databases can be found at [130].

6.3.4 Computational Complexity

Another advantage of Natural3D is that there is no need for an itera-

tive solution process, resulting in greatly reduced computational complexity.

Table 6.5 shows the runtime per estimated depth map for the two examined
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algorithms. Both algorithms were implemented using the MATLAB program-

ming language, and the simulations were run on an Intel Core i7 quad-core

processor with 16GB memory. Since Natural3D utilizes trained prior and like-

lihood models, it runs almost 10 times faster than Depth Transfer, which uses

an iterative procedure to solve an optimization function.

6.4 Summary

By exploiting reliable and robust statistical models describing the re-

lationships between luminances and depths in natural scenes, we have created

a Bayesian model, termed Natural3D, for recovering depth information from

monocular (photographic) natural images. Two component models are learned

from ground-truth depth maps: a prior model, including a dictionary of canon-

ical depth patterns, and a likelihood model, which embeds co-occurrences of

image and depth characteristics in natural scenes. When compared to a top-

performing state-of-the-art method, it delivers superior performance in the

estimation of both absolute and relative depths from natural images.

The superior performance attained by Natural3D implies that a bio-

logical visual system might be able to capture coarse depth estimates of the

environment using the statistical information computed from retinal images

at hand and the associations between image textures and true 3D geomet-

ric structures. We believe that the prior and likelihood models developed in

Natural3D not only yield insights into how 3D structures in the environment

might be recovered from image data, but could be used to benefit a variety of
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3D image/video and vision algorithms. We envision that our future work will

involve introducing deeper statistical models relating image and range data to

recover more accurate and detailed depth information.
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(d) Estimated depth map by Natural3D

(e) Scatter plot of Depth Transfer result (f) Scatter plot of Natural3D result

Figure 6.3: Example result of estimated depth maps along with the ground-truth
depth map on the LIVE Color+3D Database Release-2.
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(d) Estimated depth map by Natural3D

(e) Scatter plot of Depth Transfer result (f) Scatter plot of Natural3D result

Figure 6.4: Example result of estimated depth maps along with the ground-truth
depth map on the LIVE Color+3D Database Release-2.
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(d) Estimated depth map by Natural3D

(e) Scatter plot of Depth Transfer result (f) Scatter plot of Natural3D result

Figure 6.5: Example result of estimated depth maps along with the ground-truth
depth map on the LIVE Color+3D Database Release-2.
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(d) Estimated depth map by Natural3D

(e) Scatter plot of Depth Transfer result (f) Scatter plot of Natural3D result

Figure 6.6: Example result of estimated depth maps along with the ground-truth
depth map on the LIVE Color+3D Database Release-2.
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(d) Estimated depth map by
Natural3D

(e) Scatter plot of Depth Trans-
fer result

(f) Scatter plot of Natural3D re-
sult

Figure 6.7: Example result of estimated depth maps along with the ground-truth
depth map on the Make3D Laser+Image Dataset-1.
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(d) Estimated depth map by
Natural3D

(e) Scatter plot of Depth Trans-
fer result

(f) Scatter plot of Natural3D re-
sult

Figure 6.8: Example result of estimated depth maps along with the ground-truth
depth map on the Make3D Laser+Image Dataset-1.
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Figure 6.9: Example result of estimated depth maps along with the ground-truth
depth map on the Make3D Laser+Image Dataset-1.

111



(a) Natural image

 

 

0

10

20

30

40

50

60

70

80

90

100

(b) Ground-truth depth
map

 

 

0

10

20

30

40

50

60

70

80

90

100

(c) Estimated depth map by
Depth Transfer

 

 

0

10

20

30

40

50

60

70

80

90

100
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Figure 6.10: Example result of estimated depth maps along with the ground-truth
depth map on the Make3D Laser+Image Dataset-1.
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Chapter 7

No-Reference Stereoscopic/3D Image Quality

Assessment

7.1 Introduction

In recent years, bandpass statistical models of natural, photographic

images of the world have been used with great success to solve highly diverse

problems involving image representation, image repair, image quality assess-

ment, and image compression. One missing element has been a reliable and

generic model of spatial image correlation that reflects the distributions of

oriented spatial structures. We have developed such a model for bandpass

pristine images [51] and have generalized it here to also capture the spatial

correlation structure of bandpass distorted images. The model applies well

to both luminance and depth images [50]. As a demonstration of the useful-

ness of the new model, we develop a new no-reference stereoscopic/3D image

quality assessment (IQA) framework, dubbed Stereoscopic/3D BLind Image

Naturalness Quality (S3D-BLINQ) Index, which utilizes both univariate and

new bivariate natural scene statistics (NSS) models. We first validate the ro-

bustness and effectiveness of the new bivariate and correlation NSS features

extracted from distorted stereopairs, then demonstrate that they are predic-

tive of distortion severity. Our experimental results show that the resulting 3D
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image quality predictor based in part on the new model outperforms state-of-

the-art full- and no-reference 3D IQA algorithms on both symmetrically and

asymmetrically distorted stereoscopic image pairs.

7.2 Bivariate and Correlation NSS Models

It has been demonstrated that the distributions of divisive-normalized

bandpass responses to natural, photographic images possess strong Gaussian-

like regularities. Natural scene statistical models of this type have been widely

deployed in numerous image and video applications with success [23, 25, 100].

However, less progress has been made on the development of accurate and

general statistical models of the higher-order dependencies that exist between

spatially neighboring bandpass image responses.

Towards developing such models of the bivariate, correlation statistics

of oriented, bandpass images, we utilize the steerable pyramid decomposition of

images, which is an over-complete wavelet transform that allows for increased

orientation selectivity [115]. The wavelet transform model is motivated by the

fact that its space-scale-orientation decomposition broadly resembles the band-

pass filtering that occurs in area V1 of primary visual cortex [14, 116]. After

applying the multi-scale, multi-orientation decomposition, the perceptually

significant process of divisive normalization is applied to the image wavelet

coefficients of all sub-bands [117]. The divisive normalization transform (DNT)

114



used here is implemented as follows [118]:

S(xi, yi) =
s(xi, yi)√
cs + s>g sg

=
s(xi, yi)√

cs +
∑

j g(xj, yj)s(xj, yj)2
(7.1)

where (xi, yi) are spatial coordinates, s represents the sub-band wavelet coeffi-

cients, S represents the coefficients after DNT, and cs is a semi-saturation

constant. The sum occurs over neighborhood pixels indexed by j, where

{g(xj, yj)} is a Gaussian weighting function.

