
Copyright

by

Swathi Mahalaxmi Mula

2015



The Dissertation Committee for Swathi Mahalaxmi Mula
certifies that this is the approved version of the following dissertation:

Stability and turbulence characteristics of a spiraling

vortex filament using proper orthogonal decomposition

Committee:

Charles E. Tinney, Supervisor

David B. Goldstein

Venkatramanan Raman

Jayant Sirohi

David G. Bogard



Stability and turbulence characteristics of a spiraling

vortex filament using proper orthogonal decomposition

by

Swathi Mahalaxmi Mula, B.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2015



Dedicated to my family and friends.



Acknowledgments

I am thankful to all the people who have motivated and supported

me in this entire journey of my graduate life. I am truly indebted to my

academic advisor Dr. Charles E. Tinney for introducing me to the world of

scientific research in fluid dynamics and guiding me towards the righteous path

in my career. I would like to deeply express my gratitude for the thoughtful

discussions we had together that had greatly influenced me in my thinking and

action as a researcher. I appreciate his support in providing me with all the

resources for the successful completion of the projects we worked together. I

would also like to sincerely express my gratitude to Dr. Jayant Sirohi for the

numerous discussions and the support provided to my research. I would like

to extend my deepest appreciation to other members of my committee, Dr.

David B. Goldstein, Dr. Venkatramanan Raman and Dr. David G. Bogard,

for their time and helpful recommendations to my research.

I would like to acknowledge Chris Cameron, my fellow graduate stu-

dent, for his assistance with the PIV measurements. I would like to extend

my sincere appreciation to the staff members at the Department of Aerospace

Engineering and Engineering Mechanics for the numerous support provided:

Joseph Pokluda for the machine work, Pablo Cortez for the help with elec-

tronics, Scott Messec for the IT support, and Geetha Rajagopal for the ad-

v



ministrative work. I would also like to thank my friends and fellow graduate

students at UT for the research discussions and friendly interactions which

were stress-busting.

I would like to acknowledge the financial support provided by the

Army/Navy/NASA Verticla Lift Research Center of Excellence (VLRCOE)

led by the University of Maryland; Grant No. W911W6-11-2-0012.

On a more personal note, I am deeply indebted to my parents and

my dear husband, Shireesh Annam, for the unconditional support. Without

you, I could have not come this far. To my siblings, family and friends, you

have always been encouraging. I thank you for being morale boosters and

appreciate your patience at difficult times.

vi



Stability and turbulence characteristics of a spiraling

vortex filament using proper orthogonal decomposition

Swathi Mahalaxmi Mula, Ph.D.
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Supervisor: Charles E. Tinney

The stability and turbulence characteristics of a vortex filament ema-

nating from a single-bladed rotor in hover are investigated using proper orthog-

onal decomposition. The rotor is operated at a tip chord Reynolds number

and a tip Mach number of 218,000 and 0.22, respectively, and with a blade

loading of CT/σ = 0.066. In-plane components of the velocity field (normal

to the axis of the vortex filament) are captured by way of 2D particle image

velocimetry with corrections for vortex wander being performed using the Γ1

method. Using the classical form of POD, the first POD mode alone is found

to encompass nearly 75% of the energy for all vortex ages studied and is de-

termined using a grid of sufficient resolution as to avoid numerical integration

errors in the decomposition. The findings reveal an equal balance between the

axisymmetric and helical modes during vortex roll-up which immediately tran-

sitions to helical mode dominance at all other vortex ages. This helical mode is

one of the modes of the elliptic instability. While the snapshot POD is shown

to reveal similar features of the first few energetic modes, the classical POD
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is employed here owing to the easier interpretation of the Fourier-azimuthal

modes. The spatial eigenfunctions of the first few Fourier-azimuthal modes

associated with the most energetic POD mode are shown to be sensitive to

the choice of the wander correction technique used. Higher Fourier-azimuthal

modes are observed in the outer portions of the vortex and appeared not to

be affected by the choice of the wander correction technique used.
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σ Standard deviation of wander

χ Total resolved kinetic energy of the mean vortex flow

Γv Circulation strength of the vortex filament

τ̂ Torsion of the helix

p̂ Pitch of the helix

E Low-dimensional turbulence kinetic energy per unit mass

ui=1,2 Fluctuating part of the low-dimensional in-plane velocity components

ν Kinematic viscosity of the fluid (air)

Ω Rotation speed of the rotor

ψ Vortex age

ρ Density of the fluid (air)

σ Rotor solidity

ũi=1,2 Instantaneous in-plane velocity components

Ξ Total resolved turbulence kinetic energy

c Blade chord

CT Coefficient of thrust
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CT/σ Blade loading

Lm Measurement resolution

m Fourier-azimuthal mode

Ma Tip Mach number

n POD mode in the classical form of POD

Nb Number of blades

ns POD mode in the snapshot form of POD

R Rotor radius
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Re Tip chord Reynolds number
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Ui=1,2 In-plane mean velocity components
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ωz Axial vorticity (parallel to the vortex axis)
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εf Normalized eigenspectra in the snapshot form of POD

(r, θ) Polar coordinates along the measurement plane with the origin at the

vortex center

(x′, y′) Cartesian coordinates along the measurement plane with the origin at

the vortex center

(x⋆, y⋆) Instantaneous position of the vortex from the mean vortex center

CoQ Centroid of Q

FOV Field of view

GC Geometric center
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Chapter 1

Introduction

Understanding the aerodynamics of helicopters is essential to im-

proving their performance and efficiency. Helicopter rotor wakes are three-

dimensional, inherently unsteady, and are dominated by spiraling vortex fil-

aments that emanate from the blade tips. Unlike fixed-wing aircraft, where

vortices from the wing tips sweep away, vortices from a rotor blade tip remain

in close proximity to other blades thereby inducing highly unsteady air loads,

significant blade vibrations, and heavy noise [97]. While helicopters have cer-

tain advantages relative to fixed wing aircraft (access to remote locations, an

ability to take off and land in small areas as well as their ability to hover),

their tip vortices can be highly energetic and have been shown to suspend sand

particulate from the ground in the air, thereby causing visibility restriction to

the pilot. These tip vortices also interact with other components of the he-

licopter such as the fuselage and tail rotor assembly, thereby elevating cabin

noise and vehicle drag (resulting in power loss). Overall, tip vortices play a

This chapter may compose material from the author’s previously published article,

S. M. Mula, J. H. Stephenson, C. E. Tinney and J. Sirohi. Dynamical characteristics of

the tip vortex from a four-bladed rotor in hover. Exp. Fluids, 54, 1600, 2013. For this

project, Stephenson built the rotor test stand while Tinney and Sirohi served as the project

advisors.
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pivotal role in the performance of a helicopter and hence, a comprehensive

understanding of their characteristics is warranted. The current study aims

to better understand the aerodynamics of these rotor tip vortices in terms of

their stability and turbulence characteristics. Unfortunately, the scarcity of

experimental studies concerning the stability and turbulence characteristics of

such spiraling vortex filaments leaves many questions unanswered. In order to

fill this void, a quantitative experimental study coupled with unique analysis

techniques is performed here on a reduced-scale rotor in hover. What makes

this study so unique is the low-dimensional analysis of the vortex filament,

which reveals, for the first time, the various constituents that make up the

vortex filament produced by a rotor in hover.

This chapter begins by reviewing topics related to the stability and tur-

bulence characteristics associated with trailing vortex flows. An introduction

to the dynamics of trailing vortices is provided in § 1.1 and § 1.2 in the context

of fixed-wing aircraft and helicopter rotors, respectively. The turbulence prop-

erties of trailing vortices are reviewed in § 1.2.1 followed by a review on their

stability in § 1.3. The chapter ends with a concluding section in § 1.4, which

discusses the scope of the current study, followed by an outline of subsequent

chapters of this manuscript in § 1.5.

1.1 Fixed-wing aircraft trailing vortices

Trailing vortices are the most energetic structures in the wake of a fixed-

wing aircraft. During landing or take off, trailing vortices can form tornado-
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like structures capable of endangering nearby lighter aircraft. Such a threat

requires that there be sufficient spacing between aircraft during landing and

take off operations; this spacing depends on how long the danger persists,

which in turn depends on how fast the vortices diffuse. These vortices do not

decay merely by simple diffusion but are subject to instabilities, which can

eventually breakdown the vortex [46]. Likewise, trailing vortices in the case of

a helicopter rotor wake can breakdown under the influence of instabilities and

turbulence that are inherent to the rotor wake.

1.2 Helicopter rotor trailing vortices

Even during the initial roll-up of a vortex sheet, which emanates from

the rotor blade, the tip vortex interacts with counter-rotating flow struc-

tures [26] that reside inside the trailed sheet, as shown by the measurements

of Ramasamy et al. (2009b) [75] in figure 1.1. The vortices that form from

the blade tips of rotorcraft form compact filaments, which are helical in geom-

etry unlike the straight-line vortex filaments in the case of fixed-wing aircraft.

These vortex filaments are dynamic in nature due to the inherent unsteadi-

ness present in the rotor wake. The dynamical nature is also evident in terms

of the perturbations in the locations of these trailing vortex filaments. For

instance, figure 1.2 (taken from Mula et al. (2013) [64]) shows the scatter in

the instantaneous locations of a vortex filament on a plane perpendicular to

its filament axis. This scatter is shown at sample vortex ages (100◦, 130◦ and

160◦), where a vortex age is an angular position on the vortex filament (in
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Tip vortex
Trailed vortex sheet

Counter-rotating flow structures

Figure 1.1: Counter-rotating flow structures in the trailed vortex sheet taken
from the measurements of Ramasamy et al. (2009b) [75].

100◦ 130◦ 160◦

Figure 1.2: Scatter plot of vortex position at sample vortex ages taken from
Mula et al. (2013) [64].
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Figure 1.3: Structure of a trailing vortex taken from Ramasamy et al.
(2009b) [75] highlighting (1) the laminar inner region, (2) an intermediate
transitional region and, (3) the outer turbulent region.

rotor azimuth) relative to the blade from which the filament originates. Such

perturbations (in figure 1.2) in the position of the vortex filament give rise to

three-dimensional instabilities that travel along the filament axis, as described

by Widnall (1972) [94], Bhagwat et al. (2000a) [9], Ohanian et al. (2012) [66]

and Leweke et al (2014) [48] (detailed here in § 1.3.3).

1.2.1 Turbulence in the vortex

Consider a transverse cross-section (a plane perpendicular to the fil-

ament axis) of a blade tip vortex filament as shown in figure 1.3 (excerpted

from Ramasamy et al. (2009b) [75]). The figure reveals three distinct re-

gions inside the vortex [73, 75]: a laminar inner region, a second intermediate
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region that is intermittently transitional (comprising coherent eddies of var-

ious scales), and an outer region that is turbulent (comprising less coherent

eddies). Studies of Huffaker et al. (1970) [32], Garodz (1971) [21], Ragab

& Sreedhar (1995) [70], Zeman (1995) [98] and Devenport et al. (1996) [16]

suggest that the vortex core is laminar. However, high velocity fluctuations

have been found inside the vortex core (by Phillips & Graham (1984) [68],

Bandyopadhyay et al. (1991) [4], Devenport et al. (1996) [16], Han et al.

(1997) [27], Ramasamy et al. (2009b) [75], and Beresh et al. (2010) [7]) which

extend up to two core-radii from the center of the vortex [27, 75]. Some of

the discrepancies are attributed to the difficulties associated with developing

a universally adopted method for correcting for vortex wander. Devenport

et al. (1996) [16] suggests that the fluctuations within the vortex core are a

result of inactive motions produced by the turbulence in the outer wake sur-

rounding the core. Whereas, Bandhyopadhyay et al. (1991) [4] points out that

the vortex core comprises intermittent patches of turbulent and relaminarized

fluid due to the intermittent exchange of momentum (by organized motions)

between the outer turbulent region and the vortex core. Nevertheless, if the

vortex core is merely laminar, the presence of high velocity fluctuations should

suggest the presence of instabilities within the vortex [7]. However, there are

limited quantitative experimental studies on the helicopter vortex filaments

that actually explore the stability and turbulence characteristics owing to the

complicated geometry associated with these unsteady vortex filaments.
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1.3 Vortex instabilities

Helical vortex filaments in an inviscid fluid (such as the case of he-

licopter vortex filaments) are always unstable [9]. This is certainly true for

circular vortex filaments [95]. For instance, if an ideally straight vortex fila-

ment is considered, the filament is supposedly very stable. As another straight

filament is brought in close vicinity and parallel to the first filament, both the

filaments are likely to undergo instabilities [15]. This is due to a strain induced

on each filament by the other. In the case of a helical vortex filament, strain

is inherently induced by three mechanisms: (1) the proximity of the vortex to

neighboring vortices, (2) curvature of the vortex filament, and (3) torsion [20].

When a vortex filament is subject to external strain it is likely to un-

dergo three-dimensional instabilities such as long-wave and short-wave insta-

bilities that travel along the vortex filament [15, 61, 94–96]. As visualized by

Crow (1970) [15] and Leweke & Williamson (1998, 2011) [46, 47], in the limit

of small perturbations (linear regime) these waves are sinusoidal in their be-

havior. For instance in figure 1.4, taken from the flow visualization study by

Leweke & Williamson (1998) [46], sinusoidal long-wave and short-wave per-

turbations are shown on two counter-rotating straight-line vortex filaments

under the influence of strain induced on each filament by the other. The

most unstable long-waves are those whereby the two filaments mutually per-

turb out-of-phase with respect to each other in their plane of separation, as

shown in figure 1.4. Such a long-wave instability, as it was first introduced

by Crow (1970) [15], is called Crow instability that comprises wavelengths
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Vortex filament

Vortex filament

Long-wave

Short-wave

Figure 1.4: Long-wave and short-wave instabilities taken from the flow-
visualization study of Leweke & Williamson (1998) [46].

on the order of about eight vortex spacings1. Further, the filaments are also

unstable to short-waves whose wavelength is on the order of the filament core-

radius [46,61,96]. Figure 1.5 shows a close-up view of a short-wave instability

where the centerline of the vortex core mutually perturbs out-of-phase with re-

spect to its edges; the instability modifies the structure of the vortex core [46].

Such a short wave instability is called an elliptic instability, which was theoret-

ically discovered by Moore & Saffman (1975) [61], Tsai & Widnall (1976) and

numerically demonstrated by Robinson & Saffman (1984) [78], Pierrehumbert

(1986) [67] and Bayly (1986) [6]. An elliptic instability occurs in a vortex

which is elliptically deformed under the influence of strain [6, 67]. Unlike the

1Vortex spacing here is defined as the separation distance between the two straight line

filaments.

8



filament core center line Outer edge of the core

Figure 1.5: Close-up view of short-wave instabilities taken from the flow-
visualization study of Leweke & Williamson (1998) [46].

Crow instability, which forms only in counter-rotating vortex filaments [35],

an elliptic instability can occur even in the case of co-rotating vortices (as seen

by Meunier & Leweke (2005) [60]).

1.3.1 Elliptic instability

Elliptic instability was discovered and rediscovered in a variety of flows [38].

The earliest known investigations comprise theoretical studies by Moore &

Saffman (1975) [61] and Tsai & Widnall (1976) [87] who developed linear sta-

bility analysis of a finite core vortex (in an inviscid medium), with no axial

flow (or with a small axial flow [61]), where the vortex was slightly deformed

elliptically by the presence of weak strain. Subsequent numerical studies by

Robinson & Saffman (1984) [78] showed that the short-wave instability (ellip-

tic instability), which was found analytically in the presence of weak strain,

continued to occur in the presence of significant strain. Following these stud-
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ies, the instability was rediscovered numerically (by Pierrehumbert (1986) [67]

and Bayly (1986) [6]) in an idealized, two-dimensional, unbounded, elliptically

deformed vortex (in inviscid fluid medium) with finite core when subjected to

three-dimensional short-wave perturbations; as for the occurrence of these el-

liptic instabilities, in such an inviscid flow, there was found to be no minimum

threshold wavelength of these short-wave perturbations [6,67]. However, Land-

man & Saffman (1987) [43] later found that the presence of a non-vanishing

viscosity had a stabilizing effect, thereby building a cutoff on the minimum

wavelength for the development of these instabilities [43]. In the context of a

bounded and strained vortex flow (with finite core), elliptic instabilities were

observed in both theoretical (see Waleffe (1989) [91] and Gledzer & Ponomarev

(1992) [22]) and experimental (see Leweke & Williamson [46], Vladimirov et

al. (1987) [90] and Malkus (1989) [54]) studies. For instance, the elliptic in-

stabilities demonstrated earlier in figures 1.4 and 1.5 actually correspond to

an open flow configuration of a pair of counter-rotating vortex filaments (finite

core, no axial flow), which are bounded by a rectangular cylinder [46]. Fur-

thermore, as shown by Laceze et al. (2007) [41] and Roy et al. (2011) [79],

the addition of a significant axial velocity to the vortex was found to have a

profound influence on these elliptic instabilities.

In the linear regime2, an elliptic instability occurs when one or two

normal modes of the same axial wavenumber (along the vortex axis) resonate

with the external strain [38, 61, 87]. In a non-axial flow situation, the most

2In the limit of small perturbations.
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Figure 1.6: Axial vorticity field of a linear mode structure of the elliptic in-
stability in the transverse plane as described by Sipp (2000) [82]. Solid and
dashed lines indicate opposite signs of vorticity.

unstable short-waves (associated with elliptic instabilities) correspond to az-

imuthal mode |m| = 1 [61,78]. But in a general sense (axial or non-axial flow)

if the vortex is confined, the external strain always excites a pair of normal

modes that correspond to azimuthal modes m and m+ 2 [38, 41]. Therefore,

once again in a non-axial flow, the most unstable waves for a bounded vortex

flow correspond to azimuthal modes −1 and 1 (see Malkus (1989) [54], Gledzer

& Ponomarev (1992) [22], and Leweke & Williamson [46]), which satisfy the

above criteria. A sample illustration of a linear mode structure of the elliptic

instability in the transverse plane of a vortex filament, constructed from the

superposition of modes m = −1 and 1, is shown in figure 1.6 (taken from Sipp

(2000) [82]). As the axial velocity increases, the corresponding most unsta-

ble azimuthal modes (of the elliptic instability) progressively change from −1

and 1 to other combinations of non-positive modes m and m+ 2 (such as −2
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Rotation

Figure 1.7: Contour plot of axial vorticity of the most unstable mode of the
elliptic instability in the numerical investigations of Schaeffer & Dizer [80].
(a) Linear regime and (b) weakly non-linear regime. Solid and dashed lines
correspond to positive and negative isovorticity contours respectively.

and 0, and then −3 and −1, and so on), as seen by Lacaze et al. (2007) [41]

and Roy et al. (2011) [79]. Likewise, an increase in rotation rates of the

mean vortex flow, which can have a stabilizing effect on the elliptic instability,

can also modify the conditions on the resonance of normal modes and their

corresponding azimuthal modes [14].

