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Gamma-ray bursts (GRBs) are the mysterious, short and intense flashes of gamma-rays

in the space, and are believed to originate from the rare, explosively devastating, stellar

events that happens at cosmological distances. Enormous progress has been made from four

decades of GRB research endeavor but the ultimate understanding of their origins has yet

to arrive. Recently revealed features in their early afterglows broadened the opportunity

space for exploration. We have carried out extensive studies on various physical processes

in GRBs. We showed that the distribution of electrons’ energy spectral index in GRBs

and other relativistic sources is inconsistent with the prediction from the first-order Fermi

theory of the shock particle acceleration (Chapter 2). We investigated the photon scattering

processes within the relativistic outflow that produces the GRB and calculated the resultant

emission flux from it (Chapter 3). We showed the scattering of the GRB prompt photons

by the circum-burst dust, although an attractive possibility, can not explain the puzzling
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plateau component in the GRB afterglow light curve (Chapter 4). We made meaningful

constraint on the GRB prompt emission radius, R ≥ 1014 cm, by studying the synchrotron

self absorption for a small sample of bursts with good data (Chapter 5). We showed that

a late jet, which is thought to be producing the late X-ray flares in GRB afterglows, will

produce detectable emissions from its interactions with other components in the explosive

event of GRB, and identification of these emissions could verify the existence of the late jet

and further prove the massive star origin of long-duration GRBs (Chapter 6).
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Chapter 1

Introduction

1.1 History

Gamma-ray bursts (GRBs) were first known as the short, intense flashes of gamma-rays (a

few ×10 keV to >∼ 100 MeV) from the space. It was first discovered in 1960’s by Vela, a

US satellite that was designed to monitor other countries’ compliance to a nuclear bomb

banning treaty (Klebesadel et al. 1973). Early GRB research was hindered by two facts.

First, observing in gamma-rays tends to have poor angular resolution. Second, both in

time and in position over the sky GRBs happen randomly, and they last very shortly

(typically a few tens seconds). Both facts make is hard for follow-up observations. Therefore

in the following two decades, still little was known about the origin and mechanism of

GRBs. Lacking the critical information about distances, people don’t know wether GRBs

are galactic, extragalactic or cosmological events. Thus, there were many GRB models

then, spanning from neutron stars to supermassive black holes. Absorption features at 20

keV and 40 keV in GRB spectrum once were detected by GINGA, and were interpreted

as electron’s cyclotron absorption lines, corresponding to a magnetic field strength ∼ 1012

G that is comparable to typical neutron star surface field strength (Fenimore et al. 1988;

Murakami et al. 1988). This was considered then as a major evidence for the galactic

neutron star origin of GRBs.

One corner stone of GRB research came after the Compton Gamma-Ray Observatory

(CGRO) was launched. Its onboard all-sky γ-ray instrument, BATSE, detected about 2700
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bursts in 9-year CGRO mission. Statistics showed that the GRB distribution over the sky

is isotropic, which strongly suggested a cosmological origin (Meegan et al. 1992). The

discovery of GRB 970228’s X-ray afterglow by Beppo-SAX was the second corner stone

of GRB research (Costa et al. 1997). Afterglow is the rapidly dimming emission that is

detected in longer-wavelength bands and from the burst site after the γ-rays have died off.

To be distinctive, people frequently call the γ-rays in bursts the “prompt emission”. X-ray

observation can achieve positioning accuracy ∼ 1′, which enables follow-up observing of

afterglows in long wavelengths and eventually leads to the identification of host galaxies

and their red shifts (z = 0.695 for GRB 970228; Bloom et al. 2001). Since then, the

cosmological origin of GRBs was confirmed.

1.2 Observed behaviors

1.2.1 Prompt emission

Time, s

Figure 1.1: Examples of GRB prompt emission light curves (LCs) in 25 – >∼ 300 keV energy
band. Each panel corresponds to a burst. From Stern et al. (1999). All examples shown
here belong to the long GRB class. There is evidence that complex variability structure
also appears in some short GRB LCs (Nakar 2007).
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Figure 1.2: The distribution of durations and hardness ratios for GRBs in the BATSE 4B
Catalog, plotted together with a few BeppoSAX bursts. The duration is represented by T90,
length of the time window over which 90% of the total γ-ray photon counts are received.
The spectral hardness is defined as the ratio of total photon count fluxes recorded in two
neighboring energy bands. The distribution clearly shows a bi-modality: short (< 2 s), hard
bursts vs. long (> 2 s), soft bursts. From Kulkarni et al. (2000).

Typical burst light curves (LCs) are highly variable and erratic (see Figure 1.1).

It is composed of individual pulses (or peaks). There is no general trend of pulse width’s

evolution with time within a burst (Ramirez-Ruiz & Fenimore 2000). A pulse usually shows

spectral hardening during its rising phase (e.g., Lu et al. 2010). Typical shortest variability

time scale is ∼ 0.1 s1, implying a compact stationary source with size <∼ 109 cm. A typical

observed fluence is ∼ 10−6 erg cm−2; for a cosmological event of z = 2, that corresponds to

an isotropically released energy of ∼ 1052 erg (i.e., 1% of total solar rest mass energy!), or

a luminosity of ∼ 1051 erg s−1. This extremely high energy budget could be alleviated by

noting the possibility that the source is narrowly beamed toward the observer. If θj ¿ 1 is

the source opening angle, the beaming-corrected energy release would be smaller than the

isotropically equivalent value by a factor of 1/θ2
j .

The spectrum of the burst usually can be described by two joint power laws (Band

et al. 1993). The high energy power law typically has a index β slightly below -1 (β is

defined as in fν ∝ νβ), and the low energy power law index β ≈ 0. The peak energy of

the spectrum is typically around 300 KeV (Preece et al. 2002). The high energy power law

does not show clear feature of cut-off up to a few tens of MeV.

GRBs can be phenomenologically classified into two subclasses: long, soft bursts
1There have been cases for which millisecond variability was identified (Walker et al. 2000).
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and short, hard bursts (Kouveliotou et al. 1993; also see Figure 1.2). Recently, newly

discovered properties of both long and short bursts prompted some authors to advocate a

progenitor-oriented classification scheme (see Zhang et al. 2009).

1.2.2 Afterglow

Figure 1.3: An example of a GRB’s IR/optical afterglow LCs. The temporal decay transition
at ∼ 1 day after the burst is interpreted as the time when deceleration of the relativistic
ejecta causes the relativistic-beaming angle (∼ 1/Γ, where Γ is the ejecta Lorentz factor;
Rybcki & Lightman 1979) to exceed the ejecta’s real opening angle so that the ejecta
dynamics can not be considered as being spherically symmetric. From Stanek et al. (1999).

The afterglow LCs are usually found to decay in power laws with time (e.g., in Figure

1.3), and their spectra are also in power-law forms such that fν(t) ∝ νβtα, with α ∼ −1

and β ∼ −1, but both α and β are slightly different between in different wave bands (say,

optical vs. X-ray).

One feature about afterglow in the post-BeppoSAX era is that some LCs show a

temporal slope steepening around days after burst (Figure 1.3). This break can be inter-

preted as when the edge of a beamed ejecta starts to be visible due to the deceleration of a

relativistic ejecta that produces the burst and the afterglow (Kulkarni et al. 1999; Mészáros

& Rees 1999). In fact, this feature has long been anticipated by the GRB models involve

relativistic, beamed jet (next section). Thus, this break not only confirms the relativistic

motion but also alleviates the high energy budget for GRB.

4



1.3 Relativistic fireball model

Relativistic motion of the GRB source is required to circumvent the so-called “compactness

problem”, which is explained as follows. Let us consider an individual pulse of the prompt

emission whose isotropic equivalent energy release is Eiso ∼ 1050 erg and variability time

scale is δt ∼ 10−1 s. It immediately implies a compact region ( <∼ 109 cm) containing an

enormous amount of energy, colloquially dubbed “fireball”, in which the photon field energy

density is so high that the optical depth for γ + γ −→ e+ + e− is huge:

τγγ = fp
EisoσT

Ep(cδt)2
∼ 1012, (1.1)

where Ep ∼ 300 keV is the characteristic observed photon energy, σT is the Thompson

cross section and fp represents the fraction of the photon pairs with energies that satisfy
√

E1E2 > mec
2. This is inconsistent with the observations because the prompt emission

spectrum does not show a high-energy cut-off due to photon annihilation up to 10 - 100

MeV (Kaneko et al. 2008). The way around this inconsistency is to require the source to

be relativistically moving toward the observer with a Lorentz factor Γ. In that case, the

comoving size of the source is estimated as ∼ Γ2cδt, and the photon energy in the source

rest frame is de-boosted to ∼ Ep/Γ. Since fp ∝ Eβ+2
p where β is the high energy power

law index of the emission spectrum, the optical depth will be lowered by a factor of Γ5.

Therefor the requirement of τγγ < 1 implies Γ > 102.4.

The internal-shock model is the most popular model describing the prompt emission;

it postulates that non-uniformity in the Lorentz factor history of the outflow causes collisions

between faster and slower parts of the outflow when they have moved to a larger distance

(e.g., Rees & Mészáros 1994; Paczynski & Xu 1994). The resultant energy dissipation

heats and accelerates charged leptons to highly relativistic energies in order for them to

radiate the prompt emission. The work presented in Chapter 2 is dealing with one specific

particle acceleration mechanism – diffusive shock acceleration. Also, Chapter 3 discusses

an natural outcome of the internal-shock model and attempts to apply it to explain a newly

discovered feature in afterglows. Challenging issues with this model have been pointed out

(e.g., Kumar & McMahon 2008) and various versions of a relativistic mini-emitter model

5



have been discussed (Lyutikov & Blandford 2003; Kumar & Narayan 2009; Lazar et al.

2009).

The interpretation of the afterglow in the post-BeppoSAX era by the external-shock

model (Rees & Mészáros 1992; Mészáros & Rees 1993) has been largely successful. Based on

this model, the fast moving ejecta that carries kinetic energy of >∼ 1051−52 erg will sweep and

shock-heat the circumburst medium, whose relativistic charged leptons emit the radiation

as the afterglow. Once the collected medium amounts to be comparable to the initial rest

mass of the ejecta, the latter starts to decelerate, and this time marks the start of the

dimming of afterglow.

Emission mechanism is an essential part in constructing successful model for GRBs

and afterglows. The most promising one are the synchrotron and / or synchrotron self

inverse-Compton (SSC) emission (e.g., Sari et al. 1998; Kumar & McMahon 2008; also

see Piran 1999, 2005 and Mészáros 2002 for extensive reviews). Some alternatives include

photosphere emission (Mészáros & Rees 2000; Rees & Mészáros 2005; Pe’er et al. 2006;

Giannios & Spruit 2007; Ryde & Pe’er 2009) and jitter radiation (Medvedev 2000; Workman

et al. 2007; Morsony et al. 2009) but with less observational support. The work presented

in Chapter 5 discusses and utilizes a second-order effect in synchrotron radiation — the self

absorption.

1.4 Progenitors and central engines

1.4.1 Central engines

Central engine is a colloquial term that refers to whatever at the source produces the GRB

relativistic outflow. The most important ingredient of a central engine model is the ability

of generating the relativistic jet. The variability constraint points to a stellar mass compact

object. Currently two most frequently discussed models are the black hole (BH) accretion

disk model and the millisecond proto-magnetar model.

The most gigantic version of BH accretion disk system has long been used to explain

the existence of relativistic jets in active galactic nuclei (AGNs) and the high-energy emission

detected in blazars, one subclass of AGNs. Therefore, the stellar mass version of the BH
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accretion disk system is a natural candidate for GRB central engine. Two categories of

mechanisms for launching the jet in this system have been seriously explored, i.e., the

neutrino-driven jet (e.g., Narayan et al. 1992; Eichler et al. 1989) and the magnetically

driven jet, respectively. In the first category, luminous neutrino flux from the inner disk

is deposited near the polar axis region, launching the jet. However, the neutrino flux is

very sensitive to the accretion rate, thus, the neutrino-driven jet is too transient and overall

efficiency is too low (e.g., Di Matteo et al. 2002). The magnetic category comprises two

varied versions. In one version, the so-called BZ mechanism (Blandford & Znajek 1977;

Komissarov et al. 2009), the electromagnetic energy of the black hole is directly tapped

and transported in the polar direction in the form of e−e+ pairs. In another scenario

(Lyden-Bell 1996; Lovelace et al. 2002; Uzdenski & MacFadyen 2006), the magnetic field

lines threading the disk are twisted by differential rotation to form a magnetic tower, which

grows and accelerates in the polar direction and eventually launch the jet.

The alternative central engine model envisages a newly born, rapidly rotating mag-

netar (spin period P ∼ 1 ms, surface magnetic filed B ∼ 1015 G; Usov 1992; Duncan

& Thompson 1992). Such a proto-magnetar might be produced in a rotating type-Ib/c

SN progenitor, accretion-induced collapse of a white dwarf, or the merger of two white

dwarfs or two neutron stars. Because the proto-magnetar was born hot (T ≥ 10 MeV),

it launches thermal neutrino-driven hydrodynamic winds via processes νen → pe− and

ν̄ep → ne+. As the magnetar cools on time scale ∼ 20 s, the wind becomes increasingly

magneto-centrifugally dominated with the magnetization parameter σ approaches ∼ 102.

Once the wind undergoes the acceleration phase in which magnetic energy is transformed

into kinetic energy, it eventually could attain a Lorentz factor Γ ∼ σ (Bucciantini et al.

2006; Thompson et al. 2006; Metzger et al. 2007). Bucciantini et al. (2008) showed that

beaming of the jet can be obtained in the context of type Ib/c SN progenitor where the

stellar envelope material acts to collimate the wind into the polar direction.

1.4.2 Progenitors of long bursts

Observational clues to long GRBs’ progenitors come from two aspects: (1) GRBs are found

to be in actively star forming galaxies (e.g., Christensen et al. 2004, Castro Cerón et al.
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2006) or in star (especially massive ones) forming regions of the host galaxies (e.g., Paczyński

1998; Bloom et al. 2002; Fruchter et al. 2006); (2) for a subset of nearly a dozen of GRBs, X-

ray-rich GRBs and X-ray flashes, supernova (SN) features – both temporally and spacially

associated with the bursts (Woosley & Bloom 2006 for a review) – were detected. For four

of those: GRB 980425 (e.g., Galama et al. 1998), 030329 (e.g., Hjorth et al. 2003), 021211

(Della Valle et al. 2003) and 031203 (e.g., Malesani et al. 2004), the physically associated

SNe were not only photometrically but also spectroscopically confirmed. The others of

the subset show a late-time (∼ 10 days) SN-like “bump” in the optical afterglows, with a

simultaneous strong color evolution, e.g., in GRB 980326 (Bloom et al. 1999) and 011121

(Bloom et al. 2002), consistent with the hypothesis of an underlying SN. All these point

to the massive star origin for long GRBs, especially some explosive event that marks the

catastrophic deaths of the stars.

The class of models that have the BH accretion disk as the central engine and the

massive star (∼ 10 − 30M¯) as the progenitor are generally dubbed “collapsar” model.

In this scenario, BH forms as the end product of the core collapse at the end of the star’s

thermonuclear life. The formation of a disk requires a minimum specific angular momentum

jmin ≈ 3 × 1016(MBH/3M¯) cm2 s−1 for the accreted stellar material. This implies a fast

rotating progenitor.

The typical duration of the prompt burst (T90 ∼ 10 s, in host rest frame) bears

some implication about the size of the progenitor, independent of the nature of central

engine: the time spent by the jet traversing the progenitor stellar envelope should not be

long compared with the T90. The jet traversing speed is about 0.1c (Ramirez-Ruiz et al.

2002; Matzner 2003; see also Shen et al. 2010). This sets an approximate upper limit of the

size of the progenitor, R∗ ≤ 1011 cm. The compact carbon-oxygen or helium Wolf-Rayet

stars (progenitors for type Ib/c SNe) are the most likely candidates.

1.4.3 Progenitors of short bursts

The phenomenology of the host galaxies for short GRBs shows distinctive properties from

the hosts of long GRBs. The hosts for shorts include both early- (elliptical) and late-type

(spiral) galaxies, as well as field and cluster galaxies (Nakar 2007 and references therein).
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Table 1.1: Host galaxy properties for long and short GRBs, respectively (Nakar 2007 and
references therein).

Long GRBs Short GRBs
Host type dwarf spiral starbursts various types; spiral and elliptical

Specific star formation rate ≈ 10M¯ yr−1(L/L∗)−1 ≤ 1M¯ yr−1(L/L∗)−1

SN association yes (at least for some) no
Field or cluster galaxy field galaxy both

This is in contrast to the long-GRB hosts who are typically late-types and in the field

(see Table 1.1). In average, the short GRB hosts show less star formation activity. No

associated SN has been detected for short GRBs despite their systematically low red shifts.

These support the distinct natures of long and short GRBs.

The merger of a compact binary (neutron star + BH or neutron star + neutron star)

has long been discussed as the potential short GRB progenitor (e.g., Eichler et al. 1989;

Narayan et al. 1992). The binary merge as a result of energy and angular momentum loss

due to gravitational-wave radiation. A BH accretion disk system can form after the merger

with a disk mass of 0.01 − 0.3M¯. The life time of the disk is ∼ 0.1 − 1 s, much shorter

than in the collapsar scenario, therefore making it a natural candidate for the short GRB

progenitor. A number of analytical (Popham et al. 1999; Narayan et al. 2001; Di Matteo

et al. 2002) and simulation (Lee & Ramirez-Ruiz 2002; Rosswog & Davis 2002, Rosswog &

Liebendörfer 2003; Rosswog et al. 2003) work have investigated the evolution of the disk in

this picture. The jet launching mechanism is expected to not differ in nature from in the

collapsar scenario.

1.5 Recent development

1.5.1 Swift ’s new discoveries

Thanks to its unprecedented rapid slewing capability, the Swift satellite was able to catch

the X-ray afterglow right after the prompt emission dies off. Shortly after its launch, it has

recently unveiled a “canonical” behavior pattern in about two-thirds of GRBs’ early X-ray
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Figure 1.4: Left: X-ray afterglow LCs for a sample of Swift GRBs with established redshifts
(colored; as in 2006), plotted together with selected pre-Swift events (black). From Nousek
et al. (2006). Right: Schematic view of the “canonical” X-ray afterglow LC revealed by
Swift. The phases or components are: I – steep decay; II – plateau; III – normal decay; IV
– post-jet-break decay; V – flares. Also marked are the temporal decay indices of various
phases. From Zhang et al. (2006).

afterglows (Nousek et al. 2006; O’Brien et al. 2006): a rapid decline phase lasting for ∼ 102

s is followed by a shallow decay phase lasting ∼ 103 − 104 s, then by a “normal” power-law

decay and finally by a possible jet break. The “normal” decay phase is reminiscent of the

power-law decay seen in the pre-Swift era. A number of exemplar LCs and a schematic

diagram are shown in Figure 1.4.

In addition, X-ray flares are found in about 50% of all Swift bursts; they have been

discovered in all of the above phases (Burrows et al. 2005, 2007; Chincarini et al. 2007)2.

X-ray flares are observed at a few ×102 − 103 s (as late as 104 − 105 s in some cases) after

the burst, with a fluence typically about one tenth of the fluence of the prompt γ-rays; in

one case, GRB 050502B, this ratio is ∼ 1 (Falcone et al. 2007). Figure 1.5 shows four early

Swift events with flares. Flares are characterized by a large flux increase and by a very

steep rise and decay. Typical increase of the flux ranges from a factor of order unity to 10

and in some rare cases even a few hundred. The decay after the flare peak is as steep as

∝ t−4, much steeper than the underlying afterglow decay (∝ t−1). The pulse width to the

peak time ratio ∆t/t is much smaller than unity, typically ∼ 0.3. Strikingly, late flares are
2Even long before Swift, a late X-ray flare was detected by BeppoSAX for GRB 970508 (Piro et al. 1998).
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Figure 1.5: X-ray afterglow LCs for a few selected GRBs with X-ray flares. From Nousek
et al. (2006).

also found in short bursts (Barthelmy et al. 2005; Campana et al. 2006b).

1.5.2 Interpretations

The “normal” decay at late times is the canonical afterglow component due to the interac-

tion of the decelerated GRB ejecta with the circumburst medium, i.e., the forward shock

model. The steep decline is generally interpreted to have the same origin as the prompt

γ-ray emission; specifically, it is the prompt photons that are emitted from the larger ob-

serving angle region of the ejecta and hence arrive to the observer at a delayed time (e.g.,

Kumar & Panaitescu 2000; Liang et al. 2006; Zhang et al. 2009). Following this inter-

pretation, Lazzati & Begelman (2005) constrain the radius of the last emitting ejecta to

R >∼ ∼ 1014 cm. However, Barniol Duran & Kumar (2009) suggest a major fraction of the

steep declines are directly from a continued, rapidly declining, activity of the central engine.

Indeed, an early, rapid declining accretion phase is found in collapsar simulation (Linder et

al. 2010).

The intervening shallow decay, sometimes called the ‘plateau’, is the most puzzling

feature of the X-ray LC. The most straightforward interpretation is a late steady energy

injection into the external shock, where the latter is produced by the decelerated early ejecta

plunging into the medium. The late energy injection could be due to a new ejecta from the

late activity of the central engine (e.g., Dai & Lu 1998a,b; Zhang & Mészáros 2001; Dai 2004;
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Yu & Dai 2007), or due to a slow trailing part of the outflow catching up with the already

forward-shock-decelerated early part of the outflow when the outflow has a spread in its

Lorentz factor distribution (e.g., Granot & Kumar 2006). If it is the first scenario, then this

interpretation implies a steady, late activity of the central engine – lasting as long as a day

– which poses a challenge to the models of the central engine. Moreover, according to the

energy-injection interpretation, the plateau-to-normal transition in the LC corresponds to

the cessation of the energy injection, thus the transition should be achromatic. But in about

1/3 of the X-ray plateau GRBs with optical afterglow observations, the optical LC does

not show a simultaneous plateau-to-normal break, while in another smaller fraction of the

plateau cases, the plateau-to-normal breaks in optical and X-ray are indeed simultaneous

(Panaitescu 2007). In most cases the power-law decay following the plateau is consistent

with the predictions (the closure relationships) of the forward shock model, which in turn

is consistent with the energy injection interpretation.

There is a long list of alternative models for the plateau phase, such as a slow

energy transfer from the ejecta to the ambient medium (Kobayashi & Zhang 2007), a two-

component jet model (e.g., Granot et al. 2006), a varying shock microphysical parameter

model (e.g., Panaitescu et al. 2006), and a reverse shock dominated afterglow model (Uhm

& Beloborodov 2007; Genet et al. 2007), etc. (see Zhang 2007 for a review), but none of

them satisfy all the observational constraints.

Shao & Dai (2007) suggested an attractive interpretation of the X-ray plateau: dust

is likely to exist in the vicinity of the GRB site since it is in a star forming region; X-ray

photons from the GRB and its afterglow can be scattered in small angles by dust grains,

and those scattered photons arrive to the observer with a time delay, thus can manifest as

the plateau component. However, we show in Chapter 4 that this model is ruled out for

most cases with plateaus because one intrinsic feature of this model is inconsistent with

data.

The late X-ray flares is the most intriguing discovery made by Swift. They cannot

be due to external-origin mechanisms such as, a density clump in the circumburst medium,

or the energy injection into the afterglow blastwave by the trailing slower shells, because

the decay slope after the rebrightening from these mechanisms always follows the standard
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afterglow model, and ∆t/t ∼ 1 is always expected (Nakar et al. 2003; Nakar & Granot

2007; Lazzati & Perna 2007). They are also unlikely to arise from late collisions between

two slow moving shells ejected at same time as the main γ-ray producing shells, since the

resultant internal shock is too weak to give rise to the significant emission observed in flares

(Zhang 2006). The most likely possibility for X-ray flares is the late activity of the central

engine (e.g., Fan & Wei 2005). Such a late activity was proposed already in 1998 as an

alternative origin of GRB afterglow (Katz & Piran 1998; Katz et al. 1998).

The scenario involving the late engine activity can easily satisfy the constraint that

∆t/t ¿ 1. Also in this scenario the late flare is physically separate from the “background”

afterglow, so the large amplitude increase of the flux superposed on the decaying afterglow

can be naturally explained. Chapter 6 will address some observational consequences of the

late jet.

1.5.3 Implications for central engines and progenitors

Both the X-ray flares and the plateaus, especially the former, seem to point to the late

activities of the central engine, either in continuous (for the plateau and/or steep decay)

or intermittent (for flares) form. Proposed scenarios of extended central engine activities

include: relativistic electromagnetic wind from a newly born millisecond magnetar due

to spin-down (Dai & Lu 1998a, b; Zhang & Mészáros 2001; Yu & Dai 2007); continuous

accretion of the entire progenitor star (Kumar et al. 2008a, b); fall-back accretion of the

bound material ejected during a SN, like the ones studied earlier by Chevalier (1989) and

MacFadyen et al. (2001); late accretion of ejected material orbiting in eccentric orbits in

the compact binary merger (e.g., Faber et al. 2006; Rosswog 2007; the latter found late

accretion luminosity ∼ 1045 erg s−1 at 1 hr after merger).

Lazzati et al. (2008) found that the mean flux of a flare declines with its occurrence

time as ∼ t−1.5. Recently updated analysis shows a slightly steeper slope (Margutti et al.

2010). If a constant conversion efficiency from accretion luminosity to jet luminosity and

in turn to radiation luminosity is assumed, this long-term decay slope bears interesting

constraint on the extended central engine activity.

In relative to the controversy in interpreting the plateau phase, the implication from
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the flares in particular is clear: somehow the central engine has to restart at times of minutes

to hours after the prompt, active phase. Some proposed scenarios are: fragmentation

of the core during the collapse and subsequent merger of the fragments with a central

compact objet (King et al. 2005); fragmentation of the accretion disk (Perna et al. 2006);

interior field wind-up and subsequent reconnection in the millisecond magnetar (Dai et

al. 2006); the off-on switch in accretion rate caused by some magnetic braking barrier

mechanism operating at the inner boundary of the disk (Proga & Zhang 2006); glitches in

the angular momentum profile of the progenitor star (Perna & MacFadyen 2010); fall-back

of eccentrically ejected material in binary merger scenario (Rosswog 2007; Lee & Ramirez-

Ruiz 2007).

The new “canonical” behavior and late flares discovered by Swift provides exciting

opportunities to improve our understanding of GRB origins. For instance, the long-term X-

ray afterglow behavior may carry clues to progenitor properties such as size, density, angular

momentum and/or composition profiles (e.g., Kumar et al. 2008a; Cui et al. 2010; Perna &

MacFadyen 2010). Flares are believed to originate from late central engine ejecta, with the

dissipation and radiation mechanism probably resembling the one responsible for the prompt

emission. Physical properties of the ejecta that produces flares, such as magnetization and

radius, still wait to be explored. Also worthwhile is to study the forward-shock signature

of the late flare-producing ejecta. The abounding multi-band (IR, optical and X-ray) data

make those tasks accomplishable in the near future. Undoubtedly, understanding the flare

origin may forge a path to understanding the enigma of prompt emission origin.

14



Chapter 2

Non-Universality for Electrons’

Power-Law Index p

2.1 Introduction

GRBs are observed to have non-thermal spectra during its prompt emission phase (Band et

al. 1993). It is widely believed that the synchrotron radiation and/or the inverse Compton

scattering are the likely emission mechanism(s) for GRB’s prompt hard X-ray and γ ray

emission. The electrons accounting for these emissions are thought to be accelerated in

relativistic shocks in GRBs. According to the shock diffusive acceleration model, particles

are accelerated when they repeatedly cross a shock front, and the competition between the

particle’s energy gain and escape probability per shock crossing cycle leads to a power-law

spectrum for the particles:

N(γ)dγ ∝ γ−pdγ , (2.1)

where γ is the Lorentz factor of the particle (e.g., Blandford & Ostriker 1978). For non-

relativistic shocks, the value of p depends on the the compression ratio of the flow stream

across the shock; while in relativistic or ultra-relativistic shocks, which is most likely the case

in GRBs, analytical and numerical studies show that p has an “universal” value, ≈ 2.2−2.3

(Kirk et al. 2000, Achterberg et al. 2001, Bednarz & Ostrowski 1998, Lemonine & Pelletier

2003).
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In this chapter we investigate the “universality” of the power-law index p for GRBs,

which we calculate directly from the high-energy (0.1− 2 MeV) photon spectrum of GRBs

(Preece et al. 1998, 2000), assuming the spectrum is from synchrotron or synchrotron self-

inverse-Compton emission of the power-law distributed highly relativistic electrons, using

the relations between p and the spectral index , β, of the high-energy power-law photon

spectrum.

In §2.2, we describe the GRB spectral data set used and the process of determining

the parent p-distribution. In §2.3, we examine the contributions from the spectral fit pro-

cedure and the time averaging effect to the dispersion of the parent distribution of p. The

p-distributions derived from BeppoSAX GRBs and from HETE-2 (High Energy Transient

Explorer) GRBs, X-ray flashes and X-ray rich GRBs are presented in §2.4. We determine

the p-distributions for X-ray afterglows in §2.5 and for blazars and pulsar wind nebulae in

§2.6. A summary and discussions are given in §2.7.

2.2 The distribution of p in GRBs

2.2.1 The GRB spectral sample

For our analysis, we use the BASTE GRB Spectral Catalog presented by Preece et al.

(2000). In the catalog, the time sequences of spectral fit parameters for 156 bright bursts

are presented, using mostly the high energy and time resolution data from the Large Area

Detectors (LAD), which covers an energy range of typically 28 - 1800 keV. All bursts have

at least 8 spectra in excess of 45 σ above background. The spectral models used in fit

are (i) ‘Band’ function; (ii) Comptonized spectral model (a power-law with an exponential

cut-off); (iii) Broken Power-Law model; and (iv) Smoothly Broken Power-Law model. The

‘Band’ function, the one used most frequently, is an empirical function (Band et al. 1993)

N(E) = A





(E/100)α exp[−E(2 + α)/Epeak], E < α−β
2+α Epeak[

(α−β)Epeak

100(2+α)

]α−β
exp(β − α)(E/100)β, E ≥ α−β

2+α Epeak

where N(E) is the photon counts, A is the amplitude, α is the low-energy spectral index,

β the high-energy spectral index, and Epeak is the peak energy in the νFν spectrum (when
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β < −2).

Since we are here caring about the high-energy power-law portion of the GRB spec-

tra, and also because one possible source of systematic error in the spectral parameter

determination arises in selecting different spectral models for different bursts (Preece et al.

2002), only the spectral parameters of those ’Band’ function fitted spectra are selected for

our analysis.

One of our major concerns is to select the sample of spectra for which β is reliably

determined. The BATSE burst signal-to-noise ratio decreases at higher energies as a result

of lower photon flux and the decreased detector efficiency. In particular, β may not be well

determined if Epeak is close to the higher limit of the LAD energy range, Emax (≈ 2 MeV)

(Preece et al. 1998), thus we must choose those spectra with Epeak much lower than Emax.

Therefore, we select the spectrum for which 100 keV < Epeak < 200 keV and the error in β

is less than 0.1 |β|. This gives a total sample of 395 spectra for 78 bursts.

2.2.2 Distribution of p and its narrowing

For electrons’ distribution given by a power-law:

N(γe) ∝ γ−p
e , for γe > γmin, (2.2)

the emergent high energy synchrotron spectrum is asymptotically a power law function:

Fν ∝ ν−(p−1)/2 for νm < ν < νc (“slow cooling” regime) and ∝ ν−p/2 for ν > νc

(“fast cooling” regime), where νm = νsyn(γmin) is the synchrotron injection frequency,

and νc = νsyn(γc) is the synchrotron cooling frequency above which the synchrotron energy

loss becomes important.

The spectral index, p, of shock accelerated electrons is associated with the high-

energy power-law photon index, β, of GRB photon spectrum, by either β = −p/2 − 1

(“fast cooling” regime) or β = −(p + 1)/2 (“slow cooling” regime) depending on relative

positions of νm and νc and on which portion of the spectrum is detected. There is one

regime, νc < ν < νm, in which β = −3/2, independent on p. This case can be ruled out

by discarding those spectra with β ≥ −3/2 from our sample. We found only one with
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β ≥ −3/2 in the BATSE sample of 395 spectra and discarded it.

Piran (2004) argues that the fast cooling must take place during the GRB prompt

phase and the reasons are: (i) the relativistic shocks must radiate their energy efficiently,

to avoid a serious inefficiency problem; (ii) the electrons must cool rapidly in order that the

fast variability could be observed. But there is no firm evidence to date that could rule out

the slow cooling case for the GRB itself, since it is difficult to measure the values of γc and

γmin for a specific burst. Thus in our analysis, we assume that each GRB spectrum above

Epeak could be in either slow cooling or fast cooling regime, so as to minimize the width of

p distribution.

First we plot distribution of p by assuming all spectra are in fast cooling regime.

Then we make the distribution narrower by relaxing this constraint. Basically the narrowing

process is to move some left-hand part of the distribution to the right by adding 1 to p and

assuming this part of sample are in slow cooling regime, since there is a difference of 1 about

p value between the two regimes. The algorithm used is described below.

Several algorithms are implemented to get the narrowest distribution. In the most

straightforward one, each spectra has the freedom of calculating p from β either in “fast

cooling” or “slow cooling” regime, so the number of possible distributions is 2N for a sample

of N spectra. The distribution having the smallest standard deviation is chosen as the

narrowest one. This algorithm works well only for N < 20 because of the computer running

time. For N > 20, we divide the overall range of the sample’s β distribution into 20 equal-

width bins and treat the spectra with β located in each bin indistinguishably. Then we apply

the first algorithm to the 20 bins. In an alternative algorithm, we start with the histogram

of p calculated in the “fast cooling” regime and mark a demarcation line within and close

to the lower limit of the range of p. Then all p at left to the line in the histogram are moved

to right by adding 1 to p, and the new histogram’s standard deviation is calculated. This

is repeated after shifting the demarcation line rightward by a step of 0.01 on the p-axis.