Previous work by others and ourselves [51, 131] showed that the em-

pirical joint histograms of spatially adjacent sub-band coefficients of natural

images can be well fitted by multivariate generalized Gaussian distribution

(MGGD) models, which include both multivariate Gaussian and Laplace dis-

tributions as special cases. The probability density function of a multivariate

generalized Gaussian distribution (MGGD) is defined as:

p(x; M, αb, βb) =
1

|M| 12
gαb,βb(x

>M−1x) (7.2)

where x ∈ RN , M is an N × N symmetric scatter matrix, αb and βb are the

scale and shape parameters, respectively, and gαb,βb(·) is a density generator

defined as:

gαb,βb(y) =
βbΓ(N

2
)

(2
1
βb παb)

N
2 Γ( N

2βb
)
e
− 1

2
( y
αb

)βb
(7.3)

where y ∈ R+. Note that when βb = 0.5, Eq. (7.2) becomes a multivariate

Laplacian distribution, and when βb = 1, Eq. (7.2) corresponds to a multivari-

ate Gaussian distribution. Moreover, when βb →∞, the MGGD converges to
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a multivariate uniform distribution. In our recent work, we have become inter-

ested in modeling the bivariate empirical histograms of horizontally adjacent

sub-band coefficients of both 2D and 3D (cyclopean) images using the bivari-

ate generalized Gaussian distribution (BGGD) with N = 2. The parameters

of the BGGD can be obtained on the bandpass coefficients of images using the

maximum likelihood estimator (MLE) algorithm described in [50].

By examining the fitted BGGD models of pristine bandpass images,

i.e., not artificially subjected to, or containing any noticeable distortions, we

have found orientation dependencies between spatially adjacent sub-band im-

age coefficients [51]. In particular, when the spatial relationship of adjacent

responses, e.g., horizontal, matches the sub-band orientation, e.g., 1
2
π, the

joint distribution of the responses becomes peaky and extremely elliptical.

On the other hand, when the spatial relationship and the sub-band orienta-

tion approach orthogonality, e.g., horizontal vs. 0 (rad), the joint distribution

becomes nearly circular and more Gaussian-like.

We can seek to quantitatively capture this statistical dependency on

relative orientation from an interesting, systematic and potentially useful per-

spective by directly modeling the correlation entries embedded in the scatter

matrix M of the BGGD model. We define relative orientation to be the dif-

ference between the sub-band tuning orientation and the spatial orientation

of adjacent responses. For example, if the sub-band tuning orientation is 0

(rad), and the pixels are horizontally adjacent, i.e., the spatial orientation is

1
2
π, meaning that they are orthogonal, then the corresponding relative ori-
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Figure 7.1: The correlation coefficients between spatially adjacent sub-band
responses as a function of relative orientation.

entation is equal to 0 − 1
2
π = −1

2
π. We have observed that the correlation

coefficient between horizontally adjacent bandpass responses reaches a max-

imum when the sub-band orientation is 1
2
π, whereas horizontal neighboring

responses become nearly uncorrelated as the sub-band tuning orientation ap-

proaches 0 (rad) and π. In addition, the correlation takes symmetric values

around sub-band orientation equal to π
2

and is periodic with respect to all

possible relative orientations between the pairs of horizontally adjacent sub-

band responses and their orientation tuning. In particular, we observed that

the correlation coefficients, when plotted as a function of relative orientation,

have a roughly sinusoidal shape but with narrowed lobes. We also observed

that when images are distorted by commonly occurring impairments, such as
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blur, noise, compression or those found in publicly available image quality

databases, the correlation plots as a function of relative orientation also take

roughly sinusoidal shapes but with different degrees of lobe narrowness. Fig-

ure 7.1 illustrates an example of the correlation coefficient plots as a function

of relative orientation for both pristine and impaired images afflicted by dif-

ferent types of distortions from the LIVE IQA Database [114]. We can clearly

see that all curves possess sinusoidal-like shapes, but with different degrees

of lobe narrowness depending on the distortion type. This strongly suggested

to us that a successful model of the sub-band correlations could enable us to

capture the effects of distortions on sub-band correlations.

We have found that the periodic relative orientation dependency of the

correlation coefficients can be well modeled as an exponentiated sine function

given by:

y = f(x1, x2) = A

1 + sin
[

2π(x2−x1)
T

+ θ
]

2

γ + ce (7.4)

where y is the correlation coefficients between spatially adjacent bandpass re-

sponses, x1 and x2 represent spatial and sub-band tuning orientations, respec-

tively, A is the amplitude, T is the period, θ is the phase, γ is the exponent, and

ce is the offset. The correlation coefficient is period-π in relative orientation

and reaches a maximum when x2−x1 = kπ, k ∈ Z, yielding a three-parameter

exponentiated sine model with amplitude A, exponent γ, and offset ce, by
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fixing T = π and θ = π
2
:

y = f(x1, x2) = A

[
1 + cos [2(x2 − x1)]

2

]γ
+ ce (7.5)

The model holds well for both undistorted images and images corrupted by

common distortions. On undistorted images, A ≈ 1, ce ≈ 0, and γ falls within

a certain range [51].

Since we developed this new relative orientation correlation model in

the context of our work on natural 3D statistics and their applications, we

validate the generalized BGGD and exponentiated sine models on perceptu-

ally relevant ‘cyclopean’ images, formed from the left and right images of a

stereopair, as discussed in Section 7.3.2. In the sequel, features based on these

natural scene statistical models are used to quantify the degree of perceptual

impairment of viewed stereo images.

7.3 Natural Stereopair Quality Index

Inspired by the success of 2D image/video quality assessment algo-

rithms that use 2D natural scene statistics, we have developed a no-reference

natural stereopair quality index (S3D-BLINQ Index), which achieves high cor-

relations with human subjective judgments of S3D image quality using the new

bivariate and correlation NSS models explained in Section 7.2, along with a

symmetrically defined model of the cyclopean image, to extract robust, effec-

tive features for S3D image quality prediction.
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Figure 7.2: S3D-BLINQ Index framework.

