
Copyright

by

Huaiyu Liu

2005

The Dissertation Committee for Huaiyu Liu

certifies that this is the approved version of the following dissertation:

Designing a Resilient Routing Infrastructure for

Peer-to-Peer Networks

Committee:

Simon S. Lam, Supervisor

James C. Browne

Vijay K. Garg

Mohamed G. Gouda

Aloysius K. Mok

C. Greg Plaxton

Designing a Resilient Routing Infrastructure for

Peer-to-Peer Networks

by

Huaiyu Liu, B.E.; M.E

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2005

To my parents, Hanting and Xueqin

To my husband, Fei

Acknowledgments

This dissertation would not become a reality without the generous help from many

people and the love and support from my family. I am grateful to all of them.

First of all, I would like to thank my advisor, Prof. Simon S. Lam, for his

guidance through my Ph.D. study. He taught me what scientific research is about

and how to tackle research problems. His attitude on doing solid and sound research

has guided the development of my dissertation research and guarded its quality. His

feedbacks, questioning, and suggestions contribute greatly to this dissertation and

lead me towards being a better researcher. I will always cherish his mentoring.

Prof. James C. Browne and Prof. Greg Plaxton also have served as mentors

during my study. Dr. Browne always would spend time and have discussions with

me whenever I would like to have his feedbacks on my research, on presentation

organization and skills, and on general advice. I also learned a lot on how to be a

better person from him, both directly and indirectly. Dr. Plaxton became a friend of

my husband and I when we joined UTCS. He provided us insights into research life,

encouraged me to pursue further when I was not sure where I was going, and taught

me the essentials for writing research papers indirectly. During my dissertation

research, he also spent time with me and helped me through difficult times.

I also thank my other dissertation committee members, Prof. Vijay K. Garg,

Prof. Mohamed G. Gouda, and Prof. Aloysius K. Mok. I am grateful for their

constructive comments and valuable insights.

v

Special thanks to Dr. Eric Grosse from Bell Labs and Dr. Marian Nodine

from Austin Research Center, Telcordia Technologies, for their mentorship during

my stays in their labs in my early Ph.D. years. The opportunities to work with

them opened the door to research for me and helped me appreciate research more.

Interactions with my fellow graduate students also make my Ph.D. study a

more enjoyable process. I have benefited from many discussions with students in the

Networking Research Lab, especially, Min S. Kim and Xincheng Zhang, who shared

the same process with me; Dong-Young Lee and Yi Li, who were always there to help

my talk practices; and Maria Zolotova, who had worked with me and we together

implemented a prototype for the system designed in this dissertation research. I am

also grateful to my officemates, Kevin Kane and Nasim Mahmood, who helped make

the office a place to stay and enjoy. Kevin also has collaborated with me on some

research problems and provided generous support to my presentation preparations.

I thank Gloria Ramirez and Katherine Utz from the graduate office for their

help in making the process of my Ph.D. study easier and smoother. I also thank

National Science Foundation and Texas Advanced Research Program for supporting

the work in this dissertation.1

Last but not least, I am grateful for having a family that always supports

and encourages me during my entire life. My parents, Hanting Liu and Xueqin

Wang, have supported me on every step I have taken. My brother, Zhenyu Liu,

shares with me the same process ever since we both joined the graduate program

in BUAA, exchanges experience with me, and we encourage each other through our

Ph.D. studies. Finally, my most special thanks to my dear husband, Fei Xie, for

all his love, understanding, and encouragement. Without his support, I may not be

writing this dissertation today. He shared with me every moment in my Ph.D. study.

He laughed with me in joyful moments, comforted me when I slid into frustration,
1This dissertation has been supported by the following grants: NSF grant ANI-0319168, ANI-

9977267, and Texas Advanced Research Program grant 003658-0439-2001.

vi

listened patiently when I needed a listener, and helped me seek for solutions when

I was not sure where to go. He has made my Ph.D. such a enjoyable process and

enabled me to see how different a person I have become in the past six years. I

could never thank him enough.

Huaiyu Liu

The University of Texas at Austin

August 2005

vii

Designing a Resilient Routing Infrastructure for

Peer-to-Peer Networks

Publication No.

Huaiyu Liu, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Simon S. Lam

Peer-to-Peer (P2P) networks have enabled a new generation of large scale dis-

tributed applications. Unlike the traditional client-server model, in a P2P network,

all peers in the network both contribute to and receive services from the network.

Due to their decentralized and self-organizing nature, P2P networks enable tens of

thousands (potentially millions) of Internet machines to form virtual communities

and share the vast resources aggregated from the participating machines.

In this dissertation, we address a fundamental problem in designing P2P net-

works: How to construct and maintain a resilient infrastructure to provide reliable,

scalable, and efficient routing service for millions of Internet nodes without central

service and administration? The absence of central administration, the large num-

ber of nodes involved, and the high rate of node dynamics pose great challenges to

the design of a resilient routing infrastructure for P2P networks.

Our work tackles the above challenges and has successfully addressed the fol-

lowing problems: (1) How to design protocols to maintain “consistency” of routing

viii

tables to ensure successful routing? (2) How to reason about correctness of these

protocols? (3) How to evaluate the system’s ability to sustain high rates of node

dynamics and how to improve this ability? In particular, we have designed a suite of

protocols that construct and maintain a resilient routing infrastructure. To base the

protocol design on a sound foundation, we have introduced a theoretical foundation,

called C-set trees, to guide protocol design and correctness reasoning. Based on the

theoretical foundation, we have designed a join protocol and developed rigorous cor-

rectness proofs for the protocol. We have also designed an efficient failure recovery

protocol, which has been demonstrated by extensive simulations to perform perfect

recovery even when 50% of network nodes fail. Both the join protocol and the failure

recovery protocol have been integrated into a single framework following a module

composition approach. Furthermore, we have conducted extensive simulation ex-

periments to study behaviors of the designed system under different rates of node

dynamics (churn experiments). We find our system to be effective, efficient, and

provide reliable and scalable routing service for an average node lifetime as low as

8.3 minutes (the median lifetime measured for two deployed P2P networks, Napster

and Gnutella, was 60 minutes).