Non-linear aspects of the elliptic instability were also explored in strained

vortex flows in the absence of axial velocities (by Waleffe (1989) [91], Sipp

(2000) [82] and Schaeffer & Dizes (2010) [80]). In the limit of a weakly non-

linear regime, the structure of a linear mode of the elliptic instability rotates

about the vortex axis, as shown in figure 1.7 (excerpted from Schaeffer & Dizes

(2010) [80]), without producing any significant modification to the structure

12



(a) (b) (c)

(d) (e)

Figure 1.8: (a-e) Evolution of axially averaged vorticity contours in a plane
perpendicular to the vortex axis (in strongly nonlinear regime of elliptic insta-
bility) in the numerical investigations of Schaeffer & Dizer [80].
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of the mode. In this regime, as described by Waleffe (1989) [91] and Sipp

(2000) [82], the instability can saturate and attenuate to return to its linear

regime and repeat the process. However, in a highly non-linear regime, as

shown by Schaeffer & Dizes (2010) [80], there is no saturation mechanism.

While the elliptic instability grows, it also increases the size of the vortex

core (see figure 1.8a-b taken from Schaeffer & Dizes (2010) [80]). However,

the growth in the core radius ends when secondary vortices (figure 1.8c) form

around the primary vortex. These secondary structures move away from the

vortex axis, destabilize, and then break down into smaller scales by the action

of viscosity (see figure 1.8d). After breakdown, the primary vortex recovers

its shape through relaminarization and forms a core (figure 1.8e) comprising

a much larger radius and a much lower vorticity compared to the original vor-

tex. After recovery, the elliptic instability can again develop and repeat the

process.

1.3.2 Vortex breakdown

Long-wave instabilities when present in combination with short-wave

instabilities can cause vortex breakdown. Once again, consider a pair of

counter-rotating straight-line vortex filaments illustrated in figure 1.4. Based

on the observations of Leweke & Williamson (2011) [47], in the absence of

short-wave instabilities non-linear evolution of Crow-instability forms large-

scale vortex rings that can remain energetic for a very long time. However,

when short-wave instabilities are also present, non-linearities in both short-
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Small-scale turbulent fluid

Thin bridges of vorticity

Figure 1.9: Vortex breakdown in the flow visualization study of Leweke &
Williamson [47].

wave and long-wave perturbations can develop much earlier, thereby causing

breakdown of large-scale coherent structures to periodic regions of disorganized

turbulence which are linked by thin bridges of vorticity (see figure 1.9 taken

from Leweke & Williamson (2011) [47]). These small-scale structures are less

energetic when compared to the large-scale vortex rings when only the Crow

instability is present. Therefore, the combined effect of both long-wave and

short-wave instabilities can play a significant role in the diffusion mechanism

of trailing vortices.

1.3.3 Stability investigations on spiraling vortex filaments

While earlier sections of this chapter reviewed topics concerning in-

stabilities associated with vortex flows in a more general sense, the current

section focus more specifically on the instabilities associated with spiraling

vortex filaments. As stated earlier, spiraling vortex filaments are subject to
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three-dimensional disturbances due to the inherent strain induced by the cur-

vature effect; the presence of multiple vortex filaments, such as those that are

produced by multi-bladed rotors, induces additional strain. The earliest known

investigations (on helical filaments) comprise the linear stability studies devel-

oped by Widnall (1972) [94], which revealed an existence of three-dimensional

instabilities whose wavelength was much greater than that of the filament core

size. These are the so called long-wave instabilities, as per the terminology

used in straight vortex filaments (see § 1.3). Sample illustrations on the growth

rate of these long-wave perturbations are provided in figure 1.10, along with

various mode shapes of these perturbations in figure 1.11 [94]. The first mode

shape in figure 1.11, whose wavenumber is not specified, is an instability whose

wavelength is much smaller than the local radius of curvature of the filament

(but larger than the filament core size). Also demonstrated are the mode

shapes for sample half-integer wavenumbers in figure 1.11. At these wavenum-

bers, the perturbations on successive turns of the helix are out-of-phase.

Complementary to the studies of Widnall (1972), Bhagwat & Leish-

man (2000) [9] developed numerical investigations on helical vortex filaments

from single- and multi-bladed rotors in hover. The methodology developed

by Bhagwat & Leishman (2000) (for stability investigations) is very general

and can be applied to any rotor wake geometry. In this methodology, vortex

filaments are divided into various line segments. Velocity induced from each

segment (see figure 1.12) at a point, say M on a filament, is obtained using
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Figure 1.10: Non-dimensional amplification rate (or growth rate of perturba-
tions) for helices at a sample pitch with an instability mode of γ/k′ waves per
cycle (wavenumber) as found by Widnall (1972) [94]. The values of the ratio
of vortex core radius to the radius of cylinder (that encloses helix) are shown
on each curve [94].
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γ/k′ = 5/2

γ/k′ = 3/2 γ/k′ = 1/2

Figure 1.11: Instability mode shapes for sample wavenumbers taken fromWid-
nall (1972) [94]. Dark portions are outside the cylinder on the near side while
light portions are on the inside.

B A

M

i~V

Γv

~l12

~r2
~r1

θ2 θ1

h

Vortex filament

Figure 1.12: Schematic showing the velocity induced by a straight-line vortex
filament AB [9]. Γv is the circulation strength of the vortex filament.
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the Biot-Savart law,

{i~V }c =
Γv
2πh

(cos θ1 − cos θ2) {ê}c, (1.1)

where { }c defines the vector components in cartesian system (x, y, z), i~V is

the velocity induced at point M by the ith segment and ê is the unit vector of

i~V . In order to account for singularity as h → 0 in Eq. 1.1, the Biot-Savart

law is modified such that it includes a viscous vortex core with an induced

velocity profile,

V =

(
Γv
2π

)
r

(r2nc + r2n)
1

n

, (1.2)

where r is the radial distance from the vortex center and rc is the core-radius.

As n → 0 Eq. 1.2 reduces to the Rankine vortex model; for n = 1 and n = 2

Eq. 1.2 represents the Scully [81] and Lamb-Oseen [42] models, respectively.

Thus, for a vortex with viscous core, the Biot-Savart law is rewritten as

{i~V }c =
(
Γv
2π

)
h

(r2nc + h2n)
1

n

(cos θ1 − cos θ2) {ê}c. (1.3)

The equilibrium wake is then subjected to small perturbations where the per-

turbed induced velocity, due to each segment, is obtained as

{δiV }c =
(
Γv
2π

)
1

(r2nc + h2n)
1

n

([A]{δ~rA}c + [B]{δ~rB}c + [M ]{δ~rM}c), (1.4)

where [A], [B] and [M ] are the coefficient matrices which are in terms of the

known local parameters of the line segment AB and pointM in figure 1.12; δ~rA,

δ~rB and δ~rM denote the perturbations in positions A, B and M , respectively.
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Further, perturbations on vortex filaments are assumed to be in the form of

traveling waves. For instance,

{δ~rM}p = {δ~r0}peαt+ıωψM , {δ~rM}c = [T ]M{δ~rM}p, (1.5)

where ψM is the vortex age corresponding to point M , α is the growth rate of

the perturbations, ω is the wavenumber, { }p represents the vector components

in the polar coordinate system (r, θ, z) and [T ]M is the transformation matrix

evaluated at point M between the polar and cartesian coordinates. Applying

Eq. 1.5 in Eq. 1.4, one achieves the following,

{δi~V }c =
(
Γv
2π

)
1

(r2nc + h2n)
1

n

(eıω(ψA−ψM )[A] + eıω(ψB−ψM )[B]

+[M ])[T ]M{δ~r0}peıωψM ,

=

(
Γv
2π

)
[iC][T ]M{δ~rM}p.

(1.6)

The total perturbed induced velocity δ~V , at pointM , is obtained by summing

together contributions from all segments of the vortex filaments.

{δ~V }c =
(
Γv
2π

)∑
i
[iC][T ]M{δ~rM}p =

(
Γv
2π

)
[C][T ]M{δ~rM}p. (1.7)

Further, the total perturbation velocity δ~V can also be obtained as,

{δ~V }c = {δ~̇rM}c = [T ]M{δ~̇rM}p + [Ṫ ]M{δ~rM}p,

= [α[T ]M + [Ṫ ]M ]{δ~rM}p.
(1.8)

Therefore, equating Eq. 1.7 and Eq. 1.8,

(
Γv
2π

)
[C][T ]M{δ~rM}p = [α[T ]M + [Ṫ ]M ]{δ~rM}p, (1.9)
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four-bladed rotor

two-bladed rotor

one-bladed rotor

Figure 1.13: Maximum divergence rates (or growth rate of perturbations)
for the one-, two-, and four-bladed hovering rotors at constant blade-loading,
CT/σ = 0.075, from the numerical studies of Bhagwat & Leishman (2000) [9].

reduces to a standard eigenvalue problem,

α{δ~rM}p = [

(
Γv
2π

)
[C]− [Ṫ ]M [T ]−1]{δ~rM}p. (1.10)

Once again, α is the growth rate of perturbations in the wake. By applying this

methodology to hovering rotor wakes, Bhagwat & Leishman (2000) [9] showed

that the growth rates of perturbations were positive for all wavenumbers of

long-waves (see figure 1.13). This indicates that the rotor tip vortex filaments

are always unstable. Also, their findings in figure 1.13 show that the most

unstable long-waves occur at wavenumbers of half-integer multiples of the

number of blades (Nb). Similar results can be seen in the findings of Widnall

(1972) [94] in figure 1.10. At these wavenumbers, successive filaments from

rotor blades mutually perturb out-of-phase, which complement the findings
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in figure 1.11 [94] (see at ω = 1/2, 3/2 & 5/2). However, at wavenumbers of

integer multiples of Nb long-wave perturbations are least unstable. Also, at

these wavenumbers, successive filaments from rotor blades mutually perturb

in-phase.

Pitch (mm) Radius of helix, R (mm) rc (mm)
146 500 4.97

Table 1.1: Parameters of the helical vortex filament studied here.

The methodology described in Eq. 1.1 to Eq. 1.10 can also be applied

to intertwining helical vortex filaments in a more general sense. For instance,

consider helical filament(s) with constant parameters: pitch, cylindrical radius

and core-radius defined in table 1.1. The parameters in this table are actually

estimates of the initial pitch and cylindrical radius of the helix measured in

the current study, while the estimate of core-radius (rc) is obtained at the

earliest vortex age (ψ = 45◦) in the measurement envelope. The resultant non-

dimensional growth rates of perturbations (ᾱ = α/Γv/2πR
2) on single- and

multiple-intertwining helical vortex filaments are demonstrated in figure 1.14,

which qualitatively resembles the findings (on most unstable and least unstable

long-waves) of rotor tip vortex filaments in figure 1.13.

As for the flow-visualization studies, three-dimensional long-wave in-

stabilities were identified by Ohanian et. al (2012) [66] on vortex filaments

produced by a three-bladed rotor in hover. As shown in figure 1.15 for a

sample rotation rate [66], the wavelength of these long-waves appears to be
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Figure 1.14: Maximum non-dimensional divergence rates (or growth rate of
perturbations) for one-, two-, three- and four-intertwining helical vortex fila-
ments.

much smaller than the local radius of curvature of the filament, but much

larger than the size of the filament core. Traces of short-wave instabilities (as

per the terminology used in § 1.3), whose wavelength is on the order of core-

radius, were also observed on these filaments at a different rotation rate (see

figure 1.16). Complementary to these observations, recent flow-visualization

studies by Leweke et al. (2014) [48] also demonstrated the existence of such

short-wave instabilities on filaments from a horizontal wind turbine wake. A

sample illustration of these short-wave instabilities in the wake of a single-

bladed wind turbine is shown in figure 1.17. The simultaneous development of

long-wave instabilities, at which the perturbations on successive turns of the

helix are out-of-phase, can also be seen in the far wake of the rotor. These
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Long-wave instabilities

Figure 1.15: Instabilities on rotor-tip vortex filaments of a three-bladed rotor
(at 4 revolutions per second) in hover in the flow visualization study of Ohanian
et al. (2012) [66]. b1-blade 1, b2-blade 2, b3-blade 3; v1, v2, v3 represent
vortex filaments from blades 1, 2, and 3, respectively.

Short-wave instabilities

Figure 1.16: Traces of short-wave instabilities on rotor-tip vortex filaments
of a three-bladed rotor (at 8 revolutions per second) in hover in the flow
visualization study of Ohanian et al. (2012) [66].
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Short-waves Long-waves

Figure 1.17: Short-wave and Long-wave instabilities on tip vortex filaments
from a horizontal axis one-bladed wind turbine taken from Leweke et al.
(2014) [48].

findings suggest that the simultaneous presence of such long-waves and short-

waves lead to a rapid breakdown of the tip vortices. Similar conclusions were

drawn earlier in the case of straight vortex filaments (see § 1.3.2).

In addition to the above analytical, numerical and flow-visualization

studies, quantitative experimental investigations were also carried out on he-

lical vortex filaments. This involved performing stereoscopic PIV experiments

on a four-bladed rotor in hover by Mula et al. (2013) [64]. Long-wave per-

turbations in the instantaneous positions of a vortex filament (x⋆, y⋆) on a

plane perpendicular to the filament axis were captured using different vortex

center identification techniques: CoQ [33, 89], normalized helicity [44, 45, 88],

centroid of vorticity, Γ1 [24], and a geometric centering approach. All of these
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Vortex 4
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Instantaneous slipstream boundary
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Figure 1.18: Schematic of vortex wander and coordinate system (for in-plane
motions) with respect to the mean slipstream boundary provided by Mula et
al. (2013) [64]. Vortices 1, 2, 3, and 4 represent tip vortices from blades 1, 2,
3, and 4, respectively.

techniques (detailed in § 3) produced similar results, where vortex wander on

a plane perpendicular to the vortex axis is concerned. A schematic of wander,

for filaments from the four-bladed rotor, is shown in figure 1.18. For the range

of vortex ages studied: ψ = 10◦ − 260◦, figure 1.19 illustrates vortex wander

with a 95% confidence interval. At each ψ, the wander is anisotropic. The

amount of wander increases with the increase in vortex age, and, the preferred

direction of wander rotates with the increasing vortex age. Furthermore, in

order to obtain the relative in-plane motion between vortices from different

rotor blades (see figure 1.18), the perturbations of each vortex (x⋆, y⋆) are

normalized with the standard deviation (σx,σy) of the corresponding com-
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Figure 1.19: Wander of vortex from blade 2 overlaid the 95% confidence region
for vortex ages between (a) 10◦ - 80◦, (b) 100◦ - 170◦, (c) 190◦ - 260◦ using CoQ
in the measurements of Mula et al. (2013) [64]. Dashed lines are separated by
y ⋆ /R = 0.03; x ⋆ /R = 0.03.
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ponent. Such a normalization is done in order to eliminate the amplitude

dependence brought by the spatial growth in wander with the increase in vor-

tex age. Figure 1.20a, b illustrates the normalized instantaneous perturbations

in two perpendicular directions, for vortex 4 with vortex 3 (see figure 1.18 for

vortex notations) at different azimuthal positions (in rotor azimuth): 10◦−80◦.

Once again, a 95% confidence ellipse is constructed which identifies a preferred

direction of orientation inclined at 45◦ to the horizontal axis in figure 1.20a, b

at all azimuthal positions. Similar findings were observed between vortices 1

and 4, and vortices 1 and 3 (demonstrated in Mula et al. (2012) [63]). Hence,

from figure 1.20, all the vortices in figure 1.18 wandered predominantly in-

phase in every direction, which suggests the dominance of long-waves with

wavenumbers of integer multiples of the number of blades in the measurement

envelope (as described by Bhagwat & Leishman (2000a) [9]).
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Figure 1.20: Phase motion of the (a) x⋆ and (b) y⋆ displacements in figure 1.18
between vortex 4 and vortex 3 using CoQ in the measurements of Mula et al.
(2013) [64]. The 95% confidence interval region has been drawn. Dashed lines
are separated by y ⋆ /σy = 3; x ⋆ /σx = 3.

1.4 Scope of the current research

As there are a limited number of quantitative experimental studies char-

acterizing the behavior of short-wave instabilities on spiraling vortex filaments,

the objective of the current study is to better understand these instabilities

as well as the organized turbulence that reside within the vortex produced by

a rotor blade in hover using Particle Image Velocimetry (PIV). The vortex

studied here is formed by a single-bladed rotor; the advantages of such a con-

figuration guarantees no interference from instabilities formed by the presence

of other vortex filaments in a multi-bladed rotor [55, 75]. Corrections for vor-

tex wander are performed using the Γ1 method [24], which is an integral based
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approach. Therefore, the results are not corrupted by the noise introduced

by the gradients of the velocity field. The Proper Orthogonal Decomposition

(POD) technique [53] is used to flush out the more energetic flow features

responsible for characterizing the bulk motions of the tip vortex and is per-

formed over extended vortex ages. The current study is complementary to the

one conducted by Roy et al. (2011) [79], who used dye images to determine

the low-order features associated with tip vortices from a fixed-wing. Fur-

thermore, Lumley’s POD technique is implemented using two different forms.

That is, the classical and snapshot [83] forms. While the classical form of

POD, described by Glauser (1987) [23], Citrinity & George (2000) [13] and

Tinney et al. (2008) [85], provides an easier interpretation of the low-order

features, the snapshot form [83] is computationally more efficient when using

spatially resolved PIV data. And so, both these forms of POD are applied to

spiraling vortex filaments in the current study and subsequently compared. In

addition, a sensitivity study is also developed on the choice of the vortex cen-

tering technique to the low-dimensional features (of the tip vortex) obtained

by way of POD.