7.3.1 Framework Overview

Figure 7.2 diagrams the processing flow of the proposed S3D-BLINQ

Index framework. S3D-BLINQ Index first forms a convergent cyclopean image

using disparity maps computed from both left- and right-view images as refer-

ences. Next, both spatial-domain and wavelet-domain univariate NSS features,

as well as the bivariate and correlation NSS features introduced in Section 7.2,

are extracted from the convergent cyclopean image. Finally, the perceptual

quality of S3D images is predicted by mapping the extracted features to human
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Figure 7.3: Parallel-viewing geometry for generating the convergent cyclopean
image from the left and right images.

opinion scores. Each step is detailed in the following sub-sections.

7.3.2 Convergent Cyclopean Image Formation

The synthesized cyclopean image model adopted in prior work was

formed by fixing the left-view image, then warping the right-view image onto

the corresponding left-view image coordinates using a disparity map computed

by a stereo algorithm, using the left-view image as reference. Of course, the

binocular human vision system does not form a cyclopean 3D precept using

the left- or right-view image as reference; instead, it synergistically fuses the
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two views into an intermediate image on a coordinate frame defined relative

to fixation [78]. A biased cyclopean image model may fail to capture certain

parts of the 3D world accurately, e.g., near depth discontinuities, when the S3D

image pair is asymmetrically distorted. To address this distinction, we deploy

a more complete and hence perceptually relevant model of the convergent

cyclopean image using a general parallel-viewing geometric model of practical

S3D image display scenarios.

Admittedly, simulating the true cyclopean image associated with a

given stereoscopic image pair is a daunting task, since it requires accounting

for a variety of issues, including the display geometry, vergent gaze direction,

fixation, accommodation, etc. It is still generally unclear how human vision

systems form a cyclopean image from the two visual stimuli received via the

retinas of the two eyes. However, the simple linear model proposed by Lev-

elt [132], which remains the most widely-used cyclopean image model, explains

the formation of the perceived cyclopean image IC experienced when a stereo-

scopic stimulus is presented as a linear combination of neural representations

of the stimuli IL and IR to the left and right eyes:

IC = wL · IL + wR · IR (7.6)

where wL and wR are the weighting coefficients on the corresponding stimuli

with the constraint wL+wR = 1. Levelt further hypothesized that the duration

of a dominance period of an eye depends on the stimulus strength in the other

eye, making the weighting coefficients positively correlated with the relative
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stimulus strengths between the two eyes. Therefore, given a stereoscopic image

pair with an associated disparity map computed from them, a synthesized

cyclopean image can be obtained by disparity-compensating and mapping the

two images of a stereopair onto the same coordinate system. Assuming the

disparity map is computed using the left image as reference to match the right

image, the synthesized cyclopean image may be generated as [79, 81, 82]:

IC(x, y) = wL(x, y) · IL(x, y)

+ wR(x−DL(x, y), y) · IR(x−DL(x, y), y) (7.7)

where (x, y) are spatial pixel coordinates, IL and IR are left and right im-

age representations (e.g., luminance or bandpass luminance), respectively, wL

and wR are the weighting maps, and DL is the disparity map computed by

matching elements of IR to those in IL, i.e., using IL as reference. However,

this synthesized cyclopean image may fail to capture certain characteristics

that may affect the perception of an asymmetrically distorted stereopair. For

example, consider two asymmetrically distorted stereopairs having the same

content, one of them a pristine left-view image with a distorted right-view

image, and the other a pristine right-view image with a similarly impaired

left-view image. A synthesized cyclopean image arrived at using Eq. (7.7) will

possibly generate very different results on these two asymmetrically distorted

stereoscopic image pairs, whereas we would ordinarily expect the perception of

these stereopairs to be similar. To address this possible bias in the synthesized

cyclopean image, we propose a more perceptually relevant model that we call
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the convergent cyclopean image. This model has the virtue of, even for sym-

metrically distorted or undistorted images, providing a larger and collectively

consistent set of constraints on this difficult, ill-posed problem.

Without loss of generality and towards practical applications, we adopt

a simple parallel-viewing geometry to generate a convergent cyclopean image

given a stereoscopic image pair, as illustrated in Fig. 7.3. In principle, a con-

vergent cyclopean image may be formed as a linear combination of both the

disparity-compensated left- and right-view images, yielding a coherent, sym-

metrically defined representation. The simplest approach is to model the con-

vergent disparity as equal to half of the right-to-left or left-to-right disparities

computed by a canonical stereo algorithm. Then, the convergent cyclopean

image ICC becomes:

ICC(x, y) = wL(x+D′R(x, y), y) · IL(x+D′R(x, y), y)

+ wR(x−D′L(x, y), y) · IR(x−D′L(x, y), y) (7.8)

where D′R(x, y) = DR(x,y)
2

and D′L(x, y) = DL(x,y)
2

are convergent disparity maps

computed using the right and left images as references, respectively, and DR

and DL are the canonical disparity maps computed using the right and left

images as references, respectively.

The stimulus strengths, i.e., the weighting maps wL and wR in (7.8),

are modeled as the sum of the energies of wavelet coefficients computed using a

steerable pyramid, followed by a DNT taken across sub-bands as described in

Section 7.2. As a result, the convergent cyclopean image given a stereoscopic
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(a) Pristine right view (b) Pristine left view (c) Pristine convergent cy-
clopean image

(d) JPEG-compressed right
view

(e) Pristine left view (f) Asymmetrically JPEG-
compressed convergent cy-
clopean image

(g) Gaussian blurred right
view

(h) Pristine left view (i) Asymmetrically Gaus-
sian blurred convergent cy-
clopean image

Figure 7.4: Examples of convergent cyclopean images formed by pris-
tine, asymmetrically JPEG-compressed, and asymmetrically Gaussian blurred
stereopairs.

image pair is formed as

ICC(x, y) =
EL[x+D′R(x, y), y]

EU(x, y)
· IL[x+D′R(x, y), y]

+
ER[x−D′L(x, y), y]

EU(x, y)
· IR[x−D′L(x, y), y] (7.9)

EL(x, y) =

∑K
k=1 S

2
Lk

(x, y)

K
(7.10)

ER(x, y) =

∑K
k=1 S

2
Rk

(x, y)

K
(7.11)

EU(x, y) = EL[x+D′R(x, y), y] + ER[x−D′L(x, y), y] (7.12)125



where EL and ER are the left and right energy maps, SLk and SRk are the left

and right sub-band coefficients at sub-band k, K is the number of sub-bands,

and EU serves to achieve unit-sum weighting as in (7.6).

