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retinal nerve fiber layer: Implications for glaucoma diagnosis 
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Glaucoma is the second leading cause of blindness worldwide after cataract. Retinal 

nerve fiber layer thickness (RNFLT), phase retardation, and birefringence measured by 

Polarization Sensitive Optical Coherence Tomography (PS-OCT) have been used for 

glaucoma diagnosis. We first investigated two different image registration algorithms, a 

mutual information (MI) based algorithm and a log-polar transform cross-correlation 

(LPCC) based algorithm, on both human and non-human primate models. We evaluated 

the effects of image registration on longitudinal analysis of RNFLT in non-human 

primates using PS-OCT. Then, we investigated thickness, phase retardation, 

birefringence, and reflectance of the retinal nerve fiber layer as measured by PS-OCT in 

normal and glaucomatous non-human primates in a longitudinal study. We defined a new 

Reflectance Index (RI) and demonstrated that it might be an earlier indicator of glaucoma 

onset than RNFLT, phase retardation, or birefringence. Finally, we validated this finding 

on cross-sectional clinical study on human eyes measured by PS-OCT and RTVue OCT. 

For the data measured by PS-OCT, we showed that for distinguishing between 

glaucomatous and healthy eyes, as well as for distinguishing between glaucoma suspect 

and healthy eyes, our new normalized RNFL reflectance index (NRRI) performs 

significantly better than phase retardation and birefringence. The performances of NRRI 

and RNFL thickness in both conditions were statistically indistinguishable in this study, 
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which is likely due to the limited sample size. For the data measured by RTVue OCT, the 

performances of NRRI and RNFL thickness were statistically indistinguishable for 

distinguishing between glaucomatous and healthy eyes. NRRI performs significantly 

better than RNFL thickness for distinguishing between glaucoma suspect and healthy 

eyes. NRRI also performs significantly better than temporal, superior, nasal, inferior and 

temporal (TSNIT) average and nerve fiber indicator (NFI) from GDx VCC for 

distinguishing between glaucoma suspect and healthy eyes. NRRI is a promising 

parameter for distinguishing glaucoma suspect and healthy eyes and may indicate disease 

in the pre-perimetric stage. 
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Chapter 1: Introduction 

1.1 BACKGROUND 

Glaucoma is the second leading cause of blindness worldwide after cataract [1,2]. It is a 

progressive disease characterized by loss of retinal ganglion cells (RGCs) and their axons 

in the retinal nerve fiber layer (RNFL) with or without associated visual field loss. There 

are multiple approaches to glaucoma diagnosis, including measurement of intraocular 

pressure (IOP) and visual field testing. Optic nerve imaging devices such as GDx VCC 

(Carl Zeiss Meditec, Inc), Heidelberg Retinal Tomography (HRT, Heidelberg 

Engineering, GmbH, Dossenheim, Germany), and Optical Coherence Tomography 

(OCT) (Cirrus HD-OCT, Carl Zeiss Meditec, Inc, etc.) are also widely used to assist in 

glaucoma diagnosis. However, an estimated 50% of glaucoma cases in the USA are 

undiagnosed [3]. Furthermore, it is estimated that up to 50% of axons can be lost before 

any visual field defect is apparent [4]. Since visual field loss cannot be restored, earlier 

diagnosis and therapy may preserve visual function and reduce blindness caused by 

glaucoma.  
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Figure 1. OCT B-scan image of in vivo primate retina demonstrating morphological 
features provided by OCT. (A: anterior; P: posterior; N: nasal; T: temporal; 
ONH: optic nerve head; RNFL: retinal nerve fiber layer; IPL: inner 
plexiform layer; INL: inner nuclear layer; OP: outer plexiform layer; 
ONL/PR: outer nuclear layer and photoreceptors; PE: pigment epithelium; 
CH: choroid). Image is 1mm deep by 4mm wide.  

1.2 SIGNIFICANCE 

  The definition of glaucoma by American Optometric Association is “a group of ocular 

diseases with various causes that ultimately are associated with a progressive optic 

neuropathy leading to loss of vision function” [5]. Glaucoma can lead to partial or total 

blindness if it is diagnosed too late. Visual field loss in glaucoma usually starts from the 

periphery and gradually progresses to the central visual field. However, most glaucoma 

patients are unaware of the visual field loss since the process is gradual and painless. 

Therefore, in order to detect and manage patients at risk for developing glaucoma, 

prevent damage to the optic nerve, and preserve patients’ quality of life, the American 

Academy of Ophthalmology gave the definition of primary open-angle glaucoma suspect 
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as “an individual with clinical findings and/or a constellation of risk factors that indicate 

an increased likelihood of developing POAG”[6].  

Several techniques including tonometry, visual field testing, optic nerve evaluation, and 

optic nerve imaging have been developed in order to diagnose glaucoma before vision 

loss is noticed subjectively by the patient [5]. 

1.2.1 Current traditional approaches for glaucoma diagnosis 

(a) Tonometry 

Tonometry is a procedure to determine the intraocular pressure (IOP). High eye pressure 

used to be considered a hallmark of glaucoma. However, it is now recognized that IOP 

varies based on several factors including age, gender, blood pressure, diabetes mellitus, 

and exercise. Moreover, 30% of patients diagnosed with glaucoma have statistically 

normal IOP. Thus, tonometry alone is not sufficiently reliable for glaucoma diagnosis [7]. 

 (b) Visual field testing  

Visual field testing has been used for glaucoma diagnosis for several decades. Visual 

field loss is the gold standard for defining the presence of glaucoma. Visual field testing 

results are plotted as a visual field map. A visual field map can be used to evaluate the 

function of the optic nerve and can provide clinical assessment of visual function. In 

order to provide a reliable visual field map, the patient has to be able to understand the 

testing instructions, be fully cooperative, and complete the entire test. However, since 

visual field testing takes a long time to finish, about 30 minutes for both eyes, some 

patients have difficulty completing it [5]. 
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(c) Optic nerve evaluation  

Visual inspection of the optic nerve head is another method of detecting glaucoma. The 

optic nerve head can be viewed using a slitlamp biomicroscope and a handheld lens. 

Fundus photography is also used to document the morphology of the optic nerve head. 

The cup to disc ratio is usually used to describe the topographic appearance of the optic 

nerve. Larger cup to disc ratios indicate greater risk for glaucoma. However, there is a 

large range of normal cup to disc ratio values. Moreover, there is large inter- and intra-

observer variability in cup to disc ratio assessment. Thus, optic nerve evaluation alone is 

not sufficiently reliable for glaucoma diagnosis [5,7]. 

1.2.2 Optic nerve imaging devices for glaucoma diagnosis 

None of the traditional methods reviewed in 1.2.1 can provide quantitative measures of 

the morphological or structural changes in the retina caused by glaucoma. Therefore, 

these methods are of limited value for early detection of glaucoma and monitoring of 

glaucoma progression. In contrast, new instruments for optic nerve imaging provide more 

detailed information for glaucoma diagnosis. Two of the most widely used, commercially 

available instruments are the GDx nerve fiber analyzer (GDx VCC, Carl-Zeiss Meditec, 

Dublin, CA) and Optical Coherence Tomography (OCT such as Cirrus HD-OCT, Carl 

Zeiss Meditec, Inc, etc. ).    

(a) GDx Nerve fiber analyzer (GDx)  

The GDx Nerve fiber analyzer is based on the concept of Scanning Laser Polarimetry 

(SLP). Since neurotubules within the retinal ganglion cell axons exhibit birefringent 

properties, GDx measures the change in polarization of the scanning beam of a polarized 

diode laser light with wavelength 780nm. GDx provides a quantitative analysis of the 



 5 

peripapillary RNFL phase retardation (δ). Recent studies using GDx report sensitivity 

ranging in 92.3% - 96% and specificity values from 93% - 96% for diagnosing glaucoma 

[8,9,10].  

(b) Optical Coherence Tomography (OCT)  

Optical Coherence Tomography is a noninvasive imaging method that provides 

high-resolution morphological imaging data of the eye. An example of a high resolution 

OCT B-scan of primate retina is shown in Figure 1. The depth resolution of OCT makes 

it a very useful tool to quantify changes in RNFL thickness (Δz) associated with 

glaucoma. A recent study reports sensitivity of 85% and specificity of 94% for the Cirrus 

OCT instrument (Cirrus HD-OCT, Carl Zeiss Meditec, Inc, etc.) [11]. However, such 

standard OCT instruments do not give information on the phase retardation and 

birefringence of the RNFL. 

Recently, Polarization Sensitive Optical Coherence Tomography (PS-OCT) has 

emerged as a promising new technique for glaucoma diagnosis. PS-OCT provides depth 

resolved morphological information along with sub-cellular information namely the 

birefringence [12]. In this dissertation, the RNFL thickness, phase retardation, 

birefringence and reflectance will be measured by Polarization-Sensitive Optical 

Coherence Tomography (PS-OCT). We would like to compare the performance of RNFL 

thickness, phase retardation, birefringence and reflectance on early diagnosis of 

glaucoma. 

1.3 ORGANIZATION OF DISSERTATION 

In Chapter 2, we introduce the instrumentation and describe the experimental 

procedures used for data collection. In Chapter 3, we investigate two registration 
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algorithms, a mutual information (MI) based algorithm and a log-polar transform cross-

correlation (LPCC) based algorithm, for registration of OCT images. We also show effect 

of registration on longitudinal analysis of Retinal Nerve Fiber Layer Thickness in non-

human primates using Optical Coherence Tomography. In Chapter 4, we show 

comparison of thickness, phase retardation, birefringence, and reflectance of the retinal 

nerve fiber layer in normal and glaucomatous non-human primates. In Chapter 5, we 

validate the findings of using Reflectance Index as the earliest indicator of glaucoma on 

clinical study on healthy human subjects, glaucoma patients and glaucoma suspect. We 

conclude our work and discuss the future research directions in Chapter 6. 
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Chapter 2: Instrumentation and Experimental Design 

This dissertation describes the computational analysis of data from two 

experimental studies. The first study is a longitudinal glaucoma study on non-human 

primates. The second study is a clinical cross-sectional glaucoma study on human 

subjects. 

2.1 LONGITUDINAL GLAUCOMA STUDY ON NON-HUMAN PRIMATES 

2.1.1 Experimental procedures  

Polarization sensitive OCT (PS-OCT) measurements were acquired in three 

macaque primates: two cynomolgus (macaca fascicularis), and one rhesus macaque 

(macaca mulatta). Using an established protocol [13,14,15], one eye of each primate was 

treated with an argon laser (488 nm and 514 nm) targeting the trabecular meshwork to 

induce an intraocular pressure (IOP) increase; the fellow eye was left untreated and 

served as a control. The three primates were followed for a period of 30 weeks during 

which weekly or biweekly PS-OCT imaging of the retina was performed to assess RNFL 

changes associated with elevated IOP. All studies reported were done under the direction 

of The University of Texas Institutional Animal Care and Use Committee and followed 

an approved protocol (#08013001), ensuring conformance with the ARVO Statement for 

the Use of Animals in Ophthalmic and Vision Research. 

2.1.2 Glaucoma induction 

To induce a sustained intraocular pressure (IOP) increase and induce glaucoma, 

we followed an animal model first described in 1974 [13] and used in many subsequent 

animal model glaucoma studies[14],[16],[17]. Photocoagulation is an accepted treatment 

option for open-angle glaucoma to lower the IOP. A similar procedure is followed for 
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glaucoma induction, except that a higher laser power is delivered and a more complete 

circumference of the eye is photocoagulated with the laser radiation causing trabecular 

meshwork scarring and reduced fluid outflow capacity resulting in a sustained IOP 

increase.  

For trabeculoplasty, the primates were anesthetized using aqueous Telezol 

(4mg/kg) IM and a Ketamine (10mg/kg) booster as needed. Topical anesthetic 

(proparacaine hydrochloride) was applied prior to trabeculoplasty. A pediatric goniolens 

was inserted between the lids with a canthotomy being necessary in two of the eyes. The 

primates were placed in a prone position with the head facing forward and strapped 

against the headrest of a slit lamp (Coherent 930 argon laser with Zeiss slit lamp). A 

series of 200, argon laser pulses (50µm, 1W, 0.5s) were delivered to the complete 

trabecular meshwork. Post-op, 0.2 mg celestone was administered sub-conjunctivally to 

control inflammation. For this study, trabeculoplasty was done in one eye (OD) in each of 

the three primates and the other eye (OS) was left untreated as a control. A sustained IOP 

increase was induced in all of the treated eyes. Primate 1 required two treatments and 

primate 3 required four repeated treatments (Figure 18) to induce a sustained IOP 

increase. 

2.1.3 PS-OCT System Description 

The PS-OCT system was similar to that described earlier [18], except that free-

space optical components were utilized rather than optical fiber (see system diagram in 

Figure 2).  
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Figure 2. PS-OCT system diagram. BS is beamsplitter, PBS is polarizing beamsplitter. 

 

Briefly, the PS-OCT system uses a 1 μm center wavelength swept laser source 

(Santec, HSL 1000) with an axial resolution of 12 μm and lateral resolution of 25 μm. 

Average incident power on the primate cornea was 1.13 mW. The PS-OCT system was a 

custom-built tabletop research instrument constructed for the purpose of this study. 

Polarization sensitivity was provided by positioning an electro-optic phase modulator 

(New Focus, Santa Clara, CA) in the interferometer source path to control the 

polarization state of light input into the interferometer. Polarization diverse detection was 

achieved with a polarizing beam splitter and separate detectors for the two orthogonal 

polarization channels. The phase modulator provided three sequential input polarization 

states incident on the primate’s eye separated by 120 degrees on the Poincare sphere [19]. 
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2.1.4 Imaging Procedures 

 

 

Figure 3. Schematic showing clustered imaging regions overlaid on a fundus image with 
marked quadrants. Sampling within a cluster is shown at the upper right. 
The clustered pattern collects 200 A-Scans over a small region; these A-
scans are averaged to reduce noise in estimates of the polarization 
parameters. 

Two scan patterns were utilized to record images of the primate RNFL. RI and 

RNFL thickness parameters determined from continuous ring scan measurements are 

continuously sampled throughout the measured region while the clustered scan 

measurements are sampled in small regions around a central location. Continuous ring 

scan images were recorded to provide a fundus image and blood vessel map in order to 

register images acquired on different dates. Continuous ring scan images consisted of 100 

B-scans each comprised of 360 A-scans at a fixed radial distance from the ONH. 

Successive A-scans were separated by 1 degree and successive B-Scans were spaced 

radially by 15 µm. Clustered ring scan images were recorded to provide the polarimetric 
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data required to deduce RNFL birefringence and phase retardation. Clustered ring scans 

consisted of 8 circumferential retinal B-scans at a fixed radial distance from the ONH 

(see Figure 3 above). Each of these B-scans contained 18 evenly spaced clusters each 

consisting of 200 A-scans recorded over a sine wave pattern with 10 µm A-scan spacing. 

Prior to each imaging session, an IOP measurement was performed with a Tono-Pen 

VETTM (Reichert, Depew, NY). 

