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Abstract 

 

Practicality of Algorithmic Number Theory 

 

Ariel Jolishia Taylor, MA 

The University of Texas at Austin, 2013 

 

Supervisor:  John Luecke 

 

This report discusses some of the uses of algorithms within number theory. 

Topics examined include the applications of algorithms in the study of cryptology, the 

Euclidean Algorithm, prime generating functions, and the connections between 

algorithmic number theory and high school algebra.  



 vii 

Table of Contents 

List of Tables ....................................................................................................... viii 

List of Figures ........................................................................................................ ix 

Chapter 1: An Introduction ......................................................................................1 

Chapter 2: Ciphers in Cryptanalysis ........................................................................3 

Chapter 3: The RSA Public Key and Cryptosystems ..............................................7 

Chapter 4: A New Version of the Euclidean Algorithm ........................................12 

Chapter 5: Exploring Gaussian Integers ................................................................17 

Chapter 6: Conclusion............................................................................................23 

Reference ...............................................................................................................24 

Vita .......................................................................................................................25 

  

 

 

 

 

 

 

 

 

 

 



 viii 

 

List of Tables 

Table 1. Frequencies of letters in the ciphertext [2, p. 3]. .......................................4 

Table 2. Individual letter frequencies in 4 million characters of English text [2, p. 4].

.............................................................................................................5 

Table 3. Sieve of Eratosthenes in   .......................................................................19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 ix 

List of Figures 

Figure 1. Data Encryption Standard [7, p 93] .......................................................11 

Figure 2. Algorithm Matrix Setup     [1, p. 742] ...................................................13 

Figure 3. Multiples of      [1, p. 6]....................................................................19 

Figure 4. Geometric Model [6, p. 7] .....................................................................21 



 1 

Chapter 1: An Introduction 

Number theory is a branch of pure mathematics that studies the properties of 

integers. Algorithmic number theory is the study of algorithms used to perform specific 

number theory computations. This involves finding solutions to equations, proving their 

existence and non-existence, and making efficient use of resources such as time and 

space. General examples include the listing of primes, determining the greatest common 

divisor (GCD) of two integers using concepts of divisibility, and investigating the sum of 

high powers as in Fermat’s Last Theorem.  

The fact that linear congruence of integers in modular arithmetic is analogous to 

solving linear equation in elementary algebra is commonly unnoticed. Most secondary 

algebra teachers fail to make a connection between abstract algebra and number theory in 

the high school mathematics curriculum. This disconnect is transferred to students and 

therefore carried to college. Integer computations in number theory algorithms are based 

on elementary algebra concepts. A congruence of the form  

a ≡ b (mod n) where a, b, n     

can be rewritten as  

 a = b + nk where k    . 

By connecting these forms, students can be provided with a stronger introductory 

understanding of algorithmic number theory in high school algebra. 

Number theory is appreciated by mathematicians for its purity and beauty but 

rarely by non-mathematicians for its practicality. One use for algorithmic number theory 

is that it is important in establishing codes for reliable and secure information 

transmission. Cryptography, the art and study of making communication unintelligent to 

all except the intended recipients, is an interesting growing mathematical phenomenon.  
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Cryptography is the complete science of secure communication; it integrates 

algorithmic mathematical number theory, engineering, and computer science. All of 

which are increasingly necessary fields of study in this century. Cryptography is not new; 

it has been studied and used since before 100 B.C for diplomatic purposes with Julius 

Caesar. Today, there is an urgent need to provide cost-effective, efficient, and secure 

systems to protect the vast quantity of digital data stored and communicated by electronic 

data-processing systems. [2, p. 1]. In order to further the advancement of technology and 

information security, students must acquire 21
st
 century skills, the skills needed to 

succeed in learning, working, and living in this century.  