1.5 Outline of subsequent chapters

Details of the experimental setup, test conditions, and measurement

uncertainties are provided in § 2. In § 3, details of some basic characteristics

of tip vortices from the experimental measurements, as well as comparisons

with the studies reported in the open literature, are provided. This is done

30



in an effort to provide confidence in the measurements reported here as the

statistical properties of the spiraling vortex filament have been studied exten-

sively over the past several decades. This is followed by a description of the

classical and snapshot forms of the proper orthogonal decomposition (POD)

technique. Low-dimensional characteristics of the spiraling vortex filament

using the classical form of POD are demonstrated in § 4, with subsequent

comparisons between the classical and snapshot forms of POD (applied to the

helical filament) being provided in § 5. Following this, a sensitivity study on

the choice of the vortex centering approach to the low-dimensional features

obtained by POD is demonstrated in § 6. A summary of the important con-

clusions, along with a direction of future work, is then provided in § 7.
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Chapter 2

Experimental setup

The motivation for conducting this study is to characterize the turbu-

lence and wandering motion of a vortex filament from a single bladed rotor in

hover. One could use simulated data for such an analysis, but one is confined

to Reynolds number effects (in the case of DNS) or validation and grid resolu-

tion issues (in the case of LES). In what follows, details of the rotor test stand

and experimental conditions are provided in § 2.1, followed by an overview

of particle image velocimetry in § 2.2 and instrumentation in § 2.3. Possible

sources of measurement errors are identified and quantified in § 2.3.1.

2.1 Rotor setup

The experiment was conducted in a room measuring 6.5 m × 8.0 m

× 6.5 m on a rotor test stand as shown in figure 2.1. This test stand was

installed at the center of the room. The setup consisted of a 1.0 m diameter,

single-bladed rotor, whose blade was untwisted, manufactured with a square

This chapter may compose material from the author’s previously published article,

S. M. Mula and C. E. Tinney. A study of the turbulence within a spiralling vortex

filament using proper orthogonal decomposition. J. Fluid Mech., 769: 570–589, 2015. For

this project, Tinney served as the project advisor.
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Motor housing
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Laser optics

Figure 2.1: Rotor test stand.

tip and comprised a NACA 0012 airfoil profile with a constant chord of c = 52

mm (see figure 2.2). The blade was attached to the rotor hub by a flap-

hinge, which allowed the blade to flap; the hub was located 3.0 m above the

ground. A close-up view of this hub is illustrated in figure 2.3. By adjusting

the pitch link, which was connected to the swashplate shown in figure 2.3, the

blade was set to a collective pitch angle of 7.3◦. Further, this single blade was

balanced with a counter-weight (statically up to 99%) provided in figure 2.4.

The rotor was operated by a 9 kW motor (located at the heart of the test
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(a)

432 mm
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(b)

52 mm

Figure 2.2: (a) Rotor blade and (b) its airfoil (NACA 0012).

Swashplate

Pitch link

Hub

Flap hinge
Blade grip

Rotor shaftCounter weight

Figure 2.3: Close-up view of the rotor hub.
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(a) Side view (b) Bottom view

Blade grip

Counter weight

Blade gripCounter weight

Figure 2.4: Counter weight in (a) side view and (b) bottom view.

stand in figure 2.1) that can provide a maximum rotational speed of 8000

RPM and a maximum torque of 10 Nm. For the current study, the rotor was

operated at 1500 RPM which corresponds to a tip chord Reynolds number of

Re = 218, 000 (Re = Vtipc/ν, where Vtip is the blade tip speed and c is the

tip chord) and a tip Mach number of Ma = 0.22 (Ma = Vtip/a, where a is

the speed of sound and is valued at 351.8 m/s). These conditions resulted in

a blade loading of CT/σ = 0.066, where the blade loading is a dimensionless

measure of the thrust acting on the rotor blade. In CT/σ, CT is the coefficient

of thrust (CT = T/ρAV 2
tip, where T is the rotor thrust and A is the rotor disk

area), and σ is the rotor solidity, which is the ratio of the total blade area to

the total disk area. The rotor thrust was measured using a fixed-frame load

cell shown in figure 2.1. Details of the rotor parameters and the test conditions

are provided in table 2.1.

2.2 Particle image velocimetry (PIV)

Given the conditions at which the rotor here is operated, the veloc-

ity measurements of the rotor wake are captured by way of Particle Image
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Parameter Value
Rotor diameter, 2R 1.0 m
Number of blades, Nb 1
Blade chord, c 52 mm
Blade twist 0◦

Blade airfoil NACA 0012
Rotor hub Flap hinge
Collective pitch 7.3◦

Rotor speed, Ω 1500 RPM
Reynolds number, Re 218,000
Mach number, Ma 0.23
Solidity, σ = Nbc/πR 0.033
Rotor thrust, T 13 N
Coefficient of thrust, CT 0.00218
Blade loading, CT/σ 0.066

Table 2.1: Rotor parameters and test conditions.

Velocimetry (PIV). A brief description on how the PIV technique works is

provided in this section, followed by details concerning the current instrumen-

tation and measurements in § 2.3.

Particle image velocimetry is an optical, non-intrusive approach of ob-

taining spatially resolved, instantaneous, two-component or three-component

velocity measurements on a multi-point grid space. The principal components

of a PIV system include a CCD camera, a laser with sheet generating optics

and a seed generator. Figure 2.5 shows a typical 2D PIV setup. To obtain

velocity measurements using PIV,

1. The CCD camera is calibrated in order to relate seed particle displace-
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ments to pixel dimensions of the camera

2. Fluid is then seeded with tiny particles, which can trace the fluid flow

3. The camera is then synchronized with the laser sheet in the double frame

mode

4. After this synchronization, the field of view is illuminated twice with

the laser sheet with a small separation time (called inter-frame timing)

between the two laser pulses

5. The light scattered from tracer particles at the first and second illumi-

nations of laser is then captured by the CCD camera on two different

images.

6. The image plane is then divided into small interrogation windows (see

figures 2.5 and 2.6). Average displacement of particles in each interroga-

tion window is estimated by producing a correlation map (see figure 2.6)

between the image intensities of the first and second images taken at

the first and second pulses of laser, respectively. Based on the location

of the correlation peak in the interrogation window, the displacement

vector is determined; given the inter-frame timing, the velocity vector in

each interrogation window is estimated.

7. The velocity field is then post-processed to remove any spurious dis-

placement vectors; missing vectors are then interpolated using a nearest

neighbor fit.
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Figure 2.5: General setup of a 2D PIV system [18].

Figure 2.6: General method for evaluating PIV measurements [18].
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2.3 PIV measurements of a rotor wake in hover

In the current study, two-component velocity measurements were per-

formed along a 2D slice of the rotor wake (along a plane normal to the vortex

filament axis) by phase aligning the rotor with the 2D PIV system (using

a 1/rev optical switch). The PIV system used here is a commercial system

manufactured by LaVision and comprises a double-pulse Nd-YAG laser source

and a 2M pixel (1.6k × 1.2k pixel) CCD camera. The CCD camera is limited

by a maximum sampling frequency of 15 Hz in double frame mode, which

prevents time resolved measurements of the vortex filament from being per-

formed. The laser source, with sheet forming cylindrical optics, produced a

thin sheet (2 mm thickness) of 532 nm (green) laser. The laser sheet was

oriented such that it was aligned along the quarter-chord of the blade at 0◦

vortex age. A schematic of the laser-sheet orientation is shown in figure 2.7

with a sample slice of the illuminated rotor wake being shown in figure 2.8.

This slice illustrates multiple tip vortices of a spiraling vortex filament, which

can be identified by the dark voids of olive oil seed; seeding was provided by

way of a PIVTECH 14 cascadable Laskin nozzle olive oil seeder.

Given the orientation of the laser-sheet, the PIV camera was positioned

such that the axis of the camera lens was orthogonal to the measurement plane

in order to acquire a precise focus (see figures 2.7 and 2.10). The camera lens

and the object distance were chosen such that only one vortex (including

provisions for vortex wander) was captured so as not to compromise on the

spatial resolution. The lens used here has a focal length of 105 mm (f# = 2.8).
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Figure 2.7: Schematic of the experimental setup and coordinate transforma-
tion.
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Figure 2.8: Tip vortices seen by dark voids of seed in the illuminated laser
sheet.
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Figure 2.9: Schematic of a two-level calibration plate [18].

Once the setup (laser & camera) was arranged, the next essential step

was the calibration of the camera. This is required in order to relate particle

displacements to pixel dimensions. In order to do this, the calibration plate

illustrated in figure 2.9 (comprising known reference points) was positioned

such that its front edge, which faced the camera, was aligned along the laser

sheet. An illustration of this is provided in figure 2.10. The plate was then

focused and imaged by the camera lens. The markers were identified in the

image and the calibration was processed using a pinhole model [18, 28]. The

average deviation of the positions of the dewarped markers (in the image) from

the ideal grid was found to be 0.28 pixel, which satisfies the suggestions that

it be less than 0.3 pixel for the calibration to be considered good [34]. The

resultant field of view (FOV) was found to be 88 mm×66 mm while the object

distance of the lens was found to be zo = 905 mm.

After the calibration was performed, the inter-frame timing between
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Figure 2.10: Schematic (unscaled) of the measurement plane, calibration plane
and laser sheet. Front edge of the calibration plate represents the calibration
plane.
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the two laser pulses was adjusted to 36 µs. The test area was then seeded with

atomized olive oil with adjustments being performed periodically to ensure

good seed in the measurement region. This was an iterative process that

required additional focusing of the camera. Measurements were then acquired

at multiple vortex ages: ψ = {45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦, 405◦,

495◦, 585◦}, where 350 statistically independent pairs of PIV snapshots were

acquired at each vortex age. Furthermore, the camera was repositioned at each

vortex age using a 2D traverse so that the new vortex location was roughly

centered on the camera image. This 2D traverse can be seen in figure 2.1 with

the plane of the traverse also being illustrated in figure 2.7.

2.3.1 Measurements accuracies

Where the experimental and even numerical data is concerned, it is

essential to determine the uncertainties associated with such measurements in

order to ensure that quality and reliable data is acquired for subsequent anal-

ysis. Firstly the current setup assumes that the vortex axis is perpendicular

to the measurement plane. Because of the relatively low blade loading on the

rotor, the helical pitch (p̂ = H/(2πRc) = 0.046, where H is the vertical dis-

placement of the helix over one rotor revolution and Rc = (1+ (H/(2πR))2)R

is the radius of curvature) and vortex filament torsion (τ̂ = P/R = 0.046 using

P = H/(2π) as the reduced pitch) were also small so that the measurement

plane was nearly orthogonal to the vortex axis [27,50,64]. The resultant angle

of inclination between the vortex axis and a line normal to the measurement

44



plane was estimated to be 2.66◦. The effect of this small correction appeared

to have little influence on the low-dimensional features discussed in subsequent

chapters. And so, this orthogonality assumption appears reasonable.

Secondly, given the inter-frame timing (36 µs) between the two laser

pulses (laser sheet thickness of 2 mm) and the rotation speed of the rotor

(1500 RPM), measurement accuracies are estimated to be within 0.3◦ of the

blade motion (in rotor azimuth). Additional sources of measurement errors

are discussed in more detail in the following sections.

2.3.1.1 Magnification errors

Prior to acquiring the PIV measurements, as it was mentioned earlier,

the lens of the PIV camera was slightly adjusted in order to bring the mea-

surement plane into focus. This adjustment resulted in a misalignment of the

measurement plane (in z′ direction) from the calibration plane, which is il-

lustrated in figure 2.10. This misalignment is on the order of the laser sheet

thickness. Therefore, the offset location of the seed particles (zp) relative to

the calibration plane is on the order of 2 mm. Based on the object distance

(zo = 905 mm) acquired from the calibration, and using expressions from

Discetti & Adrian (2012) [17], the magnification error is determined to be

ǫ(%) =
γ

1− γ
× 100, (2.1)

where γ = zp/zo so that the resultant magnification error ǫ is found to be less

than 0.2%.
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2.3.1.2 Particle tracking errors

A second concerning source of error is associated with particle tracking

which occurs when seed particles fail to accurately follow the fluid motion. In

the current setup, seeding was provided by a PIVTEC 14 cascadable Laskin

nozzle olive oil seeder, which produced particles with a nominal diameter of

1 µm (based on the manufacturer’s specifications). Following the analysis of

Birch & Martin (2013) [11], the maximum particle tracking error associated

with each component of velocity (radial and tangential) is estimated. Birch

& Martin (2013) considered an incompressible Batchelor vortex [5] with the

following tangential velocity profile,

v (r)

v0
=

(
1 +

1

2α

)
1

η

(
1− exp

(
−αη2

))
, (2.2)

where v0 is the peak tangential velocity, r is the radial location from the

center of the vortex, η = r/rc (rc is the location of peak tangential velocity),

and α = 1.25643. By letting v′ represent the tangential velocity of the seed

particles, the tracking error associated with the tangential velocity can then

be determined as

v

v′
− 1 = A exp

(
−Bη2

)
, (2.3)

where A represents the error amplitude in the tangential velocity. B is a

constant over the range 14 ≤ Crc/v0 ≤ 1400, where C = 18ν/φd2, d is the

particle diameter and φ = ρ′/ρ is the particle density ratio (ρ′ is the particle

density). The maximum value for the error amplitude A can be estimated
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from the following expression,

A = 2

(
α +

1

2

)2(
v′0
Crc′

)2

, (2.4)

where rc
′ is the radial location of peak tangential velocity (v′0) of seed particle.

Estimates of rc
′ and v′0 are obtained from the PIV measurements. Table 2.2

ψ v′0 (m/s) r′c (mm) Cr′c/v
′

0 A(%) Sk
45◦ 31.18 5.51 62.98 0.155 0.111
270◦ 25.43 6.98 97.96 0.064 0.072
495◦ 27.44 8.21 106.65 0.054 0.065

Table 2.2: Particle tracking error estimates in tangential velocity.

provides an estimate of the tracking errors for the tangential component of

velocity over the range of vortex ages studied. The maximum error is found

to be less than 0.16%.

As for the radial component of velocity, centrifugal forces inside the

vortex core induce a radial acceleration that alters the measured velocity in this

direction. Because of this, tracking errors associated with the radial velocities

are more sensitive than the tangential velocities. To estimate this error, we

rely on the Stokes number. The Stokes number (Sk = τ ′/τ) is a ratio of the

characteristic time scales of the particle (τ ′) to that of the fluid (τ) and is

listed in table 2.2. The time scale τ ′ is considered to be the response time

of a particle (considered as a sphere in Stokes flow) when subjected to a unit

step-change in fluid flow velocity whereas τ for the fluid is taken as the local
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time scale τ = r/v associate with the large scale motion. Estimates for Sk in

table 2.2 are obtained from the following expression,

Sk = 2
√
2A

(
1− 1

φ

)
. (2.5)

To then quantify the tracking errors for the large scale vortex, Birch & Martin

(2013) considered the case where u = 0 (no radial velocity in the vortex). An

estimate of the tracking errors for the radial component of velocity are then

obtained from the following expression,

u′0
v0

=
Sk
5.8

, (2.6)

where u′0 represents the maximum radial velocity of the particle, (induced by

centrifugal forces) which is where the maximum error will reside. The resultant

estimates for this source of error is provided in table 2.3 which shows that the

maximum error in the radial velocity is less than 2.0% of v0. Furthermore, the

nominal diameter (1 µm) of the seed particles used in this experiment satisfies

the suggestions for minimizing the particle tracking errors inherent to vortex

dominated flows [49, 59].

ψ Sk u′0/v0(%)
45◦ 0.111 1.91
270◦ 0.072 1.24
495◦ 0.065 1.12

Table 2.3: Particle tracking error estimates in radial velocity.
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2.3.1.3 Peak locking errors

A check for peak locking errors1 was also performed to ensure that the

particle image displacements were unbiased by the integer pixel dimension.

For an aberration free lens with circular aperture, the diffraction limited spot

diameter is defined as [1, 58, 69, 93]

ds = 2.44 (M + 1)
fλ

D
, (2.7)

where λ is the wavelength of the laser used in the PIV system, f is the focal

length of the lens, and D is the aperture diameter. M is the average lens

magnification, which is obtained from the calibration. If dp is the particle

diameter, then the particle image diameter is obtained as

dτ =
√
M2dp

2 + ds
2. (2.8)

For error-free estimates, dτ/dr ≥ 2 [93], where dr is the pixel diameter of the

λ (nm) f# = f
D

M ds (m) dr (m) dτ/dr
532 2.8 0.135 4.1× 10−6 7.4× 10−6 0.56

Table 2.4: Peak locking estimates.

camera (specified by the manufacturer). For the current setup, based on the

nominal particle diameter of the seed (1 µm), dτ/dr = 0.56 ≤ 2 (see table 2.4).

Therefore, the measurements are prone to peak locking errors. To minimize

1The bias of particle image displacements to integer pixel dimension is called peak locking

which occurs when the particle image diameter is less than the pixel dimension of the camera.
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Figure 2.11: (Top) (a) Histogram of the measurement horizontal displacement
and (b) its corresponding sub-pixel component. (Bottom) (a) Histogram of
the measurement vertical displacement and (b) its corresponding sub-pixel
component. Bin size is 0.05 pixels and the plots are illustrated for a sample
instantaneous data at ψ = 90◦.
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these errors, the PIV images were slightly blurred. Sample histograms of the

horizontal and vertical pixel displacements are shown in figure 2.11a (top &

bottom), respectively, with that of the corresponding subpixel components in

figure 2.11b (top & bottom), respectively. Therefore, as seen in figure 2.11b,

peak locking errors are significantly minimized by having a nearly uniform

distribution of particle image displacements in the sub-pixel dimension.