2.1.5 ONH Placement 

The imaging procedure required mechanically stabilizing the primate’s head and 

eyes.  Just before recording images, each primate was positioned supine for alignment 

with the PS-OCT scanning optics. The primate’s head was mounted in a cushioned cradle 

and maintained in a stable position using a custom rubber mask that was fitted around the 

nose and mouth to allow interface with anesthesia apparatus. The mask was attached to 

the cradle to securely hold the head. The entire fixture, including the primate’s head, 

could be translated laterally over a distance of approximately 25 mm to allow positioning 

of the pupil in line with the PS-OCT scanning optics. Orthogonal goniometers permitted 

rotation of the primate’s head and allowed for the ONH head to be centered in the scan 

range of the PS-OCT imaging beam. Temporary sutures were inserted at the limbus on 

the nasal and temporal sides of the eye to prevent eye motion. These sutures were gently 

placed under tension and affixed to the stationary facemask. The pupils were dilated prior 

to imaging using 1% tropicamide to maximize light throughput to the retina. A drop of 

10% methylcellulose was placed on the cornea and a custom spherical PMMA 8.4 mm 

diameter contact lens was placed on the eye to neutralize refractive error in each primate 

eye. The lens curvature was 6.2 mm with powers ranging from +3 to -5 diopters. 

During the initial alignment process, the PS-OCT imaging system was continually 

cycling a rectangular raster scan pattern and updating a fundus image for visualization, 
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alignment, and centering of the optic nerve head. This fundus image, similar to that 

provided by a standard ophthalmoscope, was displayed in real time by summing pixels 

along the axial direction. 

These data from the non-human primate model are used in Chapter 3 for 

investigating the LPCC and MI registration algorithms and evaluating the effects of 

registration on longitudinal estimation of RNFLT. These data are also used in Chapter 4 

for investigating candidate markers for early glaucoma diagnosis in longitudinal 

glaucoma study on non-human primates model. 

2.2 CLINICAL GLAUCOMA STUDY ON HUMAN  

2.2.1 Subjects and Study protocol 

Two study groups are presented. The first group consists of 34 eyes including 13 

healthy, 9 glaucomatous, and 12 glaucoma suspect eyes from 33 human subjects enrolled 

at the Eye Institute of Austin (EIA). The second group consisted of 41 eyes including 20 

healthy, 15 glaucomatous, and 6 glaucoma suspect eyes from 38 human subjects enrolled 

in the study at the Duke Eye Center (DEC). Both eyes of each participant were assessed 

in this study. For each subject with the same diagnosis for both of his/her eyes (e.g., both 

glaucomatous), we selected one of his/her eyes for each analysis; the selected eye was the 

one for which the best quality images were obtained for the particular instrument under 

consideration in the analysis. For glaucoma patients with one glaucomatous eye and one 

glaucoma suspect eye, we include both eyes in the data analysis since our study is not 

concerned with direct comparison of glaucomatous and glaucoma suspect eyes. The age 

and gender distributions for each subject category are shown in Figure 4 and Figure 5.   

Eligibility for a human participant is based on medical and ocular history and a 

comprehensive eye examination (including standard disc photography and Humphrey-
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Zeiss 24-2 visual field test) by a glaucoma specialist. The inclusion criteria are age 

between 40 and 80; visual acuity score of 20/40 or better; spherical refraction within ± 5 

diopters; and cylinder refraction within ± 3 diopters. The exclusion criteria are 

discernable anomaly of the anterior chamber; uveitis; significant opacification of the 

cornea or crystalline lens; concurrent active eye disease in the study eye that may affect 

intraocular pressure or its measurement; eyes with secondary glaucoma or acute narrow 

angle glaucoma; eyes with pigmentary or pseudoexfoliation glaucoma; eyes with 

proliferative or severe nonproliferative diabetic retinopathy, retinal detachment, retinitis 

pigmentosa, or other significant retinopathy; eyes with field loss attributed to a non-

glaucoma condition, dilated pupil diameter less than 4mm, and visual fields < 20 degrees; 

patients on kidney dialysis and any physical or mental impairment affecting the patient’s 

ability to perform any study tests.  
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Figure 4. Age (years) and Gender distribution of healthy subjects, glaucoma patients, and 
glaucoma suspects from the study at the Eye institute of Austin (EIA). 
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Figure 5. Age (years) and Gender distribution of healthy subjects, glaucoma patients, and 
glaucoma suspects from the study at the Duke Eye Center (DEC). 

Healthy control eyes are defined as IOP<21 mmHg with no history of elevated 

IOP, normal visual fields [mean deviation and pattern standard deviation (PSD) within 

95% confidence limits and Glaucoma Hemifield Test (GHT) normal limits], and no optic 

disc abnormalities. Glaucomatous eyes are defined as history of elevated IOP, two 

consecutive abnormal visual fields (PSD outside the 95% confidence limits, abnormal 

GHT, or any abnormalities listed under visual fields, and abnormal optic disc. An effort 

was made to recruit early and moderate glaucoma defects on the Hodapp-Parrish-

Anderson grading scale. Glaucoma suspect eyes are those that meet the definition of 

Primary Open Angle Glaucoma Suspect by the American Academy of Ophthalmology's 

Preferred Practice Pattern[6]. There are two types of glaucoma suspect included in this 
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study. The first type is ocular hypertension. The subjects with ocular hypertension should 

have intraocular pressure higher than 21 mmHg but not more than 30 mmHg measured in 

at least 3 separate visits and have normal optic nerve head appearance. The second type is 

preperimetric glaucoma. Subjects with preperimetric glaucoma were defined as patients 

with an asymmetric cup-to-disc ratio and showed early glaucomatous optic disc 

abnormality, including thinning of neuroretinal rim and notching. All subjects belonging 

to the glaucoma suspect group had normal visual field results as defined in the healthy 

group. 

This study was approved by the Institutional Review Board at The University of 

Texas at Austin and at Duke University Medical Center (NCT #01222065). All methods 

adhered to the tenets of the Declaration of Helsinki for research involving human 

subjects. All participants of this study gave informed consent and could withdraw from 

the study without jeopardizing eye care. 

2.2.2 Instrumentation 

  We used two different spectral domain OCT systems and the GDx VCC system 

for retina imaging in this study. The first instrument is a Polarization-Sensitive Swept-

Source Spectral Domain Optical Coherence Tomography (OCT) system developed by 

our lab and described in one of our previous publications[12]. A clustered ring scan 

consists of 36 clusters of 100 A-lines per ring, corresponding to an angular separation of 

10 degrees (p/18 radians) and 10 concentric rings about the optic nerve head with 

equidistant between rings. The innermost diameter is 2 mm and outermost diameter is 5 

mm for the study conducted at the Eye Institute of Austin.  The innermost diameter is 

1.5 mm and outermost diameter is 5 mm for the study conducted at the Duke Eye Center. 

Because of the innermost diameter difference in the scanning pattern, we didn’t combine 
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the dataset aquired by PS-OCT from EIA and Duke for analysis. 100 A-lines per cluster 

were found to offer a good compromise between polarimetric signal-to-noise ratio 

(PSNR) and acquisition time[20]. To ensure speckle fields are uncorrelated, A-line 

separation was set at 10 mm - 14 mm, equivalent to system speckle size. Averaging 

100AN =  uncorrelated A-lines increases PSNR by approximately 10AN = [20]. 

Spectral domain OCT examination was also performed with the RTVue FD-OCT 

(software version 4.0.5.39, Optovue, Inc., Fremont, CA). RTVue uses a scanning laser 

diode with a wavelength of 840 nm. The protocols used for imaging with RTVue in this 

study were ONH (optic nerve head). The scanning pattern was different from what we 

used in PS-OCT system. 13 ring scans around the ONH were taken by RTVue OCT. The 

innermost diameter is 1.3mm and outermost diameter is 4.9mm. RNFL phase retardation 

maps were also measured with a corneal-compensated scanning laser polarimeter (GDx-

VCC, Carl Zeiss Meditec, Inc., Dublin, CA). The GDx converts phase retardation into 

RNFL thickness assuming a constant RNFL birefringence. All patients were examined 

using these three instruments during the same visit. 

The data from the experimental study introduced in 2.1 are analyzed in Chapter 3 

and Chapter 4. The data from the study described in 2.2 are analyzed in Chapter 3 and 

Chapter 5. 
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Chapter 3: Image registration of retinal blood vessel images from OCT 

In this chapter, we investigate two image registration algorithms, a mutual 

information (MI) based algorithm and a log-polar transform cross-correlation (LPCC) 

based algorithm on blood vessel images from non-human primates eyes and human eyes. 

The data analyzed in this Chapter are from the experimental studies described in Chapter 

2. We submitted one journal paper about the study described in section 3.1 to 

Investigated Ophthalmology & Visual Science[21]. This paper is under revision now. We 

submitted one conference paper about the study described in section 3.2 to 34th Annual 

International Conference of the Engineering in Medicine and Biology Society [22]. 

3.1 EFFECT OF REGISTRATION ON LONGITUDINAL ANALYSIS OF RETINAL NERVE FIBER 
LAYER THICKNESS OF NON-HUMAN PRIMATES USING OPTICAL COHERENCE 
TOMOGRAPHY (OCT) 

3.1.1 Motivation 

Estimation of retinal nerve fiber layer thickness (RNFLT) is an important step in 

both glaucoma diagnosis and detection of glaucoma progression. Optical Coherence 

Tomography (OCT) can objectively and quantitatively measure RNFL thickness.  

Because RNFLT maps measured by OCT are highly correlated with visual field loss 

[23,24,25], OCT can be used to assist in glaucoma diagnosis and longitudinal detection of 

glaucoma progression.  

Studies suggest higher repeatability and reproducibility in measuring RNFLT of 

healthy and glaucomatous eyes with commercially available spectral-domain OCT 

compared to time-domain OCT instrumentation [26,27,28]. However, causes of 

measurement variability, for example, manual placement of the scan circle by the 

instrument operator and patient eye rotation during successive measurements, remain 

problematic. In monitoring glaucoma progression, small changes of RNFLT might be 
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missed and false changes of RNFLT might be detected because of misalignment of 

successive RNFLT maps. Therefore, accurate registration of maps recorded at different 

OCT imaging sessions is desired for assessment of glaucoma progression. Recently, 

methods including tracking systems and scan alignments based on the optic nerve head 

have been developed to improve image registration and RNFLT measurement 

reproducibility. Some of the latest versions of commercially available spectral domain 

OCT software also incorporate methods to enable serial analysis of RNFLT changes. For 

example, the Spectralis OCT (Heidelberg Engineering, Heidelberg, Germany) uses a 

system to track eye movements and enable “real-time” registration. The OCT software 

package RTVue FD-OCT (Optovue, Inc., Fremont, CA) uses post-processing methods 

based on baseline images to enable registration. Previous studies have shown that 

evaluation of RNFLT might be affected by variations in the position of the scan circle of 

measurements around the optic nerve that can compromise measurement reproducibility 

in eyes of healthy human subjects [29,30]. However, no study has reported on whether 

image registration can improve longitudinal RNFLT evaluation in healthy eyes and 

which RNFLT features may be more sensitive to misalignment of RNFLT maps recorded 

on different dates.  

In this longitudinal study, we investigated algorithms based on mutual 

information (MI) and log-polar transform cross-correlation (LPCC) for registration of 

retinal maps recorded using a spectral domain OCT instrument of healthy non-human 

primates based on retinal blood vessel locations. We chose to investigate MI and LPCC 

algorithms because they were demonstrated as two robust approaches for retinal image 

registration [31,32,33,34]. We evaluated change of 17 different RNFLT features 

calculated from the retinal maps (all rings average, TSNI quadrants average and 12 clock 

hour sectors average) with and without registration over a 30-week time period.  
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3.1.2 Methods 

(a) Datasets 

The left eye of each primate as described in chapter 2 was used in this study. Poor 

quality scans were rejected by the instrument operator. Two scanning patterns were used 

to generate retinal maps. For each primate eye, one raster scan was performed on a 3 × 3 

mm2 square area centered on the optic nerve head (ONH) and used to create a raster scan 

fundus image that was used as the baseline image for the respective primate eye. Each 

raster scan was comprised of 100 B-scans and each B-scan consisted of 256 A-scans.  A 

second scanning pattern was a continuous ring scan pattern that contained 100 equally 

spaced ring B-scans centered on the ONH with ring diameters ranging from 1.5 mm to 

3.0 mm. Each B-scan contained 100 A-scans. Data recorded from continuous ring scans 

were used to create an RNFL thickness map of each eye. Fundus images of continuous 

ring scans were also created for registration purposes as target images (Figure 6). 
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Figure 6. Images in the top row are derived from a raster scan fundus image (top, left) 
and manually segmented blood vessels (top, right). One raster scan fundus 
image is selected for each primate eye and the central area is used as the 
reference image for registration of RNFLT maps. Images in the bottom row 
are derived from a continuous ring scan fundus image (bottom, left) and 
manually segmented blood vessels (bottom, right). The continuous ring scan 
fundus image for each session is used as a reference image to register RNFL 
thickness maps.  

(b) Retinal nerve fiber layer thickness (RNFLT) map and feature calculation 

A LABVIEW software program (National Instruments, Austin, Texas) was 

implemented for the OCT system to automatically detect RNFL boundaries in each B-

scan of continuous ring scans [12,35]. After RNFL boundary detection, an expert on OCT 
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retinal image evaluation visually inspected the boundaries overlayed on each B-scan to 

correct any misidentified boundaries. RNFLT values were then imported into MATLAB 

(The Mathworks, Natick, MA) for RNFL feature calculation. The most widely used 

feature parameters were computed including the all-rings average thickness, temporal, 

superior, nasal, and inferior (TSNI) quadrants average thicknesses, and each of the 12-

clock hour RNFLT averages according to the OD clock-wise hours (Figure 7). Feature 

values are calculated on RNFLT maps before and after registration. 

 

Figure 7. Feature parameter calculation of RNFLT map of a primate left eye (OS). Left is 
all-rings average of all 100 rings in RNFLT map. Middle shows the 
temporal (T), superior (S), inferior (I) and nasal (N) quadrants in RNFLT 
map. Right shows the 12 clock-hour sectors in the RNFLT map. 

(c) Registration and evaluation method 

One fundus image created from the raster scan is used as a reference image for 

each primate eye. All fundus images of continuous ring scans are target images and 

registered against this baseline image to ensure alignment of all RNFL thickness maps 

obtained with the continuous ring scan method. We applied two registration algorithms, a 

method based on mutual information (MI) and a log-polar transform based cross-

correlation (LPCC) algorithm. The process of applying MI and LPCC algorithms and 

evaluation of precision and recall are shown in a flowchart (Figure 8). The original 

reference and target intensity images are used for the MI algorithm to determine the best 
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transformation factors to align the reference and target image pair. The manually 

segmented blood vessel images from reference and target images (Figure 6) are used for 

the LPCC algorithm to find the best transformation factors to align the reference and 

target image pair. Precision and recall between manually segmented blood vessels of 

reference and target image pairs are used to evaluate the alignment between image pairs 

before and after registration. Details of the algorithms and evaluation process are 

described in the following sections. 

 

Figure 8. Flowchart diagramming application of MI and LPCC algorithms. Reference and 
target intensity images are used for the MI algorithm to find the 
transformation factors (translation, rotation, scaling) to register the image 
pair. The manually segmented blood vessel images of the reference and 
target images are used for the LPCC algorithm to find the transformation 
factors (translation, rotation, scaling) to register the image pair. The 
precisions and recalls between manually segmented blood vessels in 
reference and target image pairs before registration (bottom left), after MI 
registration (upper right), and after LPCC registration (lower right) are 
calculated. The LPCC transformation factors are used to register RNFLT 
maps. 