Finally the smallest standard deviation, hence the narrowest distribution, is found. It turns

out that both algorithms give the same results for most of the samples presented in this

work. For one sample where minor difference exists between two algorithms’ results, we use

the narrower one.
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Figure 2.1: Distributions of p for a sample of 394 GRB spectra with 100 < Epeak < 200 keV.
Solid line: using the relation p = −2β− 2. Dashed line: after narrowing the distribution by
using the relation of either p = −2β − 2 or p = −2β − 1.

We show the results of the analysis for BATSE bursts in Figure 2.1. Note that all

the errors presented in this chapter are at 1 σ level. The parent distribution of p for BATSE

bursts has a width of 0.54 at a 14-σ confidence level. The method that estimates the mean

and the width of the parent distribution of p is described below. Note that the mean value

of p is ≈ 3, substantially larger than that for the distribution before the minimization,

which is an artifact of choosing some of the spectra to be in the “slow cooling” regime,

equivalent to moving the left part of the histograms in the upper panels rightward, in order

to minimize the width of the distribution.

2.2.3 Statistical description of the narrowness of p’s distribution

The observed distribution of p plotted in Figure 2.1 is a convolution of the measurement

error distribution and the true distribution (or parent distribution) of p. What we want to

know is the true distribution of p. We use the maximum likelihood method to estimate the

true p-distribution. Let us say the true distribution of p is Gaussian,

P (p) =
1√

2πσp

exp[−1
2

(p− p̄)2

σ2
p

]. (2.3)

Further, we assume the measurement errors have Gaussian distributions too. Then the

probability distribution for any one measurement (pi, σi) is the convolution of two Gaussians,
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which is the Gaussian

P (pi, σi, p̄, σp) =
1√

2π(σ2
p + σ2

i )1/2
exp[−1

2
(pi − p̄)2

σ2
p + σ2

i

]. (2.4)

The likelihood function for the set of n measurements pi, σi is

L =
n∏

i=1

1√
2π(σ2

p + σ2
i )1/2

exp[−1
2

(pi − p̄)2

σ2
p + σ2

i

]. (2.5)

The principle of the Maximum Likelihood Estimate is that, the best estimates of p̄ and σ2
p

are the ones that maximize L. Take

l = lnL = −1
2

n∑

i

(pi − p̄)2

σ2
p + σ2

i

− 1
2

n∑

i

ln(σ2
p + σ2

i ), (2.6)

then the maximum occurs when the following equations

∂l

∂p̄

∣∣∣∣
ˆ̄p,σ̂2

p

= 0, (2.7)

∂l

∂(σ2
p)

∣∣∣∣∣
ˆ̄p,σ̂2

p

= 0 (2.8)

have their solution at p̄ = ˆ̄p and σ2
p = σ̂2

p, where “ ∧ ” symbolizes the best estimation of the

parameters. If we assume that the distribution of ˆ̄p and σ̂2
p are both Gaussian, then one

can show that the variances of ˆ̄p and σ̂2
p are

σ2
ˆ̄p = −

[
∂2l

∂p̄2

∣∣∣∣∣
ˆ̄p,σ̂2

p

]−1

, (2.9)

σ2
σ̂p

2 = −
[

∂2l

∂(σ2
p)2

∣∣∣∣∣
ˆ̄p,σ̂2

p

]−1

, (2.10)

respectively. So the best estimate of the parameters of true distribution of p are obtained by

numerically solving equations (7) and (8), and their associated errors are calculated through

equations (9) and (10).
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2.3 Systematic errors in β

2.3.1 The ‘Band’ function fit to the spectra

Preece et al. (2000) carried out a Band function fit to GRB spectra observed by BATSE,

and this way determined the high energy power-law index (β) and the random error in β

due to error in the observed spectral energy distribution. There is also a systematic error

in β resulting from the finite bandwidth of the BATSE detector, which was not reported

in Preece et al., and we estimate it here. The purpose of this exercise is to estimate the

contribution of this systematic error, and its dependence on the peak of the spectrum

(Epeak), to the dispersion in the p-distribution.

The systematic error arises because the synchrotron spectrum does not make a sharp

transition from one power-law index to another when one crosses a characteristic frequency.

In particular, the steepening of the spectrum to ν−p/2 above the synchrotron and cooling

frequencies does not occur suddenly at Epeak, but instead the spectrum approaches this

theoretical value asymptotically at E À Epeak.

Since the spectrum is observed in a finite energy range, the measured spectral index

will always be somewhat smaller than the true asymptotic value by an amount that depends

on the ratio of Emax and Epeak (Emax is the highest energy photon that the detector is

sensitive to). The larger the Emax/Epeak is the smaller the systematic error in β would be,

and this dependence on Epeak causes some broadening of the observed β distribution.

To estimate this systematic error we generate synthetic spectra with different values

for Epeak, and carry out a Band function fit to the synthetic spectra to determine β and its

deviation from the true asymptotic value.

The synthetic synchrotron spectra is calculated for a relativistic homogeneous shell.

The electron distribution function behind the shock is taken to be a single power-law func-

tion: N(γe) ∝ γ−p
e , for γ > γmin, where mec

2γmin is the minimum electron energy after

they cross the shock front. The magnetic field in the shell is taken to be uniform and the

energy density of the field is some fraction (εB) of the thermal energy density of the shocked

fluid; γmin and εB are chosen so that the peak of the spectrum, Epeak, is at some desired

value. As electrons move down-stream from the shock front they cool via the synchrotron
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and inverse-Compton processes, and their distribution function is modified. We calculate

the effect of this cooling on electron distribution functions using a self consistent scheme

described in Panaitescu & Mészáros (2000) and McMahon et al. (2006).

The synchrotron spectrum, for a given electron distribution, in the shell comoving

frame is calculated as described in detail by Sari et al. (1998) (also see section 2.2). The

spectrum in the observer frame is calculated by integrating the spectral emissivity in the

comoving frame over the equal-arrival-time surface as described in Kumar & Panaitescu

(2000). Errors are then added to this spectrum in a way that mimics the real GRB spectrum.

The synthetic spectrum for a known p is fitted to the Band function in a finite energy

range corresponding to the BATSE energy coverage. By varying Epeak of the generated

spectra we determine the discrepancy between fitted value and “true” value of β as a

function of Emax/Epeak. The results are shown in Figure 2.2. We find the fit always gives

a smaller β (in absolute value) than the true asymptotic value and that the “observed” β

does indeed depend on Emax. The error in β is about 10% when Emax/Epeak is order unity,

whereas the error is ∼5% when Emax/Epeak ∼ 20. The error also depends on the p value as

shown in Figure 2.2; for Epeak located between 100 keV to 200 keV, Emax= 1.8 MeV, and

p= 2.5, the contribution of this systematic error to the dispersion in β is less than 1.3% –

the corresponding contribution to the dispersion in p is σp < 0.03.

We have also carried out a similar calculation for the synchrotron self- inverse-

Compton (SSC) spectrum for a population of synchrotron electrons. The incident photons

are the synchrotron photons due to the same population of electrons that contribute to

inverse-Compton scatterings. The synchrotron radiation is taken to be homogeneous and

isotropic in the shell comoving frame, and its spectrum is calculated as described above.

The overall SSC spectrum is obtained by the convolution of the synchrotron spectrum and

electron energy distribution using equation (7.28 a) in Rybicki & Lightman (1979). The

curvature in the SSC spectrum is due to the convolution of the incident spectrum and

the electron distribution, and we find that the asymptotic value for the SSC power-law

index is reached when Emax/Epeak ∼ 100. For this reason we find that for the SSC case,

the systematic error in β is ∼ 13% for the typical Emax/Epeak in BATSE bursts. The

dispersion in p caused by Epeak being distributed between Epeak= 100 keV to Epeak= 200
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Figure 2.2: The discrepancy between the fitted value and the ‘true’ value of β, as a function
of the higher end of the fitting energy range for the synchrotron spectra fitted by the ‘Band’
function. Two vertical lines mark the range of Emax/Epeak corresponding to the Epeak range
of the sample in Figure 2.1. The errors of the spectrum data are assumed to be proportional
to square root of photon counts: σ(N(ν)) ∝ √

N(ν).

keV is, however, small – σp < 0.04.

These results show that the discrepancy between the fitted value and the “true”

value of β is small and dependent on Emax/Epeak, but its dependence on Emax/Epeak is too

small to account for the observed dispersion in the p distribution.

2.3.2 Time-averaging effect

Another source of systematic error in β is the time-averaging of multiple spectra undergoing

spectral evolution, i. e., Epeak evolving with flux (Ford et al. 1995, Crider et al. 1999).

The flux-weighted time-averaging of multiple ‘Band’ spectra may distort the intrinsic high-

energy power law.

To examine this effect, we select BATSE time-resolved spectra with Epeak in 100

- 200 keV and in 200 - 300 keV, respectively, divide them into non-evolving groups and

evolving groups, and analyze their p distributions separately. The results are shown in

Table 2.1 We find the evolving spectra groups tend to have flatter p or β, which may be an

outcome of the time-averaging effect. But the widths of p distributions for two groups are

consistent with each other, showing that the time-averaging does not contribute to observed

dispersion in p in Figure 2.1.

23



Table 2.1: Parameters of parent distribution of p for BATSE GRB spectra samples with
Epeak-evolution (∆Epeak > 15%Epeak) and without Epeak-evolution (∆Epeak < 15%Epeak),
where ∆Epeak is the Epeak difference between any two adjacent-in-time spectra. All spectra
are assumed in “fast cooling” regime.

100 < Epeak < 200 keV 200 < Epeak < 300 keV
Spectra samples Non-evolving Evolving Non-evolving Evolving

< p > 2.86 ± 0.06 2.38 ± 0.03 2.50 ± 0.07 2.14 ± 0.03
σ(p) 0.44 ± 0.04 0.47 ± 0.03 0.58 ± 0.06 0.42 ± 0.03

Figure 2.3: The distribution of p determined from 32 time-integrated GRB spectra. Solid
line: p is inferred from the high-energy power-law index β by the relation p = −2β − 2.
Dashed line: the narrowest distribution of p using the relation either p = −2β − 2 or
p = −2β − 1. β is taken from the ‘Band’-function fit by Band et al. (1993) to the time-
integrated spectrum for each burst.

The time-averaging effect is further examined when we use an early BATSE spectral

catalog by Band et al. (1993) in which the time-integrated spectrum of each burst is fitted

with the ‘Band’ function. We restrict our samples to those with Epeak ≤ 300 keV, and error

in β less than 0.1 |β|, which gives a sample of 32 spectra from the catalog of 54 GRBs.

The p distribution is shown in Figure 2.3. Comparing with Fig 2.1, one can see that it has

approximately the same σp as that for the time-resolved GRB spectra. This supports that

the time-averaging effect has no impact on the observed dispersion in p.
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2.4 p-distributions for BeppoSAX GRBs and HETE-2 XRFs,

XRR GRBs and GRBs

We also analyzed a sample of 11 GRBs observed by BeppoSAX. The combined (2 - 700

keV) Wide Field Cameras (WFC) and Gamma-Ray Burst Monitor (GRBM) spectra for

these bursts are fitted with the ‘Band’ function by Amati et al. (2002). The narrowest

distribution of p for this sample is shown in Figure 2.4 left panel. It has the same estimated

mean value of p as in the BATSE bursts, and the width of the parent distribution for p is

consistent with that for the BATSE bursts. The larger errors in < p > and σp are due to

the smaller size of the BeppoSAX sample.

Sakamoto et al. (2005) present a catalog of X-ray flashes (XRFs), X-ray-rich (XRR)

GRBs and GRBs observed by HETE-2 WXM (Wide Field Camera) (2 - 25 keV) and

FREGATE (French Gamma Telescope) (7- 400 kev) instruments. Among 45 bursts in the

catalog, 16 bursts have measured high-energy power-law photon index, β, which is obtained

through the spectral fit with the ‘Band’ function or a single power-law model. For those

XRF spectra fitted by a single power law, it is found that β <-2. Sakamoto et al. (2005)

explain this as that we are observing the high-energy power-law portion of their “Band”-

function spectra. Two GRBs (GRB 020813 and 030519) for which “Band” model is used

have Epeak lying near or above the upper limit of FREGATE energy range, so we exclude

them here. We also exclude XRF 030528 which has a large error in β. The final HETE-2

sample we considered comprises 7 XRFs, 4 XRRs and 2 GRBs. The p distribution is shown

in Figure 2.4 right panel.

2.5 p-distribution for X-ray afterglows

We also determine the distribution of p during the X-ray afterglows. We use a catalog of X-

ray afterglows observed by BeppoSAX compiled by De Pasquale et al. (2006) and a catalog

of X-ray afterglows observed by Swift (O’Brien et al. 2006). In De Pasquale et al. (2006)’s

catalog, 15 X-ray afterglow spectra are fitted with a Galactic-and-extragalactic absorbed

single power law. We use 14 out of them for our analysis and exclude GRB 000210 which

has an extremely large error in measured β. In O’Brien et al. (2006)’s Swift catalog of 40
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Figure 2.4: Left: The distributions of p for 11 GRBs observed by BeppoSAX (Amati et
al. 2002); Right: The distributions of p for 13 X-ray flashes, X-ray-rich GRBs and GRBs
observed by HETE-2 (Sakamoto et al. 2005). Solid lines: p is inferred from the higher-
energy photon index β by the relation p = −2β−2. Dashed lines: the narrowest distributions
of p using the relation either p = −2β − 2 or p = −2β − 1.

X-ray afterglows, we select samples with small errors, σ(βi) < 0.1|βi|, and discard a sample

with extremely large |β| (= 5.5). We also discard 4 samples with βi ≥ −3/2 because these

β values indicate the X-ray band probably lies between νc and νm (νc < νX < νm), where

the asymptotic spectral index is β = −3/2 and carries no information about p. This gives

28 samples from the catalog.

The p-distributions for the two afterglow samples are shown in Figure 2.5. For the

BeppoSAX afterglows, the narrowest distribution is consistent with a δ-function distribution

within 1 σ errors; for the Swift afterglows, it is not. The smaller estimated width of the

parent p-distribution for BeppoSAX afterglows, we suspect, is due to larger errors in photon

indices βi of the BeppoSAX sample, < σi(β) >= 0.26, than the Swift sample which has

< σi(β) > = 0.10.

2.6 Distribution of p in Blazars and pulsar wind nebulae

2.6.1 Blazars

Blazars are active galactic nuclei with the relativistic jet pointed toward us. The nonthermal

spectra of blazars are due to synchrotron or/and inverse Compton emission of relativistic

electrons accelerated by shocks within the jet (Blandford & Königl 1979, Sikora et al. 1994).

Donato et al. (2005) present a spectral catalog of six years of BeppoSAX observa-
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Figure 2.5: The distributions of p for GRB X-ray afterglows. Left: 14 afterglows are
observed by BeppoSAX, taken from De Pasquale (2006). Right: 28 afterglows are observed
by Swift, taken from O’Brien et al. (2006). Solid lines: p is inferred from the photon index
β by the relation p = −2β − 2. Dashed lines: the narrowest distribution of p using the
relation either p = −2β − 2 or p = −2β − 1.

tions of Blazars at 0.1 - 50 keV. This catalog comprises three classes of blazars, namely

low-luminosity sources (High-energy peaked BL Lacs, or HBLs), mid-luminosity sources

(Low-energy peaked BL Lacs, or LBLs) and high-luminosity sources (Flat Spectrum Radio

Quasars, or FSRQs). The three classes have different locations of synchrotron peak. X-rays

from HBLs are likely to be above the peak of synchrotron spectrum, thus have steep X-ray

spectra (β < -2), while FSRQs and LBLs in X-ray band have more contribution from inverse

Compton component and thus have flatter spectra.

From this catalog we use 44 spectra of 33 HBLs (some sources have multi-epoch

spectra) that are best fitted by single power-laws. The errors of fitted photon indices

reported in Donato et al. (2005) are at 90% confidence level which we convert to 1-σ errors.

The distribution of p derived from their photon spectral indices is shown in Figure 2.6. We

find that the distribution of p for blazars is not consistent with a δ-function distribution:

σp = 0.22± 0.03 after the narrowing.

2.6.2 Pulsar wind nebulae

Power-law nonthermal spectra are also often observed in pulsar wind nebulae (PWNs) of

rotation-powered pulsars. The nebular emission is the synchrotron radiation from charged

particles heated by the termination shock in relativistic outflow (winds) from the pulsar

(see Arons 2002 for a review). Gotthelf (2003) presents a catalog of nine bright Crab-like
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Figure 2.6: The distribution of p for 44 X-ray spectra of 33 blazars. Solid line: p is inferred
from the photon index β by the relation p = −2β−2. Dashed line: the narrowest distribution
of p using the relation either p = −2β − 2 or p = −2β − 1. β is taken from the catalog
compiled by Donato et al. (2005).

pulsar systems with Chandra observations and the photon indices of pulsar nebulae, βPWN ,

and their 90% confidence errors are provided. We derive the distribution of p from βPWN

with the βPWN errors converted into 1 σ errors and find that σp = 0.59 ± 0.15, < p >=

1.72 ± 0.20 assuming the X-ray band is in the fast cooling regime. After narrowing, the

narrowest distribution has σp = 0.24± 0.07, < p >= 2.04± 0.09.

2.7 Summary and Discussions

Motivated by theoretical calculations and numerical simulations showing that the shock-

accelerated electrons in relativistic shocks have a power-law distribution with an universal

index p ' 2.2 − 2.3, we have determined the values of p from γ-ray and X-ray spectra for

a number of relativistic sources such as GRBs (prompt emissions and afterglows), blazars

and pulsar wind nebulae.

The maximum likelihood estimate of the width of the parent distribution for GRB

prompt emission is found to be quite broad, σp = 0.51 ± 0.02; the probability that the

distribution is consistent with a δ-function is extremely small, and therefore this result does

not support that there is an universal p.

We have considered the systematic errors in photon index due to spectra fit and
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time averaging of spectra and their contributions to the scatter in p distribution. We have

shown that those contributions are very small for GRBs and can not explain the scatter in

p distribution.

For X-ray afterglows of GRBs, the p-distribution of the BeppoSAX sample can not

rule out a possibility that the parent distribution is a δ-function distribution; however, a

larger sample of Swift afterglows is inconsistent with a δ-function parent distribution. We

point out that the smaller width of parent distribution for the BeppoSAX sample is due to

its larger measurement error in β.

Analysis of 44 blazar spectra and 9 pulsar wind nebulae shows that the distributions

of p for blazars and pulsar wind nebulae (PWNe) are also broad, not consistent with a

δ-function distribution.

Possible situations in which the “universality” of p could break are: (i) The shock

is mildly relativistic (cf. Kirk et al. 2000); (ii) The magnetic field is oblique to the shock

normal (Baring 2006); (iii) The nature and strength of the downstream magnetic turbulence

are varying (Ostrowski & Bednarz 2002, Niemiec & Ostrowski 2004). A non-Fermi accelera-

tion in a collisionless plasma shock was studied by Hededal et al. (2004), in which electrons

are accelerated and decelerated instantaneously and locally, by the electric and magnetic

fields of the current channels formed through the Weibel two-stream instability. It is not

known whether an “universality” of p could hold for this mechanism. The “universality”

of p might not happen in non-shock accelerations; for instance, in an alternative model for

GRBs (Lyutikov & Blandford 2003), the energy is carried outward via magnetic field or

Poynting flux. The particles accounting for the γ-ray emissions are accelerated by magnetic

field reconnection which may also produce a power-law spectra of accelerated particles with

a variable p (however, this is still poorly understood).
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Chapter 3

Scattered Emission from A

Relativistic Outflow

3.1 Introduction

Gamma-Ray Bursts (GRBs) are a cosmological phenomenon with a huge energy release,

fast variabilities and very complex multi-wavelength light curves. A relativistic outflow is

unavoidable in order to explain the fast variability and so called “compactness problem” (see

Chapter 1). According to the standard “fireball” model, the outflow from the GRB central

engine has a finite duration and can have a wide range in its velocities, thus can be modeled

by being made of discrete relativistic shells. These shells are responsible for the observed

γ-rays (via internal shocks) and for the afterglow emissions (via external shocks) (cf. Piran

2005). In this picture, if one shell emits γ-rays, some fraction of that emission should be

scattered by shells behind, and the scattered emission would arrive at the observer at a

different time, with a different flux and possibly at a different photon frequency. Detection

of the scattered photons would help us explore the properties of the GRB ejecta and the

late outflow.

In this chapter we consider a simple scenario, where only two consecutive shells are

present: one shell radiates and the other receives some of this radiation and scatters it. The

two shells can have different speeds and the shell that receives and scatters the emission

can have an arbitrarily large time delay in its ejection from the central source, but it has
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to be behind the emitting shell. An observer detects the primary emission from the first

shell and then the scattered emission from the second one at a later time because of the

light-travel time. We calculate the ratio between these two emissions’ fluxes, the time delay

in their arrival, the ratio between their frequencies and the ratio between their durations.

Early GRB X-ray observations by Swift have shown a “canonical” behavior that

presents a puzzling shallow decay typically lasting for a few hours (e.g. Nousek et al. 2006).

This decay phase is poorly understood (see Zhang 2007 for a review of current possible

models). We will explore the possibility that this shallower decay could be due to the

scattered emission.

The scattering of the GRB prompt emission photons by electrons or dust grains in a

dense circum-burst environment has been investigated before (e.g., Esin & Blandford 2000;

Madau et al. 2000; Shao & Dai 2007; Heng et al. 2007). The scattering process we consider

in this work happens within the GRB outflows, which is a natural outcome of the outflow

when it has a finite duration and a variable speed.

We first derive a general formula for the observed flux from a relativistic shell in

§3.2. In §3.3 we construct the flux and geometrical relations for a two-shell model. The

formulae for the scattering process are developed in §3.4. Then we elaborate the primary

and scattered emission relations such as time delay, frequency ratio and time duration ratio

in §3.5. We present the main result - the ratio between the scattered and the primary fluxes

- in §3.6. The application to the GRB shallower decay data is presented in §3.7. A faster

scattering shell case is discussed in §3.8. We also discuss X-ray dim bursts and X-ray-dark

short bursts, for which the scattered emission might be easier to detect, in §3.9. Finally,

the summary and conclusions are given in §3.10.

3.2 Emission from a relativistic shell

Consider a spherical shell moving relativistically with Lorentz factor (LF) Γ (when the shell

is beamed with an opening angle ≥ Γ−1, it still can be considered as being spherical).

The surface brightness in the rest frame of the shell is ε′ν′ (erg s−1 cm−2 Hz−1 sr−1), the

luminosity distance between the observer and the shell is DL and the radius of the shell
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is R, both of these distances measured in the laboratory frame. The flux density received

at a frequency ν by the observer ahead of the shell, fν , can be obtained by calculating

the specific luminosity of the relativistic shell. The luminosity of the shell is given by

fν(4πD2
L) = ε′ν′(4πR2)Γ(2π). The last expression includes a factor of Γ, to take into account

the “boost” that the photons experience; and a factor of 2π, since we assume that the

photons are being emitted isotropically from the shell, in the rest frame of the shell, and

we are only interested in the ones reaching the observer. The two expressions yield

fν = 2πε′ν′Γ
(

R

DL

)2

. (3.1)

3.3 Two shells scenario

Consider now two thin shells being ejected with an half opening angle of θj from the central

engine. Shell 1 is ejected first with LF Γ1 and, after a delay δt, measured in the laboratory

frame, shell 2 is ejected with LF Γ2. We assume that shell 1 is emitting photons isotropically

in its co-moving frame and is characterized by an angular-independent surface brightness,

ε′ν′ , on both sides of the shell. In the laboratory frame most of these photons will appear to

move in the same direction as shell 1 and reach a distant observer, and a few will move in

the opposite direction, encountering shell 2 on their way. These photons will be scattered

by shell 2 and then reach the observer. See Figure 3.1 for an illustration. We will use

primed quantities to specify the co-moving frame where the quantity is being measured:

unprimed corresponds to the laboratory frame, primed (′) to the co-moving frame of shell

1, and double primed (′′) to the co-moving frame of shell 2.

Before proceeding with the detailed calculations about the scattered emission, we

provide simple scaling relationships between the observed scattered emission and the ob-

served direct emission from shell 1 by only considering the line-of-sight region.

Let us assume ν is the photon frequency of the direct emission from shell 1. In the

shell 1 co-moving frame, the emitted photon frequency is ν ′ ' ν/Γ1 due to the relativistic

Doppler effect (for simplicity we neglect the factor of 2). As seen by shell 2 the photon has

a frequency of ν ′′ ' ν ′Γ2/Γ1. If shell 2 is cold, the scattering does not change the photon’s
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Figure 3.1: A simple two-shell scenario geometry. The diagram shows two photons emitted
at the same time from point Q on shell 1. One photon travels to the observer ahead of shell
1, while the other travels back to point P on shell 2. Note that the figure shows shell 1 and
the photons at time t and shell 2 at time t + l, where l is the light travel time from Q to P .

energy. The observed frequency of the scattered emission is νs ' ν ′′Γ2. Thus the observed

frequency ratio between the two emissions is νs/ν ' (Γ2/Γ1)2.

The scattered emission will be observed at a later time, because the scattered photon

has traveled an extra distance. This extra distance is equal to R1(1− β2/β1) + β2δt, where

R1 is the distance of shell 1 from the central engine when a photon was emitted from shell

1 toward shell 2, and β1 and β2 are shell 1 and shell 2 velocities, respectively (the first part

of the expression is due to the difference in the speeds of the shells, and the second part is

due to the ejection delay of shell 2). The observed delay of the scattered emission is this

separation divided by the speed of light ≈ R1/(2Γ2
2c) ≈ T (Γ1/Γ2)2 for small δt, where T is

the observed time of the shell 1 direct emission since the central engine explosion.

If L is the luminosity observed directly from shell 1, the shell 1 co-moving frame

luminosity would be L′ ' L/Γ2
1. In the shell 2 co-moving frame, shell 1 has a luminosity

of L′′. Using the Lorentz invariance of Iν/ν3 we find that the luminosity ratio, L′′/L′, is

the frequency ratio to the fourth power, or L′′/L′ ' (ν ′′/ν ′)4 ' (Γ2/Γ1)4. In the shell 2

co-moving frame, τeL
′′ is the luminosity of the scattered emission, where τe (< 1) is the

shell 2 electron’s optical depth. Then the observed luminosity of the scattered emission

is Ls ' τeL
′′Γ2

2. Thus we obtain that Ls/L ' τe(Γ2/Γ1)6, which shows that the observed

luminosity ratio is strongly dependent on the LF ratio. Since νs/ν ' (Γ2/Γ1)2, this indicates
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that the observed specific flux ratio is f s
ν,s/fν ' τe(Γ2/Γ1)4.

3.3.1 Incident flux on shell 2

Now we work on the calculation of the scattered flux on more detail. In order to determine

the scattered flux from shell 2 we will first calculate the incident flux from shell 1 at the

point of shell 2 that intersects the line of sight between the central engine and the observer

- we will call this point P . To do this, we will use the Lorentz invariance of Iν/ν3, where

Iν (erg s−1 cm−2 Hz−1 sr−1) is the specific intensity and ν is the frequency of the photon.

Let us consider a bundle of rays being emitted at an arbitrary point - Q - on shell

1 and directed to the point P (see Figure 3.1). The angle between the line of sight and

the line connecting the central engine and Q is θ. The angle between the line of sight and

the line connecting P and Q is α. From the Lorentz invariance of Iν/ν3 we can obtain the

relation

Iν

I ′′ν′′
=

[
1

Γ2(1 + β2 cosα)

]3

, (3.2)

where Iν is the specific intensity of the bundle of rays measured by an observer standing

still in the laboratory frame and at the position of point P (note that Iν is NOT the specific

intensity of the emission detected by a distant laboratory-frame observer sitting in front of

shell 1); I ′′ν′′ is the specific intensity of the bundle of rays measured in the shell 2 co-moving

frame at point P . We can relate Iν with the specific intensity of the bundle of rays measured

in the shell 1 co-moving frame at point Q, I ′ν′ , as follows

Iν

I ′ν′
=

{
1

Γ1[1 + β1 cos(α− θ)]

}3

. (3.3)

We need to obtain a relation between the co-moving specific intensity, I ′ν′ , and the

surface brightness, ε′ν′ , of shell 1, both quantities in shell 1 co-moving frame. This relation

is given by

I ′ν′ =
ε′ν′

cos η′
(3.4)

where η′ is the angle measured in the shell 1 co-moving frame between the photon’s direction

and the normal to the emitting surface (facing shell 2). η′ can be determined using the
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aberration of light formula (Rybicki & Lightman 1979):

cos η′ =
cos(α− θ) + β1

1 + β1 cos(α− θ)
(3.5)

where all the quantities have been defined previously.

Finally, using formulas (2) - (5) one can obtain the incident flux from shell 1 on

point P in shell 2 co-moving frame, f ′′ν′′ , which is given by

f ′′ν′′ =
∫

I ′′ν′′ cosα′′ dΩ′′ = 2π

∫
I ′′ν′′ cosα′′ sinα′′ dα′′,

or

f ′′ν′′ = πε′ν′
(

Γ2

Γ1

)3 ∫ (1 + β2 cosα)3 d sin2 α′′

[β1 + cos(α− θ)][1 + β1 cos(α− θ)]2
, (3.6)

where the integral runs from 0 to α′′j – the half opening angle of shell 1 as seen from an

observer on point P in shell 2 (the subscript “j” denotes the edge of shell 1).

3.3.2 Light path geometry

In order to solve this last integral, we need to understand the relation between the angles

and how they transform in different frames. First, we need to setup the geometry of the

problem. The photon that is emitted from point Q at time t travels a distance l and reaches

point P on shell 2 at time t + l (here, and throughout this chapter, we use units in which

the speed of light is 1). The radius at which the photon was emitted from point Q on shell

1 is R1(t) and reaches point P on shell 2 at radius R2(t + l), where R(t) can be obtained

by R(t) = βt (all these quantities are measured in the laboratory frame). It is important

to remember that there is a time delay in the ejection of shell 2, which will be taken into

account when using R2(t). The geometry describing the light path of the photon gives:

l cosα = R1(t)−R2(t + l) (3.7)

l sinα = R1(t) sin θ, (3.8)
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from which it can be shown that

tanα =
θ

1− β2

β1
+ β2δt

R1
− β2θ

sin α

, (3.9)

where we use R1 to denote R1(t) and we have also used the fact that θ is small, so that

sin θ ' θ. And again, using the aberration of light formula we have

tanα′′ =
sinα

Γ2(cosα + β2)
. (3.10)

Also from (9) and (10) we can get a close form expression for α′′:

tanα′′ =
θ

Γ2(1− β2

β1
+ β2δt

R1
)
. (3.11)

Equations (10) and (11) allow us to carry out the integral in equation (6). Careful

analysis (see Appendix A) shows that the integrand is weakly dependent on α′′ and it

reduces to a constant of order unity. This simplifies f ′′ν′′ greatly and we obtain:

f ′′ν′′ = πε′ν′
(

Γ2

Γ1

)3 ∫
d sin2 α′′ = πε′ν′

(
Γ2

Γ1

)3

sin2 α′′j (3.12)

where α′′j can be obtained from equation (11) by setting θ = θj .

3.4 Scattering from shell 2

3.4.1 Scattered flux

Assuming that shell 2 is “cold” and knowing the flux from shell 1 at point P , we can

calculate the scattered flux from shell 2. We will assume that the photons from shell 1

undergo Thomson scattering with the electrons on shell 2 and that the scattering is isotropic

in the co-moving frame. The surface brightness of shell 2 in its co-moving frame will be

given by

ε′′ν′′ =
1
4π

ΣeσT f ′′ν′′ ,
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where Σe is the electron surface density and σT is the Thomson scattering cross section. To

obtain the scattered flux at the scattered frequency that reaches an observer at a luminosity

distance DL one can use equation (1)

f s
ν,s = 2πε′′ν′′Γ2

[
R2(tscat)

DL

]2

and obtain

fs
ν,s =

1
2
τeΓ2

[
R2(tscat)

DL

]2

f ′′ν′′ (3.13)

where we have τe = ΣeσT , the optical depth for electrons to Thompson scattering. We also

have used R2(tscat) to specify that the radius of the second shell needs to be calculated at

a later time, tscat, when the scattering occurs1. Using equation (12) we obtain

fs
ν,s =

π

2
τeε

′
ν′

(
Γ4

2

Γ3
1

)[
R2(tscat)

DL

]2

sin2 α′′j ,

which allows us to find a ratio between the scattered flux from shell 2, fs
ν,s, and the direct

flux from shell 1, fν ,

fs
ν,s

fν
=

1
4
τe sin2 α′′j

[
R2(tscat)

R1(t)

]2(Γ2

Γ1

)4

, (3.14)

where we have used equation (1) to immediately get fν . It is important to note that these

two fluxes arrive at different times. This will be further explained in detail in the next

section. Also, the result for τe > 1 is the same as that for τe = 1.

Recall that before the detailed calculation we estimated the observed specific flux

ratio under the line-of-sight approximation. Eq. (14) is consistent to what we estimated

earlier, except that the previously ignored shell solid angle term is fully considered here.
1We approximate the incident flux on point P to the incident flux on any other point on shell 2. The

validity of this approximation depends on the magnitude of α′′j . If α′′j is small, the angular size of shell 2 as
seen by an observer co-moving with shell 2 at the point where the line of sight intersects with shell 1 - let
us call it Λ′′j - is also small, because Λ′′j /α′′j = R2(tscat)/R1(t) < 1; then this approximation should be good.
For our interested parameter space - determined from the GRB data we are going to use - α′′j is between 0.1
and π/4 (see §3.7), not very small. Thus the approximation overestimates the scattered flux slightly.
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3.4.2 Shell radii

All quantities of the flux ratio are known, except the ratio of the two radii. To obtain it,

we will consider a photon emitted on shell 1 that travels along the line of sight to shell 2.

The light travel time of this photon is given by equation (7) but using α = 0, so that

l = R1(t)−R2(t + l).

Solving for l we obtain

l =
R1(t)−R2(t)

1 + β2
. (3.15)

The ratio of the radii is given by

R2(tscat)
R1(t)

=
β2(t− δt + l)

β1t
,

and using equation (15) and the fact that both shells move close to the speed of light, we

find

R2(tscat)
R1(t)

=
β2

β1
− β2δt

2R1
. (3.16)

With this last equation and equation (11), the flux ratio - given by equation (14) - is fully

determined.

