
Copyright

by

Lei Gao

2005

The Dissertation Committee for Lei Gao

certifies that this is the approved version of the following dissertation:

SAR: Semantic-Aware Replication

Committee:

Mike Dahlin, Supervisor

Lorenzo Alvisi

James C. Browne

Greg Lavender

Arun Iyengar

Harrick M. Vin

SAR: Semantic-Aware Replication

by

Lei Gao, B.S.; M.A.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2005

Dedicated to my beloved wife,

my caring parents,

and my grandma who always lives in my heart.

Acknowledgments

Thanks to Mike Dahlin, my research advisor, who offered me the opportunity to work in

the LASR lab with a group of talented and energetic people. Mike showed me the art and

science in research in computer systems. His valuable suggestions and the discussions on

research ideas lead me towards better and clearer understanding of my research subject.

Further more, those valuable inputs have been the keys for composing this thesis and my

other publications.

I must also extend my thanks to Professor Lorenzo Alvisi and colleagues Amol

Nayate, Jiandan Zheng, Yin Jian, JP Martine, Jeff Napper, Ramakrishna Kotla, and Ravi

Kokku, not only for their cooperative works and helping hands during these school years,

but also for the friendly and relaxing working environment created by them.

Last, but not the least, I would like to extend my appreciation to my family and all

my friends for their long-term caring and support.

Lei Gao

The University of Texas at Austin

December 2005

v

SAR: Semantic-Aware Replication

Publication No.

Lei Gao, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Mike Dahlin

This dissertation presents a replication framework that facilitates semantic-aware data

replication (SAR) in wide area networks (WANs). WAN data replication is fundamen-

tally difficult. As a result, generic replication algorithms must make compromises among

Consistency, Availability, Response time, and Partition resilience (CARP) when used in

WANs. This dissertation seeks to design algorithms based on specific semantics of the

shared data sets (e.g. data properties, workload characteristics, and update patterns) to

achieve the optimized CARP trade-offs. Integrating a set of semantic-aware algorithms us-

ing distributed objects to form the SAR framework, we implement a practically important

e-commerce application, the distributed TPC-W benchmark. Our prototype evaluations

show significant improvements on system availability and response time while preserving

the consistency guarantees desired by the TPC-W benchmark. The primary focus of the

dissertation is on the development of the SAR framework. Within the framework, con-

tributions include (a) exploiting application semantics using the object-oriented approach,

(b) employing a hybrid method that integrates a number of novel replication algorithms to

make an important class of applications work, (c) proposing a novel replication algorithm

for the multi-writer/multi-reader replication scenario with a high access locality, and (d)

vi

outlining a general purpose replication library that uses semantic-aware objects for building

other distributed applications in WANs.

vii

Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1 Introduction 1

1.1 The Evolution of Internet Service Architecture 3

1.1.1 The client-server architecture . 3

1.1.2 The cluster-based architecture . 4

1.1.3 Client-side cache and proxies . 5

1.1.4 Edge service architecture . 6

1.2 Dissertation Focus . 7

1.2.1 The challenge in the edge service architecture 8

1.2.2 Challenges in general WAN replication 8

1.3 Goal and Contributions . 9

1.3.1 Goal . 9

1.3.2 Contributions . 9

1.4 Dissertation Map . 12

viii

Chapter 2 Coping with Internet Failures - the model 14

2.1 The End-to-end Service Availability . 15

2.2 Network Failure Model . 16

2.2.1 Model abstraction . 16

2.2.2 Model parameters . 17

2.3 Masking Network Failures . 18

2.3.1 Workload and methodology . 19

2.3.2 Client independence . 20

2.3.3 Network routing . 29

2.3.4 Combined Techniques . 30

2.4 Discussions . 33

2.4.1 Result summary . 33

2.4.2 Dissertation context . 33

Chapter 3 Semantic-Aware Replication for TPC-W Benchmark 35

3.1 TPC-W Background . 38

3.2 System Design . 39

3.2.1 Overall architecture . 39

3.2.2 Design Principles . 41

3.2.3 Distributed objects . 42

3.3 System Evaluation . 53

3.3.1 Environment and implementation . 53

3.3.2 Performance . 54

3.3.3 Availability . 58

3.3.4 Consistency . 61

3.4 Summary . 66

3.4.1 Scalability . 66

3.4.2 Consistency related issues . 67

ix

Chapter 4 Dual-Quorum Replication 69

4.1 Introduction . 69

4.2 System Model and Definitions . 73

4.3 Dual Quorum Protocol Design . 75

4.3.1 Dual quorum protocol . 76

4.3.2 Dual quorum with volume leases . 79

4.3.3 Correctness . 85

4.4 Evaluation . 90

4.4.1 Response time . 90

4.4.2 Availability . 95

4.4.3 Communication Overhead . 98

4.5 Summary . 100

Chapter 5 Towards the Unified Replication Architecture 102

5.1 Design of PRACTI Replication . 104

5.1.1 Design overview . 104

5.1.2 Separate invalidations from bodies 106

5.1.3 Imprecise invalidations and interest sets 107

5.2 The Replication Microkernel Architecture 109

5.2.1 PRACTI controller . 110

5.2.2 Disentangle mechanism from policy 111

5.2.3 Replication microkernel architecture 111

5.3 The PRACTI Implementation of TPC-W Objects 113

5.3.1 Topology independence . 113

5.3.2 Numeric updates . 116

5.3.3 TPC-W profile object . 119

5.4 Case Study . 123

5.4.1 Mobile storage . 124

x

5.4.2 WAN-FS for Researchers . 126

5.4.3 Generalized APIs . 127

5.5 Discussion . 128

5.5.1 Support for replicated database . 128

5.5.2 Cross-object consistency . 129

Chapter 6 Related Work 130

6.1 General Data Replication . 130

6.1.1 Web caching . 130

6.1.2 Database replication . 131

6.1.3 Replication with eager consistency 132

6.1.4 Replication with relaxed consistency 133

6.2 Semantic-aware replication approaches . 134

6.3 Object-oriented Replication/Distribution Approaches 135

6.4 TPC-W benchmark related systems research 136

Chapter 7 Future Directions 138

7.1 Distributed Data Stream Management . 138

7.2 Adaptive Replication . 139

7.3 Dynamic Replica Placement . 140

Chapter 8 Conclusions 141

Bibliography 144

Vita 160

xi

List of Tables

2.1 Default parameters for failure model. 18

2.2 Web access trace parameters. 19

3.1 Distributed object state replication and propagation. 52

xii

List of Figures

1.1 The client-server architecture . 4

1.2 The cluster-based architecture . 5

1.3 The client-server architecture with caching . 6

1.4 The edge service architecture . 7

2.1 Session result v. state installation time. Each region between two lines represents

the fraction of sessions that can be handled by the specified technique plus those

above it in the graph. 23

2.2 Session results as network failure rates vary. 24

2.3 Session failure rate v. number of cached service extensions. 26

2.4 Availability improvement v. fraction of services. 27

2.5 Session failure rate v. maximum tolerable time required. 28

2.6 Session failure rate v. network failure rate. 31

2.7 Session failure rate v. network failure rate (all techniques). 32

3.1 Internet edge service architecture . 36

3.2 The network configuration of WAN service architectures. 54

3.3 System response time as the workload increases. 58

3.4 700-second session with network outage lasting for 50 seconds. 59

3.5 The back-order rate. 62

xiii

3.6 Staleness of local best-seller lists subject to workload & the base size. 65

4.1 The edge service architecture . 70

4.2 Dual quorum architecture overview. 75

4.3 Request processing scenarios . 77

4.4 IQS server operations (pseudocode) - Dual quorum with volume leases . . . 80

4.5 OQS server operations (pseudocode) - Dual quorum with volume leases . . 81

4.6 Average response time . 92

4.7 Response time vs. write rate . 93

4.8 Average response time vs. access locality . 95

4.9 System unavailability . 97

4.10 Communication overhead . 100

5.1 High level PRACTI architecture for one node. 105

5.2 Architecture comparison for the edge server . 112

5.3 Synchronization time among devices for different network topologies and

protocols. 124

5.4 Configuration for “mobile storage” experiments. 125

5.5 Execution time for the WAN-Experiment benchmark. 127

xiv

Chapter 1

Introduction

In recent years, Internet services have evolved from publishing simple static content to

hosting dynamic, interactive applications backed up by large-scale storage systems. This

rapid change has revealed limitations of the traditional Internet service architecture and

driven the development of new technologies to deliver Internet services to end users with

improved response time and availability.

In additional to designing Internet services with good presentation and rich fea-

tures, service providers need to improve the availability and response time of their services

to attract customers. Because the Internet is convenient and fast, it has become a crucial

method for delivering to end users business solutions, including online commerce, supply

chains management, online health care, and grid systems for scientific research. For in-

stance, purchasing a book online at home (or in the office) is more convenient than driving

to the bookstore; integrating the flow of data between customers and suppliers via web-

based supply chains can reduce inventory and cost, add product value, extend resources,

accelerate time to market, and help retain customers; sharing medical records electroni-

cally within the healthcare industry can increase physician efficiencies and reduce costs.

Although innovative business concepts are essential to many Internet services, preserving

and maximizing the benefits of the Internet, i.e. being convenient and fast, play important

1

roles in operating Internet services. By the time a class of Internet service becomes mature

and standardized, the quality of the service, such as the service availability and response

time, will determine the popularity of service providers in the particular type of Internet

service.

Because the traditional Internet service architecture requires most Internet services

to be delivered to end users through wide area networks (WANs), the service availability

and response time are primarily limited by the relatively frequent network failures and

volatile network delays in WANs. The abstraction of the traditional Internet architecture

consists of a central server (or a server cluster) hosting services at the site of the service

provider and a set of clients, normally web browsers, accessing the central server from

local machines of end users. An end user accesses the service by submitting requests

to the central server via the browser. The information presented to an end user as the

result of the user’s requests is computed based on the user’s requests and the state of

the server. The communication between a user and the central server is over WANs that

are uncontrolled environments in which network congestion and hardware failures lead

to partitions; furthermore, routing through multiple ISPs may causes long and volatile

delays. Those WAN characteristics prevent the central server from being highly accessible

to end users and introduce a large overhead in the end-to-end response time. Furthermore,

because both user requests and the server state are dynamic, the information returned to

the end user is difficult to cache by the browser or the user proxy. One cannot simply use

traditional web caching techniques to improve both the availability and response time of

Internet services on the traditional architecture.

This dissertation offers a solution to effectively replicate dynamic data to improve

the availability and performance of Internet services. By leveraging application-specific

semantics, our solution, semantic-aware replication (SAR), provides the replication support

for the edge services architecture that distributes business logic (code) and the underlying

storage system (data) onto different geographical regions to minimize the communication

2

in WANs. While other studies have addressed issues for distributing business logic [3, 9,

21, 119, 127] and routing of client queries [2, 16, 40, 119, 133] among distributed server

replicas, this dissertation focuses on the replication of storage systems that are shared

by distributed server replicas. While preserving the required consistency guarantees for

the shared data, our replication solution minimizes the synchronous communication across

WAN when accessing an Internet service to enhance the service availability and response

time.

1.1 The Evolution of Internet Service Architecture

The ongoing evolution of Internet service architectures aims to enhance the availability

and response time of Internet services. In this section, we will first present the basic

architecture, the client-server architecture, that consists of a central server and a set of

clients. Then we will describe two common variations of the client-server architecture, the

cluster-based architecture and the client-side cache and proxies. Each variation intends to

improve the client-server architecture on either the client or the server side. Finally, we

discuss the edge service architecture, an emerging architecture for pushing Internet services

closer to end users to maximize the availability and minimize the response time of Internet

services.

1.1.1 The client-server architecture

The traditional Internet service architecture consists of a central server and many web

clients, as illustrated in Figure 1.1. The central server hosts services at the site of the

service provider. A web client usually refers to a web browser running on a user’s local

machine that provides an interface for the user to access the services offered by the central

server. Using a web client, a user accesses the service by sending requests to the central

server that generates replies based on the user input and the state of the system. The

communication between the central server and the web client is over WANs.

3

WAN

DB

Service
Logic

Client

Client

Client

ClientServer

Figure 1.1: The client-server architecture

Although the Internet is a great way for making services (or information) avail-

able to end users from a central location, its traditional client-server architecture has many

drawbacks. First, the central server is a single point of failure. Second, the Internet is a un-

controlled environment where hardware failures, mis-configuration, and network congestion

lead to network partitions. Although the central server is running, users on different net-

work partitions cannot access the service. Third, network delays can be high and volatile,

especially when routing across different ISPs. The WAN delay that is up to hundreds

of milliseconds dominates the end-to-end response time of the Internet services [28, 66].

Therefore, regardless of the performance improvement brought to the central server in pro-

cessing user requests, end users will experience little improvement on the service response

time.

1.1.2 The cluster-based architecture

Cluster-based techniques eliminate the single point of failure in the client-server architec-

ture by providing server redundancy at the site of the service provider. Some cluster-based

architectures [4, 111] use a primary server to actively process requests and other servers

in the cluster are backups for the primary servers. When the primary server becomes

unavailable, one of the backups becomes the primary server to continuously process re-

quests. Some other cluster-based architectures [17, 79, 83] consider all servers equal and

synchronously forward requests to all servers in the cluster. Special protocols are required

to maintain the memberships of all active servers. For scalability purposes, cluster-based

4

WAN

Server Server
Cluster Cluster

DB

Service
Logic

Client

Client

Client

Client

DB

Service
Logic

DB

Service
Logic

LAN

Server
Replica

Server
Replica

Server
Replica

Figure 1.2: The cluster-based architecture

architectures may partition the service and the underlying data sets onto different sets of

servers in the cluster. When client requests come in, a load balancer routes the requests to

the server(s) of the appropriate service partition based on the nature of requests. Figure 1.2

illustrates the abstraction of the cluster-based architecture.

However, two other drawbacks in the traditional client-server architecture are not

addressed by the cluster-based solutions. Because the server cluster runs at one central

location, network partitions can still prevent end users of other partitions from accessing

the service running on the server cluster. And WAN delays still dominate the end-to-end

response time.

1.1.3 Client-side cache and proxies

Figure 1.3 presents the abstraction of the client-server architecture that employs cache

techniques to improve the availability and response time of Internet services [23, 47, 52, 64,

75, 57, 132]. There is a reason to be concerned that caching alone will not provide significant

improvement because an increasing amount of HTTP traffic is uncachable [38, 129]. The

traditional client-side cache or the proxy cache saves web documents from the central

server onto local machines. A request to the same document will be satisfied by the locally

5

WAN

DB

Service
Logic

Client

Client

Client

ClientServer

Cache

Cache

Cache

Cache

Figure 1.3: The client-server architecture with caching

cached copy. Usually the central server specifies a time-to-live value [81] associated with

each document. The client polls the server for changes to the cached document when the

time-to-live value expires. Both client-polling [52] and server-pushing [75, 132] techniques

can be used to refresh the cached documents.

Traditional caching techniques do not effectively minimize the necessary commu-

nication between a client and the central server when dynamic web pages are considered.

Although some techniques allow the static segments of web pages to be cached [24, 37],

the dynamic segments are always generated and sent by the central server. As long as one

WAN trip is required to the central server to process each client request, network partitions

and WAN delays are unavoidable.

1.1.4 Edge service architecture

To minimize the effect of network partitions and WAN delays on Internet services, we need

a new model that can bring the services near end users. The edge service architecture [2] is

an example of the new model. In the edge service architecture presented in Figure 1.4, both

the business logic and the underlying storage system are replicated onto server replicas,

namely edge servers, that are distributed into geographically different regions closer to

end users. User requests are directed to the nearest available edge server with routing

techniques [2, 16, 40, 119, 133]. Upon receiving a user request, an edge server processes

the request by operating on its local data. The edge server communicates with other edge

servers and the central server over WANs to propagate any updates to the shared data.

6

…WAN

Central
Server

DB

DB

Shared Data

DB

Service
Logic

Edge Server

Service
Logic

Service
Logic

Client

Client

Client

Client

Figure 1.4: The edge service architecture

However, an edge server is not required to fully replicate the central server. Based on

application needs, data and services can be partially or fully replicated on edge servers.

Pushing Internet services closer to end users effectively address all three drawbacks

in the traditional Internet architecture. Because edge servers are widely distributed, there

is no single point of failure. Using appropriate re-routing techniques, the system can direct

end users to the next closest edge server when their default edge server becomes unavailable.

Furthermore, because users access Internet services through their nearest available edge

servers and edge servers can process user requests using their local data, the service is

unlikely to be affected when network is partitioned. As long as an end user can connect

to his local ISP, he should be able to access the service through the edge server located

within that ISP’s network although this ISP might have temporary connectivity problems

with other ISPs. Finally, network delays within an ISP are much shorter and less volatile

compared with delays for packets going across multiple ISPs or across countries.

1.2 Dissertation Focus

The dissertation focuses on providing the replication support for the edge service architec-

ture to deliver Internet services with the optimized CARP (i.e. Consistency, Availability,

Response time and Partition resilience) trade-offs. Currently, the challenge in building

the edge service architecture is to effectly support the replication of dynamic data among

servers. The challenge comes from the theory that no generic replication algorithms can

7

achieve the optimized CARP trade-off desired for Internet services. In this dissertation,

we build a WAN replication library by leveraging on application-specific semantics, which

circumvents limits in the general WAN replication.

1.2.1 The challenge in the edge service architecture

The challenge in building the edge service architecture is to effectively maintain the consis-

tency of the shared data operated by all edge servers and the central server. The advantage

of the edge service architecture is to have user requests processed by edge servers with their

local data with a minimum amount of communication to other servers. It requires both

business logic (code) and storage systems (data) to be replicated on those edge servers.

Many systems for business logic (code) distribution and execution at edge servers have been

built [3, 9, 21, 119, 127], but the core challenge, dynamic data distribution and consistency,

still remains.

1.2.2 Challenges in general WAN replication

Although web-scale replication is well understood for traditional web caching where all

updates are made at a central server [23, 47, 52, 64, 75, 57, 132], replication and consistency

for edge servers that can both read and write data are more challenging. The data on which

edge servers operate must be consistently replicated for edge servers to correctly deliver the

services. But existing studies [20, 73] have found that generic WAN replication algorithms

always have to make trade-offs among CARP.

The CAP dilemma Brewer [20] suggests that there is a fundamental CAP dilemma for

data replication in large scale systems: systems cannot simultaneously achieve both high

Consistency and high Availability if they are subject to network Partitions. As a result,

distributed code is used for caching and content assembly [2, 21, 119] but seldom used for

replication of web services with a rich mix of reads and writes.

8

The PC principle The study by Lipton and Sandburg [73] shows that there is a trade-off

between performance and consistency when data are shared by multiple nodes. The basic

principle, the PC principle, indicates that the Performance of any sequentially Consistent

algorithm is bounded by the minimal packet delay between nodes. In other words, when

two nodes are about to update the same shared value, they have to ensure that two update

events are observed in the same order by all nodes in the system to preserve a sequentially

consistent view of the shared value. Therefore, one node needs to wait for the other to

complete its current write before starting the next one.

1.3 Goal and Contributions

1.3.1 Goal

This dissertation seeks to optimize trade-offs among (CARP) consistency, availability, re-

sponse time, and partition resilience by taking advantage of application semantics. Accord-

ing to the CAP [20] dilemma and the PC [73] principle, application designers are forced

to make difficult choices among CARP when relying on generic replication frameworks for

distributing/replicating shared data in WANs. Our approach is to provide a SAR library

to support dynamic data sharing in WAN by distributed edge servers. Each replication

algorithm in the library distributes/replicates some shared data set in a specific replication

scenario based on the semantics (e.g. workloads, update topologies, and data properties)

of the shared data set. As a result, the individual algorithms can achieve the optimized

CARP trade-offs when used to replicate their target data sets.

1.3.2 Contributions

This dissertation makes the following contributions.

1. We exploit application semantics using the object-oriented approach. Although other

systems have exploited application-specific semantics in data replication, we are the

9

first to systematically encapsulate such semantic-aware replication using the object-

oriented programming abstraction. Applying the object-oriented concepts to the

semantic-aware replication is important because it simplifies the development of dis-

tributed application by hiding the complexity of consistency maintenance of the

shared data sets. In this dissertation, we implement replication algorithms as a

set of distributed objects to encapsulate the algorithm details. One benefit is that we

can implement the tunable consistency [135] by restricting the access to the shared

data from the application logic using object encapsulation. For instance, we encap-

sulate the inventory distribution within a distributed object. The object controls

the access to the store inventory from the application (business logic) by restricting

what the application can ask for. Instead of having the application ask for the to-

tal amount of inventory, the object requires the application to ask for the specific

amount of inventory desired to process a user request. Accurate information from

all edge servers is necessary to compute the total amount of inventory in store while

approximate information at the local edge server is usually sufficient to correctly

process a user purchase request. The algorithm used to establish the approximate

local inventory information among edge servers as the local information changes is

hidden from the application. In general, once objects encapsulate the complexity of

the consistency maintenance of the shared data, application programmers can focus

more on application logic. Another benefit of the object-oriented approach is its ex-

tensibility. Because current replication algorithms exist in the system in the form of

distributed objects, any optimizations of those algorithms can be easily implemented

by inheriting from the existing objects.

2. We employ a hybrid method that integrates a number of novel replication algorithms

to make an important class of applications work. Although many of the specific al-

gorithms have been used separately for other applications, bringing them together to

build the distributed TPC-W system is a significant contribution because it offers the

10

system optimized CARP trade-offs that have been proven difficult to achieve using

any of the existing algorithms alone. TPC-W is a transaction processing benchmark

for the Web that portrays an online e-commerce application. When building the dis-

tributed TPC-W application, we observe that this e-commerce application consists of

many underlying data sets, each with unique application semantics, i.e. different data

properties and workload characteristics. Our replication solution employs a number

of existing replication algorithms to separately take advantage of the unique seman-

tics exhibited by individual data sets. As a result, this hybrid method circumvents

limits in the general WAN data replication (CAP and PC) and achieves optimized

CARP trade-offs desired by the TPC-W application.

3. We propose a novel replication algorithm for the multi-writer/multi-reader replication

scenario with a high access locality. Existing replication algorithms do not provide

optimized trade-offs among consistency, availability, and response time for the multi-

writer/multi-reader replication scenario. The read-one/write-all (ROWA) protocol

family (including read-one/write-all-available) offers the optimal read performance,

but suffers from poor write availability. Quorum-based approaches yield good overall

availability, but cannot achieve the same read availability and performance as offered

by the ROWA protocol family. This dissertation proposes the dual-quorum replica-

tion algorithm that approximates the optimal read availability and performance of

the ROWA protocol family while preserving the same availability level as the quorum-

based approaches. This algorithm works extremely well under workloads consisting

of a large number of consecutive reads or writes to the same node. The dual-quorum

algorithm evolves from a TPC-W specific replication scenario, the replication of the

user profile.

4. Evolving from TPC-W specific distributed objects, our semantic-aware objects may

be used as a general purpose replication library for building other distributed ap-

plications in WANs. Although existing objects in the library are designed based on

11

TPC-W specific requirements, those objects capture the abstractions of many impor-

tant and representative data replication scenarios commonly seen in a broad range

of applications. When building new applications, some or all of the objects in the

library can be reused by matching the semantics exhibited by individual shared data

sets. For example, the inventory object implements the algorithm for solving resource

allocation problems. It can be used in other e-commerce, supply-chain, and ticket

reservation systems to allocate identical resources on distributed nodes. The order

object implements the abstraction of the single-reader/multi-writer scenario that can

be used as an administrative tool in the distributed environment to collect statistical

information from multiple nodes. The catalog object implements the abstraction of

the multi-reader/single-writer (dissemination) scenario. It can be used for the client-

server oriented data replication such as AFS and IBM sports and event information

systems. Furthermore, when data sets within applications of other classes exhibit

new semantics not captured by the existing replication library, we can introduce ad-

ditional objects to exploit the new semantics with little change required to existing

objects.

1.4 Dissertation Map

In the next chapter, we provide the motivation for the dissertation with a trace-based

simulation that quantifies the limits of the traditional Internet service architecture and

suggests new architectures that push Internet services closer to end users to improve the

end-to-end service availability.

Chapter 3 presents the semantic-aware replication (SAR) framework that allows

us to build a practically important e-commerce system with optimized CARP trade-offs.

Through our prototype system, a distributed version of the TPC-W benchmark, we show

that we can circumvent limits in general WAN replication by leveraging on application-

specific semantics. In addition, the framework consisting of a collection of distributed

12

objects simplifies the system design by applying the object-oriented concept to encapsulate

the complexity of the consistency management.

Chapter 4 describes a novel replication protocol, dual-quorum with volume leases

(DQVL), that deals with the multi-writer/multi-reader (MWMR) replication scenario with

a strong access locality. Because of limits suggested by the CAP dilemma and the PC prin-

ciple, general replication algorithms that support the MWMR replication scenario have to

either sacrifice the consistency level to improve availability and response time or reduce

the degrees of availability and response time to gain stronger consistency guarantees. But

our experience in building distributed TPC-W system suggests that we can design a new

algorithm to optimize those trade-offs for MWMR by leveraging the underlying workload

characteristics. DQVL outperforms existing replication protocols in the MWMR replica-

tion scenario when the workload exhibits a strong access (both read and write) locality.

We describe the detailed design and the evaluation of DQVL in this Chapter.

In Chapter 5, we outline our vision for the unified replication architecture. The

unified architecture merges our semantic-aware replication design with a set of power-

ful replication primitives, namely the PRACTI replication mechanisms. We describe the

architectural design of the unified replication system and the associated benefits in this

Chapter.

In Chapter 6, we describe other related work. And we discuss future research

directions in Chapter 7. Chapter 8 concludes the dissertation.

13

Chapter 2

Coping with Internet Failures - the

model

In Chapter 1, we briefly described the evolution of the Internet service architecture that

ultimately aims to enhance the availability and response time of Internet services. For the

emerging edge service infrastructure to live up to its promise, i.e. pushing services closer to

end users to improve the quality of Internet services, our semantic-aware replication (SAR)

solution is essential because it answers to the challenge in the general WAN replication by

leveraging the semantics of the shared data sets.

Before diving into the detailed discussion on the edge service infrastructure and

our SAR solution, we devote this chapter to explain the motivation of the SAR work by

quantifying limits of the existing Internet architecture using a trace-based simulation study.

And because there are extensive studies [22, 28, 41, 67, 66, 69, 80, 126] on analyzing the

end-to-end WAN performance and its impact on Internet services, our simulation focuses

on the end-to-end availability of Internet services in this chapter.

Using the simulator implemented based on the Internet failure model by Dahlin et

al. [35], we show that traditional web caching techniques alone cannot cause significant

improvement on the end-to-end Internet service availability. But with a more sophisti-

14

cated infrastructure, like the edge service infrastructure, that combines overlay routing

and more aggressive replication techniques (e.g. server replication and selection), can ser-

vice providers offer revolutionary end-to-end improvements to their Internet services.

2.1 The End-to-end Service Availability

Although several commercial hosting services today advertise 99.99% or 99.999% (“four

9’s” or “five 9’s”) server availability, providing highly available servers is not sufficient

for providing highly available service because it is not an end-to-end approach: other

types of failures can prevent users from accessing services. Internet connectivity failures,

unfortunately, are not rare. Studies measuring the end-to-end Internet availability [94, 138,

63] have reported that service delivery failure rates – even for these presumably carefully-

engineered sites – are about 2 to 3 orders of magnitude worse than state-of-the-art end-

server availability. In contrast with the 5 minutes per year of unavailability for a five-9’s

system, a typical two-9’s Internet-delivered service will be unavailable to typical clients for

nearly 15 minutes per day.

Although caching can improve file system availability [57, 64], there is reason to

be concerned that caching alone will not significantly improve WAN service availability

because much HTTP traffic is uncachable [38, 129]. This limitation motivates us to study

the potential effectiveness of other techniques such as hoarding [64], push-based content

distribution [51], relaxed consistency, mobile extensions to ship service code to proxies or

clients [7, 21, 61, 117, 119, 133], anycast [15, 40, 133], and overlay routing [97, 110, 98,

105, 54, 139]. Although the performance benefits of many of these techniques have been

studied, their potential impact on end-to-end availability has not been quantified.

This chapter seeks to understand how network failures affect the availability of ser-

vice delivery across wide area networks (WANs) and to evaluate classes of techniques for

improving end-to-end service availability. By providing a quantitative analysis of these

techniques, we hope to illustrate the effectiveness of the emerging Internet service archi-

15

tecture that employs a number of such techniques, including server replication and selec-

tion [23, 48, 68, 95, 102, 104, 135], replication of active objects [7, 21, 61, 117, 119, 133]

and overlay routing [97, 110, 98, 105, 54, 139]. While overlay routing and replication of

active objects have been extensively studied in the context of wide area networks, existing

server replication techniques are limited when used in the WAN environment (i.e. the edge

service environment). We will describe our SAR approach that offers the effective WAN

replication support for the edge service architecture in the following chapters.

2.2 Network Failure Model

2.2.1 Model abstraction

Our simulation program is based on the Internet failure model developed by Dahlin et

al. [35]. In this model, a service is available to a client when that client can communicate

with it. A service is unavailable to a client when that client cannot communicate with

it due to a network or end-host failure. For each client, a service alternates between

being available and unavailable. The model terms a period of time when a service is

continuously available to a given client an availability event and a period of time when

a service is continuously unavailable to a given client a unavailability event. A service’s

average availability is the fraction of time when a service is available to an average client,

and a service’s unavailability is the fraction of time when a service is unavailable to an

average client. The model also consider request-average availability (or unavailability) -

the fraction of requests in a data set that succeed (or fail) in accessing a service.

These definitions describe a binary on/off model of availability: if a service is reach-

able it is available; otherwise it is unavailable. Whereas the model tracks periods of com-

plete disconnection, for some applications, the network has “failed” if the bandwidth falls

below a certain level or the latency rises above some level. However, the model is reason-

ablely adequate considering that our goal is to evaluate the effectiveness of techniques that

16

can mask network failures atop a reasonable Internet failure model.

2.2.2 Model parameters

The failure model includes parameters of network failures that most directly affect tech-

niques to improve availability. The most basic parameter is failure rate: what fraction of

time are two nodes unable to communicate? The model also analyze failure patterns along

two dimensions: failure location and failure duration.

Failure duration influences the effectiveness of techniques for coping with failures.

For example, it may be simpler to use caching or prefetching to mask short failures than

long failures since masking long failures requires predicting access patterns across longer

periods of time, transferring more data to the cache, and storing more data in the cache.

Failure location influences the effectiveness of routing-based strategies. Dahlin et al.

use a simple model that classifies failures into three operationally significant categories –

“near-source,” “in-middle,” and “near-destination.” Near-source failures represent failures

of the client stub network that disconnect a source machine or source subnet from the rest

of the Internet. Near-destination failures have a similar effect on destinations. In-middle

failures represent connectivity failures in the middle of the network that prevent a pair of

nodes from contacting one another (on the default route), but where both nodes are able

to contact a significant fraction of the remaining nodes on the Internet. They also use the

term “stub failures” to refer to the combined near-source and near-destination categories.