 
 
 
 
 
 



 24 

Mutual information (MI) algorithm 

We first use a mutual information (MI) algorithm to register RNFLT maps 

recorded on different days to the reference image [31,32,33]. The MI algorithm is 

performed on reference-target image pairs and does not require segmentation of the blood 

vessels. The MI registration algorithm holds the reference image fixed while the target 

image undergoes transformations until images are registered. Linear transformation 

factors included x- and y-translation, rotation and scaling. The mutual information 

between a reference (A) target (B) image pair is defined as: 
 MI A,B( )=H A( )+H B( )−H A,B( )  ( 1 ) 

Where H (A)  and H (B)  are the Shannon entropies of the reference (A) and 

target (B) images, respectively, defined as 

H X( )=− p(xi )log p(xi )
i=1

N

∑   ( 2 ) 

Where p(xi )  is the probability of occurrence of the intensity value xi  in the 

image. Similarly, H (A,B)  is the joint Shannon entropy of images A and B, defined as 
 H A,B( )  =− p(i, j)log p(i, j)

i, j
∑  ( 3 ) 

Where p(i, j)  is the joint probability of the image intensity pairs in the joint 

histogram of images A and B. Two images are considered registered whenMI(A,B)  has 

a maximum value with respect to the linear transformation factors. 

We perform the MI registration in two major steps: a coarse registration step 

followed by a fine registration step. For coarse registration, we translate the target image 

from -25 to 25 pixels (approximately 0.15 mm) in both x and y directions with an interval 

of 5 pixels (approximately 0.03 mm), and rotate the image -10 to 10 degrees in 2 degree 

intervals until maximum mutual information between the reference and target images is 
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obtained. To reduce time for coarse registration, larger search intervals are used 

compared to those used subsequently in fine registration. Performing three 

transformations simultaneously helps to prevent the algorithm from stalling in a local 

maximum, which is more common if each type of transformation were to be performed 

separately. The coarse transformation parameters that provide the maximum mutual 

information (MI) are found and performed on the target image before fine registration. 

In fine registration, all transformation parameters, translation, rotation and scaling 

are performed separately with smaller search intervals to maximize mutual information. 

We first do a scaling search for a scale factor between 0.85 to 1.15 with an interval of 

0.01, then vary x-translation factor from -20 pixels to 20 pixels (approximately 0.12 mm) 

with an interval of 1 pixel (approximately 0.006 mm), then y-translation factor from -20 

pixels to 20 pixels with an interval of 1 pixel, then rotation factor from -20 to 20 degrees 

with an interval of 0.1 degrees, and finally scaling again with search radius between 0.85 

to 1.15 with an interval of 0.01.  

 

Log-polar transform based cross-correlation (LPCC) algorithm 

RNFLT maps recorded on different days are also registered to the reference image 

using a log-polar transform based cross-correlation (LPCC) algorithm [34]. We first 

manually segment the blood vessels in the original intensity reference and target images. 

Blood vessel images are mapped into log-polar coordinates so that rotation and scaling in 

the original image correspond to translation in log-polar images. Log-polar transformed 

images are then cross-correlated to determine the scaling and rotation factors. Because 

spatial-domain calculations, unlike frequency-domain computations, are not translation 

invariant, the log-polar transform and subsequent cross-correlation is completed for all 

possible choices of origin within a limited search area in the reference image. When the 



 26 

maximum cross-correlation is found, the choice of origin corresponds to translation and 

shifts in log-polar space correspond to scaling and rotation. To speed-up the LPCC 

algorithm, search for the maximum is completed at two resolution levels, using the 

parameters from the courser level as an estimate of the parameters for the finer level.   

Because the OCT instrument operator approximately centered the scan ring over 

the optic nerve head before recording data, images are roughly aligned, and registration is 

achieved within a limited range of translation factors. Translation factors between image 

pairs are limited to 40 pixels (approximately 0.23 mm) to improve registration speed. For 

coarse registration, the images are subsampled to 1/4th the size, yielding 128 x 128 pixel 

images with 20 x 20 pixel (approximately 0.23 x 0.23 mm) search areas corresponding to 

x- and y-translation factors between -10 and 10 pixels (approximately 0.12 mm). Log-

polar transforms of the target images with all possible choices of origin in the search 

areas are then cross-correlated with the transform of the reference image. 

To reduce computation time, all cross-correlations are calculated using the fast 

Fourier transform (FFT). The cross-correlation is linear in the scaling direction but 

circular in the rotation direction. Therefore, the log-polar transforms of the images are 

zero-padded along the scaling axis but not the rotation axis. 

The optimal scaling, rotation, and translation parameters determined from these 

cross-correlations are then applied to the target image before fine registration.  For fine 

registration, the 512 x 512 pixel blood vessel images were used, and the translation 

factors were limited to -4 and 4 pixels (approximately 0.02 mm). The linear 

transformation was computed as in coarse registration using log-polar transforms and 

cross-correlations.  
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Manual segmentation of blood vessels 

Manual segmentation of blood vessel images was needed for two aspects of this 

study. First, blood vessel segmentation is a necessary pre-processing step for registration 

using the LPCC algorithm. Second, we used the manual segmented blood vessels for 

calculation of precision and recall of reference-target image pairs to evaluate 

performance of MI and LPCC algorithms. 

Segmentation of the blood vessels in both raster and continuous ring scan fundus 

images were completed manually. Using a tablet PC, the five widest blood vessels with 

branches in each fundus image were manually annotated.  

 

Evaluation of the registration results 

The MI and LPCC algorithms were evaluated in terms of precision and recall 

between manually segmented reference and target image pairs before and after 

registration. The overlapped scanning region of reference and target images is used for 

calculation of precision and recall. Precision and recall are defined as: 

precision = NTP

NTP + NFP

         (4) 

recall = NTP

NTP + NFN

            (5) 

Where NTP is the number of overlapping blood vessel pixels in reference and target 

images (true positives). NFP  is the number of blood vessel pixels in the target image but 

not in the reference image (false positives). NFN  is number of blood vessel pixels in the 

reference image but not target image (false negatives) (Figure 9). The algorithm with 

better performance is used for registration of RNFLT maps. 
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Figure 9. Definition of true positive (TP), false positive (FP), and false negative (FN) 
pixels for calculation of precision and recall. Red regions are the location of 
blood vessels in reference image while white regions are the location of 
blood vessels in target image. Blood vessel pixels that overlap in both 
reference and target images are marked as TP (light red). Blood vessel 
pixels in the target image but not in the reference image are marked as FP 
(white). Blood vessel pixels in the reference image but not the target image 
are marked as FN (dark red). 

  

(c) Statistical analysis 

Linear mixed-effects models were used for longitudinal evaluation of estimated 

RNFL parameters to capture both the similarity (fixed effect) and variations (random 

effects) among the three primates. Linear mixed-effects models also provide unbiased 

analysis of balanced and unbalanced repeated-measurement data, which is consistent with 

our experiment design. We used the R statistical programming language (v2.13.10 

07/08/2011; http://www.R-project.org/, R Development Core Team, 2011, R Foundation 
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for Statistical Computing, Vienna, Austria) and R studio (v0.94, 06/15/2011, RStudio, 

Inc.) for implementing the linear mixed-effects models.  

We first evaluated whether the precision and recall calculated for registered image 

pairs by MI and LPCC algorithms are improved significantly compared with no 

registration. We also use the precision and recall of image pairs registered by mutual 

information (MI) and log-polar based cross-correlation (LPCC) algorithms to compare 

the performance of these two algorithms. We used the following linear mixed effects 

model to evaluate the significance for the pairwise comparisons: 

 
Ti,t =Tavg +bi +γ × regi,t+εi,t                               (6) 

Where Ti,t  is precision or recall of the ith primate control eye on day t since the 

beginning of the study, Tavg  is the mean precision or recall across all the eyes. bi is a 

random effect representing the deviation from Tavg for the ith primate eye, normally 

distributed with zero-mean and standard deviation δb. regi,t  is a binary variable 

representing with( regi,t = 1) or without registration( regi,t = 0) for the ith primate control 

eye on day t when the model is used for comparison of precision and recall with and 

without registration. When the model is used for comparison of precision and recall of 

image pairs registered by MI and LPCC algorithm, regi,t  is a binary variable 

representing which algorithm is used for the ith primate control eye on day t ( regi,t = 0 for 

MI algorithm; regi,t = 1 for LPCC algorithm). γ  is the slope for regi,t . εit is a random 

effect representing the deviations in precision or recall on day t of the ith primate eye 
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from the mean precision or recall of the ith primate eye and normally distributed with 

zero-mean and standard deviation δε.  

We investigated whether registration will affect the evaluation of RNFL thickness 

over time in this longitudinal study for healthy eyes. The following linear mixed effects 

model was applied,  
RNFLTi,t =(α1+βi )+α2 × t+ξ i,t         (7) 

In the mixed effects model, RNFLTi,t  is a feature value in RNFLT maps of the 

eye of the ith primate on day t since the beginning of the study. The intercept α1  and the 

mean slope α2  for number of days t are fixed effects. The random effect is the change 

from the baseline intercept for ith primate, βi , which is normally distributed with zero-

mean and standard deviation δ. ξ i,t  is the random error component for the ith eye on day 

t and assumed to be normally distributed with a mean of zero and standard deviation δe. 

3.1.3 Results 

(a) Comparison of MI and LPCC algorithms 

Precision and recall were used to evaluate quality of registration results after 

application of MI and LPCC algorithms. Precision and recall between reference-target 

blood vessel image pairs of each primate eye were calculated before registration. 

Precision and recall between reference and target images of each primate eye were 

calculated after registration using the mutual information (MI) based and log-polar based 

cross-correlation (LPCC) algorithms (Figure 10). Precision and recall following 

registration by either the MI or LPCC algorithm were significantly better than that before 
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registration (p<<0.001). Thus, either the MI or LPCC registration algorithm could 

significantly improve alignment of reference and target images. Precision of the LPCC 

algorithm was significantly higher than that of the MI algorithm (p<<0.001). Recall of 

the MI based algorithm and recall of the LPCC based algorithm were not significantly 

different (p>0.05). Inasmuch as the results suggest the LPCC algorithm performs slightly 

better than the MI algorithm on the recorded primate images, we used the LPCC 

algorithm to register maps for analysis of RNFLT versus time. 

                               

 

Figure 10. Precision (left) and recall (right) before (black) and after registration by MI 
(blue) and LPCC (red) algorithms. Precision and recall following 
registration by both MI (blue) and LPCC (red) algorithms are significantly 
better than values before (black) registration (p<<0.001). Precision of the 
LPCC (red) algorithm is significantly higher than that of the MI (blue) 
algorithm (p<<0.001). Recalls of LPCC and MI algorithms are not 
significantly different (p>0.05). 
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(b) Analysis of RNFL thickness over time with and without registration 

We used a linear mixed effects model (Equation 8) to evaluate whether changes in 

retinal nerve fiber layer thickness (RNFLT) features occurred during the study duration. 

Before registration, RNFLT features are calculated in each map at each date. After 

registering all target images to a corresponding reference image using the LPCC 

algorithm, we co-aligned all RNFLT maps and use the overlapped region of all RNFLT 

maps from different dates to calculate the RNFLT feature parameter values. We found 

that prior to registration, three RNFLT features (1, 2, and 10 clock hour sectors averages) 

showed significant change during the study (Figure 11). Before registration, one and two 

o’clock hour sectors average RNFLT showed a significant decrease (p<0.01). Before 

registration, ten o’clock hour sector average increased significantly during the study 

duration (p<0.05). Other RNFLT features showed no change over the study duration. 

However, after registration, all RNFLT features, all model slopes of RNFLT feature vs. 

time are not significantly different from zero, suggesting all thickness feature parameter 

values are constant over the time course of the study. Since for healthy eyes, we would 

not expect the RNFL thickness to change significantly during the six months study 

duration [36], we conclude that consistency of RNFLT feature parameters improves after 

registration.  

The results suggest that registration can remove artifacts introduced by 

misalignment of RNFLT maps especially in more detailed features like 12 o’clock hour 

sector average. Overall, the clock hour features of RNFLT are more sensitive to 

misregistration artifacts compared to the all-rings average and TSNI quadrants average. 
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Figure 11. Estimation of change of RNFLT of clock hour 1, 2 and 10 average over time. 
The left column is before registration, right column is after registration. The 
dashed lines are the fits of individual primates. The individual fits display 
very similar trends as compared to the linear mixed effects model fits. The 
clock hour 1 and 2 averages decreased significantly before registration 
(p<0.01) but stay constant after registration. The clock hour 10 average 
RNFLT increased significantly before registration (p<0.05) but is constant 
after registration. 

3.2 COMPARISON OF REGISTRATION ALGORITHMS ON HUMAN RETINAL BLOOD VESSEL 
IMAGES FROM OCT 

3.2.1 Motivation 

In order to compare RNFLT maps measured by OCT of a glaucoma patient across 

different imaging sessions, we need to co-register the maps to exclude the misalignments 

due to manual placement of the scan circle by the instrument operator and patient eye 

rotation in different imaging sessions. Moreover, registration is needed to find the same 

region of interest in RNFLT maps acquired by different scanning patterns since there are 

several patterns used in commercial instruments. Blood vessel images such as Line-

Scanning Laser Ophthalmoscope (LSLO) images and fundus images created from OCT B-

scans are usually used for registration of RNFLT maps. In section 3.1, we demonstrated 

the importance of  registration of retinal blood vessel images from non-human primates’ 

eyes [21]. In this section, we compared the performance of a mutual information (MI) 

based algorithm and a log-polar transform cross-correlation (LPCC) based algorithm on 

blood vessel images from human eyes.  
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3.2.2 Methods 

(a) Dataset 

The study included 9 healthy subjects, selected from the human clinical study described 

in Chapter 2. Two types of blood vessel image sets are acquired from each subject in this 

study.  

The first image sets are LSLO images from two different imaging sessions during the 

same visit of the same subject (Figure 12). The LSLO image covers approximately a 1.5 

by 1.5 cm square region on the retina. The two LSLO images from one subject formed a 

temporal image pair, which was then registered using the registration algorithms. 

      

Figure 12. LSLO images of the same eye from two different imaging sessions during the 
same visit. The LSLO image covers a 1.5 by 1.5 cm square region on the 
retina. 

     

!

 

Figure 13. Raster scan fundus image and continuous ring scan fundus image. 

     The second image sets are fundus images created from the B-scan images in two 

imaging sessions for the same subject by two different scanning patterns, the raster scan 

pattern and the continuous ring scan pattern (Figure 13). The raster scan is performed on 

a 6 by 6 mm square area and used to create a raster scan fundus image. There are 100 B-
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scans in each raster scan session, and there are 256 A-scans in each B-scan. The 

continuous ring scan pattern contains 100 equally spaced ring B-scans centered on ONH 

with the innermost ring diameter of 1.5 mm and outermost ring diameter of 5 mm. The 

fundus images from the two scanning patterns are registered using MI and LPCC 

algorithms. 

(b) Blood vessel and ONH detection 

The registration and evaluation methods are similar to the ones described in 3.1.2. One 

extra step is to do automatic blood vessel detection and ONH detection. In order to 

improve the performance of the LPCC based algorithm, we first detected the ONH and 

blood vessels in reference and target image pairs. In LSLO images, blood vessels are 

detected in a ring around the optic nerve head (ONH). In the raster scan fundus images, 

blood vessels are detected in the entire image excluding a circle around the ONH. In 

continuous ring scan fundus images, blood vessels are detected throughout the scanning 

ring. Therefore, in both the LSLO and raster scan images, the center of the ONH must 

first be automatically detected. Since the size and shape of the ONH is relatively constant 

across subjects and since the ONH appears darker than the background region in the 

images, a matched filter that utilizes these characteristics is used. The images are cross-

correlated with a circle approximately 1.4 mm in diameter (120 pixels in the 500 by 500 

pixel raster scan images and 70 pixels in the 500 by 500 pixel LSLO images). Because 

the ONH is typically located near the center of the image, the ONH is assumed to be 

within a circular region centered at the middle of the image and empirically optimized to 

have a radius of 125 pixels (1.45 mm) for raster scan images and 55 pixels (1.1 mm) for 

LSLO images. The location of the maximum of the cross-correlation within this search 

region is used to determine the ONH location. However, since the LSLO images are 



 37 

darker near the edges, the cross-correlation peak may correspond to a location closer to 

the edges instead of the actual ONH position. Therefore, if, for an LSLO image, the 

detected ONH location is on the circumference of the search circle, it is assumed that the 

ONH localization failed, and the center of the image is returned.  