In the following chapters, specific algorithms are examined and investigated. The 

ability and necessity for these algorithms to be taught within secondary education is 

highlighted.   
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Chapter 2: Ciphers in Cryptanalysis 

A cipher is a method which transforms plaintext into ciphertext by applying a set 

of transformations onto each character in the plaintext. A cipher is an algorithm, and 

depending on the strength of the algorithm, through cryptanalysis, a ciphertext can be 

attacked and decrypted. An encryption function is used to produce ciphertext from 

plaintext. With  , the encryption function,  , the plain text, and  , the ciphertext,  

      . 

The decryption function determines the plaintext from the ciphertext. With    the 

decryption function,         An encryption key is a piece of data that allows for the 

computation of  . Similarly there is a decryption key. These keys may be public or 

private.  

Linear ciphers such as the Ceasar Cipher have been proved extremely insecure. 

Ceasar Cipher, which dates back to around 50 B.C., assigns each letter of the alphabet a 

double digit number 00-25 modulo 26. The alphabet then shifts three places to the right 

and loops around to the beginning. For example,  

              

                         

                       

The ability to understand linear congruences and to write linear equations is 

necessary prerequisite knowledge in order to engage in the study of information security. 

Consider the ciphertext:  
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XHTQF SCUFD SBULX IOLBF  ALYZT IDSCL

 YCSDO FZYCU FAFMF ODITF  YCDKV SBICD

 XBXCF TX 

 

Asuuming the ciphertext is of the general form of a linear Ceasar Cipher  modulo 26, a 

frequency distribution of the letters in the English Language alphabet can be used to 

determine the linear cipher key used in encryption. Table 1 shows the frequency 

distribution of the letters in the ciphertext presented.   

Table 1. Frequencies of letters in the ciphertext [2, p. 3]. 

 

 

The letters E and T have the highest frequency in the English Language as shown 

in Table 2, so it is hypothesized that since F and C have the highest frequency in the 

ciphertext that they are corresponding characters respectively. Assuming  , the 

encryption function modulo 26, is of the general form of the linear Ceasar Cipher, we 

have, 

                      

that is; 

                   and                                

Using methods of solving systems of equations, it is determined      , and 

        Therefore the conjectured encryption function is  

                       

The decryption function is determined from the additive and multiplicative inverse 

functions modulo 26.  

                      . 
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Table 2. Individual letter frequencies in 4 million characters of English text [2, p. 4]. 

 

 

 

Based on this, the plaintext of the ciphertext above is  

(NUMBE R)(THEO RY)(HAS)  (PLAYE D)(AN)(IM

 PORTA NT)(ROL E)(IN)(TH  E)(DEVE LOPME

 NT)(OF)(C RYPTO SYSTE MS). 

The level of security is increased by adding substitution ciphers and 

polyalphabetic ciphers. A substitution cipher is a cipher that replaces letters of the plain 

text with another set of letters or symbols while a polyalphabetic cipher is a system of 

substitution that mixes together a number of cipher alphabets in a cryptogram so that each 

plaintext letter is represented by a cipher that repeatedly changes. Polyalphabetic ciphers 

guarantees that a given plaintext letter will not always be represented by the same 

ciphertext letter. A word is used as the key, so to encipher a message one uses a sequence 

of letters and different generalized Caesar Ciphers at once. In 1975, Whitfield Diffie and 

Martin Hellman proposed the public-key cryptosystem which relies on discovery in 
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computational complexity theory. Complexity theory primarily deals with the analysis 

and design of algorithms and especially with the number of computational steps needed 

to complete an algorithm [2, p. 7].  

A cryptosystem consists of the algorithm for encryption and a piece of 

information, the key. In public-key cryptosystems each user has an encryption function 

and a decryption function. The encryption functions and the keys are made public to all 

users, but the decryption function is kept secret to only the owner.   and   are inverse 

transformations, that is,            and            The point is that the 

encryption/decryption functions are set up so that   is very difficult to compute only 

knowing  . The RSA Public-Key Cryptosystem developed in 1977 by Ronald L Rivest, 

Adi Shamir and Leonard Adleman is the most secure ciphering algorithm. This algorithm 

involves intense mathematical structures and is based upon Fermat’s Little Theorem with 

two large distinct prime numbers p and q. This cryptosystem is further investigated in the 

next chapter.  
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Chapter 3: The RSA Public Key and Cryptosystems 

RSA, the trapdoor cipher certainly changed the face of cryptography in 1977. 