Figure 7.4 shows some examples of convergent cyclopean images formed

by pristine and asymmetrically distorted stereopairs. All left-view images

are pristine, while the right-view image examples include pristine, JPEG-

compressed, and Gaussian blurred images. When a human observes such

stereopairs, the deep question arises whether, upon successfully free-fusing

left- and right-view images, one would be able to construct a clear 3D per-

cept by some process of distortion masking or whether the view might have

an appearance of heightened distortion, perhaps owing to a facilitation of the

asymmetric impairments. For example, blocky distortions on the a JPEG-

compressed right-view image might be more or less apparent on 3D viewing,

while Gaussian blur of one of the images may not reduce the sharpness of

the overall 3D percept. Such questions have been explored deeply in the ex-

periments reported in [75] and in more focused studies in the references cited

there. In any case, the generated convergent cyclopean images render a means

of capturing these perceptual effects.

7.3.3 Spatial-Domain Univariate NSS Feature Extraction

It has been demonstrated that natural scene statistics (NSS) models

provide powerful and robust tools for gauging human judgments of visual dis-

tortions on 2D images and videos [25, 65, 100]. Early on, Ruderman [133]
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(a) BGGD fit and histogram (b) 2D illustration of histogram (c) 2D illustration of BGGD fit

(d) BGGD fit and histogram (e) 2D illustration of histogram (f) 2D illustration of BGGD fit

(g) BGGD fit and histogram (h) 2D illustration of histogram (i) 2D illustration of BGGD fit

Figure 7.5: Joint histograms of horizontally adjacent bandpass coefficients
from a pristine convergent cyclopean image and corresponding BGGD fits
at the finest scale along different sub-band tuning orientations. Top row:
orientation = 0, middle row: orientation = π

4
, and bottom row: orientation

= π
2
.

showed that a simple non-linear operation of local mean subtraction and di-

visive variance normalization on natural image luminances results in a decor-
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related, Gaussianized ’contrast’ image. This spatial-domain NSS model has

been extended in various ways and successfully deployed in no-reference 2D

quality assessment algorithms [66, 113] which deliver highly competitive per-

formance relative to top-performing full-reference metrics. We utilize a similar

decomposition to extract spatial-domain univariate features from each conver-

gent cyclopean image. First, the luminance of the convergent cyclopean image,

ICC , is transformed as:

ÎCC(x, y) =
ICC(x, y)− µ(x, y)

σ(x, y) + c
(7.13)

where (x, y) are spatial pixel coordinates, µ and σ are locally weighted spatial

means and standard deviations computed using a Gaussian window superim-

posed over the spatial neighborhood, and c = 1 is a constant that ensures

stability. To capture a broader spectrum of distortion statistics than Gaussian

on convergent cyclopean images, we use the univariate generalized Gaussian

distribution (GGD) model to fit the empirical histograms of the contrast im-

ages ÎCC . The probability density function of a univariate GGD with zero

mean is:

p(x;αu, βu) =
βu

2αuΓ( 1
βu

)
e−(

|x|
αu

)βu (7.14)

where Γ(·) is the ordinary gamma function and αu and βu are scale and shape

parameters, respectively.

We use the moment-matching based approach proposed in [123] to esti-

mate the parameters of the univariate GGD fit. The two extracted univariate
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GGD parameters, [αu, βu]
>, are deployed as spatial-domain ‘quality-aware’

features.

Since the normalizing operation (7.13) is isotropic, we also model the

statistical relationships between neighboring pixels along different orientations

using the very general univariate asymmetric generalized Gaussian distribution

(AGGD) [66, 134]. Specifically, we fit the empirical histograms of pairwise

products of adjacent (cardinal and diagonal) coefficients of the convergent

cyclopean contrast image, ÎCC , using the multi-parameter univariate AGGD

probability density function with zero mean:

p(x;αl, αr, βa) =


βa

(αl+αr)Γ( 1
βa

)
e
−(−x

αl
)βa
, x < 0

βa
(αl+αr)Γ( 1

βa
)
e−( x

αr
)βa , x ≤ 0

(7.15)

where βa is the shape parameter, and αl and αr are scale parameters that

control the spread of the AGGD to the left and right of the origin. The

parameters of the AGGD fits are also estimated using the moment-matching

based approach in [123]. All three AGGD parameters, [αl, αr, βa]
>, extracted

from each S3D convergent cyclopean contrast image are employed as spatial-

domain quality features.

7.3.4 Wavelet-Domain Univariate NSS Feature Extraction

Considerable work has focused on modeling the statistics of natural im-

ages using multi-scale, multi-orientation transforms, e.g., Gabor filters, wavelets,

etc [16, 18]. Success has also been attained by utilizing transform-domain NSS

models to create 2D image and video quality assessment models [25, 65, 100].
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(b) shape parameter βb

Figure 7.6: Plots of the two BGGD model parameters as a function of relative
orientation from pristine and distorted convergent cyclopean images.

In these kinds of IQA models, perceptually relevant transform-domain fea-

tures are computed via area V1-like band-pass filtering. Likewise, we pro-

cess the convergent cyclopean image ICC using the same steerable pyramid

wavelet decomposition as earlier, followed by the divisive normalization trans-

form (Section 7.2). We again use the univariate generalized Gaussian distri-

bution (GGD) to fit the empirical histograms of these sub-band coefficients

using (7.14). The two resulting GGD parameters from each sub-band, scale

and shape, are included in the wavelet-domain feature set.