The blood vessels are then detected. The images are first preprocessed to enhance 

contrast and reduce noise. Since, in images from OCT, blood vessels appear to be of 

lower intensity, an increase in contrast enables more blood vessel edges to be detected. 

The Wiener filter is applied to smooth images (in order to decrease false detections by the 

edge detector) while preserving edge information. Edges are detected in the processed 

images using a standard Canny edge detection algorithm. Edge-strength and object-size 

thresholding are subsequently used to remove extraneous edges from the binary images 

(Figure 14).  

   

Figure 14. LSLO image and binary edge image that is the result of preprocessing and 
Canny edge detection.  

Using the edge information, blood vessels are identified and filled in based on 

assumptions about the nature of most vessels. Since typical blood vessels are 

characterized by their length and narrow, unvarying width, the small and essentially 

unvarying distance between sets of adjacent, continuous edges is used to identify 
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candidate blood vessels. It is then ensured that candidate vessels are radially oriented 

with respect to the ONH and are of lower intensity than the locally surrounding 

background area. Regions with all these characteristics are considered blood vessels, and 

all pixels between the edges are filled. 

Some less common vessel patterns do not fit the assumption of two straight, 

continuous, parallel lines (Figure 15). Vessel bifurcations and vessels whose boundaries 

are connected by an extraneous edge are identified and filled after more typical vessels 

are handled. The resulting binary blood vessel segmentations are then registered (Figure 

16). 

 

Figure 15. Special cases of vessels: Edge connecting vessel boundaries and Bifurcation. 
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Figure 16. Blood vessel detection on an LSLO image (top), a raster scan image (middle), 
and a continuous ring scan image (bottom). 

3.2.3 Results 

(a) Registration results of LSLO images 

For LSLO images, the average precision and recall of the segmented image pairs before 

registration were both 0.32±0.07. The average precision and recall of the segmented image 

pairs after registration using MI algorithm were 0.59±0.02 and 0.78 ± 0.04, respectively. 

The average precision and recall of the segmented image pairs after registration using 

LPCC algorithm were 0.60 ± 0.02 and 0.87 ±0.02, respectively. The precision and recall 

were significantly better following MI and LPCC registration (p<0.001 for both precision 

and recall). The gain in recall after registration using LPCC algorithm was significantly 

larger than the one obtained by registration with the MI algorithm (p<0.05). The gains in 

precision after registration using both algorithms were not significantly different (p>0.05). 

The LPCC algorithm performed better than MI algorithm on registration of LSLO image 

pairs. 

(b) Registration results of raster scan and continuous ring scan fundus images 

For registrations between raster scan and continuous ring scan fundus images, the 

average precision and recall of the segmented image pairs before registration were 

0.16±0.05 and 0.19±0.06. The average precision and recall of the segmented image pairs 



 40 

after registration using MI algorithm were 0.41±0.04 and 0.63 ± 0.06, respectively. The 

average precision and recall of the segmented image pairs after registration using LPCC 

algorithm were 0.51 ± 0.04 and 0.79 ±0.07, respectively. MI and LPCC registration 

algorithms both significantly improved precision and recall calculated between the 

segmented image pairs (p<0.001). The gains in precision as well as recall of both 

algorithms were not significantly different (p>0.05). This was probably due to the small 

sample size; the power to find a significant difference between the precision gains was 

only 5% and similarly the power to find a significant difference between the recall gains 

was only 6%. Thus, a larger dataset would be needed to determine if there was more 

benefit to using one registration rather than another for this application. 

3.3 DISCUSSION 

In this Chapter, we first investigated benefits of image registration on estimation 

of longitudinal RNFL thickness (RNFLT) changes in non-human primate eyes using 

mutual information (MI) and Log-polar transform based cross-correlation (LPCC) 

algorithms. Precision and recall calculated between manually segmented blood vessel 

image pairs were used for comparison with that determined after applying LPCC and MI 

algorithms. Results indicate application of either MI or LPCC algorithms improves the 

alignment between target and reference images compared to no registration. The 

precision after registration by the LPCC algorithm is significantly higher than that after 

registration by the MI algorithm. Similar recall is obtained following registration by 

either MI or LPCC algorithms. The computation time of the LPCC algorithm was five-

times faster than that of the MI algorithm. However, this computation time does not 

include the pre-processing time required to segment the blood vessels before application 

of the LPCC algorithm. Both MI and LPCC algorithms showed good performance for 
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registration of fundus images of primate eyes and thus have potential for application to 

OCT image data recorded from human eyes.  

This study is the first to evaluate how registration can affect the analysis of 

RNFLT measurement in a longitudinal study on healthy eyes using a non-human primate 

model. We evaluated the registration effect on all reported RNFLT feature parameters, 

which includes all-rings average, TSNI quadrants average, and 12 clock hours average. 

The results suggest that RNFLT feature parameters evaluated in the 12-clock hours are 

affected by registration in a longitudinal study in healthy primate eyes. Registration can 

correct the artifacts introduced by misalignment of RNFLT maps recorded on different 

dates. Registration allows detection of changes of detailed features and prevents false 

detection of changes due to misalignment. Moreover, any analyses associated with the 

all-rings average and TSNI quadrants average are not affected by the registration. 

Misalignment of a series of RNFLT maps is a candidate reason that previous studies 

showed that the all-rings average is the most robust feature in reproducibility studies 

[26,37]. Results suggest the 1, 2, and 10 clock hour sectors are the most sensitive to 

registration errors in this study, possibly because these clock hour sectors are located in 

regions with a large RNFLT gradient. Intuitively, sectors that are in RNFLT gradient 

transition zones should be more sensitive to misregistration than sectors in smooth areas 

of RNFLT maps. Therefore, without registration, the variations of RNFLT features across 

different dates are due to misalignments among RNFLT maps plus the reproducibility 

error introduced by the instrument. With registration, the variations of RNFLT features 

across different dates are primarily due to the reproducibility error introduced by the 

instrument. 

The first study in this Chapter is performed on non-human primates. Due to the 

difference of eye fixation method during imaging acquisition, primate experiments 
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magnify rotation artifacts because of the suture positioning process that was done to bring 

the primate’s ONH into the center of the field of view. In a clinical setting where a 

patient can fixate on a target, human eyes may have smaller rotation variation from one 

imaging session to another. However, human eyes can still exhibit comparable translation 

factors to primate eyes because this effect is primarily due to the variability in the 

operator’s placement of the scanning ring around the ONH. We conclude from this study 

that registration has the potential to improve glaucoma detection in human eyes. 

Consequently, in the second study described in this Chapter, we compared the 

performance of LPCC and MI algorithms on human retina blood vessel images. 

Consistent with our prior research with non-human primates, this study demonstrates that 

both MI and LPCC based algorithms can successfully register LSLO image pairs for 

human eyes. The LPCC based algorithm performed significantly better than the MI based 

algorithm on registering LSLO images. These results on registering the same type of 

image pairs from human eyes are also consistent with those of our previous work on 

primates’ eyes, which validates our findings on primates’ eyes on human eyes. Both MI 

and LPCC algorithms also can successfully register the raster scan and continuous ring 

scan fundus image pairs. For registering raster scans and continuous ring scan fundus 

image pairs, the performance of MI and LPCC algorithms were not significantly different 

based on the small sample size we have. In order to achieve 80% power to find 

significant differences between precision gains of MI and LPCC algorithms, we would 

need to include at least 1500 samples. In order to achieve 80% power to find significant 

differences between recall gains of MI and LPCC algorithms, we would need to include 

at least 614 samples. Thus, whether one registration algorithm or another is more 

beneficial for this application cannot be determined until larger scale studies are 

performed. 
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Chapter 4: Thickness, phase retardation, birefringence, and reflectance 
of the retinal nerve fiber layer in normal and glaucomatous non-human 

primates 

In Chapter 4, we identify candidate markers for early glaucoma diagnosis. We 

measure time variation of retinal nerve fiber layer (RNFL) thickness, phase retardation, 

birefringence, and reflectance using polarization sensitive optical coherence tomography 

(PS-OCT) in three non-human primates with induced glaucoma in one eye. We 

investigated the time variation of RNFL thickness, phase retardation, birefringence, and 

reflectance with elevated intraocular pressure (IOP). This chapter presents computational 

analysis of data from the non-human primate study that is described in Chapter 2. We 

submitted one journal paper and its revision to Investigated Ophthalmology & Visual 

Science[38]. 

4.1 MOTIVATION 

Optical coherence tomography (OCT) is an imaging modality that provides high-

resolution (2-15 μm) cross-sectional images of the retina at video rate and can quantify 

macroscopic changes in the optic nerve head (ONH) and RNFL. Inasmuch as previous 

studies have demonstrated a link between decreased RNFL thickness measured with OCT 

and glaucoma[17], OCT measurements of RNFL thickness have become a routine 

component of glaucoma screening, diagnosis, and monitoring protocols. Polarization 

sensitive OCT (PS-OCT) adds an additional contrast mechanism to standard OCT 

imaging and allows recording depth-resolved polarimetric measurements from the RNFL 

including phase retardation and birefringence. Previous studies have demonstrated a link 

between retinal birefringence and RNFL microtubule density [39],[40] providing a 
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motivation to investigate the predictive value of RNFL birefringence and phase 

retardation as candidate markers for early glaucoma diagnosis.  

Increasing evidence has shown that mitochondrial dysfunction plays a key role in 

a number of neurodegenerative diseases including glaucoma [41,42,43]. In addition, 

Huang et al. observed cytoskeletal changes in response to elevated IOP that may precede 

RNFL thinning [44]. Because both mitochondria and the cytoskeleton contribute to light 

scattering, RNFL reflectance was measured in an attempt to monitor these features and 

related structural changes during glaucoma progression [45]. 

4.2 METHODS 

4.2.1 RNFL Thickness Measurements 

During post-processing of recorded PS-OCT data, the RNFL was automatically 

segmented in both continuous and clustered ring scan images as described previously 

[46]. A-scans in each cluster are averaged to reduce speckle noise, with the assumption 

that RNFL boundaries are changing slowly in each small cluster. A thresholding 

procedure was applied on these averaged A-scans to provide an initial guess of the 

vitreous-RNFL boundary location. The automatically detected RNFL boundaries were 

then manually inspected to ensure that the initial guess was correct. The region between 

the detected boundaries was segmented, taken as the RNFL, and used to calculate phase 

retardation (see Polarimetric Data Analaysis section below). For clustered ring scan data, 

RNFL boundaries were iteratively varied and the phase retardation re-calculated until 

uncertainty of the phase retardation was minimized. For clustered ring scan data, selected 

RNFL boundaries corresponded to minimum uncertainty of RNFL phase retardation. 
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4.2.2 Polarimetric Data Analysis 

Inasmuch as interferometric imaging techniques suffer from speckle noise, A-scan 

averaging is necessary to obtain reliable estimates of RNFL phase retardation and 

birefringence. To determine estimates of RNFL phase retardation and birefringence, 200 

A-scans in a clustered region are averaged to obtain an accurate estimate of phase 

retardation using a numerical algorithm described previously[19],[47] .The Stokes 

vectors for each of the three input polarization states are calculated from the two 

collected polarization channels. Computed Stokes vectors are segmented at the RNFL 

boundaries. In birefringent materials such as the RNFL the Stokes vectors of increasing 

depths trace arcs on the Poincare sphere where the subtended angle of the arcs is the 

double-pass phase retardation. A non-linear Levenberg-Marquardt algorithm estimates 

nine parameters by simultaneously fitting the three arcs on the Poincare sphere 

representing the polarization state of light reflected from the RNFL. The nine parameters 

returned by the Levenberg-Marquardt algorithm include the birefringence (1), optical 

axis orientation (2), and the three initial polarization states (6 = 3 × 2). This calculation, 

performed for each cluster (see Figure 3) allows construction of birefringence and phase 

retardation maps around the ONH. 

Each clustered map for each eye was registered rotationally and laterally using 

blood vessel maps acquired in continuous ring scan images immediately prior to 

recording clustered scans. Because the imaging areas on subsequent days did not 

precisely overlap, some clusters were excluded during the registration process. In 

addition, exclusion criteria were applied to screen clustered data for further processing. 

Exclusion criteria included: 1) RNFL thickness less than 15 μm; 2) relative uncertainty in 

RNFL birefringence (Δn/n) greater than 0.2; 3) absolute uncertainty of RNFL 
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birefringence greater than 30 deg/100 μm; or 4) RNFL not identifiable. Data sets with 

high birefringence uncertainty were typically clusters that contained large blood vessels. 

4.2.3 RNFL Reflectance 

To quantify RNFL reflectance, we define an RNFL reflectance index (RI) as the 

ratio of OCT intensities of the RNFL (IRNFL) to that of a thin layer about the retinal 

pigment epithelium (RPE) and containing small volumes of the photoreceptor outer 

segment and superficial choroid (IRPE). By referencing light reflected from the RNFL to a 

common structural layer in the retina (RPE), this RI definition normalizes variation due to 

system performance and corneal transmission. For example, because elevated IOP may 

be correlated with increased corneal cloudiness reducing light intensity incident on the 

retina our definition of RI mitigates the effect of corneal transmission variation. 

Variations in refractive power over the time course of the study (30 weeks) were 

minimized by optimizing the OCT image at the start of each imaging session by selecting 

a contact lens from a customized set to optimize focus of OCT light on the RNFL. 

 

Figure 17. Segmented layers to determine RI , RNFL (yellow) and RPE (blue, including 
small volumes of inner and outer segment and superficial choroid) in a 
retinal B-scan image.  

For each B-scan in continuous ring scan images, the RNFL was identified with an 

automatic boundary detection technique (similar to that applied to clustered ring scan 

data but lacking optimization using phase retardation) and the average RNFL brightness 

over the thickness (NRNFL) was determined (IRNFL). For IRPE, an anterior boundary at the 
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IOS was identified automatically in the B-scan images. Similarly, a posterior boundary 

was taken to be 10 pixels (~75 μm) below the anterior boundary. This segmented RPE 

region is larger than necessary to fully capture the brightest reflecting region that is not in 

the RNFL in the retina. Although segmenting the anterior boundary at the Bruch’s 

membrane is preferred, the limited axial resolution in this PS-OCT system and reliance 

on automated edge detection did not allow Bruch’s membrane to be consistently 

segmented. Instead, a fixed thickness for the RPE region was taken. Average brightness 

value between these two boundaries (Figure 17, blue) gave IRPE. We define RI for one A-

scan in one B-scan image (either continuous or clustered ring scan data) corresponding to 

one image collection session as: 
 

   RI = IRNFL
IRPE  

 (8)  
  

where for a continuous ring scan, 
 

   IRNFL =
I RNFLa

a
∑
NRNFLa

  (9)     

which is the average OCT signal intensity in the RNFL for the ath A-scan.  

For a clustered ring scan, 
 

   IRNFLc =
IRNFLa

a
∑ NRNFLa

⎛
⎝⎜
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⎠⎟ cc

∑
Nc  

(10)     

which is the average OCT signal intensity in the RNFL for all A-scans of the cth cluster 

with N A-scans per cluster. For both continuous and clustered ring scan data, 
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(11)     

which is the average OCT signal intensity in a layer about the RPE and including small 

volumes of the inner and outer segment (IOS) and superficial choroid averaged over all 

B-scans in one image collection, where Nb  is number of B-scans in each image 

collection, and NRPE  is number of pixels (10) in the layer about the RPE. For both 

continuous and clustered ring scans, we calculated RI  for A-scans in one retinal scan 

and then constructed an RI map for that scan. 