RSA, the public-key cryptosystem, is based upon factoring large integers. Fermat’s Little 

Theorem, which states, if    is prime and   is a positive integer not divisible by    then 

                

is the backbone of this cryptosystem. To generate the public and private keys, each user 

must select two large distinct prime numbers   and   each about 100 digits long (for 

added security). Let            is an arithmetic function that counts the number of 

positive integers less than or equal to   that are relatively prime to  . Calculating      is 

proven to be difficult for large values or r, but  Euler’s Theorem states that 

                   

Thus by selecting the two primes   and         is easily calculated. Furthermore, in 

order to ensure security, r needs to be hard to factor. The fewer factors a product has, the 

harder it is to find the factors. Choose       such that        and   is relatively 

prime to     .  Since              ,   has a multiplicative inverse modulo 

      called       The product     is relatively prime modulo     . When the 

numbers have been chosen,   and   become the public key, while the private key consists 

of     and  . 

In order for the cipher to work, the values of   must be less than   and relatively 

prime to  . The value of   and       cannot be used because   raised to any power is 

going to remain  . To encrypt, simply raise each number corresponding to the character 

to the power of   modulo  . To decrypt, simply raise each encrypted code to the power of 

https://en.wikipedia.org/wiki/Arithmetic_function
https://en.wikipedia.org/wiki/Relatively_prime
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  modulo  . For example, using the mapping   —    —   , let      and      

be the two selected primes. Then  

          

and                                . 

Select       then use the Euclidean Algorithm to verify that it is relatively 

prime to         

                    

           

           

 
Since   is the last nonzero remainder,      and    are relatively prime. Given that,       

must equal               it is known that  

 
               

                 
 

where k    . Using the Euclidean Algorithm in reverse:  

           

                    

                  

Therefore        

The resulting encryption algorithm is                      , and the decryption 

algorithm is                      where   and   are numeric blocks less than 

    . 

Substitution and transposition have been techniques for encryption since the birth 

of cryptography. Substitution is the simplest form of data confusion which is obscuring 

the relationship between plaintext and ciphertext. Transposition is the simplest form of 
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diffusion which involves spreading the changes throughout the ciphertext. As mentioned 

in Chapter 2, frequency analysis is a strong tool against both techniques. Linear functions 

for encryption are not ideal since they can be broken by elementary algebra tactics of 

solving systems of equations. However, linear functions cover all of the requirements for 

efficient cryptosystems. They must be invertible, fast to compute, and should have small 

key size and memory requirements. To overcome the weakness of solely using linear 

functions, the integration of XOR, (Exclusive OR) a bitwise operator from binary 

mathematics, substitution, and permutation is introduced. The XOR operator is indicated 

by , which returns a 1 when the value of either the first bit or the second bit is a 1 and 

returns 0 when neither or both of the bits are 1. The XOR operator is used to flip bits 

(zeroes and ones) in a piece of plaintext to create a ciphertext. The combination or XOR, 

substitution and permutation results in an iterative block cipher, a cryptosystem that 

operates on a block of data and sequentially repeats a set of primitives. Each repetition is 

called a round. The Data Encryption Standard (DES), approved in 1977 by the National 

Bureau of Standards, is such a block cipher.  

Horst Feistal, proposed a self-invertible design for block-structured 

cryptosystems. DES operates on a 64-bit data block using a 56-bit key. In order to 

encrypt a block of data, the block is split in half and the two 32-bit parts are operated on 

independently; right R0, and the left, L0. In each round, the right half Ri becomes the new 

left half Li+1. The new right half is a function of the old right and left halves and a portion 

of the key Ki+1 used in that round. Here f is the cipher function. That is, 

Li  Ri-1, 

Ri  Li-1  f ( Ri-1, Ki). 