7.3.5 Bivariate Density and Correlation NSS Feature Extraction

We employ the new bivariate density and correlation NSS models intro-

duced in Section 7.2 to extract wavelet-domain features from the convergent

cyclopean images. First, we validate the efficacy of these new NSS models, by
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(c) JPEG 2000
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(e) Gaussian Blur
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(f) Fast-Fading

Figure 7.7: Exponentiated sine fits to the curves of correlation coefficients
between spatially adjacent wavelet coefficients as a function of relative orien-
tation for distorted convergent cyclopean images.
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fitting the BGGD to the empirical histograms of spatially adjacent bandpass

coefficients after DNT on convergent cyclopean images formed by undistorted

stereopairs. Figure 7.5 shows the joint empirical histograms of horizontally

adjacent bandpass coefficients and the corresponding BGGD fits at the finest

scale over several different orientations (0, π
4
, π

2
). In the plots, blue bars rep-

resent the true histograms while colored meshes represent the fits. Clearly,

the bivariate joint distributions of horizontally adjacent wavelet coefficients

are well modeled by BGGD. The 2D figures, which are iso-probability contour

maps of the joint distributions, also illustrate the high accuracy of the fits

obtained using the BGGD models. The most important observation here is

that the shapes and heights of the joint distributions both vary with sub-band

orientation. This matches our early findings of BGGD fits on pristine 2D im-

ages [51], i.e., there exist much higher dependencies between spatially adjacent

pixels after being decomposed by bandpass filters when the orientations are

similar.

To portray a clear picture of this relative orientation dependency, we

plot the two BGGD model parameters αb and βb as a function of relative

orientation on convergent cyclopean images afflicted by different types of dis-

tortion in Fig. 7.6. Clearly there is a strong relative orientation dependency of

both parameters, each reaching minimum value when the spatial orientation

matches the sub-band tuning orientation, i.e., x2 − x1 = 0. Thus, horizon-

tally adjacent sub-band coefficients share the highest correlation when their

tuning orientation is π
2
, with the correlation declining away from π

2
. These
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plots also show that different types of distortion cause different degrees of rel-

ative orientation dependency, which we shall also exploit to develop additional

quality-aware correlation features. Specifically, the scale and shape parameters

[αb, βb]
> are deployed as bivariate NSS quality features.

As discussed in Section 7.2, the relative orientation dependency of spa-

tially adjacent bandpass responses of images is reflected by a systematic behav-

ior of the correlation coefficients. Figure 7.7 shows exponentiated sine function

fits to the correlation coefficient plots of horizontally adjacent wavelet coeffi-

cients, as a function of relative orientation, on convergent cyclopean images

afflicted by several different types of distortion. In agreement with the low

mean squared errors (MSE), the appearances of the exponentiated sine model

fits are quite close to the orientation-dependent correlation coefficient curves.

Note that the model varies with distortion type. We also conducted a multi-

variate statistical hypothesis test as we describe in the next subsection that

illustrates the discriminative power of the exponentiated sine model. Based on

these amicable results, we include the exponentiated sine model parameters,

[A, γ, ce]
>, as distortion sensitive IQA features.

7.3.6 Validation of the Exponentiated Sine Model

The exponentiated sine model of the correlation coefficients between

spatially adjacent sub-band responses was shown to be a reliable model of

natural photographic images in [51]. Here we validate the applicability of the

more general exponentiated sine model (7.5) for convergent cyclopean images
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formed from a diversity of distorted stereoscopic image pairs taken from the

LIVE 3D Image Quality Database Phase II [135]. Specifically, we performed

a statistical hypothesis test on the three parameters of the exponentiated sine

model across all computed convergent cyclopean images for each type of distor-

tion, including the pristine convergent cyclopean images. First, we computed

the orientation-dependent correlation coefficient curves at a particular scale for

all ND images afflicted by distortion type D in the database, and obtained cor-

responding exponentiated sine fits for each distorted cyclopean image. Denote

each exponentiated sine fit by a vector x = [A, γ, c]> ∈ R3, where A, γ, and c

are the three model parameters, amplitude, exponent, and offset, respectively.

For brevity, we tabulate the results only for the finest scale; however, we ob-

tained similar results for other scales as well (see [136]). Next, we computed

the mean model parameter vector across all convergent cyclopean images hav-

ing distortion type D, denoted xD =
∑ND

i=1 xDi , where xDi = [ADi , γDi , cDi ]
>.

Then, we applied a two-sample multivariate t-test to determine whether the

null hypothesis H0, i.e., the two mean vectors xD1 and xD2 of two different

distortion types D1 and D2 are equal, is supported. If the null hypothesis is

supported, then the two exponentiated sine models of distortion types D1 and

D2 are statistically identical. However, if H0 is rejected, we can conclude that

distortion types D1 and D2 possess significantly different exponentiated sine

models. In particular, we computed Hotelling’s two-sample T -squared statistic

T 2, which generalizes the Student’s two-sample t statistic:

T 2 =
ND1ND2

ND1 +ND2

(xD1 − xD2)
>Sp

−1(xD1 − xD2) (7.16)
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where Sp is an unbiased estimate of the pooled covariance matrix:

Sp =

∑ND1
D1i

=1(xD1i
− xD1)(xD1i

− xD1)
>

ND1 +ND2 − 2

+

∑ND2
D2i

=1(xD2i
− xD2)(xD2i

− xD2)
>

ND1 +ND2 − 2
(7.17)

Finally, T 2 can be related to the F -distribution as:

ND1 +ND2 − P − 1

(ND1 +ND2 − 2)P
T 2 ∼ FP,ND1

+ND2
−P−1 (7.18)

where P is the dimension of xD1i
and xD2i

.

Therefore, we are able to compute the p-value of our null hypothesis

test as:

p = 1− CFP,ND1
+ND2

−P−1

(
ND1 +ND2 − P − 1

(ND1 +ND2 − 2)P
T 2

)
(7.19)

where CFP,ND1
+ND2

−P−1
represents the cumulative distribution function of the

F -distribution. Note that in our test, P = 3 and ND1 = ND2 = 72. We

repeated this null hypothesis test on all different pairs of distortion types,

including the pristine, to examine the robustness of the exponentiated sine

model.

Table 7.1 records the results of all distortion type pairs, wherein each

entry represents whether the null hypothesis between the row and column dis-

tortion types is rejected or not. Table 7.2 shows the corresponding p-values for

each null hypothesis test. Note that since Hotelling’s two-sample T -squared

statistic T 2 commutes, the entries in Tables 7.1 and 7.2 are diagonally sym-

metric. Clearly, at the one-sided significance level α = 0.05, all hypothesis
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Table 7.1: Statistical Hypothesis Test Results. A Value of ’1’ Indicates That
the Null Hypothesis is Rejected While a Value of ’0’ Indicates Supported.