2.3.2 PIV vector processing

As for the processing of the raw PIV data, image pairs were converted

to vector maps using DaVIS v7.2 with an initial interrogation window size of

64 pixel × 64 pixel that iteratively reduced to a final size of 16 pixel × 16

pixel with a 50% overlap. The resulting measurement resolution Lm, which

is uniform in both x′ and y′, was found to be 0.88 mm (grid resolution =

Lm/2). Spurious vectors were filtered by first establishing a threshold signal-

to-noise ratio (set to 1.5 as per the suggestions in literature [72]), followed by

the removal of groups (of less than 5 vectors) that then ended with a four-pass

regional median filter [65, 92]. Spurious vectors often occurred in the inner

core of the vortex due to the poor seeding levels that arise from centrifugal

forces [40] (see figures 2.8 and 2.12a). Missing vectors were then interpolated

using a nearest neighbor fit. Figure 2.12 shows a sample raw PIV vector

map (sub-sampled and filtering enabled), and the resultant vector-map (after

interpolation and smoothing) that is used in the subsequent analysis. The

post-processed vector map is shown to fit the overall flow structure quite well.
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Figure 2.12: (a) Sample PIV snapshot at ψ = 45◦ and (b) the corresponding
original vector map (sub-sampled) with (c) the corresponding post-processed
vector map. The vortex center and core boundary are also identified.
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Chapter 3

Analysis technique

The overarching objective of this study is to develop a statistical de-

scription of the turbulence and inactive motions of a helical vortex produced

by a single-bladed rotor during hover. To accomplish this, we will need to em-

ploy two separate analyses. The first requires one to correct for the wandering

motions of the vortex so that an accurate mechanistic description of the vor-

tex filament’s statistical properties can be made. The second analysis method

is employed to categorize the energy associated with the various constituents

that make up the vortex. The outline of this chapter is as follows. In § 3.1,

the various vortex centering techniques are reviewed and compared from which

the mean statistics of the tip vortices are computed and displayed in § 3.2.

The vortex wander, mean core-radius, swirl velocity, axial vorticity and tur-

bulence fluctuations are shown and compared to a sampling of data provided

in the open literature. This is done simply for no other reason than to provide

This chapter may compose material from the author’s previously published articles,

S. M. Mula and C. E. Tinney. A study of the turbulence within a spiralling vortex

filament using proper orthogonal decomposition. J. Fluid Mech., 769: 570–589, 2015. For

this project, Tinney served as the project advisor.

S. M. Mula, J. H. Stephenson, C. E. Tinney and J. Sirohi. Dynamical characteristics of

the tip vortex from a four-bladed rotor in hover. Exp. Fluids, 54, 1600, 2013. For this

project, Stephenson built the rotor test stand while Tinney and Sirohi served as the project

advisors.
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confidence in the measurements reported here, the true focus being that of

the turbulence characteristics. This is followed by a description of the proper

orthogonal decomposition (POD) technique in § 3.3 which is then applied to

the ‘wander corrected’ PIV images. It is important to mention that the choice

of the wander correction technique was found to influence the results obtained

by way of POD. This important issue will be addressed at a later stage in § 6.

3.1 Vortex center identification techniques

Prior to performing any statistical analysis it is essential to first cor-

rect for vortex wander; otherwise, merely computing an ensemble average

of instantanous vortices artificially results in high velocity fluctuations (as

shown by Baker et al. (1974) [3], Devenport et al. (1996) [16], Heyes et al.

(2004) [31] and, Bailey & Tavoularis (2008) [2]). In order to provide corrections

for wander, the instantaneous vortex centers have to be identified; a number of

schemes have been proposed for identifying the vortex center of a vortex core.

A brief outline of these techniques, excerpted from Mula et al. (2013) [64], is

provided below.

3.1.1 Centroid of Q (CoQ)

The centroid of Q determines the area center of scalar Q as described

by van der Wall & Richard (2006) [89]. The second invariant, Q, comprises the

symmetric (Λ) and skew-symmetric (Π) components of the velocity gradient
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tensor, defined as,

Q =
1

2
(ũ2i,i − ũi,j ũj,i) = −1

2
(ũi,j ũj,i) (3.1)

=
1

2
(‖Π‖2 − ‖Λ‖2),

where ‖Π‖ = tr[ΠΠt]1/2, ‖Λ‖ = tr[ΛΛt]1/2 and Λij = 1
2
(ũi,j + ũj,i), Πij =

1
2
(ũi,j−ũj,i). Subscripts are written to define the derivative of the first subscript

with respect to the second where i, j = 1, 2, 3. The region of vorticity intensity,

as described by Hunt et al. (1988) [33], is identified by the region of positive Q.

In order to pinpoint a center for the vortex core, one may choose to consider

the centroid of the positive Q region; hence, centroid of Q [89]. Here the

centroid of Q (Xc, Yc) is determined as

(Xc, Yc) =

(∑
x′Q(x′, y′)∑
Q(x′, y′) ,

∑
y′Q(x′, y′)∑
Q(x′, y′)

)
. (3.2)

This is analogous to the center of mass approach where the numerator on the

right-hand side of Eq. 3.2 would represent the sum of mass moments about the

respective axis while the denominator would represent the total mass. For this

centroid of Q approach, only those regions with Q(x′, y′) > 0 are considered.

3.1.2 Centroid of vorticity

The centroid of vorticity is similar to the CoQ method previously de-

scribed. The vortex center using this method is identified as the centroid of

axial vorticity on 2-D slices (x′, y′) of the rotor tip vortex filament.
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3.1.3 Normalized helicity

Normalized helicity was first introduced by Levich & Tsinober (1983) [44],

and is defined as the cosine of the angle between velocity (~̃u) and vorticity (~ω).

The expression for normalized-helicity is

H =
~̃u · ~ω
|~̃u||~ω|

. (3.3)

In the normalized-helicity method, vortex centers are identified as maximal

normalized-helicity points on each of the 2-D slices (x′, y′) of the rotor tip

vortex filament [45].

3.1.4 Γ1 method

The Γ1 method is a non-Galilean invariant approach introduced by

Graftieaux et al.(2001) [24] which provides a simple and robust way to identify

centers of vortical structures in a flow. This method defines a scalar function

Γ1 as

Γ1(P ) =
1

N

∑

S

( ~PM × ~̃uM) · êz
| ~PM ||~̃uM |

, (3.4)

where ~PM defines the radius vector between a fixed point P in the measure-

ment domain and all other points M in the region S, which could be of any

arbitrary shape, that encloses point P for an estimate of Γ1(P ) (see figure 3.1).

~̃uM is the total velocity vector at point M and êz is the unit vector normal to

the measurement plane. The vortex center is identified by a point where Γ1

is maximum. Being an integral based approach, the results are not corrupted
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Figure 3.1: Schematic illustration for the Γ1 method.

by noise introduced by divergences of the velocity field, albeit, the vortex cen-

ter still relies on an accurate assessment of the velocity inside the vortex core

where seeding is poor.

3.1.5 Geometric center

In the geometric center approach, the center of the vortex core is based

on the geometry of the vortex core. A demonstration of this is shown in fig-

ure 3.2a from a raw PIV vector map using lightly shaded regions to identify

where Q > 0 with dark circles depicting locations of peak swirl velocity, which

define the bounds of the vortex core. Remarkable similarities in the bound-

aries of positive Q and the peak swirl velocity are manifest. The geometric

center can then be identified using two different approaches. The first of these

applies a best fit ellipse to the bounds of the peak swirl velocity whereby the

geometric center is identified as the center of this ellipse (referred hereafter as

GC-ellipse). In the second approach, the geometric center is identified as the

average location of all points confined by the bounds of the peak swirl velocity
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Figure 3.2: (a) Q method applied to a sample vortex at 250◦ vortex age from
the measurements of Mula et al. (2013) [64]. Dark circles identify locations of
peak swirl velocity. (b) Sub-sampled PIV vector map at 40◦ wake age from the
studies of Mula et al. (2013) [64]. Vortex centers detected using CoQ (circle),
centroid of vorticity (diamond), maximum normalized helicity (square), Γ1

method (triangle-up), GC-ellipse (star) and GC-average (triangle-down)

(referred hereafter as GC-average). Mula et al. (2013) [64] have shown these

two approaches to produce indistinguishable results.

Taken from the measurements of Mula et al. (2013) [64], figure 3.2b

shows a sub-sampled PIV vector map at 40◦ wake age with the vortex centers

identified using CoQ, centroid of vorticity, maximum normalized helicity, the

Γ1 method and geometric center (both approaches) to demonstrate the differ-
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ences among these techniques. As the CoQ, normalized helicity and centroid

of vorticity are divergence-based schemes, their accuracies in pin-pointing the

vortex center have been the subject of scrutiny. Although the geometric center

method is a non-divergence based technique, for a strained vortex, such as the

rotor tip vortex, the geometric center of the vortex core does not have to coin-

cide with the actual vortex center (the location of zero swirl). Therefore, for

the current set of measurements, the Γ1 method is preferred and is employed

for the remainder of the analysis.

3.2 Vortex characteristics

Following the application of the Γ1 method in the current study, the

vortex centers of the instantaneous tip vortices are identified (sample illus-

tration shown in figure 3.3) and the wander characteristics are derived, with

a subsequent analysis of the mean characteristics: core-radius, swirl velocity,

axial vorticity and turbulence fluctuations.

3.2.1 Vortex wander

Each instantaneous vortex is represented by its vortex center (x⋆, y⋆) in

order to demonstrate the wander characteristics; (x⋆, y⋆) are the coordinates

of instantaneous vortex center with respect to the mean vortex center, where

the coordinate system (x⋆, y⋆) is parallel to (x′, y′). Figure 3.4a illustrates

the wander fitted with a 95% confidence ellipse for a vortex at all the vortex

ages in the measurement envelope: ψ = 45◦ − 585◦. Overall, wander appears
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Figure 3.3: Instantaneous PIV vector map (sub-sampled) at ψ = 180◦ with
the vortex center (◦) identified using the Γ1 method.

to increase with the increasing vortex age. Further, as demonstrated by the

95% confidence ellipse, the wandering motion appears to be anisotropic in

agreement with the previous studies (see Kindler et al. (2010) [39], Mula et

al. (2013) [64] and Karpatne et al. (2014) [37]), which showed an anisotropic

nature of wander for vortices from multi-bladed rotors in hover.

In order to quantify the characteristics of wander, figure 3.4b illustrates

the standard deviation of wander along the principal major and minor axes

(of the 95% confidence ellipse) across all the vortex ages studied. A third-

order least-squares fit has also been added (identified by the solid and dashed

lines) to help with the interpretation. This wandering motion is shown to

grow linearly along the principal minor axis. Wander along the major axis

grows faster than that of the minor axis at earlier vortex ages. However, the

wandering motion (along the major axis) does not appear to show a continuous

growth as it deviates from the least-squares fit in the vicinity of the first blade
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Figure 3.4: (a) Vortex wander with a 95% confidence ellipse at ψ = 45◦ −
585◦. Dashed lines are separated by 0.04 in x⋆/R and 0.02 in y⋆/R. (b)
Standard deviation of vortex wander along the principal major (⋄, ) and
minor (△, .....) axes.
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passage (360◦). It is postulated that this discontinuity is a consequence of

long-wave instabilities with non-integer wave numbers [9]. The growth rate

of these long-wave instabilities have been shown to manifest a local minimum

near the first blade passage, which is evident in figure 3.4b.

Having determined the instantaneous vortex centers with the wander

characteristics, a correction for wander is performed which is illustrated in

figure 3.5a. Each of the 350 instantaneous vortex centers, along with their

vortices, is shifted to the mean vortex center. Figure 3.5b, c shows the mean

velocity vector field for a vortex at ψ = 180◦ before and after correction for

wander, respectively. Vortex core boundaries identified by the locations of

peak swirl velocity on the mean velocity field are also indicated. It is evident

from figure 3.5 that the shape and size of the core before wander correction is

remarkably different from that after correction; the presence of wander merely

smears the uncorrected average vortex thereby falsely resulting in a bigger

core.

3.2.2 Convergence test

Following the correction for wander, and prior to obtaining the mean

characteristics, it is essential to determine if sufficient convergence has been

achieved given the number of instantaneous samples available for analysis (350

PIV vector maps at each vortex age). Figure 3.6 illustrates the convergence of

the mean core-radius and swirl velocity at a sample vortex age of ψ = 405◦. It

is evident from figure 3.6a that sufficient convergence in the mean core-radius
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Figure 3.5: (a) Schematic illustration for the vortex wander correction. M
and I are the mean and instantaneous vortex centers, respectively. Mean
velocity vector field (sub-sampled) at ψ = 180◦ (b) before and (c) after wander
correction. Corresponding vortex core boundaries are also identified.
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Figure 3.6: (a) Convergence of mean core-radius. (b) Convergence of mean
swirl velocity, |VΘ/Vtip|, on a vortex slice: number of samples Ns = 25− 350

is achieved for the total number of samples acquired in the current setup (350

samples). Similar convergence is demonstrated for the mean swirl velocity on

a sample vortex slice in figure 3.6b.
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Figure 3.7: Core-radius trends of the current study (C) compared to the pre-
vious studies listed in table 3.1.

3.2.3 Mean statistics

Having obtained sufficient convergence, figure 3.7 illustrates the mean

core-radius estimates for all the vortex ages in the measurement envelope (after

wander correction). The core-radius at each vortex age is determined by the

average of azimuthal locations of peak swirl velocities (of a mean vortex core,

for example see figure 3.5b). The profile in figure 3.7 shows a monotonic

increase from 10% to 15% of the blade chord up until the first rotor revolution.

Here the current findings are compared to those reported in the open literature;

see table 3.1 for a listing of the rotor operating conditions associated with these

studies. In the current study, at the earliest vortex age of 45◦, Lm/rc = 0.17

(< 0.2), which satisfies the measurement resolution requirements suggested by

Grant (1997) [25] and Martin et al. (2000) [55] for determining core-radius. In
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Data source Device Nb Re Ma CT/σ
×10−5

Current work PIV 1 (⋆) 2.18 0.23 0.066
Thompson et al. (1988) [84] LDV 1 (⋆) 2.70 0.09 0.086
Leishman (1998) [51] LDV 1 (⋆) 2.72 0.28 0.09
Ramasamy & Leishman (2004) [71] LDV 1 (⋆) 2.72 0.26 0.064
Richard et al. (2008) [77] PIV 4 (⊕) 14.0 0.63 0.036
Ramasamy et al. (2009a) [74] PIV 2 (⋆) 0.34 0.08 0.113
Ramasamy et al. (2009b) [75] PIV 1 (⋆) 2.72 0.26 0.064

Table 3.1: Overview of the experimental conditions reported by others on the
core-radius estimates using twisted (⊕) and untwisted (⋆) blades.

general, the trends in figure 3.7 are consistent with the open literature. That

is, up until the first blade passage (360◦), diffusion causes the core-radius to

increase with increasing vortex age. Aside from the studies of Thompson et

al. (1988) [84] and Richard et al. (2008) [77], the core-radius is shown to

decrease after the first blade passage due to vortex stretching induced by the

oncoming blade. The corresponding vortex Reynolds number (Γv/ν, where Γv

is the circulation of the vortex) of our study was found to range between 8.3

×104 and 8.7×104 over the vortex ages studied.

Illustrations of the mean axial vorticity at ψ = 45◦ to 495◦ are shown

in figure 3.8. As expected, the mean axial vorticity peaks at the vortex center

and decreases radially away from the vortex axis. It is also evident that the tip

vortex core is asymmetric across the vortex ages in the measurement envelope.

Such an asymmetry across the vortex ages is attributed to the fact that the

helix emanated from the rotor is semi-infinite.
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Figure 3.8: Contours of the mean axial vorticity (ωz/Ω) at ψ = 45◦ to 495◦.
Locations of peak swirl velocity (VΘ,max), which define the boundaries of the
vortex core, also identified.
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Since the torsion of the helix is very small (τ̂ = 0.046), its influence is

significant on the binormal induced velocity (of the vortex), which is primarily

responsible for the displacement of the vortex filament in a fluid [76]. Here,

the binormal velocity is computed as the net in-plane velocity of the vortex,

~vb =
1

A

∫ ∫
~U(x′, y′)dx′dy′, A =

∫ ∫
dx′dy′, (3.5)

where ~U(x′, y′) is the mean (in-plane) velocity field within the vortex, A is the

area of the vortex and the limits of integration are confined to ∼ 2rc (from the

vortex center). The dimensionless binormal velocity is then estimated using

v̂b = |~vb|4πRc/Γv and is provided in table 3.2 at various vortex ages throughout

the measurement envelope using Γv as the circulation strength of the vortex.

A comparison of our estimates to the theoretical predictions is also provided

based on the following analytical expression from Ricca (1994) [76],

v̂b = log
Rc

rc
+ CMS, (3.6)

where CMS depends on the geometry of the helix and is determined using the

closed analytical expression

CMS = −1

4
+ p̂−1 + log p̂+ 1− 1

2
p̂+ [

3

8
ζ(3)− 1

2
]p̂2 − 5

8
p̂3 +O(p̂4), (3.7)

derived by Boersma & Wood (1999) [12] for thin helical filaments of small

pitch. These theoretical estimates are shown to compare favorably with our

laboratory measurements.

The average spatial topography of the turbulence kinetic energy per

unit mass (TKE = 0.5〈u21 + u22〉, ui=1,2 being the fluctuating part of the in-plane
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Measured Predicted using Eq. 3.6

ψ Γv |~vb| v̂b = |~vb|/ Γv

4πRc
CMS v̂b

(◦) (m2/s) (m/s)

45 1.311 5.26 25.25 19.38 23.99
135 1.349 5.23 24.41 19.38 23.86
270 1.325 4.74 22.54 19.38 23.72
315 1.386 4.85 22.03 19.38 23.62

Table 3.2: Estimates of the binormal induced velocity measured from the
current experiment compared with the theoretical predictions using Eq. 3.6.
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Figure 3.9: Turbulent kinetic energy per unit mass, (TKE/V 2
tip)× 103, at (a)

ψ = 180◦ and (b) ψ = 315◦. Locations of peak swirl velocity (VΘ,max) also
identified.
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Figure 3.10: Swirl velocity, (|VΘ|/Vtip)× 20 (▽), and (TKE/V 2
tip)× 103 (⋆) at

(a) ψ = 180◦ and (b) ψ = 315◦ on a vortex slice.

velocity components), for vortices captured at ψ = 180◦ and 315◦ are shown in

figure 3.9a, b, respectively. Since the in-plane velocity at the vortex center is

zero, which is an inherent characteristic of a vortex flow, fluctuating part of the

in-plane velocity is also zero (ui=1,2 = 0); therefore, the TKE approaches zero

at the vortex center. The TKE peaks inside the bounds of the vortex core [16,

27], which are identified by the locations of peak swirl velocities (VΘ,max).