The cipher function, f, produces a 32-bit output data block from a 32-bit input data block 

http://www.tech-faq.com/chosen-plaintext-attack.html
http://www.tech-faq.com/chosen-plaintext-attack.html


 10 

Ri-1 and Ki, a 48-bit subkey. The function f, consists of an expansion E, bitwise addition, a 

substitution function S, an a permutation P.  

f ( Ri-1, Ki)   P( S(E(Ri-1)  Ki)) 

 The function E expands the 32-bits to 48-bits by splitting the data into eight 4-bit blocks 

and adding the least significant bit of one block to the end of the next block, then adding 

the most significant bit to the beginning of the proceeding block. The result of the 

expansion is then XORed to the 48-bit subkey Ki, producing the 48-bit input for  .   is 

the only nonlinear ingredient in the DES. There are eight S-boxes and each maps 6 bits to 

4 bits in a 4 x 16 table. The output of each S-box is determined by the instruction bits and 

the data bits. The two outermost bits of the input are linked together to determine the row 

of the S-box, and the middle four bits determine the column of the S-box. The 4-bit 

integer at the row and column of the S-box is the output (substitution). Since each output 

is only 4-bits the result is a 32-bit block. P permutes the output from the S-boxes to cause 

diffusion and produces the output of the cipher function. This is then XORed with Li-1 to 

determine the new right half. The algorithm to decrypt the data block is the same as the 

encryption, but the subkeys are applied in reverse order. 

In order to make decryption a genuine inverse of encryption, the halves are 

switched in the final round of a Feistel cipher. Figure 1 shows the 16-round DES cipher 

which begins with an initial permutation, P, and ends with the inverse permutation, 

P
-1

.These permutations are not cryptographically important, but the DES is not complete 

without them.   is the substitution-box function (hereafter referred to as the  -box) used 

to obscure the relationship between the key and the ciphertext.  The rounds are where the 

important mathematical cryptographic work occurs. 

http://en.wikipedia.org/wiki/Ciphertext
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Figure 1. Data Encryption Standard [7, p 93] 

The DES algorithm was the Federal Standard from 1977-the early 2000s when it 

was replaced by the Advance Encryption Standard. Cryptography represents are only a 

small spectra of algorithms, different examples are examined in the subsequent chapter.   

 

 



 12 

Chapter 4: A New Version of the Euclidean Algorithm 

The Euclidean Algorithm is a method used to find the greatest common divisor of 

two positive integers,   and  . The algorithm is based on two observations. First, if   

divides  , then the              The second observation provides the basis for the 

Euclidean Algorithm. If         for integers   and  , then                      

Using the division algorithm repeatedly results in 

                        

        
                      

and so on. Since             the remainders are decreasing. In finitely many steps a 

remainder of 

       

is obtained. Thus, 

                           . 

There is a very important corollary consequence which follows from the algorithm. If   

and   are nonzero integers, their GCD is a linear combination of   and  , that is there are 

two integers s and t such that  

              . 

Blankinship offers an alternative matrix algorithm which, although equivalent to 

the Euclidean Algorithm, is much easier to visualize and be programmed on paper or on a 

computer [1, p. 742]. Using the algorithm, given a set of positive integers             
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one can compute the greatest common divisor,  , of these numbers. It is also possible to 

deduce elements            such that 

                           

This again, is the results of the corollary. 

The algorithm is computed by preparing a           matrix, and performing 

elementary row operations in order to reduce all but one of the elements in the first 

column to zero. The first element in each row is referred to as the leader element. The 

matrix used consists of positive integers            in the first column, and the 

appropriate sized identity matrix affixed as shown in Figure 2: 

 1 1 0 0 . . . 0 

 2 0 1 0 . . . 0 

 3 0 0 1 . . . 0 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

 n 0 0 0 0 . . 1 

Figure 2. Algorithm Matrix Setup     [1, p. 742] 

After completion of five steps of elementary row operations, there is only one row with a 

nonzero leader. The remaining row is  
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where   is the greatest common divisor of           . By the corollary,   can be 

written as a linear combination of the positive integers. That is  

                         

Blankinship describes the five steps used to eliminate leader elements, and 

verifies that the process terminates by noting that every fourth step, a column leader 

decreases but will never be negative.  Step 1: Select the row with the smallest nonzero 

leader and call it the “operator.” Step 2: Select any other row with a nonzero leader and 

call it the “operand.” (When no operand can be found the process is completed.) Step 3: 

Divide the leader of the operator into the leader of the operand, ignoring the remainder. 