4.2.4 IOP Damage Integral 

Because the procedure for inducing glaucoma provides a variable IOP increase, the 

number of days after glaucoma induction is not a representative measure of RNFL 

damage in response to elevated IOP and may result in artifacts between primates. For this 

reason, the integral over time of the IOP pressure difference between treated and control 

eyes (treated less control) was used to calculate the IOP damage integral at day d, 
 

   IOP damage integral= IOPTR - IOPCT( )dt
0

d

∫  (12)     

where TR is treated eye (OD) and CT is control eye (OS) and IOP is measured in mmHg 

and time (t) is in days. Variation of RNFL thickness, phase retardation, birefringence, and 

RI were analyzed versus both IOP damage integral and days (d) after glaucoma induction. 

Mean IOP was calculated by dividing the IOP damage integral by the number of days. 
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Damage to the optic nerve is a function of both the IOP damage integral and the mean 

absolute elevation of IOP[48]. 

4.2.5 Statistical Analysis 

Linear and nonlinear mixed-effects models were applied to analyze RNFL thickness, 

phase retardation, birefringence, and RI data recorded in this study. Mixed-effect models 

allow for the variation between different subjects enrolled in the study. Application of 

linear and nonlinear mixed-effects models provides a number of advantages: 1) capture 

the similarities between as well as the variance among different primates enrolled in the 

study; and 2) effective for analysis of longitudinal, repeated-data measurements as 

recorded here. The R statistical programming language (v2.13.10 07/08/2011; 

http://www.R-project.org/, R Development Core Team, 2011, R Foundation for 

Statistical Computing, Vienna, Austria) and R studio (v0.94, 06/15/2011, RStudio, Inc.) 

was used to implement linear mixed-effects models. The non-linear mixed-effects model 

was implemented using MATLAB (The Mathworks, Natick, MA). 

 Continuous and clustered ring scan images of each primate retina recorded at 

different dates were registered against a baseline blood vessel raster scan image to ensure 

co-registration and alignment. We calculated averages for RNFL thickness, phase 

retardation, birefringence, and reflectance index (RI) for each primate eye corresponding 

to all rings, four inner rings, four outer rings, superior, inferior, nasal, and temporal 

quadrants. Each RNFL parameter for control and treated eyes was plotted against time 

(number of days, d) after administration of the first laser treatment for each primate. 

Linear mixed effects models were used to evaluate whether optical parameters changed 

over time: 
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   Pi,d = a1 + bi( )+ a2 ⋅d + Ei,d  (13)     

where Pi,d  is the value of parameter P (e.g., RNFL thickness, phase retardation, 

birefringence, or RI) of either the control or treated eye of the ith primate on day d. The 

baseline intercept a1 and the mean slope (a2) for number of days (d) after laser treatment 

are fixed effects. The random effect is the variability from the baseline intercept for the ith 

primate, bi , which is normally distributed with zero-mean and standard deviation δ. Ei,d 

is the random error component for the control eye or treated eye of the ith primate on day 

d and is assumed to be normally distributed with a zero-mean and standard deviation δE. 

For both equation 6 and equation 7 below, a fixed slope is assumed. In a sample set with 

few subjects such as this a linear mixed effects model cannot converge to a solution with 

multiple random parameters. The random slope model is preferred because it assumes a 

similar effect for all the subjects with a random starting point for each subject. In order to 

show the variability of slopes among different primates individual fits for each primate 

are also included. 

 The difference in each RNFL parameter (Pdifi,d) between the control and treated 

eyes on each day was plotted against the IOP damage integral. The data were fit with a 

linear mixed effects model( Equation below) to identify statistically significant trends: 

   Pdifi,d = γ 0 + βi( )+  γ 1 × IOP intdifi,d +ξi,d  (14)     

Where Pdifi,d is the difference of the P’th RNFL parameter (RNFL thickness, phase 

retardation, birefringence, and RI) between the control and treated eye for the ith primate 

on day d. IOPintdiffi,d is the IOP damage integral for the ith primate on day d. The fixed 
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effects are the intercept γ0 and the mean slope γ1  for the IOP damage integral. The 

random effect is the variability from the baseline intercept for the ith primate, βi , which 

is normally distributed with mean zero and standard deviation δi. ξi,d  is the random 

error component for the ith primate on day d and is assumed to be normally distributed 

with a mean of zero and standard deviation δ. 

 Based on qualitative observation of the data distribution and the fact that most 

damage processes can be fit with an exponential model [49], we also fit our data to a 

nonlinear mixed effects model such that 

   Pdifi,d= α0+ηi( )−α1 × e
−
IOP intdifi,d

τ +ε i,d  (15)     

where Pdifi,d is the difference of the P’th RNFL parameter between control and treated 

eyes for the ith primate on day d. IOPintdifi,d is the IOP damage integral for the ith primate 

on day d. Fixed effects include the intercept α0 , the coefficient α1  for the exponential 

of IOP damage integral, and lifetime τ . The random effect is the variability from the 

baseline intercept for the ith primate, ηi , which is normally distributed with zero-mean 

and standard deviation δi. ε i,d  is the random error component for the ith primate on day d 

and is assumed to be normally distributed with a mean of zero and standard deviation δe. 

We use the Akaike information criterion (AIC) and the Bayesian information criterion 

(BIC) to compare the goodness-of-fit of the non-linear and linear models. 

4.3 RESULTS 

4.3.1 Elevated IOP  

IOP and PS-OCT data were recorded from six eyes in three primates in this 

experiment, three control and three treated eyes. A moderate IOP increase was observed 
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in each of the treated eyes (Figure 18) during the course of this study with an average 

IOP elevation of 13 mmHg. The protocol employed here gave a more moderate IOP 

elevation compared to a similar study [17] directed to detect a decreased RNFL thickness. 

The IOP damage integral for primate 3 was initially negative because of iritis resulting 

from the initial trabeculoplasty. 

 

Figure 18. IOP vs. time in control (blue) and treated (red) eyes of each primate over 
course of the study. Peak ΔIOP values and mean ΔIOP values are included 
on the graphs for each primate. 

4.3.2 Temporal Variation of RNFL Parameters  

We measured four parameters from the clustered retinal scans: RNFL thickness, 

phase retardation, birefringence, and reflectance index (RI). Similar to the analysis 

performed on the clustered data, we measured two parameters, RNFL thickness and RI, 

from continuous ring scans. RNFL thickness and RI determined from clustered and 

continuous ring scans give similar but slightly different results. Retinal maps showing 

parameter values in both control and treated eyes are generated for beginning (day 27), 

middle (day 81), and end (day 174) time points (Figure 19 to Figure 24). In birefringence 

Peak ΔIOP = 19.6 
Mean ΔIOP = 7.1 

Peak ΔIOP = 38.0 
Mean ΔIOP = 16.5 

Peak ΔIOP = 24.3 
Mean ΔIOP = 14.8 
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maps, values are reported in units of phase retardation per unit depth (o/µm) and unitless 

birefringence. 

 

Figure 19. RNFL thickness maps for clustered retinal scans for primate 2. Top row is OD 
(treated eye) and bottom row is OS (control eye). Time points correspond to 
beginning (left column, day 27), middle (center column, day 81), and end 
(right column, day 174) of the study. Blood vessels indicated by black lines. 
Excluded clusters are marked black. 
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Figure 20. RNFL thickness maps for continuous ring scans for primate 2. Top row is OD 
(treated eye) and bottom row is OS (control eye). Time points correspond to 
beginning (left column, day 27), middle (center column, day 81), and end 
(right column, day 174) of the study. Blood vessels indicated by black lines. 
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Figure 21. RNFL phase retardation maps for clustered retinal scans for primate 2. Top 
row is OD (treated eye) and bottom row is OS (control eye). Time points 
correspond to beginning (left column, day 27), middle (center column, day 
81), and end (right column, day 174) of the study. Blood vessels indicated 
by black lines. Excluded clusters are marked black. 
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Figure 22. RNFL birefringence maps for clustered retinal scans for primate 2. Top row is 
OD (treated eye) and bottom row is OS (control eye). Time points 
correspond to beginning (left column, day 27), middle (center column, day 
81), and end (right column, day 174) of the study. The color scale is notated 
with units of both unitless birefringence and phase retardation unit depth 
(o/μm). Blood vessels are indicated by black lines. Excluded clusters are 
marked black. 
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Figure 23. RNFL reflectance index (RI) maps for clustered retinal scans for primate 2. 
Top row is OD (treated eye) and bottom row is OS (control eye). Time 
points correspond to beginning (left column, day 27), middle (center 
column, day 81), and end (right column, day 174) of the study. Blood 
vessels indicated by black lines. Excluded clusters are marked black. 
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Figure 24. RNFL reflectance index (RI) maps for continuous ring scans for primate 2. 
Top is OD (treated eye) and bottom is OS (control eye). Time points 
correspond to beginning (left, day 27), middle (center, day 81), and end 
(right, day 174) of the study. Blood vessels indicated by black lines. 

Each parameter (RNFL thickness, phase retardation, birefringence, and 

reflectance index (RI)) averaged over the entire ring scan is plotted against number of 

days from the first laser trabeculoplasty (Figure 25 to Figure 28). A linear mixed effects 

model (Eq. 13) is applied to fit each RNFL parameter as a function of time. In both 

clustered and continuous ring scan data, both the control and treated eyes showed a 

significant decrease in RI. When averaged over all rings, no significant changes in RNFL 

thickness, birefringence, or phase retardation was observed (Figure 25 to Figure 28). 
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Figure 25. Time variation of averaged (all rings) RNFL thickness of treated (left column) 
and control (right column) eyes for continuous (top row) and clustered 
(bottom row) ring scans (squares primate 1; circles primate 2, and triangles 
primate 3). Linear mixed effects model fits for individual primates (colored 
lines) and combined (all primates, black). Statistics for the combined data 
are shown in the supplemental material in Table 2 and the individual fits are 
included in Table 3 to Table 5. 
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Figure 26. Time variation of averaged (all rings) RNFL phase retardation of treated (left) 
and control (right) eyes for clustered retinal scans (squares primate 1; circles 
primate 2, and triangles primate 3). Linear mixed effects model fits for 
individual primates (colored lines) and combined (all primates, black). 
Statistics for the combined data are shown in the supplemental material in 
Table 2 and the individual fits are included in Table 3 to Table 5. 

 

Figure 27. Time variation of averaged (all rings) RNFL birefringence of treated (left) and 
control (right) eyes for clustered retinal scans (squares primate 1; circles 
primate 2, and triangles primate 3). Linear mixed effects model fits for 
individual primates (colored lines) and combined (all primates, black). 
Statistics for the combined data are shown in the supplemental material in 
Table 2 and the individual fits are included in Table 3 to Table 5. 
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Figure 28. Time variation of averaged (all rings) RNFL reflectance index (RI) of treated 
(left column) and control (right column) eyes for continuous (top row) and 
clustered (bottom row) ring scans (squares primate 1; circles primate 2, and 
triangles primate 3). Linear mixed effects model fits for individual primates 
(colored lines) and combined (all primates, black). The linear mixed model 
suggests RI decreased significantly over time for both treated (p<0.0001) 
and control eyes (p<0.05). Statistics for the combined data are shown in the 
supplemental material in Table 2 and the individual fits are included in 
Table 3 to Table 5. 

A linear mixed effects model was also used to analyze RNFL parameters in each 

segmented region (results available in supplemental material, Table 2 to Table 6). The 

linear mixed-effects model analysis of all three primates combined versus number of days 

shows a significant RI decrease in control and treated eyes for all averaged regions but no 

significant changes in RNFL thickness, birefringence or phase retardation. The linear 
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mixed-effects model analysis of individual primates versus number of days shows 

significant decrease in RI for the majority of averaged regions in the treated eye, RNFL 

thickness decreases in some regions, and isolated regions show decreases in phase 

retardation and birefringence. In the individual results for primate 1, there was also 

several groupings that showed a small but significant increase in the birefringence for the 

treated eye over the course of the study. In these regions of increased birefringence for 

this isolated primate there is also a significant increase in the birefringence uncertainty 

through the course of the study. 

4.3.3 RNFL parameters versus IOP damage integral 

To evaluate change of RNFL parameters with respect to IOP exposure, we fit the 

difference between control and the treated eyes of RNFL parameters as a function of IOP 

damage integral using a linear mixed effects model. Inasmuch as significant trends might 

emerge in isolated regions of the eyes, retinal maps were segmented and RNFL 

parameters in each segment was analyzed separately in addition to parameter averages 

over the entire retina. RNFL parameters were computed and averaged in segmented 

regions including the four inner rings, four outer rings, superior, inferior, nasal, and 

temporal quadrants and plotted both over time and IOP damage integral. Fits were 

performed in each segmented region for all three primates combined (Table 1) as well as 

individuals (see supplemental material, Table 6).  

Differences in RNFL thickness, phase retardation, birefringence, and reflectance 

index (RI) are plotted (Figure 29 to Figure 33) for all usable clusters with all primates 

combined. No significant trend is observed (p>0.05) in the difference of RNFL thickness, 

phase retardation and birefringence between control and treated eyes vs. IOP damage 

integral. For both clustered and continuous ring scan data, difference between RNFL 
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reflectance index (RI) of control and treated eyes increases significantly when IOP 

damage integral increases (p<0.05 for both). 

Using a linear mixed effects model, RNFL parameters (thickness, phase 

retardation, birefringence, and reflectance index) averaged in various segmented regions 

(all rings, inner rings, outer rings, superior, inferior, nasal, and temporal quadrants) were 

evaluated versus the IOP damage integral (Figure 29 to Figure 33). For all RNFL 

thickness measurements in each segmented region, only the nasal quadrant showed a 

significant change. The inferior quadrant showed a significant change for both RNFL 

phase retardation and birefringence. In addition, RNFL phase retardation had a 

significant change in the superior quadrant and the birefringence had a significant change 

in the nasal region. 
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Figure 29. Average (all rings) of RNFL thickness difference (control less treated) for 
continuous (top) and clustered (bottom) retinal scans vs. IOP damage 
integral (squares primate 1; circles primate 2; and triangles are primate 3). 
Linear mixed model fits for individual primates (colored lines) and 
combined (all primates, black). Statistics for the combined data are shown in 
Table 1 and the individual fits are included in the supplemental material in 
Table 6. 
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Figure 30. Average (all rings) of phase retardation difference (control less treated) for 
clustered retinal scans vs. IOP damage integral (squares primate 1; circles 
primate 2; and triangles are primate 3). Linear mixed model fits for 
individual primates (colored lines) and combined (all primates, black). 
Statistics for the combined data are shown in Table 1 and the individual fits 
are included in the supplemental material in Table 6. 
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Figure 31. Average (all rings) of birefringence difference (control less treated) for 
clustered retinal scans vs. IOP damage integral (squares primate 1; circles 
primate 2; and triangles are primate 3). Linear mixed model fits for 
individual primates (colored lines) and combined (all primates, black). 
Statistics for the combined data are shown in Table 1 and the individual fits 
are included in the supplemental material in Table 6. 
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Figure 32. Average (all rings) of RNFL reflectance index (RI) difference (control less 
treated) for continuous (top) and clustered (bottom) retinal scans vs. IOP 
damage integral (squares primate 1; circles primate 2; and triangles are 
primate 3). Linear mixed model fits for individual primates (colored lines) 
and combined (all primates, black). Statistics for the combined data are 
shown in Table 1 and the individual fits are included in the supplemental 
material in Table S5. 