3.4.3 Time dependence of scattered emission

For simplicity, let us assume that the emission from shell 1 is constant and time independent:

that it is a box function with some finite duration. The time dependence of the scattered

emission will be given by: (i) the time evolution of the electrons’ optical depth, τe, (ii) the

opening angle of shell 1 as seen by a co-moving observer on shell 2, α′′j , and (iii) the radius

of shell 2, R2(tscat).

The time dependence of R2(tscat) and α′′j is weak, provided that the ejection time

delay between shells, δt, is small compared to R1. This is the case we are interested in,
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since if δt ∼ R1, then δt would be on the order of hours or days. This scenario would invoke

a very long lasting activity of the central engine, a scenario that we don’t want to address

in this chapter. The only time dependence of the scattered emission will be given by the

time evolution of τe, which goes as τe ∝ R−2
2 ∝ T−2.

3.5 Primary and scattered emission relations

3.5.1 Time delay

Let us assume that two photons are emitted from shell 1 at the same time. Photon 1

travels directly to the observer located ahead of shell 1 and arrives at time Tp (p stands for

primary). Photon 2 travels in the opposite direction, scatters from shell 2 and then travels

back to the same observer arriving at a later time Ts (where s stands for scattered). What

is the time delay, Ts − Tp, between the arrival of these two photons?

If we are only interested, as a simplification, in the photons along the line of sight,

then this time delay will be given by equation (15). We only need to multiply this expression

by 2, to obtain the full time it takes for the photon to travel to shell 2 and then to travel

back to shell 1. Then, the time delay is

Ts − Tp = 2
R1(t)−R2(t)

1 + β2
.

Further simplification yields

Ts − Tp = R1

(
1− β2

β1

)
+ β2δt. (3.17)

3.5.2 Ratio of frequencies

In this section we will determine the relation between the frequency of a photon emitted

from shell 1, ν, and a photon emitted from shell 1 and then scattered by shell 2, νs (both

quantities measured in the laboratory frame). For this, we will only consider the photons

traveling along the direct line of sight between the central engine and the observer.

In the shell 1 co-moving frame, a photon is emitted from shell 1 with frequency ν ′.
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In the laboratory frame, this frequency is measured as

ν = ν ′Γ1(1 + β1 cosΘ′),

where Θ′ is the angle between the photon’s direction and the x′-axis direction of the shell

1 co-moving frame. Note that the x′-axis of frame K ′ is always directed to the moving

direction of frame K ′ relative to another inertial frame (K or K ′′). Since the photon is

emitted to the observer ahead of shell 1, Θ′ = 0, and the previous equation becomes

ν = ν ′Γ1(1 + β1). (3.18)

Let us now consider a photon emitted in shell 1 and directed to shell 2. The frequency

of this photon in the shell 1 co-moving frame is ν ′, and in the shell 2 co-moving frame is

given by ν ′′. They are related by

ν ′′ = ν ′Γ′′1(1 + β′′1 cosΘ′′),

where Γ′′1 (β′′1 ) is the LF (velocity) of the shell 1 as measured in the shell 2 co-moving frame.

These quantities can be expressed in terms of quantities in the laboratory frame as

Γ′′1 = Γ1Γ2(1− β1β2), β′′1 =
|β1 − β2|
1− β1β2

.

If we assume that Γ1 > Γ2 (or Γ1 < Γ2), in the co-moving frame of shell 2 it will seem that

shell 1 is moving away from shell 2 (moving towards shell 2), so that Θ′′ = π (Θ′′ = 0).

Using the last 3 equations, we can determine

ν ′′ = ν ′Γ1Γ2(1− β1)(1 + β2), (3.19)

which holds for both assumptions. The photon will be scattered by shell 2 by Thomson

scattering (there will be no frequency change in the co-moving frame of shell 2) and then

will travel towards the observer. The scattered frequency can be obtained with
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νs = ν ′′Γ2(1 + β2 cos Θ′′).

Setting Θ′′ ≈ 0, since the photon moves towards the observer, yields

νs = ν ′′Γ2(1 + β2) (3.20)

Finally, using equations (18)-(20) the ratio of the scattered frequency to the primary

frequency is

νs

ν
=

(
Γ2

Γ1

)2(1 + β2

1 + β1

)2

≈
(

Γ2

Γ1

)2

, (3.21)

using the fact that both shells travel close to the speed of light. This is consistent with our

earlier simple estimation. Therefore, a slower (faster) shell 2 will lower (raise) the frequency

of the primary photons.

3.5.3 Ratio of observed durations

Let us assume that shell 1 emits for a finite duration of time, ∆t (in the lab frame). An

observer located in front of the shell will detect that the radiation from shell 1 lasts for

∆Tp, given by ∆Tp = ∆t(1− β1). The radiation from shell 1 will also travel back to shell 2

and will get scattered, giving a scattered radiation duration of ∆Ts in the observer frame.

If the first photon from shell 1 is emitted at time t and the last one at t + ∆t (in the lab

frame), then we can use the time delay equation (17) to find the time delay between the first

primary photon and the first scattered photon, and the time delay between the last primary

photon and the last scattered photon, respectively. Subtracting these two expressions, we

find that

∆Ts

∆Tp
=

1− β2

1− β1
≈

(
Γ1

Γ2

)2

, (3.22)

which means that the observed duration of the scattered emission will be stretched (short-

ened) by a factor of (Γ1/Γ2)2 for a slower (faster) shell 2.
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Figure 3.2: The ratio of the flux of the scattered emission to the flux of the primary emission
(measured at their respective arrival times and photon energies) as a function of the observed
time delay between these two emission components in units of R1/(2Γ2

1), assuming shell 1
LF Γ1 = 100 and shell opening angle θj = 0.1. The unknown shell 2 optical depth τe is put
on the y-axis as an “unit” of the flux density ratio.

3.6 Results

3.6.1 Ratio between scattered and primary fluxes

We want to write equation (14), the ratio of the fluxes, in such a way that we can easily

use the available observations to test our theory.

We can use equation (17) to solve for δt, the time delay between the ejection of the

two shells. This expression is then substituted into equation (11) to get sin2 α′′j and into

equation (16) to get the radius ratio. Finally, we obtain the flux ratio in terms of the time

delay divided by R1/(2Γ2
1) as follows:

fs
ν,s(Ts)
fν(Tp)

=
1
4
τe

{
1 +

[
Γ2

2Γ2
1θj

(Ts − Tp)
R1/2Γ2

1

]2}−1[1
2

+
β2

2β1
− 1

4Γ2
1

(Ts − Tp)
R1/2Γ2

1

]2(Γ2

Γ1

)4

. (3.23)

We then plot this ratio of two flux densities as a function of the R1/(2Γ2
1)-normalized

time delay (the choice of this normalization will become evident in the next section) for

various values of Γ2/Γ1 in Figure 3.2. For plotting purposes we assume Γ1 = 100 and
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θj = 0.1. Since the exact value for τe is unknown, we choose to scale τe into the y-axis of

the figure, as an “unit” of the flux density ratio.

Looking at Figure 3.2, we can observe that the theoretical flux ratio curves have two

regions (this is very noticeable when Γ2 < Γ1). In region I the flux ratio is flat, and in

region II the flux ratio is proportional to the square of the inverse of the normalized time

delay. If we inspect equation (23), we can separate its two regions by:

f s
ν,s(Ts)
fν(Tp)

=





τe
4

(
Γ2
Γ1

)4

if Ts−Tp

R1/2Γ2
1
≤ 2Γ2

1θj

Γ2
(Region I)

τeΓ2
2θ

2
j

(
Ts−Tp

R1/2Γ2
1

)−2

if Ts−Tp

R1/2Γ2
1

>
2Γ2

1θj

Γ2
(Region II)

These two regions will be used in our applications section. For now, they just provide a

simpler theoretical model. Notice that the Γ2 > Γ1 curves are dominated by region II,

while the Γ2 < Γ1 curves have a combination of both regions. For the latter, the maximum

scattered flux is given by region I.

These results show that the scattered flux from a slower shell is small, falls at a

lower energy than the primary photon’s energy and its total duration is larger than that

of the primary emission. If we have a faster shell, then the scattered flux from it could be

either larger or smaller than the primary flux, depending on its ejection time delay, δt. If

δt is larger (smaller) than the total observed duration of the primary emission, then the

scattered emission would appear at late times (would be part of the primary emission). In

any case, the energy of the scattered photons would be larger than that of the primary ones,

and the total duration of the scattered emission would be smaller than that of the primary

emission, so that the scattered emission would appear as a short bright flash.

3.6.2 Hot shell 2

In the last sections we assumed Thomson scattering, but we should also look at the pos-

sibility that shell 2 could be hot, so the scattering mechanism at work would be inverse

Compton. Shell 2 electrons could be hot in the following scenario. Consider that shell 2 is

ejected after shell 1 and undergoes particle heating, by either internal shocks or magnetic

dissipation, at a radius smaller than the radius where shell 1 produces γ-ray photons. Shell
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2 would experience adiabatic expansion and would cool, but the electrons could still be hot

by the time that the γ-ray photons from shell 1 reach them. The shell 2 electrons might also

cool via radiation, but the chances still exist that the radiative cooling is very inefficient,

for instance, when the radiation mechanism is synchrotron-self-inverse-Compton instead of

pure synchrotron for the same observed typical photon energy, so that the electron cooling

time could be comparable to the delay between the electron heating and the scattering.

The main difference in the formulas previously derived will be in the ratio of the

frequencies of the primary and the scattered emission. Equation (21) is modified to include

the inverse Compton boost to the photon energy:

νs

ν
=

(
Γ2

Γ1

)2

γ2
e , (3.24)

where γe is the electrons’ thermal Lorentz factor. The theoretical flux density ratio previ-

ously derived will not be changed in this new scenario.

Let us now calculate the isotropically equivalent total energy in the shell 2 hot

electrons. For this, we need to calculate the isotropically equivalent total number of electrons

in the shell from their optical depth

Ne = 4πR2
2

τe

σT
.

In the present scattering scenario, we have R2 ≈ R1 (we’ll prove this in section §3.7). R1

can be estimated from the γ-ray variability time scale: R1/(2Γ2
1) (explained in detail in

§3.7). Then the total energy in the hot electrons of shell 2 is given by

Ee = Nemec
2Γ2γe = 16π

(
Γ2

Γ1

)
Γ5

1γemec
4
(

R1

2Γ2
1c

)2 τe

σT
, (3.25)

where c is the speed of light.
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3.7 Application to the shallow decay component in GRB

early X-ray afterglows

In this section we compare the γ-ray burst and X-ray afterglow data with the results of the

last section to find out if the shallow decay in X-ray “canonical” afterglow light curves can

be due to the scattered emission from the shell(s) following the γ-ray shell. We first consider

simply the Thomson scattering mechanism, then we turn to consider the inverse Compton

scattering where the electrons in the scattering shell have highly relativistic thermal energy.

3.7.1 Thomson scattering

Data set

From a Swift GRB early X-ray afterglow catalog presented in O’Brien et al (2006), we choose

a sample of 10 bursts all of which show clearly a “canonical” behavior that includes a shallow

decay component. We apply our simple scenario to these bursts, and assume that: (1) the

last γ-ray photon that was emitted from shell 1 traveled directly to the observer (primary

emission); (2) at the same time and from the same site on shell 1, another photon traveled

to shell 2, was scattered, and eventually became the last X-ray photon of the shallow decay

phase (scattered emission). Therefore, we will use the ratio of the flux density at X-ray

energy at the end of the shallow decay and the flux density at γ-ray energy at the end of the

γ-ray emission. Theoretically, this ratio should fit our equation (14) if the shallow decay

were to have its origin in the scattered emission scenario.

For the γ-ray photons, the catalog in O’Brien et al. (2006) only gives a mean BAT

flux. We use this mean flux as an approximation to the flux at the end of γ-ray emission;

the flux density at a specific photon energy is obtained using the BAT spectral index βBAT

(fν ∝ ν−βBAT ). For the X-ray photons, we use the XRT flux at the end of the shallow decay

and the X-ray spectra index βX (fν ∝ ν−βX ) to obtain the flux density at a specific photon

energy.

In our theory R1 is an unknown parameter, but we should be able to extract it

from the available data: R1/(2Γ2
1) is the γ-ray burst duration T90 for FREDs (fast rise

and exponential decay) - those bursts whose light curves are made of one smooth or two
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overlapped pulses; and for bursts with multiple spikes in light curves, R1/(2Γ2
1) < T90. Note

that R1/(2Γ2
1) is equal to the curvature time scale - the delay between two photon’s arrival

times, one emitted from shell 1’s visible edge and the other from the center of shell 1’s

visible region. Thus, the γ-ray variability time scale, if we assume it is mainly determined

by the curvature time scale, would be a good approximation for R1/(2Γ2
1). Therefore, we

look up the γ-ray light curves from the Swift archive2; for FREDs, R1/(2Γ2
1) is simply T90,

but for those spiky bursts, we use the duration of the last pulse. The data obtained for our

sample of 10 bursts has been organized in Table 1.

Comparison between observations and theory predictions

For the X-ray shallow decay Γ2/Γ1 = 1 is a limiting case, since for Γ2/Γ1 > 1: (i) the

scattered emission from the γ-rays would fall at a higher energy, not in the X-rays, according

to equation (21), and (ii) would have a smaller duration than the γ-rays duration according

to equation (22), which is not what it is observed - the shallow decay in X-ray light curves

typically extends up to 104 s.

In Figure 3.3, we plot our 10 GRBs sample data and the results of our theoretical

calculations for two cases. For the first case, the 10 data points use the XRT flux at 1 keV

(scattered emission) and the BAT flux at 100 keV (primary emission), which corresponds to

Γ2/Γ1 = 0.1 according to equation (21). For the time delay, we use (Ts − Tp) ≈ tend, where

tend is the end time of the shallow decay - we do this because T90 ¿ tend. For R1/(2Γ2
1), we

use the method described in the last subsection. These values are also listed in Table 1.

In the same figure, for the second case, the 10 data points use the XRT flux at 1

keV (scattered emission) and the BAT flux at 10 keV (primary emission). This corresponds

to Γ2/Γ1 = 1/
√

10 ≈ 0.3, according to equation (21). We consider this case to see if

the shallow decay might be produced by the scattering of the low energy tail of the γ-ray

emission. Since in this case shell 2 is faster than in the first case described above, the time

delay in the ejection of the shells will be larger.

The normalized time delay for the sample has a range of 2×102 < (Ts−Tp)/(R1/2Γ2
1)

< 2 × 103. For fiducial parameter values Γ1= 100, Γ2= 10 and θj= 0.1, using equations

2http://heasarc.gsfc.nasa.gov/docs/swift/archive/grb table/
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Figure 3.3: Similar to Figure 3.1 but with the GRB sample data added. The stars (squares)
are our GRB sample data using the ratio between the XRT flux density at the end of the
shallow X-ray decay at 1 keV and the mean BAT flux density at 100 keV (10 keV). The
dashed (dotted) line is the result of our theoretical calculation.

(11) and (17), this range has a constraint on α′′j : 0.1 < tanα′′j < 1. Since this angle is not

very small, the approximation of the homogeneous incident flux on shell 2 that was used in

deriving the scattered flux formula in §3.3 will slightly overestimate the observed scattered

flux.

Results

Figure 3.3 shows that the observed flux ratios of the sample are generally (103 − 104)τ−1
e

times larger than the theoretical expectation. The discrepancy would be a factor of ∼
104−105 for a modest value of τe ∼ 0.1. This indicates that the emission of the shallow decay

is too luminous to be interpreted simply by the scattering within the two shell scenario.

The same figure shows a smaller discrepancy between the sample data and the theo-

retical curve for a case where shell 2 is slightly faster but still not exceeding the γ-ray shell’s

speed. Using a modest value of τe ∼ 0.1 would make this discrepancy to be ∼ 102.
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3.7.2 Inverse Compton scattering in shell 2

Comparison between observations and theory predictions

To compare the fluxes of the X-ray shallow decay with the theoretical expectation of the

inverse Compton scattering scenario, we fix the scattered frequency, νs = 1 keV. With

equation (24) we can determine the frequency of the primary emission. The flux ratio data

points in Figure 3.3 have to be changed because the frequency ratio is changed. The flux

in the γ-ray band follows fν ∝ ν−βBAT . With this, we can now determine that the data

points in Figure 3.2 will be multiplied by a factor of [(Γ2/Γ1)2γ2
eνγ/νX ]−βBAT to account

for the inverse Compton scattering effect, where νγ and νX are the γ-ray and X-ray photon

frequencies, respectively, at which the flux densities are used in the data points of Figure

3.3.

Since γe is an unknown quantity we cannot determine where these new points would

lie on a plot analogous to Figure 3.3. For this reason, we ask: what is the value of γe

necessary to lower all data points to the theoretically expected curve? To answer, let us fix

the value of the Lorentz Factor ratio, Γ2/Γ1 = 0.1 — this is a reasonable value according to

equation (22), since the γ-ray duration usually lasts ∼ 102 s and the shallow decay extends

to ∼ 104 s.

The required values for γe are presented in Table 3.2. We present two different

values for each burst. We use the BAT spectral index (subscript c) and an average between

the BAT and XRT spectral indices (subscript e), respectively. We do this because we are

extrapolating the γ-ray flux to energies below the observed BAT band and it is unknown if

the BAT spectrum will behave as a single power law in this region.

Electrons’ energy in shell 2

We calculate Ee for each burst in our sample using equation (25). The results are presented

in Table 3.2, adopting Γ1 = 102, Γ2/Γ1 = 0.1 and τe = 0.1. Note that we have corrected

R1/(2Γ2
1) for the cosmological time dilation effect. Two values of energies from the two

values of γe obtained in the last subsection are given in the table.

Note that from equations (16) and (17) one can see that R2/R1 = 1/2 + β2/(2β1)−
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Table 3.2: Calculated values for the required γe and total electron energy of shell 2 to obtain
the theoretical expected flux ratio. The calculations were done with two different spectral
indices: the BAT spectral index and the average between the BAT spectral index and the
XRT spectral index.

GRB Redshift a

R1/(2Γ2
1)

b γe
c Ee

d γe
e Ee

f

(s) [τ
− 1

2β
e ] (erg) [τ

− 1
2β

e ] (erg)
050315 1.95 10 34 5 ×1052 23 3 ×1052

050319 3.24 9.4 316 5 ×1053 46 5 ×1052

050713A 5.3 1364 1.4 ×1054 95 5 ×1052

050713B 34 2404 1.5 ×1056 657 3 ×1055

050714B 13 13 2 ×1052 5 7 ×1051

050803 24 1931 6 ×1055 547 1 ×1055

050814 5.3 23 25 2 ×1053 22 2 ×1053

050819 9.5 10 1 ×1052 13 1.5 ×1052

050822 8 21 1.6 ×1052 19 1.4 ×1052

050915B 10.5 33 6 ×1052 17 3 ×1052

aReferences for known redshifts: GRB 050315: Kelson & Berger (2005); GRB 050319: Fynbo et al.
(2005); GRB 050814: Jakobsson et al. (2006). For bursts without measured redshift, we use the mean
redshift z= 2.8 of the Swift GRB redshift distribution (Jakobsson et al. 2006).

bCosmological time dilation corrected curvature variability time scale; it is equal to the R1/(2Γ2
1) in Table

1 divided by (1 + z).
cRequired shell 2 electron thermal LF using βBAT as the spectral index.
dIsotropically equivalent total energy of electrons with γe calculated in the last previous column for τe =

0.1.
eRequired shell 2 electron thermal LF using (βBAT + βX)/2 as the spectral index.
fIsotropically equivalent total energy of electrons with γe calculated in the last previous column for τe =

0.1.

(Ts−Tp)/(2R1) ' 1− (Ts−Tp)/(R1/2Γ2
1)/(4Γ2

1). In our data sample (Ts−Tp)/(R1/2Γ2
1) ≤

103. Therefore, the approximation made in the derivation of equation (25), that R2 ≈ R1

for Γ1 ∼ 102, is valid.

Results

Table 3.2 shows that the isotropically equivalent total energy carried by the electrons of a

hot shell 2 is large, ∼ 1052−56 erg. If we take into account the cooling of the electrons via

adiabatic expansion and/or radiation, the initial total energy when the electrons were just

accelerated is even bigger. The optical depth, τe, would certainty decrease the total energy
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but only by a small fraction. The prompt emission from those electrons in shell 2 would

arrive at about the same time as the scattered emission, and the two emission components

would have similar durations because both durations are ∝ 1/Γ2
2. Depending on the ejecta

properties, e.g., the ratio of the shell 2 energy to the shell 1 energy, the shell 2 prompt

emission might dominate the scattered emission in the light curve. If that is true, the shell

2 prompt emission might be a possible origin of the late X-ray flares in bursts for which

both the flares and the shallower decay are present.

3.8 Faster shell 2

In the previous section we assumed a slower shell 2. What if shell 2 is faster than shell 1?

Based on the formulae we have, if Γ2 > Γ1, the scattered emission from γ-rays would fall

in higher energies, e.g., ∼ MeV, not in the X-rays, and have a shorter duration than the

γ-rays.

It is shown in Figure 3.2 that, in the Γ2 > Γ1 cases, the scattered emission is very

bright though it decreases with increasing time delay. If the scattered emission spectrum

mimics the power law form of the primary emission spectrum, at some time delay signif-

icantly larger than the duration of the primary emission, the lower-energy-extrapolated

scattered flux is close to or even brighter than the prompt γ-rays. According to Figure

3.2, for Γ2/Γ1 ' 3 (corresponding to νs/ν ' 10 according to equation (21)) and a selected

observed time delay (Ts − Tp)/(R1/2Γ2
1) ' 100 (which corresponds to an ejection delay

δt ∼ 103s), fs
ν,s(Ts) ≈ 0.1[τe]fν(Tp). Extrapolating the scattered flux density from νs to

ν, we have fs
ν (Ts) = (νs/ν)βBAT × 0.1[τe]fν(Tp) ≈ fν(Tp)[τe] for βBAT ≈ 1. For a smaller

observed time delay, the flux is even greater. That means we should have seen a lagged

very short γ-ray flash at ∼ 102 − 103 seconds after the burst, provided that τe ≈ 1. This

case cannot happen because the observations have never showed this feature. Even though

the flux of the scattered emission is smaller for a larger observed time delay, in order for

the delayed scattered γ-ray flash to indeed happen but below the BAT flux limit, shell 2

must have an extremely large ejection time delay δt ≥ a few ×103 seconds (cf. equation

17) which is very difficult to explain in terms of the central engine activity. For τe ¿ 1, the
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Γ2 > Γ1 case could have happened but the flux would be too small to be detected.

One possible case of Γ2 > Γ1 is that the shell 2 ejection delay δt is small and shell

2 has moved very close to shell 1 when the scattering happens so that the observed time

delay of the scattered emission is comparable or smaller than the duration of the primary

emission. The scattered emission in the BAT energy range will become part of the observed

prompt γ-ray emissions in time. High energy (≥ MeV) observations (e.g., by Fermi) during

the burst may be able to determine the existence of this case.

3.9 X-Ray dim or dark GRBs

In §3.7, our calculations show that the scattered flux is much lower than the observed X-ray

shallow decay flux. If the scattering indeed happens, then the resultant emission must have

been buried in the shallow decay. Thus, in order for the scattered emission to be detected,

not only the shallow X-ray decay component must be absent, but also the normal external

forward shock component must be extremely weak or absent. In rare cases Swift does

observe X-ray afterglows without a shallow decay and without the normal forward shock

decay (αX ∼ 1 − 1.3), which we call X-ray dim GRBs. They show instead a very steep

flux decay (αX ≥ 3) and are thought to be located in extremely low density regions. The

steep decay component can be explained by the large angle emission (Kumar & Panaitescu

2000). GRB 050421 and GRB 051210 are two examples (Godet et al. 2006; La Parola et al.

2006). Note that GRB 051210 is of the short burst class which, according to its compact

binary progenitor model, is more probable to occur in a low density environment. At late

times, however, when the large angle emission is low enough, neither burst shows any sign

of re-brightening atop the steep power-law decay.

Another case of interest is the existence of X-ray dark GRBs: short bursts (GRB

050906 and GRB 050925) that show no X-ray afterglow detection, only upper limits at ≈
100 s (Nakar 2007). It is also believed that these bursts took place in extremely low density

environments.

X-ray dim and dark GRBs provide a great opportunity to put into work the theory

presented in this chapter. If we assume that there is a late ejecta behind the γ-ray producing
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source, then we can try to constrain its LF by looking at these bursts. Since their afterglow

emission is so weak (or not present), we can ask the question: what are the constraints on

the LF of the late ejecta, so that the scattered emission is present in X-ray dim and dark

GRBs, but doesn’t exceed the actual flux observations or upper limits? We will devote this

section to answer this question.

We’ll start by using the data from Swift’s BAT and XRT observations as follows:

fs
ν,s(Ts)
fν(Tp)

≤ fXRT
ν,s (Ts)

fBAT
ν (T90)

= 0.01
fXRT
1keV (Ts)

fBAT
100keV (T90)

(
Γ1

Γ2

)2

where we have selected ν = 100 keV, but we have made no assumption on the value of νs

only that it should obey equation (21). We have also assumed βX = 1, which is consistent

with Swift observations.

With the previous inequality and using the two previously defined regions of the flux

ratio (§3.6), we can find constraints on the LF ratio. In region I, we find:

Γ2

Γ1
≤ min

{
20

(
Ts − Tp

R1/2Γ2
1

)−1

θj,−1Γ1,2, 1.26f1/6
Xγ τ−1/6

e

}
(3.26)

and in region II:

20
(

Ts − Tp

R1/2Γ2
1

)−1

θj,−1Γ1,2 <
Γ2

Γ1
≤ 0.1f

1/4
Xγ

(
Ts − Tp

R1/2Γ2
1

)1/2

θ
−1/2
j,−1 Γ−1/2

1,2 τ−1/4
e , (3.27)

where we have used fXγ ≡ fXRT
1keV (Ts)/fBAT

100keV (T90) and the convention Qx = Q/10x has

been adopted.

After presenting these last two conditions, we should return to the physical picture.

The initial assumption we made is that the scattered emission should be present indepen-

dently of the burst’s data and its region. This means that the LF of the late ejecta could

be very small, so that its contribution to the flux would be also minuscule. Therefore, we

should discard the lower limit on equation (27). Now, we want to constrain the LF of the

late ejecta from above; we are interested in knowing what’s its maximum. The maximum

value between the two upper limits of equations (26) and (27) will be the best and more
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conservative value to choose:

Γ2

Γ1
≤ max





min





20
(

Ts−Tp

R1/2Γ2
1

)−1

θj,−1Γ1,2

1.26f1/6
Xγ τ

−1/6
e





0.1f
1/4
Xγ

(
Ts−Tp

R1/2Γ2
1

)1/2

θ
−1/2
j,−1 Γ−1/2

1,2 τ
−1/4
e





Now we are ready to consider the 4 bursts mentioned at the beginning of this section

and obtain the constraints for the LF of the late ejecta.

Using the last X-ray detection of GRB 051210 (La Parola et al. 2006) and the upper

limit of GRB 050421 (Godet et al. 2006), both at ∼ 103 s, we can obtain the ratio between

the XRT flux density at 1 keV (scattered emission) and the BAT flux density (Chincarini

et al. 2007) at 100 keV (primary emission), fXγ . Following the procedure outlined in §3.7,

the values for (Ts − Tp)/(R1/2Γ2
1) are also obtained3. We can do exactly the same for the

X-ray dark short GRBs, using the upper limits of GRB 050906 and GRB 050925 at ≈ 100

s (Pagani et al. 2005; Beardmore et al. 2005; Nakar 2007). With fXγ and the normalized

time delay, we find the following constraints:

Γ2

Γ1
(θj,−1Γ1,2)1/2τ1/4

e
<∼





0.15 for GRB 050906 and 050925

0.48 for GRB 050421

0.78 for GRB 051210

The upper limits for the X-ray dark short GRBs provide the best constraints, since

the upper limits in their X-ray flux are very strict. These results imply that, for τe = 1,

Γ1 = 100 and θj = 0.1, the late ejecta is very slow Γ2
<∼ 15, but it could be faster if τe

decreases.
3When following §3.7 to determine the normalized time delay, there is some uncertainty determining

the width of the pulses since the data shows statistical noise. For GRB 050421, two possible values for
the normalized time delay were obtained hence two constraints for the LF ratio were derived. The value
reported here is the more conservative one.
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3.10 Summary and Conclusions

We have investigated a scenario of photons scattering by electrons within a relativistic

outflow. The outflow is composed of discrete shells. One front shell emits radiation, observed

as the GRB’s prompt γ-ray photons. Some fraction of the radiation is incident backwards

to the shell(s) behind, and is scattered isotropically in the local rest frame. The scattered

emission arrives at the observer at a later time, Ts, and at a different photon energy, νs,

that are determined by the LF ratio of the two shells and the time delay of the ejection

of the second shell. We calculated the flux density ratio, i. e., the flux density of the

delayed scattered emission to that of the front shell’s primary emission, as a function of the

normalized arrival time delay and the assumed LF ratio.

The calculated flux density ratio are compared with observations using a sample

of Swift GRB X-ray afterglows which show a distinct shallower decay component in their

light curves, with the motivation to see if the scattering scenario could be the origin of

the shallower decay. The results are negative. For Thomson scattering, the flux density

of the scattered emission is about 103−4τ−1
e times lower than that of the shallower decay

component, where τe is the scattering shell’s electron optical depth.

We also consider the inverse Compton scattering scenario in which the electrons

in the scattering shell is hot. We find that, in order for the scattered emission flux to

be bright enough to match the shallower decay component, the isotropic equivalent of the

total energy carried by the hot electrons is large, ∼ 1052−56 erg. The prompt emission from

the scattering shell appears at the same time as the scattered emission and with a similar

duration.

In the cases where shell 2 is faster than shell 1, when extrapolated to the BAT energy

band, the scattered flux can be as bright as the emission from shell 1. The delay of the

scattered emission is determined by the ejection delay of shell 2. When the ejection delay

of shell 2 is much larger than the duration of the primary emission, the scattered emission

would appear as a late short γ-ray/MeV flash. For a small ejection delay of shell 2, the

scattered emission would become part of the observed prompt emission. The fact that no

late short γ-ray/MeV flash is detected does not support the existence of a late faster shell.

Lastly, we study the possibility of detection of the scattering emission in two X-ray
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dim GRBs - that only show a very steep flux decay and do not show either a X-ray shallow

decay nor the normal forward shock component - and in two X-ray dark short GRBs - that

show no X-ray afterglow detection at ∼ 100 s. Assuming that there is slower moving ejecta

material behind the fast γ-ray producing shell in these bursts, we find upper limits for the

Lorentz factor of the late slower material. More sensitive observations of X-ray dark short

GRBs could provide stronger constraints on the presence and properties of slower moving

material accompanying the fast γ-ray jet in GRBs.

Almost simultaneous to the appearance of this work, Panaitescu (2007) presents a

similar work on the scattering of the GRB early emission photons by a late outflow. Both

work present the same physics and the main formulae are consistent. The main differences

are that (i) we have considered the scattering within the relativistic outflow and the photons

to be scattered are the prompt γ-ray photons, whereas Panaitescu (2007) considers the

scattering of the afterglow forward shock photons by a late relativistic outflow, and (ii)

Panaitescu (2007) has considered a faster second shell to be able to explain features like the

“shallow decay” and the X-ray flares, whereas our focus is mostly on a slower second shell.
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Chapter 4

Scattered X-ray Emission by Dust

Grains near GRB Sites

4.1 Introduction

Chapter 1 has reviewed the generic behaviour in X-ray afterglows of GRBs discovered by

Swift: firstly steep decline, followed by a shallow decay, then by a “normal” decay. The

intervening shallow decay, sometimes called the ‘plateau’, is the most puzzling feature of

the X-ray light curve (LC). The most straightforward interpretation is a late steady energy

injection into the external shock. However, this interpretation implies a steady, late activity

of the central engine – lasting as long as a day – which poses a challenge to the models of

the central engine. There is a long list of alternative models for the plateau phase, but none

of them satisfy all the observational constraints.

An attractive possibility was suggested by Shao & Dai (2007) regarding the origin

of the X-ray plateau. If the long-duration GRB progenitors are massive stars, it is very

likely that dust exists in the vicinity of the GRB site since it is in a star forming region.

The X-ray photons from the GRB and its afterglow can be scattered in small angles by the

dust near the line-of-sight to the GRB, as analogous to the halo emissions of other X-ray

sources (e.g., Smith & Dwek 1998). The GRB prompt emission scattered off the dust has

been considered earlier by Esin & Blandford (2000) and Mészáros & Gruzinov (2000). Aside

from the scattering by the dust local to the GRB site, Miralda-Escudé (1999) considered
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the scattering of the X-rays from the GRB afterglows by the dust in the intervening galaxies

along the line-of-sight to the GRB, but the flux turns out to be very low and difficult to

detect for that case. Depending on the distance of the local dust region to the GRB site,

a delayed emission component from the scattering can show up in the afterglows. Shao &

Dai (2007) and Shao et al. (2008) used this scenario to interpret the plateau phase in the

X-ray afterglow LC as to be the scattered prompt X-rays by the dust located at about ten

to a few hundred pc from the GRB site. The scattering happens preferentially within a

characteristic scattering angle θc which is dependent on the photon energy E and the dust

grain size. At larger angles the differential scattering cross section of the dust grains decays

steeply. Therefore the scattering within θc gives rise to a plateau phase whose duration

is determined by θc and the distance of the dust region to the GRB site. Larger angle

scattering produces a F (t) ∝ t−2 decay following the plateau. This model does not need to

invoke a long steady central engine activity. In addition, since the scattering only works in

the X-ray band, the lack of a simultaneous break in optical LC does not pose a problem for

this model.

The purpose of this work is to carefully investigate the output of this dust scattering

model - in terms of the spectral and temporal properties of the scattered emission - and

to compare it with the data. The chapter is structured as follows. We first calculate and

quantify the softening expected from the dust scattering model in Section 4.2. Then, we

search in the data for evidence in favour of the model including the spectral evolution in the

plateau and post-plateau phases for a sample of GRBs in Section 4.3 and 4.4. An expected

difference in hard X-ray and soft X-ray LCs is discussed in Section 4.5. We calculate

and discuss the optical extinction for the dust in Section 4.6. Our conclusion and further

discussion are presented in Section 4.7. Throughout this chapter the spectral index β and

the time decay index α of the emission flux are defined as in fν(t) ∝ ν−βt−α.