Denote the quotient by  . Step 4: Subtract   times the operator from the operand, 

recording the result as a new row and striking out the operand. Step 5: Return to step 1 

[1]. It is essential that it is noted that the greatest common divisor is preserved through 

the row operations. That is 

                                            

 for any integer a and any       different from 1. When the last step is reached all the 

leaders are zero except that of the previous operand and that number must be the GCD of 

the original leaders.  

Blankinship provides an example with three positive integers                 

and        

99 1 0 0 

77 0 1 0 

63 0 0 1 
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After repetitive row reduction and elimination, the remaining row with a nonzero leader 

is       

1 1 56 -70 

which is interpreted to mean   

                     –         .  

Using this matrix algorithm the greatest common divisor is determined to be 1, 

and it is shown that it can be written as a linear combination of positive integers 

       and     This resulting equation lends effortlessly to the Chinese Remainder 

Theorem which determines a number   such that   is a unique solution to simultaneous 

linear congruences modulo  . The Chinese Remainder Theorem is applicable only 

when      , that is, the integers are relatively prime. The resulting equation from the 

example above can be simplified by reducing all of the columns by the appropriate prime. 

Then,  

                                       

Or, 

                                   . 

Substitution for          and   , produces the smallest number   which satisfies 

simultaneous linear congruences. A Euclidean ring is a ring without zero divisors in 

which an integer norm and an associated division algorithm can be defined. This 

algorithm is applicable to any Euclidean ring, as long as the elements of smaller and 

larger are interpreted according to the ring’s norm. Blankinship elaborates on how this 

http://mathworld.wolfram.com/Ring.html
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method can be rephrased for polynomials over a field. In this case, coefficients are 

referred to as the lead elements, and are reduced according to degree.  

The alternative to the Euclidean Algorithm has two major advantages. This 

method offers the ease of computer programming, as well a simplified organization 

structure for the computational work. Reduction of integers is done using modular 

arithmetic. Modular arithmetic can be used to obtain information about the solutions (or 

lack thereof) of any specific equation. The study of Gaussian Integers and modular 

arithmetic is investigated in the next chapter.  
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Chapter 5: Exploring Gaussian Integers 

This chapter explores the extensions of common properties of the integers to the 

Gaussian Integers. One defines the set of Gaussian Integers as  

                                                                         

where    denotes the set of ordinary integers. It is common knowledge that for     ,     

represents the size of a. The magnitude of a Gaussian Integer               is 

determined by the norm defined as N(            In    size is measured by the 

absolute value. In       we use the norm. 

                                    

                 

Thinking about        as a complex number, its norm is the square of its usual absolute 

value: 

                  
 

                               
 

The reason we prefer to deal with norms on  [i] instead of absolute values on  [i] is that 

norms are integers (rather than square roots), and the divisibility properties of norms in   

will provide important information about divisibility properties in  [i].                 

 In this ring we define two terms. A unit is any element which has a multiplicative 

inverse. Associates are elements which differ by a unit factor- e.g. , if   is a unit and 
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    , then   and   are associates. There are four units in      ;       . This is shown 

by using the property: 

                                     

Therefore,  
                    .         

  

Primes in      are non-zero elements which are not units and cannot be factored without 

using a unit. In other words, analogous to    primes in      have only two factors, itself or 

an associate and a unit. For example,   is prime if       just one of   or   is a unit. 