Figure 3.10a, b shows the profiles of TKE (along with mean swirl velocities)

on a sample slice ǫ in figure 3.10a, b for ψ = 180◦ and 315◦, respectively. From

figures 3.9 and 3.10, the TKE is asymmetric inside the vortex core, which

persisted across all the vortex ages in the measurement envelope. Further, it

is worth estimating how energetic these velocity fluctuations are relative to

the kinetic energy contained by the mean field. Therefore, the total resolved
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Figure 3.11: Total resolved turbulence kinetic energy (Ξ) normalized with the
total resolved kinetic energy (χ) of the mean flow.

turbulence kinetic energy (Ξ) of a vortex (at each ψ) is determined,

Ξ(ψ) =
1

2

∫

A

〈ui(x′, y′, ψ, t)ui(x′, y′, ψ, t)〉dA, (3.8)

where dA = dx′dy′. Likewise, the total resolved kinetic energy (χ) of the mean

vortex flow at each ψ is estimated,

χ(ψ) =
1

2

∫

A

〈Ui(x′, y′, ψ)Ui(x′, y′, ψ)〉dA, (3.9)

with Ui=1,2 being the in-plane mean velocity components. Figure 3.11 illus-

trates how Ξ compares to χ in the measurement envelope. It is clear that Ξ

is on the order of 2-8% of χ for the range of vortex ages studied. Additional

details on the trends observed in figure 3.11 are explained in § 4 on the basis

of the low-dimensional organized motions of the tip vortex (using POD).
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3.3 Low dimensional representation using POD

Lumley’s [53] proper orthogonal decomposition is used here to identify

the most energetic features of the turbulence fluctuations that reside within

the blade tip vortex. The technique has been rigorously exercised in both

experimental and numerical disciplines [8]. While it is more customary for

one to use the snapshot form of the POD technique [83] described in § 3.3.1

owing to the advantages of its computational efficiency, the classical form is

employed here owing to the physical relevance of the Fourier modes and is

described in § 3.3.2. Nevertheless, subsequent comparisons between these two

forms of POD (applied to the current measurements) are discussed in § 5.

3.3.1 Snapshot POD

The process begins by computing the autocorrelation matrix C,

Ckl(ψ) =
1

Ns

∫∫

A

(~u (x′, y′, tk, ψ) · ~u (x′, y′, tl, ψ)) dx′dy′, (3.10)

where (·) is the dot product of two vectors; Ns is the number of instantaneous

velocity fields acquired at each vortex age (ψ); ~u is the fluctuating part of

the in-plane velocity vector after wander correction; tk and tl represent the

kth and ith instants of time, respectively. It is evident from Eq. 3.10 that the

size of the autocorrelation matrix C depends on the number of instantaneous

samples acquired, rather than the number of spatial points in the measurement

grid. Following the diagonalisation of the matrix C the eigenpairs (αf , V f)

are obtained, where f = 1, 2, ..., Ns. The eigenvalues αf are ordered such that
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αf ≥ αf+1. The corresponding two-dimensional orthogonal spatial modes

(~Uf ) are obtained as

~Uf (x′, y′, ψ) =
Ns∑

k=1

V f
k ~u (x′, y′, tk, ψ) , (3.11)

which are further normalized to produce the orthonormal basis functions,

~Nf (x′, y′, ψ) =
~Uf (x′, y′, ψ)√∫∫

A

(
~Uf (x′, y′, ψ) · ~Uf (x′, y′, ψ)

)
dx′dy′

. (3.12)

The contribution of each mode ~Nf to the total resolved turbulence kinetic

energy of the flow is obtained as

εf =
αf

Ns∑
k=1

αk
. (3.13)

From the orthonormal basic functions in Eq. 3.11, a low-dimensional recon-

struction of the velocity field can be obtained from the following expression,

~u (x′, y′, tk, ψ) =
ns∑

f=1

afk(ψ)
~Nf (x′, y′, ψ) , (3.14)

where for ns = Ns, ~u = ~u; and ak,f is the time varying expansion coefficient,

which is derived by projecting the raw velocity field ~u on the orthonormal

basic function ~Nf ,

afk(ψ) =

∫∫

A

(
~u (x′, y′, tk, ψ) · ~Nf (x′, y′, ψ)

)
dx′dy′. (3.15)

73



θ

Mean vortex center

y′
r

x′
O

Figure 3.12: Coordinate transformation.

3.3.2 Classical POD

In the current study, the classical form of technique outlined by Glauser

and George (1987) [23], Citrinity and George (2000) [13] and Tinney et al.

(2008) [85] is employed. In this method, the vortex (and its surrounding

fluid) is first decomposed in azimuth using Fourier-decomposition followed by

a radial decomposition using POD. This is applied to only the fluctuating part

of the velocity upon corrections for vortex wander.

The process begins by first transforming the raw PIV images from carte-

sian coordinates to cylindrical coordinates (i.e. x′, y′, z′ → r, θ, z′; see

figure 3.12). At each vortex age, the azimuthal grid resolution, δθ, is deter-

mined such that it equals the resolution of the original grid at r = rc, (δθ =

tan−1(Lm/(2rc)). For example at ψ = 135◦, δθ is equal to 4◦ (though it was

found to vary only from 3◦ to 5◦ over the entire measurement envelope). The

fluctuating part of the in-plane velocity field (ui=1,2 where ũi = Ui + ui, and

1 = r & 2 = θ) is then transformed in the azimuthal direction to obtain the
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Fourier-azimuthal modes for each of the 350 PIV snap shots at a given vortex

age as follows,

ûi(r, ψ, t;m) =
1

2π

∫ π

−π

ui (r, θ, ψ, t) e
−ımθ dθ, (3.16)

from which a two-point tensor is then formed,

Bij(r, r
′, ψ;m) = 〈ûi(r, ψ, t;m)ûj

∗(r′, ψ, t;m)〉. (3.17)

Here 〈 〉 are used to denote ensemble averaging. In Eq. 3.16, the same az-

imuthal starting position is employed in order to preserve the asymmetries that

are shown to reside in the TKE profiles in figures 3.9 and 3.10. Symmetry con-

siderations for statistically axisymmetric flows without swirl are provided in

Appendix A of Jung et al. (2004) [36]. Here it is assumed that these sym-

metries cannot be applied. An integral eigenvalue problem is then formed for

each vortex age

∫

R

Bij (r, r
′, ψ;m)Φ

(n)
j (r′, ψ;m)r′ dr′ = Λn (ψ;m) Φ

(n)
i (r, ψ;m), (3.18)

and is solved to produce an ordered sequence of eigenvalues (λn ≥ λn+1)

with eigenfunctions Φni (r, ψ;m). This vector decomposition ensures that the

eigenfunctions corresponding to the in-plane velocity components are coupled.

In order to construct the two-dimensional spatial modes that characterize the

velocity field, the POD eigenfuctions Φni and the Fourier eigenfunctions eımθ

are combined as follows,

U
(m,n)
i (r, θ, ψ) = eımθΦ

(n)
i (r, ψ;m). (3.19)
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Having discretized Eq. 3.18, the total number of POD modes is gov-

erned by the product between the number of points measured (N) and the

number of in-plane components (η) used to construct Bij . The radial extent is

confined to ∼ 2rc at each ψ. And so, given the grid resolution employed here

(Lm/2; Lm/rc < 0.2), N > 20, at least 40 POD modes are generated at each

vortex age. Further, the total resolved energy [13, 85] of the flow, Π (ψ), and

the normalized eigenspectra, βn (ψ;m), are obtained as

Π (ψ) =
∑

n

∑

m

Λn (ψ;m) , βn (ψ;m) =
Λn (ψ;m)

Π (ψ)
(3.20)

While Eq. 3.19 allows one to view the spatial topography of the modes associ-

ated with the average turbulence statistics, an instantaneous low-dimensional

representation of the fluctuating velocity field can be obtained from the fol-

lowing expressions [53],

ûi(r, ψ, t;m) =

k∑

n=1

a(n)(ψ, t;m)Φ
(n)
i (r, ψ;m), (3.21)

using uncorrelated and time varying coefficients,

a(n)(ψ, t;m) =

∫

R

ûi(r, ψ, t;m)Φ
(n)∗
i (r, ψ;m)rdr. (3.22)

The mean square energy of these coefficients are the eigenvalues themselves:

λ(n) = 〈a(n)a(n)〉. For k = ηN , ûi = ûi. A low-dimensional reconstruction of

the fluctuating velocity is then obtained using the following inverse transfor-

mation,

ui (r, θ, ψ, t) =

∫

m

ûi (r, ψ, t;m) eımθ dm. (3.23)
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Further, from the low-dimensional fluctuating velocities, the low-dimensional

turbulence kinetic energy per unit mass (E) can be obtained as,

E (r, θ, ψ) = 0.5〈u21 + u
2
2〉. (3.24)

3.3.2.1 Low dimensional axial vorticity

Given the nature of the flow studied here, it is natural to seek a low-

dimensional representation of the axial vorticity field. This is obtained using

the following standard expression,

Wz
(m,n) =

1

r

∂(rU2
(m,n))

∂r
− 1

r

∂U1
(m,n)

∂θ
, (3.25)

with gradients in r being determined here using a first-order central difference

scheme. Contrarily, gradients in θ are derived analytically by the nature of

Fourier functions,

∂U
(m,n)
1

∂θ
= ımeımθΦ

(n)
1 (r, ψ;m). (3.26)

Likewise, the axial vorticity field using the low-dimensional instantaneous fluc-

tuating velocity can be determined by simply replacing Ui
(m,n) in Eq. 3.25 with

ui from Eq. 3.23.
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Chapter 4

Low-dimensional characteristics

In this chapter, low-dimensional characteristics of the trailing tip vor-

tices from the rotor are demonstrated using the classical form of POD described

in § 3.

4.1 Grid resolution for POD

Prior to the low-dimensional representation of the tip vortex, it is es-

sential to check if the measurements provide sufficient grid resolution to resolve

the POD modes. An overly coarse grid results in an underestimation of the

POD eigenvalues, whereas a denser grid results in superfluous information,

which reduces the computational efficiency of the technique. Following the

analysis of Tinney (2009) [86], the sensitivity of the POD eigenvalues to the

discretization of the measurement domain is performed, where the velocity

measurements (of the original grid, Lm/2) are projected (by a linear interpo-

This chapter may compose material from the author’s previously published articles,

S. M. Mula and C. E. Tinney. A study of the turbulence within a spiralling vortex

filament using proper orthogonal decomposition. J. Fluid Mech., 769: 570–589, 2015. For

this project, Tinney served as the project advisor.

S. M. Mula and C. E. Tinney. Classical and Snapshot forms of the POD technique applied

to a helical vortex filament. AIAA Paper 2014-3257, 2014. For this project, Tinney served

as the project advisor.
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lation) onto a series of grids with increasing coarseness. The differences in the

resulting eigenvalues from that of the original grid (Lm/2) are estimated,

ǫnp (ψ) =

∑
m

Λp
n(ψ;m)−

∑
m

Λn(ψ;m)

∑
m

Λn(ψ;m)
. (4.1)

In Eq. 4.1 Λn and Λp
n represent the eigenvalues of the original and pro-

jected grids, respectively;
∑
m

Λp
n(ψ;m) represents the total energy (contains

all the Fourier modes) of the nth POD mode. Figure 4.1a,b,c illustrates the

convergence in the first, second and third POD modes, respectively, for sample

ψ. It is evident that a significant convergence is achieved for the original grid

resolution (∆r = Lm/2;Lm/2rc < 0.1) for n = 1, 2 and 3.

4.2 Energy spectrum

Following the application of the classical form of POD to the current

set of measurements, an illustration of the POD energy spectrum is shown in

figure 4.2a for sample vortex ages in the measurement envelope (where each

POD mode in this figure contains all the Fourier modes). Convergence of the

POD modes is evident in figure 4.2a with approximately 75% of the resolved

energy residing in the first (n = 1) POD mode for the entire range of ψ studied

here. Given the spatial resolution used to generate Bij , this rapid convergence

is a reflection of the organized motions that characterize the active motions of

this vortex filament, as opposed to numerical integration errors [85,86]; similar

rates of convergence were found at other vortex ages. Further, figure 4.2b
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Figure 4.1: Sensitivity of the POD eigenvalues to the grid resolution ∆r/rc.
(a) n = 1, (b) n = 2, and (c) n = 3.
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Figure 4.3: Fourier mode energy spectra of the first (n = 1) POD mode for
m = 0, 1, 2 and 3.

illustrates the POD energy spectrum on a logarithmic scale. Here in the first

decade of the POD modes, the energy spectrum appears to exhibit a k−5/3

inertial range that is expected even for an inhomogeneous turbulent flow at

high Reynolds numbers [62].

Since 75% of the resolved energy that is shown to reside in the first

POD mode in figure 4.2a is distributed amongst the Fourier modes, figure 4.3

illustrates the Fourier energy spectrum for this first POD mode. It is evident

that the helical mode (m = 1) dominates the energy spectrum (> 40%) at

all the vortex ages followed by the axisymmetric (m = 0) and double helical

modes (m = 2). However, at ψ = 45◦, both the axisymmetric and helical

modes are equally imperative and is attributed to the roll-up of the vortex at

the blade tip, which will be demonstrated shortly in the following section.
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Figure 4.4: Radial profiles of vorticity and circulation profiles for (m,n) =
(0, 1) at (a) ψ = 45◦ and (b) ψ = 315◦.

4.2.1 Spatial structures of the Fourier modes of the first POD mode
(n = 1)

In this section, the spatial structures of the axisymmetric (m = 0),

helical (m = 1) and double helical (m = 2) modes associated with the first

(n = 1) PODmode are presented. These structures are obtained using Eq. 3.19

and Eq. 3.25.

Where the axisymmetric mode is concerned, the radial profiles of circu-

lation and axial vorticity are shown in figure 4.4a for ψ = 45◦. These profiles

reflect that of a vortex with viscous core (see Han et al. (1997) [27], Bhagwat

& Leishman (2000) [10] and Ramasamy et al. (2007) [73]), in which the cir-

culation at the vortex center is zero and increases radially outward and then

remains constant in the inviscid region. Therefore, the axisymmetric mode is

associated with the roll-up of the vorticity-sheet trailed from the rotor blade
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Figure 4.5: Contours of the (a) real and (b) imaginary components of the
axial vorticity of the helical mode (m,n) = (1, 1) at ψ = 135◦. Circles of mean
core-radius ( ) and peak TKE (....) are indicated.

at early ages. However, at ψ = 315◦ in figure 4.4b (after the roll-up process

is complete) circulation and vorticity profiles associated with the axisymmet-

ric mode manifest the kinds of behaviors observed in swirling jet flows (see

Liang & Maxworthy (2005) [52]). In a swirling jet, the circulation is zero at

r = 0 and increases radially outward until it peaks and then drops down to

zero. The presence of this swirling jet mode reinforces flow-entrainment and

diffusion mechanisms, which is shown in figure 4.3b to increase in energy from

5% (at ψ = 90◦) to about 15% (at ψ = 495◦).

Due to the nature of Fourier functions, non-zero Fourier modes like the

helical (m = 1) or double helical modes (m = 2), comprise both real and imag-
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Figure 4.6: Schematic of a helical mode of the elliptic instability. (a) Base
flow with circular streamlines, (b) application of the helical mode to the base
flow, and (c) resultant flow of elliptical streamlines.

inary components. Figure 4.5 shows the real component of the axial vorticity

of the helical mode at a sample vortex age (ψ = 135◦). The spatial structure

of the imaginary component is identical to its real counterpart, except that it

is oriented at π/(2m) = 90◦ (anti-clockwise) relative to its real counterpart.

To better understand the effect of the helical mode in figure 4.5 on

the base vortex flow, consider the schematic shown in figure 4.6. To help
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with the interpretation, consider the base vortex flow composed of circular

streamlines as demonstrated in figure 4.6a. To this base vortex flow apply a

helical mode that comprises only a single pair of counter-rotating eddies (see

figure 4.6b); these eddies are represented by their axial vorticity field follow-

ing the color convention used in figure 4.5 (blue-clockwise; red-anticlockwise).

As a consequence, the resultant vortex flow is deformed. Given the sense

of direction of the circular streamlines (figure 4.6a), the clockwise and anti-

clockwise eddies of the helical mode cause an expansion and contraction of

the streamlines of the base vortex flow, respectively (figure 4.6c); hence, the

resultant streamlines are elliptical streamlines. Further, as an extension to

the schematic in figure 4.6, consider the schematic illustrated in figure 4.7.

The schematic (figure 4.7) demonstrates the effect of the helical mode, which

consists of two pairs of counter-rotating eddies, similar to that in figure 4.5.

Once again, the clockwise and anticlockwise eddies of the helical mode cause

an expansion and contraction of the streamlines of the base vortex flow, re-

spectively (figure 4.7c). As a consequence, the resultant streamlines are once

again elliptically deformed. Such an elliptical deformation of the base vortex

(figures 4.6c and 4.7c) is a characteristic of the elliptic instability, which is

a three-dimensional short-wave instability that travels along the vortex fila-

ment. Therefore, the helical mode in figure 4.5 is a mode associated with

the elliptic instability and the structure of this helical mode is similar to the

spatial structures of the elliptic instability modes observed by Pierrehumbert

(1986) [67], Leweke & Williamson (1998) [46], and Sipp (2000) [82] (see fig-
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Figure 4.7: Schematic of a helical mode of the elliptic instability. (a) Base
flow with circular streamlines, (b) application of the helical mode to the base
flow, and (c) resultant flow of elliptical streamlines with expansion (e) and
contraction (c) of streamlines
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(a) (b)

Figure 4.8: Axial vorticity contours of the modes of the elliptic instability
observed by (a) Pierrehumbert (1986) [67] and (b) Sipp (2000) [82].

ure 4.8). For a comprehensive review on the elliptic instability see § 1.3.1.

Furthermore, Laceze et al. (2007) [41] showed how the most unstable modes

of the elliptic instability correspond to |m| = 1 (helical mode) when the axial

velocity strength W0 (ratio of maximum swirl velocity to the maximum az-

imuthal velocity) is low. Here, the axial velocity strength is estimated to be

W0 = 0.159 (using the axial velocity data from Mula et al. (2013) [64]), which

is sufficiently low, and see from figure 4.3 that the helical mode dominates the

energy spectrum of the vortex filament. And so, the helical mode is the most

unstable mode of the elliptic instability in the current study.

In order to study the evolutionary behavior of this helical mode, its

real component is shown in figure 4.9 over the range of vortex ages measured.