The failure model uses a simple model for failure inter-arrival times. Given a failure

rate (expressed as a fraction of time a particular class of failures occurs at a particular

location) and an average failure duration, the model calculates the average inter-arrival

time for each class of failures. The model then assumes that failures arrive independently

with exponentially distributed inter-arrival times with the given average arrival rate.

Table 2.1 summarizes key parameters for the model. Since this dissertation makes

no claims for the contribution of the failure model, readers can refer to the study by Dahlin

17

Parameter Default value Comment

Rate 1.5% (all failures) Varies from .4% to 7.4%
1.25% (> 30s) in different data sets

Location Src: 25% All locations significant.
Mid: 50% Ratio varies widely
Dest: 25% across traces.

Duration avg = 609 sec. Appears heavy-tailed
pdf(x) = 16x−1.85

Interarrival avg = 48111 sec.

Table 2.1: Default parameters for failure model.

et al. [35] for the details on how these parameters are obtained.

2.3 Masking Network Failures

This section studies two classes of techniques for improving end-to-end service availabil-

ity by masking network failures. Client-independence techniques – such as data caching,

prefetching, mobile code, and edge servers – provide a (possibly degraded) version of a

service using local resources when the remote server cannot be contacted. Routing and

connectivity techniques use alternate network paths to route around failures.

These experiments show that the traditional web cache alone yields limited avail-

ability improvements. In the process, we also seek to quantify the potential effectiveness

of two classes techniques at improving service availability. In order to provide informa-

tion about of a broad range of techniques, our experiments abstract away implementation

details and thus provide an upper bound on the techniques’ effectiveness.

Although this section focuses on service-level techniques for improving availability,

researchers will certainly work to improve reliability at the hardware and transport layers

as well. Indeed, achieving the goal of four- or five-nine services will likely require advances

at all layers. So, in addition to the experiments described above, we assess the sensitivity

of our results to changes in the reliability of the underlying infrastructure.

18

Workload Date Clients Servers Sessions

Squid-P 3/28/00–4/03/00 1 131193 1557875
Squid-C 3/28/00 107 52526 403235
BU-P 1/17/95–5/17/95 1 4614 56789
BU-C 1/17/95–5/17/95 33 4614 68949

Table 2.2: Web access trace parameters.

2.3.1 Workload and methodology

In addition to the failure model described in the previous section, our simulator uses two

sets of web service access traces to represent Internet service access patterns. Table 2.2

summarizes key parameters for these traces. The workload is based on the Bo1 Squid

trace, a four-month trace taken at clients at Boston University [33]. This trace is old, but

it includes client cache hits, and the client-ID mappings are not changed over the trace

period. We examine both traces from the point of view of a proxy shared by all clients

in the trace (Squid-P and BU-P) and from the point of view of individual client machines

(Squid-C and BU-C) with no shared proxy. Because the Squid traces change the client-ID

mappings daily, we only look at the first day of the Squid-C trace.

For our simulations, we post-process the traces to group individual accesses into

sessions. We define a session as a set of accesses from a client (-C traces) or proxy (-

P traces) to a single server in which the maximum gap between successive requests is 60

seconds. Our figure of merit for availability is the fraction of sessions that complete without

interruption.

Our simulator tracks the references to objects in the traces and uses trace informa-

tion to classify the objects as cachable or uncachable and to identify when objects change.

It assumes that each simulated client (-C traces) or proxy (-P traces) has an infinite cache

that stores all objects accessed previously in the simulation. Otherwise, cache replacement

policies, which are not the focus of this work, will affect our measurements.

Because we do not know the details of some client independence techniques, such as

the prefetching and mobile code, we use the simulation parameter install time to represent

19

the amount of time from the first access by a client or proxy to a service until the service

has downloaded sufficient state or programs or both to the cache to cope with network

disconnections. Our default install time is 100 seconds. During the install time, clients

and proxies must access the service from cached data or via the origin server.

If the network remains up during an entire session, the simulator classifies the session

as No Failure. For sessions in which the network fails, the simulator examines the objects

referenced in the session and classifies the session as follows: Cache Hit if all requests are

for fresh cached web objects; Stale Hit if all requests are for cached web objects and if some

of those objects require updates from the server; Hoardable Degraded if the install time

for the service has completed at time of the failure and all requests are for cachable objects

but some miss; Dynamic Degraded if the install time has completed at the time of the

failure but not all session data are cachable; and Fail if the install time has not completed

at the time of the failure and either some data are not cachable or some data are cache

misses. Note that due to limitations of the trace and of the HTTP protocol, the traces

may overstate the cachability of data and may underestimate the rate of change of data.

Thus our results may understate the Stale Hit and Dynamic Degraded rates and overstate

the Cache Hit, Stale Hit, and Hoardable Degraded rates.

2.3.2 Client independence

A range of client independence techniques are available.

1. Caching. Caching hides network and server failures by serving requests from a

nearby cache rather than a distant server [57]. Most web clients today include some

form of caching.

2. Relaxed consistency and push-updates. Relaxed consistency can improve avail-

ability by allowing caches to serve potentially stale data during failures rather than

requiring the cache to use (unavailable) current data. Alternately, under a push-

updates protocol [72, 115], servers may update cached copies before clients issue

20

reads requesting the new versions. Push-updates thus improves the chance that a

cache will contain current data during a disconnection.

3. Prefetching. Prefetching brings objects close to a client before the client accesses

them. Hoarding, a form of prefetching in which a user identifies groups of ob-

jects to fetch, is effective for disconnected operation in file systems [64], and the

Microsoft Internet Explorer browser implements a hoarding option for web pages.

Server push [51, 65] such as the content distribution networks becoming commer-

cially available can be thought of as a form of server-directed prefetching. Note that

prefetching is more aggressive than the “push update” approach described in the pre-

vious paragraph. “Push update” only distributes new versions of objects that have

already been referenced by a cache, while prefetching can distribute unreferenced

objects in order to avoid compulsory misses.

4. Replication of active objects. Several researchers have proposed systems in which

active service objects may be cached or replicated and then executed [7, 21, 61,

117, 119]. These techniques may provide ways to extend the benefits of caching,

relaxed consistency (or “application-specific adaptation” [89]), and prefetching to

the significant fraction of web services that are not cachable [38, 129].

This set of experiments examines the potential effectiveness of using these client

independence techniques to improve robustness of Internet services by transforming failed

sessions that are interrupted by network disconnections into degraded sessions that are

served by the cache or by downloaded mobile extensions. Clearly, the relative advantage

of degraded sessions over failed sessions will vary from service to service: some services can

provide full service while disconnected, others can provide tolerable service across short

disconnections, and still others require continuous on-line communication with a remote

site to be effective. To cope with this wide range of service behaviors, this experiment

does not attempt to quantify the benefit of degraded service over failed service; instead it

21

seeks to quantify how often services have the option to use caching, relaxed consistency,

prefetching, or mobile extensions to improve their robustness to network disconnections.

For these experiments, we set the failure-location distribution to make all failures

“in-middle” failures, and we conduct five trials with different random seeds for the network

failure model and graph the mean and standard deviation of results. We describe improve-

ments to failure rates in terms analogous to the common definition of “speedup” [55]:

improvement =
failureRateorig

failureRatenew
.

Results. First, we examine the effectiveness of these general techniques as well as the

extent that installation time limits improvements. The y-axis of Figure 2.1 shows the

fraction of sessions classified in the categories listed above on a logarithmic scale so that

equal intervals reflect equal improvements to failure rates. The x-axis shows the install time

for each service also using a log scale, and each graph shows these results for a different

workload. When installation times are short, the combined effect of all techniques is to

improve the failure rate by at most factors of 14.4 (Squid-P), 15.4 (BU-P), 2.7 (Squid-

C) and 5.22 (BU-C) for the four workloads compared to the failure rate that would be

encountered if each request were sent to the origin server.

The improvements available from caching alone appear small (improvements to

failure rates of 1.1, 1.6, 1.1, and 1.4 for caching and of 1.1, 1.6, 1.1, and 1.4 for caching plus

relaxed consistency or push-updates). Note that the Squid workload’s lower-level caches

may hide sessions that only reference cached data, causing us to understate the benefits of

caching alone. Conversely, the BU trace are not filtered by caches, but they are old and

may reflect a workload that is unrealistically easy to cache. It seems likely that caching’s

benefits lie between these values.

In contrast with caching alone, aggressive prefetching plus caching may be able

to achieve significant improvements for those services where prefetching is feasible; the

simulations indicate upper bounds of 3.0, 6.2, 1.8, and 4.0 for this combination.

The only limiting factor to active object replication in this model is our assumption

22

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 S
es

si
on

s

State Install Time (s)

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded SessionsStale Hit Sessions

Cache Hit Sessions

No Failure Sessions

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 S
es

si
on

s

State Install Time (s)

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions
Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

(a) Squid-P (b) BU-P

0.001

0.01

0.1

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 S
es

si
on

s

Service Install Time (s)

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded SessionsStale Hit Sessions

Cache Hit Sessions

No Failure Sessions

0.001

0.01

0.1

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 S
es

si
on

s

Service Install Time (s)

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions
Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

(c) Squid-C (d) BU-C

Figure 2.1: Session result v. state installation time. Each region between two lines represents the
fraction of sessions that can be handled by the specified technique plus those above it in the graph.

that each service requires different extension code and data, and that extensions cannot

be downloaded until a service is first accessed. Under this assumption, improvements to

failure rates are limited to about an order of magnitude for these traces because if the

network is down when a service is first accessed or during the first install time of accesses,

no code and data is available to mask the failure. These “compulsory misses” also limit the

prefetching line in these graphs. If compulsory misses and initialization times are ignored,

prefetching could provide improvements in failure rates of up to 3.7, 9.7, 4.7, and 12.2 and

23

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 R
eq

ue
st

s

Failure Rate

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions
Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 R
eq

ue
st

s

Failure Rate

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions
Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

(a) Squid-P (b) BU-P

1e-06

1e-05

0.0001

0.001

0.01

0.1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 R
eq

ue
st

s

Failure Rate

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions
Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 R
eq

ue
st

s

Failure Rate

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions
Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

(c) Squid-C (d) BU-C

Figure 2.2: Session results as network failure rates vary.

replication of active objects and their data could, in principal, provide at least degraded

service 100% of the time.

The available benefits fall gradually as installation time increases and compulsory

misses become more expensive. At a 10,000 second installation time the upper bound on

availability improvements are 11.0, 11.1, 2.0, and 4.2 for the four workloads. This result is

promising: it suggests that services that need to download significant amounts of state to

provide acceptable disconnected service may have the opportunity to do so.

Next, we examine the sensitivity of our results to the underlying network failure

24

rate. Figure 2.2 shows session results for both simulated client and proxy using tow traces

(Squid and BU) as we vary network failure rates by reducing the time between failures and

leaving the failure duration distribution unchanged. All four workloads are qualitatively

similar. These data suggest the improvement in session failure rates provided by caching,

prefetching, and replicas of active objects are relatively insensitive to the underlying net-

work failure patterns between failure rates of .0125% and 12.5%. At failure rates below

that, the traces are so short that relatively few failure events occur, and our results have

too much variance to reach definitive conclusions.

The experiments above suggest that to significantly improve overall service avail-

ability, services may need to resort to prefetching and mobile extensions rather than relying

on caching alone. Unfortunately, these techniques can dramatically increase the demand

for resources at a client, proxy, or network. A key limiting factor, therefore, may be how

many resources a cache can devote to each hosted service and how many services a cache

can simultaneously host. Figure 2.3 shows session results when the simulated client and

proxy maintain only a finite number of local copies of prefetched services and mobile ex-

tensions with MFU policy to evict the rest (results for LRU replacement and exponentially

decaying average MFU are similar but not shown). Graphs (a) and (b) show configurations

for proxies shared by all clients in the trace; graphs (c) and (d) show per-client configura-

tions. For all four workloads the results are qualitatively similar, but the cache size needed

for full benefits is larger for the Squid-P workload and smaller for the Squid-C and BU-C

workloads due to the differing number of services accessed by each of these workloads.

Then, we evaluate the sensitivity of different services to client-independence tech-

niques. In the previous experiments, we generalized all web services to evaluate their

service availability improvement after applying those failure masking techniques. It is

also necessary to explore the benefit that different kind services would receive from those

client-independence techniques. Figure 2.4 shows the cumulative distribution function of

availability improvement of services examined. We eliminate services with fewer than five

25

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 S
es

si
on

s

Number of Services Replicated

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions

Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

0.0001

0.001

0.01

0.1

1 10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 S
es

si
on

s

Number of Services Replicated

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions

Stale Hit Sessions
Cache Hit Sessions

No Failure Sessions

(a) Squid-P (b) BU-P

0.001

0.01

0.1

1 10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 S
es

si
on

s

Number of Services Replicated

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions

Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

0.001

0.01

0.1

1 10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 S
es

si
on

s

Number of Services Replicated

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions

Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

(c) Squid-C (d) BU-C

Figure 2.3: Session failure rate v. number of cached service extensions.

failed access by clients in out BU trace. The graph shows that about half of services re-

ceive some (2-10 times) improvement with prefetching and replicated-object techniques.

15% of services receive improvement in 2 to 3 orders of magnitude. And there are less than

one quarter of services benefited little from those client-independence techniques. Notice

that in graph (c) and (d) of Figure 2.4 the improvement is proportional to the number of

requests made to each service. These vertical lines represent number of requests made to

each of examined web services. Failures could only occur to a particular client or proxy on

its first request to a particular service because the extension requires an install time. After

26

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

A
va

ila
bi

lit
y

Im
pr

ov
em

en
t

Fraction of Services

Imporvement with Cache

Imporvement with Prefetch

Imporvement with Replicated Object

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

A
va

ila
bi

lit
y

Im
pr

ov
em

en
t

Fraction of Services

Imporvement with Cache

Imporvement with Prefetch

Imporvement with Replicated Object

(a) BU-P (b) BU-C

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

A
va

ila
bi

lit
y

Im
pr

ov
em

en
t

Fraction of Services

Imporvement with Cache

Imporvement with Prefetch

Imporvement with Replicated Object

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

A
va

ila
bi

lit
y

Im
pr

ov
em

en
t

Fraction of Services

Imporvement with Cache

Imporvement with Prefetch

Imporvement with Replicated Object

(c) BU-P-checksum (d) BU-C-checksum

Figure 2.4: Availability improvement v. fraction of services.

the extension is installed at the client or proxy, no requests will encounter any failures for

this session. Therefore, a popular service is likely to gain better availability improvement.

Finally, we examine the maximum duration requirements for client-independence

techniques to improve service availability to different levels. Figure 2.5 shows the service

improvement as we increase the maximum time that client-independence techniques sup-

port. For both proxy traces (Squid and BU), we gain one order of magnitude improvement

at 1e + 06 seconds. In other words, to improve the service availability one degree better,

we have to mask failures lasting for 1e + 06 seconds. Although designing techniques to

27

0.001

0.01

0.1

10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 S
es

si
on

s

Maximum tolerable time

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions

Stale Hit Sessions
Cache Hit Sessions

No Failure Sessions

0.0001

0.001

0.01

0.1

10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 S
es

si
on

s

Maximum tolerable time

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions

Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

(a) Squid-P (b) BU-P

0.001

0.01

10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 S
es

si
on

s

Maximum tolerable time

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions

Stale Hit Sessions Cache Hit Sessions

No Failure Sessions

0.001

0.01

0.1

10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
of

 S
es

si
on

s

Maximum tolerable time

Failed Sessions

Dynamic Degraded Sessions

Hoardable Degraded Sessions

Stale Hit Sessions

Cache Hit Sessions

No Failure Sessions

(c) Squid-C (d) BU-C

Figure 2.5: Session failure rate v. maximum tolerable time required.

tolerate long failures could be challenging, the employed failure model suggests that long

failures are rare.

These experiments suggest that to take full advantage of client-independence tech-

niques for improving availability, the virtual machines on clients and proxies must be

scalable to handle hundreds or thousands of simultaneously downloaded extensions in or-

der to replicate a significant fraction of accessed sites. And some of techniques might

require a large amount of system resources to mask long failures. We examine the resource

management challenges posed by such a scalable workload in a separate study [27].

28

2.3.3 Network routing

In this section, we evaluate strategies that route around network failures. To simplify the

analysis, we classify strategies into two broad categories: network re-routing and server

replication and selection. The following discussions state the type of failures masked by

each strategy, how we model the strategies in our experiments, and the service availability

improvements that the strategies yield.

1. Re-routing. Techniques of this category send requests to the service’s original

server. But they may use alternate routes when failures occur. Overlay networks [97,

110, 98, 105, 54, 139] are examples of re-routing techniques. In the terminology of

this paper, these techniques address in-middle failures, but will be ineffective against

near-source and near-destination failures.

2. Server replication and selection. This category of techniques directs requests

to replicas of the origin servers when the origin servers are unreachable. Several file

systems [104] and databases [82] provide replicated servers to handle failures in dis-

tributed environments. In the context of the Web, mirror site with “manual failover”,

as well as replicated servers with anycast [15, 40, 133] can support server replication.

This class of techniques can resolve near-destination and in-middle failures but is

ineffective against near-source failures.

As in our analysis of client independence techniques, we abstract implementation

details of routing-based techniques and focus on bounding improvements that they may

provide. Several factors may limit these improvements in practice. For re-routing strate-

gies, overheads include the failure detection time and route switching time. For server

replication and selection, there are costs to maintain extra replicas and overheads to select

alternative servers. These overheads vary for different implementations and may vary for

different services (e.g. depending on failures, consistency, and semantics). Therefore, as

with client-independence techniques, clients may experience sessions handled by re-routing

29

or server replication as “degraded” with the significance of the deterioration varying on a

service-by-service and implementation-by-implementation basis.

We group requests into sessions, and classify each failure by its network location:

near-source, in-middle, or near-destination. We run each experiment 25 times and plot the

mean with 90% confidence intervals.

Results. In our first set of experiments, we vary the fraction of failures in each location

category. These graphs are omitted due to space limits. Across a wide range of ratios, the

findings are as expected: the fraction of failures that each class of techniques can handle

varies in proportion to the fraction of failures assigned to a particular location category.

For example, when in-middle failures account for 50% of all failures, techniques that avoid

in-middle failures but not others can improve failure rates by about a factor of two. Given

that experiments found significant fraction of failures at each location, Amdahl’s Law

limits improvements from routing based strategies that do not address failures in all three

locations.

Figure 2.6 shows the sensitivity of these results as we vary the network failure rate.

As for the client-independence strategies, the relative improvements to failure rates pro-

vided by these techniques remains stable over a wide range of underlying failure rates. More

study is needed to quantify the prevalence of near-source failures precisely, but the prelim-

inary result of our study suggests that near-source failure account for at least 10%-20%,

probably limiting routing-based techniques to less than an order of magnitude improve-

ment. As noted above, our methodology is likely to underestimate near-source failures.

2.3.4 Combined Techniques

Client-independence techniques are limited by compulsory misses and installation time,

and re-routing techniques are limited by near-source failures. Since these techniques fail in

different circumstances, they may be combined to reduce system unavailability.

30

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 S
es

si
on

s

Failure Rate

Re-Routing Sessions

Server Replication and Selection Sessions

Failed Sessions

No Failure Sessions

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1
F

ra
ct

io
n

of
 S

es
si

on
s

Failure Rate

Re-Routing Sessions

Server Replication and Selection Sessions

Failed Sessions

No Failure Sessions

(a) Squid-P (b) BU-P

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 S
es

si
on

s

Failure Rate

Re-Routing Sessions

Server Replication and Selection Sessions

Failed Sessions

No Failure Sessions

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 S
es

si
on

s

Failure Rate

Re-Routing Sessions

Server Replication and Selection Sessions

Failed Sessions

No Failure Sessions

(c) Squid-C (d) BU-C
Figure 2.6: Session failure rate v. network failure rate.

31

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 S
es

si
on

s

Failure Rate

No Failure Sessions Cache Hit Sessions

Stale Hit Sessions

Hoardable Degraded Sessions

Dynamic Degraded Sessions

Re-Routing Sessions

Server Replication and Selection Sessions

Failed Sessions

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1
F

ra
ct

io
n

of
 S

es
si

on
s

Failure Rate

No Failure Sessions Cache Hit Sessions

Stale Hit Sessions

Hoardable Degraded Sessions

Dynamic Degraded Sessions

Re-Routing Sessions

Server Replication and Selection Sessions

Failed Sessions

(a) Squid-P (b) BU-P

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 S
es

si
on

s

Failure Rate

No Failure Sessions Cache Hit Sessions

Stale Hit Sessions

Hoardable Degraded Sessions

Dynamic Degraded Sessions

Re-Routing Sessions

Server Replication and Selection Sessions

Failed Sessions

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1e-05 0.0001 0.001 0.01 0.1 1

F
ra

ct
io

n
of

 S
es

si
on

s

Failure Rate

No Failure Sessions Cache Hit Sessions

Stale Hit Sessions

Hoardable Degraded Sessions

Dynamic Degraded Sessions

Re-Routing Sessions

Server Replication and Selection Sessions

Failed Sessions

(c) Squid-C (d) BU-C

Figure 2.7: Session failure rate v. network failure rate (all techniques).

32

For example, Figure 2.7 shows session failure rates under a combined scheme in

which failures are masked by caching, prefetching, and active objects and in which prefetch-

ing and installation of active objects use anycast to access replicated servers. This com-

bined approach thus masks all failures except near-source failures during prefetching or

active object installation time. Figure 2.1 suggests that these results will be relatively

insensitive to increases in install time. Overall improvements in BU-P for this combined

scheme are factors of 117, 100, 18.2, and 24.5 for network failure rates of 0.0125%, 0.125%,

1.25%, and 12.5%, respectively. This relatively wide improvement range appears to be

due to experimental variation magnified by the small number of failure events observed

in the simulations. Other three graph, (a), (c) and (d) seem to have some variations in

improvement at different failure rate as well.

2.4 Discussions

2.4.1 Result summary

The simulation results above provide quantitative evidence that a centralized architecture

cannot solely rely on traditional caching technique to significantly improve the end-to-end

availability of Internet services. Although service providers can host Internet services on

highly available server clusters, deploying Internet services with high end-to-end service

availability remains problematic due to connectivity failures. A typical client may not be

able to reach a typical server for 15 minutes per day. During the disconnection, traditional

caching has limited availability improvement (speedup) of up to 1.6 while combining two

classes of techniques achieves a factor of over 100 availability improvement.

2.4.2 Dissertation context

This dissertation offers a semantic-aware replication (SAR) solution in the context of the

edge service model that is an abstraction of the infrastructure made commercially available

33

by Akamai [2]. The edge service model outlines a distributed infrastructure where Internet

services are replicated and distributed to the edge of the Internet, i.e. being physically closer

to end users rather than at the site of the service provider. Server replicas hosting replicated

Internet services at the edge of the Internet are called edge servers. On edge servers, both

business logic (code) and storage systems are replicated either fully or partially. When

an end user accesses an Internet service through a web browser, the request sent by the

browser will be directed to the nearest available edge server by some routing techniques.

Although there is no limit to how many edge servers can be used in a typical deployment,

our SAR solution is targeted to support up to a few hundreds of edge servers. Because

the dissertation focuses on the data replication component of the edge service model, we

assume that we can simply refer to existing techniques to implement other components

such as the routing of user requests and security related issues.

34

Chapter 3

Semantic-Aware Replication for

TPC-W Benchmark

Existing replication approaches fail to provide the optimized trade-offs among CARP

(consistency, availability, response time, and partition-resilience) when used to replicate

dynamic data in the edge service architecture. As we have described in Chapter 2, tra-

ditional architectures are incapable of delivering high end-to-end availability (i.e. “four-

9’s”(99.99%) or “five-9’s”(99.999%) of availability) and low response time (i.e. approxi-

mating LAN delays). The emerging edge service architecture aims to solve this problem

by distributing Internet services to a collection of edge servers across WANs and near end

users to process requests [2, 9, 21, 119, 127]. This architecture minimizes communication

over WANs during request processing in order to improve service availability and response

time. However, studies [20, 73] suggest that large-scale distributed systems like the edge

service architecture always face trade-offs among CARP when distributing/replicating its

underlying dynamic data.

This chapter describes the semantic-aware replication (SAR) that offers the opti-

mized CARP trade-offs for our prototype e-commerce system running atop the edge service

architecture by exploiting the semantics of shared data sets and encapsulating the corre-

35

Edge
Server

Distributed ObjectsDistributed Objects

Business LogicBusiness Logic

MLML

DBDB

Edge
ServerClient

Backend Cluster

Clien
t

Clien
t

HTTP ServerHTTP Server

Business LogicBusiness Logic

DBDB

Edge Server M
e
sa

g
e
 L

a
ye

r

Distributed Objects

WAN

.

.

.

Client

Client

..
.

Figure 3.1: Internet edge service architecture

sponding replication techniques within distributed objects [121]. Standard e-commerce im-

plementations allow business logic (e.g. servlets, Enterprise Java Beans, or CGI programs)

to access the central databases directly. However, if business logic were distributed, ac-

cesses to a central database would become costly remote operations. We target an edge

service architecture that replicates both business logic and data to edge servers to minimize

the accesses to a central database. Data shared among the edge servers are encapsulated

within distributed objects that are aware of the semantics (i.e. workloads, update topolo-

gies, and data properties) of the underlying shard data. As illustrated in Figure 3.1, we

deploy business logic, distributed objects, a database, and a messaging layer on a set of

distributed servers that are accessed by clients via standard HTTP front ends. The dis-

tributed objects interpose between the business logic and the local database to control data

access. They also communicate with other instances of the distributed objects through the

persistent messaging layer [31, 59, 109] to manage data replication and consistency.

Our prototype system targets the TPC-W benchmark [32] that simulates an online

bookstore. To explore data replication issues in the edge service architecture, our study

uses a variation of the TPC-W benchmark, called the distributed bookstore. When we

replicate the benchmark on multiple edge servers and allow edge servers to process requests

using their local databases, we have to manage the consistency of the data across multiple

databases in WANs.

36

SAR includes five simple distributed objects to manage the consistency of different

shared data sets of the prototype system. The catalog object maintains catalog information

in our system. It exploits the fact that catalog updates occur at one place and are read at

many others. We use the order object to collect finalized orders at multiple locations and

process them at the backend server. This object takes advantage of the fact that many

nodes write orders but only one needs to read them, and it exploits the loose requirements

on sequencing updates across nodes. The profile object represents the user profile infor-

mation. It takes advantage of the low concurrency of accesses to each record, and it makes

use of field-specific reconciliation rules to cope with (rare) update conflicts [114]. The in-

ventory and best-seller-list objects track a bookstore’s inventory and best seller lists. The

inventory object exploits the fact that edge servers care about whether the inventory is

zero but do not need to know the actual value. The best-seller-list object takes advantage

of the fact that a few purchases of a non-popular book do not necessarily alter its ranking.

Encapsulating database access behind object-specific interfaces yields many ad-

vantages. First, client requests are locally satisfied by distributed objects, which asyn-

chronously manage the local database consistency. Thus, edge servers are able to continue

to operate even in the case when network partitions occur; and because requests are satis-

fied locally at edge servers, the response time is better than that of the centralized system.

Second, each distributed object can make use of object-specific strategies to replicate data

and to enforce exactly the consistency semantics it requires. Third, distributed objects re-

strict data access to a narrower interface than a general database interface, which permits

us to relax consistency guarantees internally while preserving the consistency requirements

from the application.

We construct and evaluate a prototype system based on Apache web servers, Tom-

cat Servlet engines, the JORAM implementation of the Java Message Service, and a DB2

database, and we find that the prototype has excellent availability, consistency, and per-

formance. Under this implementation, our edge servers approximate the ideal system in

37

which high speed and reliable links connect end users to service front-ends and connect

service front-ends to backend databases. For instance, our system continues to process re-

quests with the same throughput and response time before, during, and after a 50-second

network partition that separates edge servers and the backend server. And the response

time of our system is nearly 5 times better than that of the traditional centralized system,

in which end users connect to web servers via slow WAN links.

Qualitatively, we find the semantic-aware consistency rules easy to build and un-

derstand. We speculate that this approach may be useful for engineering systems for two

reasons. First, once developed, distributed objects encapsulate the complexity of data

replication and provide simple interfaces for engineers to use to build edge services without

worrying about the intricacies of consistency protocols. Second, for the experts construct-

ing the distributed objects, the restricted interface makes it easier to build distributed

objects with the ability to handle consistency than to write reconciliation rules [114] for

generic database interfaces.

SAR’s main contribution is to demonstrate that object-based data replication makes

it easy to build a distributed e-commerce web service and thereby dramatically improve

both availability and performance. Although we focus on TPC-W and the more demanding

distributed bookstore benchmark in this study, we speculate that similar techniques might

also apply to a broader range of applications. Some consistency optimizations we exploit are

similar to some proposed in previous studies [84, 86, 112, 114, 121, 135], but our emphasis

is on how to integrate application semantics with the design of replication algorithms

and effectively apply the class of specially tuned algorithms to make a broad range of

applications work.

3.1 TPC-W Background

TPC Benchmark W (TPC-W) is an industry-standard transactional web benchmark that

models an online bookstore [32]. It is intended to apply to any industry that markets

38

and sells products or services over the Internet. It defines both the workload exercising a

breadth of system components associated with the e-commerce environment and the logic

of a business oriented transactional web server. The benchmark defines activities including

multiple concurrent online browsing sessions, dynamic page generation from a database,

contention of database accesses and updates, the simultaneous execution of multiple trans-

action types, and transaction integrity (ACID properties). Above activities are the crucial

components in many e-commerce applications, but their weights may be different across

applications.

The benchmark defines three scenarios (workload mixes): browsing, shopping, and

ordering. The browsing scenario consists of a mix of 95% browsing interactions, such as

searches and product detail displays, and 5% ordering interactions, such as shopping cart

activities and customer registrations. The shopping scenario consists of a mix of 80%

browsing interactions and 20% ordering interactions. The ordering scenario comprises

equal amounts of browsing and ordering. For scalability measurements, the benchmark

defines the number of data entries which include numbers of unique books, registered

customers, and book photos of various sizes.

The primary metric of the TPC-W benchmark is WIPS, which refers to the average

number of Web Interactions Per Second completed. This metric is used for measuring

the system throughput. Another metric is the Web Interaction Response Time, (WIRT),

which is used for measuring the responsiveness of the system.

3.2 System Design

3.2.1 Overall architecture

As Figure 3.1 indicates, the edge services architecture consists of a backend cluster and

a collection of edge servers distributed across the network. The common components on

both edge and backend servers are business logic, a messaging layer, a database, and the

39

distributed objects. Edge servers have an additional component, the HTTP front-end

server, through which clients access the service.