Based on our system design, we have implemented a prototype system, named

Silk, as the routing component of a shared infrastructure for P2P networks and other

large-scale distributed applications.

ix

Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvii

Chapter 1 Introduction 1

1.1 Problem Statement . 1

1.2 Contributions of This Dissertation 3

1.2.1 Design of a resilient routing infrastructure 5

1.2.2 Study of system behaviors under churn 7

1.2.3 Consistency-preserving neighbor table optimization 8

1.2.4 Prototype development . 9

1.3 Dissertation Outline . 9

Chapter 2 Background 11

2.1 Neighbor table . 13

2.2 Routing scheme . 14

x

Chapter 3 Theoretical Foundation 16

3.1 K-consistent Networks . 18

3.2 Definitions . 24

3.3 C-set tree . 26

3.3.1 Operations of a single join . 26

3.3.2 Operations of multiple joins 27

3.4 Summary . 32

Chapter 4 Handling Joins 34

4.1 Join Protocol for K-consistency . 35

4.1.1 Assumptions and goals . 35

4.1.2 Lowest attach-level . 36

4.1.3 Protocol specification . 37

4.1.4 A simple example . 44

4.2 Protocol Analysis . 48

4.2.1 Correctness of join protocol 48

4.2.2 Protocol performance . 54

4.3 Network Initialization . 58

4.4 Summary . 59

Chapter 5 Integrating Failure Recovery 60

5.1 Basic Failure Recovery . 61

5.1.1 Protocol design . 63

5.1.2 Simulation experiments . 64

5.1.3 Voluntary leaves . 68

5.2 Protocol Design for Concurrent Joins and Failures 69

5.2.1 Protocol extensions . 70

5.2.2 Simulation results . 73

xi

5.3 K vs. Maintenance Cost . 74

5.4 Summary . 77

Chapter 6 System Behaviors under Churn 79

6.1 Churn Experiments . 80

6.1.1 Experiment setup . 81

6.1.2 Results . 82

6.1.3 Maximum sustainable churn rate 90

6.1.4 Protocol overheads . 91

6.2 Routing Performance under Churn 92

6.2.1 Experiment setup . 93

6.3 Summary . 96

Chapter 7 Consistency-preserving Neighbor Table Optimization 98

7.1 Consistency-preserving Optimization 100

7.1.1 Our strategy . 101

7.1.2 Extended join protocol . 103

7.1.3 Correctness and scalability of join protocol 108

7.1.4 Optimization rule and heuristics 111

7.2 Experimental Results . 113

7.2.1 Optimization during joins . 114

7.2.2 Optimization with concurrent joins and failures 115

7.3 Network Initialization . 118

7.4 Summary . 119

Chapter 8 Silk: the Prototype System 120

8.1 System Design . 120

8.1.1 Silk node architecture . 120

8.1.2 Message format . 122

xii

8.1.3 Neighbor failure detection . 124

8.2 System Evaluation . 124

8.2.1 Experiment setup . 126

8.2.2 System performance under node dynamics 128

8.2.3 Discussions . 131

8.3 Summary . 133

Chapter 9 Related Work 134

9.1 Unstructured P2P Networks . 134

9.2 Routing Infrastructure Maintenance 135

9.3 Failure Recovery . 136

9.4 Churn studies . 136

Chapter 10 Conclusions and Future Work 139

10.1 Conclusions . 139

10.2 Future Work . 141

10.2.1 Sustaining node dynamics . 142

10.2.2 Trust management . 142

10.2.3 Systematic support for design and correctness reasoning of

large-scale distributed applications 143

10.2.4 Simulation or emulation of large-scale networked systems . . 143

Appendix A Proofs of Lemmas 3.2 and 3.3 145

Appendix B Proofs of Lemmas 4.1 to 4.5 149

Appendix C Proofs of Theorems 4 to 6 184

Appendix D Proofs of Theorems 7 to 9 192

Bibliography 206

xiii

Vita 211

xiv

List of Tables

2.1 Notation, part 1 . 12

3.1 Notation, part 2 . 18

5.1 Results from 2,080 simulation experiments (f was 0.05n, 0.1n, 0.15n,

0.2n, 0.3n, 0.4n or 0.5n) . 66

5.2 Cumulative fraction of recoverable holes repaired by the end of each

step, n = 4000, f = 800 . 68

5.3 Total number of holes, irrecoverable holes, and recoverable holes re-

paired at each step, n = 4000, f = 800 68

5.4 Results for concurrent joins and failures 74

6.1 Summary of churn experiments, n = 2000, K = 3, timeout = 10 sec 87

6.2 Summary of churn experiments, n = 2000, K = 3, timeout = 5 sec . 87

6.3 Summary of churn experiments, n = 2000, K = 2, timeout = 10 sec 89

8.1 Protocol messages for failure recovery, link quality monitoring, and

routing . 125

B.1 Abbreviations for protocol messages 150

B.2 Notation used in proofs . 150

xv

D.1 Additional notation . 193

xvi

List of Figures

2.1 An example hypercube routing path 12

2.2 An example neighbor table . 14

2.3 The example hypercube routing path in Figure 2.1 , with part of the

neighbor table of each node . 14

3.1 Percentage of disconnected source-destination pairs for different K

values . 20

3.2 (a) Lower bound of the probability that there exist at least K disjoint

paths for each source-destination pair, (b) simulation results on the

fraction of source-destination pairs with at least K disjoint paths.