At the earliest vortex age, ψ = 45◦, two counter-rotating eddies are manifest
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Figure 4.9: Contours of the real component of the axial vorticity of the helical
mode (m,n) = (1, 1) at ψ = 45◦ − 495◦. Circles of mean core-radius ( ) and
peak TKE (....) are indicated.
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which reside on the circle of mean core-radius. These eddies remain centered

on the mean core-radius for all vortex ages without modifying the structure of

the helical mode. Likewise, the size of these eddies increases as the core-radius

increases. Therefore, the helical mode of the elliptic instability in figure 4.9

is shown to be in the linear regime, since in the non-linear regime such an

instability mode would undergo either a rotation [82] or a modification in its

structure [80] (which is not observed here). A review on the non-linear aspects

of the elliptic instability is given in § 1.3.1. Furthermore, where short-wave

instabilities are concerned, Hattori & Fukumoto (2009, 2014) [29, 30] have

shown how torsion produces a second-order correction to the growth rate of

the curvature instability, which is first order in ǫ (the ratio of core-radius to

curvature radius). From this, it can be inferred that torsion also influences the

growth-rate of the elliptic instability which is of O(ǫ2 log(1/ǫ)) [19,30]. Given

the amount of torsion in the current set of measurements (τ̂ = 0.046), the most

unstable mode of elliptic instability (the helical mode) is shown to be in the

linear regime for the entire range of vortex ages studied. It is postulated that

by reducing the amount of torsion (of the helix), non-linearities will develop in

this most unstable mode, and will accelerate the breakdown of the tip vortex

structure [46, 80].

While the evolutionary characteristics of the dominant mode of the

elliptic instability are demonstrated, it would be interesting to see how this

mode might reveal itself in an instantaneous sense for the current set of mea-

surements. Therefore, a low-dimensional reconstruction of the instantaneous
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Figure 4.10: (a) Mean axial vorticity (ωz/Ω), (b) reconstruction of the fluctu-
ating vorticity at an instant in time using (m,n) = (1, 1), (c) mean vorticity
plus the (1, 1) mode at ψ = 405◦. Core-boundaries for the mean (black) and
low-dimensional (red) vortices also indicated.
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Figure 4.11: (a) Original instantaneous vorticity at an instant in figure 4.10
and (b) the corresponding core-boundaries for the mean (figure 4.10a), low-
dimensional (figure 4.10b) and original instantaneous vortices for a sample set
of data at ψ = 405◦. Mean (black), low-dimensional (red) and instantaneous
(blue) core boundaries.

vorticity field using (m,n) = (1, 1) at ψ = 405◦ is shown in figure 4.10c.

This is performed by combining the average vorticity field at that vortex age

(figure 4.10a) with an instantaneous sample of the low-dimensional fluctuating

vorticity field (figure 4.10b). The boundaries of the vortex core associated with

the mean flow (figure 4.10a) are shown in figure 4.10c alongside the boundaries

of the vortex core with the effects imposed by the addition of a low-dimensional

vorticity field (figure 4.10b). The discrepancies between these boundaries co-

incide with the compression and expansion of contour lines, which is typical

of the elliptic instability; the inward radial displacement of the instantaneous

boundary (from the mean) causes streamline-compression, while the outward

displacement causes streamline-expansion [46]. Figure 4.11a shows the raw in-

stantaneous vorticity field (without the mean subtracted), which corresponds
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Figure 4.12: Contours of the (a) real and (b) imaginary components of the
axial vorticity of the double helical mode (m,n) = (1, 1) at ψ = 135◦. Circles
of mean core-radius ( ) and peak TKE (....) are indicated.

to the same instant as that of the low-dimensional sample in figure 4.10c. The

core-boundaries of the mean, low-dimensional and raw samples are illustrated

in figure 4.11b (black, red and blue, respectively). The discrepancies between

the core-boundaries of the low-dimensional (red) and raw samples (blue) are

attributed to the energies that reside in higher POD and Fourier modes.

As for the double-helical mode (m = 2), figure 4.12 illustrates the real

and imaginary components of the axial vorticity field at a sample ψ = 135◦.

Once again, their structures are identical and differ in orientation by π/(2m) =

45◦ due to the nature of Fourier functions. The structure of this double helical

mode is four-lobed in azimuth with each lobe containing a pair of counter-
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Figure 4.13: Schematic of a double helical mode of the elliptic instability. (a)
Base flow with circular streamlines, (b) application of the double helical mode
to the base flow, and (c) resultant flow of elliptical streamlines.
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Figure 4.14: Light intensity of the four-lobed structures of the double helical
mode of the elliptic instability from the findings of Roy et al. (2011) [79].

rotating eddies, which are radially separated. In order to demonstrate the

role of this double-helical mode (m = 2), consider the schematic shown in

figure 4.13, which is similar to the schematic shown in figure 4.6 for the helical

mode, where the base vortex flow with circular streamlines (see figure 4.13a)

is considered. On the application of a simple four-lobed double helical mode

(represented by its axial vorticity field in figure 4.13b), with each lobe con-

taining only a single eddy, the resultant flow is deformed (figure 4.13c). Once

again, the clockwise (blue) and anticlockwise (red) eddies of this mode cause

an expansion and contraction of the streamlines of the base vortex flow, respec-

tively (figure 4.13c). As a consequence, the streamlines are again elliptically

deformed. It is deduced that the double helical mode in figure 4.12 also causes

an elliptical deformation of the streamlines of the base vortex flow. Therefore,

this mode is also associated with the elliptic instability. A four-lobed struc-

ture of such an instability mode was also observed by Roy et al. (2011) (see
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figure 4.14) in tip vortices from a fixed wing.

As for the evolutionary behavior of the double-helical mode over the

range of vortex ages studied here, the spatial structure of the mode increases in

size as the core-radius increases. Further, pairs of co-rotating eddies indicated

in figure 4.15 at ψ = 90◦ appear to merge with the increasing vortex age,

thereby slightly modifying the structure of the double-helical mode. At ψ =

495◦, a single elongated eddy appears to have formed from each such pair. In

a non-linear regime an elliptic instability mode undergoes a rotation [82] or a

modification in its structure [80]. Therefore, the double-helical mode of the

elliptic instability in figure 4.15 is in a slightly non-linear regime, unlike the

helical mode which was in the linear regime (figure 4.9).
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Figure 4.15: Contours of the real component of the axial vorticity of the double
helical mode (m,n) = (2, 1) at ψ = 45◦ − 495◦. Circles of mean core-radius
( ) and peak TKE (....) are indicated.
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tip)×103, at (a)

ψ = 180◦ and (b) ψ = 315◦. Vortex core boundary identified by the locations
of peak swirl velocity (VΘ,max) also identified.

4.2.1.1 Asymmetries in the vortex filament

An interesting question that remains to be addressed is which mode,

or combinations of modes, is responsible for producing asymmetries in the

turbulence kinetic energy per unit mass (TKE) in the plane perpendicular

to the vortex filament axis. See figure 4.16a, b (duplication of findings in

figure 3.9), which shows that the TKE is asymmetric inside the vortex core at

sample ψ = 180◦ and 315◦, respectively. In order to address the above question,

a low-dimensional reconstruction of the turbulence kinetic energy per unit mass

(E = 0.5〈u21 + u22〉 with ui=1,2 being the in-plane low-dimensional fluctuating

velocity obtained from Eq. 3.23) using the axisymmetric, helical and double

helical modes associated with the first POD mode, on a vortex slice (ǫ) at a

sample ψ = 180◦ and 315◦, is shown in figure 4.17a, b, respectively. A slice of
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Figure 4.17: (E/V 2
tip)×103 constructed using the individual Fourier modes for

the first (n = 1) POD mode at (a) ψ = 180◦ and (b) ψ = 315◦ on a vortex
slice.
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Figure 4.18: (E/V 2
tip) × 103 constructed using the combinations of Fourier

modes for the first (n = 1) POD mode at (a) ψ = 180◦ and (b) ψ = 315◦ on a
vortex slice.
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Figure 4.19: Total resolved turbulence kinetic energy (Ξ) normalized with the
total resolved kinetic energy (χ) of the flow. Contributions from the axisym-
metric (m = 0), helical (m = 1) and double helical (m = 2) modes for the first
(n = 1) POD mode relative to the mean kinetic energy (χ) of the flow also
indicated.

the original TKE is also shown; once again, the TKE is clearly asymmetric.

Where the individual modes are concerned, the slices in figure 4.17 appear

symmetric. However, in figure 4.18, where E is constructed using the first two

(m = 0 to 1) and the first three (m = 0 to 2) Fourier modes, the E is shown

to comprise asymmetries. Thus, it is evident here how a combination of at

least the axisymmetric, helical and double helical modes are responsible for

the significant distinguishable asymmetries in the turbulence kinetic energy

(per unit mass) inside the tip vortex.

At this point it is also worth addressing the trends observed earlier

(figure 3.11) in the total resolved turbulence kinetic energy (Ξ) relative to

the kinetic energy of the mean flow (χ), based on the above low-dimensional

features of the tip vortex derived. A duplication of these trends is shown
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in figure 4.19, along with the individual contributions from the axisymmetric,

helical and double helical modes (for the first PODmode) relative to the kinetic

energy of the mean flow. Once again, Ξ is on the order of 2 − 8% of χ over

the range of vortex ages studied. However, Ξ/χ at ψ = 45◦ is distinguishably

greater than that at 90◦. As the axisymmetric mode is the only mode that

shows a similar trend in figure 4.19, this behavior is attributed to the vortex

roll-up that occurs at early ages. Further, the turbulence inside the vortex (of

vortex Reynolds number, Γv/ν, in the range between 8.3 ×104 and 8.7×104

over the vortex ages studied) increases as the vortex age increases. However,

the Ξ/χ (along with the energy contributions from other organized motions)

is discontinuous around ψ = 360◦ due to the first blade passage.

4.2.2 Spatial structures of the Fourier modes for the second POD
mode

In this section, non-linearities in the helical (m = 1) and double helical

(m = 2) modes are demonstrated for the second POD mode (n = 2). Fig-

ure 4.20 illustrates the Fourier energy spectrum for n = 2. The helical mode

contributes about 3− 6% of the resolved energy, and the double helical mode

contributes about 2 − 3% of the resolved energy for the range of vortex ages

studied.

The real component of the axial vorticity field of the helical mode is

illustrated in figure 4.21. It is clear that the structure of the helical mode is de-

forming with the increasing age with low-vorticity fluid stripping azimuthally
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Figure 4.20: Fourier energy spectrum: m = 0, 1, and 2 for the second POD
mode (n = 2).

and radially outward from the two-counter rotating eddies. Fluid stripping is

indicated at ψ = 90◦. It is postulated that the stripped fluid (see at ψ = 135◦)

moves radially away from the vortex axis and breaks down into small scales.

Further, there also appears to be a change in the orientation of the eddies

at later ages (ψ > 315◦). Hence, the helical mode of the elliptic instability

appears to be in a non-linear regime for the second POD mode (n = 2), unlike

the linear behavior observed for n = 1.

Evolution of the spatial mode of the double-helical mode (m = 2) is

illustrated in figure 4.22. The double helical mode also demonstrates fluid-

stripping. Fluid appears to begin striping at ψ = 90◦ azimuthally and radially

outward from the eddies shown in figure 4.22 and the process continues until

ψ = 495◦.
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Figure 4.21: Contours of the real component of the axial vorticity of the helical
mode (m,n) = (1, 2) at ψ = 45◦ − 495◦. Circles of mean core-radius ( ) and
peak TKE (....) are indicated.
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peak TKE (....) are indicated.
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Chapter 5

Comparisons between classical and snapshot

forms of POD applied to spiraling vortex

filament

Based on the understanding of the low-dimensional features of the tip

vortex observed using the classical POD in § 4, subsequent comparisons with

that of the snapshot POD which is computationally more efficient are provided

in this chapter.

5.1 Energy spectrum and organized motions

As it was demonstrated earlier in § 4.2, given the resolution of the spa-

tial grid in the current setup, the POD modes of the classical technique man-

ifested a rapid convergence in energy with approximately 75% of the energy

residing in the first POD mode (n = 1) alone. With regard to the snapshot

technique, figure 5.1a, b illustrates the energy spectra at two sample vortex

This chapter may compose material from the author’s previously published articles,

S. M. Mula and C. E. Tinney. A study of the turbulence within a spiralling vortex

filament using proper orthogonal decomposition. J. Fluid Mech., 769: 570–589, 2015. For

this project, Tinney served as the project advisor.

S. M. Mula and C. E. Tinney. Classical and Snapshot forms of the POD technique applied

to a helical vortex filament. AIAA Paper 2014-3257, 2014. For this project, Tinney served

as the project advisor.
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Figure 5.1: Energy spectra of the first ten POD modes of the snapshot tech-
nique at (a) ψ = 45◦ and (b) ψ = 315◦.

ages ψ = 45◦ and 315◦, respectively, with only the first ten, out of a total of

350 POD modes, being shown. Once again, a rapid convergence in energy is

evident here where the first three (ns = 1, 2 and 3) POD modes of the snapshot

technique together contain approximately 70% of the resolved energy, which

again reflects the presence of highly organized motions within the tip vortex

filament. Similar convergence behavior is observed at other vortex ages in the

measurement envelope (not shown here).

As for the spatial structures of these first three (ns = 1, 2 and 3)

dominant modes, figures 5.2 and 5.3 demonstrate at two sample vortex ages

ψ = 45◦ and 315◦, respectively, alongside comparisons with the counterparts

of these modes in the classical POD. At ψ = 45◦, the first mode ns = 1 is

expressed by way of its radial profile of circulation, which resembles that of

a vortex with viscous core (see Han et al. (1997) [27], Bhagwat & Leishman

(2000) [10] and Ramasamy et al. (2007) [73]), and it forms the counterpart
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of the axisymmetric mode (m,n) = (0, 1) (classical POD) as illustrated in

figure 5.2. Therefore, the ns = 1 here is associated with the roll-up of the

vorticity-sheet trailed from the rotor blade at early ages. Whereas the higher

modes ns = 2 and ns = 3, at ψ = 45◦ in figure 5.2, form the counterparts of

the real and imaginary components, respectively, of the helical mode (m,n) =

(1, 1) (classical POD), which was shown earlier to be the most unstable mode

associated with the elliptic instability in the current set of measurements.

As for the counter-rotating eddies (figure 5.2) of this most unstable mode of

the elliptic instability, they reside on the mean core-radius in the classical

technique, whereas they reside on the mean core-boundary in the snapshot

POD.

In contrast to the order of dominant motions observed at ψ = 45◦,

figure 5.3 shows that at ψ = 315◦ the first two modes (ns = 1 and ns = 2)

of the snapshot technique resemble the real and imaginary components of the

helical mode (m,n) = (1, 1) (classical POD); the ns = 3 mode closely resembles

that of the axisymmetric mode (m,n) = (0, 1) (classical POD), which behaves

as a swirling jet (see Liang & Maxworthy (2005) [52]) at higher ages. Similar

order of dominance was observed at all other vortex ages (except at 45◦) in

the measurement envelope.

Having seen that the helical mode (m,n) = (1, 1) (classical POD) has

a counterpart in the snapshot POD, their evolutionary behavior is compared

here over the range of vortex ages measured. For the sake of comparison,

the evolutionary characteristics of this helical mode (m,n) = (1, 1) (classical
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POD), which was shown earlier in figure 4.9, is duplicated in figure 5.4 along-

side that of its counterpart in the snapshot technique. Once again, the two

counter-rotating eddies in the helical mode (m,n) = (1, 1) (classical POD)

which reside on the circle of mean core-radius at ψ = 45◦ (figure 5.4b) con-

tinue to remain centered on the mean core-radius for all the vortex ages with-

out modifying the structure of the helical mode; therefore, this helical mode

of the elliptic instability exhibits a linear behaviour. Similarly in the case of

snapshot technique, the two counter-rotating eddies of the mode in figure 5.4a

remain centered on the mean core-boundary for all the vortex ages in the

measurement envelope, without significantly modifying the structure of this

mode. Therefore, this mode of the elliptic instability as seen by the snapshot

technique (figure 5.4a) is also in the linear regime.

Since both the snapshot and classical techniques of POD have demon-

strated similar dominant motions, at this point it is worth addressing if the

resolved turbulence kinetic energies (from Eq. 3.13 and Eq. 3.20, respectively)

contained in these dominant motions are also consistent between these two

techniques. For this, figure 5.5a, b illustrates the resolved energy residing in

the axisymmetric (m,n) = (0, 1) and helical (m,n) = (1, 1) modes (classical

POD), respectively, along with their counterparts of the snapshot POD for

the range of vortex ages studied. It is evident that the resolved energy contri-

butions from these large-scale motions are also consistent between these two

forms of POD.
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Figure 5.4: Continued on next page and caption provided at the end of the
figure.
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180◦ ns = 1

 

 

180◦ Real

 

 

270◦ ns = 1 270◦ Real

−0.2 0 0.2

−0.2

0

0.2

 

 

315◦ ns = 1

x′/c

y
′/
c

315◦ Real

 

−0.5 0 0.5

Figure 5.4: Continued on next page and caption provided at the end of the
figure.
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Figure 5.4: Axial vorticity of the most unstable mode of elliptic instability,
from (a) snapshot POD and (b) classical POD: (real component) helical mode
(m,n) = (1, 1), at ψ = 45◦ − 495◦. τ1: mean core-boundary, τ2: locations of
peak TKE, τ3: mean core-radius, τ4: mean location of peak TKE.
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Figure 5.5: Resolved energy comparisons between (a) the axisymmetric mode
(m,n) = (0, 1) (classical POD) and its counterpart of the snapshot POD, (b)
the helical mode (m,n) = (1, 1) (classical POD) and its counterpart of the
snapshot POD.

5.1.1 Asymmetries in the vortex filament

Concerning the asymmetries in the turbulence kinetic energy per unit

mass (TKE) in the plane perpendicular to the vortex axis, once again, fig-

ure 5.6a, b (duplication of the findings in figure 3.9) shows that the TKE is

asymmetric inside the vortex core at sample ψ = 180◦ and 315◦, respectively.

Therefore, it is worth comparing how these asymmetries in TKE are intro-

duced in the tip vortex between the snapshot and classical forms of POD. To

do so, a low-dimensional reconstruction of the turbulence kinetic energy per

unit mass (E = 0.5〈u21 + u22〉 with ui=1,2 being the in-plane low-dimensional

fluctuating velocity obtained from Eq. 3.14 and Eq. 3.23) using the above

large-scale motions is shown in figures 5.7, 5.9 and 5.11 (a, b) from the snap-

shot and classical techniques, respectively. To start with, figure 5.7 shows E
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constructed using the helical mode (m,n) = (1, 1) (classical POD) alongside

that of its counterpart (ns = 1 to 2) in the snapshot technique at ψ = 180◦

and 315◦. It is evident that this counterpart (ns = 1 and 2) of the snapshot

technique introduces more asymmetry in E than that of the helical mode from

the classical POD. This variation in asymmetry established here by these two

techniques is also demonstrated on slices of E (indicated by ǫ in figure 5.7) in

figure 5.8a, b at ψ = 180◦ and 315◦, respectively.