The edge services model works as follows. Clients use HTTP to access services

through edge servers that are located near them. A number of suitable mechanisms for

directing clients to nearby servers exist [2, 16, 40, 119, 133], and these mechanisms are

orthogonal to our design. The HTTP front-end passes user requests to business logic units

for processing and forwards replies from the business logic units (e.g. servlets, cgi, or ASP)

to the end users. The business logic executes client requests on the edge server, and it

stores and retrieves shared data using the interface provided by distributed objects. Each

distributed object stores and retrieves data in the local database and also communicates

with remote instances of the object in order to maintain the required globally consistent

view of the distributed state [121]. Distributed objects use JDBC to operate on the local

database and use the messaging layer to communicate with instances on other servers.

The messaging layer uses persistent message queues [31, 59, 109] for reliable message

delivery and an event-based model for message handling at the receivers. To ensure exactly

once reliable delivery even in the presence of partitions and machine crashes, the local mes-

saging layer instance logs messages on the local disk before attempting to send them. Upon

the arrival of each message at its destination, the destination’s messaging layer instance

invokes the message handler to pass this message to the corresponding distributed object

instance. The messaging layer provides transactional send/receive for multiple messages.

We choose IBM DB2 for the database in our distributed TPC-W system. On each

edge server, we use the Apache Web Server as the HTTP front-end and Tomcat servlet

engine to host business logic servlets. We use a third party implementation of Java Message

Service (JMS), called JORAM [60], for the messaging layer. In some of our experiments, we

find that the relatively untuned JORAM implementation limits performance. Therefore,

as a rough guide to the performance that a more tuned messaging layer might deliver, we

also implement a quick messaging layer that provides the same interface as JORAM but

40

without the guaranteed correct behavior across long network partitions or node failures.

We report performance results for both systems. We modify the TPC-W database schema

and business logic for the TPC-W online bookstore from the University of Wisconsin [118]

to fit in our object-based edge service architecture. We add five distributed objects on

both the backend and edge servers to manage the shared information, namely the catalog,

order, profile, inventory, and best-seller-list.

In the rest of the section, we focus our discussion on the design of the five distributed

objects. By targeting consistency requirements for each individual distributed object, we

explain how to design simple consistency models to resolve the CAP dilemma in building

a replication framework for edge services at the object level.

3.2.2 Design Principles

Design trade-offs for our distributed TPC-W system are guided by our goal of providing

high availability and good performance for e-commerce edge services as well as by technol-

ogy trends. When making trade-offs, we consider the fact that technology trends reduce the

cost of computer resources while making human time relatively expensive [26]. Therefore,

we are willing to trade hardware resources, such as network bandwidth and disk space,

for better system availability and shorter latency for users as well as design simplicity and

better consistency for system builders. Our first set of priorities are, therefore, availability

and latency because both availability and latency directly impact the service quality expe-

rienced by end users. The second set of priorities are the consistency and simplicity of the

system. Good consistency that restricts the range of observable behaviors by the memory

system [42] is a high priority because a key challenge in any relaxed consistency system

is reasoning about subtle corner cases. Increasing the strength of consistency guarantees

makes this reasoning more straightforward for system designers. Simplicity is important

for making the approach useful in practice by making the system feasible to understand,

build, and deploy. The third and lowest set of priorities is optimizing resource usage such as

41

network bandwidth, processing power, and storage. Therefore, we seek a simple distributed

object architecture that improves availability and response time while keeping throughput

and system cost competitive with existing systems.

We have made several design decisions based on these priorities. We focus our

attention on moderate scale replication with 2-20 edge server locations rather than large

scale replication to hundreds or thousands of edge servers. Recent work has suggested

that moderate scale replication provides better availability when consistency constraints

are considered [137], and this assumption also simplifies the design of distributed objects.

Because our main objective is to show the feasibility and the effectiveness of using the dis-

tributed object architecture for WAN replication, we place a heavy emphasis on simplicity,

and we bypass a number of potentially attractive optimization options for each distributed

object. Future work may further enhance the benefits of the architecture by systematically

optimizing performance.

Our distributed object architecture assumes that edge servers are trusted. This

requirement of trust is another argument for focusing on replication to a few (2-20) edge

servers and not hundreds or thousands of replicas. This trust model is reasonable in

the environment where the service provider owns and manages geographically distributed

service replicas, and it also is appropriate when a service provider out-sources replication

to a trusted edge service infrastructure provider or CDN that ensures physical and logical

security of edge-server resources. We also assume edge servers and the backend server

communicate through secured channels although our current prototype does not encrypt

network traffic.

3.2.3 Distributed objects

Distributed objects may be a simple way to achieve high availability, good performance, and

good consistency compared to a more general shared data interface for two reasons. First,

the restricted interface of a given object encapsulates the internal state of the object and

42

may prevent data inconsistencies from being observed. Second, the fact that the workload

may be known to each object allows the data replication protocol used by the object

to exploit the specific workload characteristics to improve availability, responsiveness, or

consistency.

In this section we discuss the design of the key distributed objects in our distributed

TPC-W system. We seek to demonstrate insides on how semantic-aware designs of data

replication/distribution can enhance the availability and responsiveness of the system.

The catalog object

The catalog object provides the abstraction of one-to-many updates. It accepts writes at

one place and propagates changes to multiple locations for subsequent reads. In the dis-

tributed TPC-W system, we use this object to manage catalog information, which contains

book descriptions, book prices, and book photos. Update operations on catalog data are

performed at the backend and propagated to edge servers.

The interface of the catalog object includes a write operation that takes a key-value

pair, and a read operation that takes a key and returns the corresponding value. The

backend server issues updates by invoking the write operation, and edge servers retrieve

the updates with the read operation. An update from the backend server must be seen

at some future time by all edge servers, who retrieve a set of values corresponding to

keys. For correctness, the system must guarantee FIFO consistency [113] (aka PRAM

consistency [73]) in which writes by the backend are seen by each edge server in the order

they were issued. Enforcing FIFO consistency guarantees that, for example, if the backend

server creates an object and then updates a page to refer to that object, then an edge server

that reads the new page will also see the new object. Note that because only one node

issues writes, FIFO consistency is equivalent to sequential consistency [86]. But for this

same reason it is much easier to implement than general sequential consistency. Also note

that although FIFO consistency provides strong guarantees on the order that updates are

43

observed, it does allow time delays between when an update occurs and when it is seen by

an edge server. Also, FIFO consistency does not require different edge servers to operate

in lock step. For example, if a web page is updated while an edge server, se1, is unable

to connect to the backend server, another edge server, se2, may still read and make use of

this updated page while se1 continues to use the old version.

In our prototype, the catalog object uses a simple push-all update strategy to dis-

tribute updates. Once the update is made at the backend, the catalog object immediately

hands it to the local messaging layer for forwarding to all edge servers. Some time later, the

update arrives at each edge server. The catalog instances at edge servers read the update,

apply it to the local database, and serve it when requested by clients. Although this simple

strategy can potentially use a lot of bandwidth by sending all updates, we see little need

to optimize the bandwidth consumption for our TPC-W catalog object because the writes

to reads ratio is quite small for the catalog information. In particular, TPC-W benchmark

defines the catalog update operations as 0.11% of all operations in the workload.

This simple implementation meets our system design priorities. It provides high

availability and excellent latency to our system because edge servers can always respond

immediately to requests using local data. Furthermore, this implementation provides FI-

FO/PRAM consistency for shared catalog information using a straightforward approach.

Variations of the catalog object may be useful for other applications that require one-

to-many data dissemination semantics. For example, a dissemination object could provide

a mechanism for propagating edge service infrastructure information such as program or

configuration updates. Similar behaviors can also be found in other applications such as

IBM’s geographically-distributed sporting and event service [23], traditional web caching,

content assembly, dynamic data caching [24], and personalization. Systems may benefit

from additional features/optimizations under different workloads. We discuss three of such

features/optimizations that may be useful to other distributed applications, but that are

not included in the design of the catalog object.

44

1. Atomic multi-object update: Some distributed applications require a mechanism to

atomically update multiple objects. For example, it may be desirable to atomically

update several component parts that are assembled into a single page [25]. Given

the support of transactional updates provided by most persistent messaging layers,

it should be straightforward to modify the catalog object to support atomic multi-

object operations (read/write). Potential costs for this feature include a slightly

more complex interface and/or a reduction in concurrency of writes and reads due to

locking.

2. Data lease: The data served by some time critical applications, such as stock quotes,

are meaningful only within a fixed interval. If the local data becomes excessively

stale (for instance due to a network partition), some time-critical applications may

prefer to deny service rather than serve bad data. To extend our catalog object to

support such functionality, we could add a new parameter in the write operation to

specify a lease [39, 47, 131] for each update. Of course such a feature may reduce

availability because servers may be forced to deny service rather than serving stale

data.

3. Bandwidth constrained update: Applications that have high write/read ratio with

large data objects might not want to use a push-all strategy for propagating updates

because it would take a lot of bandwidth to send all updates to all edge servers. Thus,

applications with high write/read ratio might need a more sophisticated algorithm to

propagate updates. Nayate et al.’s transparent information dissemination system [87]

can be viewed as a highly tuned version of our catalog object. It implements both

optimization 2 (data lease) and optimization 3 (bandwidth constrained update).

The order object

The abstraction of the order object is that of many-to-one updates. It gathers writes at

various locations and forwards them to a single place for reading. In our distributed online

45

bookstore application, we use the order object to manage the propagation of completed

orders. Locally, edge servers accept user orders, which need to be processed at the backend

server for fulfillment.

The interface for the order object includes an insert operation that takes an order,

an order sequence ID, an edge server ID, and a message handler that processes orders when

they arrive from edge servers. Each order is identified by the pair, edge server ID and order

sequence ID, which increments by one whenever a new order is created on an edge server.

Orders are sent by each edge server in the sequence that they are initially created on that

edge server, and the messaging layer delivers messages in the same sequence as they are

inserted. Therefore, orders from the same edge server maintain FIFO consistency at the

backend server but different servers’ orders can be arbitrarily interleaved. The handler

interacts with the persistent message layer to guarantee that all orders are to be processed

exactly once by the backend order object instance.

An incoming message is deleted from the local messaging layer only if the handler

successfully processes the order. If a crash happens while an order is being processed, the

incomplete processing is rolled back during database recovery. In such a case, because the

message handler did not complete, the messaging layer invokes the handler again during

recovery. The handler also detects duplicates when it processes an order. In that case, it

executes a no-op and returns to the messaging layer as if the order had been successfully

processed.

The order object provides high availability and excellent latency to our system by

decoupling edge servers’ local requests processing from the persistent store-and-forward

processing of orders to the backend server.

The mechanism of the order object can be extended for other applications. For

example, because it supports FIFO consistency for updates from the same machine, we

can use it to gather the system logs in distributed systems to, for example, gather user

click patterns at a web site.

46

The profile object

The profile object handles reads/writes with low concurrency and high locality. Each

entry contains information about a single user such as name, password, address, credit

card information, and the user’s last order. Users can only access or modify fields of their

own profile records.

The interface of the profile object includes a simple read operation and a write

operation. The read operation takes the user ID, and returns the corresponding profile

record. The write operation takes the user ID, the field ID, and a value. The profile

information has a low write/read ratio of less than 12.86% [32]. We assume the server

selection logic that directs users to specific edge servers will generally send the same user

to the same edge server for relatively long periods of time so that the user usually modifies

his/her profile record on the same edge server. Therefore, the chances for concurrent

access of the same profile record at two edge servers is generally low. However, sometimes

users will be switched from one edge server to another (e.g. in response to geographic

movement of the user, load balancing, or network or server failures). Therefore, we require

an implementation of the profile object to allow edge servers to access any profile.

Given the low concurrency and high locality of access to profile records and rela-

tively low volume of writes, our prototype implementation (1) uses a write-any read-any

policy that does not require locking across servers, (2) propagates updates among all edge

servers with best effort to propagate all changes quickly, and (3) applies object-specific

“reconciliation rules” [91, 114] to resolve conflicting updates to the same field of the same

record on multiple edge servers. Whenever a profile record is modified, the update is en-

queued in the message layer and then sent to the other edge servers. If a set of edge servers

is disconnected at the time of the update, the persistent messaging layer ensures delivery

of the update after those servers recover. If two concurrent write operations update the

same field of a record on different edge servers, the object code resolves the conflict with

reconciliation rules at the field level. For example, the object-specific reconciliation rule for

47

the last-order field of a profile record is to compare the orders’ timestamps and to select

the more recent order; the rule for credit card records or shipping addresses is to merge

multiple updates and prompt the user for selection when the client makes a subsequent

purchase.

The design of the profile object ensures availability and minimizes latency by re-

laxing consistency compared to sequential consistency [20]. Updates can take place on any

edge server without having to lock the targeted record. Access locality and rapid best-

effort propagation of all updates to all locations reduce the number of conflicts [48], and

rare update conflicts are satisfactorily resolved by simple per-field reconciliation rules.

Our decision to replicate all profile records on all edge servers maximizes availability,

optimizes response time, and emphasizes simplicity at the cost of increasing storage space

and update bandwidth in keeping with our design priorities. Because the profile objects

are small and updates to them are infrequent, partial replication would modestly reduce

overhead and might hurt performance, availability, or simplicity. However, systems with

large numbers of replicas could see benefits from more sophisticated partial replication.

A wide design space exists for providing consistency on read/write objects in dis-

tributed systems [113], and the trade-offs selected for the profile object may not be appro-

priate for other read/write records. In an environment where access patterns and object

semantics are less benign than the profile object, general approaches might proceed in two

dimensions.

1. Strengthening consistency from the underlying FIFO/PRAM propagation of updates

to provide stronger semantics such as casual consistency (which may require Bayou’s

anti-entropy [95]) or sequential consistency (which may require locking). Quorum

based solutions such as [30] could also be explored.

2. The “reconciliation rules” currently hand-coded in the profile object logic might be

made more general by, for instance, providing an interface on a read/write object to

specify reconciliation rules as a parameter [114].

48

The inventory object

To examine consistency constraints beyond that of the standard TPC-W benchmark, our

distributed-bookstore benchmark adds the constraint of a finite inventory for each item.

It requires that if the inventory of an object is 0, users requesting this object must be

notified that delivery may take longer than normal (e.g. the item is not in stock and is

on back-order). We enforce this constraint with an inventory object. We observe that

the actual count of the inventory is not important for processing order requests as long as

stock is sufficient. The inventory responds either “OK” to process the order or “warning”

for back-orders. It is acceptable to be conservative and issue warnings when the inventory

is unsure whether items remain. (The downside is that users may cancel orders when they

receive warnings in the ordering process. But we can minimize these false positives with

careful system design and implementation.)

The inventory information can be interpreted as ID and quantity pairs. Every pair

maps a particular book in the store to the number of copies of the book. The interface

of the inventory object is the reserve operation, which takes a numeric value and a book

ID, and returns a boolean value. If the returned value is true, it implies that the reserve

operation successfully decrements the number of copies of the specified book by the given

amount. If the inventory is insufficient to accommodate the request, false is returned.

Note that the use of a transactional database and persistent messaging layer allows us to

restore this escrowed inventory if the transaction fails to complete due to a failure or user

cancellation.

In our simple prototype system, the total available inventory is divided among edge

servers by giving each object instance a localCount and enforcing the invariant that the sum

of all local counts across all instances never exceeds the global inventory count. Initially,

inventory is evenly distributed among all edge servers. Edge servers process requests with

their local inventory without communicating with the backend or other edge servers, and

their local inventory decreases over time. We implement a simple protocol between the

49

backend server and edge servers for inventory re-distribution. By observing the orders

received at the backend server (see section 3.2.3), the inventory object instance at the

backend server keeps track of the edge server with the most inventory and the edge server

with the least inventory. Whenever the inventory difference between these two servers

exceeds a certain threshold, the inventory instance at the backend server requests inventory

re-distribution between them. In this edge server pair, the one with higher inventory is

the donor and the other is the recipient. Note that such a re-distribution request may

fail because the backend might have stale information about donor’s inventory. Such a

failure is benign because the backend server eventually becomes aware of the donor’s true

inventory and selects a different donor. Also note that our use of a persistent messaging

layer greatly simplifies the design of this redistribution by ensuring that inventory is never

lost or duplicated in transfer.

The inventory implementation meets our design goals by increasing the overall avail-

ability of the system while providing acceptable consistency guarantees on the data served

to clients. It also reduces the communication between edge servers and the backend be-

cause edge servers do not need to check availability of the central inventory upon every

order request. Therefore, we improve the system response time and make the system more

tolerant to network partitions. The limitation of our design is occasional “false positives”

when local count is 0 and inventory instance reports false while counts on other edge

servers is not 0. However, “false positives” only occur under some extreme conditions as

illustrated in Section 3.3.4. Furthermore, we can reduce those rare cases with enhance-

ments described below that we considered but did not adopt in our implementation for the

purpose of simplicity.

1. Fetch on-demand: When the system realizes the local inventory is insufficient to

accommodate an incoming request, it could delay processing the request and send

messages to other edge servers to request more inventory. If it receives a positive

response, the request could then be processed. If no positive response is returned

50

within a time period, the request would be reported as back-ordered as it is now.

2. Peer-to-peer inventory exchange: The mechanism of the inventory object is similar

to the numerical error guarantee mechanism in TACT [135]. Unlike TACT, our

system adjusts the local inventory with a centralized coordinator for simplicity. We

could change this object to employ the peer-to-peer to model in which edge servers

exchange inventory directly.

3. Adaptive redistribution: When a particular edge server experiences heavy demand

for an item, the system might allocate a larger percentage of inventory to that edge

server.

4. Partition-aware redistribution: Our current design of the inventory object assumes

that no partitions last infinitely long so that lost messages can be recovered when

partitions heal. Therefore, inventory may not leak from the system. But this design

cannot bound the amount of inventory that may be lost when network partitions do

not heal. Sussman et al. present four partition-aware resource distribution solutions

in their Bancomat study [112], which can be used to distribute inventory in the

environment where network partitions last arbitrarily long. Their solutions minimize

the inventory leakage due to the lost of messages when network partitions occur.

The best-seller-list object

The best-seller-list object maintains lists of best selling books for each subject. In TPC-W

the best sellers are the fifty most popular books computed for each subject based on the

3,333 most recent orders with each order containing up to 100 books.

The interface of this object includes a read operation that takes a string as the

subject and returns a list of best selling books under the subject. The best sellers change

over time as different books are sold. For the best seller lists to be accurate on every edge

server, all sales activities on all edge servers must be taken into account when computing

51

Object Object State Replica-

tion

Updates Propagation Concurrent Updating Rules

Catalog all records at all servers backend ⇒ all edges n/a

Order 1/N at edge; N/N at back-
end

edges ⇒ backend timestamp ordering

Profile all records at all servers all edges ⇒ all edges and
backend

field-level reconciliation rules

Inventory local view at edge; all local
views at backend

on threshold: an edge ⇒
backend ⇒ an edge

on threshold: timestamp ordering

Best-seller-list approximate view at edge;
current view at backend

on threshold: backend ⇒
all edge

on threshold: timestamp ordering

Table 3.1: Distributed object state replication and propagation.

the lists. However, the lists may not change on every sale. For example, several additional

purchases of books that are already in the best seller lists may not change the lists. The

system only cares about the sales activities exceeding some threshold. Furthermore, it

is preferable to return slightly stale best seller lists rather than to stop serving requests.

Some delay in propagating order information is also acceptable.

In our prototype system, we maintain a copy of the best seller lists on every edge

server. The approach that we take to maintaining the best seller lists is similar to that

for maintaining the inventory among edge servers. By observing the orders received at the

backend server (see section 3.2.3), the best-seller-list object instance at the backend server

keeps track of the sales volumes of all books. As soon as the lists change, the instance at

the backend server sends messages through the messaging layer to best-seller-list instances

on all edge servers to update the lists.

This simple implementation meets our design goal. It improves system response

time and increases system availability by minimizing the communication among edge

servers and to the backend server for computing and updating the lists and detecting

the changes in the lists. It reduces bandwidth consumption and dependencies among edge

servers by monitoring all orders at the backend server instead of exchanging order infor-

mation among edge servers.

Table 3.1 contains the summary of state replication and update propagation of

52

distributed objects.

3.3 System Evaluation

The experiments evaluate the availability, performance, and consistency of the distributed

bookstore system in normal operation and while the system is partitioned due to network

failures.

3.3.1 Environment and implementation

To demonstrate our distributed bookstore system, we deploy a prototype across four

servers, three of which act as edge servers and one as the backend server. Each server

runs on a Pentium 900MHz machine with 256MB memory. IBM DB2 databases are in-

stalled on all server machines. On the three edge servers, we use Apache and Tomcat to

host the servlets that implement the server logic. Machines in our lab are connected via

100Mbit Ethernet connections. However, in order to simulate a wide area network (WAN)

environment among servers during experiments, we direct all the traffic (both in and out)

of server machines to an intermediate router, which simulates WAN delays and tempo-

rary network outages with Nistnet [88]. In the remaining discussion, we refer to links via

Nistnet with bandwidth of 10Mbit/s and latency of 50ms as WAN links, and we refer to

direct 100Mbit/s links between machines as network links in a local area network (LAN).

We use three client machines to generate workload. These three machines have Pentium

900MHz processors, and each of them connects to a separate edge server via a LAN link.

One instance of the TPC-W client program is running on each client machine generating a

pre-defined workload against each edge server. TPC-W defines three workload mixes, each

with a different concentration of writes. In our experiments, we focus on the ordering mix,

which generates the highest percentage of writes (50% of browsing and 50% of shopping

interactions in this mix).

One of our goals was simplicity. It is difficult to precisely characterize the extend

53

TraditionalTraditional

ArchitectureArchitecture

Naive EdgeNaive Edge

Service Service

ArchitectureArchitecture

Ideal Ideal

ArchitectureArchitecture

DistributedDistributed

Object Object

ArchitectureArchitecture

Client

Client

Client

Client

Front-End

Front-End

Front-End

Front-End

Database

Database

Database

DatabaseDatabase

LAN

LANLAN

LAN +

WAN

WAN

WAN

LAN

Figure 3.2: The network configuration of WAN service architectures.

to which the goal was met. Qualitatively, the designers regard the system as easy to

understand. As a very rough quantitative measure, we note that the latest distributed

TPC-W implementation consists of 6600 lines of source code, which is about 1000 lines

more than that of the centralized version. The additional source code is primarily for the

implementation of the specialized and simple replication protocols employed by distributed

objects for managing shared data.

3.3.2 Performance

In this section, we evaluate the performance of our distributed bookstore system with

respect to two criteria: latency and throughput. As noted in Section 3, our most important

performance goal is to minimize the system latency because latency alters the expensive

“human waiting cost.” At the same time, we want to see if our system throughput is

competitive with a traditional centralized architecture.

To evaluate the system performance, we run the benchmark on four architectures

as illustrated in Figure 3.2. We use one frontend machine and one backend machine in this

experiment to evaluate the performance of each architecture. The traditional centralized

architecture has both its front-end and central database connected by LAN links, but

54

end users must access the front-end via WAN links. The naive edge service architecture

replicates its front-ends at the edges of the network near end users. The front-ends connect

to end users via LAN links and connect to the central database via WAN links. The

ideal architecture has end users, front-ends, and the central database all within a LAN

environment. This architecture is unrealistically optimistic, but it serves as a point of

reference. The distributed object architecture, presented in this chapter, replicates both

its front-ends and databases at the edges of the network near end users. The front-ends

(edge servers) connect to end users via LAN links and connect to the core server and

other front-ends (edge servers) through the distributed objects via WAN links. In addition

to the one front-end system, we examine the performance of the distributed architecture

with 3 edge servers (front-ends). For the communication layer, we use both JORAM

that uses persistent message queues to send messages and the quick messaging layer that

asynchronously sends messages without storing them on the local disk. Note that the latter

configuration is intended to illustrate the range of performance that different messaging

layers might provide, but because it does not provide reliable messaging across failures, it

would not be appropriate for production deployment.

By comparing the performance results of the distributed bookstore application

across four architectures, we seek to demonstrate three points. First, at low workloads, the

latency when using the distributed object architecture matches that of the ideal architec-

ture and is significantly better than that of the traditional architecture or the naive edge

server architecture. Second, the throughput when using the distributed object architecture

is competitive with the ideal or the traditional architecture. Third, when the edge server

becomes the bottleneck under heavy workloads, we can increase system throughput by

adding more edge servers.

We measure both system throughput and response time while varying the request

rate. In all systems we expect to have the best response time when the request rate is

low. Then, as the request rate increases, the response time will increase as well, until the

55

maximum system throughput is reached and the system becomes saturated, at which point

the response time will increase sharply.

In Figure 3.3, curves from graph (a) indicate the performance of four architectures

when using only one edge server. Graph (b) shows the performance of the distributed object

architecture with additional enhancements and the scalability of the enhanced architecture

when running on two different messaging layers, the JORAM messaging layer and the

quick messaging layer. In both graphs, the x-axis represents the throughput in WIPS

(web interactions per second), and the y-axis represents the response time of the bookstore

application deployed on different architectures.

First, we explain the curves in graph (a) from the top to the bottom. The top

curve represents the response time for the naive edge service architecture. This system

experiences the worst minimum response time of 2.42s/req because a client request to the

edge server usually triggers multiple requests from the edge server to the central database at

the core server across the WAN. The WAN delays, which are set to 100ms RTT, dominate

the system response time. In contrast, under the traditional centralized architecture, every

client request goes across WAN links just once. The overall response time for the traditional

centralized system is indicated by the second curve from the top, and it shows nearly a

factor of two improvement to 1.25s/req. The third curve from the top indicates that the

response time of the ideal architecture improves response time by nearly another factor

of five, to 0.26s/req. The response time of the distributed object architecture is slightly

better than that of the ideal architecture while both architectures yield approximately the

same maximum throughput of 5.2WIPS, as indicated by the forth curve from the top in

graph (a). The slight improvement of response time for the distributed object architecture

is due the caching of Shopping Cart information at the edge server. (In all three other

architectures, Shopping Cart information is stored in the central database only).

After demonstrating the excellent performance of our distributed object architecture

with one edge server, we evaluate the performance of this architecture with multiple edge

56

servers. Before we add more edge servers to the system, we try to reduce implementation

specific bottlenecks that may limit the system performance when heavier workloads are

applied. In the subsequent tuning process: (1) we double the size of the main memory to

accommodate message buffering; and (2) we cache the best-seller lists in each distributed

object instance instead of computing them from the local database for client request.

Note that both of these improvements are orthogonal to our decision to use distributed

objects and the similar optimizations are applicable to the other architectures as well.

The performance improvement of the enhanced architecture is illustrated by the second

curve from the left in graph (b). Comparing with the first curve from the left in graph

(b), which represents the performance of the original distributed object architecture, the

enhanced architecture shows a consistent response time at approximately 0.26s/req under

the moderate workload and an improved maximum throughput of nearly 8WIPS. After we

add two more edge servers, the maximum system throughput of the enhanced architecture

increases to 17.5WIPS as shown by the third curve from the left. Notice that we do not

achieve a full linear improvement in throughput by adding two edge servers. This speedup

shortage is due to both the overhead for the message logging and the inefficiency of the

JORAM messaging layer implementation. We also implement a quick messaging layer that

sends messages without logging them to disk first. The maximum throughput of the system

with three edge server reaches 21.74WIPS when using the quick messaging layer for the

message exchange, as illustrated by the bottom curve in graph (b).

The edge service architecture sends all updates to the backend server, which ulti-

mately limits scalability of throughput. However, two facts allow adding more machines to

increase system throughput. First, the read operations, which constitute more than 50%

of the workload, are distributed among edge servers. Second, technology exists to make

the backend database scalable, and indeed current centralized architectures achieve good

scalability by directing all of their queries to a scalable backend database. We believe that

the distributed architecture approach should be viewed as a way to increase availability

57

 0.1

 1

 10

 100

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

R
es

po
ns

e
T

im
e

(s
)

Throughput (WIPS)

Naive Edge Service Architecture

Traditional Centralized Architecture

Ideal Architecture

Distributed Object Architecture

 0.1

 1

 10

 0 5 10 15 20 25

R
es

po
ns

e
T

im
e

(s
)

Throughput (WIPS)

D. O. Architecture (single server)

Enhanced D. O. Architecture (single server)

Enhanced D. O. Architecture (3 servers)

Enhanced D. O. Architecture (3 servers, non-Persistent Messaging)

(a) Response time with single server (b) Response time with enhanced, multiple servers

Figure 3.3: System response time as the workload increases.

and improve latency while scalability of throughput is improved with cluster technology.

The throughput of our distributed TPC-W bookstore system is competitive with

that of other academic systems [5, 44, 118]. If we assume that a typical Pentium III

machine costs roughly $800, the price/performance cost of our system is roughly 147.19-

182.85$/WIPS, which falls in the range of published standard industry TPC-W perfor-

mance results, 24.50-277.80$/WIPS [128]. The throughput of the enhanced distributed

object architecture is primarily limited by the throughput of its underling databases, which

is not the concern of our current investigation.

3.3.3 Availability

A key aspect of our design is that each edge server processes all requests with only local

information. As long as a client can access any edge server, it can access the service even if

some of the servers are down or if network failures prevent communication among some or

all of the servers. In this section, we examine the performance impact of message buffering

and processing during and after failures with both JORAM Messaging Layer and Quick

Messaging Layer.

58

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

0 Throughput Over Time

N
or

m
al

iz
ed

 W
IP

S

Time (s)
0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

7

8

9
x 10

0 Throughput Over Time

N
or

m
al

iz
ed

 W
IP

S

Time (s)

(a) System throughput (JORAM Messaging Layer) (b) System throughput (Quick Messaging Layer)

with Workload at 1.2 WIPS with Workload at 6.8 WIPS

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time

Quick Messaging Layer
(with Workload at 6.8 WIPS)

JORAM Messaging Layer
(with Workload at 1.2 WIPS)

0

20

40

60

80

100

0 100 200 300 400 500 600 700

Q
ue

ue
 L

en
gt

h
(#

 o
f p

ac
ke

ts
)

Time (s)

Quick Messaging Layer
(with Workload at 6.8 WIPS)

JORAM Messaging Layer
(with Workload at 1.2 WIPS)

(c) System response time (d) Average queue length
Figure 3.4: 700-second session with network outage lasting for 50 seconds.

Figure 3.4 shows the system throughput, average response time, and message queue

lengths when the system uses either JORAM Messaging Layer or Quick Messaging Layer

before, during, and after a network failure. Each run lasts for 700 seconds, and a network

outage occurs roughly 350 seconds after the experiment starts and lasts for 50 seconds.

During the network outage, no server can communicate with any other server, but the

normal communication among servers resumes once the network is restored. To provide a

moderate load that does not cause queues to develop before the network fails, we apply a

workload of 1.2WIPS to the system that runs on the top of JORAM and apply a workload

of 6.8WIPS to the system on the top of the quick messaging layer.