4.2 Spectral softening in dust echo emission

We first derive the temporal and spectral properties of the scattered emission or the ‘echo’

(hereafter we use ‘echo’ and ‘scattered emission’ interchangeably) by the dust in the simplest
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geometry where the dust is concentrated in a thin layer (or a dust “screen”) near the GRB,

following Shao & Dai (2007). Then we consider a generalised geometry where the dust is

distributed in an extended zone.

Let us consider a dust “screen” located at a distance R from the GRB source. This

dust screen does not have to enclose entirely the GRB source, as long as its angular size

with respect to the GRB site is larger than the characteristic scattering angle θc (see below).

The grains in the dust have a size distribution dN(a)/da ∝ a−q within a range (a−, a+),

where a is the grain size, q is the distribution index and N(a) is the column density of all

grains with size ≤ a. In this work we use these typical values a−= 0.025 µm, a+= 0.25

µm, and q= 3.5 inferred from the observations (Mathis et al. 1977; Mauche & Gorenstein

1986; Draine 2003). We found that adopting other typical values did not change our main

results. Consider a GRB source with a fluence per unit energy S(E) [erg cm−2 keV−1] at

X-ray photon energy E. Since the GRB source duration (∼ 10 s) is much shorter than the

plateau, it can be considered as being instantaneous.

The flux of the dust scattered emission per photon energy, per grain size, at time t

can be estimated by

FE,a(t) =
S(E)

t
τ [E, a, θ̂(t)], (4.1)

where τ [E, a, θ̂(t)] is the scattering optical depth per grain size a, to the photon with energy

E and at the scattering angle θ̂(t); θ̂(t) is given by the geometrical relation t = Rθ2/(2c).

The angular part of the optical depth can be separated out from τ by

τ [E, a, θ̂(t)] = 2τa(E)j2
1 [x̂(E, a, t)], (4.2)

where τa(E) is the total optical depth per grain size a and to the photon energy E; j1(x) =

sin(x)/x2 − cos(x)/x is the spherical Bessel function of the first order which describes

the scattering-angle dependence of the cross section, and x̂ = 2πEaθ/(hc) is the scaled

scattering angle where h is the plank constant and c is the light speed (Overbeck 1965;

Alcock & Hatchett 1978). Via the geometrical relation, x̂ can be expressed in terms of E,

a and t:

x̂ =
2π

hc

√
2ct

R
Ea. (4.3)
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j2
1(x) increases as ∝ x2 from x = 0 to x ' 1.5 and then drops rapidly as ∝ x−2 for

x > 1.5. Therefore, at a given photon energy E, the echo flux LC first appears as a plateau,

then transitions to a decay as steep as ∝ t−2. The transition time, which corresponds to a

characteristic scattering angle θc and in turn to x̂ ' 1.5, would be given by

tc = 4.5× 104
(

E

1keV

)−2( R

100pc

)(
a

0.1µm

)−2

s. (4.4)

We see from Eq. (4) that the duration of plateau is very sensitive to the photon

energy: the plateau at higher energies ends much earlier than that at lower energies. Thus

the overall echo emission must experience strong spectral softening. Note that if the echo is

observed within a finite energy range, such as in the XRT band (0.3 - 10 keV), the softening

must have begun long before the end of the plateau, because the overall plateau ending

time is determined by tc of the softest photon while the softening begins at tc of the hardest

photon; the ratio of the two times is the ratio of the photon energies reversed and squared,

e.g., a factor of 1000 for the XRT band.

The dependence of τa(E) on energy and grain size is

τa(E) = τ0(E = 1keV, a = 0.1µm)(
E

1keV
)−s(

a

0.1µm
)4−q; (4.5)

in the Rayleigh - Gans approximation, s = 2 (van de Hulst 1957; Overbeck 1965; Hayakawa

1970; Alcock & Hatchett 1978; Mauche & Gorenstein 1986).

The echo emission spectrum at an observer time t is obtained by

FE(t) =
∫ a+

a−
FE,a(t)da ∝ S(E)E−s

t

∫ a+

a−
a4−qj2

1 [x̂(E, a, t)]da. (4.6)

The LC can be obtained by integrating FE(t) over a desired energy bandpass.

The softening can be seen from Eq. (6) as follows. Since x̂ ∝ t1/2Ea, at some

given time t, x̂ might be > 1.5 for the hard photons and < 1.5 for the soft photons,

while the intermediate photon energy that defines and separates the “soft” and the “hard”

corresponds to x̂ ≈ 1.5 and it decreases with time. For hard photons, j2
1(x̂) ∝ x̂−2. Taking

E out of the integral in Eq. (6) gives FE(t) ∝ S(E)E−s−2, so the spectral index is increased
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by 4 for s = 2. For soft photons, j2
1(x̂) ∝ x̂2, so FE(t) ∝ S(E)E−s+2 and the spectral index

is unchanged for s = 2. Therefore, the softening happens first in the high energy part of the

spectrum, and then propagates toward the lower energies with time, until the spectrum in

the whole bandpass is softened - this is also when the plateau of the overall LC approaches

to its end - with a change of the overall spectral index ∆β = 4 with respect to the source

spectrum (cf. Figure 4.2 below). This change in β should be easy to detect if the echo

emission dominates the plateau.

We calculate the LCs of the dust echo in the XRT band for a variety of dust parameter

values and the echo spectrum at different times. They are exactly the same as those obtained

by Shao & Dai (2007) in their Figure 4.3 and Figure 4.4 and thus confirm their results and

the analytical scalings derived above.

4.2.1 Extended dust zone

In the vicinity of GRBs, the dust zone may extend over a large distance. To study the

difference in the echo emission properties of an extended dust zone and of a thin dust layer,

we consider in this subsection a power-law dust distribution over a distance range [R−, R+]

with the dust number density profile n(R) ∝ R−δ, where R is the distance to the source.

The grain properties, e.g., size distribution, are assumed to be independent of R. For ease

of calculation, we divide the extended dust zone into a series of N discrete thin dust layers

(N ≥ 30; a change of N does not affect the results), located progressively further from the

GRB with equal separation in the log(R) scale. The scattered flux and its spectrum at any

given time is the sum of the contributions from all dust layers at that time.

Figure 4.1 shows the LC of the scattered emission from an extended dust zone for

varied sets of parameters. It can be seen that the ending time of the plateau is mainly

determined by the location of the inner boundary of the dust zone. This is not surprising

because the density of the dust is decreasing with radius thus the scattering LC arises

mainly from the inner rim of the dust zone. Figure 4.2 shows the spectra of the scattered

emission at different times, from which the softening is evident. The LCs in Figure 4.1 and

the spectra in Figure 4.2 are almost same as the ones for a single dust layer model (cf. the

thin solid line in Figure 4.1 and Shao & Dai (2007)’s results in their Figure 3 and 4), which
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Figure 4.1: The flux light curve in the XRT band of the echo emission from an extended
dust zone with a distance range [R−, R+]. The thick solid line (red in electronic version) is
for the fiducial values used for the parameters of the dust spatial distribution model: R−=
50 pc, R+= 500 pc, δ= 2. The parameter values for the dust grain properties (same for
all the curves) are a−= 0.025 µm, a+= 0.25 µm, q= 3.5, and s= 2. The parameter values
listed in the legends are the only ones that are changed each time. The assumed source
spectrum is a flat power law with a high energy cut-off: S(E) ∝ E0 exp(−E/100keV). For
comparison, the LC from a single dust screen located at R = 100 pc with the same total
optical depth is also shown here as the (black) thin solid line.

shows that the generalisation of the model to an extended dust zone does not change much

the temporal or spectral behavior of the scattered emission.

We also calculate the overall spectral index in the XRT band at each observer time

and the instantaneous decay index of the LC, which are shown in Figure 4.3. Note that,

due to the softening, the echo spectrum during the plateau is no longer a single power law

function (see Figure 4.2). Thus we calculate a “pseudo” spectral index β0.3−10 using the flux

densities at the two ends of the XRT band, 0.3 keV and 10 keV, respectively, to illustrate

the extent of softening with respect to the source spectrum.

The results show that the dust echo emission must experience significant spectral

softening; the spectral slope increased by ∆β ≈ 3 from the early phase of the plateau to the

end of the plateau. A more realistic extended dust zone model brings no notable change to

this property.

62



Figure 4.2: The spectrum of the echo emission from an extended dust zone at different
observer times. The propagation of the softening toward the low energies is evident. The
model parameter values are the same as the fiducial ones in Figure 4.1. The assumed source
spectrum is a flat power law with a high energy cut-off: S(E) ∝ E0 exp(−E/100keV). The
change of the spectral index due to the softening is found to be insensitive to the source
spectral index.

Figure 4.3: The instantaneous flux decay index α (defined as F0.3−10keV(t) ∝ t−α) and the
spectral softening ∆β = β0.3−10keV − β0 for the echo emission from an extended dust zone,
where β0.3−10keV = log[FE(0.3keV)/FE(10keV)]/ log(10/0.3) is the two-point spectral index
and β0 is the source emission spectral index. In the cases plotted here we use β0 = 0. By
changing the values for β0, e.g., to β0= 1, -0.5 or -1, we find that the calculated ∆β is
insensitive to β0. Each pair of lines for α and ∆β of the same line style correspond to a
same set of model parameter values. The thick solid lines (red in electronic version) are for
the same fiducial model parameter values used in Figure 4.1. For comparison, the α and
∆β for the single dust screen model with the same parameter values as that in Figure 4.1
are also shown as the thin solid lines (black in electronic version).
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4.3 Search for spectral evidences in the data

In this section we describe our search for the statistical evidence in the X-ray data during

the plateau that can support the dust scattering model. There are two pieces of evidence

that we are looking for. First, if the plateau is due to the prompt X-rays scattering off the

dust, in the early phase of the plateau when the spectral softening has not yet begun, the

spectral index of the scattered emission must be the same as that of the prompt X-rays.

Thus we expect to see in the data a correlation between the spectral index of the plateau,

which we denote as βa here, and that of the prompt X-rays. There are two complications

to note. (1) For the prompt emission, usually the X-ray spectral index is unavailable so we

have to use the one for the prompt γ-rays, βγ , to represent it; in some cases the X-ray slope

might be shallower than the γ-ray slope by 1/2 due to a cooling break. (2) The published

spectral index for the plateau is usually measured from the photon counts integrated over

the whole plateau duration, therefore this spectrum might be softer than at the beginning

of the plateau. Nevertheless, a mild trend of the correlation in the data should still be

expected.

The second evidence is based on the strong softening predicted by the model as

was demonstrated in Figure 4.2 - 4.3, which show a strong evolution of the spectral index

during the plateau and until its end. Thus, if the model is correct, the distributions of the

spectral index during the plateau, βa, for a sample should be significantly smaller than that

measured in the post-plateau phase, denoted as βad.

4.3.1 Sample

A sample of GRBs showing X-ray plateaus with sufficient spectral and temporal information

is needed to check for these two evidences. Willingale et al. (2007) analysed 107 Swift XRT

detected GRB afterglows and found 80% of the bursts show a plateau in the X-ray LC.

Out of the 80% of total bursts sample, 54 have both spectral indices before and after the

end of plateau available. We further reduced the sample down to 26 bursts; we rejected

those bursts that had one of the following properties: (1) the temporal decay slope α >0.8,

too steep to be defined as a “plateau”; (2) XRT coverage is very sparse or long gaps exist
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Figure 4.4: Left: The prompt phase BAT spectral index βγ vs. the shallow phase XRT
spectral index βa. Right: The change in the spectral index βad − βa vs. βa, where βad is
the spectral index of the decay after the end of the shallow phase. Several individual cases
of GRBs which show evidence of spectral softening or hardening are labeled. The spectral
index β is defined as fν ∝ ν−β. The error bars are 1-σ errors. The sample is selected from
Willingale et al. (2007) (filled circles, and in black color in electronic version) and Liang et
al. (2007) (filled triangles, and in red color in electronic version).

during the plateau; (3) the “plateau” is actually due to one or more flares. We have also

included 24 bursts from the sample of Liang et al. (2007) that satisfy the above criteria.

4.3.2 Results

We plot βγ vs. βa and the difference between βad and βa vs. βa in Figure 4.4. No clear

correlation between βγ and βa is seen, which disfavours the dust model. Generally βa is

softer than βγ . This is consistent with the expected softening during the plateau. However,

if it was the softening that could have weakened or broken the expected correlation, there

must be a bigger scatter in βa than in βγ . The data shows the contrary: βa is in the range

of 0.5 - 1.5 where βγ is in -0.5 - 1.5. Thus the comparison between βa and βγ is inconsistent

with the model expectation.

Moreover, no dominant softening trend in the spectral index is seen from the plateau

to the post-plateau phase; bursts with smaller βa show slight softening and those with larger

βa show slight hardening. Most of the bursts show zero spectral change across the end of

the plateau within 1-σ measurement error. Only three bursts show evidence of spectral
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softening - two bursts at 2-σ level (GRB 050315: ∆β= 0.4; GRB 060607A: ∆β= 0.2) and

one burst at 3-σ level (GRB 061202: ∆β= 1.4). There are also two bursts showing spectral

hardening - one at 2-σ level (GRB 060428A: ∆β= -0.26) and one at 3-σ level (GRB 060413:

∆β= -0.93). Those individual cases are marked in the right panel of Figure 4.4.

The two results – no correlation between βγ and βa and no clear difference between βa

and βad, also reported in Willingale et al. (2007) and Liang et al. (2007) – are inconsistent

with the expectations of the dust scattering model.

4.4 Time history of the spectral during the plateau

The model predicts a significant spectral evolution from the beginning (∼ 200 s after the

burst) to the end of the dust echo plateau. The spectral index shows a monotonic increase

by ∆β ≈ 3−4. If the X-ray plateau is indeed due to or dominated by the dust echo emission,

the strong spectral softening can be very easily detected in the XRT data. To compare the

data with this expectation, we look closely at the time resolved spectral information during

the plateau for the best observed GRBs.

To determine whether there is any dominant trend of spectral evolution during the

plateau phase, we compile a sample of 21 GRBs with well defined plateau phases, excellent

time coverage and good signal-to-noise ratios. For details of how the X-ray light curves

used in this work were produced, see Evans et al. (2007). This sample is listed in Table 4.1.

For each GRB, the overall XRT LC is considered to be composed of two components.

The first one is the very rapid decay just following the γ-rays. The second component is

the plateau and the subsequent normal power-law decay. Both components are well fitted

by the same functional form as introduced by Willingale et al. (2007). We define T1 –

the time of transition from the first to the second component – as the time when the two

components are equal; this is a good measure of the start of the plateau. T2 is the end of

the plateau and the start of the final power-law decay.

We plot the hardness ratio, as defined by the ratio of the photon counts in 1.5 - 10

keV and 0.3 - 1.5 keV bands, for each time interval of coverage during the plateau phase.

We find that all the hardness ratio changes through the plateau phase are quite small and,
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for the bursts with the largest change the hardness ratios are getting harder (near the start

of plateau), not softer. The ones that get softer do so only slightly. This confirms the

findings by Butler & Kocevski (2007).

We measure the spectral index taking into account photo-absorption at lower X-ray

energies. We use the absorbed-power-law fit to the spectrum of the early XRT data - mainly

the steep decline phase in the LC, which contains most of the photon counts - to determine

the neutral H column density given as a combination of two components - the Galactic

column and a host intrinsic one. Then we use this neutral H absorption model to convert

the measured hardness ratio in the plateau into the spectral index with an appropriate

error.

For many GRBs the time coverage during the plateau is rather patchy. Thus we select

a time window which includes the plateau and takes into account the coverage. Sometimes

it has to include data before T1 and after T2 so that the behaviour across the plateau is well

constrained. The evolution of the spectral index over the selected time window is fitted as

a linear function of the logarithmic time. Extrapolating the best fit function to both sides

of the window gives the spectral indices β1 and β2 at T1 and T2, respectively. These are the

best estimates of the spectral index at the start and the end of the plateau.

Figure 4.5 shows a few examples of the β-evolution during the plateau. The observed

β-evolutions for our sample are tabulated in Table 4.1. None of the afterglows show a notable

softening over the plateau. Most show zero evolution of β, with very small uncertainty. A

few show a small, marginally significant, hardening. For the examples shown in Figure

4.5, we also add in the lower panels of Figure 4.5 the expected β-evolutions from the dust

scattering model. A few model parameters (R, q and s) were set free to change and then were

optimised in each example in order to best reproduce the observed plateau and post-plateau

LC. The expected β is systematically larger than the observed one even at the beginning

of the plateau phase, because the softening has already begun there. The expected strong

evolution in β distinctly differs from the stableness of the observed β during the plateau.

To summarise this section, though the dust scattering model can nicely fit the LCs

of plateau and post-plateau decay (see also Shao et al. 2008), the expected large value and

strong evolution of the spectral index sharply contradict the data.
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Figure 4.5: The X-ray LC and the time history of the spectral index β for four examples
of GRBs with plateaus and the corresponding expectations from the dust scattering model.
In the upper panel for each example, T1 and T2 mark the beginning and the end of the
plateau phase, respectively. The plateau phase and the post-plateau decay LC is mimicked
by the dust scattered emission through adjusting the parameters (R, q and s) of a single
dust screen model (using an extended dust zone model does not change the result), shown
as the solid line. In the lower panel for each example, the time-resolved β are plotted as
filled circles inside the [T1, T2] window and as crosses outside the window. A linear function
of log(t), as shown by the solid straight line, is fitted to the time history of β within the [T1,
T2] window. The fit extrapolation at T1 and T2 gives β1 and β2, respectively, as marked
by the filled bars. The dashed lines are the expected β-evolutions for the dust models that
were optimised in the upper panels.
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Table 4.1: The spectral indices at the beginning and at the end of the X-ray plateaus for a
sample of GRBs. From a larger sample of GRBs showing well defined plateau phases, only
those with high signal-to-noise ratio and long time coverage in the plateau are selected. T1

marks the transition of the LC from the prompt component to the plateau component. T2

marks the end of the plateau and the transition to the final power-law decay. β1 and β2 are
given by the extrapolation of a function fit to the evolution of the spectral index of available
data within a window defined by T1 and T2. The error in β is at 90% confidence level.

GRB T1 (102s) β1 T2 (104s) β2 χ2/ndof

050315 4.0 1.24 ± 0.17 2.48 0.99 ± 0.08 44.9/29
050319 6.6 0.95 ± 0.14 4.65 0.88 ± 0.13 20.6/17
050401 7.9 0.88 ± 0.06 0.75 0.90 ± 0.10 81.2/51
050713B 7.2 0.87 ± 0.08 2.79 0.93 ± 0.15 16.9/19
050802 5.8 0.78 ± 0.09 0.90 0.70 ± 0.09 31.1/27
050803 2.9 0.76 ± 0.11 0.078 0.62 ± 0.21 9.11/9
060306 4.6 1.34 ± 0.14 0.80 1.31 ± 0.15 20.9/12
060502A 4.6 1.26 ± 0.22 1.78 0.94 ± 0.17 9.4/7
060510A 0.92 1.03 ± 0.22 1.30 1.02 ± 0.09 26.2/23
060607A 8.4 0.96 ± 0.12 5.57 0.83 ± 0.13 28.5/38
060614 22 1.03 ± 0.19 11.5 0.81 ± 0.11 27.8/22
060729 6.1 1.31 ± 0.14 12.7 1.31 ± 0.06 143.8/114
060813 0.32 1.03 ± 0.30 0.047 0.82 ± 0.11 19.5/19
060814 12 0.69 ± 0.11 1.90 0.68 ± 0.09 46.4/31
061121 2.0 1.12 ± 0.11 0.24 0.96 ± 0.10 20.3/27
061222A 1.6 1.36 ± 0.19 0.158 1.26 ± 0.10 49.9/26
070129 14 1.58 ± 0.28 2.78 1.18 ± 0.14 14.0/12
070306 4.9 1.15 ± 0.22 6.95 1.25 ± 0.14 43.4/28
070328 1.0 1.65 ± 0.06 0.16 1.42 ± 0.05 151.4/107
070420 2.1 1.27 ± 0.23 0.37 0.87 ± 0.12 16.9/15
070508 0.69 0.77 ± 0.08 0.10 0.63 ± 0.05 107.1/93
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Figure 4.6: The LCs in the soft and the hard X-ray channels, respectively, as predicted
by the dust echo model and observed in GRBs. Top: The LCs of the echo emission from
an extended dust zone model. The values of the model parameters R− and R+ are chosen
such that the echo emission 0.3 - 10 keV LC best mimics the plateau of GRB061121. Other
model parameters are the same as the fiducial ones in Figure 4.1. Bottom: The LCs of a
typical GRB ‘plateau’ in 0.3 - 1.5 keV (squares) and 1.5 - 10 keV (triangles), respectively.
The early rapid decay at t < 200 s of the observed LC does not belong to the plateau phase
and it is thought to be of a different origin.
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4.5 X-ray LCs in soft and hard energy channels

Another prediction from the dust scattering model is the different temporal behaviours of

the LCs in low and high energy channels. This can be seen from equation (4): observations

carried out at photon energy E should see the end of the plateau at tc ∝ E−2. This feature

is demonstrated in the top panel of Figure 4.6 where we calculated the LCs of scattered

emission from an extended dust zone in 0.3 - 1.5 keV and 1.5 - 10 keV, respectively. It

shows that the soft X-ray LC has a more extended plateau than the hard X-ray one.

We find that for all bursts in our sample of plateau GRBs, the temporal behaviours

in soft vs. hard X-ray LCs look identical. As an example, the bottom panel of Figure 4.6

shows the soft vs. hard X-ray LCs of GRB 061121 which has a long, dense time coverage

and the best photon statistics among all bursts in the sample (Page et al. 2007). The soft

and hard X-ray LCs for this burst are identical. This feature rules out the dust scattering

model for the plateau.

4.6 Optical extinction due to the dust

The dust grains which scatter the X-ray photons will also cause extinction in the optical

band. This can provide an additional constraint for the dust scattering model. Thus we

estimate the extinction in V Band, AV , caused by the dust required for the model and

compare it with AV derived directly from optical observations.

Predehl & Schmitt (1995) found an empirical relation between the X-ray dust scat-

tering optical depth τ(E) and AV for the X-ray halos of 24 galactic X-ray point sources:

τ(E) = 0.06AV (E/1keV)−2, (4.7)

where τ(E) is obtained from modelling the X-ray halo surface brightness distributions with

dust grain properties similar to the fiducial ones we used in our calculations. Draine &

Bond (2004) derived a similar relation based on a dust model developed by Draine (2003):

τ(E) = 0.15AV (E/1keV)−1.8. (4.8)
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Table 4.2: The fiducial host rest frame optical depth at E = 1 keV required by the dust
scattering model and the associated rest frame visual extinction for a sub-sample of GRBs
with well observed shallow X-ray decays. The fluence and spectral data are from Liang et
al. (2007). A

(1)
V is given via equation (7) and A

(2)
V via equation (8). References to the GRB

redshifts: 050315 - Kelson & Berger (2005); 050319 - Jakobsson et al. (2006); 050401 -
Fynbo et al. (2005); 050803 - Bloom et al. (2005); 060210 - Cucchiara et al. (2006); 060714
- Jakobsson et al. (2006); 060729 - Thoene et al. (2006); 060814 - Thoene et al. (2007).
z = 2 is assumed for GRBs without known z.

GRB S∗γ βγ S∗X βX z τ0 A
(1)
V A

(2)
V

050128 45 0.5 3.7 0.87 25 414 162
050315 28 0.28 11 1.06 1.95 1.83 30 12
050319 8 0.25 1.3 1.00 3.24 8.4 140 56
050401 140 0.15 9.3 0.91 2.9 12 200 79
050713B 82 0.0 3.3 0.85 6.4 108 42
050803 39 0.05 6.0 0.76 0.42 0.5 8.4 3.4
050822 34 0.0 4.1 1.29 1.7 29 12
060210 77 0.52 10 1.06 3.91 39 650 260
060714 30 0.99 1.5 1.15 2.71 385 6.5× 103 2.6× 103

060729 27 0.86 20 1.35 0.54 2.6 43 100
060813 55 -0.47 7.3 1.09 0.22 3.6 1.4
060814 150 0.56 6.9 1.11 0.83 18 308 124
070129 31 1.05 1.5 1.25 315 5× 103 2× 103

∗ In units of 10−7 erg cm−2.
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Note that Eq. (4.7) is for the dust in the Milky Way (MW), while for GRB hosts most

absorption fits tend to favour the Small Magellanic Cloud (SMC) extinction law (e.g.,

Schady et al. 2007; but see the discussion below toward the end of this section). It was shown

that the difference between the the MW and SMC extinction laws can be well reproduced in

a model by adjusting the relative abundances of graphite and silicate grains, while leaving

all other dust properties fixed; in this case AV and τ(E) at E ≥ 7 eV are both the same

for these two environments (Pei 1992). Thus it is viable to apply Eq. (4.7) to GRB hosts.

The above relations are for quantities in the rest frame of the source. If the source

is at cosmological distances, like GRB hosts, we have to take into account the cosmological

redshift of the photon energy when calculating τ(E) and AV from the observed quantities.

The dust scattering optical depth, τ0 = τ(E = 1keV), in the rest frame of the GRB host at

a redshift z can be estimated by

SX,1 ≈ (1 + z)−2τ0Sγ,1, (4.9)

where Sγ,1 = Sγ(E = 1keV) is the specific fluence extrapolated from the Burst Alert

Telescope (BAT) total fluence during the burst to 1 keV, SX,1 = SX(E = 1keV) is the

specific fluence at 1 keV during the plateau phase, both measured in the observer’s frame.

There is a factor of (1 + z)−2 because the ratio (SX,1/Sγ,1) is actually equal to the host

rest-frame τ(E) at E = (1 + z) keV and τ(E) ∝ E−2 (cf. Eq. 4.5).

We select a sub-sample of GRBs which have good XRT temporal coverage during

the afterglow phase from the sample of Liang et al. (2007) that provided Sγ and SX for

those bursts. Then τ0 is calculated and the associated AV is inferred from τ0 via Eq. (7)

and (8). The sample and the results are listed in Table 4.2. Almost in all cases (except for

two) τ0 is > 1 and some even have τ0 > 10, which means this model requires that only a

very tiny fraction of photons with energy of 1 keV in the host rest frame can escape the dust

without scattering. None of the sub-sample have AV < 1 and 85% of them have AV > 10.

In comparison, Schady et al. (2007) determined AV for 6 GRB afterglows from the

Ultraviolet and Optical Telescope (UVOT) to XRT Spectral Energy Distributions (SEDs),

with AV ranging from 0.1 to 0.7. These extinctions are significantly smaller than that
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Figure 4.7: The dependence of the ratio AV /τ0 of the dust on the grain size distribution
parameters a+ and q. The dust is assumed to have a grain size distribution dN(a)/da ∝ a−q

within the grain size range [a−, a+], where N(a) is the column density of all grains with
size ≤ a.

expected from the dust scattering model. Note that a considerable fraction (1/4 - 1/3)

of the plateau X-ray afterglows have bright optical counterparts (Figure 2 of Liang et al.

2007).

But a cautiousness has to be taken regarding the AV determinations above. There

are some recent studies that show the dust properties of GRB hosts does not resemble those

of any galaxy in our neighborhood. In particular, Chen et al. (2006), Perley et al. (2008)

and Li et al. (2008) have found for some GRBs the modeled extinction curve is “gray”, i.

e., much flatter than any of the templates (MW, SMC, the Large Magellanic Cloud). Since

our determination of AV has used the AV - τ0 relations appropriate for these template-type

dust, these findings are likely to raise uncertainties in the determined AV .

The dust grain size distribution is usually described by a power law with an index

q and within a range of grain size (a−, a+). A “gray” extinction curve could be due to a

flatter grain size distribution (smaller q) or a larger a+, as suggested by Li et al. (2008).

We calculated AV and τ0 independently for a dust model with the composition resembling

the SMC and the “gray” type that these authors have found for some GRBs, to see the

dependence of their ratio on the grain size distribution parameters. The AV is calculated
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by the following equation (Weingartner & Draine 2001)

AV = (2.5π log e)
∫ a+

a−
a2Qext(a, λV )

dN(a)
da

da, (4.10)

where Qext is the extinction efficiency factor, usually a function of grain size and photon

energy. Draine & Lee (1984) calculated Qext(a, λ) for graphite and silicate grains. Since

the GRB dust environments are described either by SMC or “gray” type extinction curve

(Shady et al. 2007; Li et al. 2008), for both of which a good dust composition model needs

silicate only (Pei 1992; Li et al. 2008), we use Qext(a, λ) for silicate only. The dust scattering

optical depth can be calculated by τ0 =
∫ a+
a− τa(E = 1keV)da, where τa(E) is given by Eq.

(4.5). Note that the normalizations of AV and τ0 are unimportant here because we are

looking at only their dependences on a+ and q.

The ratio of AV /τ0 for varying a+ and q is shown in Figure 4.7. We find that AV /τ0

is only slightly dependent on q – AV /τ0 decreases by factor of ∼ 2 for q changing from 3.5

to 2.6; but AV /τ0 is more sensitive to a+ – it decreases by a factor of ∼ 10 when a+ changes

from 0.25 µm to 2.5 µm. Even after taking these effects into account, the AV we obtained

for our GRB sample are still very large (for one half of the sample, AV ∼> 10). One of the

real problems with the dust scattering model for the X-ray plateau phase is that it requires

τ0 ≥ 10 for one half of our sample (see Table 4.2), which seems physically unreasonable.

Thus, the dust scattering model is not a viable explanation for the X-ray plateaus

because of the large extinction in the optical band it predicts but not observed.

4.7 Conclusion and Discussion

We have shown that in the dust scattering model the scattered X-ray emission must expe-

rience strong softening spectral evolution, with a significant change of the spectral index in

0.3 - 10 keV of ∆β ∼ 2 − 3 from the emerging of the plateau to its end. However, for a

sample of GRBs with X-ray plateaus and with good quality data, no softening spectral evo-

lution during the plateau phase is found, and in a few cases even traces of slight hardening

are seen.

The change of β according to the model does not depend on the spectral index of the

75



source emission. The Rayleigh - Gans approximation is used in this work to calculate the

scattering cross section of the dust grain. It was claimed that this approximation tends to

overestimate the scattering efficiency below 1 keV, typically by a factor of 4 at 0.5 keV and

a factor of 2 at 1 keV, mainly due to the absorption of the soft X-ray photons by the K and

L shell electrons in the dust grain (Smith & Dwek 1998), and that could change the spectral

slope at the soft end (< 1 keV) and counteract against the softening (Shao et al. 2008). But

we argue that this effect dose not alleviate the expected softening, because the discrepancy

between the real scattering cross section and the Rayleigh - Gans approximation caused

by this effect, which is mainly below 1 keV, must have been largely accounted for by the

required neutral H absorption in the routine power-law fit to the plateau spectra. The

XRT spectral index is mainly determined by the photons with energy above 1 keV which

is not affected by this effect. Moreover, this effect is time independent while the softening

we consider is a strongly time dependent behaviour. Dust destruction by the GRB prompt

emission is of very little relevance here because it happens within a distance smaller than

the location of the dust considered in this work (e.g., Waxman & Draine 2000). Thus the

Rayleigh - Gans approximation is sufficiently accurate for the effect considered in this work.

The dust scattering model also predicts very different temporal behaviours in the

soft X-ray vs. hard X-ray LCs; the plateau lasts longer in soft X-rays. But this feature is

not found in the data. Furthermore, the large scattering optical depth of the dust required

by this model in order to explain the X-ray plateaus leads to extremely large extinction in

optical - AV ∼> 10. This is inconsistent with the observed extinctions for GRBs.

We conclude that the dust scattering model, though very attractive, can not explain

the X-ray plateaus seen in most GRB afterglows. Although it is very likely that dust exists

near the site of GRBs, and will scatter some fraction of the prompt and afterglow X-rays,

this scattered emission is not a dominant contributor to the observed X-ray plateau. For

those cases where an achromatic break at the end of the plateau is seen, a late, steady energy

injection to the external shock is a more likely mechanism for producing the observed X-ray

plateau, though it may not be able to work well for the cases with chromatic breaks.
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Chapter 5

Prompt Optical Emission

Constraints GRB’s Emission Site

5.1 Introduction

Although the Gamma-Ray Burst (GRB) was discovered about 50 years ago first through

its prompt γ-ray emission, large uncertainties still remain in understanding the prompt

emission site, namely, the distance of the emission site from the explosion centre R, with

controversial evidence. There are three possible sites discussed in the literature. One is the

standard internal-shock site which depends on the fluctuation time scale δt seen in GRB

light curves (e.g., Rees & Mészáros 1994, see Piran 2005, Mészáros 2006 for reviews). It can

have a large range of R ∼ Γ2cδt ∼ 1013− 1015 cm because δt and Γ vary largely from burst

to burst. The second is the photospheric radius at 1011 − 1012 cm at which the prompt

emission arises as a combination of the photosphere thermal emission and a Comptonized

component above it, the latter being induced by some energy dissipation process below and

above the photosphere (e.g. Rees & Mészáros 2005; Ryde et al. 2006; Thompson et al.

2007). The third one is a large radius (> 1014 cm) as is supported by the Swift XRT data

(Lazzati & Begelman 2005; Lyutikov 2006; Kumar et al. 2007) and Fermi data of GRB

080916C (Abdo et al. 2009; Zhang & Pe’er 2009), possibly due to magnetic dissipation

(e.g., Lyutikov & Blandford 2003).

The rapidly responding ability of a few GRB-dedicated ground or space based optical
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telescopes, e.g., ROTSE (Akerlof et al. 2003), RAPTOR (Vestrand et al. 2002), TORTORA

(Racusin et al. 2008) and the UVOT (Roming et al. 2005) on aboard the Swift satellite,

has enabled the time-resolved detection of bright prompt optical emission before the γ-

rays die off, for about a dozen of GRBs. Five of these GRBs, i.e., 041219A (Vestrand et

al. 2005), 050820A (Vestrand et al. 2006), 051111 (Yost et al. 2007a), 061121 (Page et

al. 2007) and 080319B (Racusin et al. 2008), show a temporal correlation between the

strongly variable optical flux and the γ-ray pulses, which suggests that the optical emission

most likely shares the same dynamical process that is responsible for the highly variable

γ-ray emission. While the other four bursts have optical flux densities below or marginally

consistent with the extrapolations from the low-energy power law of the γ-ray spectra,

the optical flux density in GRB 080319B exceeds the γ-ray extrapolation by 4 orders of

magnitude (Racusin et al. 2008; Kumar & Panaitescu 2008), suggesting that for this burst

alone the optical emission has a spectral origin different from that of the γ-rays.