As an extension, E is constructed using the combination of axisymmet-

ric and helical modes (m = 0 to 1; n = 1) in the classical POD alongside that

of their counterpart (ns = 1 to 3) in the snapshot technique at ψ = 180◦ and

315◦ as shown in figure 5.9. Once again, the asymmetry in E introduced by

the combination of modes (m = 0 to 1; n = 1) of the classical POD does not

appear to match that of their counterpart in the snapshot technique. Such

a nonconformity can also be seen on slices of E (indicated by ǫ in figure 5.9)

illustrated in figure 5.10a, b at ψ = 180◦ and 315◦, respectively. Nevertheless,

as it was also demonstrated earlier in § 4.2.1.1, the combination of axisymmet-

ric and helical modes of the classical technique produced more asymmetries in

E (figures 5.9 and 5.10) compared to that of the helical mode alone (figures 5.7

and 5.8). Further, if another mode is introduced (double helical mode) along

with the axisymmetric and helical modes (classical POD) in the construction

of E, this new combination (m = 0 to 2; n = 1) was shown earlier to introduce

more asymmetry in E than that of the combination of helical and axisym-

metric modes (m = 0 to 1; n = 1). Following this, if E that is constructed
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Figure 5.6: Turbulence kinetic energy per unit mass, (TKE/V 2
tip)× 103, at (a)

ψ = 180◦ and (b) ψ = 315◦. Mean vortex core boundary identified by the
locations of peak swirl velocity (VΘ,max) also identified.

using ns = 1 to 3 (snapshot technique) in figure 5.9 is duplicated in figure 5.11

and compared to that of the new combination of modes of the classical POD:

axisymmetric, helical and double helical modes (m = 0 to 2; n = 1), the

asymmetries in E appear to nearly match. Such an equivalence in asymme-

tries is also demonstrated on the slices of E (indicated by ǫ in figure 5.11)

in figure 5.10a, b at ψ = 180◦ and 315◦, respectively. Therefore, as for the

asymmetries in turbulence kinetic energy (per unit mass), the classical POD

requires more modes when compared to that of the snapshot POD; hence,

once again the snapshot technique is more efficient than the classical POD.

Nevertheless, the classical form was preferred in the current study (see § 4)

owing to the easier interpretation of the Fourier-azimuthal modes.
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(a) Snapshot: ns = 1 to 2 (b) Classical: (m,n) = (1, 1)
ψ = 180◦ ψ = 180◦
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Figure 5.7: Low-dimensional turbulence kinetic energy per unit mass, E/V 2
tip×

103, at ψ = 180◦ and 315◦. Slice ǫ at each vortex age corresponds to the slice
drawn in figure 5.6 for the respective vortex age. Mean vortex core boundary
identified by the locations of peak swirl velocity (VΘ,max) also identified.
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Snapshot: ns = 1 to 2, Classical: (m,n) = (1, 1)
(a) ψ = 180◦ (b) ψ = 315◦
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Figure 5.8: Low-dimensional turbulence kinetic energy per unit mass, E/V 2
tip×

103, on a vortex slice ǫ in figure 5.7 at ψ = 180◦ and 315◦. Actual TKE on the
vortex slice also indicated.
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(a) Snapshot: ns = 1 to 3 (b) Classical: m = 0 to 1; n = 1
ψ = 180◦ ψ = 180◦
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Figure 5.9: Low-dimensional turbulence kinetic energy per unit mass, E/V 2
tip×

103, at ψ = 180◦ and 315◦. Slice ǫ at each vortex age corresponds to the slice
drawn in figure 5.6 for the respective vortex age. Mean vortex core boundary
identified by the locations of peak swirl velocity (VΘ,max) also identified.
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Snapshot: ns = 1 to 3, Classical: m = 0 to 1; n = 1
(a) ψ = 180◦ (b) ψ = 315◦

−0.2 −0.1 0 0.1 0.2
0

2

4

6

 

 

r/c

TKE/V 2
tip × 103

Snapshot

Classical

−0.2 −0.1 0 0.1 0.2
0

2

4

6

x

Figure 5.10: Low-dimensional turbulence kinetic energy per unit mass,
E/V 2

tip × 103, on a vortex slice ǫ in figure 5.7 at ψ = 180◦ and 315◦. Actual
TKE on the vortex slice also indicated.
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(a) Snapshot: ns = 1 to 3 (b) Classical: m = 0 to 2; n = 1
ψ = 180◦ ψ = 180◦
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Figure 5.11: Low-dimensional turbulence kinetic energy per unit mass,
E/V 2

tip × 103, at ψ = 180◦ and 315◦. Slice ǫ at each vortex age corresponds
to the slice drawn in figure 5.6 for the respective vortex age. Mean vortex
core boundary identified by the locations of peak swirl velocity (VΘ,max) also
identified.
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Snapshot: ns = 1 to 3, Classical: m = 0 to 2; n = 1
(a) ψ = 180◦ (b) ψ = 315◦
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Figure 5.12: Low-dimensional turbulence kinetic energy per unit mass,
E/V 2

tip × 103, on a vortex slice ǫ in figure 5.7 at ψ = 180◦ and 315◦. Actual
TKE on the vortex slice also indicated.

122



Chapter 6

Sensitivity of POD to the choice of the vortex

centering technique

In the previous chapters, using the Γ1 centering technique (described

in § 3 for wander correction) low-dimensional characterization of the velocity

fluctuations (within the tip vortex) was performed by way of the proper or-

thogonal decomposition (see § 3, § 4 and § 5). At this point, an interesting

question that is worth addressing is to what affect does the choice of the vortex

centering technique have on the low-dimensional features obtained by POD.

The Γ1 method was preferred earlier since it is a non-divergence based tech-

nique and is very efficient in identifying the location of zero swirl (defined as

the vortex center [56, 57]) within the vortex core. For the current set of mea-

surements this method produced zero in-plane turbulence at the vortex center

(see figures 3.9 and 3.10) which is an inherent characteristic of a vortex flow

(as ũi=1,2 = ui = 0 at the vortex center). But the concern is whether aligning

This chapter may compose material from the author’s previously published articles,

S. M. Mula and C. E. Tinney. A study of the turbulence within a spiralling vortex

filament using proper orthogonal decomposition. J. Fluid Mech., 769: 570–589, 2015. For

this project, Tinney served as the project advisor.

S. M. Mula and C. E. Tinney. Classical and Snapshot forms of the POD technique applied

to a helical vortex filament. AIAA Paper 2014-3257, 2014. For this project, Tinney served

as the project advisor.
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(a) ψ = 180◦ (b) ψ = 315◦
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Figure 6.1: Sample instantaneous vector maps with centers identified by the
Γ1 (◦) and GC (⋆) methods at (a) ψ = 45◦ and (b) ψ = 315◦. Instantaneous
vortex core boundaries are also identified.

the inner core region with the Γ1 approach causes regions outside the core to

be smeared. Therefore, a second approach is examined which aims to align the

regions outside the core by biasing the vortex centering technique with features

associated with the outer portions of the vortex core. This is accomplished

by aligning each vortex by way of its geometric center (hereafter referred to

as GC), which is the area center (or centroid) of its vortex core. Sample illus-

trations of the geometric centers of the instantaneous vortex cores are shown

in figure 6.1a, b at sample ψ = 180◦ and 315◦, respectively. Alongside the

geometric centers the corresponding vortex centers (identified by Γ1) are also

indicated to demonstrate the differences between their locations. Subsequent

effects of these two centering techniques on the low-dimensional features (by

way of POD) are illustrated and compared in this chapter. However, prior to

comparing the low-dimensional features, the effect of the GC technique on the
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Figure 6.2: Mean core-radius trends in the current study using the two vortex
centering techniques: Γ1 and GC methods.

mean characteristics and velocity fluctuations of the tip vortex are discussed

and compared with the findings obtained earlier (§ 3.2.3) using the Γ1 method.

6.1 Mean statistics

Following the correction for wander using the GC method, mean core-

radius is estimated at each ψ in the measurement envelope and the resulting

trends are demonstrated in figure 6.2 alongside the findings (duplication of the

results in figure 3.7) using the Γ1 method. It is evident that the mean core-

radius (at any ψ) is nearly uneffected to the choice of the centering technique.

Details of the mean axial vorticity of the tip vortex are demonstrated in

figure 6.3a, b using the Γ1 and GC techniques, respectively, at sample ψ = 180◦

and ψ = 315◦. Also, sample slices (horizontal) of the corresponding mean axial

vorticity at ψ = 180◦ and ψ = 315◦ are shown in figure 6.4a, b, respectively.
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Figure 6.3: Mean axial vorticity (ωz/Ω) using (a) Γ1 approach and (b) GC
method at ψ = 180◦ and 315◦. Locations of peak swirl velocity (VΘ,max),
which define the mean core-boundary, also identified.
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Figure 6.4: Mean axial vorticity (−ωz/Ω) at (a) ψ = 180◦ and (b) ψ = 315◦

on a vortex slice through the vortex center.

While differences between the two centering techniques are manifest in the

inner vortex core region (close to the vortex axis in figures 6.3 and 6.4), the

outer portions of the core appear to remain nearly unaffected.

Having seen that the GC technique has an effect on the axial vorticity in

the inner core region of the vortex, figure 6.5 shows how it effects the turbulence

kinetic energy per unit mass (TKE) at sample ψ = 180◦ and 315◦. While

the Γ1 method produces an asymmetric TKE (in azimuth) inside the vortex,

the GC method appears to introduce more symmetry with less turbulence

fluctuations except near the vortex axis. See sample slices (indicated by ǫ in

figure 6.5) of TKE (along with mean swirl velocities) in figure 6.6, which further

demonstrates how the GC method introduces artificially elevated turbulence

levels at the vortex center. Whereas the Γ1 method, once again, preserves the

inherent characteristic of zero in-plane turbulence at the vortex axis.
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Figure 6.5: Turbulence kinetic energy per unit mass, (TKE/V 2
tip)×103, using

(a) the Γ1 approach and (b) the GC technique at ψ = 180◦ and 315◦. Mean
vortex core boundary identified by the locations of peak swirl velocity (VΘ,max)
also identified.
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(a) Γ1 (b) GC
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Figure 6.6: Swirl velocity, (|VΘ|/Vtip)×20 (▽), and (TKE/V 2
tip)×103 (⋆) at (a)

ψ = 180◦ and (b) ψ = 315◦ on a vortex slice. Vortex core boundary identified
by peak swirl velocity also indicated.
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Figure 6.7: Total resolved turbulence kinetic energy (Ξ) normalized with the
total resolved kinetic energy (χ) of the flow.

As for the total resolved turbulence kinetic energy (Ξ), comparisons be-

tween the Γ1 and GC techniques are provided in figure 6.7. Though the trends

in Ξ (discussed earlier in § 4.2.1.1) are similar between these two techniques,

the GC method produces lower turbulence energies at all the vortex ages in

the measurement envelope.

6.2 Low-dimensional characteristics

Having shown the effect of the GC technique on the statistical proper-

ties of the vortex, its effect on the low dimensional features is examined here.

For this, the classical form of POD is employed owing to the easier interpre-

tation of the Fourier modes. Figure 6.8a illustrates the POD energy spectrum

for sample vortex ages in the measurement envelope. As demonstrated earlier

using the Γ1 method (in § 4.2), 75% of the resolved turbulence kinetic energy

resides in the first (n = 1) POD mode (for the entire range of ψ studied). Once
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Figure 6.8: (a) Energy spectra of the first seven POD modes. (b) Energy
spectra of the POD modes on a logarithmic scale.
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again, such a rapid convergence reflects the presence of highly organized mo-

tions inside the tip vortex. However, using the GC method a different quantum

(of the resolved energy) resides in the first POD mode. Nevertheless, it still

manifests a rapid convergence within the first few POD modes. Furthermore,

figure 6.8b demonstrates the POD energy spectrum on a logarithmic scale;

irrespective of the centering technique used, the energy spectrum exhibits a

k−5/3 inertial range [62] in the first decade of POD modes.

6.2.1 Fourier-azimuthal modes for the first n = 1 POD mode

As for the Fourier energy spectrum associated with the first (n = 1)

POD mode, figure 6.9 shows how the GC technique produces exactly the

opposite behavior than the Γ1 method where the axisymmetric (m = 0) and

helical (m = 1) modes are concerned. As demonstrated earlier using the Γ1

method (in § 4.2), the helical mode (m = 1) dominates the energy spectrum

at all ψ (except at 45◦), followed by the axisymmetric (m = 0) and double

helical (m = 2) modes. However, at ψ = 45◦ the helical and axisymmetric

modes are equally dominant. Whereas using the GC method, at ψ = 45◦

only the axisymmetric mode is dominant, while at other ψ equal levels of

contributions from the axisymmetric and helical modes are manifest in the

measurement envelope. Furthermore, figure 6.10 illustrates the Fourier spectra

on a logarithmic scale where (apart from the first few azimuthal modes) both

the Γ1 and GC methods demonstrate similar overall rates of convergence.
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Figure 6.9: Fourier mode energy spectra associated with the first (n = 1) POD
mode.
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Figure 6.10: Fourier energy spectra associated with the first POD mode on a
logarithmic scale.
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Where the spatial distribution of the resolved energy is concerned, fig-

ure 6.11 shows how the radial profile of energy (per unit mass) is for the Fourier

modes displayed in figure 6.9. These profiles, which are in normalized form,

are originally determined from the following standard expression

B
(1)
ii (r, ψ;m) = Λ1 (ψ;m)Φ

(1)
i (r, ψ;m)Φ

(1)∗
i (r, ψ;m), (6.1)

with subscripts written in the Einstein notation. At ψ = 45◦ it is interesting

to see how the Γ1 and GC techniques produce matching profiles (figure 6.11a)

for the axisymmetric mode (m = 0). However, at later ages (figure 6.11b) the

GC technique shifts the peak energy radially inward (toward vortex center)

from that of the Γ1 method. Furthermore, the GC technique demonstrates to

significantly effect the helical (m = 0) and double helical (m = 1) modes at

both early and later vortex ages. It is also interesting to point out how the

helical mode here, in the GC technique, produces non-zero in-plane turbulence

energy at the vortex center (r = 0), which is more prominent at later vortex

ages (see figure 6.11b). This suggests that the elevated velocity fluctuations at

the vortex center in figure 6.6b are caused predominantly by the helical mode.

Spatial structures of the above dominant motions are presented in fig-

ures 6.12, 6.13 and 6.14. To begin with the axisymmetric mode, its radial

profiles of circulation are displayed in figure 6.12a, b for ψ = 45◦ and 315◦,

respectively. Using the Γ1 method, at ψ = 45◦ the profile was shown earlier

(in figure 4.4) to resemble that of a vortex with viscous core; while at later

ages, the axisymmetric mode was shown to behave as a swirling jet. It is in-

teresting to note that the GC technique produces similar characteristics of the
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Figure 6.11: Radial profile (in normalized form) of the resolved energy (per
unit mass) of the first three (m = 0 to 2) Fourier-azimuthal modes associated
with the first (n = 1) POD mode at (a) ψ = 45◦ and (b) ψ = 315◦ using the
Γ1 (filled symbols) and GC (open symbols) methods. Mean core radius using
the Γ1 (solid line) and GC (dashed line) methods also identified.
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(a) ψ = 45◦ (b) ψ = 315◦

0 0.1 0.2
0

0.25

0.5

0.75

1

 

 

r/c

Γ1

GC

0 0.1 0.2 0.3
0

0.25

0.5

0.75

1

 

 

Γ1

GC

r/c

Figure 6.12: Radial profiles of circulation ( ) for (m,n) = (0, 1) at (a) ψ = 45◦

and (b) ψ = 315◦.

axisymmetric mode in figure 6.12a, b. However, the GC technique manifests

to shift the peak circulation of the swirling jet mode (figure 6.12b) radially

inward (towards vortex axis) from that of the Γ1 method at later ages.

As for the spatial structure of the helical mode (m = 1), axial vorticity

contours (real component) are displayed in figure 6.13 at ψ = 45◦−495◦. Using

the Γ1 method, the helical mode in figure 6.13a was demonstrated earlier

(see figures 4.6 and 4.6) to be associated with the elliptic instability. Once

again, the counter-rotating eddies (indicated in figure 6.13a at ψ = 45◦) of

this helical mode reside on the circle of core-radius for all the vortex ages

without modifying the structure of the helical mode. Therefore, this mode

in figure 6.13a exhibits a linear behavior, as in the non-linear regime such

an instability mode would undergo either a rotation [82] or modification in

its structure [80] (which is not observed here). Using the GC technique, the
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structure of the helical mode (figure 6.13b) is significantly different (at any

ψ) from that of the Γ1 technique (figure 6.13a) especially inside the circle of

core-radius. In addition to this, the helical mode lacks an organized evolution

using the GC method.