Graph (a) and (b) in Figure 3.4 indicate the system throughput throughout the

59

700-second session. The x-axis represents the time progression and the y-axis represents

the system throughput. In each graph, the straight horizontal dashed line represents the

average throughput of the 700-second session and the solid slightly wiggly line represents

the running average of throughput over 50-second intervals. The wiggly line stays close

to the straight dash line in both graphs. It implies that the throughput of systems with

both messaging layers is consistent throughout the session, and the network failures during

the session have little effect on the system. Our distributed TPC-W system can oper-

ate normally while being partitioned because the databases are replicated locally through

distributed objects, and they can continuously provide data for server computation while

partitioned by network outage.

Figure 3.4 (c) shows the 50-second average response time for the two systems, one

running JORAM messaging layer, the other running the quick messaging layer. The x-axis

in the graph represents the time progression in seconds and the y-axis represents the system

response time. The system response time appears unaffected by the network outage during

the session because the graph does not show an increase in response time during the failure

interval, between 350 and 400. Because the response times for different interactions vary,

the curves in this graph tend to fluctuate throughout the session.

Figure 3.4 (d) shows the average queue lengths in the two messaging layers. The

x-axis represents the time progression and the y-axis represents the queue length in the

number of messages queued. There are few messages queued by the messaging layers before

the failure starts, but the number of queued messages starts growing after 350 seconds.

The curve that represents the queue length of the quick message layer indicates a sharper

increase in message length than that of JORAM because the workload used on the quick

message layer is about 4 times bigger than the workload on JORAM. But all messages

are quickly cleared out of the queues after the network partition is fixed. Note that the

JORAM Messaging Layer clears out queued messages relatively slower because it has a

fixed message forwarding rate, approximately 4 msg/sec, which is much less than that of

60

the Quick Messaging Layer. This behavior is due to the persistent queuing overhead and

the vendor specific design of JORAM Messaging Layer.

During the network failure, the information on each edge may become stale. How-

ever, instead of completely stopping sales during these failures, the service provider prefers

to continue serving users with stale information, such as a stale catalog and stale best seller

lists, accepting orders with stale inventory which may cause false-positive back-order rate,

and delaying orders to be processed at the backend server by buffering them on local disks.

These trade-offs seem appropriate and acceptable for this application.

3.3.4 Consistency

Because the system slightly relaxes consistency for higher availability and performance,

users may view stale information even during normal system operations. In this section,

we evaluate the impact of the relaxed consistency model on the distributed bookstore

system, during normal operations, by examining the staleness of local best-seller lists and

local inventory.

Local inventory: By distributing the bookstore inventory among all edge servers,

the system allows edge servers to accept orders locally. However, when a heavy workload

is unbalanced across servers and the inventory is low, some books may be sold out on

a particular edge server during a short time frame before the inventory re-distribution

arrives from other edge servers. In this case, some order requests targeting the sold out

books may pessimistically report that the shipment may be delayed. In this experiment, we

examine the false-positive back-order rate under a condition where the inventory is low and

workload is unbalanced. We expect the false-positive back-order rate to approximate the

ideal back-order rate seen by a centralized system as long as the inventory re-distribution

time is less than the inter-arrival time between requests targeting the same book.

In order to create a purchasing imbalance across edge servers, we direct all order

requests to only one of the three edge servers. To maintain a low inventory count at each

61

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9

B
ac

k-
or

de
r

ra
te

Per title inter-request time (sec.)

2 copies per title

4 copies per title

6 copies per title

Figure 3.5: The back-order rate.

edge server, we choose three sets of inventory for each run of the experiment: 2 copies per

title with 5 titles, 4 copies per title with 5 titles, and 6 copies per title with 5 titles. The

workload is designed such that each order request randomly targets one of 5 books, and

we run the experiment long enough so that the average total number of books ordered is

50% of the inventory on the edge server, which is roughly 16.7% of overall inventory in the

system. By varying the average inter-arrival time of requests targeting the same book, we

can measure the average back-order rate for different sets of inventory. If we run against

the traditional centralized architecture with given sets of inventory and workload, there

will be no back-order because even under the most extreme case where all requests target

the same book in the centralized system, the total number of requested copies is less than

the number of copies of any particular book. The ideal back-order rate is zero for the

defined sets of inventory and workload.

Furthermore, we speculate that if the distributed-object architecture has the inven-

tory re-distribution time (RDT) much less than the requests inter-arrival time (RIT) per

title, the distributed-object architecture can approximate the ideal back-order rate, i.e.:

RDT ≪ RIT/titles

Figure 3.5 shows the percentage of orders resulting in false-positive back-orders due

62

to the inventory shortage as we vary the request inter-arrival time per book title. In the

graph, the x-axis represents the average inter-arrival time of requests targeting the same

book and the y-axis represents the percentage of rejected requests over all requests. All

three curves approach the x-axis (the true back-order rate of orders) as they extend to

the right where the request inter-arrival time is large. The workload that has the average

request inter-arrival time of less than 2 seconds has the false-positive back-order rate greater

than 1%. It indicates that our system inventory re-distribution process takes roughly 2

seconds or less to complete, which is expected because edge servers use asynchronous

message exchange across WAN for computing and re-distributing inventory.

It is worth noting that the small back-order rate shown in Figure 3.5 only represents

the system consistency in the extreme cases where inventory is small, 2-6 copies per book

with 5 different books, and the workload is unbalanced. Also as noted in section 3.2.3

several optimizations can be applied to further reduce the system inconsistency.

Local best-seller lists: To maximize the availability and performance, every front-

end in our system keeps a local copy of best-seller lists, which refer to the fifty most popular

items in the most recent order-window in every category. Note that an order-window refers

to a given number of purchases completed. The back-end monitors incoming orders that

can potentially alter best-seller lists. Whenever incoming orders trigger a change in best-

seller lists at the back-end, the back-end multicasts the change to all front-ends. However,

changes may not immediately be reflected at all front-ends because of the asynchrony of

updates to front-ends. Because front-ends always serve clients with their local copies of

best-seller lists, stale best-seller lists are sometimes returned to clients. In this experiment,

we evaluate the effect of such a lazy update approach on best-seller lists in the distributed

bookstore, and we show that the amount of stale best-seller lists served by front-ends

is small and tolerable under two conditions: (1) moderate workload that is within the

system steady-state throughput; and (2) a reasonably sized order-window for computing

best sellers.

63

Figure 3.6 shows, in the best-seller lists served to clients, the fraction of items that

are out of position relative to their positions in the best-seller lists at the back-end. For

this set of experiments, we use 3 enhanced edge servers all running atop the non-persistent

messaging layer. Graph (a) shows that with the TPC-W defined order-window size of

3333, the fraction of out-of-position items increases as client workload increases. Graph

(b) illustrates that, given the workload of 11.5WIPS, the fraction of out-of-position items

decreases when the order-window for computing best sellers increases.

In graph (a), the x-axis represents the system throughput in WIPS, and the y-axis

represents the fraction of client-received items that are out of position with respect to their

positions in lists at the back-end. In this experiment we use TPC-W defined parameters:

the order-window for computing best-sellers is 3333 and each order purchases up to 100

items [32]. Each curve in the graph indicates the fraction of client-received lists with items

that are off their original positions at the back-end by at least the specified number of

positions. For instance, the top most curve shows the fraction of items that are off their

original positions by at least one. Respectively, curves below the first one indicate the

fraction of list entries displaced by at least two positions, five positions, etc. The bottom

most curve shows the fraction of items that are not in the client-received best-seller lists

but are in the lists at the back-end. Notice that when the workload is light (e.g., less

then 5WIPS), we see few (less then 1%) out-of-position items returned to clients. Under

a light workload there is only a small probability for a best-seller query to closely follow

a purchase request that alters the best-seller lists, but as the workload increases, this

probability increases. Under the high workload the fraction of out-of-position items is

relatively high, e.g., the fraction of items with minimal off-distance of one is around 70%

and the fraction of items that are entirely displaced from the best-seller lists is between

10% and 15%. However, more then half of the out-of-position items have an off-distance

of less than 10.

This relatively high inconsistency ratio is due to the small size of the order-window:

64

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20

F
ra

ct
io

n
of

 o
ut

-o
f-

or
de

r
B

S
L

ite
m

s

Throughput (WIPS)

offset by ONE

offset by TWO

offset by FIVE

offset by TEN

offset by TWENTY

offset by FORTY

off BSL
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

F
ra

ct
io

n
of

 o
ut

-o
f-

or
de

r
B

S
L

ite
m

s

Order-window size (in number of items)

offset by ONE

offset by TWO

offset by FIVE

offset by TEN

offset by TWENTY

offset by FORTY

off BSL

(a) Benchmark size (3333 items) based best-seller lists (b) Various size based best-seller lists

Figure 3.6: Staleness of local best-seller lists subject to workload & the base size.

an order-window of 3333 purchase transactions spans only the past few minutes, and when

the order-window is small, the probability that a new order can change the best-seller

lists at the back-end is high. Graph (b) illustrates that as the order-window becomes

reasonably large, the fraction of out-of-position items decreases. The x-axis represents

the order-window size and the y-axis still represents the fraction of client-received items

that are out of position with respect to their positions in lists at the back-end. Similar to

graph (a), each curve in this graph represents the fraction of items with some minimal off-

distance. Those curves indicate that when the order-window increases from 3333 (about

50 minutes) to 16665 (about 250 minutes) under a fixed workload of 11.256WIPS, the

fraction of out-of-position items decreases by 75% on average, e.g., the fraction of items

with minimal off-distance of one drops from 67.4% to 14.9% and the fraction of items that

are incorrectly moved off the best-seller lists drops from 6.76% to 1.77%.

This result suggests that a system that takes a lazy update approach for maintaining

best-seller lists can provide clients with the consistent data when the size of the order-

window is sufficiently large. In practice, online bookstore systems usually track orders over

days or weeks for computing best-seller lists, and the fraction of out-of-position items will

65

be smaller in such systems. We should note that even in cases where inconsistent best-seller

lists are returned to clients, most client-received lists are useful since most items are only

out of position by a small distance.

3.4 Summary

Our TPC-W bookstore is built using a distributed object architecture and appears to

provide high availability and good performance. The throughput and response time of

our system are consistent before, during, and after network partition. By measuring all

WAN latencies of four architectures, we show that the response time of our system closely

approximates that of the ideal system under a normal workload.

Building the replication framework with a distributed object approach is relatively

straightforward. We design the consistency model for each individual distributed object

by using the corresponding application specific semantics. It then becomes easy to reason

about the trade-offs between availability and consistency for each object. Usually, we can

slightly relax the consistency of a distributed object to achieve high availability and effi-

ciency. In addition, distributed objects encapsulate the complexity of data replication and

provide simple interfaces for applications to access shared data. Thus, an attractive soft-

ware engineering strategy is to combine WAN availability, performance, and consistency

expertise with semantics to craft distributed objects for a class of distributed applica-

tion/services on the Internet. In our particular case, we provide a WAN replication library

for building distributed e-commerce applications.

3.4.1 Scalability

Replicating shared data everywhere might be seen limit the system’s scalability. We do

not view the distributed architecture approach primarily as a way to improve the system

scalability in terms of throughput, but mainly as a way to increase availability and improve

latency. Still, edge services architecture provides opportunities to improve throughput by

66

processing reads at edge servers and absorbing bursts of updates in edge servers’ message

queues for deferred processing. Furthermore, partitioning techniques can be used to break

each shared data sets into multiple subsets and replicate each subset among a group of

edge servers.

Therefore, by adding new edge server groups and breaking each shared data sets into

a larger number of subsets, we have the potential increase the throughput of the overall

system. In our on-going study, we are exploring the partitioning and related routing

techniques that can be applied in the edge service architecture to enhance the scalability.

3.4.2 Consistency related issues

In order to avoid complexity in our evaluation, we keep the design of distributed objects

simple while meeting the performance and consistency demands of our TPC-W system.

However, we see some limitations in the design of existing objects that might not be desir-

able when used in building systems with different consistency requirements. For instance,

the design of the profile object uses Bayou gossip protocol that can result in conflicting

updates. Because most conflict-resolution solutions are based on application-specific se-

mantics, the corresponding implementations could be complex and not desirable for certain

classes of applications. But on the other hand, algorithms that can prevent update conflicts

usually suffer from their suboptimal performance or poor availability compared with our

current solution. In next chapter, we address this issue by introducing a novel algorithm,

the dual-quorum with volume leases.

As mentioned before, distributed objects are designed based on the specific appli-

cation semantics such that they hide the complexity of WAN data replication and consis-

tency with simple interfaces. In addition, objects provide consistency guarantees that are

straightforward and easy to reason about for both developers and users of the objects. Our

distributed TPC-W system works well using distributed objects because the consistency

guarantee of one object has few dependencies on other objects. However, the assumption

67

we used in building the distributed TPC-W system may not hold in other distributed WAN

applications/services. In Chapter 5 we outline the high-level design of the unified replica-

tion approach that provides a base for reasoning about the cross-object consistency for the

object-oriented replication architecture. One important future work is to precisely char-

acterize the system consistency guarantees in the presence of interactions among different

consistency models.

The distributed objects maintain the consistency of each edge server such that each

edge server has a consistent view of the shared state. However, occasionally the edge

server selection algorithm may switch clients from one edge server to another to balance

load or in response to node failures, network partitions, or client mobility, and clients could

then observe inconsistency. For example, edge server se1 may have a newer version of the

catalog information than edge server se2. When a client is switched from se1 to se2, this

client may see older catalog information on se2. One solution to resolve this issue is to

use client browser cookies to enforce Bayou’s session guarantees [114] to ensure that clients

always communicate with sufficiently updated servers. In this example, we would need to

bring the state of se2 up to that of se1 before allowing the client to interact with se2. We

will consider this feature in our future work.

68

Chapter 4

Dual-Quorum Replication

4.1 Introduction

This chapter introduces dual-quorum replication, a novel data replication algorithm mo-

tivated by the desire to support data replication for edge services [2, 9, 43, 127]. As

Figure 4.1 illustrates, the edge service architecture attempts to improve service availability

and latency by allowing clients to access the closest available edge servers rather than a

centralized server (or a centralized server cluster). But as Figure 4.1 also indicates, in

order to provide a single service from multiple locations, service logic (code) replicated on

all edge servers must access a collection of shared data. Thus, support for data replication

is a key problem in realizing the promise of Internet edge services.

By exploiting object-specific workload characteristics, we seek to design a data

replication system for edge services that offers good trade-offs among availability, consis-

tency, and response time. Although it is provably impossible to provide simultaneously

optimal consistency, optimal availability, and optimal performance for general-case wide-

area-network replication [20, 73], we can, perhaps, provide nearly optimal behavior for

specific objects by taking advantage of a given application’s workload characteristics. For

example, our previous studies show how to provide nearly optimal replication for infor-

69

…WAN

Central
Server

DB

DB

Shared Data

DB

Service
Logic

Edge Server

Service
Logic

Service
Logic

Client

Client

Client

Client

Figure 4.1: The edge service architecture

mation dissemination applications such as news [87] and e-commerce applications such

as TPC-W [43]. In particular, we developed customized consistency protocols for three

categories of objects: (1) single-writer, multi-reader objects like product descriptions and

prices; (2) multi-writer, single-reader objects like lists of orders; and (3) commutative-write,

approximate-read objects like the current inventory count of each product.

However, a key limitation of our previous efforts to support edge services was our

decision to use weak consistency—and thereby introduce considerable complexity—for a

fourth category of objects: multi-writer, multi-reader objects such as per-customer pro-

file information (e.g., name, account number, recent orders, credit card number, and ad-

dress.) We, like several other systems [95, 114, 136], made use of a Read-One, Write-All-

Asynchronously (ROWA-A) protocol based on local reads and asynchronous epidemic prop-

agation of writes. ROWA-A protocols provide excellent read performance and availability;

and although ROWA-A protocols allow applications to observe inconsistencies between

reads and writes, such inconsistencies should be rare because multi-reader, multi-writer

shared objects often have workloads with low concurrency to any given object. For exam-

ple, in our edge-server TPC-W application, reads and writes to a given customer’s profile

typically come from just one edge server for some interval of time, until the customer is

redirected to a different server. Unfortunately, although inconsistencies are rare for the

workloads of interest, these rare cases introduce considerable complexity into the design,

because all cases must be handled no matter how rare they are and because reasoning

70

about corner cases in consistency protocols is complex. Furthermore, because reads can

always complete locally, these protocols provide no worst-case bound on staleness, i.e.,

it is possible for a read to return stale data arbitrarily long after a write, which can be

unacceptable for some applications.

By introducing dual-quorum replication, this chapter provides the key missing piece

to achieve highly-available, low-latency, and consistent data replication for a range of In-

ternet services. In particular, dual-quorum replication optimizes these properties for data

elements that can be both read and written from many locations, but whose reads and

writes exhibit locality in two dimensions: (1) at any given time access to a given element

tends to come from a single node and (2) reads tend to be followed by other reads and

writes tend to be followed by other writes. For other workloads, our algorithm continues

to provide regular consistency semantics [71], but its performance and availability may

degrade.

Our dual-quorum replication protocol combines ideas from volume leases [132] with

quorum based techniques [45, 46]. The protocol employs two quorum systems, an input

quorum system (IQS) and an output quorum system (OQS). Clients send their writes to

the IQS and they read from the OQS. The two quorum systems communicate with each

other when necessary to synchronize the state of replicated objects. By using two quorum

systems, we are able to optimize construction of the OQS ’s read quorum to provide low

latency and high availability for reads while optimizing construction of the IQS ’s write

quorum to provide modest overhead and high availability for writes. In particular, OQS

nodes cache data from the IQS servers using a quorum-based generalization of Yin et

al.’s volume lease protocol [132], which invalidates individual cached objects as they are

updated. The protocol uses short-duration volume leases to allow writes to complete

despite network partitions and aggregates these leases across large numbers of objects in

a volume to amortize the cost of renewing short leases. Using our dual-quorum protocol,

workloads with large numbers of repeated reads (or writes) perform well because reads (or

71

writes) can often be supplied by a read-optimized OQS read quorum (or write-optimized

IQS write quorum) without requiring communication with the IQS (or OQS).

Through both analytical and experimental evaluations, we compare the availability,

response time, communication overhead, and consistency guarantees of the dual-quorum

protocol against other popular replication protocols: the synchronous and asynchronous

Read-One/Write-All (ROWA) protocol family, 1 majority quorum system, and grid quorum

system [30]. For the important special case of single-node OQS read quorum, average read

response time can approach a node’s local read time, making the read performance of

this approach competitive with ROWA-A epidemic algorithms such as Bayou [114]. But,

the dual quorum approach avoids suffering the weak consistency guarantees and resulting

complexity inherent in ROWA-A designs. Additionally, analytical evaluations show that

the overall availability of the dual-quorum protocol is competitive with the majority quorum

protocol for the targeted workloads. Finally, for the targeted workloads, the communication

overheads of this approach are comparable with existing approaches. However, in the

worst-case scenario in which the workload consists of only interleaved reads and writes,

the dual-quorum protocol requires significantly more message exchanges than traditional

quorum protocols to coordinate internal nodes.

The main contribution of this work is to introduce the dual-quorum algorithm,

a novel data replication algorithm targeted to a key workload for Internet edge service

environments. Note that although our work is motivated by a specific replication scenario,

we speculate that it will be more generally useful. In particular, we believe that it may not

be uncommon for systems that can, in principle, have any node read or write any item of

data to, in practice, experience sufficient locality to benefit from our approach.

1Note that ROWA protocols are, in fact, a special case of quorum protocols, but they are often treated
separately in the literature [13, 14].

72

4.2 System Model and Definitions

Our edge service environment consists of a collection of edge server nodes that each play

one or more of the following three roles: (a) front end nodes that handle service client

requests from across the Internet, execute application-specific processing, and act as edge

server clients or just clients to the dual-quorum storage system; (b) Output Quorum System

(OQS) nodes that process client read requests; and (c) Input Quorum System (IQS) nodes

that process client write requests. We assume a request redirection architecture that directs

clients to a good (e.g., nearby, lightly loaded, or available) front end edge server; a number

of suitable redirection systems are discussed in the literature [62, 133]. Note that clients

are unaware of the underlying data storage system and never contact the OQS or IQS

interfaces directly.

In an edge service environment, servers typically process sensitive or valuable in-

formation, so they must run on trusted machines such as dedicated servers in a hosting

center. We therefore assume a fail-stop model in which servers may crash but cannot issue

incorrect requests or replies. The network may delay, duplicate, or reorder messages. We

assume secure communication among nodes and that if the network corrupts a message,

this corruption is detected by low-level checksums and the message is silently discarded.

Each node can read a local real-time clock and that there exists a maximum drift rate

maxDrift (ǫ) between any pair of clocks. Our protocol ensures safety regardless of timing

assumptions: nodes may operate at arbitrarily different speeds and we require no bound

on message delivery delay. However, long processing times or message delays may interfere

with liveness for some requests. In particular, if machine A requests a least at time t0 and

receives a reply at time t1 from node B granting a least of length T , then A conservatively

expires the lease at time t0 + (1 − ǫ)T ; this approach ensures that the receiver of a lease

(A) expires the lease no later then the grantor of the lease (B).

For performance, our system assumes that concurrent reads and writes to a given

object by different nodes are rare. But, for correctness, we must define the system’s

73

consistency semantics in the presence of concurrent reads and writes to the same object.

The dual quorum design provides regular semantics [71]: a read r that is not concurrent

with any write returns the value of the latest write that completed before r began, and a

read r that is concurrent with one or more writes returns one of (a) the value of the last

write that completed before r began, or (b) the value of one of the writes concurrent with

r.

For convenience of exposition, we describe interactions with a quorum system in

terms of a QRPC operation [77]. replies = QRPC(system, READ/WRITE, request)

sends request to a collection of nodes in the specified quorum system (e.g., the IQS or

OQS). The QRPC call then blocks until a set of replies constituting the specified quorum

(READ or WRITE) on the specified system have been gathered. The call then returns

the set of replies that it received. The QRPC operator abstracts away details of selecting

a quorum, retransmissions, and timeouts. In particular, different implementations may

choose different ways to select which nodes from system to send requests to, and they

may select different retransmission strategies: our simple prototype implementation al-

ways transmits requests to the local node if the local node is a member of system; it then

randomly selects a sufficient number of additional nodes to form a READ or WRITE

quorum and transmits the request to them; retransmissions are each to a new randomly

selected quorum using an exponentially-increasing retransmission interval. A more aggres-

sive implementation might send to all nodes in system and return when the fastest quorum

has responded or might track which nodes have responded quickly in the past and first try

sending to them. To simplify the discussion of the protocol, we refer to a server holding

an invalid object as an invalid server. Since there multiple object exists in the system,

the status of a server may be considered invalid with respect to one object while being

considered valid with respect to other objects. Similarly, a quorum only containing invalid

servers with respect to a particular object is considered an invalid quorum with respect to

this object. Note that a quorum is valid as long as it includes at lease one valid server.

74

Quorum
Inval

WQ

RQ

OQS IQS

WQ

RQ

Client Reads

Client Writes

RQ

RQ

Client Reads

Client Reads WQ

Client Writes

WQ

server

Figure 4.2: Dual quorum architecture overview.

4.3 Dual Quorum Protocol Design

This section describes the design of the dual-quorum replication system and the key ideas

for achieving our design goals. The basic idea is to separate the read and write quorum

into two quorum systems so that they can be optimized individually to improve response

time and availability for read-dominated or write-dominated workloads. The read and

write quorum of the OQS and IQS can be separately configured in any way desired, but

we would expect one common configuration to be to optimize read performance by having

the OQS span all nodes in the system with a read quorum size of 1 and to get good write

availability by having the IQS span a modest number of nodes with any majority of the

IQS nodes forming a write quorum. As Figure 4.2 illustrates, in the dual quorum system

clients retrieve objects from a read quorum (perhaps containing only one node) in OQS and

send object updates to a write quorum (typically containing a majority of nodes) in IQS.

(In the context of the edge service architecture described in Figure 4.1, all dual-quorum

servers are edge servers.) The two quorum systems conditionally synchronize with each

other to maintain the consistency of data replicated on them when processing both reads

and writes.

To simplify the discussion, we present the protocol in two steps. First, we will discuss

the basic dual-quorum protocol, a simplified asynchronous protocol, in Section 4.3.1. This

protocol allows separate optimizations of read and write quorum, but because it assumes an

asynchronous system model, a write can block for an arbitrarily long period of time. Then,

75

in Section 4.3.2 we describe how we introduce volume leases to improve write availability

while retaining good read performance.

4.3.1 Dual quorum protocol

High level overview The basic idea of the dual quorum replication is to process reads

and writes in two different quorum systems, IQS and OQS , and use a cache invalida-

tion strategy to synchronize the state of objects replicated in IQS nodes and cached in

OQS nodes.

Clients2 perform similar tasks for reading and writing data as in the conventional

quorum based protocols. When a client read arrives in OQS , two possible scenarios can

happen, as illustrated in Figure 4.3 (a) and (b). In a read hit case, the OQS read quorum

contains a valid cache copy of the requested object, which is immediately sent back to the

client. When there is a read miss, i.e. the cache copy on the OQS read quorum is invalid,

the OQS read quorum validates the cache copy by querying an IQS read quorum for the

latest update. Once the cache copy of the OQS read quorum is validated, the OQS read

quorum sends the updated value to the client. There are also two scenarios when processing

client writes, as illustrated in Figure 4.3 (c) and (d). In a write suppress case, the cache

copy in an OQS write quorum is already invalid. the IQS write quorum can just apply

the write to the local object and send the completion acknowledgment to the client. In

the case of a write through, no OQS write quorum holds invalid cache copy. Therefore, the

IQS write quorum that receives the client write has to invalidate the cache copy on one

OQS write quorum before the write can complete.

For workloads consisting of read bursts, the first read forces all OQS nodes of the

read quorum to validate their cached copies. Therefore, all subsequent reads are read

hits. Once we configure the OQS read quorum to contain only one node, reads becomes

local. Therefore, the protocol yields optimal read response time and availability for such

2Client reads and writes come from edge-server clients of the dual-quorum system not form untrusted
services clients.

76

IQS

WQWQ

Client Client
ReadsReads

Read Read
RepliesReplies

WQWQ

OQS IQS

orqorq

IQS

WQWQ

Client Client
ReadsReads

Read Read
RepliesReplies

WQWQ

OQS IQS

Cache Cache
RenewRenew

Renew Renew
RepliesReplies

irqirq

orqorq

(a) Read hit (b) Read miss

WQWQ

Client Client
WritesWrites

Write Write
AckAck..

WQWQ

OQS IQS
iwqiwq

WQWQ

Client Client
WritesWrites

Write Write
AckAck..

WQWQ

OQS IQS

InvalidationsInvalidations

InvalInval. .
AckAck..

iwqiwq
owqowq

(c) Write suppress (d) Write through

Figure 4.3: Request processing scenarios

workloads. For workloads consisting of write bursts of the same data, the first write

invalidates cached copies in an OQS write quorum, making all subsequent writes as write

throughs. Naturally, we can configure IQS as a majority quorum system to provide the

optimal write availability for such workloads.

Protocol details The following paragraphs provide the details of the basic dual-quorum

protocol by describing the actions taken at individual nodes.

Data structures. Each IQS node maintains the following state for each object o: lastWriteLCo

stores the logical clock of the last write to o, lastReadLCo stores the value of lastWriteLCo

from the time of the last read of o, lastAckLCo,n stores the logical clock contained in the

highest invalidation reply from node n for o, and valueo stores the value of o. Each node

in IQS maintains a logical clock logicalClock whose value is always at least as large as the

77

node’s largest lastWriteLCo for any object o. Each node in OQS maintains the following

per-object o per-node n state: epocho,n indicates the last epoch for which a valid object

lease on o from n was held, logicalClocko,n indicates the highest version number (logical

clock) of o for which an invalidation or update has been received from n, and valido,n is

true if logicalClocko,n corresponds to an update (false if it corresponds to an invalidate).

Finally valueo stores the update body for the highest logical clock received in any update

message for o from any node.

Object validity. The system maintains the following key invariant: If node j in OQS

has from node i in IQS a valid object o (j.valido,i) then node i in IQS knows node j in

OQS has a valid object callback (i.lastReadLCo > i.lastAckLCo,j).

Client read. From the client’s point of view, a dual-quorum read is the same as a

standard quorum read [45, 46]. client sends a read request to the OQS via QRPC. After

receiving replies from a read quorum in OQS, client selects the value with the highest

logical clock.

A node j in OQS that receives a client read request checks whether the object o is

valid. j performs the check by verifying locally if there exists a read quorum irq in IQS such

that j holds a valid object from every node i in this read quorum (i.e. valido,i = TRUE

for all i in a read quorum irq). o is valid if a read quorum irq satisfying the condition

can be verified, invalid otherwise. If o is valid, j returns the object’s locally-stored logical

clock and value. If not, j renews the object by sending object renewal messages to IQS

using QRPC. After receiving replies R from a read quorum in IQS, j updates its local

state (∀i, s.t. i ∈ R: if R.ro,i.lc ≥ logicalClocko,i, then logicalClocko,i := R.ro,i.lc and

valido,i := true). Then, j updates valueo with the value in the reply with the highest

logical clock and returns both the value valueo and the highest logical clock to the client.

Each IQS server that receives an object renewal message returns to the OQS server

valueo and lastWriteLCo and then updates lastReadLCo = max(lastReadLCo, lastWriteLCo).

78

Client write. Just like the standard quorum write protocol [45, 46], client first queries

IQS using QRPC to retrieve the highest logical clock from a read quorum in IQS. Next,

client advances the logical clock and embeds it in the write request that is then sent to the

IQS via QRPC. The write completes after client receives acknowledgments from a write

quorum in IQS.

An IQS server i that receives a client request for the highest logical clock of the last

completed write responds with its logical clock logicalClock. When i receives a client write

whose logical clock is larger than that associated with the last completed write of o on i

(lastWriteLCo), i updates lastWriteLCo and valueo with those in the write. Then, to

ensure that a write quorum in OQS is unable to read the old version of the data, i performs

one of the following tasks: (a) if no OQS server has renewed since the completion of the

last write, (e.g. ∀j, s.t. j ∈ OQS, lastReadLCo < lastAckLCo,j), i suppresses invalidations

to OQS; (b) otherwise, i sends invalidations with the logical clock of the write to OQS

using QRPC. The write completes after receiving invalidation replies from a write quorum

in OQS, at which point i updates lastAckLCo,j for all j in the QRPC reply and returns

to the client.

An OQS server j that receives from node i in IQS an invalidation with a logical

clock lco,i compares lco,i with logicalClocko,i. If the invalidation has the higher logical

clock, j updates the local state (logicalClocko,i = lco,i and valido,i = false). Finally, j

sends an invalidation acknowledgment back to i.