 

Table 1. RNFL parameter differences (control less treated) in segmented regions versus 
IOP damage integral for all primates analyzed with a linear mixed effects 
model. P-values with values <0.05 have been marked in red to easily 
identify the regions of statistical significance. 
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RNFL Parameter Region Slope p(slope) 

Clustered  

Thickness 

(μm) 

All rings -4.52 x 10-4 0.789 

Inner ring -2.47 x 10-3 0.274 

Outer ring 2.16 x 10-4 0.891 

Superior 4.81 x 10-3 0.129 

Inferior 2.75 x 10-3 0.462 

Nasal -6.83 x 10-3 0.000 

Temporal 4.39 x 10-3 0.186 

Continuous  

Thickness 

(μm) 

All rings 1.07 x 10-3 0.511 

Inner ring 9.30 x 10-4 0.647 

Outer ring 1.27 x 10-3 0.409 

Superior 2.36 x 10-3 0.140 

Inferior 3.22 x 10-3 0.342 

Nasal 1.88 x 10-3 0.278 

Temporal -3.06 x 10-3 0.058 

Phase 

(o) 

All rings 1.76 x 10-4 0.698 

Inner ring 2.34 x 10-4 0.729 

Outer ring -1.21 x 10-4 0.772 

Superior 1.38 x 10-3 0.046 

Inferior -1.70 x 10-3 0.021 

Nasal 3.83 x 10-4 0.502 

Temporal 3.29 x 10-4 0.701 

Birefringence 

(o/μm) 

All rings 4.12 x 10-9 0.820 

Inner ring 1.77 x 10-8 0.440 
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Outer ring -1.23 x 10-8 0.597 

Superior 2.02 x 10-8 0.279 

Inferior -7.28 x 10-8 0.002 

Nasal 6.27 x 10-8 0.029 

Temporal -1.05 x 10-7 0.195 

 Clustered  

Reflectance 

Index (RI) 

All rings 5.93 x 10-5 0.038 

Inner ring 6.30 x 10-5 0.053 

Outer ring 5.98 x 10-5 0.043 

Superior 4.99 x 10-5 0.091 

Inferior 5.55 x 10-5 0.058 

Nasal 7.22 x 10-5 0.016 

Temporal 6.77 x 10-5 0.023 

Continuous  

Reflectance 

Index (RI) 

All rings 5.23 x 10-5 0.028 

Inner ring 4.89 x 10-5 0.054 

Outer ring 5.58 x 10-5 0.018 

Superior 5.39 x 10-5 0.061 

Inferior 8.89 x 10-5 0.014 

Nasal 6.36 x 10-5 0.021 

Temporal 8.42 x 10-6 0.783 

 

We analyze RI versus IOP damage integral using a non-linear model (Eq. 15)[50]. 

We use the Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

to compare the goodness-of-fit of the non-linear and linear models. Because AIC and BIC 

values derived from the nonlinear model (clustered: AIC=-39.4, BIC=-30.8; continuous: 
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AIC=-52.0,BIC=-43.4) are smaller than those of the linear model (clustered: AIC=-16.6, 

BIC=-9.9; continuous: AIC=-37.8, BIC=-31.2), we conclude that the nonlinear model 

provides a better fit to RI data compared to the linear model. In both linear and non-linear 

models, the continuous scan provides a better fit than the clustered scan. 
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Figure 33. Average (all rings) of RNFL reflectance index (RI) difference (control less 
treated) for clustered (top) and continuous (bottom) retinal scans vs. IOP 
damage integral (squares primate 1; circles primate 2; and triangles are 
primate 3). Nonlinear mixed effects model fits (black curves) for clustered (
τ =1060.4, AIC=-39.4, BIC=-30.8) and continuous (τ =2848.3, AIC=-
52.0, BIC=-43.4) data for all primates.  
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4.4 DISCUSSION 

At the outset, it should be noted that these results are derived from a small sample of only 

three primates. This is a pilot study and the results while showing statistical significance 

should be treated as preliminary. The parameter in treated eyes with elevated IOP 

showing the most significant change was RNFL reflectance index (RI). Statistically 

significant decreases in RI were observed in some quadrants in treated eyes. RI derived 

from clustered retinal scans showed statistically significant decreases with increased IOP 

damage integral in all-rings, outer-rings, nasal, and temporal quadrants. RI derived from 

continuous retinal scans showed statistically significant decreases with IOP damage 

integral in all-rings, outer-rings, inferior, and nasal quadrants. Using the linear mixed 

effects model, significant changes were observed in RI vs. number of days for both the 

control and treated eyes. The rate of decrease of RI for the treated eye (-1.60 x 10-3 days-1) 

was five-times greater than that observed in control eyes (-0.080 x 10-3 days-1). Prolonged 

and frequent anesthesia of the three primates enrolled in these studies may have 

contributed to decreased RI in the control eyes. Interestingly, neural mitochondrial 

changes have been observed in rodents subjected to prolonged anesthesia exposure [51]. 

As discussed below, mitochondrial changes can impact optical scattering properties of the 

host cell. Consequently, mitochondrial changes due to prolonged anesthesia exposure 

may have contributed to RI decrease observed in control and treated eyes. Phase 

retardation and birefringence changes were detected in the course of this study only in the 

inferior quadrant and may be considered as candidate markers for early glaucoma 

diagnosis in subsequent investigations. 
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4.4.1 RNFL Thickness Changes 

Schuman et al. have observed RNFL thinning as a result of elevated IOP with a similar 

level of IOP integral. In the current study, statistically significant RNFL thinning was 

observed only in the nasal region (the thinnest RNFL region) using the clustered 

thickness data. Considering the lower values of average IOP utilized in this study (13 mm 

Hg) compared to those employed by Schuman et al. (~25 mmHg), absence of significant 

RNFL thinning may not be unexpected even considering a similar IOP integral value. 

The IOP integral is a linear damage model with poorly understood limitations. Both the 

IOP integral and the ΔIOP are important parameters in predicting glaucoma damage. 

Chauhan et al. investigated the effect of elevated IOP in rodents and found a strong 

correlation of functional and structural changes to peak IOP, suggesting a damage 

threshold [48]. Although Schuman doesn’t report the peak IOP values for individual 

primates enrolled in his study, values are assumed to be much higher considering the 

study had a shorter duration to reach similar IOP integral values. In this sense, absence of 

significant RNFL thinning in all regions can be viewed as complementary, not 

contradictory to previous studies.  

4.4.2 Candidate Cellular Mechanisms 

This is not the first study to report reflectance changes in the retina; however, it is the 

first reported definition of reflectance change observed with OCT and the first report that 

RNFL reflectance decreases when glaucoma is induced in primates[45],[52]. Although 

additional investigation is necessary to test candidate mechanisms for RNFL reflectance 

decrease observed here, changes in the mitochondrial networks and axonal cytoskeleton 

changes are hypothetical mechanisms. Previous studies have demonstrated that changes 

in mitochondrial membrane permeability in response to elevated IOP precede retinal 

ganglion cell loss in glaucomatous eyes [43,53]. 
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Mitochondrial dysfunction is recognized as an important component in the etiology of 

many neurodegenerative pathologies including amyotrophic lateral sclerosis, 

Alzheimer’s, and Parkinson’s disease. Mitochondria are recognized as dynamic 

organelles that constantly undergo fusion and fission processes that are required to 

maintain normal function of the host cell. Fusion of mitochondria to form interconnected 

intracellular networks is believed to be a necessary component to maintain a 

mitochondrial population with a full complement of gene products that can mitigate age-

related degeneration. In fact, autosomal dominant optic atrophy, the leading cause of 

childhood blindness, is caused by a mutation in the mitochondrial fusion gene OPA1 

[54]. Inasmuch as mitochondrial changes are an important component of 

neurodegenerative diseases, their potential contribution to RNFL reflectance changes is 

of interest.  

 Recently, Ju et al. demonstrated that mitochondria fission in differentiated retinal 

ganglion cell cultures is induced in response to elevated hydrostatic pressures [55]. A 

number of recent studies have observed optical scattering changes in cells undergoing 

apoptosis that originate at least in part to the mitochondria. Pasternack et al. used a 

Fourier microscopy approach to demonstrate that early cell apoptosis is accompanied by 

mitochondrial fission and fragmentation that results in more isotropic or large-angle light 

scattering [56]. Chalut et al. utilized angle-resolved optical coherence tomography (OCT) 

to document similar scattering changes that the authors suggested may involve 

mitochondrial fission [57]. A number of investigators have recently applied OCT to 

document light scattering changes in cells undergoing apoptosis or necrosis[58],[59]. 

Although the decrease in RI in glaucomatous primate eyes reported here is consistent 

with reduced collected backscatter due to intensified mitochondrial fission resulting in 

increased large angle scattering, other mechanisms such as changes in the axonal 
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membrane or microtubules may contribute to the observed decrease in RNFL reflectance. 

Additional studies are required to isolate and better characterize the various candidate 

cellular processes that may contribute to decreased RNFL reflectance observed in studies 

reported here. In chapter 5, we will validate some of our findings in human clinical 

glaucoma study. 
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4.5 SUPPLEMENTAL INFORMATION 

Table 2. RNFL parameters in segmented regions versus number of days for all primates 
analyzed with a linear mixed model. P-values with values <0.05 have been 
marked in red to easily identify the regions of statistical significance. 
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Table 3. RNFL parameters in segmented regions versus number of days for primate 1 
analyzed with a linear mixed model. P-values with values <0.05 have been 
marked in red to easily identify the regions of statistical significance. 
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Table 4. RNFL parameters in segmented regions versus number of days for primate 2 
analyzed with a linear mixed model. P-values with values <0.05 have been 
marked in red to easily identify the regions of statistical significance. 
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Table 5. RNFL parameters in segmented regions versus number of days for primate 3 
analyzed with a linear mixed model. P-values with values <0.05 have been 
marked in red to identify the regions of statistical significance. 
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Table 6. RNFL parameter differences (control less treated) in segmented regions versus 
IOP damage integral for individual primates analyzed with a linear mixed 
model. P-values with values <0.05 have been marked in red to identify the 
regions of statistical significance. 
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Chapter 5: The diagnostic power of RNFL thickness, phase retardation, 
birefringence, and reflectance in a human clinical trial 

In this chapter, we further investigate in a human glaucoma clinical study the diagnostic 

potential of RNFL reflectance that was identified in the non-human primate study 

described in Chapter 4. We compare the performance of RNFL Thickness, phase 

retardation, birefringence, and a modified reflectance index for distinguishing among 

healthy subjects, glaucoma patients, and patients categorized as “glaucoma suspect”. 

5.1 METHODS 

This chapter presents the computational analysis of data from the clinical study 

described in Chapter 2. We use the measurements from the PS-OCT and RTVue OCT 

instruments in this Chapter. 

5.1.1 RNFL thickness, phase retardation, and birefringence of different RNFL 
locations 

For data collected at the Eye Institute of Austin, a LABVIEW software program 

(National Instruments, Austin, Texas) was implemented for the PS-OCT system to 

automatically detect RNFL and RPE region boundaries in each B-scan[12,35]. After 

RNFL boundary detection, an expert on PS-OCT retinal image evaluation visually 

inspected the boundaries superimposed on each B-scan to manually correct any 

misidentified boundaries. For data collected at the Duke Eye Center, an active contour 

based algorithm was used for RNFL and RPE region boundary detection [60]. The 

difference in the RNFL and RPE region boundary detection methods is another reason for 

not combining the data from EIA and Duke for this analysis. The calculations of phase 

retardation and birefringence were described in previous papers by our group and were 

the same for both EIA and Duke datasets[12,38]. RNFL thickness, phase retardation, and 
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birefringence were then imported into MATLAB (The Mathworks, Natick, MA) for 

calculation of average values in different RNFL locations. For the PS-OCT system, the 

RNFL locations analyzed in this study are: all-rings, inner 5 rings, outer 5 rings, temporal 

quadrant (T), superior quadrant (S), nasal quadrant (N), and inferior quadrant (I), (Figure 

34). For the RTVue OCT system, the only difference in the analysis is that we calculated 

the 7 inner rings average, as opposed to the 5 inner rings average, and the 6 outer rings 

average, as opposed to the 5 outer rings average, since an RTVue ONH scan has 13 ring 

scans around the ONH, rather than 10 rings as in a PS-OCT scan. The two GDx VCC 

parameters included in this study are TSNIT averages, which were reported as the 

parameter with the highest repeatability and least variability[37], and nerve fiber 

indicator (NFI), which is reported to be the best parameter of GDx for glaucoma 

diagnosis[61,62,63]. 

 

 
 

Figure 34. Definitions of RNFL locations as shown on a clustered RNFLT map of a 
human right eye (OD). An average across all-rings can be taken (left). Or, 
averages can be computed over the temporal (T), superior (S), inferior (I), 
and nasal (N) quadrants as shown in the middle panel. The right panel 
shows the demarcation of the 5 inner rings and 5 outer rings regions in the 
RNFLT map. 
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5.1.2 RNFL Reflectance 

To quantify RNFL reflectance, we introduce a normalized RNFL reflectance 

index that is different from the reflectance index (RI) that we used in our previous study 

with non-human primates [38]. The normalized RNFL reflectance index (NRRI) is 

defined as the ratio of the summation of OCT intensities of the RNFL (IRNFL) to the 

average OCT intensities of a thin layer centered on the retinal pigment epithelium (RPE). 

The advantage of the new NRRI measure is that it sums the backscattered intensity across 

the RNFL; thus, it is a hybrid measurement that combines the RNFLT and RI measures 

as they were defined in the primate study. Moreover, NRRI performs better than RI at 

distinguishing between glaucomatous and healthy eyes. Since the intensity is normalized 

relative to the RPE, the NRRI is unitless.  

          Specifically, for PS-OCT, we define NRRI for one cluster in one B-scan 

image corresponding to one image collection session as: 

NRRI =
IRNFLc
IRPE   

(16)
 

where  

IRNFLc = I RNFLa
a
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∑  (17)
 

which is the summation of the OCT signal intensity in the RNFL for all A-scans of the cth 

cluster with 100 A-scans per cluster. 

The average OCT intensities of a thin layer about the retinal pigment epithelium is 

calculated as 

IRPE =
IRPEa / NRPE
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∑

Nb  
 (18) 
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where Nb  is the number of B-scans in each image collection, and NRPE  is the number 

of pixels (7 pixels, about 50 microns) in the RPE layer.
 

     For RTVue OCT, we define NRRI for one A-scan in one B-scan image 

corresponding to one image collection session as: 

 

   NRRI =
I RNFLa

a
∑
IRPE

  (19)     

where 

 

   IRPE =
IRPEa / NRPE
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Nb

∑

Nb  
(20)     

which is the average OCT signal intensity in the RPE layer averaged over all B-scans in 

one image collection, where Nb  is the number of B-scans in each image collection, and 

NRPE  is the number of pixels (7 pixels, about 70 microns) in the RPE layer. For one 

imaging session, we calculate NRRI  for A-scans in one retinal scan and then construct 

an NRRI map for that scan. The average NRRI of the seven RNFL locations is computed. 