In this work, for the four GRBs – 041219A, 050820A, 051111 and 061121 – we assume

that the prompt optical and the γ-ray emissions are components belonging to the same

synchrotron radiation continuum of a group of hot electrons. Based on this assumption,

the self-absorption frequency of the synchrotron electrons, νa, which causes a break in the

long-wavelength part of the continuum, can be determined or constrained by studying the

optical-to-γ-ray spectral energy distribution (SED)1. Since νa is dependent on the properties

of the prompt emission source, such as the distance of the emission site from the explosion

centre R, the bulk Lorentz factor (LF) Γ and the magnetic field B of the source, from νa

we can determine or make constraints on R for these bursts, using information on Γ and B

obtained in other ways. This is the main goal of this work. Since the prompt optical and

γ-ray components in GRB 080319B are most likely of different spectral origins because of

its peculiar SED shape, our approach is not applicable to this burst.

On the other hand, for some other long GRBs the rapid response of the dedicated

ROTSE telescope has returned only upper limits of the optical flux density during the

prompt phase (Yost et al. 2007b). Another goal of this work is to get constraints on R

for these optically “dark” bursts and to study whether the prompt optical non-detection is
1The significance of self-absorption frequency was highlighted by Doi et al. (2007) who used the varying

location of νa to interpret the diversity in the prompt optical / γ-ray temporal correspondence.
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caused by a heavier self-absorption due to a closer emission site to the explosion centre.

In this chapter, we first derive analytically νa in terms of R, Γ, B and the emission

properties in Section 5.2. The arguments that support our assumption of one synchrotron

continuum component for both optical and γ/X-ray are given in Section 5.3. We derive in

Section 5.4 the constraints on R through νa explicitly, by determining the location of νa

in the optical-to-γ-ray SED and considering all possible spectral regimes. We apply this

method to a prompt optical detection GRB sample and a prompt optical non-detection

sample which are described in Section 5.5. The results are presented in Section 5.6. Finally

the conclusion and discussions are given in Section 5.7.

5.2 Determining the self-absorption frequency

The GRB high energy emission spectrum is characterized by a smoothly joint broken-power-

law form (Band et al. 1993). Thus the relativistic electrons responsible for the GRB prompt

emission due to either synchrotron or synchrotron self-inverse Compton (SSC) radiation are

in a piece-wise two-power-law energy distribution:

N(γ) ∝





γ−p1 , if γm < γ < γp ,

γ−p2 , if γ > γp ,
(5.1)

where N(γ) is such defined that N(γ)dγ is the number density of electrons with energy in

the interval of γ to (γ + dγ), and γm is the minimum energy of these relativistic electrons

(for convenience we omit the factor mec
2 in the electron energy γmec

2 throughout the text

when electron energy is mentioned).

Note that although this distribution set-up is phenomenologically based on the two-

power-law shape of the high energy radiation spectrum observed in GRBs, it has specific

physical meanings. Within the shock acceleration scenario, newly accelerated electrons with

a minimum energy γi and a power-law energy distribution are continuously injected. These

electrons lose energy through radiative cooling, and the instantaneous electron spectrum

steepens above a critical energy γc. All the electrons with energy larger than γc radiate away

their energy within a time shorter than the dynamical time. When γi < γc, our notation
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corresponds to γm = γi and γp = γc. When γc < γi, the cooling causes a flatter power law

between γc and γi, even though the newly accelerated electrons are injected in the energy

range above γi. For this case one has γm = γc and γp = γi. In summary within the shock

acceleration scenario one has γm = min(γi, γc) and γp = max(γi, γc). More generally, one

can also have a scenario that invokes continuous heating and cooling of electrons (e.g. that

envisaged in the reconnection models), and γp then reflects the intrinsic break in the steady

state electron spectrum. In any case, our treatment is generic, which does not depend on

the concrete particle acceleration mechanism and the origin of γp.

The broken power-law electron energy spectrum naturally gives rise to a piece-wise

power law photon spectrum as commonly observed:

fν ∝





νβ1 , if νm < ν < νp ,

νβ2 , if ν > νp ,
(5.2)

where fν is the observed flux density (in units of mJy), νm and νp are the observed char-

acteristic emission frequencies of the electrons with energy γm and γp, respectively, and νp

is usually the peak frequency of the νfν spectrum. The low-energy power law νβ1 does

not extend to low frequency indefinitely. Without synchrotron self absorption, the spectral

index below νm changes to 1/3, regardless of whether γi < γc or γc < γi. Below a certain

frequency νa ¿ νp, the synchrotron self absorption starts to play a significant role – at

frequencies lower than νa the emitted photons are thermalized with the electrons. The self-

absorption frequency νa is such defined that at this frequency the self-absorption optical

depth τsa(νa) = 1.

Let us determine νa for an emitting GRB ejecta moving with a Lorentz factor (LF) Γ

at a distance R from the center of the explosion. In the ejecta comoving frame (hereafter the

quantities measured in this frame are marked with the prime sign), ν ′a can be determined

by equating the un-absorbed source surface flux density, F ′
ν′a

, at ν ′a to a blackbody surface

flux density with temperature T ′ in the Rayleigh-Jeans regime (see Appendix B for the
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derivation; also see Sari & Piran 1999, Li & Song 2004, McMahon et al. 2006):

2kT ′
ν ′2a
c2

= C(β1)F ′
ν′a =





C1(β1)F ′
ν′p

(
ν′m
ν′p

)β1
(

ν′a
ν′m

) 1
3 , for ν ′a < ν ′m,

C2(β1)F ′
ν′p

(
ν′a
ν′p

)β1
, for ν ′m < ν ′a < ν ′p,

(5.3)

where T ′ = max(γa, γm)mec
2/k, γa is the energy of electron whose characteristic emission

frequency is ν ′a, and k is the Boltzmann constant. The numerical factors C1 and C2 are

functions of β1 only whose values range from 1.2 to 4.5 and from 1.2 to 7.0, respectively,

for the range of observed β1 values, but they have been neglected in previous works while

we include them here.

Transforming the frequency to that measured in the observer’s frame gives νa =

ν ′aΓ/(1+z), where z is the redshift of the GRB host galaxy. Measuring in the host comoving

frame, the source has an isotropic luminosity of 4πR2Γ2F ′
ν′p

ν ′p. This luminosity is also given

by 4πD2
Lfνpνp, where DL is the luminosity distance of the GRB and fνp is the observed peak

flux density. Thus we have F ′
ν′p

= fνp(DL/R)2/[Γ(1 + z)]. After applying these relations,

Eq. (3) becomes





C1
2 fνp

(
νm
νp

)β1
(

νa
νm

) 1
3 = meγmν2

a

(
R

DL

)2 (1+z)3

Γ ,

for νa < νm;
C2
2 fνp

(
νa
νp

)β1
= meγaν

2
a

(
R

DL

)2 (1+z)3

Γ ,

for νm < νa.

(5.4)

After substituting the electron’s energy γ using the following relation between γ and

the photon frequency ν,

γ =





(
2πmec

eB

) 1
2

(
1+z
Γ

) 1
2 ν

1
2 , for synchrotron,

(
2πmec

eB

) 1
4

(
1+z
Γ

) 1
4 ν

1
4 , for SSC,

(5.5)
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the self-absorption frequency is calculated as: for synchrotron

νa =





(
C1
2

) 3
5 × 1014.6− 6

5
β1f

3
5
νpν

− 3
5
β1

p,19 ν
3
5
β1− 1

2
m,17

×(DL,28

1+z )
6
5 (Γ300

1+z )
9
10 B

3
10
5 R

− 6
5

14 Hz

if νa < νm;
(

C2
2

) 1
2.5−β1 × 10

38.5−19β1
2.5−β1 f

1
2.5−β1
νp ν

−β1
2.5−β1
p,19

×(DL,28

1+z )
2

2.5−β1 (Γ300
1+z )

1.5
2.5−β1 B

1
5−2β1
5 R

−2
2.5−β1
14 Hz

if νm < νa < νp

(5.6)

and, for SSC

νa =





(
C1
2

) 3
5 × 1015− 6

5
β1f

3
5
νpν

− 3
5
β1

p,19 ν
3
5
β1− 7

20
m,17

×(DL,28

1+z )
6
5 (Γ300

1+z )
3
4 B

3
20
5 R

− 6
5

14 Hz

if νa < νm;
(

C2
2

) 1
2.25−β1 × 10

35−19β1
2.25−β1 f

1
2.25−β1
νp ν

−β1
2.25−β1
p,19

×(DL,28

1+z )
2

2.25−β1 (Γ300
1+z )

1.25
2.25−β1 B

1
9−4β1
5 R

−2
2.25−β1
14 Hz

if νm < νa < νp .

(5.7)

In the results above, the flux density, e.g., fνp , is in units of mJy, Γ = 300 × Γ300 and the

convention Q = Qn×10n, e.g., ν = ν19×1019 Hz and B = B5×105 Gauss, is used for other

quantities; the same notations will be used in the rest of the chapter. In the following, our

discussion will be based on the synchrotron radiation only. But for the use of reference the

expression of νa for SSC is also given here.

5.3 The one-spectral-component assumption

In this work, we make an assumption that for the two samples (see Section 5.5 for a descrip-

tion of the sample selection criteria) studied, the optical and γ/X-ray photons belong to a

same synchrotron continuum spectrum generated by a same group of hot electrons. This

assumption is based on the following three considerations. First, GRB prompt γ/X-ray

emission is often interpreted as synchrotron radiation of a group of non-thermal electrons.
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Figure 5.1: The four cases of the broad-band synchrotron spectrum of the GRB prompt
emission discussed in the text. The broken power law shape around νp is phenomenologically
derived from the observed γ-ray spectrum in GRBs; for its possible theoretical origins see
Section 5.2. νa is the self absorption frequency. The dotted line in the two top panels is the
low energy part of the spectrum when the self absorption is not considered. The two grey
vertical bars mark the positions of νopt and νX , respectively. νX = 0.3 keV is the lower end
of the Swift XRT band pass.
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If that is the case, the synchrotron spectrum must have a continuum extending to the low-

frequency regime up to the optical band, presumably with a gentle slope of fν ∝ ν1/3 unless

it has a self-absorption break. Secondly, the optical flux density is expected to always lie

below or near the extrapolation from the γ-ray spectrum. This is generally consistent with

observations in our sample (see Section 5.5 below and Figure 5.2). Finally, a temporal

correlation between the optical flux variation and the γ-ray light curve (LC) is observed

for the four GRBs in the our sample, suggesting the two components likely have the same

dynamical origin. This is the major supporting evidence for our assumption.

We notice that there are other scenarios on prompt γ/optical emission that have

been discussed in the literature. These include the synchrotron + SSC model (Kumar &

Panaitescu 2008; Racusin et al. 2008), the models invoke different emission radii for optical

and γ-ray emissions (Li & Waxman 2008; Fan et al. 2009), and the model invokes two

shock regions at a same emission radius (Yu et al. 2009). These models are relevant to

GRB 080319B, which clearly requires a separate spectral component to interpret the prompt

optical emission. For most other bursts studied in this work, although these models are not

ruled out, they are not demanded by the data. Our simple one-component model is adequate

to interpret these bursts, and we will hereafter adopt this one-component assumption.

5.4 Deriving R constraints from νa and SED

Let us consider the synchrotron emission as the prompt emission mechanism. Depending

on the locations of νm and νa, the ratio of the optical flux density to the flux density at νp

is given for four different spectral cases by

fνopt

fνp

=





(
νa
νp

)β1
(

νopt

νa

) 5
2 , if νm < νopt < νa − case I,

(
νopt

νp

)β1
, if νm < νa < νopt − case II,

(
νm
νp

)β1
(

νa
νm

) 1
3

(
νopt

νa

)2
,if νopt < νa < νm − case III,

(
νm
νp

)β1
(

νopt

νm

) 1
3 , if νa < νopt < νm − case IV.

(5.8)

Figure 5.1 illustrates these four spectral cases. There is also a variation of case III

(let us call it case III.5): νopt < νm < νa, for which the flux density ratio is fνopt/fνp =
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(νa/νp)β1(νm/νa)5/2(νopt/νm)2. We will come back to this case later and show that it is

almost exactly the same as case III. In some GRBs simultaneous observations of prompt X-

ray and γ-ray emissions are made. The X-ray spectrum corrected for the photo-absorption

in the soft end always nicely matches the power law extrapolated from γ-ray spectrum below

νp, without a need to invoke a break (e.g. Cenko et al. 2006; Romano et al. 2006; Page et

al. 2007). This requires that both νa and νm be smaller than νX = 0.3 keV, the lower end

of the Swift XRT band pass. We take this as a constraint in our analyses.

We aim to constrain R based on the spectral information, such as fνp , fνopt and β1,

using νa as a proxy. We know from Section 5.2 that νa is expressed in terms of fνp , νm

and R. So for each spectral case, we substitute the appropriate νa expression into the flux

density ratio equation or into the constraint on νa implied by the definition of that spectral

case (Eq. 8), and then get the R constraints.

For case I, substituting νa and letting νopt = 5× 1014 Hz (for R band), we have

R14 = 7.5×
(

C2

2

) 1
2

f
1
2
νopt

DL,28

(1 + z)
B

1
4
5

(
Γ300

1 + z

) 3
4

. (5.9)

There is also a justification criterion due to the case definition νa > νopt, where νa is directly

determined from the flux density ratio in Eq. (8) by

νa = 10(19− 12.2
2.5−β1

)

(
ν−β1

p,19

fνp

fνopt

) 1
2.5−β1

Hz. (5.10)

For case II, the flux density ratio does not depend on νa and hence on R. One

justification criterion for this case is that the spectral slope from the optical to the X- or

γ-rays has to be consistent with β1, i.e., βopt−X/γ = β1. Another criterion due to the case

definition is νa < νopt. Substituting with the expression of νa, the latter gives

R14 > 7.5×
(

C2

2

) 1
2 × (2.2)β1 × 10−2.5β1 × ν

−β1
2

p,19 f
1
2
νp

DL,28

(1 + z)
B

1
4
5

(
Γ300

1 + z

) 3
4

. (5.11)

For case III, when substituting the appropriate νa expression in Eq. (6) into the flux
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density ratio relation, it gives the expression of R in

R14 = 2.0×
(

C1

2

) 1
2

ν
− 1

4
m,17f

1
2
νopt

DL,28

(1 + z)
B

1
4
5

(
Γ300

1 + z

) 3
4

. (5.12)

We find for case III.5 that the R expression — obtained by substituting the appropriate νa

expression into Eq.(8) — is exactly the same as Eq. (12) except that C1 is replaced with

C2. We find the ratio C2/C1 lies in the range of (1, 1.6) for β1 = (−1.4, 0) (see in Appendix

B).

According to the definition of case III, νopt < νm < νX . Plugging this constraint of

νm into Eq. (12) and its counterpart equation for case III.5, it gives

2.1×
(

C1

2

) 1
2

f
1
2
νopt

DL,28

(1 + z)
< R14B

− 1
4

5

(
1 + z

Γ300

) 3
4

< 7.5×
(

C2

2

) 1
2

f
1
2
νopt

DL,28

(1 + z)
. (5.13)

Note that in writing this constraint we already combined the one for case III with the one

for case III.5. It is done by using C1 in the lower limit and C2 in the upper limit, such that

the combined constraint is conservative. From now on we expand the case III definition to

be νopt < min(νa, νm) so that it includes case III.5.

Two last pieces of constraining information for case III are from νa, i.e., νa(fνp , β1, R) <

νX and νa(fνp , β1, νm, R) > νopt, where we use the expressions for νa given in Eq. (6); the

first νa expression is for the situation of νm < νa and the second for the situation of νa < νm.

The first constraint gives

R14B
− 1

4
5

(
1 + z

Γ300

) 3
4

>

(
C2

2

) 1
2 × (0.85)1+β1 × 10−1.75−β1f

1
2
νpν

−β1
2

p,19

(
DL,28

1 + z

)
. (5.14)

The νa expression in the second constraint, νa > νopt, contains νm which can be expressed

in terms of fνopt and R from the R-expression for this spectral case. After substituting for

νm, the second constraint gives

R14B
− 1

4
5

(
1 + z

Γ300

) 3
4

>

(
C1

2

) 1
2 ×2.0×

[
2.4×10β1

(
fνopt

fνp

) 1
2

ν
β1
2

p,19

] 1
2/3−2β1

f
1
2
νopt

DL,28

(1 + z)
. (5.15)

Here the constraint νa > νopt gives a lower limit of R, contrary to what is inferred from the
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Figure 5.2: Observed optical to γ/X-ray broadband spectra for the 4 GRBs in our prompt
optical detection sample. The dotted line is a line connecting the optical and the lowest
energy γ/X-ray data points. For GRB 051111, only one γ-ray data point is shown, super-
posed with the single-power-law fitted spectral index and its confidence range. Adapted
from Vestrand et al. (2005), Vestrand et al. (2006), Yost et al. (2007a) and Page et al.
(2007), respectively.
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conventional relation between νa and R. It is because in this subtle occasion νa depends

not only on R but also on νm, and νm is expressed in terms of the optical flux density and

R, hence the combined R-dependence of νa is positive.

The final constraint for case III should be the overlapping region among those three

constraints obtained.

For case IV, νm can be obtained from the flux density ratio relation by

νm,17 =
[
6× 102β1

(
fνopt

fνp

)
νβ1

p,19

] 1
β1−1/3

, (5.16)

whose value will be used to justify the case definition νopt < νm < νX . Another constraint

from the case definition is νa(fνp , β1, νm, R) < νopt. Substituting with the νm expression,

this gives

R14B
− 1

4
5

(
1 + z

Γ300

) 3
4

>

(
C1

2

) 1
2 ×2.0×

[
2.4×10β1

(
fνopt

fνp

) 1
2

ν
β1
2

p,19

] 1
2/3−2β1

f
1
2
νopt

DL,28

(1 + z)
. (5.17)

Notice that two contrary constraints, νa > νopt in case III and νa < νopt in case IV, give

exactly the same constraints on R. This is because the νa expression in both cases contains

R and νm, but in case III νm is a strong function of R, ∝ R−4, while in case IV νm is

a function of the flux density ratio only. Thus in case III the R-dependence is reversed

between two sides of the inequality relation νa > νopt.

To summarize, the overall constraints on R are: Eq. (9) for case I, Eq. (11) for case

II, Eq. (13-15) for case III and Eq. (17) for case IV. In addition, when they are available,

the calculated νa or νm must satisfy the case definitions.

If the optical flux density has only an upper limit, the above R-constraints must be

taken with a conservative point of view wherever fνopt is involved. Let fνopt represent the

measured upper limit. For case I, Eq. (9) will give an upper limit for R. For case II, Eq.

(11) remains. For case III, Eq. (13) is left with only the upper limit of R, Eq. (14) remains

and Eq. (15) is useless. For case IV, Eq. (16) gives a lower limit of νm which can be used

to justify the case definition; Eq. (17) is useless. But we recall that Eq. (17) is obtained by

substituting the νm expression into the definition constraint νa(fνp , β1, νm, R) < νopt. Here,

instead of using the νm expression, we plug in the upper boundary of νm: νm < νX , then a
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new lower limit of R is obtained for case IV:

R14B
− 1

4
5

(
1 + z

Γ300

) 3
4

>

(
C1

2

) 1
2 × 0.94× (0.85)β1 × 10−β1f

1
2
νpν

−β1
2

p,19

(
DL,28

1 + z

)
. (5.18)

5.5 GRB data sample

Now we turn to the real GRB data to which our method developed above can be applied.

First we construct a small sample of GRBs whose prompt optical emission is not only

detected but is also variable and temporally correlated with the γ-rays. Excluding GRB

080319B that requires a new spectral component for optical emission, we identify four of

GRBs in the sample, all belonging to the long-duration class. Three of them show complex

fluctuations in their prompt γ-ray and optical LCs while the fourth is a single, smoothly

peaked event, so we utilize multiple time intervals for each of the three. The emission

properties of each time interval are listed in Table 1.

GRB 041219A is a very long (Tdur ∼ 500 s) burst and has multiple peaks in γ-ray

LC. It has three optical detection intervals; the first two are correlated with the first γ-ray

peak and the third with the second γ-ray peak (Vestrand et al. 2005).

GRB 050820A is a similar one except that it has denser optical temporal coverage.

Its optical LC is decomposed into two components : a smooth component with fast rise

and power-law decay, and a strongly variable component superposed on it (Vestrand et al.

2006). The smooth component is well accounted for by the early afterglow due to the GRB

outflow interacting with the ambient medium. The variable component is found to correlate

with the γ-ray peaks, suggesting it has the same origin as the γ-rays. In Table 1 the optical

emission properties for this burst are for the residual optical component after subtracting

the smooth component.

GRB 051111 has a single FRED (fast rise and exponential decay) peak in γ-rays

lasting ∼ 90 s. The first optical observation starts at 30 s after the burst trigger when the

γ-ray LC began to decay (Yost et al. 2007a). The prompt optical LC (before the γ-rays

die off) decays more steeply than that of the later optical afterglow emission. The prompt

optical emission has an excess above the back extrapolation of the later optical afterglow

component. It has a decay slope statistically compatible with that of the γ-ray LC, and
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its flux density is also compatible with the spectral extrapolation of the γ-rays (Yost et al.

2007a). This is good evidence that the prompt optical excess has the same origin as the

γ-rays. We use the flux density of the excess - not the total - optical emission in the first

optical observation time interval.

GRB 061121 has two separate γ-ray peaks. The last peak was caught by XRT,

UVOT and ROTSE, and it appears in LCs in all bands (Page et al. 2007). We use the

emission properties of two time intervals of the last peak, one during the rising phase, and

the other just at the peak.

We show the SEDs for all time intervals of the 4 GRBs in Figure 5.2 using the data

adapted from their original publications. Two SEDs show almost no break between the

optical and the γ-rays (corresponding to the theoretical spectrum case II) or a break very

close to the optical. In all other cases, at least one break is needed between the optical and

the γ-rays bands. The break(s) could be νa, νm, or both.

Besides this first data sample for optical detections, we also define a second data

sample which is composed of those optically “dark” GRBs during the prompt phase. This

sample is adopted from Yost et al. (2007a), who reported the bursts whose prompt phase

was observed by ROTSE but only upper limits on the optical flux were retrieved. Each

burst has either a single or multiple time intervals of ROTSE exposure during the prompt

phase. For bursts with multiple optical time intervals, we use the interval which has the

smallest measurement error in the γ-ray flux density fνp - usually the interval that has the

brightest γ-ray flux. The only exception is GRB 061222A, for which three time intervals

are used. This is because all the three intervals are located at the brightest part of the

γ-ray LC. They all have small errors in fνp , and the instantaneous γ-ray spectral index β1

are available for all three intervals. The motivation of selecting this sample is the following:

Even if there is no direct detection of prompt optical emission, one can speculate the

existence of a prompt optical emission component that tracks the γ-ray LCs, which is the

spectral extension of the prompt γ-ray spectrum into the optical band. The flux level of

this component must be fainter than the upper limit set by the ROTSE observations. We

want to check whether inferred R constraints of this sample is consistent with the sample

with optical detection, and whether the non-detection of optical emission of this sample is
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due to stronger synchrotron self absorption associated with a smaller R.

5.6 Results

We apply the constraints on R derived in Section 5.4 to the first sample with prompt optical

detections. The results for all four broad-band spectral cases are listed in Table 1. For most

bursts in the sample, case II can be immediately ruled out because usually βopt−X > β1.

Case IV is also ruled out for some bursts because the calculated νm is À 0.3 keV. For

GRB 041219A, case I can be ruled out for its first time interval because the case definition

is not satisfied by the calculated νa. Actually this interval is consistent with case II, i.e.,

the optical intensity is consistent with the simple power-law extrapolation from the γ-ray

spectrum.

We plot the permitted R-ranges for each observation time interval in the sample

for all possible spectral cases as floating bars in Figure 5.3. The observed optical to γ-ray

SED restricts νa from being much larger than νopt. Accordingly, the results in Figure 5.3

give a constraint on the emission site for most time intervals of this sample: R ≥ a few

×1014 Γ3/4
300B

1/4
5 cm. For two time intervals (041219A Int. 3 and 050820A Int. 3) in the

sample, some spectral cases can be ruled out, thus the R-constraint can be pinned down to

R ≈ (1014 − 1015) Γ3/4
300B

1/4
5 cm.

Similar results for the sample with only prompt optical upper limits are plotted in

Figure 5.4. In about half (6/13) of the sample a heavy self absorption, i.e. large νa, is

needed to account for the optical deficit, corresponding to the spectral case I and III, which

implies a constraint of R < 1015 Γ3/4
300B

1/4
5 cm. For the remaining half (7/13) of the sample,

a spectral break at νm which is below νX but is much larger than νopt alone can give rise

to the required deficit in optical, while νa can keep being smaller than νopt, corresponding

to case IV. Thus for this half of the sample, we can provide no constraint on νa and hence

on R.

Comparing Figure 5.4 with Figure 5.3, we find that there are always overlapping

regions between the permitted R-ranges for the two samples. Therefore we can not draw

any statistically significant distinction between these two samples as regards the constraints

91



Ta
b

le
1

:
C

o
n

st
ra

in
ts

o
n

th
e

em
is

si
o

n
si

te
ra

d
iu

s
fo

r
G

R
B

s
in

w
h

ic
h

a
p

ro
m

p
t

o
p

tic
al

co
m

p
o

n
en

t
te

m
p

o
ra

lly
co

rr
el

at
ed

w
ith

th
eγ

-r
ay

em
is

si
o

n
is

p
re

se
n

t.f ν
p

an
d
β

1
ar

e
th

e
B

AT
flu

x
d

en
si

ty
an

d
th

e
B

AT
sp

ec
tr

al
in

d
ex

,
re

sp
ec

tiv
el

y;
th

ey
ar

e
d

et
er

m
in

ed
d

ire
ct

ly
fr

o
m

th
e

sa
m

e
ti

m
e

in
te

rv
al

as
th

at
o

f
th

e
o

p
tic

al
o

b
se

rv
at

io
n

.
A

H
0

=
7

1
,Ω

Λ
=

0
.7

3
,Ω

M
=

0
.2

7
u

n
iv

er
se

is
as

su
m

ed
.

F
o

r
G

R
B

s
w

ith
o

u
t

a
kn

ow
n

re
d

sh
ift

,
z

=
2

is
as

su
m

ed
.

T
h

e
“\

”
sy

m
b

o
lm

ea
n

s
th

e
S

E
D

is
ap

p
ar

en
tly

in
co

n
si

st
en

t
w

ith
,

o
r

th
e

d
er

iv
ed

ν
a

o
r
ν

m
vi

o
la

te
s,

th
e

sp
ec

tr
al

ca
se

d
efi

n
iti

o
n

,
th

u
s

th
e

co
rr

es
p

o
n

d
in

g
sp

ec
tr

al
ca

se
is

ru
le

d
o

u
t.

S
p

ec
tr

al
ca

se
(I

I)
is

ru
le

d
o

u
t

fo
r

th
e

m
o

st
o

f
th

e
sa

m
p

le
b

ec
au

seβ
1

is
m

u
ch

st
ee

p
er

th
anβ

o
p
t−

X
/
γ
.

tim
e

in
t.

z
f

ν
o
p
t

ν
p

f
ν

p
β

1
R

ef
.∗

R
(1

0
1
4
Γ

3
/
4

3
0
0
B

1
/
4

5
cm

)
ν

a
(e

V
)

ν
m

(e
V

)
(s

)
(m

Jy
)

(1
01

9
H

z)
(m

Jy
)

(I
)

(I
I)

(I
II)

(I
V

)
(I

)
(I

V
)

0
4

1
2

1
9

A
2

0
3

-
2

7
5

(2
)

3
1

0
.6

5
-0

.1
6

1

H
H8
.7

>
9
.0

(8
.1

,8
.7

)
>

8
.1

A A2
2

.2
2

8
8

-
3

1
8

1
0

1
3

-0
.3

2
1

8
.4

C
(8

.0
,1

8
.4

)
>

8
.0

4
4

0
3

3
0

-
4

0
3

4
1

2
-0

.6
4

1
4

.4
C

(3
.5

,1
4

.4
)

X
X

X
>

3
.0

1
2

H
H

6
6

0

0
5

0
8

2
0

A
2

5
2

-
2

8
2

2
.6

7
.3

1
.6

0
.5

6
-0

.3
2

1
5

.5
>

2
0

(1
2

,1
5

.5
)

>
1
2

2
.4

4
.7

4
0

2
-

4
3

2
1

.3
1

.6
0

.4
-0

.3
6

.5
C

(2
.8

,6
.5

)
>

2
.8

4
4

2
5

1
5

-
5

4
5

0
.2

5
2

.6
0

.1
3

-0
.7

3
.7

C
(0

.9
,3

.7
)

X
X

X
>

0
.6

1
8

X
X
X

1
7

0
0

0
5

1
1

1
1

3
2

-
3

2
1

.5
5

8
.2

1
.7

0
.0

8
-0

.4
8

3
,4

1
8

>
2
2

(1
4

.5
,1

8
)

>
1
4
.5

2
.3

3
.2

0
6

1
1

2
1

5
6

-
5

6
1

.3
1

.8
1

.2
0

.1
4

-0
.4

2
5

7
.8

C
(4

.1
,7

.8
)

>
4
.1

3
.5

1
9

7
6

-
7

6
7

1
.2

7
-0

.2
1

1
3

C
(4

.7
,1

3
)

>
4
.7

4
.3

9
7

∗
1

:
Ve

st
ra

n
d

et
al

.
(2

0
0

5
);

2
:

Ve
st

ra
n

d
et

al
.

(2
0

0
6

);
3

:
Yo

st
e

t
al

.
(2

0
0

7
a)

;
4

:
H

ill
et

al
.

(2
0

0
5

);
5

:
P

ag
e

et
al

.
(2

0
0

7
).

92



GR
B 

04
12

19
A

GR
B 

05
08

20
A

GR
B 

05
11

11

GR
B 

06
11

21
GR

B 
06

11
21

1

10

100

In
t. 

2

In
t. 

1

In
t. 

3
In

t. 
2

In
t. 

1

 

R
 (1

014
3/

4
30

0B
1/

4
5

 c
m

)

  Case I and III
  Case II
  Case IV

In
t. 

1
In

t. 
2

In
t. 

3

Figure 5.3: The constraints on the emission radii for four GRBs with prompt optical detec-
tions. For 3 bursts of the sample, more than one time intervals per burst are used. Based
on the emission spectral information of individual bursts or time intervals, spectral case II
and IV, respectively, are already ruled out for miner parts of the sample. See details in
Table 1.

on their emission sites.

5.6.1 The dependence of results on Γ and B

Strictly speaking, the constraint on R is dependent on the source LF Γ and the magnetic

field strength B. Independent determinations of Γ and B for each GRB in our sample are

not easy. So in this work we adopt the theoretically anticipated values in the standard

internal-shock model: Γ ≈ 300, B ≈ 105 G. In the following we will justify these adopted

values based on the available information of the GRBs in our sample.

Constraints on Γ

Recently Molinari et al. (2007) inferred Γ ≈ 400 for two GRBs by directly observing the

deceleration time of the GRB outflow. This value is in agreement with what we adopt. In

addition, here we present some attempts to estimate Γ for each GRB in our first sample

(with optical detections) using three independent arguments, which suggests that the choice
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Figure 5.4: The constraints on the emission radii for GRBs without prompt optical de-
tection. GRB 061222A has three time intervals that have information available for our
calculation. Based on the emission spectral information, spectral case II is already ruled
out for the whole sample, and spectral case IV is ruled out for about half of the sample.
For eight bursts without known redshift, z = 2 is assumed.

Table 5.2: The Γ constraints from the requirement that the photon annihilation optical
depth τγγ < 1. A H0 = 71, ΩΛ = 0.73, ΩM= 0.27 universe is assumed. For the GRB
without known redshift, z = 2 is assumed.

GRB
time int.

z
δT

N?
1 α

emax emax,an Ref.∗ Γ
(s) (s) (MeV) (Γ2

2 MeV)

041219A
203 - 275 (2) 15 0.15 1.80 0.2 1450

1
> 56

288 - 318 (2) 5 0.56 1.75 0.2 1450 > 93
330 - 403 (2) 2 0.10 2.15 0.2 1450 > 49

050820A
252 - 282 2.6 15 0.30 2.52 1.2 168

2
> 53

402 - 432 2.6 15 0.063 2.00 0.5 403 > 53
515 - 545 2.6 10 0.015 1.96 0.25 806 > 41

051111 32 - 32 1.55 8 0.035 1.48 0.15 2680 3 > 65
061121 76 - 76 1.3 1 2.7 < 2.9 1.4 359 4 > 53

? In units of s−1cm−2MeV−1.
∗ 1: Vestrand et al. (2005); 2: Cenko et al. (2006); 3: Yost et al. (2007a); 4: Page et al. (2007).

94



Table 5.3: The Γ constraints derived from the deceleration time tdec constraints for ISM
and Wind medium, respectively. A H0 = 71, ΩΛ = 0.73, ΩM= 0.27 universe is assumed.
For the GRB without known redshift, z = 2 is assumed. For GRB 041219A the inferred
tdec-constraint is very loose, partly because of a lack of X-ray afterglow observation, and
also because the early infrared light curve (t ≤ 6 × 103 s) is highly variable, possibly of
internal shock origin, which makes it difficult to infer tdec to be these earlier times. In the
cited reference for GRB 061121, only Eγ,iso is given, without giving the γ-ray fluence.

GRB z
tdec F ?