4.3.2 Dual quorum with volume leases

The basic protocol just described allows one to vary read and write quorum sizes inde-

pendently. However, our application would benefit from using a read quorum size of 1

so that reads can be serviced locally; any larger read quorum size introduces a network

delay to every read and provides qualitatively worse read response time. However, a read

quorum size of 1 could lead to unacceptable write availability because it requires a write

79

1 processLCReadRequest () {
2 sendMsg (CLIENT LC READ REPLY , logicalClock) ;
3 }
4
5 processWri teRequest (Object o , Value v , Log ica lClock lc){
6 i f (lc > lastW riteLCo){
7 valueo := v ;
8 lastWriteLCo := lc ;
9 // ensure an OQS wri te quorum i s i nva l i da t ed

10 whi l e (! isOWQInvalid (o , lc)){
11 invalidateOWQ (o , lc) ; / / see t ext f o r

d e s c r i p t i o n s
12 }
13 }
14 sendMsg (CLIENT WRITE ACK, o , lc) ;
15 }
16
17 proces s Inva lAck (Object o , Sender j , Log ica lC lock lc){
18 // update the l a s t i nva l ack in the record f o r the

sender
19 lastAckLCo,j := MAX(lastAckLCo,j , lc) ;

20 }

20 processVLRenewal (Volume v , Sender j , RequestorTime
tv,0){

21 expiresv,j := L + currentTime ;

22 sendMsg (VOLUME RENEW REPLY, delayedv,j , L , epochv,j

, tv,0) ;

23 }
24
25 processVLRenewalAck (Volume v , Sender j , LogicalC lc)

{
26 // remove delayed i nva l s a l r eady app l i ed at the

sender
27 ∀k, s.t. invalk,j ∈ delayedv,j {

28 i f (lc ≥ invalk,j .lc){

29 d e l e t e invalk,j ;

30 }
31 }
32 }
33
34 processObjRenewal (Object o){
35 // update the l a s t read l o g i c a l c lo ck
36 lastReadLCo := lastW riteLCo ;
37 sendMsg (OBJECT RENEW REPLY, valueo , lastWriteLCo)

;
38 }

Figure 4.4: IQS server operations (pseudocode) - Dual quorum with volume leases

to successfully contact all nodes in the OQS to invalidate cached data. We therefore adapt

Yin et al.’s volume lease protocol [132] to support very small read quorums in OQS while

retaining acceptable availability on writes.

High level overview We group objects into collections called volumes. To process a

read, a read quorum in OQS must hold both a valid volume lease and a valid object lease

for some read quorum in IQS. A lease represents permission to access some object that

expires at some specified time [47]. Similar to the basic dual quorum protocol described in

the previous section, when an OQS read quorum holds both valid leases, all client reads

processed by this read quorum are read hit. A read miss implies that either or both leases

are invalid; they can be renewed by querying from an IQS read quorum. Similarly, a write

suppress is when either or both leases are invalid in at least one OQS write quorum. To

process a write in the write through scenario, the IQS write quorum can (a) invalidate the

object lease in an OQS write quorum or (b) wait for the lease to expire on the volume

containing the requested object in an OQS write quorum. This second option is what

allows the system to function well even with very small OQS read quorum.

80

1 processVLRenewReply (Volume v , Sender i , Lease L , Epoch e ,
DI di , RequestorTime tv,0){

2 expiresv,i := MAX(expiresv,i, tv,0 + L ∗ (1 − maxDrift)) ;

3 epochv,i := MAX(epochv,i, e) ;

4 // apply delayed i n va l s i f e x i s t in the r ep l y
5 ∀k, s.t. invalk,i ∈ di {

6 i f (invalk,i.lc > logicalClockk,i){

7 logicalClockk,i := invalk,i.lc ;

8 validk,i := false ;

9 }
10 }
11 sendMsg (VOLUME RENEW REPLY ACK, v , MAX(di.lc)) ;
12 }
13
14 pro c e s s In va l (Object o , Sender i , Log ica lC lock lc){
15 // update the l o c a l l o g i c c l ock and ob je c t s ta tu s
16 i f (logicalClocko,i < lc){

17 logicalClocko,i := lc ;

18 valido,i := false

19 }
20 sendMsg (INVAL ACK, l c) ;
21 }

21 processReadRequest (Object o){
22 // ensure the l o c a l ob j ec t and volume are va l i d
23 whi l e (! i sLoca lVa l i d (o)){
24 // i f not , renew inva l i d volume or ob je c t

or both
25 va l i d a teLoca l (o) ;
26 }
27 // once both l e a s e s are va l idated , send rep l y

to c i l e n t
28 lc := MAX∀i, s.t. valueo,i=true(logicalClocko,i) ;

29 sendMsg (CLIENT READ REPLY, valueo , lc) ;
30 }
31
32 processRenewReply (Object o , Sender i , Epoch epoch ,

Logica lC lock lc , ObjectValue value){
33 epocho,i := MAX(epocho,i, epoch) ;

34 i f (logicalClocko,i ≤ lc){

35 logicalClocko,i := lc ;

36 valido,i := true ;

37 }
38 i f (valido,i = true &&

logicClocko,i ≥ MAX∀k, s.t. k∈IQS(logicalClocko,k)){

39 valueo := value ;
40 }
41 }

Figure 4.5: OQS server operations (pseudocode) - Dual quorum with volume leases

The key benefit of volume leases is that they are of short duration while object

leases are of long duration.3 This combination yields good read response time and high

availability for systems with small OQS read quorum; nodes in OQS can cache objects

locally for a long time, and although they must frequently renew volume leases, the cost

is amortized across a large number of objects in a volume [132]. At the same time, the

combination does not suffer from poor write availability although OQS write quorum is

large: a write that cannot contact all nodes in an OQS write quorum needs only wait for

the (short) volume lease to expire.

The key challenge in introducing volume leases is to manage the callback state

when invalidations are suppressed at IQS when the volume lease expires in an OQS write

quorum. When an IQS write quorum processes a write to o while the lease has expired

for the volume v containing o in an OQS write quorum, i.e. a write suppress scenario,

the IQS write quorum enqueues the invalidation of o as a delayed invalidation [132]. The

delayed invalidation of o must be processed by an OQS write quorum before v’s lease can

3For simplicity, we will assume infinite-length object leases or callbacks [57]. Generalizing to finite-length
object leases is straightforward and can help optimize space and network costs [39].

81

be renewed so that a callback to IQS is installed on an OQS write quorum. The callback

ensures OQS to query from IQS for the update to o when o is requested at OQS .

A final implementation detail we take from Yin et al. [132] is to bound the size of

the list of delayed invalidations for OQS using epochs. Volume lease renewals are marked

with an epoch number, and when this epoch number changes, OQS conservatively assumes

all object callbacks have been revoked by IQS . In this case, OQS suspects that all objects

under this volume are updated at IQS and OQS needs to query an IQS read quorum to

validate the cache copy before sending any object to clients.

Protocol details The protocol details at the node level are similar to the basic dual

quorum protocol except that each IQS node tracks the volume lease and callback state on

all OQS nodes in addition to the status of the cache copies. The pseudo-code describing

actions at an IQS and an OQS node is shown in Figures 4.4 and 4.5.

Data structures. Each node in IQS maintains a real time clock currentT ime (with

bounded drift with respect to the other clocks as described in Section 4.2) and a logical

clock logicalClock. Each IQS node also maintains the following per-volume v, per-OQS-

node j state: expiresv,j which indicates when v expires at j, delayedv,j which contains a

list of delayed invalidations that must be delivered to j before v is renewed, and epochv,j

which indicates j’s current epoch number for v. Finally, each IQS node maintains the

following per-object o state: lastWriteLCo stores the logical clock of the last write to

o, lastReadLCo stores the value of lastWriteLCo from the time of the last read of o,

lastAckLCo,j stores the logical clock contained in the highest invalidation reply from node

j for o, and valueo stores the value of o.

Each node in OQS maintains a bounded-drift real time clock currentT ime. In

addition, it maintains the following per-volume v per-IQS-node i state: epochv,i is the

highest epoch number for which a valid volume lease from i was held on v and expiresv,i is

the time when the lease on v from i will expire. And, it maintains the following per-object

82

o per-IQS-node i state: epocho,i indicates the last epoch for which a valid object lease

on o from i was held, logicalClocko,i indicates the highest version number (logical clock)

of o for which an invalidation or update has been received from i, and valido,i is true if

logicalClocko,i corresponds to an update (false if it corresponds to an invalidate). Finally

valueo stores the update body for the highest logical clock received in any update message

for o from any node.

Volume and object validity. The system maintains the following key invariant: If

node j in OQS has from node i in IQS both a valid volume v (expiresv,i > currentT ime)

and a valid object o (epochv,i = epocho,i && valido,i) then node i in IQS knows node j

in OQS has a valid volume lease (expiresv,j > currentT ime) and valid object callback

(lastReadLCo > lastAckLCo,j).

Client read. As detailed by processReadRequest in the pseudo-code, a node j in

OQS processes a client read of object o as follows. j must ensure Condition C: there exists

a read quorum irq in IQS such that j holds both a valid volume lease and valid object

lease from irq. If C is already true, then j can immediately return the value valueo and

the associated logical clock MAX∀i, s.t. i∈IQS(logicalClocko,i).

If C is not true, then j performs a variation on QRPC. QRPC as defined in Sec-

tion 4.2 sends and resends a request to different nodes until it receives a quorum of replies.

This variation sends different requests to different nodes and processes replies until con-

dition C becomes true. In particular, for each target node i selected, j sends one of

three things: (a) if the volume from i has expired and the object from i is invalid, it

sends a combined volume renewal and object read; (b) if just the volume has expired,

it sends a volume renewal; or (c) if just the object is invalid, it sends an object read.

As detailed in the pseudo-code processVLRenewReply, j processes replies to volume

renewal requests from IQS node i by applying the delayed invalidations included in the

reply (in the same way as applying normal invalidations as described below) and updating

83

expiresv,i as well as epochv,i. To account for worst-case clock drift, j conservatively sets

expiresv,i = to+L∗(1−maxDrift) where to is the time that j sent the volume lease renewal

request, L is the volume lease length granted in the reply, and maxDrift is as defined in

Section 4.2. Finally, j sends i a volume lease renewal acknowledgment (which i uses to clear

its delayed invalidation queue.) As detailed in the pseudo-code processRenewReply, j

processes object renewal replies from i by updating epocho,i, logicalClocko,i, and valido,i;

furthermore, if valido,i is true and logicalClocko,i exceeds the logical clock of any other

valid logical clock for this object, j updates valueo. The repeated sends and the processing

of replies in this QRPC variation ensure that C eventually becomes true, at which point

j returns valueo and the associated logical clock (logicalClocko,imax) as the result of the

read.

On the IQS side, node i in IQS processes volume renewal messages for volume v

from node j as described in the pseudo-code processVLRenewal: i sends the delayed in-

validations delayedv,j and the volume renewal, containing the epoch number epochv,n and

lease length L. i then records the volume expiration time (expiresv,j = L+ currentT ime).

When i receives a volume lease renewal acknowledgment for volume v and logical clock

lc from j, as detailed in the pseudo-code processVLRenewalAck, i clears all delayed

invalidations with logical clocks up to lc from delayedv,j. As processObjRenewal indi-

cates, when i in IQS processes a read of object o from OQS node j, it replies with valueo

and lastWriteLCo and updates lastReadLCo = lastWriteLCo. Note that lastReadLCo,

lastAckLCo,j, and lastWriteLCo allow i in IQS to track which nodes j in OQS may hold

valid object callbacks. Finally, if an IQS server i wishes to garbage collect delayed invali-

dation state for j, i advances epochv,j and and deletes the delayed invalidations delayedv,j .

Note that if j receives from i a volume lease with a new epoch, then epochv,i 6= epocho,i for

all o. So all previously valid object leases from i immediately become invalid. Thus, if j

misses some object invalidations from i when its volume lease from i has expired, a volume

lease renewal from i can resynchronize j’s state by either (a) updating valido,i with the

84

missing delayed invalidations or (b) advancing epochv,i by sending a volume renewal with

a new epoch number.

Client write. A client first determines the highest logical clock of any completed write by

calling IQS’s processLCReadRequest. A node i in IQS responds to such a call for object

o by returning the node’s global logical clock logicalClock. A client then issues the actual

write of object o. As detailed in processWriteRequest in the pseudo-code, if the write’s

logical clock exceeds that of the highest write seen so far (lastWriteLCo), node i stores the

write’s logical clock and value. i then ensures that a write quorum in OQS is unable to read

the old version of the data by performing a variation on QRPC that “sends” differently to

different nodes depending on whether their volume and object leases are valid. There are

three cases for i to consider for node j, object o, and volume v: (a) if i knows o is invalid

at j (e.g., lastReadLCo < lastAckLCo,j) then i need take no action for j; (b) otherwise

if o is valid at j but v is invalid at j (e.g., expiresv,j < currentT ime) then i enqueues an

invalidation in delayedv,j which will be processed at j when it renews its volume; or (c)

both the object and volume are valid (e.g., lastReadLCo > lastInvalLCo,j) then j sends

an object invalidation containing the write’s logical clock (lastWriteLCo) to j. In this

last case, if j receives an invalidation from i for object o with logical clock lc, then as the

pseudo-code in processInval describes, j applies the invalidation: if the invalidation is the

newest information about o from i (e.g., lc > logicalClocko,i) then update the logical clock

and validity information ({logicalClocko,i = lc; validi = false}). Finally, if i receives

an invalidation-acknowledgment from j for logical clock lc, then as the pseudo-code in

processClientInvalAck describes, i updates lastAckLCo,j = max(lastAckLCo,j, lc).

4.3.3 Correctness

In this section, we prove that the dual-quorum protocol provides Pseudo-Regular Seman-

tics [96]:

85

• Property 1: A read of o that is not concurrent with any writes of o can return only

the value and logical clock from the completed write of o with the highest logical

clock and

• Property 2: A read of o that is concurrent with one or more writes of o can (a)

return the value and logical clock from the completed write of o with the highest

logical clock, (b) return the value and logical clock from some concurrent write of o,

or (c) keep retrying.

Proof of Dual-Quorum Protocol

We refer to a server in OQS SrOQS and a server in IQS SrIQS. When a write to o

with timestamp n completes on a SrIQS , the SrIQS must have received lastAckLCo,j with

timestamp n from every SrOQS j of an owq.

Lemma 1 After a write with timestamp n completes on a SrIQS, no subsequent reads

return a value with timestamp lower than n.

Proof: Receiving lastAckLCo,j with timestamp n from every server j of an owq implies

that at least one server in any orq contains the invalidation with timestamp n. Any subse-

quent reads will be sent to at least one OQS server holding the invalidation with timestamp

n which prevents any value with timestamps lower than n from returning by subsequent

reads.

Lemma 2 If lastAckLCo,j > lastReadLCo, ∀j ∈ OQS on every server of an iwq and

the timestamp of the last completed write is n, no subsequent reads return a value with

timestamp lower than n.

Proof: When lastAckLCo,j > lastReadLCo, ∀j ∈ OQS on a SrIQS , it implies that no

SrOQS has renewed from this SrIQS since the last write completed on this SrIQS. (1)

When lastAckLCo,j > lastReadLCo,∀j ∈ OQS on all SrIQS of an iwq, it implies that no

86

SrOQS has renewed from any SrIQS of this iwq since the last write, the write with times-

tamp n, completes on every SrIQS of this iwq. Because an iwq intersects with all irq, we

can also conclude that no SrOQS has renewed from any irq since the last write completed

on this iwq. (2) From the proof of Lemma 1 we know that after any SrIQS completes the

last write, at least one server in any orq contains an invalidation. From (1) and (2) we

conclude the following: When lastAckLCo,j > lastReadLCo,∀j ∈ OQS on all SrIQS of an

iwq, at least one server in any orq received an invalidation and has not yet renewed from

any irq. Therefore, when a read arrives at an orq, invalid servers (at least one) of this orq

will read from an irq. If the last completed write in the system has timestamp n, the irq

will not return any value with timestamp lower than n. Consequently, a subsequent read

will return a value with timestamp no lower than n. Similarly, subsequent reads arriving

at any orq will also return a value with timestamp no lower than n.

Property 1: When a write with timestamp n arrives at an iwq, every server of the

iwq performs one of the two tasks: 1. If lastAckLCo,j > lastReadLCo,∀j ∈ OQS is true

for any server of the iwq, it applies the write locally and sends a completion acknowledg-

ment to the client. 2. Otherwise, the server attempts to send invalidations to all SrOQS

j of an owq and updates its lastAckLCo,j to n upon receiving the acknowledgment from

each j in the owq. If all servers of the iwq perform only task 1, every read after the write

with timestamp n completes return values with timestamp no lower than n according to

Lemma 2. If any server of the iwq performs task 2, all reads after the write with timestamp

n completes return values with timestamp no lower than n according to Lemma 1.

Property 2: Assume the last completed write has timestamp n − 1. As a write with

timestamp n and a read arrive in the system at the same time, there are two cases to

consider. Case 1, if lastAckLCo,j > lastReadLCo, ∀j ∈ OQS on every server of an iwq,

the read causes at least one SrOQS to renew from an irq according to the proof of Lemma

87

2. Then we have a situation where both the renewal and the write are active in the IQS.

Because IQS provides Regular Semantics, the renewal could return a value with either n−1

or n. Therefore, the read can return either n − 1 or n to the client. Case 2, if there does

not exist an iwq with all its servers satisfying lastAckLCo,j > lastReadLCo,∀j ∈ OQS,

invalid servers in some orq may have renewed from an irq and received the value with

timestamp n − 1 due to some previous reads. If this concurrent read touches one of those

orq validated by previous reads, it returns n− 1 as previous reads. If this concurrent read

touches an orq with at least one invalid SrOQS , the result is the same as in Case 1. In

both cases if an invalid SrOQS receives the invalidation with timestamp n followed by a

renew reply containing the value with timestamp n− 1, it has to retry from some irq until

the value with timestamp n is returned. In conclusion, a read that is concurrent with any

write will return the value of the last completed write, the value of the concurrent write,

or it retries to get the value of the concurrent write.

Proof of Dual-Quorum Protocol with Volume Leases

Each SrIQS has a nonExpSetv that contains all SrOQS j with valid leases of volume v (i.e.

expiresv,j > currentT ime).

Lemma 4 If v’s lease has not expired on a SrOQS j, expiresv,j > currentT ime on at

least one SrIQS in any iwq.

Proof: When the SrOQS j obtains a new lease for v, j needs to query an irq. As j sets

v’s new expiration time to the minimal expiration time returned from the irq, every server

i of the irq records the expiration time it sends to j in expiresv.j which is equivalent to

or larger than the expiration time held by j. Since the irq intersects with all iwq, at least

one server, i, of any iwq belongs to the irq. Therefore, as long as v is not expired on j,

expiresv,j > currentT ime on at least one server in any iwq.

88

Lemma 5 If nonExpSetv is an empty set on every SrIQS of an iwq, v must have ex-

pired on every server of an owq.

Proof: The counter-positive of Lemma 4 states that if every SrIQS of an iwq con-

tains expiresv.j <= currentT ime for the same SrOQS j, j′v must have expired. When

nonExpSetv is an empty set on every server of the iwq, no SrOQS contains a non-expired

v. Therefore, v must have expired on every SrOQS of an owq.

Property 1: When a write to o in volume v with timestamp n arrives at an iwq, every

SrIQS of the iwq performs one of the three tasks: 1. If nonExpSetv is an empty set on a

SrIQS , it applies the write locally, buffers the invalidation with timestamp n on the SrIQS ,

and sends a completion acknowledgment to the client. 2. If lastAckLCo,j > lastReadLCo

is true on a SrIQS , it applies the write locally and sends a completion acknowledgment

to the client. 3. Otherwise, the SrIQS attempts to send invalidations to all SrOQS j of

an owq and updates its lastAckLCo,j to n upon receiving each acknowledgment from each

j in the owq. If every SrIQS performs only task 1, we know that the volume must have

expired on every SrOQS of an owq according to Lemma 5. Because an owq intersects with

all orq, any subsequent read arrives on at least one SrOQS with expired volume lease. The

SrOQS with expired volume lease will renew its volume from an irq. At least one SrIQS

that buffers the invalidation with timestamp n is queried. Therefore, the invalidation with

timestamp n is returned to the SrOQS as it receives its new volume lease. Because the

SrOQS contains an invalidation with timestamp n, it prevents the read from returning a

value with timestamp less than n to the client. The rest of the proof is the same as the

proof of Property 1 for the Dual-Quorum protocol.

Property 2: The proof of property 2 is similar to that for the dual-quorum protocol.

Case 1, the condition changes from “lastAckLCo,j > lastReadLCo” to “lastAckLCo,j >

lastReadLCo or nonExpSet = ∅” for every server of an iwq. Case 2, the condition

89

changes from “lastAckLCo,j > lastReadLCo” to “lastAckLCo,j > lastReadLCo and

nonExpSet = ∅”

4.4 Evaluation

Through both analytical and experimental evaluations, we compare the availability, perfor-

mance, and communication overhead of DQVL against other popular replication protocols.

We show that DQVL yields read performance competitive with ROWA-A epidemic algo-

rithms and overall availability competitive with the majority quorum protocol.

4.4.1 Response time

Analytical evaluation First, we analyze the response time of DQVL and make com-

parisons with other popular protocols in the context of the edge service environment where

every client connects to a nearby edge server via a fast connection, e.g. a LAN-like con-

nection, lan, with 6 ms RTT. All edge servers connect to each other through an overlay

network, overlay, with RTT delays of 80 ms. For a client to connect to servers other than

its nearby edge server, it has to go through a WAN-like connection, wan, with 86 ms RTT.

To preserve the optimal availability, the IQS is configured as a majority quorum

system so that a client needs to contact more than its nearby edge server to complete a

write. But the read quorum in OQS can be configured to consist of one node so that a

client needs to read only from its nearby server. Therefore, the response time of a read

hit will only involve lan delays. But the response time of a read miss is lan + overlay

because this closest server needs to renew from other edge servers. The response time of

write suppress is wan ∗ 2, one trip to retrieve the highest timestamp and another trip to

perform the actual write. The response time of write thru is wan∗2+ overlay because the

write has to send invalidations and wait for acknowledgments to come back from a write

quorum in OQS in addition to retrieving the highest timestamps and sending the write

to be performed. If we assume the workload consists of all consecutive reads followed by

90

consecutive writes (or all consecutive writes followed by consecutive reads), most reads are

read hit (except for the first one) and most writes are write suppress (except for the first

one). And we have the best case average response time for DQVL:

respDQ−best = w ∗ wan ∗ 2 + (1 − w) ∗ lan (4.1)

When the workload consists of interleaved reads and writes, most reads are read miss and

most writes are write thru. The average response time in this case is the worst:

respw<0.5
DQ−worst = w ∗ (wan + wan + overlay) + (1 − w) ∗ (lan + overlay) (4.2)

respW≥0.5
DQ−worst = w ∗ ((2w − 1)/w ∗ (wan + wan) + (1 − w)/w ∗ (wan + wan + overlay))

+ (1 − w) ∗ (lan + overlay) (4.3)

The average response time of other protocols are as follows:

respROWA = w ∗ wan + (1 − w) ∗ lan (4.4)

respROWAA = lan (4.5)

respMajority(orrespGrid) = w ∗ wan ∗ 2 + (1 − w) ∗ wan (4.6)

Average response times of various protocols are illustrated in Figure 4.6 where we

plot the average response times while varying the write ratio and fix the number of replicas

to 15. DQVL provides its best case response time when workloads consist of only read hits

and write suppresses. As indicated by the third curve from the bottom, DQVL read hits

yield performance competitive with ROWA-A epidemic algorithms against read-dominated

workloads because they only need to communicate with the closest server. DQVL has the

worst case response time against workloads consisting of a large number of read misses and

write thrus. DQVL read misses and write thrus require communication with distant servers

similar to the behaviors of both majority and grid quorum operations. Therefore, they all

experience the wan delays. Furthermore, because writes in quorum systems (including

91

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Write Ratio

Dual-Quorum-Worst
Grid & Majority

Dual-Quorum-Best
ROWA

ROWAA

Figure 4.6: Average response time

DQVL) require one wan trip to retrieve the highest timestamp and another to perform the

actual write, their response time is twice as much as that of ROWAA. write thrus require

an additional wan trip to invalidate a write quorum in OQS. At 50% write ratio, when

DQVL has the maximum amount of write thrus, the overall response time of DQVL reaches

its worst case as indicated by the top most curve.

Experimental evaluation We have also developed replication prototypes for DQVL,

primary/backup, majority quorum, ROWA-Async and ROWA protocols. All the proto-

types are built in Java and run on eight Emulab nodes. In our prototype experiment, we

set the “lan” delay between a client and its closest edge server to 8 ms. The “wan” delay

between the client and other edge servers is 86 ms. And the network delay among edge

servers is 80 ms.

In the rest of this section, we compare the response time of five protocols under

our target workload, the TPC-W workload specified for the user profile. We show that

DQVL yields better response time than protocols providing strong consistency guarantees

and competitive response time to protocols with relaxed consistency guarantees.

92

 0

 12.5

 25

 37.5

 50

 62.5

 75

 87.5

 100

 112.5

 125

 137.5

 150

MajorityP/BROWAROWA-AsyncDQVL

R
ea

d
R

es
po

ns
e

T
im

e(
m

s)

 16
 11 13

 92

 108

 0

 50

 100

 150

 200

 250

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Write Ratio

Majority

Dual-Quorum

ROWA ROWA-Async

Primary/backup

(a) 5% write rate (b) varying write rate

Figure 4.7: Response time vs. write rate

Write ratio We first evaluate the response time by fixing the write rate to 5%, which

is the update rate for TPC-W profile object, i.e. a workload with a low update rate and

strong access locality. Accesses to the profile object consist of 95% reads on a customer’s

purchase history, credit information, and addresses and 5% writes on a customer’s shipping

address when processing an online purchase. When the profile is replicated on edge servers,

a customer is routed to the closest edge server to access its profile information.

As illustrated in Figure 4.7 (a), DQVL provides at least six times read response time

improvement over primary/backup and majority quorum protocols that are used to provide

strong consistency guarantees. DQVL yields almost the same read response time as ROWA

and ROWA-Async protocols because it allows most client reads to be processed only at the

client’s closest replicas with only 8 milliseconds RTT4 while maintaining the same level of

consistency guarantees as both primary/backup and majority quorum protocols by running

the dual-quorum invalidation protocol between the closest replica and the rest of replicas

in the system.

Figure 4.7 (b) is the sensitivity graph illustrating the overall response time changes

as we vary the write rate. As writes dominate the workload, DQVL’s response time ap-

proximates that of the majority quorum protocol and becomes higher than those of pri-

4Response times of all prototypes are higher than the underlying minimum network delays due to
experimental variation and un-tuned code.

93

mary/backup and ROWA. The main reason is that DQVL clients, following the same

procedure as the majority quorum protocol, need to obtain the latest timestamp from a

read quorum before sending the write to a write quorum in IQS . Two round trips are

required for both the majority quorum protocol and DQVL while only one round trip is

needed for primary/backup and ROWA protocols. The additional trip to obtain the times-

tamp prior to performing the actual write increases the average response times of both

DQVL and the majority quorum protocol compared with ROWA protocol.

Access locality In this subsection, we evaluate response time when some portion of client

requests are routed to replicas other than the client’s default closest one. Under normal

circumstances, requests are routed to the client’s closest server. But the unavailability of

the closest replica or the geographical movement of the client can sometimes result in the

requests being routed to distant replicas.

Figure 4.8 (a) illustrates protocols’ response times at our target 5% write rate and

90% access locality (i.e. 10% of client requests are sent to distanced replicas and 90%

of client requests are sent to the client’s closest replica). The 90% access locality is a

pessimistic measure for Internet edge servers given topical network failure rate is below

10% and the majority of end users do not travel frequently. DQVL outperforms both

primary/backup and majority quorum protocols for the workload of our interest while

preserving the same consistency level even in cases where client requests are directed to

distanced replicas. Note that ROWA-Async protocol yields the optimal response time at

the cost of serving reads with potentially inconsistent data when requests are directed to

the distanced replicas.

In DQVL protocol, the response time of reads at distanced replicas is higher than

the normal response time experienced when reading from the closest one. As the access

locality varies, the overall response time changes accordingly. Figure 4.8 (b) indicates the

relationship between the access locality and the overall response time of five protocols.

DQVL suffers at the low access locality because both reads and writes needs to contact

94

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

MajorityP/BROWAROWA-AsyncDQVL

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

 57

 26 27

 97

 112

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
es

po
ns

e
T

im
e(

m
s)

Local Access Rate

Dual-Quorum

Majority

ROWA

ROWA-Async

Primary/backup

(a) 5% write rate & 90% access locality (b) 5% write rate & varying access locality

Figure 4.8: Average response time vs. access locality

replicas in both input and output quorum systems. But DQVL’s response time keeps im-

proving as the access locality becomes higher. The majority quorum and primary/backup

protocols are not affected by the access locality because neither protocol is designed to take

advantage of the access locality in the edge service environment. This graph suggests that

when the access locality is 70% or higher, DQVL should be preferred over primary/backup

or majority quorum protocols for replication systems requires low response time and strong

consistency guarantees.

4.4.2 Availability

In this section, we provide analytical models to evaluate the availability of the dual quorum

protocol in comparison with other popular replication protocols.

We define the availability (av) as the number of client requests successfully processed

by the system over the total number of requests submitted to the system during a given

time period. A request is rejected by the system when target consistency semantics cannot

be satisfied [136] or if insufficient nodes are available to process requests. In the context

of this dissertation, systems are required to provide regular semantics [71]. For example,

if more than half of the nodes are unavailable in IQS of a dual quorum system or in a

majority quorum system, a client write will be rejected because the system can no longer

95

guarantee that a later read can always retrieve the value of this write. Because ROWA-

Async protocol allows reads to return stale data from nodes without the latest update, it

does not provide the regular semantics. The availability comparison among protocols is fair

only if those protocols offer the same level of consistency. Therefore, to avoid ROWA-Async

protocol returning arbitrary value, we design the experiment implementing ROWA-Async

protocol to reject client reads returning stale data.