 To determine which elements in      are primes, one considers the elements, other than 0 

and units, with the smallest norm. Let 

                       
since 

                 
then   

                              
so either        are units and therefore   is prime. In general, if     is prime in   then 

  is prime in        The only primes in      are        and          In Figure 3 the 

multiples of       are represented by dots, which are obviously all composite, and those 

which are primes are represented by squares. Note that there is a geometric pattern.  

In  , there is a method called the Sieve of Eratosthenes used for finding a list of 

prime numbers, see Figure 4. Beginning by circling the smallest prime integer and 

crossing out all of its multiples, then circling the next smallest integer, and crossing out 

all of its multiples, and continuing the process one can discover a subset of prime 

integers.  
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Figure 3. Multiples of        [1, p. 6] 

Table 3. Sieve of Eratosthenes in   
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A similar method can be used in     . Figure 4 shows the result of applying the sieve in 

     up to norm 53. Notice that some numbers are prime in   but are not prime in        

This follows directly from the factorizations. A prime   in   is composite in      if and 

only if it is a sum of two squares. Thus, any prime   in   which is not a sum of two 

squares is not composite in       so it stays prime in     . In general, if   is prime in 

   but not prime in       then 

                                                                                         

so 

                     

For example, primes               are equal to the sum of two squares, and can also 

be written in the for         . In fact, one can show that every rational prime in 

the form      is prime in   but composite in   i]. 
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Figure 4. Geometric Model [6, p. 7] 

Residue classes and congruences from modular arithmetic have been defined and 

applied in   i].                           if     is a mulitple of  . 

                                                . When plotted, residue classes 

are translations of the multiples. Figure 4 shows an example of this geometric pattern. For 

instance, the residue class of              is denoted by stars while the multiples of 

    are denoted by dots. In order to determine the number of residue class that exist for 

a particular element, one must compute the norm. In general, there are    residue classes 

                , which is analogous to the fact that there are     residue classes 
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If   is prime and           , then, by Fermat’s Little Theorem,       

        . This theorem holds in               That is, if   is prime in                     

                                . Fermat’s Theorem in   can be generalized to 

Euler’s Theorem that if            , then               .      is Euler’s phi 

function. As long as two elements being relatively prime is defined in        then by 

transitivity one can say that 

                               

                                                       

There are many theorems in the field of number theory which have analogies 

from             The Chinese Remainder Theorem and Fermat’s Last Theorem, are just a 

few. In order to prove the analogy in the        , one faces the challenge of restoring 

the uniqueness of prime factorization. In      and        prime factorization holds 

uniqueness, however in        one must enlarge the set of integers to include all those 

of the form        where    and   are both in   and both halves of odd integers in  .  
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Chapter 6: Conclusion 

Algorithmic number theory is an expansive area of study in modern mathematics 

and is normally studied in a post secondary setting. In the standard secondary 

mathematics structure and sequence, algorithmic number theory is not formally 

introduced. However, some of the topics of study in high school algebra and geometry 

are underlying basics of more complex algorithms. It is important that teachers 

emphasize to students that many topics in math are cross disciplinary areas of study. 

Liberal arts are rarely ever linked to mathematics in the classroom. However, the study 

and use of cryptography plays an important role in world history as well as linguistics 

(language arts). In World War 2, the Allied forces utilized it to break the Purple Code of 

Japan which lead to strategic movements in the Pacific. One of the world’s most 

acclaimed poets, Edgar Allen Poe, fancied himself as a cryptanalyst [2, p. 2].  

In order to effectively encourage depth and complexity of understanding, it is 

important to bring together different topics of mathematics and show students how they 

are related. The National Council of Teachers in Mathematics suggests that students 

“recognize and use connections among mathematical ideas” [4, p. 1]. In algebra, students 

could be introduced to the matrix method of solving systems of equations, as well as for 

factoring equations. Following matrix instruction, students can use matrix techniques on 

various types of mathematics problems, in order to make connections and use algebraic 

symbols to represent various solutions. Connections between the various concepts will 

certainly broaden the understanding of each topic and thus increase students’ appreciation 

for the beauty of mathematics and numerical interactions.  
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