b = 16, d = 40 . 23

3.3 Establishing neighbor pointers along a path vs. storing neighbors into

table entries. 28

3.4 C-set tree examples . 29

4.1 State variables . 38

4.2 Protocol messages . 38

4.3 Action in status copying . 40

4.4 Action on receiving JoinWaitMsg and JoinWaitRlyMsg 41

4.5 Action on receiving JoinNotiMsg and JoinNotiRlyMsg 43

xvii

4.6 Action on receiving SpeNotiMsg and SpeNotiRlyMsg 44

4.7 Action on receiving InSysNotiMsg 44

4.8 Subroutines . 45

4.9 An example of concurrent joins: (a) message chart, (b) the level-2

neighbor table of 14233 before t3, (c) the level-2 neighbor table of

14233 after t3 . 46

4.10 Theoretical upper bound of expected number of messages vs. n, for

different values of K and m, b = 16, d = 40 56

4.11 Cumulative distribution of messages sent by a joining node, n = 3200,

m = 800, b = 16, d = 40 . 58

4.12 Join durations, m = 1000, b = 16, d = 40 58

5.1 Average number of neighbors per node in a K-consistent network . . 75

5.2 Average number of JoinNotiMsg sent by a joining node 75

5.3 Cumulative distribution of JoinNotiMsg sent by a joining node, b =

4, d = 64 . 76

5.4 Average total number of CpRstMsg and JoinWaitMsg sent by a join-

ing node . 76

6.1 Number of nodes and S-nodes in the network, K = 3 84

6.2 Cumulative distribution of join durations 85

6.3 Number of nodes and S-nodes in the network, λ = 2, K = 3 86

6.4 Maximum churn rate (a) and minimum average lifetime (b), timeout

= 5 sec . 90

6.5 Cumulative distribution of join protocol messages sent by joining

nodes, K = 3, timeout = 10 sec . 92

6.6 Cumulative distribution of query messages sent for recovering a hole,

K = 3, timeout = 10 sec . 92

xviii

6.7 Routing experiment results, n=2000, b =16, timeout = 2 sec 95

7.1 Paths before and after neighbor replacement 101

7.2 Extended state variables for join protocol 104

7.3 New join protocol message . 104

7.4 Extended and new subroutines . 105

7.5 Action on receiving a SameCsetMsg 106

7.6 C-set tree example (K = 1) . 107

7.7 Evolution of consistent subnet . 108

7.8 Join durations with/without protocol extensions 110

7.9 Average number of SameCsetMsg . 111

7.10 Effectiveness of optimization heuristics 114

7.11 Optimization with massive joins and failures 116

7.12 Churn experiment, λ = 1, K = 3 . 117

8.1 Architecture of a Silk node . 121

8.2 Message format . 123

8.3 Components involved in each experiment 126

8.4 Performance of a single join . 129

8.5 Performance of concurrent joins, n = 400 129

8.6 Performance of failure recovery, n = 300 130

8.7 Performance of failure recovery, 10 failures in each experiment 131

8.8 Average join bandwidth overhead for different d values, n = 400, K = 2132

B.1 Message sequence chart for base case 168

B.2 C-sets and message sequences, Case 1.a.1 and Case 1.b.1 170

B.3 Message sequence chart for Case 1.a.1 171

B.4 Message sequence chart for Case 1.a.2 173

xix

D.1 Nodes and C-sets for Case 3 . 199

D.2 Nodes and C-sets for Case 4 . 200

xx

Chapter 1

Introduction

1.1 Problem Statement

Peer-to-Peer (P2P) networks have enabled a new generation of large-scale dis-

tributed applications, such as global file sharing [5, 6, 11, 28], global-scale stor-

age [4, 13, 35], and P2P gaming [12], and have generated tremendous interest world-

wide. Unlike the traditional client-server model, in a P2P network, all peers in the

network both contribute to and receive services from the network. Due to their

decentralized and self-organizing nature, P2P networks enable tens of thousands

(potentially millions) of Internet nodes to form virtual communities and to share

the vast resources aggregated from the participating nodes.

This dissertation addresses a fundamental problem in designing P2P net-

works: How to construct and maintain a resilient infrastructure to provide reliable,

scalable, and efficient routing service for millions of Internet nodes without central

service and administration? Routing is a fundamental service for P2P networks. It

enables any node to send a message to any other node in the network or locate a

particular object in the network. However, the absence of global knowledge, the

large number of nodes involved, and the high dynamics of participating nodes pose

1

great challenges to solving the problem, namely:

(1) How to design protocols to maintain the routing infrastructure so that it re-

mains in or converges to “good states” even when nodes join and leave con-

currently and frequently, and what are “good states”?

(2) How to reason about correctness of the designed protocols, which involve an

arbitrary number of participants?

(3) Will the designed system provide reliable, scalable, and efficient routing service

under node dynamics?

(4) How to improve a system’s ability to sustain node dynamics?

Existing P2P networks belong to two categories, structured and unstruc-

tured, depending on whether they have stringent rules on forming neighbor relation-

ship among the nodes. Examples of unstructured P2P networks include Gnutella [6],

Kazaa [11], and Freenet [5], where neighbors of a node are chosen arbitrarily from

the network. A concern with the unstructured P2P networks is that their under-

lying routing schemes (most of them involve flooding) limit their scalability, and

they only provide best-effort routing services (that is, routing towards a particular

node or an object in the network is not guaranteed to succeed, even if the node or

the object exist in the network). It still remains a challenge for unstructured P2P

networks to provide reliable and scalable routing services.

Structure P2P networks have been investigated as a platform for building

large-scale distributed systems in recent years [1, 8, 26, 27, 29, 30, 34, 38, 43].