The availability of both read hit and read miss are min(avorq, avirq). The availability

of both write thru and write suppress are min(avirq, aviwq). Given that the size of a quorum

(referring to voting based quorum systems) is qs and the total replication size is N , the

availability of the quorum is

avquroum =

N−qs∑

i=0

N

qs
(1 − p)qs+ipn−qs−i (4.7)

The availability of the dual-quorum system can be expressed as

avDQV L = (1 − w) ∗ min(avorq, avirq) + w ∗ min(aviwq, avirq)

Noticed that the above model provides the worst-case availability analysis of the dual-

quorum system because it under estimates the availabilities of both read hits and write

suppresses. Because a read hit requires only a read quorum in OQS and a write suppress

requires only a write quorum in IQS. Similarity, we derive the available models of other

quorum systems as the following:

avROWA = (1 − w) ∗ (1 − pn) + w ∗ (1 − p)n (4.8)

avROWAA = 1 − pn (4.9)

avMajority =

n−1
2

+1∑

i=1

n
n−1

2 + i
(1 − p)

n−1
2

+i ∗ p
n−1

2
+1−i (4.10)

avGrid = (1 − p
√

n)
√

n − w ∗ (1 − (1 − p)
√

n − p
√

n)
√

n (4.11)

Figure 4.9 illustrates the unavailability of DQVL in comparison with other protocols

in log scale. The unavailability is computed as 1−av. An unavailability of 10−i corresponds

96

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0 0.2 0.4 0.6 0.8 1

U
na

va
ila

bi
lit

y

Write Ratio

ROWA

ROWA-Async (0 staleness)

ROWA-Async (infinite staleness)

Grid

Majority, Dual Quorum (pessimistic)

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 2 4 6 8 10 12 14

U
na

va
ila

bi
lit

y

Number of Replicas

ROWA

Grid

ROWA-Async (0 staleness)

Majority, Dual Quorum (pessimistic)

(a) Unavailability vs. write ratio (b) Unavailability vs. number of replicas

Figure 4.9: System unavailability

to the availability of i 9’s. Our simple model assumes the failure probability p = 0.01 and

that failures (including server crashes and network failures) are independent. Read and

write rates are defined as 1 − w and w.

Figure 4.9 (a) illustrates the systems’ unavailability as we vary the write ratio

and fix the number of replicas to 15 (in both IQS and OQS). The key result is that

DQVL’s availability tracks that of the majority quorum. Note that the DQVL’s availability

measurement is pessimistic because a read can proceed without contacting any read quorum

in IQS if the read quorum in OQS holds valid volume and object leases; this effect may

mask some failures that are shorter than the volume lease duration. Note that ROWA-

Async protocol provides excellent availability by allowing reads to return arbitrarily stale

data to clients. When our experiments allow no stale reads in ROWA-Async protocol, it

yields poor availability that is several orders of magnitude worse compared to other quorum

based protocols and our DQVL protocol.

Figure 4.9 (b) illustrates systems’ unavailability as we vary the number of replicas

and fix the write ratio at 25%. It shows that the unavailability of DQVL has similar

behavior as the majority quorum system. The availability of quorum based protocols,

including DQVL, improves as the total number of nodes increases. The availability of

ROWA and ROWA-Async with no stale reads is insensitive to the number of nodes in the

97

system.

4.4.3 Communication Overhead

This section analyzes DQVL’s communication overhead in terms of the number of message

exchanges required in processing a client request. To simplify the model, the study assumes

weights of all message types are equal. In addition to notation used in the previous ana-

lytical study, we introduce |irq| that represents the size of a read quorum in IQS. When

a OQS server sends renews an object or an volume lease from a read quorum in IQS, we

use |irq| to indicate the number of messages sent by the OQS server (one message to each

server of the IQS read quorum). msgr and msgw denote numbers of message exchanges

when processing a read and a write. Our model targets the average number of message

exchanges which is calculated as msgr ∗ (1 − w) + msgw ∗ w.

A read hit requires 2∗|orq| messages because a client sends to and receives from each

server of an OQS read quorum one message. But for a read miss, each participating OQS

server that needs to renew the volume lease or the object sends a renewal request, receives

a renewal reply, and responds with an renewal acknowledgment to a read quorum in IQS,

which requires 3∗|irq| messages in addition to the 2∗|orq| messages. when all servers of the

OQS read quorum need to renew their local volume leases or the object, the total message

cost is 2∗|orq|+3∗ |orq| ∗ |irq|. A write suppress requires 2∗(|irq+ iwq|) messages because

it retrieves the highest timestamp from an IQS read quorum and performs the write on an

IQS write quorum. But a write thru requires additional 2 ∗ |iwq| ∗ |owq| messages because

of invalidations and acknowledgments between an IQS write quorum and an OQS write

quorum. The total messages required for a write thru is 2 ∗ (|irq + iwq| + |iwq| ∗ |owq|).

Therefore, the average number of message exchanges for DQVL when workload consists of

only consecutive reads followed by consecutive writes (or vice versa) is:

msgDQ−best = w ∗ 2 ∗ (|iwq| + |irq|) + (1 − w) ∗ 2 ∗ |orq| (4.12)

When the workload consists of only interleaving reads and writes, the average number of

98

messages required is:

msgw<0.5
DQ−worst = w ∗ 2 ∗ (|irq| + |iwq| + |iwq| ∗ |owq|)

+ (1 − w) ∗ (3 ∗ |irq| ∗ |orq| + 2 ∗ |orq|) (4.13)

and

msgw≥0.5
DQ−worst = w∗ (

2w − 1

w
∗2∗(|irq|+ |iwq|)+

1 − w

w
∗2∗ (|irq|+ |iwqq|+ |iwq| ∗ |owq|))

+ (1 − w) ∗ (3 ∗ |irq| ∗ |orq| + 2 ∗ |orq|) (4.14)

The average number of messages required in other protocols are as the following:

msgROWA = w ∗ 2 ∗ N + (1 − w) ∗ 2 ∗ 1 (4.15)

msgMajority(or msgGrid) = w ∗ 2 ∗ (|rq| + |wq|) + (1 − w) ∗ 2 ∗ |rq| (4.16)

To make the comparison fair, both IQS and OQS systems of DQVL are configured the

same as in the previous study, i.e. read and write quorums of IQS include a majority of

servers and the read quorum size of OQS is one.

Figure 4.10 shows the average number of messages required to process a client

request in log scale. As illustrated in Figure 4.10 (a), in the worst case where the write ratio

is at 50%, DQVL can have high communication overhead as reads and writes interleave

with each others. In this case, most reads are read misses and most writes are write

throughs which involve both IQS and OQS in processing requests. However, DQVL’s

overhead should be comparable to other approaches in practice. First, workloads that

DQVL is designed to face are dominated by reads. Consecutive reads are likely to benefit

from having objects cached on OQS servers, i.e. the target workloads have a large number

of read hits. Second, the design of DQVL allows us to vary the OQS size to meet read

performance goals while varying the IQS size to balance overhead vs. availability goals.

As shown in Figure 4.10 (b), once we fix IQS at a moderate size while letting the OQS size

99

1

10

100

1000

0 0.2 0.4 0.6 0.8 1A
ve

ra
ge

 N
um

be
r

of
 M

es
sa

ge
 E

xc
ha

ng
es

 p
er

 R
eq

ue
st

Write Ratio

Dual-Quorum-Worst

Majority
Dual-Quorum-Best

ROWA

Grid

1

10

100

1000

5 10 15 20 25 30 35 40 45 50A
ve

ra
ge

 N
um

be
r

of
 M

es
sa

ge
 E

xc
ha

ng
es

 p
er

 R
eq

ue
st

Number of Replicas

Dual-Quorum-Worst

Majority

Grid

Dual-Quorum-Best
ROWA

Dual-Quorum-Worst (|IQS|=5)

(a) varying write ratio (b) varying the number of replicas

Figure 4.10: Communication overhead

grow, the communication overhead yielded by DQVL is at the same level as the majority

quorum without requiring many read hits in the workload.

Although the dual quorum protocol is described in terms of two quorum systems,

IQS and OQS , an IQS server can physically be on the same node as an OQS server.

Therefore, the overall communication overhead could be less because some messages become

local.

4.5 Summary

This section presents dual-quorum replication, a novel data replication algorithm designed

to support Internet edge services. Through both analytical and experimental evaluations,

we demonstrate that this replication protocol offers nearly ideal trade-offs among high

availability, good performance, and strong consistency under the target workloads.

Several important issues will be addressed in our future work. It will be interesting

to configure both IQS and OQS to optimize other metrics. For example, we can configure

the read quorum size in OQS to be larger than one to avoid timeouts on invalidations. We

can also configure IQS as a grid quorum system [29] to reduce the overall system load.

We are also interested in modifying DQVL to provide different consistency semantics (e.g.

100

atomic semantics [71]) and comparing the cost difference.

101

Chapter 5

Towards the Unified Replication

Architecture

In this chapter, we advance the design methodology of the semantic-aware replication

(SAR) by introducing the replication microkernel concept. We will first introduce a novel

replication framework, PRACTI replication, that will be used as the “microkernel” in the

envisioned new replication architecture. Then we outline the new replication architecture

based on the microkernel approach used for designing operating systems [18, 34, 99, 53].

One approach to building new distributed applications is reusing our SAR objects.

Although existing objects are designed based on TPC-W specific requirements, those ob-

jects capture the abstractions of many important and representative data replication sce-

narios commonly seen in a broad range of applications. When building new applications,

some or all of the objects may be reused by matching the semantics exhibited by indi-

vidual shared data sets. For example, the inventory object implements the algorithm for

solving resource allocation problems. It can be used in other e-commerce, supply-chain,

and ticket reservation systems to allocate identical resources on distributed nodes. The

order object implements the abstraction of the single-reader/multi-writer scenario that

can be used as an administrative tool in the distributed environment to collect statistical

102

information from multiple nodes. The catalog object implements the abstraction of the

multi-reader/single-writer (dissemination) scenario. It can be used for the client-server

oriented data replication such as AFS and IBM sports and event information systems.

Relying on the SAR objects, however, has three limitations. First, the scope of new

applications that may be built with the existing objects is limited. When data sets within

applications of other classes exhibit new semantics not captured by the SAR objects, we

have to introduce additional objects to exploit those semantics. Second, it is rather expen-

sive to introduce new objects based on SAR’s initial design because SAR objects are built

from scratch. The ad-hoc approach currently used to design SAR objects involves devel-

opment overhead because low-level mechanisms used for exchanging and ordering updates

among nodes are repeatly implemented for each object. Third, the current SAR design

does not address the cross-object consistency that may be a critical issue in applications

of other classes. Reasoning about the cross-object consistency is hard because SAR ob-

jects work independently. Leaving this issue open in the distributed TPC-W prototype is

acceptable because no consistency requirements are violated. However, the same design

approach may not work in building other applications that demand consistency guarantees

across objects.

A joint effort with colleagues from the LASR lab investigates the first PRACTI

(Partial Replication, Arbitrary Consistency, and Topology Independent) replication frame-

work [36] that can potentially refine the design of SAR to eliminate those limitations. This

chapter explores the integration of the semantic-aware methodology and the PRACTI

framework. By offering a set of flexible primitives for building data replication systems in

WANs, PRACTI simplifies the design of SAR objects by allowing a single framework to

subsume a broad range of existing approaches. We can consider PRACTI mechanisms as a

replication microkernel and implement SAR objects as domain-specific replication libraries

using primitives supported by the microkernel. The replication libraries implement policies

based on specific semantics that they exploit. Furthermore, because PRACTI mechanisms

103

are not entangled with specific policies, they can be used to facilitate the implementation

of SAR objects with any point-solution policies embedded in existing mechanisms.

In this chapter, we briefly describe the high-level design and key insights of PRACTI

mechanisms. (However, to fully understand PRACTI’s detailed design and features, read-

ers need refer to our technical report [36].) Then, we outline the envisioned new SAR

architecture with the support from PRACTI primitives, followed by a discussion on how

to implement TPC-W objects atop PRACTI primitives. Finally, we demonstrate the ad-

vantage of combining the SAR design methodology with the PRACTI mechanisms using

two benchmark evaluations.

5.1 Design of PRACTI Replication

Our research on PRACTI replication was motivated by the fact that mechanisms and poli-

cies are entangled in existing replication systems. As a result, when building a replication

system for a new environment, we must either develop it from scratch or modify existing

mechanisms to accommodate new policy trade-offs. PRACTI seeks to define core primi-

tives on which different replication policies can be implemented. In this section, we will

briefly describe the overall design of PRACTI and primitives it provides.

5.1.1 Design overview

PRACTI is based on a log-exchange protocol similar to that of Bayou [95] to enable synchro-

nization between two nodes. Basically, nodes exchange portions of their logs to propagate

writes through the system. Bayou log-exchange protocol allows an arbitrary node pair to

exchange updates and offers the basis for providing a range of consistency guarantees [136].

But a fundamental limit in Bayou log-exchange approach is that the protocol requires full

replication in order to ensure the causally-consistent prefix of the system’s writes on every

node.

104

Inval Streams

Controller

Requests to

PRACTI Core

Mgmt.Inform

Inval Streams

Body Streams Body Streams

Log

(read(), write(), delete())
Local API

Requests from

remote controllersremote cores

Send

Apply

Interface
Inval

Body

Apply

Interface
Body

Local
Interface

Random
Access
State

Send
Inval

Control Interface

Figure 5.1: High level PRACTI architecture for one node.

To allow any node to replicate a subset of the data, PRACTI mechanisms separate

the associated meta data, namely invalidations, from the actual updates. A node may

replicate a subset of the data and specifies to receive only the invalidations and update

bodies of the subset from other nodes. Furthermore, the invalidations that are not as-

sociated with the updates to the subset replicated on a node are explicitly encoded via

imprecise invalidations when received by the node.

Figure 5.1 illustrates the high-level design of the PRACTI framework. Each node

has two main components: the replication core and the controller. The core contains the

basic PRACTI mechanisms to process incoming messages and maintain a local view of

the system’s state. The controller embodies a system’s policies by initiating communi-

cation among nodes, similar to the semantic-aware replication policies we have explored

in previous chapters. In other words, different controllers can be implemented with spe-

cific replication topologies and consistency guarantees. In the rest of this section, we will

describe the replication core in detail and leave the discussion of the controller to the

next section where we talk about combining the SAR design approach with PRACTI in

Section 5.2.

105

5.1.2 Separate invalidations from bodies

The separation of invalidations from bodies allows partial replication of data. While in-

validations are sent to all replicas eventually, bodies are sent to replicas based on specific

replication policies. To accomplish this separation, the PRACTI architecture splits write

messages into two parts: (1) invalidation messages identify what objects were written and

when the writes occurred and (2) body messages contain the bodies of the writes.

PRACTI distributes invalidations using a straightforward variation of Bayou’s log

exchange protocol that operates on invalidations rather than complete writes. When a

node receives a new invalidation message, it applies the message to its log, and when it

sends its log to another node, this log contains invalidations rather than complete writes.

When a node receives an invalidation, then if the invalidation’s logical timestamp exceeds

the logical time for the object in the data store, the node updates the object’s state in data

store by marking it INVALID and updating its logical timestamp. PRACTI thus retains

three key invariants on invalidations [95]. First the prefix property requires that a node’s

state always reflects a prefix of the sequence of invalidations by each node in the system.

I.e., If a node’s state reflects the ith invalidation by some node η in the system, then the

node’s state reflects all earlier invalidations by η. Second, each node’s local state always

reflects causally consistent [58] view of all invalidations that have occurred. This property

follows from the prefix property and from the use of Lamport clocks [70] to ensure that

once a node has observed the invalidation for write w, all of its subsequent writes’ logical

timestamps will exceed w’s. Third, the system ensures eventual consistency: all connected

nodes eventually agree on the same total order of all invalidations. Given this basis, we

can enforce a broad range of consistency semantics [136].

Although invalidations must be sent and applied in causal, logical timestamp order,

PRACTI nodes can distribute bodies according to arbitrary policies, in arbitrary order,

across arbitrary topologies. A PRACTI node must therefore synchronize arriving bodies

with the invalidation streams before applying bodies to its local state. PRACTI maintains

106

the invariant that update bodies are not applied to the data store until after the corre-

sponding invalidation message. To ensure this invariant, the core’s applyBody interface

buffers updates until they may be safely applied. When a node finally can apply a body

message, if the logical time for the object in the data store has not advanced past the

body’s logical time, the data store marks the object VALID and stores the body.

The separation of bodies from invalidations affects local read requests. The system

blocks a local read request until the requested object’s status is VALID. Of course, to

ensure liveness, when an INVALID object is read, an implementation should arrange for

someone to send the body. A controller can implement any policy for doing this from a

static hierarchy (i.e., ask your parent [19] or a central server [57] for the missing data) to

a separate, centralized directory, to a DHT-based directory [115], to a hint-based search

strategy [103], to a push-all strategy [95] (i.e., “just wait and the data will come.”) In

addition to distributing bodies in response to demand reads, controllers can also prefetch

bodies [50], pre-push bodies [51, 101, 124], or pre-position bodies according to a global

placement policy [123].

5.1.3 Imprecise invalidations and interest sets

Where separation of invalidations from bodies supports partial replication of data, impre-

cise invalidations allow partial replication of meta data: nodes receive precise invalidations

for objects they plan to access but receive only summaries of invalidations for other objects.

Although each invalidation is small, imprecise invalidations are crucial for large systems.

As demonstrated by Mike et al. [36], imprecise invalidations can reduce replication costs

by an order of magnitude compared to requiring every node to see every invalidation of

every object.

An imprecise invalidation is a conservative summary of a group of ordinary invali-

dations, which we refer to as precise invalidations. We use the term general invalidation to

refer to either a precise or imprecise invalidation. An imprecise invalidation includes a set

107

of targets and a range of logical times defined by some start and end times, and it denotes

that “One or more objects in targets was updated between start and end.” An imprecise

invalidation must cover all summarized invalidations—any invalidation summarized by an

imprecise invalidation i must have its target ID included in i.targets and its logical time

included between i.start and i.end. Notice that a general invalidation’s start and end times

are partial version vectors with as few as one element (to cover invalidations by one node)

and as many as n elements (to cover invalidations by all nodes in the system). Also note

that an imprecise invalidation i can be conservative: i.targets can include objects that

were not invalidated between i.start and i.end. This rule supports concise encodings of

large numbers of files (e.g., a list of subdirectories or a Bloom filter of object IDs).

When a node α receives an imprecise invalidation i, α applies i to both its log

and its data store. For the log, i serves as a “placeholder” so that if α sends its log to

another node, i indicates which precise invalidations are omitted. Logs thus still maintain

the prefix property, causal consistency, and eventual consistency invariants. The benefit of

imprecision is efficiency: when a controller tells node α to send invalidations to node β, the

request indicates subsets of the object ID space for which α should summarize invalidations

using imprecise invalidations before sending them.

Imprecise invalidation i must also update the data store. A naive strategy would

mark every object covered by i.target as INVALID to logical time i.end. Such an approach

has two problems. The first is performance: the cost to process an imprecise invalidation

would be proportional to its target set size. The second problem is liveness: each invali-

dated object o would remain INVALID until the node receives a body for o with a logical

time at least i.end. Note that typically, only one object in i.targets actually was written

as late as i.end by the summarized invalidations; for any other object p in i.target, there

may exist no write in the system that can make p VALID.

To address these performance and liveness problems, nodes use a more sophisticated

approach: nodes allow portions of the data store to include stale state after an imprecise

108

invalidation, but they ensure consistency by preventing observation of stale data store

entries. To do this, a node partitions its data store into one or more interest sets. An

interest set is a portion of the object ID space that is either PRECISE or IMPRECISE.

An interest set IS is PRECISE if and only if the data store reflects all precise invalidations

for all objects in IS up to the node’s current logical time. For consistency, a local read of

an object must block until the enclosing interest set is PRECISE; when a read blocks, the

controller must initiate sufficient communication in order to make the interest set PRECISE

and to allow the read to complete. We differ the detailed algorithm to the technical

report [36] since the focus of this chapter is on combining the PRACTI mechanisms with

SAR design methodology.

5.2 The Replication Microkernel Architecture

In this section, we outline the new replication architecture by leveraging PRACTI mech-

anisms. Note that we currently do not have a fully implemented SAR replication system

that utilizes PRACTI mechanisms. This section outlines our vision to combine the SAR

approach, a methodology to design/tune replication policies based on the semantics of the

shared data, with the PRACTI mechanisms, a single framework to subsume a broad range

of existing replication techniques. The combined approach is similar to the microkernel

concept used to design operating systems [18, 34, 99, 53]. In the following discussion, we

call our envisioned replication architecture the replication microkernel architecture.

In the replication microkernel architecture, we aim to use the PRACTI controller to

accommodate various SAR policies. We first discuss the PRACTI controller that provides

us the interfaces to the PRACTI core. Second, we describe how to implement various SAR

policies by utilizing the PRACTI controller. Then, we present the high-level design of the

replication microkernel architecture.

109

5.2.1 PRACTI controller

The PRACTI core’s mechanisms enforce their safety properties regardless of what incom-

ing messages they see. Our cores use an asynchronous style of communication in which

incoming messages or streams are self-describing—the rules for processing each incoming

message are completely defined, and interpreting a message does not require knowledge of

what request triggered its transmission. Any machine can therefore send any legal protocol

message to any other machine at any time. Each core provides an interface for request-

ing that the node send invalidations or bodies to other nodes, but these requests can be

regarded as hints: the loss of messages or the introduction of extra messages can affect

system performance but not the correctness of responses to application read and write

requests.

The controller implements policies that focus on liveness (including performance

and availability.) The controller’s basic job is to ensure that the right cores send useful

data at the right times in order to do such things as satisfy a read miss, prefetch data

to improve performance, or provision a node’s local storage for disconnected operation.

Controllers accomplish this by sending requests to trigger communication between cores.

The controller is defined by its interface. Within this interface, different implemen-

tations provide different policies. Controllers use three sets of interfaces to accomplish their

work: a core calls a controller’s inform interface to inform the controller of important local

events like message arrival or read miss, a controller calls a remote core’s remote request

interface to trigger sends of invalidation streams or bodies, and a controller calls its core’s

management interface for maintenance functions like garbage collection and interest set

split/join. Additionally, a set of controllers implementing a specific distributed policy may

communicate with one another using policy-specific interfaces.

110

5.2.2 Disentangle mechanism from policy

Disentangling mechanism from policy is the key to solving the extensibility problem in

the current SAR design. As we mentioned in previous discussions, the implementation

of SAR objects includes both replication policies and mechanisms. This design limits the

extensibility of SAR because similar sets of mechanisms need to be implemented in every

object.

The PRACTI techniques cleanly separate mechanism from policy in order to support

a broader range of replication, topology, and consistency policies than made available by

current techniques. This implementation provides low level mechanisms over which higher-

level services that control policy choices can be built. As we adapt PRACTI mechanisms

to build SAR objects, the implementation of objects will only consist of replication policies

as the higher-level services supported by low level PRACTI mechanisms. Furthermore, the

flexibility of PRACTI mechanisms allows for building replication policies that are embedded

in existing replication mechanisms.

5.2.3 Replication microkernel architecture

A straightforward way to combine SAR and PRACTI is to implement SAR objects within

the PRACTI controller. As we have described earlier in this section, PRACTI controllers

are designed to manage when and where an update or an invalidation should be sent to or

requested from by using a set of interfaces to the low level mechanisms. The implemen-

tations of PRACTI controllers focus on policies, matching the design goal of separating

mechanism from policy for extensible SAR objects.

The combined approach is similar to the microkernel approach used for designing

operating systems. The PRACTI core provides replication primitives for implementing

policies that allow partial-replication, arbitrary-consistency, and topology-independence.

I.e. policies can specify replication of any subsets of data on any nodes, tunable consistency

guarantees [136], and arbitrary paths for the propagation of updates among nodes. Because

111

HTTP ServerHTTP Server

Business LogicBusiness Logic

Distributed ObjectsDistributed Objects

DatabaseDatabase

Replication Microkernel

HTTP ServerHTTP Server

Business LogicBusiness Logic

Edge Server

M
e
s
s
a
g
e
 L
a
y
e
r

M
e
s
s
a
g
e
 L
a
y
e
r

Distributed ObjectsDistributed Objects

DatabaseDatabase

T
o other edge servers

T
o other edge servers

To clients

To clients

Original SAR Architecture Microkernel Architecture

Figure 5.2: Architecture comparison for the edge server

the PRACTI exports the interface to low level mechanisms, we can subclass a semantic-

aware controller that runs a set of SAR objects, each managing the replication of some

interest sets by using specifically tuned policies. The function of SAR objects is similar to

that of the domain-specific libraries built for microkernel operating systems.

Figure 5.2 illustrates the architecture of the new edge server that employs the repli-

cation microkernel for WAN data replication in comparison with the architecture of the

edge server described in Chapter 3. The architecture of the new edge server breaks the

original SAR layer into two layers: semantic-aware policy layer and replication microker-

nel. The semantic-aware policy layer include the semantic-aware controller and a set of

distributed objects running within the controller. The replication microkernel consists of

the PRACTI primitives. Because the PRACTI primitives persistently store the content

of the out-bound messages in the data store, the new architecture does not require a per-

sistent messaging layer to survive crashes. But the policies need to include the logic to

request for re-connection and re-transmission of any lost messages.

112

5.3 The PRACTI Implementation of TPC-W Objects

Leveraging PRACTI primitives, the implementations of some TPC-W objects are straight-

forward while that of others requires additional design efforts. This section focuses on how

to utilize and extend PRACTI primitives to implement the TPC-W specific objects dis-

cussed in Chapter 3. As described in the previous section, the TPC-W objects need to be

implemented by using the PRACTI controller interface.

5.3.1 Topology independence

Two TPC-W objects, catalog and order, exploit the update topology. Those two objects

are straightforward to implement using PRACTI primitives because PRACTI allows any

node to exchange updates with any other node in the system.

Catalog object

The catalog object implements the abstraction of one-to-many update, i.e. update at one

location and read at multiple locations. The catalog object running inside the PRACTI

controller manages the propagation of local updates. At a high level, all the nodes are

configured to be either the writer-node or a reader-node in the one-to-many scenario. All

reader-nodes subscribe for both invalidations and bodies from the writer-node during their

bootstraps. And updates will be sent from the writer-node to all reader-nodes in a FIFO

order.

To implement this update topology, the catalog object relies on the following PRACTI

primitives. During a node’s bootstrap, a catalog object is instantiated in the PRACTI

controller. Based on the configuration information, the instance of the catalog object

recognizes itself as either the writer or a reader. All the writes at the writer-node are

bounded, i.e. the PRACTI core does not separate invalidations from the actual writes

and propagates writes to other nodes through invalidation streams as bounded invali-

dations. A reader-node subscribes to the writer-node for the invalidations by using the

113

subscribeInval interface exported by the controller. Because Bayou’s log-exchange pro-

tocol offers a casually-consistent pre-fix of the updates, all reader-nodes see invalidations

(bounded) in the same order as their associated writes are performed at the writer-node.

When a reader-node receives a bounded invalidation, it updates both its log and data store

with the content in the bounded invalidation.

Order object

The order object implements the abstraction of many-to-one update, i.e. update at mul-

tiple locations and read at one location. At a high level, all the nodes are configured to

be either a writer-node or the reader-node in the one-to-many scenario. The reader-node

subscribes for both invalidations and bodies from all writer-nodes during its bootstrap.

Each writer-node sends its local update to the read in a FIFO order.

The PRACTI implementation of the order object is similar to that of the catalog

object. All writer-nodes process local writes as bounded. The instance of the order object

on the reader-node initially subscribes to all writer-nodes for the bounded invalidations to

the order data. The PRACTI core ensures invalidates from the same writer-node arrive

at the reader-node in FIFO order. The reader-node retrieves the update content from the

bounded invalidations received.

Discussion

As described above, the catalog object is easy to implement using PRACTI. In addition,

optimizations of this object, such as self-tuning updates and scalable update topologies, are

easier to implement on PRACTI. Although we can modify existing TPC-W implementa-

tions to include those optimizations, the new implementations are nearly as complex as the

PRACTI core. And some of the mechanisms need to be re-implemented for optimizations

of other objects. On the other hand, few design changes are required to implement those

optimizations for the catalog object using PRACTI primitives. The actual implementa-

114

tions using PRACTI are as simple as configuring update subscriptions at bootstraps and

issuing demand reads to the appropriate nodes using interfaces to the PRACTI core.

Self-tuning updates A reader-node subscribes for both invalidations and bodies of the

catalog data from the writer-node by using the subscribeInval and subscribeBody inter-

faces exported by the controller. When a local update is performed, the PRACTI core

at the writer-node separates the update into an invalidation and a body. The invalida-

tion is sent in the foreground to all reader-nodes using Bayou’s log-exchange protocol and

bodies are sent in the background using TCP-nice [122]. Because bodies are sent in the

background, they may arrive at a reader-node much later after the corresponding inval-

idation arrives. When the PRACTI core on a reader-node observes that the requested

data is invalidated while processing a client read, it notifies the controller about the in-

valid status. Then the controller passes the notification to the catalog object. The catalog

object invokes demandRead function in the PRACTI core to retrieve the body from the

writer-node. However, demandRead may time out due to network partitions. The current

PRACTI implementation lacks the ability to notify readers when the local copy cannot be

validated. To implement this optimization, we need to extend PRACTI to measure the

staleness and propagate the staleness information to clients when necessary.

Scalable update topologies Our existing catalog object assumes a star topology for

propagations of both invalidations and bodies. The star topology is not scalable, for

example, when the bandwidth at the writer-node is limited. An hierarchical dissemination

or aggregation topology can solve this problem by offloading the amount of out-bound

traffic at the writer-node. The catalog object can implement a hierarchical dissemination

by categorizing nodes in different levels and letting a node subscribe to another node at

one level lower. The writer-node is the only node at level zero and all other nodes are

at level one or higher. Another alternative is to adjust PRACTI to delay applying an

invalidation until the body arrives [87]. This approach yields less staleness and bandwidth

115

consumptions compared with the design that does not separate invalidations from updates.

The next section shows the advantage of using the optimized propagation topologies.

5.3.2 Numeric updates

The implementations of both the inventory and best-seller list objects are based on the

fact that the shared data are of the numeric type. The updates either increase or de-

crease data’s numeric value. Our original design minimizes the communication cost since

inventory updates are commutative and can be aggregated. In addition, the design allows

for numerical error [136] on local copies, i.e. buffering a certain number of updates (e.g.

decrements of the numeric value) on each local node with the total decrements combined

on all nodes never exceeding the numeric value.

Inventory object

Recall that the implementation of the inventory object divides the total inventory among

all nodes by giving each object instance a localCount and enforcing the invariant that the

sum of all local counts never exceeds the total global inventory count. In the prototype

development in Chapter 3, we implement a simple protocol between the backend node

and edge nodes for inventory re-distribution. Whenever the inventory difference between

a pair of edge nodes exceeds a certain threshold, the backend node requests the inventory

re-distribution between the two edge nodes. The backend node gains inventory information

on edge nodes by monitoring the purchase orders submitted from those nodes.