5.1.3 Statistical analysis 

 The area under the Receiver Operating Characteristic (ROC) curve (AUC) was 

used to compare the performance of the RNFLT and NRRI features for distinguishing 

between normal subjects and glaucoma patients as well as between normal subjects and 

patients meeting the definition of glaucoma suspect. Differences between the areas under 

the ROC curves were compared using a non-parametric method based on bootstrap 

sampling (n=2000 resamples). Since the identification of diagnostic parameters that can 
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achieve high sensitivity or high specificity is of particular interest, we also compared the 

partial ROC areas for the high sensitivity or high specificity region of the curves 

(sensitivity ≥ 90% or specificity ≥ 90%). We used the pROC package[64] the R statistical 

programming language (v2.15.10; http://www.R-project.org/, R Development Core 

Team, 2012, R Foundation for Statistical Computing, Vienna, Austria) and R studio 

(v0.94, RStudio, Inc.) for the ROC analysis. The PASS 11 software (NCSS, Kaysville, 

Utah 84037) was used for statistical power and sample size calculations. 

5.2 RESULTS 

We calculated the average NRRI, RNFL thickness, phase retardation, and 

birefringence measured in seven RNFL locations: all-rings; inner 5 rings for PS-OCT or 

inner 7 rings for RTVue OCT; outer 5 rings for PS-OCT or outer 6 rings for RTVue 

OCT; temporal quadrant (T); superior quadrant (S); nasal quadrant (N); and inferior 

quadrant (I). Pairwise comparisons among NRRI, RNFL thickness, phase retardation, and 

birefringence average in different RNFL locations for distinguishing between healthy and 

glaucomatous eyes as well as between healthy and glaucoma suspect eyes were made in 

terms of the area and partial area (sensitivity ≥ 90% or specificity ≥ 90%) under the ROC 

curves.  

5.2.1 NRRI, RNFL thickness, phase retardation, and birefringence measured by PS-
OCT for distinguishing between healthy and glaucomatous eyes 

We first compared the performance of the all rings average of NRRI (NRRIall), the 

all rings average of RNFL thickness (RNFLTall), the all rings average of phase retardation 

(PRall), and the all rings average of birefringence (BRall) from both EIA and DEC datasets 

since these global averages were reported to be the most reproducible in previous 

studies[26] (AUC shown in Table 7 and ROC curves shown in Figure 35). For the EIA 
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dataset, we found that the AUC of NRRIall was significantly larger than the areas under 

the ROC curves for PRall (p=0.003) and birefringence (p=0.00002). We also found that 

the AUC of RNFLTall was significantly larger than that of PRall (p=0.007) and BRall 

(p=0.0002). Thus, the average of all rings of NRRIall and RNFLTall both performed 

significantly better than PRall and BRall at distinguishing between healthy and 

glaucomatous eyes. However, we didn’t find a significant difference between the AUC of 

RNFLTall and NRRIall (p=0.331). This is probably due to the small sample size. With the 

current sample size we can only achieve statistical power of 4%. In order to achieve 90% 

power to detect a difference of 0.043 between the AUCs of RNFLTall and NRRIall, we 

would need 325 samples each of healthy and glaucomatous eyes. The AUCs of PRall and 

BRall are also statistically indistinguishable (p=0.067). The results for the data collected at 

the Duke Eye Center are similar, as shown in Table 9. Since the identification of 

diagnostic parameters that can achieve high sensitivity is of particular interest, we also 

compared the partial ROC areas for the high sensitivity region of the curves (sensitivity ≥ 

90%). We compared the partial ROC curves of NRRIinner and RNFLTS in the 0.90 to 1 

sensitivity region. For the DEC data, we found that the partial AUC of NRRIall is 

significantly larger than that of RNFLTall in the 0.90 to 1 sensitivity region (p= 0.0406). 

Thus, NRRIall performed significantly better than RNFLTall at distinguishing between 

healthy and glaucomatous eyes when high sensitivity was required.  

In the preceding analysis, each of the RNFL properties was quantified by 

averaging across all of the rings since such global averages were reported to be the most 

reproducible in previous studies[26]. However, it is possible that averaging only over 

certain RNFL locations, e.g., across the outer rings only, could provide more 

diagnostically useful values for some RFNL properties. Thus, in this analysis, we 

selected the RNFL location that provided the largest AUC value for each of the RNFL 
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properties for comparison (shown in red in Table 7). We found that for the EIA dataset, 

the all rings average of NRRI (NRRIall), the inner rings average of RNFL thickness 

(RNFLTinner), the superior quadrant average of phase retardation (PRS), and the all rings 

average of birefringence (BRall) had the largest AUCs. The pairwise comparisons of these 

RNFL properties measured in these ‘best’ RNFL locations of both the EIA and DEC 

datasets are similar to the findings of using average all rings location (p values are shown 

in Table 10) with one exception; for the EIA dataset, we found the AUC of PRS was 

significantly larger than that of BRall (p=0.004). For the partial ROC curves comparisons, 

we found that for DEC data, the partial AUC of NRRIall is significantly larger than the 

one of RNFLTinner in the 0.90 to 1 sensitivity region (p= 0.0416). 
 

Table 7. AUC and its standard errors (SE) of NRRI, RNFL thickness, phase retardation 
and birefringence averaged over different RNFL locations measured by PS-
OCT for distinguishing between healthy and glaucomatous eyes of EIA 
dataset. 

RNFL 
location 

Healthy vs. Glaucoma 
NRRI Thickness Phase retardation Birefringence 

AUC SE AUC SE AUC SE AUC SE 
All rings 0.983 0.021 0.932 0.056 0.547 0.145 0.419 0.131 

Inner rings 0.923 0.078 0.940 0.050 0.598 0.138 0.427 0.131 
Outer rings 0.966 0.032 0.897 0.071 0.521 0.142 0.410 0.132 

Superior 0.923 0.060 0.872 0.076 0.650 0.131 0.474 0.131 
Inferior 0.872 0.086 0.889 0.068 0.470 0.156 0.368 0.142 
Nasal 0.872 0.076 0.735 0.112 0.521 0.133 0.350 0.125 

Temporal 0.838 0.096 0.838 0.089 0.504 0.138 0.427 0.130 
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Table 8. AUC and its standard errors (SE) of NRRI, RNFL thickness, phase retardation 
and birefringence averaged over different RNFL locations measured by PS-
OCT for distinguishing between healthy and glaucomatous eyes of DEC 
dataset. 

RNFL 
location 

Healthy vs. Glaucoma 
NRRI Thickness Phase retardation Birefringence 

AUC SE AUC SE AUC SE AUC SE 
All rings 0.957 0.032 0.880 0.065 0.460 0.109 0.403 0.107 

Inner rings 0.947 0.037 0.790 0.083 0.490 0.106 0.415 0.102 
Outer rings 0.963 0.026 0.910 0.058 0.463 0.112 0.393 0.104 

Superior 0.860 0.063 0.783 0.081 0.533 0.110 0.388 0.101 
Inferior 0.920 0.044 0.837 0.071 0.443 0.116 0.387 0.109 
Nasal 0.813 0.075 0.635 0.097 0.420 0.104 0.407 0.104 

Temporal 0.823 0.073 0.657 0.095 0.493 0.104 0.450 0.101 
 

 

Figure 35. ROCs of average of all rings of NRRI, RNFL thickness, phase retardation, and 
birefringence for distinguishing between healthy and glaucomatous eyes of 
Eye Institute of Austin (EIA) data (shown in left) and Duke Eye Center 
(DEC) data (shown in right). 
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Figure 36. ROCs of average of all rings of NRRI, inner rings of RNFL thickness, superior 
of phase retardation, and all rings of birefringence for distinguishing 
between healthy and glaucomatous eyes of Eye Institute of Austin (EIA) 
data (shown in left). ROCs of average of outer rings of NRRI, outer rings of 
RNFL thickness, superior of phase retardation and temporal of birefringence 
for distinguishing between healthy and glaucomatous eyes of Duke Eye 
Center (DEC) data (shown in right). 

Table 9. P values of comparisons of the AUCs of the all rings average of NRRI, RNFL 
thickness, phase retardation birefringence for distinguishing between 
healthy and glaucomatous eyes of both EIA and DEC datasets. 

Comparisons of AUC 
p value 

EIA DEC 
NRRI vs RNFLT 0.33112 0.20040 

NRRI vs .PR 0.00260 0.00006 
NRRI vs .BR 0.00002 0.00001 

RNFLT vs .PR 0.00715 0.00319 
RNFLT vs .BR 0.00020 0.00111 

PR vs. BR 0.06741 0.05403 
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Table 10. P values of comparisons of the AUCs of the best RNFL locations of NRRI, 
RNFL thickness, phase retardation birefringence for distinguishing between 
healthy and glaucomatous eyes of both EIA and DEC datasets. 

Comparisons of AUC 
p value 

EIA DEC 
NRRI vs .RNFLT 0.37884 0.33799 

NRRI vs .PR 0.00871 0.00044 
NRRI vs .BR 0.00002 0.00001 

RNFLT vs .PR 0.03668 0.00484 
RNFLT vs .BR 0.00018 0.00010 

PR vs. BR 0.00412 0.28223 
 

5.2.2 NRRI, RNFL thickness, phase retardation, and birefringence measured by PS-
OCT for distinguishing between healthy and glaucoma suspect eyes 

 We first compared the performance of NRRIall, RNFLTall, PRall, and BRall for 

both the EIA and DEC datasets (Figure 37). From the comparisons using the EIA dataset, 

we found that the AUC of NRRIall was significantly larger than those of 

RNFLTall,(p=0.03), PRall (p=0.0016), and BRall (p=0.00004). Thus, NRRIall performed 

significantly better than RNFLTall , PRall, and BRall at distinguishing between healthy and 

glaucoma suspect eyes. We also found the the AUC of RNFLTall and PRall was 

significantly larger than that of BRall (p=0.016 and p=0.038 respectively). RNFLTall and 

PRall performed significantly better than BRall at distinguishing between healthy and 

glaucoma suspect eyes. However, we didn’t find a significant difference between the 

AUC of RNFLTall and PRall (p=0.089). This is probably due to the small sample size. We 

would need 48 samples for each of healthy and glaucoma suspect eyes to achieve 90% 

power to detect a difference of 0.212 between the AUCs of RNFLTall and PRall. For the 

DEC dataset, some of the results of comparisons are different. We didn’t find a 

significant difference between the AUC of NRRIall and RNFLTall (p=0.150). We would 

need 137 samples for each of healthy and glaucoma suspect eyes to achieve 90% power 
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to detect a difference of 0.07 between the AUCs of NRRIall and RNFLTall. We also didn’t 

find a significant difference between the AUC of PRall and BRall (p=0.116). But we find 

the AUC of RNFLTall was significantly larger than that of PRall (p=0.0075). 

In the subsequent analysis, we selected the RNFL location that provided the 

largest AUC value for each of the RNFL properties for comparison (shown in red in 

Table 11, ROC curves shown in Figure 37). We found that the inner rings average of 

NRRI, the superior average of RNFL thickness, the inferior average of phase retardation, 

and the temporal average of birefringence had the largest AUCs for the EIA data. We 

found that the AUC of NRRIinner was significantly larger than those of PRI (p = 0.003) and 

BRT (p = 0.0006). The other comparisons of the full AUCs didn’t show any statistically 

significant difference (Table 14). However, the partial AUC of NRRIinner is significantly 

larger than that of RNFLTS in the 0.90 to 1 specificity region (p = 0.0007). Thus, 

NRRIinner performed significantly better at distinguishing between healthy and glaucoma 

suspect eyes when high specificity was required. For the DEC data, the all rings average 

of NRRI, the inferior average of RNFL thickness, the temporal average of phase 

retardation, and the temporal average of birefringence had the largest AUCs. The pair-

wise comparisons showed similar results of those using all rings average for DEC data. 
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Figure 37. ROCs of the all rings average of NRRI, RNFL thickness, phase retardation 
and birefringence on distinguishing between healthy and glaucoma suspect 
eyes of Eye Institute of Austin (EIA) data (shown in left) and Duke Eye 
Center (DEC) data (shown in right). 

 

Figure 38. ROCs of average of inner rings of NRRI, superior of RNFL thickness, inferior 
of phase retardation and temporal of birefringence for distinguishing 
between healthy and glaucoma suspect eyes of Eye Institute of Austin (EIA) 
data (shown in left). ROCs of average of all rings of NRRI, inferior of 
RNFL thickness, temporal of phase retardation and temporal of 
birefringence for distinguishing between healthy and glaucoma suspect eyes 
of Duke Eye Center (DEC) data (shown in right). 
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Table 11. AUC and its standard errors (SE) for distinguishing between healthy and 
glaucoma suspect eyes of NRRI, RNFL thickness, phase retardation, and 
birefringence averaged over different RNFL locations as measured by PS-
OCT of EIA dataset. 

RNFL 
location 

Healthy vs. Glaucoma suspect  
NRRI Thickness Phase retardation Birefringence 

AUC SE AUC SE AUC SE AUC SE 
All rings 0.968 0.034 0.821 0.094 0.609 0.120 0.465 0.122 

Inner rings 0.981 0.022 0.808 0.089 0.635 0.117 0.500 0.123 
Outer rings 0.955 0.041 0.788 0.101 0.564 0.121 0.452 0.121 

Superior 0.897 0.064 0.833 0.092 0.609 0.121 0.404 0.119 
Inferior 0.936 0.047 0.801 0.089 0.641 0.122 0.462 0.122 
Nasal 0.782 0.101 0.756 0.107 0.558 0.122 0.429 0.122 

Temporal 0.769 0.104 0.660 0.117 0.538 0.123 0.545 0.122 
 

Table 12. AUC and its standard errors (SE) for distinguishing between healthy and 
glaucoma suspect eyes of NRRI, RNFL thickness, phase retardation, and 
birefringence averaged over different RNFL locations as measured by PS-
OCT of DEC dataset. 

RNFL 
location 

Healthy vs. Glaucoma suspect  
NRRI Thickness Phase retardation Birefringence 

AUC SE AUC SE AUC SE AUC SE 
All rings 0.933 0.052 0.850 0.077 0.342 0.147 0.283 0.142 

Inner rings 0.833 0.117 0.800 0.110 0.367 0.134 0.333 0.126 
Outer rings 0.908 0.063 0.742 0.130 0.283 0.157 0.250 0.151 

Superior 0.808 0.085 0.750 0.134 0.392 0.159 0.321 0.126 
Inferior 0.867 0.088 0.875 0.077 0.408 0.181 0.325 0.163 
Nasal 0.583 0.145 0.483 0.133 0.333 0.159 0.375 0.174 

Temporal 0.667 0.124 0.450 0.142 0.483 0.148 0.467 0.152 

 

 

 

 



 94 

Table 13. P values of comparisons of the AUCs of the all rings average of NRRI, RNFL 
thickness, phase retardation birefringence for distinguishing between 
healthy and glaucoma suspect eyes of both EIA and DEC datasets. 

Comparisons of AUC 
p value 

EIA DEC 
NRRI vs. RNFLT 0.02995 0.14984 

NRRI vs. PR 0.00164 0.00065 
NRRI vs .BR 0.00004 0.00017 

RNFLT vs .PR 0.08870 0.00750 
RNFLT vs .BR 0.01607 0.00265 

PR vs. BR 0.03785 0.11590 

Table 14. P values of comparisons of the AUCs of the best RNFL locations of NRRI, 
RNFL thickness, phase retardation birefringence for distinguishing between 
healthy and glaucoma suspect eyes of both EIA and DEC datasets. 

Comparisons of AUC 
p value 

EIA DEC 
NRRI vs. RNFLT 0.10098 0.22672 

NRRI vs. PR 0.00298 0.00053 
NRRI vs .BR 0.00055 0.00466 

RNFLT vs .PR 0.18955 0.00606 
RNFLT vs .BR 0.06461 0.02849 

PR vs. BR 0.46296 0.22998 
 

5.2.3 NRRI and RNFL thickness measured by RTVue OCT for distinguishing 
healthy, glaucomatous, and glaucoma suspect eyes 

We also validated our findings on data acquired using an RTVue OCT system. 