For scalable routing, each node maintains O(log n) pointers to other nodes, called

neighbor pointers, where n is the number of network nodes, and there are rules on

which nodes could be chosen as neighbors of the node. Each node stores neighbor

pointers in a table, called its neighbor table. The neighbor tables constitute the

routing infrastructure of a P2P network. To route a message to a node or locate an

2

object, the average number of application-level hops required is O(log n).1 Existing

structured P2P networks provide reliable routing when the network is static or is

under a low rate of node dynamics. When the rate of node dynamics becomes

higher, however, it is not clear whether the existing structured P2P networks can

maintain routing performance at a steady level. Study shows that some existing

structured P2P networks exhibit routing performance degradation when the rate of

node dynamics increases: either the percentage of routing success decreases or the

average routing delay increases significantly [32]. Moreover, protocols that handle

node dynamics in most existing structured P2P networks are designed based on

heuristics. It is hard to reason about their correctness.

Therefore, the goal of this dissertation is to tackle the challenges stated above

and design a resilient routing infrastructure for P2P networks that provides reliable,

scalable, and efficient routing services even under high rates of node dynamics, and

to contribute towards providing a shared infrastructure for large-scale distributed

applications.

1.2 Contributions of This Dissertation

In this dissertation, we have designed a resilient routing infrastructure based the

hypercube routing scheme used in several structured P2P systems [20, 29, 34, 43].

More specifically:

• We have designed a suite of protocols for construction and maintenance of the

routing infrastructure [14, 15, 16, 21, 22, 24, 23], which include:

– A formal definition of K-consistent neighbor tables, K ≥ 1, for the hy-

percube routing scheme. 1-consistency (or consistency) enables reliable

1This is true except for CAN [30], in which routing takes O(in1/i) hops (i is the number of
dimensions used in the system).

3

and scalable routing and K-consistency, K > 1, enables resilient routing

service.

– A join protocol to construct K-consistent neighbor tables for an arbi-

trary number of concurrent joins. The join protocol can also be used for

network initialization.

– An effective and efficient failure recovery protocol to maintain K-consistency

after node failures.

– Integration of the join protocol and the failure recovery protocol to main-

tain K-consistent neighbor tables in presence of concurrent and continu-

ous joins and failures.

– A general strategy to preserve neighbor table consistency while optimiz-

ing neighbor tables for efficient routing, when there are nodes that join,

leave, or fail concurrently and frequently. The general strategy has been

realized in the context of the hypercube routing scheme.

• We have developed a theoretical foundation, C-set trees, for protocol design

and reasoning about K-consistency [14, 21, 22, 24]. It is the first theoretical

foundation introduced for designing and reasoning about protocols that handle

node dynamics in P2P networks based on hypercube routing. The concept of C-

set trees enables rigorous proofs for protocol correctness. In particular, we have

proved the correctness of various versions of join protocol [14, 21, 22, 23, 24].

• We have evaluated the designed system extensively, through both theoretical

analysis and comprehensive experiments [15, 16, 22, 23, 24]. In particular,

we have run extensive “churn” experiments to study system behaviors under

different churn rates. Our work is one of the first comprehensive studies on

the behaviors of structured P2P networks under churn. Experiment results

show that our system can support higher churn rates than what have been

4

measured for some deployed P2P networks (Gnutella and Napster), and the

routing performance of our system does not degrade much when the churn

rate increases. Our work also provides insights into how to improve a P2P

network’s ability to handle node dynamics.

• Based on the system design, we have implemented a prototype system, named

Silk.

The results of our research establish that with reasonable overhead, we can

build a resilient routing infrastructure to provide reliable and scalable routing ser-

vices even under high churn rates to support P2P applications and other large-scale

distributed applications.

1.2.1 Design of a resilient routing infrastructure

We choose to design our routing infrastructure based on the the hypercube routing

scheme. With additional distributed directory information, this scheme has been

proved to guarantee to locate a copy of an object if it exists, and the expected cost

of locating and accessing the copy is asymptotically optimal, given that the neighbor

tables in the network are consistent (definition in Section 3) and optimal (that is,

they store nearest neighbors) [29].

To design a resilient routing infrastructure based on the hypercube rout-

ing scheme, however, a suite of protocols must be designed to handle node joins,

leaves, and failures to maintain “consistent” neighbor tables that guarantee suc-

cessful routing from any source to any destination and successful locating of the

queried objects. In designing the routing infrastructure, we have discovered some

relationships among the network nodes based on their node IDs. This discovery

leads to the introduction of a theoretical foundation, called C-set trees. Aided by

C-set trees, we have designed a join protocol, derived correctness conditions for the

5

join protocol to produce consistent neighbor tables, and developed rigorous proofs

for correctness of the join protocol for an arbitrary number of concurrent joins.

Neighbor table consistency guarantees pairwise reachability in P2P networks.

However, node failures are inevitable and a single failure would break consistency.

As a second step in system design, we introduce a new concept, K-consistency,

to provide fault-tolerance and facilitate failure recovery. K-consistency introduces

redundancy into each neighbor table and generalizes the concept of consistency. Cor-

respondingly, the C-set tree concept as well as the join protocol and its correctness

proofs have been generalized for K-consistency. With K-consistency, the routing

infrastructure is much more resilient: K disjoint paths exist from any source to any

destination with a probability quickly approaching 1 when network size increases.

The third step is to design a failure recovery protocol, which restores neighbor

table consistency when failures occur. (In our work, node leaves are treated as special

cases of node failures.) The main difficulty in the design is that individual nodes

do not have global knowledge and cannot tell whether there still exist nodes that

are qualified as substitutes of the failed neighbors. To overcome this difficulty, we

have designed a basic failure recovery protocol that includes a sequence of search

steps to be executed by a node only based on its local information. Thousands

of simulation experiments have been conducted for protocol evaluation, where the

network size ranged from several hundred to more than 8,000 nodes and up to 50%

nodes failed in each experiment. The protocol is found to be very effective and

efficient: in every experiment with K ≥ 2 (that is, when redundancy is maintained

in neighbor tables), the network successfully recovered from all failures and restored

K-consistency by the end of the experiment, and 99% of table entries with faulty

neighbors were repaired by exchanges of O(K) messages.