To implement the inventory object on PRACTI, we need to introduce a new variable

on each edge node, localSalesCount. A localSalesCount represents the number of a specific

items sold at a given edge node. Each edge node still keeps a copy of localCount while the

backend node keeps copies of both localCount and localSalesCount on all edge nodes. The

backend nodes subscribes to all edge nodes for updates on localSalesCount and edge nodes

subscribe to the backend node for updates on localCount. An inventory re-distribution is

116

triggered when the difference between localCount and localSalesCount falls below a certain

threshold on a node. All updates are propagated as bounded writes through invalidation

streams between the backend node and all edge nodes. During an inventory re-distribution

between node a and b with a’s localCount below the threshold, the backend first updates its

local copy of b’s localCount to a lower value. After ensuring that the update is propagated

and applied at b (by issuing a sync to b and waiting for it to return from b), the backend node

issues a demandRead to retrieve b’s localSalesCount to ensure that the difference between

b’s localCount and localSalesCount does not fall below the threshold. If the difference is

above the threshold, the backend node update its local copy of a’s localCount to a higher

value and propagate the update to node a. If the difference falls below the threshold, the

backend node change back b’s localCount to its original value and propagate the update to

b. The backend node will then choose to take away the local inventory from another node.

Node that the implementation of the best-seller list on PRACTI is similar to that

described above.

Discussion

The implementation of the inventory object described above lacks the ability to support

commutative updates that are originally designed for the TPC-W inventory object. The

original design of the inventory object propagates the update operations, e.g. increment or

decrement the local inventory by a certain amount, rather than the updated values. Be-

cause additions and subtractions are commutative, they do not need to be propagated to

remote nodes in the same order as they are applied on the local node. Based this observa-

tion, the inventory object is initially designed to support the propagation of commutative

updates, which imposes less constraints compared with Bayou’s gossip protocol.

However, PRACTI only has the mechanisms to propagate the updated values be-

cause this approach is simpler to implement and works well in most systems. Typically,

when a node propagates a local operation on the shared data to other nodes, it has to

117

include the timestamp of the previous value that the operation modifies. When a remote

node receives the update, it uses the timestamp of the previous value in the update to

detect conflicting updates and roll back the state of the system as necessary to apply the

update. The rollback is necessary because for a operation to yield the same result on a

remote node, the remote node has to reflect the same state as when the operation is applied

on the original node. PRACTI simplifies the design by eliminating the need for roll-backs.

A PRACTI update contains the value as the result of the update operation instead of

the actual update operation. Therefore, no roll-backs are necessary when a node observes

conflicting updates. Once the conflict resolution rule determines the winning update, the

value contained in the winning update is applied to the system.

We can extend PRACTI to support the propagation of operations without the need

for system roll-backs. Although the implementations of both inventory and best-seller list

are required to propagate operations, those operations can be applied at remote nodes

without having to first read the previous value. The observation implies that the system

does not need to roll back to a previous state to apply a certain operation. Operations

can be applied incrementally yet commutatively. But a special feature is needed to ensure

that the global constraint is not violated (i.e. the sum of all local counts never exceeds the

total global inventory count).

Propagating commutative updates To propagate operations on the inventory data,

the PRACTI core needs to distinguish inventory data from other shared data. Only the

operations are propagated for the inventory (and the best-seller list) updates while only

modified values are propagated for updates of other shared data. In other words, the

system cannot be allowed to propagate both the operations and modified values of the

same shared data. Furthermore, because inventory operations are commutative, we can

propagate them in the body stream or a new stream that does not require a casually

consistent pre-fix property.

Following the design of the current inventory object, the global inventory is divided

118

among all nodes. A backend node contains copies of inventory count on all nodes. During

the bootstrap, the backend node subscribes for the body streams of all nodes to collect

inventory updates from each of them. Each node also subscribes for the body stream of

the backend node to receive inventory re-distribution. The inventory re-distribution is

done by the backend node that sends a decrement operation to the node with a higher

inventory count, and then send a increment operation to the node with a low inventory

count. Because all nodes asynchronously send inventory updates to the backend node, the

backend node has only approximate views of inventory counts on all nodes. Therefore,

during the inventory re-distribution from node a to b, node a may receive a decrement

operation from the backend but does not have sufficient local inventory to accommodate

the operation. In this case, a’s local inventory count becomes negative after processing

the decrement operation. The backend node has to issue an increment operation to a to

maintain a non-negative count on a. The attempt to take away some inventory from a

is considered a failure and the backend will attempt to take away inventory from other

nodes to give to b. The backend node will issue an increment operation to b only after it

successfully takes away some inventory from a or some other node. To prevent a node’s

local inventory being negative after processing the decrement operation by the backend,

the backend has to query the node’s local inventory by issuing a demand read with the

same timestamp as the decrement operation.

5.3.3 TPC-W profile object

TPC-W profile object described in Chapter 3 is implemented based on Bayou’s log-exchange

protocol. It uses the protocol to asynchronously propagate profile updates among nodes

and ensures the eventual consistency of the profile data. When implemented with PRACTI

primitives, local writes are propagated as bounded updates to other nodes, similar to the

basic implementations of both the catalog and order objects. But because the profile object

handles the multi-writer/multi-reader scenario, any node can read and modify the shared

119

data. The additional tasks are to detect and resolve conflicting updates on the profile

data. PRACTI provides the conflict detection mechanism by including the timestamp of

the previous update in the invalidation (in both bounded and unbounded). Two updates

conflict when their previous timestamp are the same. To resolve the conflict, PRACTI

compares the timestamps (Lamport clocks) of conflicting updates and uses the latest-win

strategy to decide the final value.

Discussion

We can also implement self-tuning updates similar to the catalog object by separating

invalidations from bodies of the profile updates. But we still need to extend PRACTI to

bound the staleness of the data returned to clients as required in the optimization of the

catalog object. Furthermore, the conflict detection and resolution have always been chal-

lenging tasks in replication systems that use the gossip protocol for asynchronous update

propagations. The latest-win strategy implemented in the PRACTI core may not provide

sufficient semantics for some applications. For example, the per-field resolution, which is

originally designed for the profile object, cannot be implemented using the PRACTI mech-

anisms. We might be able to extend the mechanism for resolving the byte-range conflicts

in file systems to work for the per-field resolution in database systems.

A replication system is much easier to implement when no conflict detection and

resolution is necessary. Implementing the dual-quorum with volume leases (DQVL) pro-

tocol on PRACTI to replicate the TPC-W profile data is more attractive. DQVL offers

the optimized trade-offs among consistency, availability, and response time while avoid-

ing conflicting writes and bounding the staleness of the replicated data as described in

Chapter 4.

However, we need to extend PRACTI to implement DQVL. Several high-level com-

ponents need to be introduced in PRACTI as the building blocks for DQVL: (1) quorum-

based operations (read and write), (2) callbacks, and (3) temporal error. A complete DQVL

120

design on PRACTI is beyond the scope of this dissertation. In the following paragraphs,

we discuss how to use extend PRACTI to build the three building blocks.

Quorum-based operations The PRACTI core imposes no policies on where a local

update should be propagated and where a demand read should query data from. To process

a local update, the PRACTI core generates an invalidation and a body. The invalidation

is applied to the log and the body is applied to the data store. Both the invalidation

and the body are propagated to remote nodes subscribing for the interest set containing

the datum. But no policies specify what remote nodes should subscribe for the update.

When the PRACTI core processes a local read, the datum is returned immediately if it is

valid. When the core discovers that the target datum is invalid, it blocks the read until

the datum is validated. The core notifies the controller when it discovers that the target

datum is invalid and depends on the controller to retrieve the body from remote nodes

before unblocking the read.

We can implement policies in the controller to enforce quorum operations. Basically,

the controller blocks the return of local operations to clients before receiving confirmations

from a quorum of nodes. To extend a PRACTI local read to a quorum read, the controller

issues demand reads to all nodes (including the local node) upon receiving a local read.

After receiving replies from a read quorum of nodes, the controller selects a value with

the highest timestamp as the result of the local read. To extend a PRACTI local write

to a quorum write, the controller performs the task similar to a quorum read to obtain

the highest timestamp from a read quorum of remote nodes. Then a higher timestamp

is generated and sent to all nodes along with the write. To confirm that at least a write

quorum of nodes has received the body (because a write is propagated as an invalidation

and a body with the body propagated in the background), the controller issues syncBody

calls to all nodes with the timestamp of the write. A syncBody call does not return until

the target node successfully applies the body with a timestamp no less then the timestamp

specified. After syncBody calls return from a write quorum of nodes, the controller allows

121

the local write to return, with the timestamp of the write.

Note that appropriate quorum configurations need to be specified for the controller

to correctly perform the corresponding quorum-based operations.

Temporal error In the current PRACTI system, a node cannot bound the staleness

of the data returned to clients. There is no information associated with each datum to

indicate the time the datum is updated at remote nodes. When processing a local read,

the PRACTI core cannot tell the freshness of the local data.

To bound the staleness of data, we need to introduce a vector clock on every node.

Each entry of the vector clock represents the wall-clock time when the last invalidation is

sent by the corresponding remote node. When a node sends a stream of invalidations to

another node as the node is subscribed for invalidations, the wall-clock time of the sender

is attached. When the invalidations arrive, the receiver updates the corresponding vector

clock entry to the time associated with the last invalidation in the stream. To process a

local read, a node checks for the the minimum time in the vector clock. If the difference

between the local wall-clock time and the minimum time is greater than the maximum

staleness allowed, the node has to subscribe to the remote node corresponding to the entry

with the minimum time for both invalidations and bodies. The entry is updated to the

new time attached to the last invalidation in the stream. A datum can be returned only

when the difference between the current time and the minimum time in the vector clock is

no greater than the maximum staleness bound.

Callbacks Existing PRACTI supports inefficient callbacks because a node sends all in-

validations to remote nodes regardless the status of the data on the remote nodes. For

example, when node b subscribes to node a for invalidations on an interest set is, all in-

validations on is are sent to b and invalidations on other interest sets are sent to b as

imprecise invalidations. In other words, no invalidations on any data are suppressed by a

(invalidations are sent as either precise or imprecise invalidations to b). This approach may

122

be inefficient because a might send invalidations of a datum that is already invalidated.

But because DQVL is design for workloads with a low write ratio, using the existing

PRACTI mechanisms to implement callbacks in DQVL is an acceptable solution. The fact

that PRACTI never suppresses any invalidations eliminates the write suppress scenario in

DQVL. Recall that a write suppress is resulted when two consecutive writes on the same

data are processed. In this case, the invalidation resulted in the second write will not be

sent to remote nodes caching the data because the first write has already invalidated the

data on remote nodes. In the workloads targeted by DQVL where writes are infrequent,

we do not anticipate too many consecutive writes. Therefore, the overall performance of

DQVL will not be significantly degraded when callbacks are implemented using existing

PRACTI primitives. And we will explore a more efficient callback implementation using

PRACTI primitives in future work.

5.4 Case Study

In this section, we show that PRACTI mechanisms provide a flexible platform to incorpo-

rate the SAR design methodology by implementing on PRACIT two benchmarks, mobile

storage and WAN-FS, and comparing their performance with the same benchmarks imple-

mented atop existing replication frameworks. Note that we have not fully re-implemented

our TPC-W prototype using the replication microkernel approach. However, we seek to

demonstrate the feasibility of PRACTI mechanisms when used in the replication microker-

nel architecture. In particular, we compare PRACTI with existing replication techniques

when used to implement the two benchmarks, which demand partial data replication on

distributed nodes in WANs and vary the paths through which updates are propagated

among those nodes.

Because PRACTI mechanisms support a wide range of policies, we are able to

apply the SAR methodology when implementing two benchmarks, i.e. tune replication

policies based on update topologies in building various aspects of two benchmarks. We

123

 0

 20

 40

 60

 80

 100

Office->AllLap->HomePalm<->HomePalm<->Lap

T
im

e(
s)

1.7 NA NA NANA NA NA NA

81

NA NA NA

P
R

A
C

T
I

C
lie

nt
-S

er
ve

r
B

ay
ou

 0

 400

 800

 1200

 1600

 2000

Office->AllLap->HomePalm<->HomePalm<->Lap

T
im

e(
s)

1.7 35

1610 1610

66 35

1610 1610

81

1690
1610

16909

P
R

A
C

T
I

C
lie

nt
-S

er
ve

r
B

ay
ou

(a) Plane (b) Hotel

 0

 50

 100

 150

 200

Office->AllLap->HomePalm<->HomePalm<->Lap

T
im

e(
s)

1.7 1.8
8.4

90

5.1 5.2

169

90

81

9.2 8.4

1699

P
R

A
C

T
I

C
lie

nt
-S

er
ve

r
B

ay
ou

 0

 20

 40

 60

 80

 100

Office->AllLap->HomePalm<->HomePalm<->Lap

T
im

e(
s)

1.6
3.4

89

81

2.0 3.5

89

8181

91
89

891

P
R

A
C

T
I

C
lie

nt
-S

er
ve

r
B

ay
ou

(c) Home (d) Office

Figure 5.3: Synchronization time among devices for different network topologies and pro-
tocols.

anticipate that the PRACTI implementations will outperform the implementations using

other replication techniques. The SAR design methodology focuses on constructing repli-

cation policies based on the semantics of shared date sets. For these two instances, the

semantics that we leverage are the different update topologies. As described in detail in

following paragraphs, while replication policies are fixed in other techniques, we are able

to implement specific policies to optimize for different update topologies.

5.4.1 Mobile storage

Figure 5.3 evaluates PRACTI in the context of a mobile storage system that distributes

data across palmtop, laptop, home desktop, and office server machines. We compare

PRACTI to a client-server Coda-like system (that supports partial replication but that

124

Storage Dirty Data Wireless Internet

Office server 1000GB 100MB 10Mb/s 100Mb/s

Home desktop 10GB 10MB 10Mb/s 1Mb/s

Laptop 10GB 10MB 10Mb/s 50Kb/s
1Mb/s Hotel only

Palmtop 100MB 100KB 1Mb/s N/A

Figure 5.4: Configuration for “mobile storage” experiments.

distributes updates via a central server) [64] and to a full-replication Bayou-like system

(that can distribute updates directly between interested nodes but that requires full repli-

cation) [95]. All three systems are realized by implementing different controller policies

over PRACTI.

As summarized in Figure 5.4 our synthetic workload models a department file system

that supports mobility: an office server stores data for 100 users, a user’s home machine

and laptop each store 1% of that data, and a user’s palmtop stores 1% of a user’s data.

Note that due to resource limitations, we store only the “dirty data” on our test machines,

and we use desktop-class machines for all nodes; we control the network bandwidth of each

scenario using a library that throttles transmission.

Figure 5.3 charts the time to synchronize dirty data among machines in four sce-

narios: (a) Plane—the user is on a plane with no Internet connection, (b) Hotel—the

user’s laptop has a 50Kb/s modem connection to the Internet, (c) Home—the user’s home

machine has a 1Mb/s connection to the Internet, and (d) Office—the user’s office has a

100Mb/s connection to the Internet. The user carries her laptop and palmtop to each of

these locations and co-located machines communicate via wireless network at speeds indi-

cated in Figure 5.4. For each location, we measure time for machines to exchange updates:

(1) P↔L: the palmtop and laptop exchange updates, (2) P↔L: the palmtop and home

machine exchange updates, (3) L→H: the laptop sends updates to the home machine, (4)

O→*: the office server sends updates to all other machines.

125

In comparing the optimized PRACTI system to a client-server system, topology

independence has significant gains when the machines that need to synchronize are near

one another but far from the server: in the isolated Plane location, the palmtop and laptop

can not synchronize at all in a client-server topology; in the Hotel location, direct synchro-

nization between these two devices is an order of magnitude faster than synchronizing via

the server (1.7s v. 66s); and in the home location directly synchronizing co-located devices

is between 3 and 20 times faster than client-server synchronization.

5.4.2 WAN-FS for Researchers

Figure 5.5 evaluates a wide-area-network file system called PLFS designed for PlanetLab

and Grid researchers. The controller for PLFS is simple: for invalidations, PLFS forms a

multicast tree to distribute all precise invalidations to all nodes. And, when an INVALID

file is read, PLFS uses a DHT-based system [130] to find the nearest copy of the file;

not only does this approach minimize transfer latency, it effectively forms a multicast tree

when multiple concurrent reads of a file occur [6]. Like Shark [6], PLFS is designed to

be convenient for allowing a user to export data from her local file system to a collection

of remotely running nodes. However, unlike the read-only Shark system, PLFS supports

read/write data.

We examine a 3-phase benchmark that represents running an experiment: in phase

1 Disseminate, each node fetches 10MB of new executables and input data from the user’s

home node; in phase 2 Process, each node writes 10 files each of 100KB and then reads

10 files from randomly selected peers; in phase 3, Post-process, each node writes a 1MB

output file and the home node reads all of these output files. We compare PLFS to three

systems: a client-server system, client-server with cooperative caching of read-only data

(e.g., a Shark-like system [6]), and server-replication (e.g., a Bayou-like system [95]). All 4

systems are implemented over PRACTI.

Figure 5.5 shows performance for an experiment running on (a) 50 distributed nodes

126

 0

 200

 400

 600

 800

 1000

Client/ServerCoopBayouPLFS

T
im

e(
s)

Post-process

Process

Disseminate

177

475

282

915

 0

 50

 100

 150

 200

 250

Client/ServerCoopBayouPLFS

T
im

e(
s)

Post-process
Process

Disseminate
24

221

37

71

(a) 50 distributed nodes + remote server (b) 50 cluster nodes + remote server

Figure 5.5: Execution time for the WAN-Experiment benchmark.

each with a 5.6Mb/s connection to the Internet (we emulate this case by throttling band-

width) and (b) 50 “cluster” nodes at university X with a switched 100Mbit/s network

among them and a shared path via Internet2 to the origin server at university Y . PLFS’s

combination of partial replication and topology independence allows it to dominate the

other designs. Compared to client/server, it is faster in both the Dissemination and Pro-

cess phases due to its multicast transmission and direct data transfer. Compared to full

replication, it is faster in the Process and Post-process phases because it only sends the

required data. And compared to cooperative caching of read only data, it is faster in the

Processing phase because data can be transferred directly between nodes.

5.4.3 Generalized APIs

APIs of SAR objects described in Chapter 3 are simple because the specific semantics that

individual SAR objects leverage have been implemented within objects. When we export

the SAR objects as a WAN replication library for building other WAN applications, objects

will become easier to use by application developers if we modify their APIs to reflect the

exact semantics they support. Therefore, by matching the semantics implemented within

objects and those exhibited in the target data sets, a developer can effectively select the

127

appropriate objects to replicate the target data sets.

Each SAR object is extended to include a new constructor that takes three addi-

tional arguments, updateTopology, dataType, and writeRatio. The first argument specifies

the topology of the update propagation. For example, when replicating the TPC-W catalog

data or implementing the dissemination phase of the WAN-FS benchmark, one-to-many

needs to be used as the updateTopology. When replicating the TPC-W order data or im-

plementing the post-process phase of the WAN-FS benchmark, many-to-one needs to be

specified instead. And when the update topology is many-to-many, the second and third

arguments need to be considered. If the second argument is numeric, the inventory object

is instantiated; otherwise we need to examine the third argument and decide whether to

use the DQVL implementation of the TPC-W profile object. However, when no objects

with the similar semantics are found, it is time to introduce new objects into our replication

library.

Of course, we can extend APIs to allow scalable dissemination when the replication

scale increases. But because this dissertation mainly focuses on optimizing CARP trade-

offs, scalability issues are to be considered in future work.

5.5 Discussion

This chapter presents our vision and initial steps to build a replication microkernel architec-

ture by combining the PRACTI mechanisms with the SAR design methodology. However,

many open issues remain to be addressed before we can have a complete implementation

of the microkernel architecture and use it to re-build the distributed TPC-W prototype.

5.5.1 Support for replicated database

The invalidation schema in the current PRACTI core does not support database systems.

The data structures employed in the core support updates and invalidations to byte ranges.

The data store in PRACTI manages a file in the form of byte ranges. A file is broken into

128

multiple ranges of bytes that can be merged or divided based on the update patterns.

The data store also reserves an extra storage to store the status of a byte range. When an

invalidation is applied in the system, the corresponding range of bytes are marked invalid in

the associated extra storage. But this design cannot accommodate the relational database

tables because data store cannot represent database tuples in byte ranges.

A potential schema to represent invalidations to database tuples is to add a status

column in every writable table. For this schema to work, we need to modify the existing

data store to add SQL capability. Instead of reading byte ranges from the disk, data store

needs to perform SQL operations to store and retrieve database tuples. Although the

status column is a part of the regular database attributes from the point of view of DBMS,

the data store depends on this information to perform read and update operations.

5.5.2 Cross-object consistency

Not only could the replication microkernel architecture enhance the extensibility of our

SAR approach, it also yields a framework for reasoning about the cross-object consistency.

In SAR approach, consistency guarantees of a shared data set is provided by a single

distributed object. And because SAR objects do not communicate with each other while

managing their own shared data sets, few guarantees are provided across different objects

in one application.

In the replication microkernel architecture, a single point (e.g. the PRACTI core)

controls the propagation of updates on all data sets in a given application. SAR objects

running inside the controller refer to their specific policies to manage the order in which

local updates are sent to other nodes and remote update are applied to the local data

store. No policies specify how to order between two updates when they target data sets

maintained by two different objects. But once those updates are passed to the core, they

will be maintained with the causally consistent prefix property as we have described in the

previous section.

129

Chapter 6

Related Work

This chapter describes related work in data replication and systems research on the TPC-W

benchmark.

6.1 General Data Replication

Replication is fundamentally difficult. For example Siegel [107] proves what has come

to be known as the CAP dilemma [20]: a replication system that provides sequential

Consistency cannot simultaneously provide 100% Availability in an environment that can

be Partitioned. Similarly, Lipton and Sandberg describe fundamental performance lim-

itations for any sequentially consistent algorithms [73]. As a result, systems must make

compromises or optimize for specific workloads.

6.1.1 Web caching

The traditional web caching is a simple form of data replication where read-only data

are replicated from the central server to client machines or proxies. All updates are per-

formed only at the server. Clients and the server use cache invalidation protocols [47, 132]

to manage the consistency of the cached data. But because current HTTP traffic is un-

130

cachable [38, 129], the traditional web caching provides limited availability and response

time improvements to WAN services.

Many studies have addressed the importance of caching dynamic content to improve

system performance and availability. Challenger et al. [23] develop an approach for consis-

tently caching dynamic Web data that became a critical component of the 1998 Olympic

Winter Games Web site. But it concerns only the single writer case. Arlitt et al. [8] study

the scalability of a large online shopping system by performing workload characterization,

and they conclude that linear scalability is not always adequate in case of workload bursts.

They suggest efficient caching and capacity planning techniques to increase the system

scalability and performance. But the fact that dynamic content is always generated by

the central server limits availability and performance improvements offered by caching

techniques.

6.1.2 Database replication

Replicated database systems offer the flexibility for distributed services to operate on local

database replicas. Most commercial databases support data replication with an eager or

lazy consistency model [48]. The eager update model considers updating every replica

as part of a single transaction, which may decrease the system availability and response

time when used in wide area replication. The eager consistency model cannot tolerate

network partitions. They are therefore not suitable for WAN data replication. The lazy

update model is usually preferred for WAN replication because updates are asynchronously

propagated to other replicas. Although general database systems support procedures for

resolving conflicts, those procedures are normally defined with database level semantics [91]

and are difficult for applications to leverage on.

131

6.1.3 Replication with eager consistency

There are many variations of the eager consistency model that are designed for both

distributed database and file systems.

The most obvious protocol in this category is the read-one/write-all (ROWA) pro-

tocol. In ROWA the “read-one” property yields excellent read availability and response

time. But this protocol has limited write availability and response time because writes can

not complete if any of the replicas are unavailable. Protocols with the read-one/write-all-

available property (ROWA-A) [13, 14] perform writes synchronously only on the available

replicas to improve write availability and response time when some replicas fail. But

ROWA-A protocols do not tolerate network partitions, nor communication failures in gen-

eral.

The primary-backup (or primary-copy) model [4, 111] is simpler to implement com-

pared with ROWA protocol family. A variation of the primary-backup protocol proposed

by Oki et al. [90] can tolerate network partitions by combining with a voting-based proto-

col that detects the existence of a majority partition. Alternatively, group-communication

based techniques [17, 79, 83], enable the election of a new primary by actively propagating

updates to all group members and constantly running membership protocols to maintain

the correct memberships. The new primary can be selected from active members and the

change of memberships is also broadcast to all active members as well. This class of tech-

niques has degraded performance in WANs because the membership protocol may always

need to run to constantly include/exclude certain replicas when they are mistakenly con-

sidered as crashed/recovered due to slow WAN links. In addition, all primary-server based

protocols are inflexibly in favor of reads’ availability and performance.

Quorum based protocols [1, 29, 45, 46, 76, 92, 116] can tolerate network partitions

as long as connected replicas can form a quorum to process reads/writes. However, the

reads’ response time and availability of most quorum systems are worse than those of

ROWA-A or primary-backup based protocols because reads usually need to query a larger

132

set of servers. Quorum based protocols may not be desirable to handle a read-dominated

workload, e.g. a workload from interactive online applications.

Recently, studies on probabilistic quorum systems [78, 134] show that the proba-

bilistic intersection approach increases the availability and reduces the load for quorum

systems. But few practical implementations of the probabilistic quorum systems are avail-

able to validated the claim.

Some quorum based techniques use light-weight nodes, such as ghosts [93, 120] to

help form quorums for processing requests. When propagating a write, a replica only sends

to these nodes the timestamp and object ID of the write. Our dual-quorum invalidation

protocol shares the idea in terms of replacing writes with invalidations when propagating

to some replicas. But our use of invalidations also allows us to reduce the future message

propagation to other replicas.

6.1.4 Replication with relaxed consistency

The relaxed consistency model is widely used for data replication in WANs. Studies [64,

68, 85, 95, 102, 135] have explored the space of relaxed consistency models. The Coda file

system [64] employs a hierarchical architecture for replicating data volumes onto clients

(smaller devises) and supports disconnected operations by clients to tolerate network par-

titions and client mobility. Ladin et al. [68] propose a lazy replication technique to increase

the system availability and performance with the guarantee for causal ordering. All up-

dates are processed asynchronously while queries are processed in a sequence that reflects

casual ordering with support from both the information in the label associated with every

query and the gossip process among replicas. The Bayou [95] replication framework uses

an anti-entropy protocol to guarantee the eventual consistency of the system, and it uses

version vectors and application-specific reconciliation to ensure client consistency. Saito et

al. [102] focus on minimizing the space and the computation overhead using the optimistic

replication approach to provide the eventual consistency. TACT [135] constructs a model

133

for evaluating the trade-offs between availability and consistency. The system can be tuned

to provide availability that is subject to the specified consistency requirements. Both Bayou

and TACT provide hooks for application developers to attach specific reconciliation rules

to resolve update conflicts [114]. The design of some of our distributed objects make use

of these ideas.

The drawback with the relaxed consistency model is the additional programming

complexity needed to handle subtle cases. For example, because the relaxed consistency

model does not impose a restrict global order on all writes, the system need to detect and

resolve any conflicting writes. In some cases, the system need to depend on applications-

specific resolution rules to resolve conflicts.

6.2 Semantic-aware replication approaches

While generic algorithms are forced to make compromises when used for data replica-

tion in WANs, algorithms designed based on specific semantics (data properties, workload

characteristics, and update patterns) can achieve optimized trade-offs.

Existing studies [56, 100, 112] exploit type-specific properties in managing repli-

cated data. Herlihy [56] introduces a replication technique that systematically exploits

properties that are specific to data types and derives constraints on building a quorum-

based replication system. Herlihy argues that understanding type-specific properties can

reduce the constraints on the availability of the replication system. This idea is similar to

ours except that we focus on applying such techniques to e-commerce applications and are

not restricted to use only quorum-based approaches for building our replication framework.

Sussman et al. [112] use the Bancomat problem as a simple partition-aware ap-

plication to evaluate the properties provided by different partitionable group membership

protocols. In the Bancomat study, authors exploit the properties of both the shared data

that are of the numeric type and the associated updates that reduce the numeric value by

a certain amount. Because of those properties, updates are commutative and they can also

134

be aggregated as one update or partitioned into multiple updates as needed by the various

partitionable group membership protocols evaluated by authors. Our order, inventory,

and best-seller-list objects take advantage of the fact that updates are commutative and

can be slightly reordered before the threshold is reached. The value of commutativity for

simplifying consistency has also been used in write-anywhere databases [48].

Porcupine [100] is a mail service that runs on a cluster of commodity PCs. This mail

service consists of a collection of data structures, each managing the different shared data

sets of the mail service using specifically designed policies to achieve the desired overall

system manageability, availability, and performance.

Nayate et al. examine data dissemination services with self-tuning, push-based

prefetch from the server [86]. In this work, the authors argue for separating invalidations

from the actual updates of the shared data. Synchronizing invalidation messages arriving

at replicas enforces the system’s consistency requirement, and prefetching updates in the

background maximizes the hit rate at replicas, minimizes the response time, and maximizes

the service availability. We could incorporate this approach to enhance the catalog object.

Studies described in this section are examples of semantic-aware replication solu-

tions that achieve the optimized trade-offs for specific replication scenarios that they aim

for. This dissertation differs from above studies in that it seeks to provide a framework for

exploiting semantics to optimize WAN replication algorithms. Those studies are focus on

individual instances of algorithms supported in our framework.

6.3 Object-oriented Replication/Distribution Approaches

Our replication framework uses the encapsulation concept from the object-oriented model

to implement semantic-aware algorithms. This approach is similar to those in other sys-

tems [49, 74, 106, 121] which propose to encapsulate the complexity of structures and

computations in distributed systems with objects. Both Gribble [49] and Litwin et al. [74]

use distributed data structures to abstract the implementation details and provide scalable

135

and efficient data sharing and distribution in a cluster environment. Shapiro [106] proposes

to structure a distributed system as a set of services or subsystems, each of which may be

made of a number of communicating objects across the network. But this work focuses on

low level components such as system processes, services, and resources. Globe objects [121]

are application level objects specifically for the WAN data replication. They are similar

to our distributed objects in that they both allow application programmers to make use

of pre-constructed replication modules to easily invoke standard consistency algorithms

with different objects and let programmers exploit application semantics in the design and

implementation of individual objects. This distributed objects model provides a flexible

and powerful way to build distributed applications in WAN. But to our knowledge, there is

little work quantitatively evaluating the benefits of this approach in building data-oriented

services, such as e-commerce applications. Our specific implementation differs from Globe

in that we do not follow the same uniform internal structure of Globe objects that separate

“semantics object” from “replication object”. Our initial implementation found it simpler

to integrate the code for object semantics and replication consistency. But the replication

microkernel architecture outlines the new design where “replication objects” in Globe are

integrated into the microkernel consisting of the replication primitives.

6.4 TPC-W benchmark related systems research

We use a variation of TPC-W benchmark to demonstrate the gains in availability and

performance when using SAR for WAN data replication. The TPC-W is also used as the

evaluation benchmark in studies on WAN data replication and computer architecture.

Walsh et al. build the TPC-W benchmark on top of TACT to demonstrate the

feasibility of using TACT as a database middleware for traditional, SQL-based database

applications [125]. They evaluate both the performance benefit and consistency costs of

continuous consistency for their TPC-W implementation across a variety of replication

scenarios and consistency bounds.