γ
Eγ,iso Ref.∗

Γ
(s) (1053 erg) (η−1/8

γ,0.2 n−1/8) (η−1/4
γ,0.2 A

−1/4
∗ )

041219A (2) < 3× 104 15.5 15.2 1 > 73 > 33
050820A 2.6 < 500 5.3 8.3 2, 3 > 337 > 81
051111 1.55 < 100 0.39 0.24 4 > 349 > 46
061121 1.3 < 200 – 2.8 5 > 352 > 70

? γ-ray fluence, in units of 10−5 erg cm−2.
∗ 1: Vestrand et al. (2005); 2: Vestrand et al. (2006); 3: Cenko et al. (2006); 4: Yost et al. (2007a);
5: Page et al. (2007).

of Γ ≈ 300 is reasonable.

(1) The variability time scale argument. For the standard scenario in which the

variability time scale is that of the central engine and that the ejecta form a conical jet with

opening angle much larger than 1/Γ, the observed variability time scale should be at least

the angular spreading time. This gives the constraint

Γ > 41[R14(1 + z)/δT ]1/2, (5.19)

where δT is the observed variability time scale, defined as the rising or decaying time scale

of the pulses in the LC. From the data we find that δT is ≈ 1 - 15 s for our sample. The

Γ-constraint from this argument is rather weak compared with the other two constraints

described below.

(2) The photon annihilation opacity argument. A GRB releases a huge amount

of energy (∼ 1053 erg isotropically) in terms of high energy photons from a small volume,

which are subject to the photon-photon annihilation (e.g. Baring & Harding 1997; Lithwick

& Sari 2001). Suppose emax is the maximum photon energy detected in the burst, the fact

that a single power-law or a piece-wise power-law spectrum is detected for most GRBs up
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to emax implies that the optical depth of photon-photon pair production τγγ for the photons

of energy emax is smaller than unity. τγγ is related to the total number of photons and the

size of the emission region, the latter of which can be expressed in terms of Γ and δT within

the internal shock model. Thus this requirement can impose a lower limit on Γ within

the internal shock model. More generally the opacity argument can give a constraint in

the R − Γ space (Gupta & Zhang 2008; Murase & Ioka 2008; Zhang & Pe’er 2009). Our

following treatment applies to the internal shock model that is commonly discussed in the

literature.

The minimum photon energy at which the photons are able to annihilate with pho-

tons of energy emax is:

emax,an =
(Γmec

2)2

emax(1 + z)2
. (5.20)

The power-law form spectrum just below emax is described as in

N(e) = N1

(
e

MeV

)−α

, (5.21)

where e is the detected photon energy, N(e) – in units of [s−1cm−2MeV−1] – is the number

of photons detected per unit time per unit area per unit energy at e, N1 is equal to N(e)

at e = 1 MeV, and α is the photon index.

We followed the formulae of Lithwick & Sari (2001) in their Limit A case to calculate

the lower limit of Γ due to τγγ < 1 for our optical detection sample. The results, as well

as the observational properties that are used, are summarized in Table 5.2. Note that for

all bursts in the sample, emax,an À emax for reasonable values of Γ (e.g., ∼ 102). Thus

our calculation has implicitly assumed that the power-law form spectrum detected below

emax would actually extend well beyond emax and up to emax,an, which is usually below

the detector’s limited bandpass. More rigorous calculations require the knowledge of the

spectral shape below peak energy of the spectrum (Gupta & Zhang 2008). However, the

optical depth is much more sensitive to Γ than the spectral indices, and the derived Γ

constraint is not significantly modified by performing the more rigorous treatment. The

above treatment is adequate to serve our purpose.

(3) The deceleration time constraint. In the well established external shock model
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for GRB afterglows (e.g., Mészáros & Rees 1997; Sari, Piran & Narayan 1998; Chevalier

& Li 2000; see Piran 2005 for a review), the onset of afterglow marks the time, as known

as the deceleration time tdec, when one half of the total kinetic energy of the GRB outflow

Ek is deposited to the shocked circumburst medium. The afterglow light curve should

rise before tdec and decay in a power law with time after tdec (e.g., Molinari et al. 2007).

The deceleration time tdec is determined by Ek, outflow bulk LF Γ and the density of the

circumburst medium, either a constant density medium [interstellar medium (ISM)] or a

wind-like medium [ρ(R) = A×R−2]:

tdec =





(
3Ek,iso

64πnmpc5Γ8

)1/3
(1 + z), for ISM,

Ek,iso(1+z)
16πAc3Γ4 , for Wind,

(5.22)

where n is the proton number density of the ISM medium, and A = 5 × 1011A∗ g cm−1 is

the Wind medium density normalization parameter. The isotropic equivalent kinetic energy

Ek,iso can be related to the isotropic energy release in γ-ray radiation Eγ,iso by an energy

conversion efficiency factor ηγ = Eγ,iso/Ek,iso.

The afterglow observations (X-rays and optical) for our sample show either a power

law decay starting from the earliest observation interval or, a long-lasting shallow decay

followed by a normal power law decay. It suggests that the afterglow onsets should be

earlier than the start of the single power law decay or the start of the shallow decay.

One can use the first observation data in the decaying afterglow phase to constraint the

deceleration time to be earlier than the observational epoch (e.g., Zhang et al. 2006). From

the data, we find the deceleration time tdec < 3 × 104 s for GRB 041219a, and tdec < 100

- 500 s for the other 3 GRBs (050820a, 051111, 061121). Assuming ηγ = 0.2, n = 1 cm−3

and A∗ = 1, we find: for ISM, Γ > 73 for 041219a, Γ ∼> 350 for the other 3 GRBs; for Wind,

Γ > 33 for 041219a, Γ ∼> 50 for the other 3. The results are summarized in Table 5.3. We

have checked of the compliance with closure relationships predicted by the external shock

models for these bursts during the afterglow phase. It turns out that two (GRB 050820A

and 061121) out of the 4 GRBs are consistent with and in favour of the ISM environment

scenario, while the other two are consistent with both scenarios and can not discriminate

between them.
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To summarize, with the available data, one can only constrain but cannot determine

Γ of the GRBs in our sample. On the other hand, all three constraints derived from the

data are consistent with Γ = 300 adopted in our calculations. In particular, the Γ-constraint

derived from the argument (3), which is the most stringent one among the three arguments,

indicate that the assumed value of Γ = 300 is reasonable.

Constraints on B

The B value in the emission region is a function of R. There are two possible origins of

the magnetic field in the emission region. The first component is the global magnetic field

entrained by the ejecta from the central engine. Let’s assume B ∼ 1014 G at the central

engine, a typical value for a fast rotating magnetar or a fast rotating black hole accretion

disk system - the two most plausible GRB central engine candidates. The B value drops as

R−2 with R up to the light cylinder, and then drops as R−1 thereafter (Goldreich & Julian

1969). Given that the central rotating source has a radius of R∗ ∼ 106 cm and a rotation

period of P ∼ 1 ms, at a radius R ∼ 1014 cm, the field that is carried within the outflow

has a strength of B ≈ 2× 105B∗,14R
2∗,6P−1

msR−1
14 G.

The second B component is a random field generated in-situ in the emission region,

likely in a relativistic shock via the Weibel instability (Medvedev & Loeb 1999). This

random field also follows the same R-dependence and is of the same order as the engine-

related B component if εB - the ratio of the post-shock magnetic energy density to the total

energy density - is not too small (Zhang & Mészáros 2002).

One can also briefly estimate the local field strength by relating the GRB γ-ray

peak photon energy, typically ∼ 0.1 MeV, with the synchrotron characteristic frequency,

νp = eBγ2Γ/[2πmec(1+z)], where γ is the typical energy of electrons. In the internal-shock

model, γ = εef(p)(mp/me)θp, where εe is the ratio of the electron energy density over the

total thermal energy density in the post-shock fluid, f(p) = (p − 2)/(p − 1) and p is the

electron energy spectral index. The parameter θp is the fractional energy gain of a proton

passing the shock which depends only on the relative LF between the fluids downstream

and upstream. For internal shocks, θp is not dependent on the shell bulk LF Γ and is of the

order of unity. For εe = 0.3 and p = 3, we have γ ≈ 300. Thus the required B value can be
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estimated as B ≈ 5× 105Γ−1
300γ

−2
300(

1+z
2 ) G.

The three crude estimates are marginally consistent with each other. We have taken

B = 105B5 G as the typical value throughout the text. Of course a large uncertainty exists

due to our lack of understanding on the field properties, but it is reconciled by the very

weak dependence of R on B (1/4 power).

5.6.2 Comparison with results from an alternative modelling approach

Kumar & McMahon (2008) developed a general method of modelling GRB’s γ-ray emission

properties. Their method considers the synchrotron and the SSC emission, respectively,

as the radiation mechanism, takes into account the radiative cooling of electrons, and uses

observed emission properties (such as the peak flux density and the pulse duration) to

search for the allowed space of the model parameters such as R and Γ. Here we also apply

their method for the synchrotron case to our optical detection sample using their code, and

compare the results with ours. We add a new constraint into the module that controls the

allowed model parameter space, which is that the optical flux density calculated from the

model has to match the observed one within a ±50% range.

To use this detailed modelling method, we have to specify which standard syn-

chrotron spectral regime a GRB emission interval is in. The spectral indices (β1) of the

optical detection sample in Table 1 have a variety of values around -1/2, based on which we

classify the sample into 4 categories and apply the detailed modelling method accordingly.

(1) For those time intervals that are most probably consistent with the β1 = −1/2 regime

(051111 and 061121 int. 1), this method gives R ≈ 1014 − 1016 cm. (2) For those possibly

consistent with both β1 = −1/2 and β1 = −(p − 1)/2 where p > 2 (041219A int. 3 and

050820A int. 3), the method in the β1 = −1/2 regime gives R ≈ 1014−1015 cm, while in the

β1 = −(p− 1)/2 regime it gives no allowed R-space — but if we relax the fνopt constraint,

it gives R ≈ 1017 − 1018 cm. (3) For those possibly consistent with both β1 = −1/2 and

β1 = −(p − 1)/2 where 1 < p < 2 (041219A int. 2, 050820A int. 1 and 2), the method in

the β1 = −1/2 regime gives R ≈ 1014−1015 cm; however, the code provided by the authors

is not applicable when p < 2. (4) The last category are those inconsistent with β1 = −1/2

but probably consistent with β1 = −(p− 1)/2 if 1 < p < 2 (041219A int. 1 and 061121 int.
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2) for which the code is not applicable.

Overall, we find that for the major part of the optical detection sample where the

detailed modelling method (Kumar & McMahon 2008) is applicable the allowed spaces for

R from this method are about 1014 − 1016 cm. This is approximately consistent with the

findings from our approach that R is ≥ (a few ×1014 − 1015) Γ3/4
300B

1/4
5 cm for most of the

intervals in the sample, and 1014 Γ3/4
300B

1/4
5 cm < R < 1015 Γ3/4

300B
1/4
5 cm for the remaining

two intervals in the sample.

5.7 Conclusion and Discussions

Based on the assumption that the prompt optical and γ-ray emissions belong to the same

synchrotron continuum of a group of hot electrons, we make constraints on the location of

the prompt emission site for a sample of GRBs whose prompt optical emission is detected

to temporally tracking the γ-ray LCs, by determining the location of νa in their SED. Our

analysis shows that for most of the intervals in this sample the distance of the prompt

emission site from the explosion centre R is ≥ (a few ×1014 − 1015)Γ3/4
300B

1/4
5 cm, and for

the remaining two intervals, the emission site is (1014 − 1015)Γ3/4
300B

1/4
5 cm away from the

explosion centre.

The dependence of the distance constraint on the GRB outflow LF Γ is not negligible.

On the other hand, various indirect observational constraints on Γ point to Γ ≥ 300 (e.g.

Molinari et al. 2007; and even Γ ≥ 600 for GRB 080916C, Abdo et al. 2009). The derived

observational constraints on Γ for bursts of this sample (Section 5.6.1) are consistent with

such an inference. In our work, we take Γ = 300 as a typical value. A higher Γ would

only make the above distance constraint even larger. Our knowledge of the local magnetic

field strength B is less certain, although the R-dependence of B is weak. Several crude

estimates of B based on the synchrotron radiation mechanism for GRB prompt emission

suggest B ∼ 105 G at R ∼ 1014 cm. This typical value has been adopted in our calculations.

The R-constraint we obtained is inconsistent with the photospheric emission model

in which the prompt emission arises at the photosphere radius of 1011 − 1012 cm (Rees

& Mészáros 2005; Ryde et al. 2006; Thompson et al. 2007). This result alone can not
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discriminate between the fireball internal shock model and the magnetic outflow model. By

comprehensive modeling the GRB prompt γ-rays and early X-rays, Kumar et al. (2007)

concluded a prompt emission site of R ∼ 1015−1016 cm, which is supported by their further

general modeling of the γ-ray emission properties (Kumar & McMahon 2008). A large R

is derived for GRB 080916C through the pair opacity constraint (Abdo et al. 2009; Zhang

& Pe’er 2009)2 and for GRB 080319B through the synchrotron self-absorption constraint

(Racusin et al. 2008) and the SSC scattering optical depth constraint (Kumar & Panaitescu

2008). In summary, a large prompt emission distance from the central engine seems to be

supported by three independent approaches, respectively, i.e. in γ/X-rays (e.g., Lazzati &

Begelman 2005; Lyutikov 2006; Kumar et al. 2007), in GeV γ-rays (Abdo et al. 2009;

Zhang & Pe’er 2009), and in the optical band (this work).

We have also studied a sample of GRBs with prompt optical non-detections. Apply-

ing the same technique, we do not find any inconsistency between their R constraints and

those of the optical detection sample. This result is inherited from the findings by Yost et al.

(2007b) that no distinction in distributions of β1 and βopt−γ can be drawn between the op-

tically dark GRBs and the GRBs with optical detections. However, this is only because the

currently limited instrumental sensitivity prevents a distinction from being drawn. Deeper

observations in the future in the optical band would provide further information regarding

whether the optical deficit is due to a heavier synchrotron self-absorption in these bursts.

5.7.1 Multi-color information for the low-energy spectrum

If multi-color photometry near the optical band exists for the same time interval during the

prompt phase, it would provide the local spectral index near the optical band (provided that

the extinction correction is properly made). This would be helpful to identify the spectral

case the data satisfy. For example, the spectral indices near optical differ by ∆β = 5/3

between the cases III and IV, and by ∆β = 1/2 between the cases I and III. Unfortunately,

this kind of observational information is unavailable for all the time intervals of the optical

detection sample we have considered in Table 1. The hope is that future multi-band prompt
2Although both work obtained large R, the inference of R in Abdo et al. (2009) is based specifically on

the internal shock model while Zhang & Pe’er (2009) gave a more model-independent constraint on R.
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optical detections may be able to break the spectral case degeneracy and to tighten the R-

constraint.

5.7.2 Limitations of the method

Our method is based on the assumption that the optical emission is emitted from the

same group of electrons that produce the γ-rays in the same site via the same synchrotron

radiation. This one component assumption has some supports (see Section 5.3) but certainly

is not conclusive.

There are three other scenarios that have been discussed in the literature (mostly

motivated by interpreting GRB 080319B). The first one invokes two emission zones for op-

tical and γ-rays. For example, in the internal-shock-model based residual collision scenario

proposed by Li & Waxman (2008), the shells with high LF contrast in a GRB outflow

collide first and merge at smaller radii, producing the γ/X-rays. Later those merged shells

with low LF contrasts would collide mildly at later times and larger radii, giving rise to

optical emission. Alternatively, if the outflow is neutron rich, the proton shells tend to

collide at smaller radii to power γ/X-rays, while the free neutrons only decay at large radii

and the decay products would be collided by later injected faster proton shells and power

optical emission at larger radii (Fan et al. 2009). In both scenarios, it is expected that

the observed optical pulse peak emission time is delayed by Ropt/2Γ2c with respect to the

γ-ray pulse peak emission time, which may be in principle tested if the data quality is high.

These models however do not naturally predict a smooth extension of γ-ray spectrum to

the optical band without distinct spectral features. Although they cannot be ruled out by

the data in our sample, they are more complicated than our one-zone model.

Secondly, our analysis is not applicable in the following scenario (Yu et al. 2009):

a pair of shocks (reverse shock and forward shock) arise when two shells collide in the

internal-shock model; different populations of electrons are accelerated in each of the two

shocks and the two populations have different typical electron energies and different shock-

generated magnetic strengths. The characteristic synchrotron frequencies are different -

the forward shock produces the optical emission, while the reverse shock produces the γ-

ray emission. These two emissions are two spectrally independent components but are
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temporally correlated because the heating of the two electron populations arises from the

same dynamical process. Although this model may interpret the peculiar SED shape of

GRB 080319B whose prompt optical flux density exceeds the extrapolation from the γ-ray

spectrum by 4 orders of magnitude, it is unclear whether it can work properly for the bursts

in our optical detection sample.

Finally, the synchrotron + SSC scenario (Kumar & Panaitescu 2008; Racusin et

al. 2008) has been proposed to interpret GRB 080319B. For our sample, there is no need

to introduce a second distinct spectral component. We consider only pure synchrotron

radiation in deriving constraints on R, although we have given the νa estimation for SSC

radiation whose value is similar to νa for synchrotron. In principle, it is possible that

the observed emission from optical to γ-rays is dominated by SSC. If this is the case, our

approach of constraining R by calculating νa may give results somewhat different from the

synchrotron case for the same sample of bursts. We did not carry out the analysis for the

SSC case because the detailed shape of the SSC spectra is much more complicated than the

synchrotron one. Note that our approach assumes that the optical and the γ-rays are from

the same group of electrons due to the same radiation mechanism. In the SSC scenario this

approach is applicable only if the SSC component dominates a large spectral band from the

γ-ray down to the optical and the synchrotron component has to lie well below the optical

band. This is usually not expected in the SSC models (e.g. Piran et al. 2009). In any case,

if SSC is involved in interpreting any part of the spectrum in our sample, then our analysis

is no longer applicable.
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Chapter 6

Late Jet in GRBs

6.1 Introduction: late jet and a multi-component GRB stel-

lar explosion

As was reviewed in Chapter 1, two recently discovered GRB features point to the emergence

of a late outflow (jet) after the main γ-ray producing outflow has died. The first is the X-

ray flares observed at a few ×102 − 103 s (as late as 104 − 105 s in some cases) after the

prompt burst; the second is the shallowly decaying component in the overall X-ray light

curve. On the other hand, there is a handful cases for which an associated supernova (SN)

was confirmed (also see Chapter 1 for details). This strongly favors that GRBs originate

from massive star explosions. If the GRB happens approximately at the same time as the

SN explosion, it is a natural outcome that when the late jet comes out of the central engine,

it will catch up and run into any explosive remnant on its way. This is the scenario we will

investigate in this chapter.

There is another motivation for looking at this scenario. In those cases where we

don’t see a SN spectroscopically or photometrically in the optical band, we can still hope

to explore the existence and properties of the SN accompanying the GRB by looking at the

interaction of a late jet with the SN remnant and the emission from it. It is likely that

every long-duration GRB has a SN accompanying it but some extrinsic and/or intrinsic bias

might have hindered the optical detection of the SN component (Woosley & Bloom 2006).
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A late jet provides a chance to test this picture in the cases where the ordinary SN features

are not easy to detect.

Given the evidences for the existence of a late jet and the physical association of

SN and GRBs, one expects a number of different interactions between the following four

components in a GRB event (see Figure 6.1 for an illustration): (i) A highly relativistic

(Γ ∼ 300 − 1000) narrow jet along the rotation axis with an opening angle ∼ 0.1 radian

that produces the main GRB event; (ii) A nearly spherically symmetric SN ejecta moving

with speed ∼ 104 km s−1; (iii) A cocoon fireball created by the passage of the main GRB

jet through the star; (iv) A late relativistic jet responsible for the late X-ray flares after

the end of the main GRB. See Woosley & Heger (2006) for a detailed version of the multi-

component GRB scenario. Also see Wheeler et al. (2000) for a similar but more detailed

model which relates various energetic phenomena such as SN, GRB and magnetar in a single

stellar explosion.

We will investigate the interactions of a late jet which might have a similar Lorentz

factor (LF) and opening angle to those of the main GRB jet, with the expanding SN ejecta

and the cocoon. We assume that the SN ejecta and the main GRB jet are launched from

the central source at about the same time 1. Wheeler et al. (2002) described a similar

stellar collapsing scenario where a delayed relativistic jet from the eventually formed black

hole catches up and collides with an earlier proto-pulsar toroidal field generated mildly

relativistic jet as an origin of the γ-ray burst. Ghisellini et al. (2007) firstly considered the

collision between a jetted fireball from an intermittent GRB central engine and a stationary

cocoon as an alternative to the standard internal shock scenario, but with higher efficiency.

Here we are not attempting to explain how a relativistic jet is formed and a γ-ray burst

is produced from the relativistic jet or how an accompanying SN is generated, rather we

are trying to constrain the physical properties of the late jet, SN ejecta and the cocoon

by calculating the emissions from their interactions, and to verify the general picture of

GRB-SN connection.

We will use the following fiducial values for a variety of model parameters. For the
1The observational constraint is that GRB and SN occur within ∼ 1 day (e.g., Woosley & Bloom 2006).

SN explosion theories estimate that the SN shock breaks out at a few tens of seconds after the core rebounce
(e.g., Janka et al. 2007 and references therein); this time scale is small compared to the delay of the late jet
(tF ≥ 102 s).

105



late jet, a total energy Ej ∼ 1051 erg, opening angle θj ∼ 0.1 radian, LF Γj ∼ 100, a delay

respective to the launching of the main GRB jet, cocoon and SN ejecta (in our picture the

three are launched at more or less the same time) tF ∼ 102 s, and a duration tdur ∼ 102 s;

for the SN ejecta, we use an isotropic-equivalent mass MSN ∼ 10 M¯ and speed VSN ∼ 109

cm s−1; for the cocoon, we use an energy Ec ∼ 1051 erg, a terminal LF Γc ∼ 10 and an

opening angle θc ∼ 0.6 radian. Nevertheless an appropriate range of numerical values is

assigned to each parameter in the real calculation (e.g., Ej could be two orders of magnitude

larger or smaller than the fiducial one, cocoon speed could be sub-relativistic and tF could

be as large as 104 − 105 s).

The late jet will run into the SN ejecta first (at a distance∼ 1011 cm; see Figure 6.2a),

and then catches up and run into the cocoon – if it successfully crosses the ejecta – at a larger

distance (∼ 1012 − 1014 cm; see Figure 6.2b). We investigate the interactions of the late

jet with the SN ejecta in Section 6.2 and with the cocoon in Section 6.3 and calculate their

associated emissions. The predicted emissions and their detection prospects are confronted

with current observational data in Section 6.4. The summary and implications are given in

Section 6.5.

6.2 Late jet - SN ejecta interaction

Since the late jet is highly relativistic and the SN ejecta is sub-relativistic, the late jet will

catch up with the SN ejecta in a time roughly equal to the distance of the SN ejecta from

the explosion center (where the jet emerged), rSN , divided by light speed c. If the late jet

is launched with a delay of tF , then rSN ≈ VSN tF ≈ 1011VSN,9tF,2 cm (hereafter we use

the convention Xn = X/10n unless specifically notified). At this time the radial width of

the ejecta is about the same size of the initial stellar envelope, ∆SN ∼ r∗ ∼ 1011 cm. The

ejecta has hardly moved from the initial position of the progenitor stellar envelope for a jet

delay tF ∼ 100 s. The particle density in the SN ejecta is nSN ' 1024 V −2
SN,9t

−2
F,2MSN,1∆−1

SN,11

cm−3, where MSN is in units of the solar mass, and it is extremely optically thick. If there

is any emission from the interaction between the late jet and the SN ejecta, that emission

should be thermal.
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Figure 6.1: Schematic illustration of multiple components in a long GRB and an accompa-
nying supernova (SN). An initial, highly relativistic jet, as shown in the right end of the
illustration, is responsible for the prompt GRB. A cocoon, that was inflated by the initial
GRB jet as the jet was punching through the envelope of the progenitor star, has broken
out of the stellar surface at the same time as the main jet, and has accelerated to mildly
relativistic speed. A nearly spherically symmetric sub-relativistic ejecta is responsible for
the SN. A late jet responsible for the late X-ray flares in GRBs is launched from the central
source and will catch up with the above components. The “late” cocoon is produced when
the late jet crosses the SN ejecta. The distances are not to scale.
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(a)

(b)

Figure 6.2: (a): Schematic illustration of the late jet - SN ejecta interaction, at a slightly
later time than shown in Figure 6.1. The breakout of the “late” cocoon produces a short
thermal emission lasting for ∼ 10 s. (b): Schematic illustration of the late jet - cocoon
interaction, at a somewhat later time than in (a), when the late jet has completely emerged
out of the SN ejecta and is colliding with the cocoon created by the main GRB jet as it
made its way through the progenitor star. A pair of shocks are going through the cocoon
and the late jet, respectively. Note that the “late” cocoon has expanded and cooled down
at this time.
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6.2.1 The cavity in the SN ejecta

We recall that the main GRB jet has already traversed the star and left a cavity in the

polar region before the late jet comes. Since the material enclosing the “wall” of the cavity

was heated up by the passage of the main jet, it has tendency to refill the cavity. To find

out whether the cavity in the SN ejecta has been filled up before the late-jet encounter, we

estimate the time it takes for filling up the cavity.

When inside the star, the cocoon material has a relativistic temperature, i.e., the

local sound speed cs,c = c/
√

3. Thus the cocoon material may fill the cavity on a time scale

of r∗θj/cs,c ∼ 1 s, much shorter than the onset of the late jet tF . However the cocoon will

also break out and flow away from the ejecta at that same speed in ∼ 10 s, leaving behind

a somewhat evacuated polar region. The filling of the polar cavity by the rest of the SN

ejecta is uncertain. Assuming a temperature T ∼ 108 K for the SN-shocked ejecta material,

it has cs ∼ 1.2 × 108T
1/2
8 cm s−1, so the filling time would be r∗θj/cs(T ) ≈ 102r∗,11T

−1/2
8

s, comparable to tF . Considering that the ejecta local temperature possibly decreases from

inner parts to outer parts and the transverse size of the cavity gets bigger outward, it is

likely that when the late jet hits the ejecta the cavity is partly filled – the inner part is filled

but the outer part is not. However, for a very late jet, e.g., tF ∼ 103 s, the cavity is surely

filled before the late jet comes up; and then the question that arises is whether the jet is

powerful enough to cross the new refilled cavity. This issue will be discussed elsewhere.

6.2.2 Late jet - SN ejecta crossing

The late jet comoving particle density is nj = Lj/(πΓ2
jc

3r2
SNθ2

j mp) = 7×1016 Lj,49Γ−2
j,2r−2

SN,11

θ−2
j,−1 cm−3, where Lj is the late jet luminosity. Because nSN/nj À 1, the late jet will be

decelerated to a non-relativistic speed after it first hits the ejecta. It will undergo the same

process as the GRB main jet did when propagating through the progenitor star. A cocoon

forms in the SN ejecta and makes a way for the jet head by pushing the ejecta material

sideways. To distinguish it from the cocoon associated with the main GRB jet, let us call

this cocoon associated with the late jet as the “late cocoon” (see in Figures 6.1 and 6.2a).

When the jet is moving inside the ejecta, the jet head has been slowed down to be
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at a sub-relativistic speed (Ramirez-Ruiz et al. 2002; Matzner 2003):

vh =

(
Lj

πr2
SNθ2

j ρSNc

)1/2

= 0.8× 109L
1/2
j,49θ

−1
j,−1M

−1/2
SN,1 ∆1/2

SN,11 cm s−1. (6.1)

Note that if the SN ejecta width is constant then vh has no dependence on rSN and therefore

on tF ; but if the SN ejecta is uniformly distributed from the centre to the radius rSN , i.e.,

∆SN ≈ rSN , then vh increases with tF as ∝ t
1/2
F . SN explosion simulations show the latter

case, i.e., ∆SN ≈ rSN , is the most probable one (e.g., Tanaka et al. 2009).

A constraint on the late jet property can be derived from the requirement that the

duration tdur of the jet must be larger than the time that the jet spends to cross the SN

ejecta. Thus tdur > ∆SN/vh implies L
1/2
j,49tdur,2θ

−1
j,−1 > 1.2M

1/2
SN,1∆

1/2
SN,11.

6.2.3 Thermal emission from the late cocoon break out

The late cocoon – formed by the interaction of late jet with SN ejecta2 – will break out

of the star immediately following the breakout of head of the late jet (Figure 6.2a). The

luminosity of the thermal emission from the late cocoon breakout can be estimated from

its temperature and transverse size. Prior to its breakout, the late cocoon has a pressure

pc and its leading head moves with the jet head at the same speed in the radial direction

and expands transversely into the SN ejecta with a speed v⊥. The ram pressure balance at

the lateral interface between the late cocoon and the ejecta material gives

pc = ρSNv2
⊥, (6.2)

where ρSN is the ejecta mass density.

The late cocoon contains an energy Ec that is approximately equal to the jet luminos-

ity Lj times the shell crossing time ∆SN/vh, and it is radiation pressure dominated. The vol-

ume of the late cocoon just before the breakout is Vc = π∆SNr2
⊥/3, where r⊥ = ∆SNv⊥/vh

2The late cocoon should not be confused with the cocoon that was formed and left behind by the main
GRB jet. The latter will be discussed in Section 6.3.
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is the transverse size. So the pressure is

pc =
Ec

3Vc
=

Ljvh

π∆2
SNv2

⊥
. (6.3)

Combining with Eq. (6.2) gives

pc =

(
LjρSNvh

π∆2
SN

)1/2

, (6.4)

and the thermal temperature is

Tth =
(

3pc

a

)1/4

= 1.2× 108 L
3/16
j,49 θ

−1/8
j,−1 M

1/16
SN,1r

−1/4
SN,11∆

−5/16
SN,11 K, (6.5)

where Eq. (6.1) is used. For a late jet with tF ∼ 102 s, the typical thermal photon energy

should be a few keV. Tth becomes smaller for larger tF ; for instance, when the SN ejecta

width ∆SN is ≈ rSN and, if Lj ∝ t−1.5
F (Lazzati et al. 2008), we have Tth ∝ t−0.8

F .

Let us estimate the luminosity of the thermal emission from the late cocoon breakout.

The late cocoon transverse expansion speed is

v⊥ =
(

pc

ρSN

)1/2

= 0.6× 109 L
3/8
j,49θ

−1/4
j,−1 M

−3/8
SN,1 r

1/2
SN,11∆

−1/8
SN,11 cm s−1. (6.6)

The cocoon transverse size is r⊥ = ∆SNv⊥/vh = 0.8×1011 L
−1/8
j,49 θ

3/4
j,−1M

1/8
SN,1r

1/2
SN,11∆

3/8
SN,11 cm.

Notice that r⊥ is almost ∼ rSN for fiducial parameter values.

If we assume the broke-out late cocoon expands isotropically, considering the photon

diffusion, Appendix C shows that the thermal emission luminosity is Lth ∼
√

csc/τcEc/rSN ,

where cs ≈ c/
√

3 is the sound speed in the cocoon and is also the speed at which the broke-

out late cocoon expands, and τc is the late cocoon’s initial optical depth. τc depends on

the mass of the late cocoon, Mc, for which we do not have a firm knowledge; we can only

infer Mc must be a small fraction of the SN ejecta mass. Thus, as an order of magnitude

estimation we take Mc ∼ 0.1M¯, which implies τc ∼ 1010. Plugging the numbers in we find

Lth = 3.3× 1045 L
1/2
j,49θj,−1M

1/2
SN,1M

−1/2
c,−1 r⊥,11∆

1/2
SN,11r

−1
SN,11 erg s−1. (6.7)
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This thermal transient will last for a time comparable to the time it takes for the

bulk of the late cocoon to escape the ejecta. After that, the luminosity drops as ∝ t−1 due

to adiabatic cooling (see Appendix C). The late cocoon’s outflow speed is ∼ cs = c/
√

3, so

the escape time is ∆tesc ≈ ∆SN/cs = 6 ∆SN,11 s.

An even stronger (L ∼ 1046 erg s−1, due to larger Lj) thermal pulse is associated

with the cocoon breakout caused by the main GRB jet. This thermal transient is also short

(∼ 10 s), with spectral peak at X-rays, and it happens during the earliest times of the

main “burst” γ-ray emission when the X-Ray Telescope (XRT) is not pointing towards the

burst. Moreover, this emission is probably over-shone by the X-ray extension of the prompt

emission itself by 1 – 2 orders of magnitude. Therefore, it is difficult to observe. On the

other hand, the thermal transient due to the late cocoon breakout that we consider here

arises after the prompt emission has died off and at a time when XRT is already pointing

towards the burst. Hence, this transient should be easier to detect.

Note that Eq. (6.7) is based on the assumption that the late cocoon has a spherical

shape. It is possible that the late cocoon is beamed, at the breakout and during the later

expansion, toward the direction of the late jet that produced it. This is because when the

jet head moves near the outer surface of the ejecta, it probably accelerates due to the rapid

density drop of the stellar materia there; thus the lateral expansion of the cocoon’s leading

head immediately following the jet head should be suppressed. Therefore at that time,

the overall cocoon might be in an “hourglass” shape, as illustrated in Ramirez-Ruiz et al.

(2002) and in our Figure 6.2a, rather than a conic shape. At the breakout, the hot cocoon

material escapes and accelerates radially from a “nozzle” which has a transverse size on the

same order of the jet’s. Thus, the transverse size of the visible emitting cocoon right at the

breakout could be rth,⊥ ∼ rSNθj , while r⊥ ∼ ∆SNv⊥/vh would be the transverse size of

cocoon at its widest cross section. In this beamed cocoon case, Lth would be smaller than

the estimation in Eq. (6.7) by a factor of ∼ θ−2
j .
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6.3 Late jet - cocoon interaction

We now turn to the interaction of the late jet, after it has successfully crossed the SN ejecta,

with the cocoon that was formed by the main GRB jet (see Figure 6.2b). The cocoon breaks

out from the star at the same time when the main jet breaks out. Then it accelerates to a

mildly relativistic speed. The delay of the late jet with respect to the cocoon breakout is

tF and the late jet catches up with the adiabatically cooled cocoon at ri ' ctF /(βj − βc),

where βj (Γj) and βc (Γc) are the speed (LFs) of the late jet and the cocoon, respectively.