To complete the system design, the join protocol and the failure recovery

protocol must be integrated into a single framework. In doing so, we follow the

6

Lam-Shankar approach [17] to module composition, and extend both protocols.

The join protocol is extended under the assumption that the extended failure recov-

ery protocol provides a “perfect recovery” service, and failure recovery actions are

given higher priority over join actions to prevent circular reasoning. Intuitively, the

integrated protocols attempt to maintain a stable “core” in the network such that

nodes in the core remain fully connected. Extensive simulations demonstrate that

for K ≥ 2, the integrated protocols had constructed and maintained K-consistent

neighbor tables after massive joins and failures (up to 50% of network size) in ev-

ery experiment. These results confirm that in a dynamically changing network, the

routing infrastructure maintained by the integrated protocols is able to converge to

a consistent state and provide reliable routing services.

1.2.2 Study of system behaviors under churn

Recent work has shown that deployed P2P networks exhibit a high rate of node churn

(continuous node joins and leaves) [36, 37]. For instance, in systems such as Gnutella

and Napster, median node lifetimes were measured to be only 60 minutes [36].

Hence, the ability to sustain node dynamics is essential for successful deployment

of P2P networks. In the second part of this dissertation research, we explore how

robust the system is with the designed protocols, how high a rate of node dynamics

the system can sustain, and how to improve the system’s ability to sustain node

dynamics.

We design and conduct extensive churn experiments. In each experiment,

Poisson processes are used to generate join and failure events, and periodic snap-

shots are taken to evaluate connectivity and consistency measures. These measures

indicate whether the system can sustain a large stable “core” for a particular churn

rate over the long term. Through the experiments, we find that for a given network,

its sustainable churn rate is upper bounded by the rate at which new nodes can join

7

the network successfully, referred to as the join capacity of the network. We also

identify three factors that affect join capacity: the degree of redundancy in neigh-

bor tables (the K value), the average duration of a failure recovery process, and the

churn rate. This observation leads to two approaches to increase the join capacity of

a system under churn: reducing the average duration of failure recovery or choosing

a smaller K value. Clearly, there are tradeoffs between routing redundancy of a

system and the system’s ability to sustain churn.

The churn experiments demonstrate that the protocols can sustain an average

node lifetime as short as 8.3 minutes for networks with 2,000 nodes. The results

also suggest that when the network grows beyond 2,000 nodes, it could sustain

average node lifetime even lower than 8.3 minutes. Experiment results also show that

our protocols, by striving to maintain K-consistency, are able to provide pairwise

connectivity higher than 99.9995% (between S-nodes) at a churn rate of 2 joins and

2 failures per second for n=2000 and K=3. Furthermore, the average routing delay

increases only slightly even when the churn rate is greatly increased. These are very

promising results for developing P2P applications in highly dynamic environments.

1.2.3 Consistency-preserving neighbor table optimization

Another important problem of routing infrastructure maintenance in P2P networks

is to optimize neighbor tables to reduce routing delays. Previous research has pro-

posed algorithms to find nearby neighbors for each entry in a neighbor table. How-

ever, optimizing tables without constraints could break established reachability and

affect the network’s ability to converge to a consistent state. In our work, we focus

on a problem that had not been addressed by previous research: how to preserve

consistency and thus preserve established reachability, while optimizing neighbor ta-

bles in the presence of node dynamics? We propose a general strategy to address this

problem: Identify a consistent subnet as large as possible and only allow a neighbor

8

to be replaced by a closer one if both of them belong to the subnet. To realize the

general strategy, the join and failure recovery protocols are extended, and a rule

that introduces constrains to optimization algorithms is proposed. Moreover, a set

of heuristics are presented to search for nearby neighbors with low cost. Correctness

of the extended join protocol is proved based on the theoretical foundation, C-set

trees. Experimental results show that even under high churn rates, the protocols

are able to maintain a stable and connected “core” in the network, and the average

distance of the nearest neighbor in each table entry is optimized within a ratio of

2.2 of the optimal.

1.2.4 Prototype development

We have implemented a prototype system based on our design and named it Silk.

The system is written in Java and now consists of 18,000 lines of code. We have

evaluated the system performance of the prototype, in particular, the bandwidth

overhead by the protocols that handle node dynamics. The results indicate that

for a fixed number of joins or failures, the bandwidth overhead increases at most

logarithmically with the network size.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, we briefly review

the hypercube routing scheme. In Chapter 3, we present the theoretical founda-

tions for our protocol design and correctness reasoning. In Chapter 4, we present

our design of a join protocol for the hypercube routing scheme, reason about its

correctness, and analyze its communication costs. We then discuss the issue of fail-

ure recovery in Chapter 5, present our design of a basic failure recovery protocol,

integrate it with the join protocol under a set of rules, and evaluate performance of

the protocols. In Chapter 6, we evaluate the performance of our designed system

9

through extensive simulations, called churn experiments, to study system behaviors

under different rates of node dynamics as well as the system’s routing performance.

In Chapter 7, we discuss consistency-preserving neighbor table optimization. In

Chapter 8, we present the implementation and evaluation of our prototype system,

named Silk. We then discuss related work in Chapter 9, and conclude and outline

future work in Chapter 10.

10

Chapter 2

Background

This dissertation is based on the hypercube routing scheme that is first presented

in PRR [29], and also used in several other structured P2P networks, such as Pas-

try [34], and Tapestry [43]. With additional distributed directory information, it is

proved in PRR [29] that the hypercube routing scheme guarantees to locate a copy

of an object if it exists, and the expected cost of accessing is asymptotically optimal,

given that the neighbor tables in the network are consistent (definition in Section 3)

and optimal (that is, they store nearest neighbors) [29]. In this chapter, we briefly

review this scheme.