We didn’t find a statistically significant difference between the AUC of NRRIall and that 

of RNFLTall for distinguishing between healthy and glaucomatous eyes (p=0.877, Figure 

39). For distinguishing healthy and glaucomatous eyes, the all rings average of NRRI 

(NRRIinner) and all rings average of RNFL thickness (RNFLTall) turned out to have the 

largest AUC among all the RNFL locations of NRRI and RNFLT (shown in red in Table 
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15). Thus, NRRIall and RNFLTall performed similarly for distinguishing between healthy 

and glaucomatous eyes. 

For distinguishing healthy and glaucoma suspect eyes, we first compared the 

performance of NRRIall and RNFLTall. We found that the AUC of NRRIall was 

significantly larger than that of RNFLTall, (p=0.014). Thus, NRRIall performs significantly 

better than RNFLTall at distinguishing between healthy and glaucoma suspect eyes. We 

compared the RNFL location inferior average, which gave the largest AUC (shown in red 

in Table 16) for both NRRI (NRRII) and RNFL thickness (RNFLTI). The AUC of NRRII 

was significantly larger than that of RNFLTI, (p=0.008). Thus, NRRII also performs 

significantly better than RNFLTI at distinguishing between healthy and glaucoma suspect 

eyes. 

Table 15. AUC and its standard errors (SE) for distinguishing between healthy and 
glaucomatous eyes of NRRI and RNFL thickness averaged over different 
RNFL locations as measured by RTVue OCT. 

RNFL location 

Healthy vs. Glaucoma 
NRRI Thickness 

AUC SE AUC SE 
All rings 0.957 0.037 0.949 0.043 

Inner rings 0.957 0.037 0.940 0.046 
Outer rings 0.949 0.043 0.932 0.054 

Superior 0.949 0.043 0.897 0.065 
Inferior 0.949 0.043 0.906 0.074 
Nasal 0.923 0.059 0.915 0.061 

Temporal 0.872 0.075 0.726 0.124 
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Figure 39. ROC curves for distinguishing between healthy and glaucomatous eyes based 
on the all rings averages of NRRI and RNFL thickness as measured by 
RTVue OCT. 

Table 16. AUC and its standard errors (SE) for distinguishing between healthy and 
glaucoma suspect eyes based on NRRI and RNFL thickness averaged over 
different RNFL locations as measured by RTVue OCT.  

RNFL location 

Healthy vs. Glaucoma Suspect 
NRRI Thickness 

AUC SE AUC SE 
All rings 0.885 0.066 0.679 0.118 

Inner rings 0.833 0.081 0.673 0.116 
Outer rings 0.878 0.073 0.744 0.106 

Superior 0.846 0.085 0.724 0.106 
Inferior 0.929 0.052 0.744 0.110 
Nasal 0.763 0.104 0.667 0.118 

Temporal 0.622 0.125 0.487 0.124 
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Figure 40. ROC curves for distinguishing between healthy and glaucoma suspect eyes  
based on the all rings averages of NRRI and RNFL thickness as measured 
by RTVue OCT. 

 

Figure 41. ROC curves for distinguishing between healthy and glaucoma suspect eyes 
based on the inferior averages of NRRI and RNFL thickness as measured by 
RTVue OCT. 
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5.2.4 NRRI measured by PS-OCT, TSNIT average and NFI measured by GDx VCC 
for distinguishing healthy, glaucomatous and glaucoma suspect eyes 

We compared the NRRI measured in the RNFL location that gave the largest 

AUC to the TSNIT average and NFI provided by GDx VCC in both the EIA and DEC 

datasets (Table 17). The comparisons of ROC curves for distinguishing healthy and 

glaucomatous eyes were shown in Figure 42. For both the EIA and DEC datasets, the 

performance between NRRI and TSNIT average as well as between NRRI and NFI were 

statistically indistinguishable (For NRRI vs. TSNIT, p=0.052 for EIA data, p=0.165 for 

DEC data; For NRRI vs. NFI, p=0.074 for EIA data, p=0.384 for DEC data). However, 

we found that for the EIA dataset, the partial AUC of NRRI was significantly larger than 

that of TSNIT and NFI in 0.90 to 1 sensitivity region (p=0.010 for NRRI vs. TSNIT; 

p=0.027 for NRRI vs. NFI). For the DEC dataset, the partial AUC of NRRI was 

significantly larger than that of TSNIT in 0.90 to 1 sensitivity region (p=0.028). 

The comparisons of ROC curves for distinguishing healthy and glaucoma suspect 

eyes are shown in Figure 43. For the EIA dataset, we found that the AUC of NRRI is 

significantly larger than those of the TSNIT average (p=0.0120) and NFI (p=0.0187). For 

the DEC dataset, we found that the AUC of NRRI is significantly larger than that of the 

TSNIT average (p=0.0286), but not significantly larger than that of NFI (p=0.137). 

Therefore, NRRI performed significantly better than TSNIT average provided by GDx 

for distinguishing healthy and glaucoma suspect eyes in both datasets. NRRI performed 

significantly better than NFI provided by GDx for distinguishing healthy and glaucoma 

suspect eyes in the EIA dataset. 
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Table 17. AUC and its standard errors (SE) for distinguishing between healthy and 
glaucomatous eyes as well as healthy and glaucoma suspect eyes based on 
NRRI measured by PS-OCT, TSNIT average and NFI measured by GDx 
VCC. 

Study institute 

Healthy vs. Glaucoma Healthy vs. Glaucoma suspect 
TSNIT NFI TSNIT NFI 

AUC SE AUC SE AUC SE AUC SE 
Eye Institute of 

Austin 0.752 0.123 0.786 0.108 0.721 0.107 0.686 0.114 
Duke Eye 

Center 0.850 0.081 0.915 0.048 0.617 0.159 0.792 0.106 
 

 

Figure 42. ROC curves of NRRI measured by PS-OCT, TSNIT average and NFI 
measured by GDx VCC for distinguishing between healthy and 
glaucomatous eyes of Eye Institute of Austin (EIA) data (shown in left) and 
Duke Eye Center (DEC) data (shown in right). 
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Figure 43. ROC curves of NRRI measured by PS-OCT, TSNIT average and NFI 
measured by GDx VCC for distinguishing between healthy and glaucoma 
suspect eyes of Eye Institute of Austin (EIA) data (shown in left) and Duke 
Eye Center (DEC) data (shown in right). 

5.3 DISCUSSION 

In this human clinical study, we assessed the diagnostic potential of RNFL 

thickness, phase retardation, birefringence, and normalized RNFL reflectance index 

(NRRI) measured in seven different RNFL locations (all rings, inner rings, outer rings, 

and TSNI quadrants) by PS-OCT for distinguishing between healthy and glaucomatous 

eyes as well as between healthy and glaucoma suspect eyes in a study conducted at the 

Eye Institute of Austin. We also assessed the diagnostic potential of RNFL thickness and 

NRRI measured in seven different RNFL locations (all rings, inner rings, outer rings, and 

TSNI quadrants) by RTVue OCT for distinguishing between healthy and glaucomatous 

eyes as well as between healthy and glaucoma suspect eyes on the same study population 

at the Eye Institute of Austin. Additionally, we also assessed the diagnostic power of 

RNFL thickness, phase retardation, birefringence, and normalized RNFL reflectance 

index (NRRI) measured by a modified version of the PS-OCT instrument in a study at the 

Duke Eye Center. From the measurements by both original and modified version of the 

PS-OCT, we found that for both diagnostic tasks, NRRI performs significantly better than 
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either phase retardation or birefringence. However, the performances of NRRI and RNFL 

thickness were statistically indistinguishable in this study except the all rings average of 

NRRI and RNFL on distinguishing between healthy and glaucoma suspect eyes using 

EIA dataset. It is likely that the lack of statistical significance is due to the limited sample 

size. We also did some partial ROC curves comparisons. We found that the inner ring 

average of NRRI performed significantly better for distinguishing between healthy and 

glaucoma suspect eyes than superior average of RNFLT in the 0.90 to 1 specificity region 

for EIA dataset. From the RTVue OCT measurements, we found that for distinguishing 

between healthy and glaucomatous eyes, the performances of NRRI and RNFL thickness 

were statistically indistinguishable. However, the NRRI performs significantly better than 

RNFL thickness at distinguishing between healthy and glaucoma suspect eyes. In 

addition, we compared the NRRI measured in the RNFL location that gave the largest 

AUC to the TSNIT average and NFI provided by GDx VCC in both EIA and DEC 

datasets. For both datasets, NRRI performed similarly to TSNIT average and NFI for 

distinguishing between healthy and glaucomatous eyes. NRRI performed significantly 

better than TSNIT average provided by GDx for distinguishing healthy and glaucoma 

suspect eyes on both datasets. NRRI performed significantly better than NFI provided by 

GDx for distinguishing healthy and glaucoma suspect eyes on EIA dataset. Since GDx 

actually measures phase retardation of RNFL, the comparisons above are actually NRRI 

vs. phase retardation measured by GDx. In interpreting these findings, it should be noted 

that NRRI as defined in this paper is different from the RI parameter introduced in our 

previous study on non-human primates[38]. NRRI contains information from both RNFL 

thickness and reflectance. Thus, NRRI can be considered as a combination feature of 

RNFL thickness and reflectance. 
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Table 18. Pearson's correlation between NRRI measured by both PS-OCT and RTVue 
OCT and age in the healthy, glaucoma, and glaucoma suspect groups of the 
dataset from Eye Institute of Austin (EIA) and Duke Eye Center (DEC). 

Patient Group 

NRRI by PS-OCT vs. 
Age of EIA  

NRRI by PS-OCT 
vs. Age of DEC  

NRRI by RTVue OCT vs. 
Age of EIA  

rho p value rho p value rho p value 
Healthy 0.371 0.213 0.087 0.778 -0.093 0.762 

Glaucoma 0.431 0.247 -0.163 0.675 0.284 0.459 
Glaucoma suspect -0.129 0.690 -0.148 0.647 -0.017 0.959 

 

The average age of the patients of healthy, glaucoma, and glaucoma suspect 

groups enrolled in this study are significantly different as shown Figure 4 and Figure 5. 

The average age of healthy subjects is significantly less than that of both the glaucoma 

and glaucoma suspect groups as tested by two-sample t-test for two independent samples 

with equal variance in dataset from Eye Institute of Austin (EIA) and Duke Eye Center 

(DEC) (EIA: p=0.0008 for healthy vs. glaucoma; p=0.0006 for healthy vs. glaucoma 

suspects DEC: p=0.0003 for healthy vs. glaucoma; p=0.019 for healthy vs. glaucoma 

suspects). Therefore, RNFL thickness measurements might be biased by the differences 

in ages in different groups since RNFLT decreases as age increases [65,66,67,68]. 

However, we evaluated the Pearson's correlation between NRRI measured by both PS-

OCT and RTVue OCT and age in the healthy, glaucoma, and glaucoma suspect groups, 

respectively, and didn’t find statistically significant correlations (p>0.5 for all groups as 

shown in Table 18). Thus, it seems unlikely that the results of the NRRI analysis are 

affected by the age differences between the groups. In conclusion, we showed that NRRI 

has the potential to outperform RNFL thickness, phase retardation and birefringence for 

distinguishing between healthy and glaucoma suspect eyes. Therefore, NRRI is a 

promising new marker for detecting glaucoma at the earliest stage. Measurement of 

NRRI does not require any new instrumentation. It’s implementation only requires new 
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software. This pilot clinical study suggests the need for a larger clinical study to validate 

the diagnostic power of NRRI in pre-perimetric glaucoma.  
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Chapter 6: Conclusion and Future work 

In this dissertation, we first investigated LPCC based and MI based registration 

algorithms and determined the benefits of image registration on estimation of 

longitudinal RNFL thickness (RNFLT) changes. We found that the precision and recall 

calculated between manually segmented image pairs are significantly better following 

registration by either MI or LPCC algorithms than before any registration is performed. 

The trends in the all-rings average and TSNI-quadrants average of RNFLT over time in 

healthy primate eyes are not affected by registration. RNFLT of clock hours 1, 2, and 10 

in primate eyes showed significant changes over a 30-week time period without 

registration, but stay constant over time with registration. Thus, either the MI or the 

LPCC algorithm can improve registration of RNFLT maps recorded on different dates in 

a longitudinal study. In our study, LPCC provided better registration of RNFLT maps 

recorded on different dates than did the MI algorithm. Improved registration of RNFLT 

maps measured using OCT can improve clinical analysis of glaucoma progression. 

Secondly, we investigated candidate markers for early glaucoma diagnosis. We 

measured time variation of retinal nerve fiber layer (RNFL) thickness, phase retardation, 

birefringence, and reflectance using polarization sensitive optical coherence tomography 

(PS-OCT) in three non-human primates with induced glaucoma in one eye. We also 

characterize the variation of RNFL thickness, phase retardation, birefringence, and 

reflectance with elevated intraocular pressure (IOP). We found that elevated IOP was 

associated with loss of RNFL reflectance, while thickness, phase retardation, and 

birefringence showed no significant changes at the mean IOP and integral IOP levels 

tested. Thus, decreased RNFL reflectance was the earliest correlate with glaucomatous 
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damage in this study. Candidate cellular mechanisms are considered for decreased RNFL 

reflectance including mitochondrial dysfunction and retinal ganglion cell apoptosis. 

Finally, we validate our findings of primates model on human clinical study data 

acquired by two instruments, PS-OCT and RTVue OCT. For the data acquired by PS-

OCT, we found that RNFL thickness and our new normalized RNFL reflectance index 

(NRRI) perform significantly better than birefringence for distinguishing between healthy 

and glaucomatous eyes as well as healthy and glaucoma suspect eyes. NRRI also 

performs significantly better than phase retardation on distinguishing between healthy 

and glaucomatous eyes, as well as between healthy and glaucoma suspect eyes. However, 

there was no statistically significant difference between the performances of NRRI and 

RNFL thickness, likely due to the limited sample size. In analyzing the data acquired by 

RTVue OCT, we didn’t find a significant difference between the performances of NRRI 

and RNFL thickness for distinguishing between healthy and glaucomatous eyes. 

However, NRRI performs significantly better than RNFL thickness on distinguishing 

between healthy and glaucoma suspect eyes. NRRI showed potential to be an earlier 

indicator of glaucoma than RNFL thickness on two different OCT instruments. In 

addition, we compared the NRRI measured in the RNFL location that gave the largest 

AUC to the TSNIT average and NFI provided by GDx VCC. NRRI performed similarly 

to TSNIT average and NFI for distinguishing between healthy and glaucomatous eyes. 

NRRI performed significantly better than TSNIT average and NFI provided by GDx for 

distinguishing healthy and glaucoma suspect eyes. Of course, while these results are 

highly encouraging, our findings will need to be validated in future studies with a larger 

sample size.  

In conclusion, we demonstrated that implementing registration algorithms in 

recorded OCT images has the potential to improve analysis and interpretation of changes 
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in the retinal nerve fiber layer thickness over time as assessed in a longitudinal study. We 

defined an RNFL reflectance index (RI), which might be an earlier indicator of glaucoma 

than RNFL thickness, phase retardation and birefringence on non-human primates. We 

validated this finding in a clinical study on human eyes. We developed a normalized 

RNFL reflectance index (NRRI) that combines information from both RNFL thickness 

and reflectance. We showed that NRRI has the potential to outperform RNFL thickness, 

phase retardation and birefringence for distinguishing between healthy and glaucoma 

suspect eyes. Therefore, NRRI is a promising new marker for detecting glaucoma at the 

earliest stage. 
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