Pristine WN JP2K JPEG Blur FF

Pristine 0 1 1 1 1 1
WN 1 0 1 1 1 1

JP2K 1 1 0 1 1 1
JPEG 1 1 1 0 1 1
Blur 1 1 1 1 0 1
FF 1 1 1 1 1 0

Table 7.2: Computed p-Values From Statistical Hypothesis Tests
Pristine WN JP2K JPEG Blur FF

Pristine - 0 9.12× 10−08 8.24× 10−08 1.11× 10−16 3.21× 10−09

WN 0 - 0 0 0 0
JP2K 9.12× 10−08 0 - 0 3.05× 10−13 3.10× 10−03

JPEG 8.24× 10−08 0 0 - 4.74× 10−11 2.99× 10−14

Blur 1.11× 10−16 0 3.05× 10−13 4.74× 10−11 - 3.92× 10−06

FF 3.21× 10−09 0 3.10× 10−03 2.99× 10−14 3.92× 10−06 -

tests were rejected with p-value < α, indicating that every distortion type,

including the pristine, can be characterized by a distinct exponentiated sine

model. These results not only support the validity of the proposed exponen-

tiated sine model of the relative orientation-dependent correlation coefficients

between spatially adjacent sub-band responses across different types of dis-

torted convergent cyclopean images, but also substantiate its relevance for

developing quality-predictive features on S3D images.

7.3.7 Quality Prediction

The last step in the proposed S3D-BLINQ Index framework is to predict

the quality of stereoscopic image pairs using the aforedescribed NSS features

extracted from the corresponding convergent cyclopean images. A mapping
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is learned from the feature space to human subjective quality scores using

a regression model. The proposed framework is generically amenable to the

application of any kind of regressor. The implementation of S3D-BLINQ Index

described here utilizes a support vector machine (SVM) regressor (SVR) [126]

using multiple train-test sequences as described in the next section. SVR is

generally noted for being able to handle high dimensional data [127], and has

also been used to create a variety of 2D IQA models [25, 137]. We implement

the SVR model with a radial basis function (RBF) kernel using the LIBSVM

package [128].

7.4 Experimental Results and Discussion

7.4.1 Performance Evaluation of S3D-BLINQ Index

In the previous section, we motivated and developed a statistics-based

S3D IQA framework, dubbed S3D-BLINQ Index, that incorporates old and

new models of the univariate and bivariate statistics of natural photographic

S3D images. We next evaluated the efficacy of the new S3D IQA model against

state-of-the-art 2D and S3D IQA models on the LIVE 3D Image Quality

Database Phase II [135], which consists of both symmetrically and asymmet-

rically distorted stereopairs. There are five different types of distortions in the

LIVE 3D Image Quality Database Phase II: JPEG and JPEG2000 (JP2K)

compression, additive white Gaussian noise (WN), Gaussian blur (Blur), and

a Rayleigh fast-fading channel distortion (FF). The severities of each of the

degradations vary significantly and with good overall perceptual separations
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between distortion levels. For full-reference algorithms, we used all of the avail-

able reference and distorted stereopairs, while for no-reference algorithms, we

divided the whole database into 80% training and 20% testing subsets at each

train-test iteration so that there was no overlap between training and testing

image content. This train-test procedure was repeated 1000 times to ensure

that there was no bias introduced due to the image content used for training.

We report the median performance across all iterations as the final perfor-

mance score.

We computed two correlation measures, Spearman’s rank-order corre-

lation coefficient (SROCC) and Pearson’s linear correlation coefficient (LCC),

along with the root-mean-squared error (RMSE) between the predicted qual-

ity scores and the recorded subjective opinion scores (DMOS) to evaluate the

performance of the quality assessment models [138]. Since both LCC and

RMSE are accuracy measures, all algorithm scores were passed through a lo-

gistic non-linear function to map to DMOS space before computing LCC and

RMSE [138]. The SROCC, LCC, and RMSE values of the tested 2D and S3D

IQA models evaluated on the LIVE 3D Image Quality Database Phase II are

summarized and tabulated in Tables 7.3 – 7.5. Higher values of the two corre-

lation measures, SROCC and LCC, and lower values of RMSE indicate better

performance.

From Tables 7.3 and 7.4, it can be seen that the highest attained per-

formance by any ”pure 2D” IQA model on the LIVE S3D image pairs reached

about 0.8 correlation against the subjective opinion scores. Again, the quality
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Table 7.3: Comparison (SROCC) of Different 2D and 3D Image Quality As-
sessment Models on Different Distortion Types in the LIVE 3D Image Quality
Database Phase II

Algorithm† WN JP2K JPEG Blur FF Overall

2D

PSNR 0.919 0.597 0.491 0.690 0.730 0.665
SSIM [63] 0.922 0.704 0.678 0.838 0.834 0.792

MS-SSIM [64] 0.946 0.798 0.847 0.801 0.833 0.777
BRISQUE [66] 0.846 0.593 0.769 0.862 0.935 0.770

3D

Benoit [72] 0.923 0.751 0.867 0.455 0.773 0.728
You [76] 0.909 0.894 0.795 0.813 0.891 0.786

Yasakethu [67] 0.880 0.598 0.736 0.028 0.684 0.501
Cyclopean MS-SSIM [81] 0.940 0.814 0.843 0.908 0.884 0.889

Sazzad [77] 0.714 0.724 0.649 0.682 0.559 0.543
Chen [82] 0.950 0.867 0.867 0.900 0.933 0.880

S3D-BLINQ Index 0.946 0.845 0.818 0.903 0.899 0.905

† Italics indicate no-reference IQA models. Others are full-reference IQA models.