Having seen that the spatial structure of the helical mode is significantly

effected by the GC technique, its effect on the double helical mode is also

examined. Findings from the Γ1 method in figure 6.14a are duplications of

the findings in figure 4.15, where, like the helical mode, even the four-lobed

structure of m = 2 mode was demonstrated earlier to be one of the modes

of the elliptic instability. Once again, pairs of co-rotating eddies (indicated

in figure 6.14a) at ψ = 90◦ appear to merge with the increasing vortex age,

thereby slightly modifying the structure of the double-helical mode (non-linear

mode of the elliptic instability). A single elongated eddy from each such pair

is evident in figure 6.14a at ψ = 495◦. Using the GC technique, the structure

of the double helical mode (figure 6.14b) is significantly different (at any ψ)

from that of the Γ1 technique (figure 6.14a). For example, while each lobe at

ψ = 90◦ in the Γ1 method comprises a pair of counter-rotating eddies (radially

separated), only a single eddy per lobe is manifest in the GC method.
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(a) Γ1: (m,n) = (1, 1) (b) GC: (m,n) = (1, 1)
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Figure 6.13: Continued on next page and caption provided at the end of the
figure.
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(a) Γ1: (m,n) = (1, 1) (b) GC: (m,n) = (1, 1)
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Figure 6.13: Continued on next page and caption provided at the end of the
figure.
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(a) Γ1: (m,n) = (1, 1) (b) GC: (m,n) = (1, 1)

405◦ 405◦

−0.2 0 0.2

−0.2

0

0.2495◦

x′/c

y
′/
c

495◦

 

−0.5 0 0.5

Figure 6.13: Contours of the real component of the axial vorticity of the helical
mode (m,n) = (1, 1) at ψ = 45◦ − 495◦. Circles of mean core-radius ( ) are
indicated.
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(a) Γ1: (m,n) = (2, 1) (b) GC: (m,n) = (2, 1)
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Figure 6.14: Continued on next page and caption provided at the end of the
figure.
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(a) Γ1: (m,n) = (2, 1) (b) GC: (m,n) = (2, 1)
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Figure 6.14: Continued on next page and caption provided at the end of the
figure.
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(a) Γ1: (m,n) = (2, 1) (b) GC: (m,n) = (2, 1)
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Figure 6.14: Contours of the real component of the axial vorticity of the helical
mode (m,n) = (2, 1) at ψ = 45◦ − 495◦. Circles of mean core-radius ( ) are
indicated.
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6.2.1.1 Higher Fourier modes associated with the first n = 1 POD
mode

Concerning the higher Fourier-azimuthal modes (m ≥ 3) associated

with the first n = 1 POD mode, radial profiles of the resolved energy (per unit

mass) are shown in figure 6.15a, b using the Γ1 and GC methods, respectively.

These profiles (determined from Eq. 6.1) are once again normalized for each

m. It is evident from figure 6.15a, b that, at any ψ, higher the Fourier-mode

number, farther the location (from the vortex axis r = 0) where the energy

peaks. This indicates smaller scales of turbulence occur farther away from

the vortex axis. Also, for ψ = 45◦, the peak energy appears to suddenly

shift in space at around r = 0.88rc. Based on the measurement resolution for

the current setup (Lm = 0.88 mm), at r = 0.88rc up to m = 15 modes can

be resolved. Therefore, at ψ = 45◦ the sudden radial shift in peak energy,

which is shown to occur about m = 6 (see figure 6.15), is not an indication of

insufficient spatial resolution (at r = 0.88rc) to resolve this Fourier-azimuthal

mode. While such a discontinuity occurs at higher m with the increasing

vortex age, the associated amount of radial shift in peak energy also gets

smaller, which is attributed to turbulence diffusion.

Where the spatial structures of these higher Fourier modes (m ≥ 3)

are concerned, figure 6.16a, b shows for sample ψ = 315◦ using the Γ1 and

GC techniques, respectively. For the sake of comparing these two centering

techniques, only modes m = 3 to 8 are shown. It is evident that for each m in

figure 6.16 the spatial structures are similar between the Γ1 and GC techniques;
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however, the eddies corresponding to the GC method are slightly smaller in

size. Overall, the higher Fourier-azimuthal modes illustrated in figures 6.15

and 6.16 remain nearly uneffected by the choice of the centering technique.
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(a) Γ1: n = 1 (b) GC: n = 1
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Figure 6.15: Continued on next page and caption provided at the end of the
figure.
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(a) Γ1: n = 1 (b) GC: n = 1
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Figure 6.15: Continued on next page and caption provided at the end of the
figure.
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(a) Γ1: n = 1 (b) GC: n = 1
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Figure 6.15: Radial profiles (in normalized form) of the resolved energy (per
unit mass) of m = 3 to 25 associated with the first (n = 1) POD mode at
ψ = 45◦ − 495◦ using (a) Γ1 and (b) GC methods.
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(a) Γ1 (b) GC
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Figure 6.16: Continued on next page and caption provided at the end of the
figure.
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(a) Γ1 (b) GC
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Figure 6.16: Contours of the real component of the axial vorticity of the higher
Fourier modes (m = 3 to 8) associated with n = 1 at ψ = 315◦ using (a) Γ1

and (b) GC methods. Circles of mean core-radius ( ) are indicated.
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Chapter 7

Summary and future work

In this chapter, summary of the current work is described in § 7.1 and

the recommendations for future work are provided in § 7.2.

7.1 Summary

Investigations were developed on a reduced-scale rotor to better under-

stand the characteristics of tip vortices that play a very important role in the

performance of helicopters. These vortices form compact filaments that are he-

lical in geometry. Helical vortex filaments, under the influence of strain which

is inherently induced by the proximity of the vortex to neighboring vortices

along with curvature and torsional effects, are subject to three-dimensional

long-wave instabilities. The strain also causes streamlines to deform elliptically

on a plane perpendicular to the vortex axis, and so the vortex filament becomes

the subject of the so called elliptic instability which is a three-dimensional

short-wave instability. Elliptic instabilities have been studied analytically, nu-

merically and experimentally in a variety of vortex flows. However, in the

context of rotor tip vortices, there are limited quantitative experimental stud-

ies characterizing the behavior of these instabilities and over extended vortex
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ages. Therefore, in the current study, investigations were developed on the

short-wave instabilities as well as the organized turbulence that reside within

the vortex produced by a rotor blade in hover. The vortex studied here was

formed by a single-bladed rotor and was captured by way of particle image

velocimetry (PIV). Proper orthogonal decomposition (POD) was utilized to

flush out the more energetic features responsible for characterizing the bulk

motions of the tip vortex and was performed over extended vortex ages.

In order to characterize the statistical properties of the tip vortex, the

vortex center was identified using the Γ1 method which is a non-divergence

based scheme and hence the results were not corrupted by the noise due to

velocity gradients. This is followed by obtaining the vortex wander, which

is a scatter in the instantaneous positions of the vortex center (on a plane

normal to the vortex axis) due to the inherent unsteadiness of the rotor wake.

The wander was found to be anisotropic, which was in agreement with the

findings in the literature. The growth of wander with the increasing vortex

vortex age was analyzed along two perpendicular axes: along the preferred

direction of wander (major axis) and normal to the preferred direction (minor

axis). The wandering motion was shown to grow linearly along the minor axis,

whereas along the major axis the wander did not show a continuous growth

as it manifested a local minimum near ψ = 360◦. It is postulated that this

discontinuity is a consequence of long-wave instabilities with non-integer wave

numbers.

After performing corrections for wander, some of the mean statistics of
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the tip vortex were determined and compared to a sampling of data provided

in the open literature that provided confidence in the measurements reported

in this study. The measurements were found to satisfy the resolution criterion

for determining the structural characteristics (such as the core-radius and tur-

bulence fluctuations) of the tip vortex. As for the core-radius trends, up until

the first rotor revolution, the core-radius was demonstrated to increase (mono-

tonically from 10% to 15% of the blade chord) due to diffusion; however, after

the first blade passage, the core-radius was shown to decrease due to vortex

stretching caused by the oncoming blade in agreement with the findings in the

literature.

In-plane velocity fluctuations (normal to the vortex axis) were found

to peak within the vortex core; the turbulence kinetic energy per unit mass

(TKE), based on the in-plane velocity, was illustrated to be zero at the vortex

center (an inherent characteristic of a vortex flow) which demonstrates the

accuracy of the Γ1 method. A noticeable asymmetry in TKE was also observed

within the vortex core and, over the range of vortex ages studied, the total

resolved turbulence kinetic energy (Ξ) was found to vary between 2-8% of the

total resolved mean kinetic energy associated with the tip vortex.

The most energetic features of the turbulence fluctuations that reside

within the blade tip vortex were identified using the proper orthogonal de-

composition. While it is customary for one to use the snapshot form of POD

owing to the advantages of its computational efficiency, the classical form was

employed in this study owing to the physical relevance of the Fourier modes.
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In the classical form, the velocity fluctuations were first decomposed in az-

imuth using the Fourier-decomposition followed by the radial decomposition

using POD. Also, this form of POD preserved the dependence of the azimuthal

decomposition on the origin of the azimuthal angle thereby not imposing any

homogeneity in velocity.

Using the classical POD, nearly 75% of the resolved energy was shown

to reside in the first (n = 1) POD mode alone (comprising all the Fourier

modes) for the entire range of vortex ages studied. Given the spatial grid

resolution used to obtain the POD modes, this is a reflection of the organized

events that characterize the active motions of the spiraling vortex filament.

The POD energy spectrum was also shown to exhibit a k−5/3 inertial range

in the first decade of the POD modes, which is expected even for an inho-

mogeneous turbulence flow at high Reynolds number. As 75% of the resolved

energy that was contained in the first POD mode was distributed amongst

the Fourier-azimuthal modes, the Fourier energy spectrum was also analyzed.

The findings revealed that the helical mode (m = 1) dominated the energy

spectrum at all the vortex ages (except at ψ = 45◦), followed by the axisym-

metric (m = 0) and double helical (m = 2) modes. However, at ψ = 45◦, the

axisymmetric and helical modes were found to be equally dominant.

As for the spatial characteristics of the Fourier modes of the first (n = 1)

POD mode, the axisymmetric mode (m = 0) was shown to resemble a vortex

with viscous core at ψ = 45◦. Therefore, the axisymmetric mode is associated

with the roll-up of the vorticity sheet trailed from the rotor blade at early ages.
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This explains the reason for its equal dominance as that of the helical mode

at ψ = 45◦. At higher vortex ages, once the roll-up process was complete,

the axisymmetric mode was found to manifest features similar to that of an

axisymmetric swirling jet, which further enhances the flow-entrainment and

diffusion mechanisms. Due to the nature of the Fourier functions, non-zero

Fourier modes such as the helical (m = 1) and double helical (m = 2) modes

comprise both real and imaginary components. These components are identi-

cal but separate in orientation by π/2m. While the helical and double helical

modes were shown to be associated with the elliptic instability, the helical

mode was demonstrated to be the most unstable mode of the elliptic insta-

bility. At the earliest vortex age (ψ = 45◦), the helical mode comprised two

counter-rotating eddies residing on the circle of core-radius. As for the evolu-

tionary behavior of this mode, the counter-rotating eddies remained centered

on the mean core-radius for all the vortex ages without modifying the struc-

ture of the helical mode. Therefore, the helical mode exhibited a linear mode

of the elliptic instability, since in a non-linear regime such an instability mode

would undergo either a rotation or a modification in its structure. Concern-

ing the double helical mode, the spatial structure was four-lobed in azimuth.

This mode was found to undergo a slight modification in its structure with the

increasing vortex age. Therefore, unlike the helical mode, the double helical

mode exhibited a non-linear mode of the elliptic instability. Furthermore, it

was shown that a combination of at least the above axisymmetric, helical and

double helical modes of the first POD mode were responsible for producing
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distinguishable asymmetries in the turbulence kinetic energy per unit mass

(TKE) inside the tip vortex.

While the helical mode of the first (n = 1) PODmode was a linear mode

of the elliptic instability, for the second (n = 2) POD mode the helical mode

displayed a non-linear behavior with low-vorticity fluid stripping azimuthally

and radially outward from the two-counter rotating eddies thereby modifying

the structure of the mode. Fluid stripping was also observed in the double

helical mode (of the second POD mode). It is postulated that the stripped

fluid moves radially away form the vortex axis and breaks down into small

scales.

Having observed the low-dimensional features of the tip vortex using

the classical POD, comparisons with that of the snapshot POD were also pro-

vided, as the latter approach is computationally more efficient than the former.

Using the snapshot POD, the first three (ns = 1, 2 and 3) POD modes of this

technique comprised nearly 70% of the resolved energy which again reflects

the presence of highly organized motions within the tip vortex over the range

of vortex ages studied. As for the spatial structures of the first three (ns = 1, 2

and 3) dominant modes, at ψ = 45◦, ns = 1 was shown to resemble a vor-

tex with viscous core, thereby becoming the counterpart of the axisymmetric

mode (m,n) = (0, 1) (classical POD); ns = 2 and ns = 3 formed the counter-

parts of the real and imaginary components, respectively, of the helical mode

(m,n) = (1, 1) (classical POD). However, at higher ages, once the roll-up pro-

cess was complete, the first two modes (ns = 1 and ns = 2) resembled the
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real and imaginary components of the helical mode (m,n) = (1, 1) (classical

POD); the ns = 3 mode formed the counterpart of the axisymmetric mode

(m,n) = (0, 1), which behaved as a swirling jet.

As the findings revealed that the helical mode (m,n) = (1, 1) (classical

POD) had a counterpart in the snapshot POD, the evolutionary behavior was

also compared. While in the classical POD the helical mode comprised two

counter-rotating eddies residing on the circle of core-radius, its counterpart in

the snapshot POD comprised two counter-rotating eddies that remained cen-

tered on the mean core-boundary for all the vortex ages in the measurement

envelope. Therefore, the most unstable mode of the elliptic instability as seen

by snapshot technique was also in the linear regime. Furthermore, the resolved

energy residing in the axisymmetric (m,n) = (0, 1) and helical (m,n) = (1, 1)

modes (classical POD), respectively, along with their counterparts of the snap-

shot POD was also analyzed for the range of vortex ages studies. The findings

revealed that the resolved energy contributions from these large-scale motions

were also consistent between these two forms of POD. As for the asymmetries

in TKE inside the tip vortex, the snapshot POD was found to require less

modes when compared to that of the classical POD. Nevertheless, the classi-

cal technique was preferred in this study owing to the easier interpretation of

the Fourier-azimuthal modes.

Since the low-dimensional characterization of the velocity fluctuations

inside the tip vortex was executed after performing corrections for vortex wan-

der, sensitivity of POD to the choice of the wander correction technique was
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also analyzed. As the Γ1 method aligned the regions of the inner core by pro-

ducing zero in-plane turbulence at the vortex center (an inherent characteristic

of a vortex flow), a second approach was examined which positioned vortices

such that the regions outside the core were aligned; in the latter approach,

each vortex was aligned by way of its geometric center (GC). This new cen-

tering technique was found not to effect the trends of the core-radius, which

were observed earlier using the Γ1 method. However, it was found to signifi-

cantly effect the turbulence kinetic energy per unit mass (TKE) inside the tip

vortex as it produced more symmetry (in TKE) with less turbulence fluctua-

tions (except near the vortex axis); at the vortex center, the GC approach was

shown to introduce artificially elevated turbulence fluctuations. Overall, by

estimating the total resolved turbulence kinetic energy (Ξ), the GC method

generated lower resolved energy than that of the Γ1 technique over the range

of vortex ages studied.

As for the low-dimensional characterization of the turbulence fluctu-

ations (obtained using the GC method) inside the tip vortex, the classical

form of POD was employed, once again, due to the easier interpretation of the

Fourier modes. While the Γ1 technique revealed 75% of the resolved energy

residing in the first (n = 1) POD mode (over the range of vortex ages studied),

the GC method showed a different quantum residing in the first POD mode.

Nevertheless, using the latter approach, the POD energy spectrum demon-

strated a k−5/3 inertial range in the first decade of POD modes, which was

observed earlier using the Γ1 technique.
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With regard to the Fourier energy spectrum associated with the first

(n = 1) POD mode, the GC technique produced exactly the opposite behavior

than the Γ1 method where the axisymmetric (m = 0) and helical (m = 1)

modes contributions were concerned; using the GC method, at early ages (ψ =

45◦), the turbulence kinetic energy was governed entirely by the axisymmetric

mode which immediately changed to equal levels of contribution from the

axisymmetric and helical modes at all other vortex ages. Nevertheless, the

additional findings from the Fourier energy spectrum (associated with the

first POD mode) revealed that both the centering techniques produced similar

rates of energy convergence within the first decade of the azimuthal modes.

Concerning the spatial characteristics, the GC method demonstrated

a similar structure of the axisymmetric mode (m,n) = (0, 1) as that of the

Γ1 technique; however, at higher vortex ages, the former approach shifted the

position of the peak circulation of the swirling jet mode, radially towards the

vortex axis, from that of the latter. The spatial structures of the helical (m =

1) and double helical (m = 2) modes of the first (n = 1) POD mode were found

to be significantly affected by the choice of the centering technique, where

the GC technique produced a lack of organized motion in their evolutionary

behavior. Also, the artificially elevated velocity fluctuations (at the vortex

center), which were obtained using the GC approach, were found to be caused

predominantly by the helical mode (m,n) = (1, 1). While the higher azimuthal

modes were observed in the outer portions of the vortex, they appeared to be

minimally affected by the choice of the wander correction technique used.
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7.2 Future work

Following are the recommendations for further work based on the find-

ings of the current study using the Γ1 technique.

1. Measurements in the current study were not time-resolved. It would be

interesting to obtain time-resolved PIV measurements on the rotor tip

vortex filaments in order to quantitatively determine dominant long-wave

instabilities (by estimating the integral length scales and time scales), as

these instabilities are equally important as the short-wave instabilities

in the breakdown of tip vortices.

2. In the current set of measurements, vortex roll-up was seen only at the

earliest vortex age (ψ = 45◦) measured, at which the axisymmetric and

helical modes (associated with the first POD) were found to be equally

dominant (using the Γ1 technique). This raises concerns if such an equal

dominance between these modes persists throughout the entire evolution

of the vortex roll-up. Therefore, in order to study the evolutionary be-

havior of this roll-up process, it is essential to acquire measurements at

multiple vortex ages in the first quarter of the rotor revolution.

3. The low-dimensional characteristics of the turbulence fluctuations ob-

served here within the tip vortex suggests that the tip vortex was ac-

tive (and not completely diffused) over the range of vortex ages studied

(ψ = 45◦ to 585◦). As an extension to the current work, it would be

interesting to see how the short-wave instabilities that were found to
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reside within the tip vortex, in combination with the long-wave instabil-

ities, would completely diffuse the vortex. In order to do this, it would

be essential to acquire measurements at higher vortex ages (ψ > 585◦)

using a higher resolution camera (so as to provide sufficient measurement

resolution for resolving the structural characteristics of the tip vortex,

while also providing provisions for the vortex wander).

4. The rotor blade in the current study was manufactured with a square

tip. It would be worth investigating how by changing the shape of the

blade tip would influence the low-dimensional characteristics of the tip

vortex, as the blade tip plays a very important role in the performance

of helicopters.

5. As an extension to the current study, it would also be interesting to

study the low-dimensional characteristics of the tip vortex (using POD)

in ground effect as it might find a very useful application in the helicopter

brownout. Once again, the evolutionary characteristics of the short-

wave instabilities (and any organized turbulence), in combination with

the long-wave instabilities, can be studied to see how they completely

diffuse the tip vortex in ground effect. Subsequently, comparisons with

the observations in the absence of ground effect can also be made.
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