When the cocoon speed is mildly relativistic, ri ≈ 6×1014tF,2Γ2
c,1 cm, which is much further

than the late jet - SN ejecta interaction site. For a sub-relativistic cocoon, ri is close to but

still outside the jet - SN ejecta interaction region.

6.3.1 Cocoon geometry and dynamics

At the breakout, the cocoon has an energy Ec, and an energy-to-mass ratio ηc. The cocoon

opening angle θc is determined by its transverse expansion speed ∼ c/
√

3, thus θc ∼ 1/
√

3 =

0.6. During the early stages of expansion, the cocoon’s radial width, ∆c, is approximately

the width of the stellar envelope r∗. Later on, due to the radial expansion of a relativistically

moving gas, ∆c asymptotically approaches r/(2Γ2
c) in the lab frame; this happens when

r ≥ rw ≈ r∗η2
c . The cocoon’s LF can be described as Γc(r) ≈ θcr/r∗ when r < rs, and

Γc ≈ ηc when r ≥ rs, where rs = ηcr∗/θc is the saturation radius (Paczyński 1986; Goodman

1986; Shemi & Piran 1990; Piran, Shemi & Narayan 1993; Mészáros, Laguna & Rees 1993).

The evolution of the cocoon’s comoving volume, V ′
c (r) = πθ2

cr
2∆cΓc(r), is described by

V ′
c =





πθ3
cr

3, for r < rs

πθ2
cr

2ηcr∗, for rs < r < rw

πθ2
cr

3/(2ηc), for r > rw.

(6.8)

The pressure evolution of the cocoon follows the adiabatic expansion law: pc ∝ V −γ
c .

Initially the radiation pressure dominates, so γ = 4/3. When the cocoon’s optical depth to

Thomson scattering decreases to below unity, the photons decouple from the matter and the

radiation pressure drops exponentially; then the gas pressure takes over the dominance of
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the pressure with γ = 5/3. The transition happens at radius rt = [σT Ec/(ηcmpc
2πθ2

c )]
1/2 =

3.5 × 1014E
1/2
c,51η

−1/2
c,1 cm, where σT is the Thomson scattering cross section. The initial

pressure at the breakout is given by

pc,0 =
Ec

3V ′
c (r∗)

= 5× 1017Ec,51r
−3
∗,11 dyn cm−2. (6.9)

The evolution of the cocoon pressure is thus given by

pc(r)
pc,0

=





( r∗
r

)4
, for r < rs,(

θc
ηc

)4/3 ( r∗
r

)8/3
, for rs < r < rw,

(2ηcθc)4/3
( r∗

r

)4
, for r > rw.

(6.10)

The comoving density of the cocoon is assumed to be homogeneous; the same is for

the late jet. The width of the late jet is determined by its duration and the radial expansion,

so ∆j(r) = ctdur + r/(2Γ2
j ). The jet comoving density is

nj(r) =
Ej,iso

4πr2mpc3Γ2
j (tdur + r

2Γ2
jc

)
. (6.11)

6.3.2 Cavity in the cocoon

There was also initially a cavity in the cocoon left by the passage of the main jet. Here we

estimate how quickly the cavity would be filled. The filling up process starts when the main

jet dies off. For a typical duration of GRB tgrb ≈ 10 s, the cocoon has moved to a radius

rc ≈ ctgrb = 3× 1011 tgrb,1 cm. Since rc < rs, the cocoon gas is still relativistic, the sound

speed is cs ≈ c/
√

3, and the time required for cavity to close is ≈ rcθj/cs = 0.6 tgrb,1θj,−1 s

which is ¿ tF . Thus the cavity is securely filled when the late jet reaches the cocoon.

Now let us consider a possibility that there is a continuous low-level central engine

activity (a low-power jet) following the end of the main GRB jet and preceding the late

jet. This low-power jet and the late jet more or less are the same phenomenon, only with

different energy fluxes. The low-power jet might have too small radiation luminosity to

have an observational imprint, however it might still be dynamically important for keeping

open the polar cavity in the SN ejecta and the cocoon.
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To keep the cavity open without significant energy dissipation from the jet and

cocoon, the transverse pressure, i.e., the thermal pressure, of the low-power jet should be

greater than or equal to the cocoon’s pressure at rc. Though the low-power jet started

with a high thermal pressure at a distance r0 ∼ 102 km from the explosion centre where it

was launched, at rc its thermal pressure has dropped to be much smaller than the cocoon

pressure because it has adiabatically expanded by a much larger factor than the cocoon

does. Thus, when this low-power jet entered the cavity left by the main GRB jet, it will be

squashed rapidly by the gas pressure in the cocoon.

The ram pressure of the low power jet, pj,ram(rc) = Lj,low/(4πr2
cc) where Lj,low is

the jet luminosity, can help bore a cavity through the cocoon under suitable conditions.

For a long-lasting, continuous jet, the event that takes place after it has been squashed is

as follows. If pj,ram(rc) > pc(rc), then the residual, incoming jet will punch a new channel

through the cocoon. In doing this, the jet is heated up by the reverse shock, so that the

jet which is moving inside the channel could have an enhanced pj (thermal pressure) that

is comparable to pc, and can keep the channel open. If we assume the low-power jet was

launched at the end of the GRB, i.e., tgrb ∼ 10 s, making the equality pj,ram = pc(rc) gives

Lj,low = 2 × 1048 erg s−1, with other parameters at fiducial values. The same equality at

later times gives the time dependence Lj,low(t) ∝ t−2. So a decaying luminosity profile

Lj,low(t) = 2 × 1048t−2
1 erg s−1 for the low-power jet is required to keep the cavity open,

i.e., the minimum required total energy for a low-power jet to keep the cavity open is a few

×1049 erg. Note that at this minimal jet luminosity, the process of keeping the cavity open

is not smooth and a fraction of jet energy is dissipated and it should have some radiation

associated with it.

In conclusion, the polar cavity left by the main GRB jet in the cocoon can fill up

quickly – before the late jet reaches the cocoon. The presence of a continuous low-power jet

can keep this cavity open, provided that the jet has a minimal total energy of a few ×1049

erg. In the following calculation we consider the case when the cavity is filled up. Clearly

if the cavity is empty the late jet cocoon interaction is trivial.
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Figure 6.3: Left panels: the comparison between the RS crossing radius rRS and the FS
crossing radius rFS in the late jet - cocoon interaction for a set of model parameter space.
Right panels: the comparison of the two crossing radii with 2ri, where ri is the radius at
which the late jet catches up with the cocoon and the interaction begins. Γc and βc are
the cocoon’s LF and dimensionless speed, respectively. Ej and Ec are the kinetic energies
of the late jet and the cocoon, respectively. Both crossing radii are numerically calculated
from Eq. (6.16). Other parameter values are: Ec = 1050 erg, θj = 0.1, θc = 0.6, tF = 300
s, Γj = 100, εe = 0.1 and εB = 0.01. We find the results in this figure do not depend on tF
or Γj as long as tF ≥ 102 s, and Γj À 1 (say ∼ 102).
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6.3.3 The jet - cocoon interaction phases

The dynamical process of the late jet - cocoon interaction can be decomposed into three

phases in the following sequence3: (i) The Collision Phase takes place when the jet runs into

the cocoon with a forward shock (FS) propagating into the cocoon and a reverse shock (RS)

propagating into the jet (see Figure 6.2b). (ii) The Penetration Phase begins when either

the RS crosses the entire jet or the FS crosses the entire cocoon, whichever comes first. In

the first case the shocked fluid (RS-shocked jet and FS-shocked cocoon fluid) will decelerate,

, after RS crosses the jet, when more and more cocoon material are swept by the FS. In

the latter case the shocked fluid will be accelerated, after FS crosses the entire cocoon, by

the remaining unshocked jet ejecta, and a new particle population will be accelerated at

the RS. (iii) The Expansion Phase begins when both the FS and RS have run through their

courses, and the entire shocked fluid expands adiabatically.

The collision phase

In this phase, the FS propagates into the cocoon and the RS propagates into the jet. For

simplicity we approximate the interaction using a planar geometry. The entire jet / cocoon

system can be divided into several zones. Outside the FS (RS) front is the unshocked

cocoon (jet), and these are taken to be cold plasma, i.e., e = n and p = 0, where e, p and n

are the fluid energy density (including the rest mass energy), pressure and particle number

density, respectively, all measured in its comoving frame. In between the FS front and the

RS front are the shocked cocoon fluid and the shocked jet fluid. These shocked fluids move

with the same LF (Γs) and have the same thermal pressure; they are separated by a contact

discontinuity (CD) plane.

The fluid properties across a shock front are governed by the mass, momentum and

energy conservation laws (e.g., Landau & Lifshitz 1959; Blandford & McKee 1976). Across

the shock the fluid particle density increases by a factor of (γ̂Γ̄ + 1)/(γ̂ − 1), and e = Γ̄n,

where Γ̄ is the shocked fluid LF measured in the unshocked fluid comoving frame; γ̂ is given

by: p = (γ̂ − 1)(e− n). We use mp = c = 1 to simplify the formulae.

3The three-phase decomposition treatment follows Dermer (2008) who studied the emission due to the
external shocks between a GRB jet and a stationary circumburst dense cloud.
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At the CD, the pressure in the shocked jet material equals the pressure in the shocked

cocoon material, i.e.,

(γ̂RS − 1)(Γ̄sj − 1)

(
γ̂RSΓ̄sj + 1

γ̂RS − 1

)
nj

= (γ̂FS − 1)(Γ̄sc − 1)

(
γ̂FSΓ̄sc + 1

γ̂FS − 1

)
nc, (6.12)

where the subscript “RS” refers to the reverse-shocked fluid and “FS” the forward-shocked

one, and Γ̄sj and Γ̄sc are the shocked fluid LFs measured in the unshocked jet and cocoon

comoving frames, respectively. γ̂ lies between 4/3 and 5/3, and can be written in terms of

Γ̄ as γ̂ = (4Γ̄ + 1)/3Γ̄ (Kumar & Granot 2003). Then Eq. (6.12) simplifies to

(Γ̄2
sj − 1)nj = (Γ̄2

sc − 1)nc. (6.13)

Since Γ̄sj = ΓjΓs(1− βjβs) and Γ̄sc = ΓsΓc(1− βsβc), we find from the last equation that

Γs = Γj

√
a + Γc/Γj

(a + 1 + 2
√

aΓ̄jc)1/2
, (6.14)

where a = nj/nc is the density ratio, Γ̄jc is the unshocked jet LF measured in the unshocked

cocoon rest frame. Note that this expression for Γs is valid for both sub-relativistic and

relativistic shocks, and for 4/3 ≤ γ̂ ≤ 5/3.

The shock (RS or FS) front moves with a LF different from the LF of the shocked

fluid. The shock front LF as measured in the unshocked fluid comoving frame – which

we denote as Γ̄RS,j for the RS and as Γ̄FS,c for the FS – is given by the solution to the

shock-jump conditions as a function of γ̂ and Γ̄ (Eq. 5 of Blandford & McKee 1976). Using

the expression of γ̂ in terms of Γ̄, we find

Γ̄RS,j =
4Γ̄2

sj − 1√
8Γ̄2

sj + 1
, and Γ̄FS,c =

4Γ̄2
sc − 1√

8Γ̄2
sc + 1

. (6.15)

These expressions are valid for both sub-relativistic and relativistic shocks.

The pair of shocks exist until one of the two shocks, either the RS or FS, has

traversed through the unshocked fluid. From that time on, the interaction will move to the
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next dynamic phase (Penetration). To determine which shock (RS or FS) crossing occurs

first, we calculate two radii, rRS and rFS , where rRS is the distance of the system when

the RS crosses the rear end of the jet, and rFS is when the FS crosses the front end of the

cocoon, pretending that the pair of shocks had existed all the way to the larger of the two

radii.

At rRS or rFS , the total distance that the shock has traveled through the unshocked

fluid is equal to the radial width of the jet or the cocoon at that radius. Thus the two radii

can be obtained by solving the equations

∆j(rRS) =
∫ rRS

ri

(βj − βRS)
βj

dr and

∆c(rFS) =
∫ rFS

ri

(βFS − βc)
βc

dr, (6.16)

where we have used dt = dr/βj ' dr/βc.

If rRS < rFS , the RS crosses the jet before the FS crosses the cocoon, and vice

versa. We calculate rRS and rFS for different parameters. The results are shown in Figure

6.3. We find that rRS < rFS , i.e., the RS crossing occurs first, for most of the parameter

space of Ej/Ec and Γcβc; rRS > rFS can only happen when the cocoon bulk motion is

sub-relativistic (Γcβc < 1) and the energy carried by the late jet is much larger than that

of cocoon (Ej/Ec À 1). We will use this result later (Sub-sections 6.3.4 - 6.3.5) to simplify

the calculation of the light curve by assuming that RS crossing always occurs before FS

crossing.

The penetration phase

After the RS crosses the jet, the FS continues to pass through the cocoon. We consider the

entire shocked fluid, both the old and the newly shocked, moving together with the same

LF. In the rest frame of the unshocked cocoon, the LF of the shocked fluid is determined

by the equation for the deceleration of a relativistic blast wave in the adiabatic limit as the
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blast wave sweeps up the stationary ambient medium:

Γ′s(x
′) =

Γ′s,∆√
1 + 2Γ′2s,∆mc(x′)c2/E′

j,iso

(6.17)

(Bőttcher & Dermer 2000) where the prime sign denotes the unshocked cocoon rest frame,

Γ′s,∆ is the shocked fluid LF at the end of the collision phase, mc(x′) is the isotropic equiv-

alent swept-up mass at the distance x′ that the blast wave has traveled.

A significant deceleration of FS occurs after a point where Γ′2s,∆mc(x′d)c
2 = E′

j,iso.

Before this point, the FS is coasting into the unshocked cocoon at roughly the same speed

it had prior to the RS crossing. After this point, the FS decelerates as it sweeps more and

more cocoon material (similar to the external shock scenario for the GRB afterglows). If

the FS crossing is earlier than the RS crossing, the process is similar except that it is the

RS that continues to travel through the unshocked jet.

The expansion phase

After the FS eventually crosses the entire cocoon, the shocked fluid expands outward with a

LF determined by Eq. (6.17) but with m(x′) replaced by the isotropic equivalent total mass

of the cocoon. The relativistic electrons cool via radiation and expansion. The radiation

from an adiabatically expanding relativistic shell, when it is optically thin to the Thomson

scattering, is discussed in Barniol Duran & Kumar (2009). We will address the optical thick

case in Section 6.3.5.

6.3.4 The emission from the late jet - cocoon interaction

We calculate the emission from the late jet - cocoon interaction, and estimate the flux

densities at the optical and X-ray bands using standard shock synchrotron emission (e.g.,

Sari et al. 1998), and taking into account the synchrotron self Compton (SSC) radiation.

Just behind the shock front, a fraction of the bulk kinetic energy of the fluid upstream, εe,

is transferred to the electrons, and another fraction, εB, goes to the magnetic field. All the

swept-up electrons are shock-heated into a power-law energy distribution with a spectral
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Figure 6.4: The observed spectrum from the late jet - cocoon interaction at the peak of the
light curve for Ej = Ec = 1050 erg, Γc = 3, tdur/tF = 0.3 and z = 2. Other parameter values
are same as in Figure 6.3. Various lines represent contributions from different emission
regions and spectral components: red dashed - RS synchrotron; red dotted - RS SSC; blue
dashed - FS synchrotron; blue dotted - FS SSC; solid - the sum. For these parameter values,
the cocoon is optically thin, and the order of the frequencies is νc < νopt < νa < νi < νX ;
νopt is in the synchrotron-self-absorption optically thick regime, and the spectral peak is
around UV band. The SSC emission contribution is important only for γ-ray band and
above but is negligible at both optical and X-ray bands.

index p. The minimum LF of shock heated electrons is

γi = εe
mp

me

(
p− 2
p− 1

)
(Γ̄− 1), (6.18)

where Γ̄ is the shocked fluid LF measured in the unshocked fluid frame. The magnetic field

energy density downstream of the shock front is given by

U ′
B =

B′2

8π
= 4Γ̄(Γ̄− 1)εBn0mpc

2, (6.19)

where B′ is the comoving frame field strength and n0 is the particle number density of the

unshocked cocoon or jet. The synchrotron characteristic frequency that corresponds to γi

is

νi =
eB′γ2

i Γs

2πmec(1 + z)
, (6.20)

where e is the electron charge.

The electron cooling LF, γc, is determined by radiative cooling due to synchrotron
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and SSC radiations:

γcmec
2 =

4
3
σT cγ2

c U ′
B(1 + Y )t′, (6.21)

where σT is the electron’s Thomson cross section, t′ is the elapsing time in the shocked fluid

rest frame, and Y is the Compton parameter defined as the ratio of the SSC to synchrotron

luminosities; γc is obtained by numerically solving Eq. (6.21) (e.g., McMahon, Kumar &

Piran 2006). Electrons with LF > γc will cool to γc in time t′; the cooling effect is negligible

for electrons with LF < γc. The synchrotron cooling frequency is

νc =
ΓseB

′γ2
c

2πmec(1 + z)
. (6.22)

The self-absorption frequency for the synchrotron electrons, ν ′a, measured in the

shocked fluid comoving frame is calculated by (Sari & Piran 1999; Li & Song 2004;, McMa-

hon et al. 2006; Shen & Zhang 2009)

max(γm, γa)× 2meν
′2
a = F ′

ν′a , (6.23)

where F ′
ν′a

is the flux density at ν ′a radiated away from the surface of the shocked region.

The emergent synchrotron spectrum of the shock-heated electrons can be approx-

imated as a piece-wise power law function. The peak of the fν-spectrum is at νmax =

min(νi, νc) and the flux density at the peak is

fν,max =
Ne

4πD2

Γsmec
2σT B′

3e(1 + z)
, (6.24)

where Ne is the isotropic equivalent total number of shock-heated electrons, D is the lu-

minosity distance. We also calculate the observed flux density due to SSC by (Rybicki &

Lightman 1979)

f ic(ν) =
3
4
σT δs

∫
dνs

ν2
s

νf syn(νs)
∫ ∞

γi

dγ

γ2
ne(γ)F

(
ν

4γ2νs

)
, (6.25)

where δs is the line-of-sight width of the emitting source, νs and f syn(νs) are the synchrotron

frequency and flux density (in the observer frame), respectively, and ne(γ) is the number
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Figure 6.5: Contours of τe — the shocked region optical depth to Thomson scattering at
the peak of the flux from the late jet - cocoon interaction. Left: for tF = 102 s; Right: for
tF = 103 s. For even larger tF (say ∼ 104 s), we find τe < 1 for all parameter space. Other
parameter values are same as in Figure 6.3 except tdur/tF = 0.3.

of shocked electrons per unit volume per unit interval of γ; ne(γ) ∝ γ−p for γ > γi [the

modification of ne(γ) due to the radiative cooling is included in our calculations]. The

function F (x) = 2x ln x+x+1−2x2 for 0 < x < 1 and is 0 otherwise. Using the expression

for optical depth τe due to Thomson scattering, the SSC flux density can be written as

f ic(ν) =
(3/4)τe∫∞

γ1
ne(γ)dγ

∫
dνs

ν2
s

νf syn(νs)
∫ ∞

γ1

dγ

γ2
ne(γ)F

(
ν

4γ2νs

)
. (6.26)

Figure 6.4 depicts the spectrum observed at the time when the RS crosses the jet.

The order of the characteristic frequencies in this example is νc < νopt < νa < νi < νX , and

νa is in the UV band. The SSC contribution is negligible at optical band and it becomes

important for photon energy ≥∼ 1 keV.

6.3.5 Light curves

The light curve from the late jet - cocoon interaction is mainly determined by the evolution

of fν,max, νi, νc and νa. The optical depth of the shocked fluid region may alter the final

light curve shape, which will be addressed later in this sub-section (§6.3.5). We follow the

treatment of Yu & Dai (2009) and calculate the light curve. We define Texp as the time

when the shocked fluid has traveled a distance of 2ri, where ri is the interaction radius (here

and in the following, times denoted with the capitalized letter “T” are the observer’s times
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Figure 6.6: Contours of τFS — the optical depth for the unshocked cocoon that is still in
front of the FS at the peak of the flux from the late jet - cocoon interaction. Left: for
tF = 102 s; Right: for tF = 103 s. For even larger tF (say ∼ 104 s), we find τFS < 1 for all
parameter space. Other parameter values are same as in Figure 6.3 except tdur/tF = 0.3.

and T = 0 is the time when the interaction begins). Thus, Texp = ri/(2Γ2
sc); before Texp,

the increase of the radius can be neglected and B′ and Γs are considered to be constant;

after Texp, the attenuation of the density and B′ due to the radius increase must be taken

into account.

We also define the shock-crossing time Tcro = min(TRS , TFS), where TRS and TFS ,

calculated in Eq. (6.16), are the crossing times for the reverse shock and the forward

shock, respectively (Figure 6.3 shows TRS < TFS for most of the model parameter space).

Before Tcro, the radial spreading of the shocked region is suppressed by the existence of

two shocks, thus the volume of the shocked region V ′ ∝ r2 and the internal energy density

e′ ∝ V ′−1 ∝ r−2; the total number of shock heated particles increases linearly with time.

After Tcro, the radial expansion has to be considered and the shocked region experiences

adiabatic cooling. During this phase, V ′ ∝ rs (where s = 2 ∼ 3) and the internal energy

density e′ ∝ V ′−4/3 ∝ r−4s/3.

Therefore the evolution of B′ and fν,max are as follows: (i) For Tcro < Texp,

B′ ∝





T 0, T < Texp;

T−2s/3, T > Texp;
, (6.27)
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fν,max ∝





T, T < Tcro;

T 0, Tcro < T < Texp;

T−2s/3, T > Texp;

(6.28)

(ii) For Tcro > Texp,

B′ ∝





T 0, T < Texp;

T−1, Texp < T < Tcro;

T−2s/3, T > Tcro;

(6.29)

fν,max ∝





T, T < Texp;

T 0, Texp < T < Tcro;

T−2s/3, T > Tcro.

(6.30)

And the temporal dependences of the characteristic frequencies are given by

νi ∝





T 0, T < Texp;

T−2s/3, T > Texp,
(6.31)

νc ∝





T−2, T < Texp;

T 2s−2, T > Texp,
(6.32)

for Tcro < Texp, and

νi ∝





T 0, T < Texp;

T−1, Texp < T < Tcro;

T−2s/3, T > Tcro,

(6.33)

νc ∝





T−2, T < Texp;

T, Texp < T < Tcro;

T 2s−2, T > Tcro,

(6.34)

for Tcro > Texp.

Note that the evolution of νc given above ignores SSC cooling. SSC cooling is

included in our numerical calculation as described by Eq. (6.26). We find that the resultant
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Figure 6.7: The comparison between the observed in situ flux density at Tp and the pho-
tospheric flux density, at the optical (Left) and X-ray (Right) bands, respectively. The
photospheric flux is meaningful only in cases of (τe + τFS) > 1 at Tp; those cases where
(τe +τFS) < 1 are marked with fph

ν = 0. In cases of τFS > 1, the emission produced at Tp is
undetectable, and the light curve is dominated by photosphere emission arriving at a later
time; these cases are marked with fν(Tp) = 0. When τe > 1 and τFS < 1, the light curve is
dominated by either the in situ emission produced at Tp and diminished by a factor of τe

or the photospheric emission, whichever is larger, so is the observed peak flux.

νc scalings are not very different from those given above.

To calculate the light curve, we first calculate B′, fν,max, νi, νc and νa at the expected

peak time Tp = min(Tcro, Texp), then we use the temporal evolution of B′ and fν,max to get

the observed flux density at other times. The SSC contribution to the flux is included in

the light curve calculation. In addition, the optical thickness of the late jet - cocoon system

to Thomson scattering could alter the light curve shape because it could delay the escape

of the photons from the system; we will consider this next, and then discuss the light curve

results.

Optically thick cocoon

When ri is small – either because of a low LF of the cocoon or a small tF – the cocoon

could be optically thick to Thomson scattering. For instance, the optical depth of the

entire cocoon at ri is estimated to be ≈ 2σT Ec/[4πr2
i Γcmpc

2(1− cos θc)] ∼ 0.1Ec,51Γ−5
c,1t−2

F,2.

Figures 6.5 and 6.6 depict the calculated τe and τFS — the optical depths of the shocked

region and the unshocked cocoon, respectively — at the expected light curve peak time Tp.

When τe À 1, the photons are subject to numerous scattering (diffusion) before
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Figure 6.8: Left: temporal evolutions of B′, νi, νc, νa and fν,max during the late jet - cocoon
interaction for same model parameter values as in Figure 6.4. νi, νc and νa are in units of
eV, whereas B′ and fν,max are normalized by their maximum values, respectively. Right:
observed light curves in optical and X-ray bands. The observer’s time T is normalized by
the expansion time scale Texp = ri/(2Γ2

sc) and T = 0 is when the interaction begins.

Figure 6.9: Left: same as Figure 6.8 but for Ej = 10 × Ec = 1051 erg and Γc = 5. Right:
observed light curves. Both the optical and X-ray light curves show a flat part at T < Texp

because both frequencies are in the fast cooling regime and the decrease of νc ∝ T−2 just
compensates for the increase of fν,max ∝ T . The optical peak at T > Texp is due to the
fact that νc increases steeply and νa drops below νopt. A rise does not show up in the X-ray
light curve at T > Texp because νX is always above all of νa, νi and νc.
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escaping the plasma. The emergent flux is spread over the diffusion time scale

∆Td ≈ rph

2Γ2
sc

, (6.35)

which is the delay between the actually observed time of a photon and the time it would

have been observed in the absence of scattering, where rph is the photosphere radius.

When τe À 1, we consider all the photons emitted during the time up to Tp as a

photon gas co-expanding with the baryon gas; the expansion of the system is governed by

the radiation pressure rather than the gas pressure, and the scattering between photons

and electrons is nearly elastic. This treatment is different from the one adopted by Pe’er,

Meszaros & Rees (2006) who consider the case where the gas pressure dominates over the

radiation pressure and photons Compton scatter off thermal electrons.

The equation of state for the photon gas is (hν)4 ∝ V −4/3, where hν is the charac-

teristic photon energy and V ∝ r2∆c is the volume of the system (in the photon-baryon

gas co-expanding phase, the LF of the system is constant). The width of the system ∆c

is ∝ r for the thin shell case and is constant for the thick shell case. Since the system is

shock-compressed after the collision, we believe the thin shell case is a more likely possibility

to consider than the thick shell case. Thus the temporal evolution of the photon energy is

hν ∝ T−1, where T is the observer’s time. The shape of the spectrum at the photosphere

is unchanged from that at the time Tp.

We first calculate the flux density at Tp neglecting all optical-thick effects. If τe > 1

and τFS < 1, the promptly observed flux in situ at Tp is 1/τe of that calculated when

τe is neglected. Then we also calculate the emergent flux at the photosphere. The real

peak flux of the light curve is either the observed flux in situ at Tp or the photospheric

flux at later time, whichever is larger, and the light curve would be dominated by that

larger component. In case the observed flux in situ at Tp is stronger than the photospheric

flux, we calculate elaborately the light curve shape following Tp in the way described in

Sec 6.3.5 and numerically estimate its peak time and pulse width. In case the observed

light curve is dominated by the flux at the photosphere, its peak time is the photospheric

time Tph ∼ rph/(2Γ2
sc) and the pulse width is also ≈ Tph. If τFS > 1, then the unshocked
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Figure 6.10: Left: same as Figure 6.8 but for Ej = 102 × Ec = 1052 erg and Γcβc = 0.5.
Right: observed light curve in X-rays. The optical light curve is not shown, because for this
set of parameter values the cocoon is extremely optically thick (τe À 1 and τFS = 0; see
Figure 6.5 and 6.6), and we find the optical light curve is dominated by the photosphere
emission, whose numerical light curve shape has to be calculated differently from that in
the optically thin case. However in the X-ray band, the prompt non-thermal flux, after
diminished by the optical thick effect, is still brighter than the later photospheric flux.
Thus we use the diminished prompt non-thermal flux to represent the observed X-ray light
curve.

cocoon blocks the light produced in the shocked region from reaching the observer, thus the

emission at the photosphere is what we actually see only and it will completely dominate

the light curve. We show in Figure 6.7 a comparison between the observed flux in situ at

Tp and the photospheric flux for the considered model parameter space.

6.3.6 Results

Figures 6.8 - 6.10 depict the light curves and the temporal evolutions of emission properties

for different values of model parameters. Initially the light curve remains constant up to the

shock crossing time or the expansion time, whichever is smaller. This is because νc < νopt,

and therefore the increase of fν,max is compensated by the decrease of νc. Later, the X-ray

flux decays due to the adiabatic expansion, while the optical flux continues to rise as long

as νopt < νa. Therefore generally the optical pulse peaks later and is wider than the X-ray

pulse.

The peak flux density distributions are presented in Figure 6.11. For the range of

model parameter values, i.e., Ej/Ec = 10−2 − 102, Γcβc = 0.5 − 20, εB = 10−2 − 10−4,

tF = 102 − 104 s and Ec = 1050 erg, the optical peak flux density fνopt ranges from ∼ 0.01
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Figure 6.11: The contours of the observed peak flux densities from the late jet - cocoon
interaction. Left panels: at the optical band (ν = 2 eV). Right panels: at the X-ray band
(ν = 1 keV). The flux density values labeled on the contours are the demarcation values for
two neighbouring contour belts. The ratio of the late jet’s duration over its delay tdur/tF
is 0.3 and the redshift is z = 2. Top panels: for tF = 102 s; other parameter values are
same as in Figure 6.3. Middle panels: same as in top panels except for εB = 10−4. Bottom
panels: same as in top panels except for tF = 104 s.
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Figure 6.12: Contours of the light curve peak time for the emission from the late jet -
cocoon interaction, since the burst trigger and normalized by the delay time of the late jet.
Left: for the optical light curve; Right: for the X-ray light curve. Model parameter values
are tdur/tF = 0.3 and tF = 100 s. Other parameter values are same as in Figure 6.3.

Figure 6.13: Same as Figure 6.12 except for tF = 104 s.

Figure 6.14: Contours of the full width at half maximum (FWHM) of the light curve from
the late jet - cocoon interaction, normalized by the peak time of the light curve since the
burst trigger. Left: for the optical light curve; Right: for the X-ray light curve. Model
parameter values are tdur/tF = 0.3 and tF = 100 s. Other parameter values are same as in
Figure 6.3.
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Figure 6.15: Same as Figure 6.14 except for tF = 104 s.

Figure 6.16: The schematic light curve for the emission from the late jet - cocoon interaction
superposed on the underlying afterglow light curve. Note the zero time in this figure is the
burst trigger time, different from the zero times in Figures 6.8 - 6.10.
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µJy to ∼ 0.1 Jy, and the X-ray peak flux density is fνX ≈ 0.001 µJy −1 mJy for z = 2.

For typical parameter values, i.e., Ej/Ec = 10−1, Γcβc = 3, εB = 10−2 and tF = 102 s, the

fluxes are fνopt ∼ 0.1 mJy, fνX ∼ 1 µJy. The ratio of the peak flux densities at optical and

X-rays is roughly constant: fνopt/fνX ∼ 102, since the optical band is much closer to the

spectral peak than the X-rays. The peak flux density is highest for Γc ≈ 5− 10, i.e., when

the cocoon is mildly relativistic.

The peak flux densities have very broad ranges. The higher ends of the ranges

are high compared to the afterglows, but they correspond to some certain extreme model

parameter value (i.e., Ej/Ec ∼ 102−103) and higher values among model parameter ranges

(e.g., Γc ∼ 5 − 10). The flux values corresponding to typical model parameter values are

comparable to those of observed afterglows (see Figures 6.17 - 6.18).

Figure 6.11 also shows the dependence of peak flux densities on εB and tF . When

εB varies from 10−2 to 10−4, fν decreases by a factor of ∼ 10. This reflects the fact that

synchrotron electrons’ peak specific radiation power and characteristic frequencies are all

linearly dependent on B′. When tF increases from 102 s to 104 s, fν drops by a factor of

∼ 102. This is because the interaction radius ri ∝ tF and therefore both the cocoon and jet

densities are smaller at ri and so is B′ for a larger tF . However for Γcβc < 2, fν increases

for a larger tF ; this is due to the optical thickness when tF is small (see Section 6.3.5).

Figures 6.12 and 6.13 show the distribution of peak times of the light curves, accord-

ing to which the peak time can be approximated by tF , particularly for large values of tF .

We measure the full width at half maximum (FWHM) of the light curves to characterize

the pulse width, whose distribution is shown in Figures 6.14 and 6.15. The ratio of the

pulse width to the peak time, ∆t/t, has a broad range of 0.01 - 0.5; typically, for lower Γcβc

or Ej/Ec, pulses are wider. The optical pulses are often wider than X-ray pulses, but the

difference is not large.
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6.4 Observational implication and detection prospects

6.4.1 The Late jet - SN ejecta interaction

We find that late jet - SN ejecta interaction produces a thermal transient due to the breakout

of a “late” cocoon produced by the late jet crossing the SN ejecta. It peaks at X-ray band

and lasts for ∼ 10 s with a bolometric luminosity of ∼ 1045 erg s−1. For a typical GRB

red shift of z = 1 − 2, this luminosity translates to an observed flux of ∼ 10−13 − 10−12

erg s−1 cm−2. With a sensitivity of 2× 10−14 erg s−1 cm−2 in 104 s (Gehrels et al. 2004),

Swift / XRT may not be able to detect this thermal transient since the predicted flux is

only marginally above the sensitivity whereas the duration of the transient is much shorter

than the sensitivity-required integration time.

Moreover, there are three possible effects that could lower the predicted thermal

emission flux: (i) The cavity in the polar region of the progenitor star created by the main

GRB jet is still open, and in that case the interaction between the late jet and the partially

filled cavity is weak resulting in a significantly lower signal than we have estimated in Section

6.2.3. The cavity can be kept open, either because the time was too short for the cavity to

fill up, or due to a continuous, low-power jet that precedes the late jet. This low-power jet

might also keep the cavity in the cocoon open (see Section 6.3.2). (ii) The “late” cocoon

could be beamed toward the direction of the late jet; in that case the visible transverse size

of the “late” cocoon is smaller than a spherical “late” cocoon. (iii) The cocoon that is in

front of the “late” cocoon and the late jet could be optical thick, e.g., τc ∼ 0.1Ec,51Γ−5
c,1t−2

F,2

(also see Figures 6.5 - 6.6), and block the thermal transient signal.