Table 7.4: Comparison (LCC) of Different 2D and 3D Image Quality Assess-
ment Models on Different Distortion Types in the LIVE 3D Image Quality
Database Phase II

Algorithm† WN JP2K JPEG Blur FF Overall

2D

PSNR 0.917 0.627 0.459 0.706 0.762 0.680
SSIM [63] 0.928 0.723 0.650 0.848 0.858 0.802

MS-SSIM [64] 0.950 0.820 0.856 0.798 0.842 0.783
BRISQUE [66] 0.845 0.681 0.795 0.951 0.931 0.782

3D

Benoit [72] 0.926 0.784 0.853 0.535 0.807 0.748
You [76] 0.912 0.905 0.830 0.784 0.915 0.800

Yasakethu [67] 0.891 0.664 0.734 0.450 0.746 0.558
Cyclopean MS-SSIM [81] 0.957 0.834 0.862 0.963 0.901 0.900

Sazzad [77] 0.722 0.776 0.786 0.795 0.674 0.568
Chen [82] 0.947 0.899 0.901 0.941 0.932 0.895

S3D-BLINQ Index 0.953 0.847 0.888 0.968 0.944 0.913

† Italics indicate no-reference IQA models. Others are full-reference IQA models.

scores predicted by these models were obtained by simply averaging the scores

computed on the left- and right-view images. Among these 2D quality metrics,
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Table 7.5: Comparison (RMSE) of Different 2D and 3D Image Quality As-
sessment Models on Different Distortion Types in the LIVE 3D Image Quality
Database Phase II

Algorithm† WN JP2K JPEG Blur FF Overall

2D

PSNR 4.269 7.674 6.514 9.865 7.456 8.275
SSIM [63] 3.988 6.783 5.572 7.370 5.910 6.741

MS-SSIM [64] 3.334 5.621 3.792 8.397 6.212 7.025
BRISQUE [66] 5.731 7.193 4.448 4.323 4.206 7.038

3D

Benoit [72] 4.028 6.096 3.787 11.76 6.894 7.490
You [76] 4.396 4.186 4.086 8.649 4.649 6.772

Yasakethu [67] 10.71 7.343 4.976 12.43 7.667 9.364
Cyclopean MS-SSIM [81] 3.368 5.562 3.865 3.747 4.966 4.987

Sazzad [77] 7.416 6.189 4.535 8.450 8.505 9.294
Chen [82] 3.513 4.298 3.342 4.725 4.180 5.102

S3D-BLINQ Index 3.547 5.482 4.169 4.453 4.199 4.657

† Italics indicate no-reference IQA models. Others are full-reference IQA models.

the full-reference SSIM index achieved the best performance.

The best S3D image quality prediction models that utilize 3D infor-

mation were able to deliver a significantly higher 0.9 correlation level of per-

formance. In particular, utilizing a synthesized cyclopean image boosts the

performance of simple 2D IQA models, such as MS-SSIM, by more than 0.1

correlation level. By combining a synthesized cyclopean image with statistical

models of disparity statistics, the no-reference S3D IQA model proposed by

Chen et al. [82] was able to deliver performance comparable to the best full-

reference models. However, as mentioned earlier, perceptual issues arise when

forming cyclopean images with left-right (or right-left) bias from an S3D image

pair. Since all of the asymmetrically distorted stereoscopic image pairs in the

LIVE 3D Image Quality Database Phase II [135] were created using a pristine
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left-view image and a right-view image impaired by different types and degrees

of distortions. Therefore, the two synthesized left- and right-view cyclopean

images with bias may present differing perceptual characteristics, possibly re-

sulting in biased performance of S3D IQA models utilizing cyclopean images,

such as cyclopean MS-SSIM [81] and Chen [82].

To further investigate how much bias these perceptually distinct cy-

clopean images can introduce, we examined three different implementations

of cyclopean MS-SSIM using the two possible left- and right-view cyclopean

images. Implementation M1 computed the MS-SSIM score between the undis-

torted and distorted left-view cyclopean images generated using the disparity

maps computed using the left-view images, which are always pristine, as refer-

ences. This is the same implementation adopted in [81]. Implementation M2

computed the MS-SSIM score from right-view cyclopean images with disparity

maps computed using the right-view images, which always contain some types

of distortion, as references. In the last implementation M3, we generated the

final quality score by simply averaging the two above MS-SSIM scores. The

last implementation could be used in practical scenarios because real-world

stereoscopic image pairs can be impaired with either asymmetry. We tabulate

the performance of these three different cyclopean MS-SSIM implementations

in Table 7.6. It can be seen that the performance drops dramatically for imple-

mentation M2. The seemingly more natural implementation (M3) also suffers

with reduced performance not significantly different than the 2D MS-SSIM in-

dex. Regarding the no-reference S3D IQA model proposed by Chen et al. [82],
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since the features are extracted asymmetrically, their algorithm would require

modification to be applied on arbitrary asymmetries. In the performance com-

parisons, the original implementations in [81] and [82] were used.

By synthesizing a more perceptually relevant and consistent convergent

cyclopean image and by utilizing robust, effective bivariate and correlation nat-

ural image statistical models, S3D-BLINQ Index is able to achieve better than

0.9 correlation using both SROCC and LCC. It not only outperforms other

state-of-the-art 2D and S3D IQA algorithms in terms of correlation mono-

tonicity and accuracy, but also predicts the perceptual quality of stereoscopic

image pairs with the lowest RMSE, as shown in Table 7.5.

Tables 7.3 – 7.5 also detail the performance of each quality assessment

algorithm on different types of distorted stereopairs. We can see that almost

all 2D and 3D algorithms are able to predict quality scores that correlate well

with human opinions for stereoscopic image pairs affected by the WN distor-

tion. However, several quality metrics perform poorly when predicting the

perceptual quality of stereopairs impaired by JPEG, JP2K, and Blur distor-

tions. These poor performances may be explained as a result of binocular

facilitation [75, 139] whereby distortions co-located with high depth variations

are more easily found by human subjects. This observed effect is not yet well

understood or properly modeled.