In the hypercube routing scheme, each participating node is assigned a node

ID uniformly at random from a large identifier space.1 A node ID is represented by

d digits of base b, e.g., a 160-bit ID can be represented by 40 Hex digits (d = 40,

b = 16).2 Hereafter, we will use x.ID to denote the ID of node x, x[i] the ith digit

in x.ID , and x[i− 1]...x[0] a suffix of x.ID . We count digits in an ID from right to

left, with the 0th digit being the rightmost digit. See Table 2.1 for notation used in

this Chapter and throughout this dissertation. Also, we will use “network” instead
1This is typically done by applying a secure one-way has function, such as SHA-1 [33], to a

node’s IP address or some other information of the node.
2In Tapestry, b = 16 and d = 40. In Pastry, b = 16 and d = 32.

11

of “hypercube routing network” for brevity whenever there is no ambiguity.

Notation Definition

[`] the set {0, ..., `− 1}, ` is a positive integer

d the number of digits in a node’s ID

b the base of each digit

x[i] the ith digit in x.ID

x[i− 1]...x[0] suffix of x.ID ; denotes empty string if i = 0

x.table the neighbor table of node x

j · ω digit j concatenated with suffix ω

Nx(i, j) the set of nodes in (i, j)-entry of x.table, also referred as the (i, j)-neighbors
of node x

Nx(i, j).size the number of nodes in Nx(i, j)

Nx(i, j).first the first node in Nx(i, j)

Table 2.1: Notation, part 1

Given a message with destination node ID, z.ID , the objective of each step

in hypercube routing is to forward the message from its current node, say x, to a

next node, say y, such that the suffix match between y.ID and z.ID is at least one

digit longer than the match between x.ID and z.ID .3 If such a path exists, the

destination is reached in O(logb n) steps on the average and d steps in the worst

case, where n is the number of network nodes. Figure 2.1 shows an example path

for routing from source node 21233 to destination node 03231 (b = 4, d = 5). Note

that the ID of each intermediate node in the path matches 03231 by at least one

more suffix digit than its predecessor.

21233 0323133121 13331 30231

Figure 2.1: An example hypercube routing path

3In this dissertation, we follow PRR [29] and use suffix matching, whereas other systems use
prefix matching. The choice is arbitrary and conceptually insignificant.

12

2.1 Neighbor table

To implement hypercube routing, each node maintains a neighbor table that has d

levels with b entries at each level. Each table entry stores link information to nodes

whose IDs have the entry’s required suffix, defined as follows. Consider the table in

node x. The required suffix for entry j at level i, j ∈ [b], i ∈ [d], referred to as the

(i, j)-entry of x.table , is j ·x[i−1]...x[0]. Any node whose ID has this required suffix

is said to be a qualified node for the (i, j)-entry of x.table. Only qualified nodes

for a table entry can be stored in the entry. Note that node x has the required suffix

for each (i, x[i])-entry, i ∈ [d], of its own table. For routing efficiency, we fill each

node’s table such that Nx(i, x[i]).first = x for all x ∈ V , i ∈ [d]. Figure 2.2 shows an

example neighbor table. The string to the right of each entry is the required suffix

for that entry. An empty entry indicates that there does not exist a node in the

network whose ID has the entry’s required suffix.

Nodes stored in the (i, j)-entry of x.table are called the (i, j)-neighbors of x,

denoted by Nx(i, j). If multiple nodes exist with the desired suffix of the (i, j)-entry,4

then a subset of these nodes, chosen according to some criterion, may be stored in the

entry with the nearest one designated as the primary(i, j)-neighbor. Furthermore,

node x is said to be a reverse(i, j)-neighbor of node y if y is an (i, j)-neighbor of

x. Each node also keeps track of its reverse-neighbors. The link information for

each neighbor stored in a table entry consists of the neighbor’s ID, IP address, and

some other information if necessary (communication ports, security keys, etc). For

clarity, only node IDs are shown in Figure 2.2. Hereafter, we will use “neighbor” or

“node” instead of “node’s ID and IP address” whenever the meaning is clear from

context.
4Ideally, these neighbors are chosen from qualified nodes for the entry according to some prox-

imity criterion [29].

13

0

1

2

3

033

133

233

333

03

13

23

33

01100

33121

12232

21233

22303

13113

00123

21233

31033

21233

0233

1233

2233

3233

10233

21233

03233

01233

11233

31233

21233

11233

21233

level 4 level 3 level 2 level 1 level 0

03133

Neighbor table of node 21233 (b=4, d=5)

Figure 2.2: An example neighbor table

2.2 Routing scheme

When node x sends a message to node y, it first forwards the message to u1, a

primary-neighbor of x at level-0 that shares the rightmost digit with y. u1 then

forwards the message to its primary-neighbor at level-1 that shares the rightmost

two digits with y. This process continues until the message reaches y. For example,

a message sent from node 21233 to destination node 03231 is first forwarded to the

primary(0, 1)-neighbor of 21233, which is 33121 as in Figure 2.2. Then the message

is forwarded to the primary(1, 3)-neighbor of 33121, say 13331, and so on, until it

reaches 03231, as shown in Figure 2.3.

01100
33121
12232
21233

Level−0 of
21233’s
neighbor table neighbor table

neighbor tableneighbor table

30111
33121
13331

33121’s

11031
01131

13331’s

30231’s

0323121233 33121 13331 30231

Level−1 of

Level−2 of

Level−3 of

30231

21101 30231
11231

03231

Figure 2.3: The example hypercube routing path in Figure 2.1 , with part of the
neighbor table of each node

Generally, if u is the ith node along the path (the source is the 0th node), 0 ≤
i ≤ d− 1, then it forwards the message to the primary-neighbor in its (i, y[i])-entry,

14

where y is the destination node. In this dissertation, the primary(i, x[i])-neighbor

of a node, say, x, is chosen to be x itself. As a result, when x sends a message to y

following the primary-neighbor pointers, instead of choosing the primary-neighbor

from (i, y[i])-entry (assuming x is the ith node along the path), x forwards the

message to the primary-neighbor in (k, y[k])-entry, where k = |csuf (x.ID, y.ID)|
(the length of the longest common suffix of x.ID and y.ID). Note that k ≥ i.