136

Garcia et al. [44] study the TPC-W benchmark, including its architecture, opera-

tional procedures for carrying out tests, and the performance metrics it generates. Their

experimental results demonstrate that TPC-W is a useful tool for generating a standard

metric of the transactional capacity of servers working in e-commerce environments. The

PHARM project [118] at the University of Wisconsin focuses on the micro-architectural

characterization of the TPC-W defined workload such as branch predictability, caching

behaviors, and multiprocessor data sharing patterns. Amza et al. [5] characterize the

bottleneck of dynamic web site benchmarks, including the TPC-W online bookstore and

auction site. Their study focuses on discovering and explaining the bottleneck resources in

each benchmark.

137

Chapter 7

Future Directions

Data replication and distribution in wide area networks (WANs) are fundamental problems

for many important and popular infrastructures besides Internet edge services, such as on-

demand computing, grid computing, and large-scale file systems. In addition to our vision

of the unified replication architecture described in Chapter 5, the following research topics

warrant further exploration.

7.1 Distributed Data Stream Management

Our experience with building distributed TPC-W objects suggests that a peer-to-peer

infrastructure is more suitable than a centralized one for highly available and scalable dis-

tributed data stream management (DDSM). Distributed data stream management (DDSM)

is widely employed in database systems, network monitoring, sensor networks, and man-

ufacturing. DDSM provides a platform for managing and querying distributed data sets

that change constantly in the form of stream, such as link bandwidth usage (targeted by

network monitoring), chemical concentration (targeted by sensor networks), and inventory

planning (targeted by manufacturing). Scalability and availability of existing DDSM sys-

tems are fundamentally limited because they rely on a central coordinator to eventually

138

gather and process streams of changes from distributed sources. Although there have been

extensive studies on how to improve the scalability of DDSM by minimizing the monitoring

and processing efforts [10, 11, 12, 108], including the communication overhead and CPU

cycles, the central coordinator is still the availability and scalability bottleneck. A peer-to-

peer approach could solve this bottleneck problem at the cost of reducing the accuracy of

the global state information. The challenge in this work is to design the right peer-to-peer

infrastructure that can offer trade-offs among availability, scalability, and accuracy of the

global state. With given available trade-offs from this infrastructure, we can identify the

appropriate DDSM applications.

7.2 Adaptive Replication

Ultimately, the WAN data replication problem will be solved by one data replication so-

lution that can continuously adapt to the dynamic environment. The semantic-aware

distributed objects solution works well because we design specific objects to handle the

shared data under environments with various workloads (e.g. write ratios and access lo-

calities), fault-loads (e.g. failure locations and failure rate), propagation topologies, etc.

However, we may also consider a system that can monitor the changes of the environment

and dynamically adjust the underlying data replication strategies according to environ-

mental changes. The basic idea is to create a set of cost functions that can estimate the

availability, performance, and consistency guarantees of a given replication strategy based

on a set of metrics, such as workloads, fault-loads, and update topologies. Then, the

distributed objects can use cost functions to determine the most suitable replication proto-

cols and continuously adjust internal replication protocols to adapt to any changes of the

environment. Challenges in this work include the fact that too many metrics need to be

considered while designing the environment monitor and cost functions. We might discover

different sets of important metrics across various application classes. Furthermore, we also

need to evaluate the cost and benefit of dynamically switching replication protocols.

139

7.3 Dynamic Replica Placement

The advantage provided by dynamic replication is that we can effectively respond to the

unpredictable geographical shift of the service demand. The unpredictable shift could be

caused by link failures at backbones, network congestion, and client access pattern changes.

If a system can not respond to this change in demand well, some server replicas might be

overloaded. Therefore, the performance and availability of the system will decrease. It is

necessary for replication systems to have the ability to capture the access patterns and

network failure patterns. Once the system notices a change, it can deploy new replicas at

the estimated hot-spots to accommodate the load increase at specific regions.

However, the advantage of dynamic replica placement for the edge service model is

unclear. On one hand, it appears that the system could effectively achieve better availabil-

ity and efficiency by dynamically creating replicas at the Internet hot-spot as the workload

and fault-load vary overtime. On the other hand, the cost for creating new replicas, tear-

ing down obsolete replicas, and maintaining consistency across all replicas can potentially

offset the benefit gained with the dynamic placement strategy. Therefore, there are two

questions to be investigated: 1. How much benefit do we gain with dynamic replication?

2. What is the minimal cost for creating and tearing down replicas on-demand?

140

Chapter 8

Conclusions

Quantitatively, we have showed the limits of the existing Internet architecture using a

trace-based simulator. Using the failure model developed by Dahlin et al. [35], our study

shows that using traditional web caching techniques alone cannot cause significant im-

provement on the end-to-end Internet service availability. Only with a more sophisticated

infrastructure, like the edge service infrastructure, which combines overlay routing and

more aggressive replication techniques (e.g. server replication and selection), can service

providers offer revolutionary end-to-end improvements to their Internet services.

We present the semantic-aware replication (SAR) that offers the optimized CARP

(consistency, availability, response time, and partition-resilience) trade-offs when replicat-

ing dynamic data in the edge service architecture. Although generic WAN replication

approaches have been proven incapable of providing the optimized CARP trade-offs, SAR

reduces the constraints in WAN replication by leveraging the semantics of shared data

sets and encapsulating the consistency maintenance using the object-oriented approach.

SAR solves the replication of dynamic data in WANs for the edge service architecture that

distributes both business logic and data to edge servers to minimize access to a central

database. In the SAR approach, data shared among the edge servers are encapsulated

within distributed objects that are aware of the semantics (i.e. workloads, update topolo-

141

gies, and data properties) of the underlying shard data. Replication techniques imple-

mented in each object are specially tuned to leverage on the semantics of the corresponding

data set. Access to the shared data sets is restricted through narrower interfaces of ob-

jects that hide the complexity of WAN data replication. The experimental results confirm

our claim that SAR offers the optimized CARP trade-offs that are difficult to achieve by

generic WAN replication techniques. For instance, our prototype TPC-W system continues

to process requests with the same throughput and response time before, during, and after

a 50-second network partition that separates edge servers and the backend server. And

the response time of our system is nearly five times better than that of the traditional

centralized system, in which end users connect to web servers via slow WAN links.

Then, we discussed the dual-quorum with volume leases (DQVL) protocol to op-

timize the multi-writer/multi-reader replication scenario that is managed by the profile

object in SAR. DQVL is a novel data replication algorithm that provides the key missing

piece to achieve highly-available, low-latency, and consistent data replication for a range

of Internet services. In particular, dual-quorum replication optimizes these properties for

data elements that can be both read and written from many locations, but whose reads and

writes exhibit locality in two dimensions: (1) at any given time access to a given element

tends to come from a single node and (2) reads tend to be followed by other reads and

writes tend to be followed by other writes. Our dual-quorum replication protocol com-

bines ideas from volume leases and quorum based techniques. Through both analytical

and experimental evaluations, we show that, for the important special case of single-node

OQS read quorums, the average read response time of DQVL can approach a node’s lo-

cal read time, making the read performance of this approach competitive with ROWA-A

epidemic algorithms such as Bayou. At the same time, the overall availability of DQVL is

competitive with the majority quorum protocol for the targeted workloads.

Finally, we outline our vision of the unified replication architecture that applies the

SAR design approach atop the PRACTI replication mechanisms. The unified architec-

142

ture allows the separation of policies from mechanisms. While PRACTI provides flexible

mechanisms to implement replication policies that may demand partial-replication, ar-

bitrary consistency, and topology independence, actual policies are specified in forms of

distributed objects as in SAR. The unified architecture advances the SAR approach by

providing a single environment for leveraging semantics of shared data sets across classes

of Internet services. We have a framework for reasoning about cross-object consistency

that is difficult to argue when objects are independently built. The development of dis-

tributed objects becomes easier and faster because we can reuse mechanisms exported from

PRACTI.

143

Bibliography

[1] D. Agrawal and A. Abbadi. The Tree Quorum Protocol: An Efficient Approach for

Managing Replicated Data. In Proceedings of the Sixteenth International Conference

on Very Large Data Bases, 1990.

[2] Inc. Akamai Technologies. Akamai-The Business Inter-

net - A Predictable Platform for Profitable E-Business.

http://www.akamai.com/BusinessInternet/whitepaper business internet.pdf, 2004.

[3] Inc. Akamai Technologies. Turbo-Charging Dynamic Web Sites with Akamai Edge-

Suite. White paper, Akamai Technologies, Inc., 2004.

[4] P. Alsberg and J. Day. A Principle for Resilient Sharing of Distributed Resources.

In the 2nd Intl. Conference on Software Engineering, 1976.

[5] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Ra-

jamani, and W. Zwaenepoel. Bottleneck Characterization of Dynamic Web Site

Benchmarks. Technical Report TR02-391, Rice University, Feb 2002.

[6] S. Annapureddy, M. Freedman, and D. Mazires. Shark: Scaling file servers via co-

operative caching. In 2nd USENIX/ACM Symposium on Networked Systems Design

and Implementation (NSDI ’05), May 2005.

[7] Network Appliance. Internet content adaptation protocol (icap). DS-2326, June

2000.

144

[8] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the Scalability of a Large

Web-based Shopping System. ACM Transactions on Internet Technology, June 2001.

[9] A. Awadallah and M. Rosenblum. The vMatrix: A Network of Virtual Machine

Monitors for Dynamic Content Distribution. In 7th International Workshop on Web

Content Caching and Distribution, August 2002.

[10] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in

Data Stream Systems. In Principles of Database Systems (PODS 2002), June 2002.

[11] B. Babcock and C. Olston. Distributed Top-K Monitoring. In Proceedings of 2003

SIGMOD, June 2003.

[12] D. Barbara and H. Garcia-Molina. The Demarcation Protocol: A technique for main-

taining linear arithmetic constraints in distributed database systems. In Proceedings

of the International Conference on Extending Database Technology, March 1992.

[13] P. Bernstein and N. Goodman. An algorithm for concurrency control and recovery

in replicated distributed databases. In ACM Transactions on Database Systems,

December 1984.

[14] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control adn Receivery

in Database Systems. Addison Wesley, 1987.

[15] S. Bhattacharjee, M. H. Ammar, E. W. Zegura, N. Shah, and Z. Fei. Application

Layer Anycasting. In IEEE INFOCOM’97, 1997.

[16] S. Bhattacharjee, K. Calvert, and E. Zegura. Self-organizing wide area network

caches. Technical Report GIT-CC-97/31, Georgia Tech, 1997.

[17] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In

Proceedings of the Eleventh ACM Symposium on Operating Systems Principles, 1987.

145

[18] D. Black, D. Golub, D. Julin, R. Rashid, R. Draves, R. Dean, A. Forin, J. Barrera,

H. Tokuda, G. Malan, and D. Bohman. Microkernel operating system architecture

and Mach. Journal of Information Processing, 14(4), March 1992.

[19] M. Blaze and R. Alonso. Dynamic Hierarchical Caching in Large-Scale Distributed

File Systems. In Proceedings of the 12th International Conference on Distributed

Computing Systems, pages 521–528, June 1992.

[20] E. Brewer. Lessons from giant-scale services. In IEEE Internet Computing, July/Au-

gust 2001.

[21] P. Cao, J. Zhang, and K. Beach. Active Cache: Caching Dynamic Contents on the

Web. In Proceedings of Middleware 98, 1998.

[22] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP Latency. In Infocom’00,

2000.

[23] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable and Highly Available System

for Serving Dynamic Data at Frequently Accessed Web Sites. In Proceedings of

ACM/IEEE, Supercomputing ’98 (SC98), November 1998.

[24] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable System for Consistently

Caching Dynamic Web Data. In Proceedings of IEEE Infocom, March 1999.

[25] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed. A Publishing System

for Efficiently Creating Dynamic Web Content. In Proceedings of IEEE Infocom,

March 2000.

[26] B. Chandra. Web workloads influencing disconnected services access. Master’s thesis,

University of Texas at Austin, 2001.

[27] B. Chandra, M. Dahlin, L. Gao, A. Khoja, A. Razzaq, and A. Sewani. Resource

146

management for scalable disconnected access to web services. In WWW10, May

2001.

[28] L. Cherkasova, Y. Fu, W. Tang, and A. Vahdat. Measuring and characterizing end-

to-end internet service performance. ACM Trans. Inter. Tech., 3(4):347–391, 2003.

[29] S. Cheung, M. Ahamad, and M. Ammar. The grid protocol: a high performance

scheme for maintaining replicated data. In Proceedings of the Sixth International

Conference on Data Engineering, pages 438–445, 1990.

[30] S. Cheung, M. Ahamad, and M. H. Ammar. Optimizing Vote and Quorum Assign-

ments for Reading and Writing Replicated Data. IEEE Transactions on Knowlegde

and Data Engineering, 1(3):387–397, September 1989.

[31] IBM Corporation. MQSeries: An Introduction to Messaging and Queue-

ing. Technical Report GC33-0805-01, IBM Corporation, July 1995.

ftp://ftp.software.ibm.com/software/mqseries/pdf/horaa101.pdf.

[32] Transaction Processing Performance Council. TPC BENCHMARK W.

http://www.tpc.org/tpcw/spec/-tpcw V1.8.pdf, 2002.

[33] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of WWW Traces. Technical

Report TR-95-010, Boston University Department of Computer Science, April 1995.

[34] H. Custer. Inside windwos nt. Microsoft Press.

[35] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end WAN Service Availabil-

ity. IEEE/ACM Transactions on Networking, April 2003.

[36] M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and J. Zheng.

PRACTI replication for Large-Scale Systems. Technical report, University of Texas

at Austin Department of Computer Sciences, 2004.

147

[37] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, Suresha, and K. Ramamritham.

Proxy-Based Acceleration of Dynamically Generated Content on the World Wide

Web: An Approach and Implementation. In SIGMOD Conference, 2002.

[38] B. Duska, D. Marwood, and M. Feeley. The Measured Access Characteristics of

World-Wide-Web Client Proxy Caches. In Proceedings of the USENIX Symposium

on Internet Technologies and Systems, December 1997.

[39] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Lease: A Strong Consistency

Mechanism for the World Wide Web. In Proceedings of IEEE Infocom, March 2000.

[40] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel Server Selection Tech-

nique for Improving the Response Time of a Replicated Service. In Proceedings of

IEEE Infocom, March 1998.

[41] S. Floyd. Connections with Multiple Congested Gateways in Packet-Switched Net-

works Part 1: One-way Traffic. Computer Communications Review, 21(5), October

1991.

[42] M. Frigo. The Weakest Reasonable Memory Model. Master’s thesis, MIT, 1988.

[43] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Improving Availability

and Performance with Application-Specific Data Replication. IEEE Transactions on

Knowledge and Data Engineering, March 2005.

[44] D. Garcia and J. Garcia. TPC-W E-Commerce Benchmark Evaluation. IEEE Com-

puter, February 2003.

[45] H. Garcia-Molina and D. Barbara. How to Assign Votes in a Distributed System. In

Journal of the ACM 32 (4), 1985.

[46] D. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh ACM

Symposium on Operating Systems Principles, December 1979.

148

[47] C. Gray and D. Cheriton. Leases: An Efficient Fault-Tolerant Mechanism for Dis-

tributed File Cache Consistency. In Proceedings of the Twelfth ACM Symposium on

Operating Systems Principles, pages 202–210, 1989.

[48] J. Gray, P.Helland, P. E. O’Neil, and D. Shasha. Dangers of Replication and a

Solution. In Proceedings of SIGMOD, pages 173–182, 1996.

[49] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, Distributed Data

Structures for Internet Service Construction. In Proceedings of the Fourth Symposium

on Operating Systems Design and Implementation, October 2000.

[50] J. Griffioen and R. Appleton. Reducing File System Latency Using A Predictive

Approach. In Proceedings of the Summer 1994 USENIX Conference, June 1994.

[51] J. Gwertzman and M. Seltzer. The case for geographical pushcaching. In HOTOS95,

pages 51–55, May 1995.

[52] J. Gwertzman and M. Seltzer. World-Wide Web Cache Consistency. In Proceedings

of the 1996 USENIX Technical Conference, January 1996.

[53] G. Hamilton and P. Kougiouris. The spring nucleus: A microkernel for objects.

Technical report, Sun Microsystems Laboratories, Inc., 1993.

[54] N. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet: A scalable

overlay network with practical locality properties. In 4th USENIX Symposium on

Internet Technologies and Systems (USITS ’03), March 2003.

[55] J. Hennessy and D. Patterson. Computer Architecture A Quantitative Approach.

Morgan Kaufmann Publishers, Inc., 2nd edition, 1996.

[56] M. Herlihy. A Quorum-Consensus Replication Method for Abstract Data Types.

ACM Transactions on Computer Systems, 4(1):32–53, February 1986.

149

[57] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and

M. West. Scale and Performance in a Distributed File System. ACM Transactions

on Computer Systems, 6(1):51–81, February 1988.

[58] P. Hutto and M. Ahamad. Slow memory: Weakening consistency to enhance con-

currency in distributed shared memories. In Proceedings of the Tenth International

Conference on Distributed Computing Systems, 1990.

[59] Java Message Service (JMS). http://java.sun.com/products/jms.

[60] JORAM. http://www.objectweb.org/joram.

[61] A. Joseph, A. deLespinasse, J. Tauber, D. Gifford, and M. Kaashoek. Rover: A

Toolkit for Mobile Information Access. In Proceedings of the Fifteenth ACMSympo-

sium on Operating Systems Principles, December 1995.

[62] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Con-

sistent Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot

Spots on the World Wide Web. In Proceedings of the Twenty-ninth ACM Symposium

on Theory of Computing, 1997.

[63] Web performance index. Internet World, August 1999 – April 2000 1999-2000.

[64] J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File System.

ACM Transactions on Computer Systems, 10(1):3–25, February 1992.

[65] M. Korupolu and M. Dahlin. Coordinated Placement and Replacement for Large-

Scale Distributed Caches. In Proceedings of the 1999 IEEE Workshop on Internet

Applications, June 1999.

[66] B. Krishnamurthy and C. Wills. Analyzing factors that influence end-to-end Web

performance. Computer Networks (Amsterdam, Netherlands: 1999), 33(1–6):17–32,

2000.

150

[67] A. Kumar. Comparative Performance Analysis of Versions of TCP in a Local Net-

workwith a Lossy Link. IEEE/ACM Transactions on Networking, 6(4), August 1998.

[68] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High Availability Using

Lazy Replication. ACM Transactions on Computer Systems, 10(4):360–391, Novem-

ber 1992.

[69] T. Lakshman and U. Madhow. The Performance of TCP/IP for Networks with

High Bandwidth-delay Products and Random Loss. IEEE/ACM Transactions on

Networking, June 1997.

[70] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7), July 1978.

[71] L. Lamport. On interprocess communications. Distributed Computing, pages 77–101,

1986.

[72] D. Li and D. Chariton. Scalable Web Caching of Frequently Updated Objects Using

Reliable Multicast. In Proceedings of the Second USENIX Symposium on Internet

Technologies and Systems, pages 1–12, Oct 1999.

[73] R. Lipton and J. Sandberg. PRAM: A Scalable Shared Memory. Technical Report

CS-TR-180-88, Princeton, 1988.

[74] W. Litwin, M-A. Neimat, and D. Schneider. LH* - A Scalable, Distributed Data

Structure. In ACM Transactions on Database Systems, December 1996.

[75] C. Liu and P. Cao. Maintaining Strong Cache Consistency in the World-Wide Web.

In Proceedings of the Seventeenth International Conference on Distributed Computing

Systems, May 1997.

[76] M. Maekawa. A Algorithm for Mutual Exclusion in Decentralized Systems. In ACM

Transactions on Computing Systems 3 (2), 1985.

151

[77] D. Malkhi and M. Reiter. An Architecture for Survivable Coordination in Large

Distributed Systems. IEEE Transactions on Knowledge and Data Engineering, pages

187–202, March 2000.

[78] D. Malkhi, M. Reiter, A. Wool, and R. Wright. Probabilistic quorum systems. Inf.

Comput., 170(2):184–206, 2001.

[79] D. Malki, K. Birman, A. Schiper, and A. Ricciardi. Uniform Actions in Asynchronous

Distributed Systems. In ACM SIGOPS-SIGACT, August 1994.

[80] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behavior of the

TCP Congestion Avoidance Algorithm. Computer Communications Review, 27(3),

July 1997.

[81] J. Mogul. A Design for Caching in HTTP 1.1 Preliminary Draft. Technical report,

Internet Engineering Task Force (IETF), January 1996. Work in Progress.

[82] A. Moissis. SYBASE replication server: A practical architechture for distributing

and sharing corporate information. Technical report, SYBASE Inc, March 1994.

[83] D L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended virtual synchrony.

In Proceedings of the Fourteenth International Conference on Distributed Computing

Systems, June 1994.

[84] L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting weak connectivity for

mobile file access. In Proceedings of the Fifteenth ACMSymposium on Operating

Systems Principles, December 1995.

[85] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write peer-to-peer

file system. In Proceedings of the Fifth Symposium on Operating Systems Design and

Implementation, December 2002.

152

[86] A. Nayate, M. Dahlin, and A. Iyengar. Data Invalidation and Prefetching for Trans-

parent Edge-Service Replication. Technical Report TR-03-44, University of Texas at

Austin Department of Computer Sciences, Nov 2002.

[87] A. Nayate, M. Dahlin, and A. Iyengar. Transparent Information Dissemination. In

ACM/IFIP/USENIX 5th International Middleware Conference, October 2004.

[88] NIST Net Home Page. http://snad.ncsl.nist.gov/itg/nistnet/.

[89] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton, J. Flinn, and K. Walker.

Agile Application-Aware Adaptation for Mobility. In Proceedings of the Sixteenth

ACM Symposium on Operating Systems Principles, October 1997.

[90] B. Oki and B. liskov. Viewstamped replication: A general primary copy method to

support highly available distributed systems. In Proceedings of the Seventh Sympo-

sium on the Principles of Distributed Computing, August 1998.

[91] Oracle7 Server Distributed Systems: Replicated Data.

http://www.oracle.com/products/oracle7/server/whitepapers/ replication/htm-

l/index, 1994.

[92] J. Paris and D. Long. Efficient Dynamic Voting Algorithms. In Int’l Conference on

Data Engineering, 1988.

[93] JF Paris and D. Long. Voting with Regenerable Volatile Witnesses. In Proceedings

of the Seventh International Conference on Data Engineering, pages 112–119, 1991.

[94] V. Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD

thesis, University of California, Berkeley, April 1997.

[95] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and A. Demers. Flexible Update

Propagation for Weakly Consistent Replication. In Proceedings of the Sixteenth ACM

Symposium on Operating Systems Principles, October 1997.

153

[96] E. Pierce and L. Alvisi. A Framework for Semantic Reasoning about Byzantine

Quorum Systems. In Proceedings of the Twentieth Symposium on the Principles of

Distributed Computing, pages 317–319, August 2001.

[97] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-

addressable network. In 2001 ACM SIGCOMM Conference, 2001.

[98] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and

routing for large-scale peer-to-peer systems. In Middleware, November 2001.

[99] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Her-

rman, C. Kaiser, S. Langloisand P. Léonard, and W. Neuhauser. Overview of the

Chorus distributed operating system. In Workshop on Micro-Kernels and Other

Kernel Architectures, pages 39–70, April 1992.

[100] Y. Saito, B. Bershad, and H. Levy. Manageability, Availability and Performance

in Porcupine: A Highly Scalable, Cluster-based Mail Service. In Proceedings of the

Seventeenth ACM Symposium on Operating Systems Principles, December 1999.

[101] Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalingam. Taming aggressive repli-

cation in the pangaea wide-area file system. In Proceedings of the Fifth Symposium

on Operating Systems Design and Implementation, December 2002.

[102] Y. Saito and H. Levy. Optimistic Replication for Internet Data Services. In Proceed-

ings of the Fourteenth International Conference on Distributed Computing, October

2000.

[103] P. Sarkar and J. Hartman. Efficient Cooperative Caching using Hints. In Proceedings

of the Second Symposium on Operating Systems Design and Implementation, pages

35–46, October 1996.

154

[104] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere.

Coda: A Highly Available File System for a Distributed Workstation Environment.

IEEE Transactions on Computers, 39(4):447–459, 1990.

[105] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The End-to-end Effects

of Internet Path Selection. In Proceedings of the ACM SIGCOMM ’99 Conference

on Applications, Technologies, Architectures, and Protocols for Computer Commu-

nication, pages 289–299, September 1999.

[106] Marc Shapiro. Structure and Encapsulation in Distributed Systems: the Proxy Prin-

ciple. In Proceedings of the Sixth International Conference on Distributed Computing

Systems, May 1986.

[107] A. Siegel. Performance in Flexible Distributed File Systems. PhD thesis, Cornell,

1992.

[108] N. Soparkar and A. Silberschatz. Data-value partitioning and virtual messages. In

Proceeding of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems, April 1990.

[109] Charles Sterling. Programming Best Practices with Microsoft Message Queuing

Services (MSMQ). http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnmqqc/html/msmqbest.asp.

[110] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable

Peer-To-Peer lookup service for internet applications. In 2001 ACM SIGCOMM

Conference, 2001.

[111] M. Stonebraker and E. Neuhold. Concurrency control and consistency of multiple

copies of data in distributed ingres. IEEE Transactions on Software Engineering,

3(3):188–194, May 1979.

155

[112] J. Sussman and K. Marzullo. The Bancomat Problem: An Example of Resource

Allocation in a Partitionable Asynchronous System. In International Symposium on

Distributed Computing, pages 363–377, 1998.

[113] A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms,

chapter Consistency and Replication. Prentice Hall, 2002.

[114] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Manag-

ing Update Conflicts in Bayou, a Weakly Connected Replicated Storage System. In

Proceedings of the Fifteenth ACMSymposium on Operating Systems Principles, pages

172–183, December 1995.

[115] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design Considerations for Distributed

Caching on the Internet. In Proceedings of the Nineteenth International Conference

on Distributed Computing Systems, May 1999.

[116] R. Thomas. A Majority Consensus Approach to Concurrency Control for Multiple

Copy Database. In ACM Transactions on Database Systems, pages 180–209, June

1979.

[117] G. Tomlinson, H. Orman, M. Condry, J. Kempf, and D. Farber. Extensible proxy

services framework. IETF-Draft draft-tomlinson-epsfw-00.txt, IETF, July 2000. Ex-

pires January 11, 2001.

[118] The PHARM Project at the University of Wisconsin.

http://www.ece.wisc.edu/ pharm/tpcw/.

[119] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Active Naming: Flexible

Location and Transport of Wide-Area Resources. In The Second USENIX Symposium

on Internet Technologies and Systems, October 1999.

156

[120] R. van Renesse and A. Tanenbaum. Voting with Ghosts. In Proceedings of the Eighth

International Conference on Distributed Computing Systems, pages 456–462, 1988.

[121] M. van Steen, P. Homburg, and S. Tanenbaum. Globe: A Wide-Area Distributed

System. Technical report, Vrije Universiteit, March 1999.

[122] A. Venkataramani, R. Kokku, and M. Dahlin. TCP-Nice: A mechanism for back-

ground transfers. In OSDI02, December 2002.

[123] A. Venkataramani, P. Weidmann, and M. Dahlin. Bandwidth constrained placement

in a wan. In Proceedings of the Twentieth Symposium on the Principles of Distributed

Computing, August 2001.

[124] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. ”potential

costs and benefits of long-term prefetching for content-distribution”. In Proceedings

of the 2001 Web Caching and Content Distribution Workshop, June 2001.

[125] K. Walsh, A. Vahdat, and J. Yang. Enabling Wide-Area Replication of Database

Services with Continuous Consistency. Unpublished Manuscript.

[126] J. Wang, Y. Zhang, and S. Keshav. Understanding End-to-End Performance:

Testbed and Primary Results. In IEEE Global Internet Symposium, 2001.

[127] A. Whitaker, M. Shaw, and S. Gribble. Scale and Performance in the Denali Isolation

Kernel. In OSDI02, December 2002.

[128] TPC-W performance result in price/performance .

http://www.tpc.org/tpcw/results/tpcw price perf results.asp.

[129] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On

the scale and performance of cooperative web proxy caching. In Proceedings of the

Seventeenth ACM Symposium on Operating Systems Principles, December 1999.

157

[130] P. Yalagandula and M. Dahlin. A Scalable Distributed Information Management

System. In Proceedings of the ACM SIGCOMM ’04 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication, August

2004.

[131] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering server-driven consistency

for large scale dynamic web services. In Proceedings of the Tenth International World

Wide Web Conference, May 2001.

[132] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases to Support Consistency

in Large-Scale Systems. IEEE Transactions on Knowledge and Data Engineering,

February 1999.

[133] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson, and D. Culler. Us-

ing Smart Clients to Build Scalable Services. In Proceedings of the 1997 USENIX

Technical Conference, January 1997.

[134] H. Yu. Signed quorum systems. In PODC ’04: Proceedings of the twenty-third annual

ACM symposium on Principles of distributed computing, pages 246–255, 2004.

[135] H. Yu and A. Vahdat. The Costs and Limits of Availability for Replicated Services.

In Proceedings of the Eightteenth ACM Symposium on Operating Systems Principles,

2001.

[136] H. Yu and A. Vahdat. Design and evaluation of a conit-based continuous consistency

model for replicated services. ACM Transactions on Computer Systems, pages 239–

282, August 2002.

[137] H. Yu and A. Vahdat. Minimal Cost Replication for Availability. In Proceedings of

the Twenty-First Symposium on the Principles of Distributed Computing, 2002.

158

[138] Y. Zhang, V. Paxson, and S. Shenkar. The Stationarity of Internet Path Proper-

ties: Routing, Loss, and Throughput. Technical report, AT&T Center for Internet

Research at ICSI, http://www.aciri.org/, May 2000.

[139] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry:

A Global-scale Overlay for Rapid Service Deployment. IEEE Journal on Selected

Areas in Communications, 2003. Special Issue on Service Overlay Networks.

159

Vita

Lei Gao was born in Kunming, Yunnan China on April 8, 1977, the son of Zhen Gao and

Ruihua Gao. After completing his second school year at Yunnan No. 1 High School in 1994,

he came to the United State as an exchange student. One year later, he entered Western

Michigan University in Kalamazoo, Michigan. In the spring of 1997, he transfered to the

University of Texas at Austin in Texas. He received the degree of Bachelor of Science from

the University of Texas at Austin in August 1998. During the following years he worked

as a software analyst at J.D. Edwards & Company in Denver, Colorado. In the spring of

2000, he entered the Graduate School of the University of Texas at Austin and received

the degree of Master of Art in December 2001.

Permanent Address: 187 Xinying Rd.

S. Weilong Complex

Building 6, #301

Kunming, Yunnan P.R. China 650223

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the
American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh
Das, Department of Computer Sciences, The University of Texas at Austin, and extended by Bert Kay and

160

James A. Bednar.

161