To examine the capability of different 2D and S3D IQA models when

dealing with unequally distorted stereopairs, which may be more common in

practice, we list in Table 7.7 the performance of the same algorithms on both
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Table 7.6: Comparison of Different Cyclopean MS-SSIM Implementations on
the LIVE 3D Image Quality Database Phase II

Implementation SROCC LCC RMSE

M1 0.889 0.900 4.987
M2 0.704 0.743 7.559
M3 0.778 0.787 6.971

Table 7.7: Comparison (SROCC) of Different 2D and 3D Image Quality As-
sessment Algorithms on Symmetrically and Asymmetrically Distorted Stimuli
in the LIVE 3D Image Quality Database Phase II

Algorithm† Symmetric Asymmetric Overall

2D

PSNR 0.776 0.587 0.665
SSIM [63] 0.828 0.733 0.792

MS-SSIM [64] 0.912 0.684 0.777
BRISQUE [66] 0.849 0.667 0.770

3D

Benoit [72] 0.860 0.671 0.728
You [76] 0.914 0.701 0.786

Yasakethu [67] 0.656 0.496 0.501
Cyclopean MS-SSIM [81] 0.923 0.842 0.889

Sazzad [77] 0.420 0.517 0.543
Chen [82] 0.918 0.834 0.880

S3D-BLINQ Index 0.937 0.849 0.905
† Italics indicate no-reference IQA models. Others are full-reference

IQA models.

symmetrically and asymmetrically distorted stereoscopic image pairs in the

LIVE 3D Image Quality Database Phase II [135]. It can be seen that most

of the examined quality models are capable of predicting scores that correlate

well with human judgments on symmetrically distorted stereopairs. However,

almost all of them perform poorly on asymmetrically distorted stereopairs,

except for those utilizing cyclopean images. Among these, S3D-BLINQ In-
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dex afforded the best performance on both symmetrically and asymmetrically

distortions, resulting in the best overall correlation numbers as well.

7.4.2 Augmentation of the Bivariate and Correlation Models

The solid performance of S3D-BLINQ Index can be attributed to uti-

lizing the perceptually relevant, convergent cyclopean image and robust and

descriptive bivariate and correlation NSS models. Here we analyze the perfor-

mance boost provided by the new bivariate and correlation NSS features un-

derlying the S3D-BLINQ Index learning process. Specifically, we incorporated

three different sets of features extracted from the convergent cyclopean image,

following the same framework as described in Section 7.3. The three feature

sets include the spatial-domain univariate NSS features, the wavelet-domain

univariate NSS features, and the bivariate and correlation NSS features. We

tabulate the performance of these three different feature sets, as well as the

combination of all, i.e., S3D-BLINQ Index, in Table 7.8. It can be seen that us-

ing only the spatial-domain univariate NSS features is able to achieve 0.9 level

of correlation performance on symmetrically distorted stereopairs, while the

wavelet-domain univariate NSS features improve performance on asymmetric

distortions. The bivariate and correlation NSS features further augment per-

formance on asymmetrically distorted stereopairs, resulting in an overall 0.9

SROCC score when combining all feature sets.
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Table 7.8: Comparison (SROCC) of the Proposed S3D-BLINQ Index frame-
work using Different Feature Sets on Symmetrically and Asymmetrically Dis-
torted Stimuli in the LIVE 3D Image Quality Database Phase II

Feature Set Symmetric Asymmetric Overall

Spatial-Domain Univariate 0.911 0.808 0.873
Wavelet-Domain Univariate 0.852 0.815 0.854
Bivariate and Correlation 0.877 0.826 0.868

All 0.937 0.849 0.905

7.5 Summary

We generalized our new bivariate and correlation NSS models to cap-

ture the spatial oriented structure in bandpass distorted 2D and S3D images.

These bivariate and correlation models are validated to be able to robustly and

reliably quantify the statistical regularities embedded in spatially adjacent lu-

minance pixels, and preliminarily yet systematically address one of the most

important issues on NSS modeling of higher-order dependencies, which has

not been well explored in literature. To demonstrate the efficacy of these new

models, we deploy them to develop a new no-reference S3D IQA framework –

the Stereoscopic/3D BLind Image Naturalness Quality (S3D-BLINQ) Index.

Two important contributions are presented in this chapter. First, we defined a

new and powerful set of quality-discriminative features by exploiting the new

bivariate and correlation NSS models. Second, we proposed a convergent cy-

clopean image model to address bias encountered by earlier cyclopean image

models.
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Chapter 8

Conclusion and Future Work

In this dissertation we addressed the multidisciplinary problem of sta-

tistical modeling of natural image and depth/range information embedded

in natural environments. A high-quality data set of accurately co-registered

color images and depth/range maps, the LIVE Color+3D Database [7, 8], has

been constructed and made publicly available in this regard. This database

provides abundant and valuable resources ready for a diversity of research in

visual psychophysics, image/video processing, computer vision, etc.

By utilizing this high-resolution, high-quality 3D image and depth/range

database, we developed marginal and conditional priors relating natural lumi-

nance/chrominance and disparity, and demonstrate their efficacy with appli-

cation to a chromatic Bayesian stereo algorithm. The statistical analysis we

performed and the color-depth priors we derived yield insight into how 3D

structures in the environment might be recovered from color image data.

While extensive research has been conducted on modeling marginal

distributions of bandpass natural image responses with univariate functions,

there exist higher-order dependencies between spatially neighboring bandpass

responses that are not yet well understood or utilized in literature. Towards
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filling this gap, we developed new bivariate and spatial oriented correlation

models that capture statistical regularities between perceptually decomposed

natural luminance and depth samples.

As a demonstration of the efficacy and effectiveness of our new bivariate

and correlation natural scene statistical models, we exploited them to address

two challenging, yet very important problems, depth estimation from monoc-

ular images and no-reference stereoscopic/3D (S3D) image quality assessment.

With the aid of these reliable and robust statistical models, both the proposed

Bayesian framework of depth estimation and the proposed S3D image quality

index attain superior performance to state-of-the-art algorithms.

Understanding how human vision systems perceive binocular visual

stimuli to reconstruct 3D natural environments is of extreme importance to

a variety of science and engineering disciplines. In this dissertation, we ap-

proached this problem by exploring and modeling the statistics embedded in

natural images and depth maps. We believe that our new bivariate and spa-

tial oriented correlation models not only form a foundation of higher-order

statistical exploration in natural scenes, but also have great potential to be

used in a broad spectrum of 3D vision and image/video processing algorithms,

such as de-noising, super-resolution, shape-from-X, quality assessment, etc.

In particular, we expect a ‘completely’ blind S3D quality evaluator by appro-

priately incorporating these new statistical models that better quantify stere-

opair naturalness, and by incorporating perceptual measurements of visual

discomfort into S3D quality of experience (QoE) models. Other future work
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involves exploiting more psychophysical knowledge of human vision systems

and introducing more complete higher-level statistical models that describe

the interactions between natural image and depth/range information.
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