15

Chapter 3

Theoretical Foundation

To implement the hypercube routing scheme in a dynamic, distributed environment,

the following problems must be addressed:

1. Given a set of nodes, a join protocol is needed for the nodes to initialize their

neighbor tables such that the tables are consistent. (Hereafter, a “consistent

network” means a set of nodes with consistent neighbor tables.)

2. Protocols are needed for nodes to join and leave a consistent network such that

the neighbor tables are still consistent after a set of joins and leaves. When a

node fails, a recovery protocol is needed to re-establish consistency of neighbor

tables.

3. A protocol is needed for nodes to optimize their neighbor tables to reduce

routing delays.

Neighbor table consistency guarantees the existence of a path from any source

node to any destination node in a network. Such consistency however can be broken

by the failure of a single node. To improve system robustness, we generalize the

concept of consistency into K-consistency, K ≥ 1, by introducing redundancy into

neighbor tables. Informally, the neighbor tables of a network are K-consistent if

and only if each table entry in every node stores min(K,H) neighbors, where H is

16

the number of nodes in the network that have the “required suffix” (definition in

Section 2.1) of the table entry. K-consistency has the following advantages:

• K-consistency implies consistency and K-consistent neighbor tables provide

“static resilience” [7]. More specifically, we show in Section 3.1 that a K-

consistent network provides at least K disjoint paths from any node to any

other node with probability approaching 1 as n increases (e.g., for n = 300

and K = 3, the probability is lower bounded by 0.99).

• K-consistency facilitates design of failure recovery protocol and supports rapid

failure recovery. In Chapter 5, we will present a failure recovery protocol

that only uses local information. It is shown through extensive simulation

experiments that for K ≥ 2, all “recoverable holes” in neighbor tables due to

failed nodes are repaired by the failure recovery protocol in every experiment.

• K-consistency benefits neighbor table optimization. In Chapter 7, our study

shows that with the same set of optimization heuristics, a larger K value

results in neighbor tables that provide shorter routes.

To design protocols to generate K-consistent neighbor tables, a major diffi-

culty is that there is no global information available to assist an individual node to

find enough neighbors for each of its table entries. To guide our protocol design and

reasoning about K-consistency, we introduce the concept of C-set trees. The crux

of our proofs for protocol correctness in later chapters is based upon induction on

C-set trees.

We start this chapter by introducing the concepts of neighbor table consis-

tency and K-consistency in Section 3.1. We next present the definitions to be used

in our protocol design and proofs in Section 3.2, illustrate and formally define C-set

trees in Section 3.3, and summarize in Section 3.4. Table 3.1 presents the notation

used in this Chapter and throughout this dissertation.1

1In our notation, we use Vli...l0 to denote a suffix set of V . Similarly, Wli...l0 is a suffix set of
W and (V ∪ W)li...l0 is a suffix set of V ∪ W . However, we reserve Cli...l0 to denote a C-set, as

17

Notation Definition

〈V,N (V)〉 a hypercube network: V is the set of nodes in the network, N (V) is the set of
neighbor tables

|V | the number of nodes in set V

|ω| the number of digits in suffix ω (length of suffix ω)

csuf (ω1 , ω2) the longest common suffix of ω1 and ω2

Vli...l0 a suffix set of V , which includes all of the nodes in V that has an ID with
suffix li...l0; denotes V if li...l0 is the empty string

tb
x the time at which x starts joining the network

te
x the time x changes status to in system, i.e., the end

of x’s join process,

tb min(tb
x1 , ..., tb

xm
)

te max(te
x1 , ..., t

e
xm

)

Table 3.1: Notation, part 2

3.1 K-consistent Networks

Constructing and maintaining consistent neighbor tables is an important design ob-

jective for structured P2P networks. We next present a rigorous definition of con-

sistency and then introduce a stronger property, K-consistency, for the hypercube

routing scheme.

Definition 3.1 Consider a network 〈V,N (V)〉. The network, or N (V), is con-

sistent if for any node x, x ∈ V , each entry in its table satisfies the following

conditions:

(a) If Vj·x[i−1]...x[0] 6= ∅, i ∈ [d], j ∈ [b], then there exists a node y, y ∈ Vj·x[i−1]...x[0],

such that y ∈ Nx(i, j).

(b) If Vj·x[i−1]...x[0] = ∅, i ∈ [d], j ∈ [b], then Nx(i, j) = ∅.

Part (a) in the above definition states that for each table entry, if there exists

at least one node in the network that has the required suffix of the entry, then the

entry must not be empty and it is filled with at least one node having the required

suffix. Part (b) in the above definition states that if the network does not have any

defined in Section 3.3.

18

node with the required suffix of a particular table entry, then that table entry must

be empty.

Definition 3.2 Consider two nodes, x and y, in network 〈V,N (V)〉. If there exists

a neighbor sequence (a path), (u0, ..., uk), k ≤ d, such that u0 is x, uk is y, and

ui+1 ∈ Nui(i, y[i]), i ∈ [k], then y is reachable from x, or x can reach y, in k

hops.2

Lemma 3.1 In a network 〈V,N (V)〉, any node is reachable from any other node if

condition (a) of Definition 3.1 is satisfied by the network.