It was very rare that a distinctive thermal emission was detected at late times in

GRBs. A thermal X-ray emission was once detected from X-Ray Flash (XRF) 060218

(Campana et al. 2006). But its long lasting, slowly variable light curve suggests that it

originated in the shock breakout of a quasi-spherical, mildly relativistic ejecta and the late

jet scenario does not apply to this event. For the prevailing X-ray flares detected in GRBs,

spectral fit shows no compelling evidence for a thermal component (Falcone et al. 2007).

The non-detection of a late, short thermal emission component seems to be in line with our

prediction.
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6.4.2 Late jet - cocoon interaction

A schematic sketch of light curves due to emission from the late jet - cocoon interaction,

superposed on the underlying external-shock afterglow component, is illustrated in Figure

6.16. The expected emission from late jet - cocoon interaction has the following features:

(1) Peak flux density. The peak flux has a broad distribution (see Figure 6.11).

Except for the cases of a very slow cocoon or a very low jet-to-cocoon energy ratio, the

emission is fairly bright. For instance, the range of the calculated X-ray peak flux densities

corresponds to a flux in the 0.3–10 keV band of ≈ 10−14−10−8 erg s−1 cm−2 (for a spectral

index βX = −1.1), mostly above the Swfit / XRT sensitivity. Therefore, the X-ray emission

from this interaction is detectable by Swift / XRT for most of the parameter space.

(2) A small ∆t/t (< 0.5; see Figures 6.14 and 6.15).

(3) A non-thermal spectrum. The emission is mostly non-thermal, except when the

cocoon speed is sub-relativistic and the delay of the late jet is small (e.g., tF ∼< 103 s) thus

the thermal photospheric emission might dominate. The X-ray band is in the “fast cooling”

spectral regime when the emission is non-thermal, and the optical is near the synchrotron

self absorption frequency. The flux density ratio of optical and X-ray is roughly ∼ 102 for

p = 2.5 (this ratio is larger for larger values of p). This implies that whenever a X-ray pulse

is observed, we expect to see an accompanying increase of the optical flux.

Could some of the late X-ray flares in GRBs originated from the late jet - cocoon

interaction? We compare the properties of these flares with the prediction of our calculations

in the following.

(1) The observed peak count rate in the XRT band (0.3 - 10 keV) for flares is

distributed over the range of 0.1 - 100 counts s−1 (Chincarini et al. 2007). Using the

empirical instrument conversion factor this translates to fνX ≈ 1µJy − 1mJy. This range

for the observed X-ray flare flux is roughly what is expected for the late jet - cocoon

interaction (cf. Figure 6.11).

(2) The observed value for ∆t/t lies in the range of 0.02 to 0.6, with a mean value

of XRT band (0.3 - 10 keV) 0.1 (Chincarini et al. 2007). This range is consistent with our

calculation (see Figures 6.12 and 6.13).

(3) It is rare to find an optical flare accompanying a X-ray flare. This is in part
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Figure 6.17: Four GRBs that show a late flare or rebrightening in optical afterglow light
curve and, in cases where simultaneous X-ray observations are made, a contemporaneous
X-ray flare. Top left: GRB 050904; filled circles in red are optical data and filled circles
in black are X-ray data (from Boër et al. 2006). Top right: GRB 060206, and bottom
left: GRB 060210; the open and filled circles in red color (with unnoticeable errors) are the
optical data (from Stanek et al. 2007). Bottom right: GRB 080129 (from Greiner et al.
2009).
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due to the fact that very few simultaneous optical observations were made in most cases.

Nevertheless, we do find four cases where an optical flare or rebrightening is reported and

the X-ray data during the time either is missing or does show a flare. These four cases

– GRB 050904 (shows an optical flare but its X-ray covrage was too sparse to identify a

simultaneous flare; Boër et al. 2006), 060206 (Stanek et al. 2007; Woźniak et al. 2006),

060210 (Stanek et al. 2007; Curran et al. 2007) and 080129 (Greiner et al. 2009) – are

shown in Figure 6.17. The last burst shows an early optical flare but without a simultaneous

X-ray coverage, and a very late (2× 105 s since trigger) rebrightening in both optical and

X-rays. Among them, the achromatic flarings in GRB 050904, 060210 and 080129 (the

very late rebrightening in this burst) are the most likely candidates for a late jet - cocoon

interaction event.

On the other hand, there are three cases in which simultaneous optical observations

were available but no optical flare was detected at the time of very strong X-ray flare (the

X-ray flux increased by factors ∼ 100 in some of these cases), e.g., GRB 060418, 060607A

(Molinari et al. 2007) and 060904B (Rykoff et al. 2009) which are shown in Figure 6.18.

This shows that not all X-ray flares are due to the late jet - cocoon interaction. However,

neither the late jet nor the cocoon is ruled out in these three X-ray flares. The lack of an

optical flare indicates that in these cases it is probable that a low-power, continuous jet

with a luminosity of Lj,low(t) = 2 × 1048t−2
1 erg s−1 (total energy ∼ a few ×1049 erg) has

kept the cavity open (see Section 6.3.2) and the internal shocks between the more powerful

late jet and the preceding, slower, low-power jet gave rise to the X-ray flares.

6.5 Summary

Observations of X-ray flares in many GRB afterglows suggest the existence of a late jet

from a long-lived central engine of a GRB at ∼ 102 s but possibly 104 − 105 s after the

main GRB event. Adopting the collapsing massive star origin for long-duration GRBs, and

assuming that the supernova explosion to be at approximately the same time as the GRB,

we have investigated the interactions of this late jet with the SN ejecta and, with a cocoon

that was left behind when the main GRB jet traversed the progenitor star.
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We find that late jet - SN ejecta interaction should produce a thermal transient,

lasting about ∼ 10 s and with a peak photon energy at a few keV, and if detected, it

should appear in the observation around the same time of the flare. However, we find the

luminosity of this transient is ∼ 1045 erg s−1, at a typical GRB distance, whose detected

flux would be comparable to the Swift / XRT sensitivity. Thus, XRT may not be able

to detect this emission. The non-detection of a late, short thermal emission component

in GRB observations so far is consistent with the prediction. On the other hand, for the

breakout of an extremely luminous late jet (say, Lj ∼ 1051 erg s−1), this thermal emission

may be detectable. Future identification of this rare signal can provide another evidence

for the massive-star origin of GRBs and new information on the GRB - SN association.

The late jet interaction with the cocoon would cause a flare or rebrightening, super-

posed on the afterglow light curves, at both the optical and X-ray bands. This flare would

have a pulse-width-to-time ratio ∆t/t < 1 (the expected distribution of ∆t/t is similar to

that for X-ray flares). Depending on model parameters, we find for a burst at a redshift

z = 2 that the peak flux density at optical fνopt ranges from 0.01 µJy to 0.1 Jy (V -band

apparent magnitude 29 to 11.5) and at X-rays fνX ranges from 0.001 µJy to 1 mJy. For

typical parameters fνopt ∼ 0.1 mJy (V -band magnitude ∼ 19) and fνX ∼ 1 µJy. Observa-

tional identification of this emission would verify the existence of the cocoon produced when

the GRB jet traversed the progenitor star, thus it would be another confirmation of the

collapsar model for long duration GRBs (e.g., MacFadyen & Woosley 1999; Ramirez-Ruiz

et al. 2002; Matzner 2003; Zhang et al. 2004).

The late jet - cocoon interaction might have already been detected in four GRB

afterglows in which simultaneous X-ray and optical flares with ∆t/t ¿ 1 were observed

after the prompt emission has died off (see Figure 6.17). From those candidate events, one

can learn about the energetics of late jet and the cocoon by utilizing the emission calculation

presented in this work. Let us consider the flare event in GRB 050904 as an example. We

find the most probable model parameters – for this burst at z = 6.3 and with tF = 70 s –

that produce the observed peak fνopt and fνX (data from Boër et al. 2006; Cusumano et

al. 2007; Gou, Fox & Mészáros 2007) to be Ec ≈ 1051 erg, Γc ≈ 20− 50, Ej ≈ 1052 erg and

Γj ≈ 500. Those high energetics seem consistent with the very luminous nature of both the
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burst and the flare.

There are three cases in which no optical flare was detected at the time of a strong

X-ray flare, even though a number of optical telescopes have been observing these bursts

at the time of the X-ray flares (Figure 6.18). This shows that not all X-ray flares are due

to the late jet - cocoon interaction. However, neither a late jet nor the cocoon can be ruled

out in these cases. It is possible that a low-power jet preceding the late jet with a total

energy of at least 1049 erg had kept the cavity in the cocoon open, so that the late jet -

cocoon interaction was suppressed. If correct this implies a low level continuous emission

from the central engine at the level of ∼ 1047 (t/10 s)−2 erg s−1 lasting for ∼ 102 s, assuming

a radiation efficiency of ∼ 0.1.
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Figure 6.18: The three GRBs that show prominent late X-ray flares but without simulta-
neous optical flare apparent in the afterglow light curve. Top left: GRB 060418; Top right:
060607a (both from Molinari et al. 2007). Bottom: GRB 060904b; blue triangles are BAT
data extrapolated to X-ray band, magenta squares are XRT data and red circles are optical
data (from Rykoff et al. 2009).
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Chapter 7

Conclusions

Both the theoretical calculations and numerical simulations of the particle acceleration in

relativistic shocks show that accelerated electrons’ energy spectral index p has a universal

value ≈ 2.2 - 2.3 (e.g., Bednarz & Ostrowski 1998; Lemoine & Pelletier 2003). We showed

that the intrinsic parent distribution of p derived in the prompt emission of a sample of

∼ 400 GRBs has a Gaussian width of ≥ 0.54, inconsistent with a δ-function distribution or a

universal p (Shen et al. 2006). We find similar results in samples of GRB X-ray afterglows,

blazars and pulsar wind nebulae.

A consequence of the ‘internal shock’ model for GRBs is that photons produced

in one shell can be scattered by another shell behind it. We find that the scattered flux

from a cold slower shell is small and likely to be detected only for those bursts with very

weak afterglows (Shen et al. 2008). A hot scattering shell could give rise to a scattered

emission as bright as the X-ray plateau component detected in many bursts, provided that

the isotropic equivalent total energy carried by the hot electrons is large, ∼ 1052− 1056 erg.

The scattered emission from a faster shell could appear as a late short γ-ray/MeV flash or

become part of the prompt emission depending on the delay of the ejection of the shell.

We carefully investigated a dust scattering model that Shao & Dai (2007) proposed

to explain the puzzling and prevailing plateau component in GRB X-ray afterglows. We

showed that, as one of the model’s essential features, the scattered emission undergoes strong

spectral softening with time, which clearly contradicts the close-to-zero spectral evolution

shown in most of the X-ray afterglow data, thus ruling out this model for explaining the
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plateaus in most GRBs (Shen et al. 2009).

We developed a new method to constrain the distance of the GRB prompt emission

site from the explosion center, R, by determining the location of the synchrotron self-

absorption frequency in the GRB prompt optical-to-X/γ-ray broadband spectrum. A small

sample of four GRBs have simultaneous optical and γ-ray detections in multiple observa-

tional time intervals, and also show temporal correlations between the optical and γ-ray

LCs. We obtained R ≥ 1014 cm for this sample (Shen & Zhang 2009). This result rules out

the photospheric emission model as the prompt emission mechanism.

We studied a scenario in which a late jet, whose existence is unambiguously indicated

by late X-ray flares observed in a majority of GRBs, interacts with various components in

a stellar explosion responsible for a GRB (Shen et al. 2010). These components include a

SN shell-like ejecta, and a cocoon that was produced when the main jet producing the GRB

itself was propagating through the progenitor star. We find that the interaction between

the late jet and the SN ejecta probably produces a thermal X-ray transient lasting ∼ 10

s and with a luminosity of ∼ 1045 erg s−1. The interaction between the late jet and the

cocoon produces synchrotron-self absorbed flares in both optical and X-ray bands, with

∆t/t ¿ 1, that are easily detectable with current observing facilities at typical GRB red

shifts. Identifying these features in current and future observations would provide valuable

information on properties of GRB progenitor stars.
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Appendices

Appendix A:

Approximation to the integrand function in calculation of the

incident flux on shell 2

Here we show that the integrand function in Eq. (3.6) for the incident flux from shell 1

on point P in shell 2 comoving frame is insensitive to sin2 α′′ so that the integrand can be

taken out of the integral as a constant. We will also show that the integrand is of order

unity.

Let us call the integrand function F (α, θ). All equations we have are

F (α, θ) =
(1 + β2 cosα)3

[β1 + cos(α− θ)][1 + β1 cos(α− θ)]2
(A-1)

tanα′′ =
θ

Γ2(1− β2

β1
+ β2δt

R1
)

(A-2)

tanα′′ =
sinα

Γ2(cosα + β2)
. (A-3)

We want to precisely estimate F (α, θ) and its dependence on sin2 α′′ in the range of α′′

from 0 to α′′j , where the subscript “j” always denotes the edge of shell 1. Through equations

(A-2) and (A-3), we can express θ in terms of α only:

θ =
sinα(1− β2

β1
+ β2δt

R1
)

cosα + β2
. (A-4)
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Then F (α, θ) becomes F (α). Also, from equation (A-3), express sin2 α′′ in terms of α only:

sin2 α′′ =
sin2 α

sin2 α + Γ2
2(cosα + β2)

. (A-5)

Therefore, we can plot F (α) numerically as a function of sin2 α′′.

The only thing left is to calculate the upper limit of α. Equation (A-2) gives

tanα′′j =
θj

Γ2(1− β2

β1
+ β2δt

R1
)
. (A-6)

Denote k = tanα′′j , and apply it onto equation (A-3) and square both sides of (A-3). Then

we get a quadratic equation of cosαj :

(1 + k2Γ2
2) cos2 αj + 2β2k

2Γ2
2 cosαj + k2Γ2

2β
2
2 − 1 = 0, (A-7)

with roots

cosαj =
−β2k

2Γ2
2 ±

√
k2 + 1

1 + k2Γ2
2

. (A-8)

The second root (−) can be ruled out, because when we put it back into equation (A-3),

the second root gives k < 0, while equation (A-2) requires k > 0. Thus

αj = arccos
(−β2Γ2

2k
2 +

√
k2 + 1

1 + k2Γ2
2

)
(A-9)

is the sole root of the upper limit of α.

We numerically plot F (α) vs. sin2 α′′ for the following model parameter space:

Γ2/Γ1 ranges from 0.05 to 10, 2Γ2
1δt/R1 ranges from 0 to 1000, and θj= 0.1. We find, for

Γ2/Γ1 < 1, F (α) is approximately a linear, monotonically decreasing function of sin2 α′′.

Its maximum is 1 and is at α = 0, and minimum is always > 0.01 and is at α = αj . A

smaller Γ2/Γ1 or a larger δt always gives a smaller αj , thus a minimum of F (α) closer to 1.

This clearly shows that for Γ2/Γ1 < 1, F (α) is very weakly dependent on sin2 α′′

thus can be taken out of the integral as a constant ∼ 1.

For Γ2/Γ1 > 1, F (α) is not always on order of unity. Since shell 2 is moving toward

shell 1, the relativistic beaming effect is important (Panaitescu 2007). When δt is very
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small, shell 2 is very close to shell 1, so that α′′j is larger than 1/Γrel, where Γrel ' Γ2/(2Γ1)

is the relative LF between two shells. In this case we find that at an angle α′′ < α′′j , F (α)

starts to drop very sharply from on order of unity to infinitely small, and that dropping-

down angle is approximately equal to 1/Γrel. This means that, in the case of Γ2/Γ1 > 1,

sin2 α′′j in equation (14) should be replaced by a more accurate term min(sin2 α′′j , 1/Γ2
rel).

However this is only required when δt is small so that 2Γ2
1(Ts − Tp)/R1 < 100. Thus the

more accurate flux ratio curves for Γ2/Γ1 > 1 in our Figure 2 will be slightly flatter in the

region of 2Γ2
1(Ts − Tp)/R1 < 100 than the ones shown. But our conclusion about a faster

shell 2 is not affected.
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Appendix B:

Derivation of the self-absorption frequency

In this appendix, we provide a rigorous derivation of the blackbody equivalence equation

(Eq. 5.3) that we use to calculate the self-absorption frequency. The derivation is carried

in the GRB ejecta comoving frame in which the relevant quantities are marked with the

prime sign.

The self-absorption frequency ν ′a is defined as τ(ν ′a) = 1, where τ(ν ′a) is the optical

depth due to the self-absorption at ν ′ = ν ′a. The optical depth τ(ν ′) =
∫

α′ν′ds′ deceases

with the frequency, where α′ν′ is the self-absorption coefficient [cm−1Hz−1] and the integral

is over the line-of-sight width of the emitting source. The integral can be calculated directly

only when we have the exact information on the number density of the emitting particles

and its distribution over the length, which is not easy. Instead of directly calculating the

integral
∫

α′ν′ds′, we turn to derive the emission coefficient j′ν′ [erg s−1cm−3Hz−1sr−1] and

then express the integral of α′ν′ over width into the integral of j′ν′ over width, the latter is

just the specific intensity at the source surface which is directly observable.

The synchrotron radiation spectrum, or specific radiation power, of an electron with

LF γ gyrating in a magnetic field B with a pitch angle α is

P ′(ν ′, γ) =
√

3e3B sinα

mec2
F (ν ′/ν′ch), (B-1)

where e is the electron charge and

ν ′ch =
3eB sinαγ2

4πmec
(B-2)

is the characteristic photon frequency of the electron. The function

F (x) ≡ x

∫ ∞

x
K5/3(ξ)dξ (B-3)
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has the asymptotic form

F (x) ∼





4π√
3Γ(1/3)

(x/2)1/3 ∼ 2.15x1/3, ifx ¿ 1,

(π/2)1/2e−xx1/2 ∼ 1.25e−xx1/2, ifx À 1,
(B-4)

where Γ(1/3) is the gamma function of argument 1/3, and it reaches the maximum Fmax(x) '
0.92 at x ' 0.29. One integral property of the function F (x) is

∫ ∞

0
xµF (x)dx =

2µ+1

µ + 2
Γ

(
µ

2
+

7
3

)
Γ

(
µ

2
+

2
3

)
, (B-5)

where Γ(y) is the gamma function of argument y. We will use this property later.

The self-absorption coefficient for any radiation mechanism is given (Rybicki & Light-

man 1979) by

α′ν′ = − 1
8πmeν ′2

∫
dγP ′(ν ′, γ)γ2 ∂

∂γ

[
N(γ)
γ2

]
, (B-6)

where P ′(ν ′, γ) is the single electron’s specific radiation power, and N(γ)dγ is the number

density of electrons with energy in the interval from γ to (γ + dγ). In the case of GRB,

N(γ) has a two-power-law form and was described in Section 5.2. We rewrite it here as

N(γ) =





Cγγ−p1 , if γm < γ < γp ,

Cγγ
(p2−p1)
m γ−p2 , if γ > γp ,

(B-7)

where Cγ is the normalization constant. Note that this distribution set-up is phenomeno-

logically based on the two-power-law shape of the high energy radiation spectrum observed

in GRBs; in the context of some specific particle acceleration scenario, e.g., shock accel-

eration, where two characteristic electron energies, i.e., the injection energy γi and the

cooling energy γc, are involved, there will be γm = min(γi, γc) and γp = max(γi, γp). Thus

∂[N(γ)/γ2]/∂γ = (−p − 2)N(γ)/γ3, where p could be either p1 or p2 depending on the

location of γ. For synchrotron radiation the self-absorption coefficient would be

α′ν′ =
√

3e3B sinαCγ

8πm2
ec

2ν ′2

[
(p1 + 2)

∫ γp

γm

F (x)γ−(p1+1)dγ + (p2 + 2)
∫ ∞

γp

F (x)γ−(p2+1)dγ

]
,

(B-8)

where x ≡ x(γ) ≡ ν ′/ν ′ch(γ) = (4πmecν
′)/(3eB sinαγ2).
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Then we consider two different locations of ν ′: ν ′ < ν ′m and ν ′m < ν ′ < ν ′p, respec-

tively. If ν ′ < ν′m, then F (x) falls in the ∝ x1/3 asymptotic regime. One can transform

the integral in Eq. (B-8) for the variable γ into the integral for the variable x. Notice the

contribution from the second integral part in Eq. (B-8) is unimportant, as long as γm ¿ γp

and 1/3 < p1 < p2. Thus it gives

α′ν′ =
1

24/3Γ(1/3)
(p1 + 2)

(p1 + 2/3)
e3B sinαCγ

m2
ec

2

(
4πmec

3eB sinα

)1/3

γ−(p1+2/3)
m ν ′−5/3. (B-9)

If ν ′m < ν′ < ν′p, then x(γm) ¿ 1 and x(γp) À 1. After the transformation of the

variable γ into the variable x, the first integral part in Eq. (B-8) is in effect integrating over

the x-range from x(γm) ∼ 0 to x(γp) ∼ ∞, thus we can use Eq. (B-5) to calculate it. For

the second integral part of Eq. (B-8), f(x) ∝ x1/3, but its contribution is unimportant as

long as γm ¿ γp and 1/3 < p1 < p2. Therefore it gives

α′ν′ =
√

3e3

8πm2
ec

2

(
3e

2πmec

)p1/2

Cγ(B sinα)(p1+2)/2Γ
(

3p1 + 22
12

)
Γ

(
3p1 + 2

12

)
ν ′−(p1+4)/2.

(B-10)

To calculate ν ′a from τ(ν ′a) =
∫

α′ν′ads′ = 1, one has to know the exact information

about N(γm) and its instantaneous distribution over the width of the emitting source along

the line of sight, which are always subject to uncertainties. Nevertheless, in their attempts

to calculate ν ′a, some authors have calculated N(γm) by assuming all electrons swept up

by the shock are accelerated to relativistic energies either in the blastwave model for GRB

afterglows (Granot et al. 1999; Panaitescu & Kumar 2000; Pe’er & Waxman 2004) or in

the internal-shock model for prompt emissions (Li & Waxman 2008). We warn that the

reality in nature may be that not all but only a small fraction of the electrons encountered

by the shock can be heated to relativistic energies and radiate, as was suggested by Bykov

& Mészáros (1996) and Daigne & Mochkovitch (1998) (also see Kumar & McMahon (2008)

for an idea of repeated acceleration of a group of electrons), and this will introduce the

biggest uncertainty to N(γm) hence to this “conventional” approach of calculating ν ′a. In

general, this conventional approach over-estimates the number of emitting (and absorbing)

electrons and, hence, over-estimates νa. In the literature, it is usually suggested that νa is

slightly below the X-ray band. According to our corrected calculation, νa is typically lower
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and can extend to close to the optical band in a wide parameter range.

Our new approach here is to express
∫

α′ν′ds′ in terms of
∫

j′ν′ds′, both of which

contain the term N(γm) but the latter one is directly observable - it is just the specific

intensity at the source surface. Therefore the new approach can avoid the uncertainties

associated with partial acceleration and inhomogeneity over the source radial width.

Let us calculate the emission coefficient j′ν′ . By definition,

4πj′ν′ =
∫ γp

γm

P ′(ν ′, γ)N(γ)dγ +
∫ ∞

γp

P ′(ν ′, γ)N(γ)dγ. (B-11)

Following the same procedure of calculating α′ν′ , the integration gives

j′ν′ =





1
21/3Γ(1/3)(p1−1/3)

e3B sin αCγ

mec2

(
4πmec

3eB sin α

)1/3
γ

(1/3−p1)
m ν ′1/3,

if ν ′ < ν ′m,

2(p1−1)/2
√

3
4π(p1+1)

e3B sin αCγ

mec2

(
4πmec

3eB sin α

)(1−p1)/2
Γ

(
3p1+19

12

)
Γ

(
3p1−1

12

)
ν ′(1−p1)/2,

if ν ′m < ν ′ < ν ′p.

(B-12)

The ratio of j′ν′ over α′ν′ , also called the source function, is

S′ν′ =
j′ν′
α′ν′

=





2(p1+2/3)
(p1+2)(p1−1/3)meγmν ′2, if ν ′ < ν ′m,
√

2
p1+1

(
4πmec

3eB sin α

)1/2 Γ
(

3p1+19

12

)
Γ
(

3p1−1

12

)
Γ
(

3p1+22

12

)
Γ
(

3p1+2

12

)meν
′5/2, if ν ′m < ν ′ < ν ′p,

(B-13)

which does not have dependence on N(γm). It shows that, for synchrotron radiation, the

power-law index of the optical thick (to the self absorption) part of the emergent spectrum

below ν ′m is 2, while the power-law index of the optical thick spectrum above ν ′m is 5/2.

From the definition of the self-absorption frequency
∫

α′ν′ads′ = 1, we have
∫

(j′ν′a/S′ν′a)ds′ =

1. Since S′ν′a does not depend on N(γm) and its distribution over the source width, it can

be taken out of the integral. Thus we have S′ν′a =
∫

j′ν′ads′ = F ′
ν′a

, where F ′
ν′a

is the specific

flux at the source surface in the asymptotic optically thin regime at ν ′a . Rewriting the

expression for S′ν′ (Eq. B-13) at ν ′ = ν ′a and using the photon frequency vs. electron energy

relation ν ′ch(γ) for synchrotron radiation, we get

max(γm, γa)× 2meν
′2
a = F ′

ν′aC(p1), (B-14)
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where γa is the energy of the electron whose characteristic photon frequency is ν ′a, and the

correction factor

C(p1) =





C1(p1) = (p1+2)(p1−1/3)
p1+2/3 , if ν ′a < ν ′m,

C2(p1) =
√

2(p1 + 1)
Γ
(

3p1+22

12

)
Γ
(

3p1+2

12

)
Γ
(

3p1+19

12

)
Γ
(

3p1−1

12

) , if ν ′m < ν ′a < ν ′p.
(B-15)

If we assume a temperature T ′ = max(γm, γa)mec
2/k, then Eq. (B-14) becomes

2kT ′
ν ′2a
c2

= F ′
ν′aC(β1), (B-16)

where for practical uses the correction factor C(p1) is changed to C(β1) using the relation

β1 = −(p1 − 1)/2, and so

C(β1) =





C1(β1) = (3−2β1)(2/3−2β1)
5/3−2β1

, if ν ′a < ν ′m,

C2(β1) = 2
√

2(1− β1)
Γ
(

25−6β1
12

)
Γ
(

5−6β1
12

)

Γ
(

11−3β1
6

)
Γ
(

1−3β1
6

) , if ν ′m < ν ′a < ν ′p.
. (B-17)

In the samples presented in the main body of the paper, β1 is among -1.4 to 0, so the

ranges for the correction factor are C1(β1) = (1.2, 4.5) and C2(β2) = (1.2, 7.0). Therefore

Eq. (B-16) shows that, within a factor of a few, at ν ′a the un-absorbed source surface flux

density is equal to the flux density of the Rayleigh-Jeans part of the blackbody spectrum

with a temperature corresponding to the lowest energy of those electrons that are barely

affected by the self absorption. This equation is used to calculate ν ′a in the main body of

the paper where the correction factor C(β1) is taken into account.
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Appendix C:

Photon diffusive luminosity from a hot, expanding sphere

In this appendix we provide a basis for estimation of the thermal emission from the breakout

of the “late” cocoon that was produced in the late jet - SN ejecta interaction studied in

Chapter 6. The thermal emission of the broken-out cocoon that was produced by a GRB

jet penetrating through the progenitor star was studied by Ramirez-Ruiz et al. (2002) and

Matzner (2003). In particular, we consider the photon diffusion in the Thompson-scattering

optical thick regime of the cocoon. In general, the problem is to study the thermal emission

from a hot gas whose initial state is: isothermal (with T ∼ 108K), extremely optical thick

(τ ∼ 1010) and the internal energy is radiation dominated; the gas then freely expands.

Let us consider a sphere of gas and radiation and its expansion. We will consider

the expansion sub-relativistic, and homologous inside the gas sphere, meaning v(r) ∝ r

where r is the radius inside the sphere. The density is always uniform inside the sphere.

The internal energy of the sphere is always dominated by the radiation, and it is always

isothermal. We assume the accumulated radiative loss up to t is very small compared with,

Eint(t), the internal energy at t, therefore, the adiabatic law for a photon gas applies, i.e.,

Eint(t) ∝ R(t)−1. E0, R0, T0 and τ0 are the initial internal energy, radius, temperature

and optical depth of the sphere at t = 0. The outer boundary of the sphere expands as

R(t) = R0 + vt = (t0 + t)v, where v is the boundary expansion velocity and is a constant,

t0 = R0/v. In the following, we pursue two approaches to derive the surface luminosity

from photon diffusion, L(t), as a function of time.

Approach I: energy in the surface layer divided by time t

For a given time t, consider a surface layer of depth s whose photon diffusion time is t, i.e.,

s2

λc
= t (C-1)

where λ is the photon mean free path. Expressing the temporal dependence in λ and with

terms of optical depth, it gives s =
√

λct = (R/R0)
√

Rct/τ0. The energy contained in

the surface layer is Erad(t) = 3Eint(t)s/R, where Eint(t) = E0R0/R is the total internal

151



energy contained in the sphere under the condition of negligible radiative loss, for which the

adiabatic law of radiation strictly applies. This portion of energy will be radiated during

time t, so following the spirit of the treatment taken by Nakar & Sari (2010), the diffusive

luminosity is

L(t) ≈ Erad(t)
t

=
3E0

t0

√
c/v

τ0

(
t

t0

)−1/2 (
1 +

t

t0

)−1/2

. (C-2)

The temporal behavior is L(t) ∝ t−1/2 for t < t0; L(t) ∝ t−1 for t > t0. Thus,

the initial pulse of emission happens in a time scale of t0, with an average luminosity

∼ √
c/(τ0v)E0/t0, i.e., the energy released in the initial pulse is ∼ √

c/(τ0v)E0.

Approach II: time derivative of photon number in the surface layer

An alternative approach is to calculate the time derivative of the photon numbers in the

surface layer. Since the opacity is dominated by Thompson scattering, the total number of

photons, N , is conserved. The average photon energy, Eint(t)/N , is decreasing with time

due to the adiabatic expansion of the sphere, i.e., Eint(t)/N ∝ R(t)−1.

At time t, all photons within the surface layer s can escape. The number of photons

that have left or are leaving the sphere up to time t is Nesc(t) = 3Ns/R. The number rate

at which photons diffuse out is

dNesc(t)
dt

= 3N
d

dt

[
s

R

]
. (C-3)

The luminosity is simply the photon diffusion number rate multiplied by the average photon

energy, i.e.,

L(t) =
E0R0

NR(t)
dNesc(t)

dt

=
3E0

2t0

√
c/v

τ0

(
1 + 2

t

t0

) (
t

t0

)−1/2 (
1 +

t

t0

)−3/2

. (C-4)

The peak value and general temporal decaying behavior of L(t) in (C-4) are essentially
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identical to the result of approach I (Eq. C-2).

Comparing with a third approach

In the context of a supernova shock breakout, Arnett (1996) constructed an analytical model

for the photon diffusion from a gas sphere for which a time-independent gradient profile for

the temperature inside the sphere is considered. We summarize here his results about the

diffusive luminosity from the sphere: when t <
√

2t0t0,d, L(t) is more or less constant with

an average value ∼ E0/t0,d, where t0,d ≈ τ0R0/c; when t <
√

2t0t0,d, L(t) decays with time

as in a Gaussian. Thus, the cumulative radiative energy loss within the characteristic time

scale of
√

2t0t0,d is Erad ∼ E0

√
c/(vτ0), same as in approaches I and II.

Therefore, between the results of the first two approaches and that of Arnett’s ap-

proach, the luminosity and the duration of the initial emission pulse are different, but

the energy radiated in the pulse is same. The reason for these differences is that Arnett

(1996) considers the gradient of temperature inside the sphere, while our approaches use

the isothermal assumption.

In the context of a cocoon we discuss in Chapter 6, we think the assumption of an

isothermal sphere is appropriate since the cocoon is heated by the moving jet head on its

way from the stellar center to close to the surface of the star, as apposed to the situation

for a star where heating is done at one point deep inside and at the bottom of the star and

hence a temperature gradient is more justifiable.
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[155] Mészáros P., Gruzinov A., 2000, ApJ, 543, L35
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ApJ, 652, 1400

[218] Ryde F. & Pe’er A., 2009, ApJ, 702, 1211

[219] Sakamoto, T., Lamb, D. Q., Kawai, N., et al., 2005, ApJ, 629, 311

[220] Sari R., Piran T., Narayan R., 1998, ApJ, 497, L17

164



[221] Sari R., Piran T., 1999, ApJ, 520, 641

[222] Schady P. et al., 2007, MNRAS, 377, 273

[223] Shao L., Dai Z. G., 2007, ApJ, 660, 1319

[224] Shao L., Dai Z. G., Mirabal N., 2008, ApJ, 675, 507

[225] Shemi A., Piran T., 1990, ApJ, 365, L55

[226] Shen R., Kumar P., Robinson E. L., 2006, MNRAS, 371, 1441

[227] Shen R.-F., Barniol Duran R., Kumar P., 2008, MNRAS, 384, 1129

[228] Shen R.-F., Willingale R., Kumar P., O’Brien P. T., Evans P. A., 2009, MNRAS, 393,

598

[229] Shen R.-F., Zhang B., 2009, MNRAS, 398, 1936

[230] Shen R., Kumar P., Piran T., 2010, MNRAS, 403, 229

[231] Sikora, M., Begelman, M. C., Rees, M. J., 1994, ApJ, 421, 153

[232] Smith R. K., Dwek E., 1998, ApJ, 503, 831

[233] Stanek K. Z. et al., 1999, ApJ, 522, L39

[234] Stanek K. Z. et al., 2007, ApJ, 654, L21

[235] Stern B. in: Poutanen J, Svensson R, eds. High Energy Processes in Accreting Black

Holes, ASP Conference Series 161. San Francisco: ASP, 1999, p277

[236] Tanaka M. et al., 2009, ApJ, 692, 1131

[237] Thoene C. C. et al., 2006, GCN Circ. 5373

[238] Thoene C. C., Perley D. A., Bloom J. S., 2007, GCN Circ. 6663
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