Lemma 3.1 shows that neighbor table consistency guarantees the existence

of a path from any source node to any destination node in the network. Such

consistency however can be broken by the failure of a single node. To increase

robustness and facilitate the design of failure recovery protocols, our original goal

was to design a new join protocol that constructs a K-connected hypercube routing

network, that is, a network in which neighbor tables provide at least K disjoint paths

(K > 1) from any source node to any destination node. However, we quickly realized

that for a network with a small number of nodes and some specific realization of

node IDs, it is possible that a K-connected network does not exist. (Recall that node

IDs are randomly generated.) This is because in hypercube routing, only “qualified”

nodes whose IDs have the suffix required by a table entry can be stored in the table

entry. Instead, we define a K-consistent (hypercube routing) network as follows:

Definition 3.3 Consider a network 〈V,N (V)〉. The network, or N (V), satisfies

K-consistency, K ≥ 1, if for any node x, x ∈ V , each entry in its table satisfies

the following conditions:

(a) If Vj·x[i−1]...x[0] 6= ∅, then Nx(i, j).size = min(K, |Vj·x[i−1]...x[0]|), i ∈ [d], j ∈ [b],

where Nx(i, j) ⊆ Vj·x[i−1]...x[0].

2In this dissertation, k and K are used as different variables.

19

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800

Pe
rc

en
ta

ge
 o

f d
is

co
nn

ec
te

d
pa

irs

Number of failed nodes in the network (f)

d=16, K=1
d=64, K=1
d=16, K=2
d=64, K=2
d=16, K=3
d=64, K=3

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800

Pe
rc

en
ta

ge
 o

f d
is

co
nn

ec
te

d
pa

irs

Number of failed nodes in the network (f)

d=8, K=1
d=40, K=1

d=8, K=2
d=40, K=2

d=8, K=3
d=40, K=3

(a) b=4, n=4000 (b) b=16, n=4000

Figure 3.1: Percentage of disconnected source-destination pairs for different K values

(b) If Vj·x[i−1]...x[0] = ∅, i ∈ [d], j ∈ [b], then Nx(i, j) = ∅.

Definition 3.3 states that in a K-consistent network with n nodes, for every

node in the network, each of its table entry is filled with K neighbors if there are K

or more qualified nodes in the network for that entry; otherwise, all qualified nodes

(if any) are stored in the entry. To study the resilience of K-consistent networks in

the presence of failures, we have conducted simulation experiments as follows. We

began by constructing a K-consistent network of n nodes following Definition 3.3,

then randomly picked f nodes and let them fail. Next, we counted the number

of disconnected source-destination pairs in the network. By a disconnected source-

destination pair, (x, y), we mean that both x and y have not failed but x cannot

reach y. Each simulation is identified by a combination of n, b, d, K and f values.

For each combination, we ran five simulations and calculated the average value of

the percentage of source-destination pairs that became disconnected.

Figure 3.1 shows some simulation results for percentages of disconnected

source-destination pairs after node failures, for different number of failures in a

network that initially had 4,000 nodes. First, note that the results are insensitive

to the value of d. In each plot, for each K value, the two curves for two different d

values are almost the same. Second, when K is increased from 1 to 2, the percentage

of disconnected pairs decreases dramatically. For K = 3, even after 20% of the nodes

have failed, the number of disconnected source-destination pairs is less than 1% of all

20

source-destination pairs. The results also show that increasing the value of b from

4 to 16 leads to a significant reduction in the percentage of disconnected source-

destination pairs. This is because with a larger b, more neighbors are stored in a

table (the number is proportional to Kb logb n). As expected, the simulation results

show that with more neighbors stored in each entry, a network is more resilience in

the presence of failures. (In fact, it is also easier for the network to recover from

failures and maintain consistency of neighbor tables, as shown in Chapter 5.)

It is easy to see that K-consistency is a stronger property than consistency.

In particular, a K-consistent network, K ≥ 1, is a consistent network. In this

dissertation, for each node x, we choose Nx(i, x[i]).f irst to be x itself, i ∈ [d], for

efficient routing. Multiple neighbors stored in each table entry provide alternative

paths from a source node to a destination node, and some of them are disjoint.

More precisely, two paths from source node x to destination node y are disjoint if

and only if any node in each path that is neither x nor y does not appear in the

other path. Further, a set of paths from x to y are disjoint if and only if every pair

of paths in the set are disjoint. For example, let a, b, and c denote nodes. Then the

following paths are disjoint: x → y, x → a → y, and x → b → c → y.3

Theorem 1 In a K-consistent network, 〈V,N (V)〉, where |V | = n and n ≥ K, for

any two nodes, x and y, x ∈ V , y ∈ V and x 6= y, a lower bound of the probability

that there exist at least K disjoint paths from x to y is

(1− K − 1
n− 1

)
n∑

i=K

C(bd−1, i)C(bd − bd−1, n − i)
C(bd, n)

where C(X,Y) is the number of Y -combinations of X objects.

To prove Theorem 1, we first present two lemmas. Proofs of these lemmas

are presented in Appendix A. Lemma 3.2 says that in a K-consistent network, if
3Note that nodes here are user machines in a P2P network. Thus, it is possible for two disjoint

paths in a K-consistent (hypercube routing) network to share a router in the underlying Internet.
This would not be a concern since routers are generally much more resilient than user machines.

21

destination node y is not a neighbor stored in the table of node x, then at least

K disjoint paths exist from x to y. However, if destination y is stored in x.table,

then a tight lower bound of the number of disjoint paths from x to y depends upon

whether y is stored in Nx(0, x[0]). Lemma 3.3 summarizes all the cases. Proofs of

the two lemmas are presented in Appendix A.

Lemma 3.2 In a K-consistent network, 〈V,N (V)〉, for any two nodes, x and y,

x ∈ V , y ∈ V and x 6= y, if y 6∈ x.table, then there exist at least K disjoint paths

from x to y.

Lemma 3.3 In a K-consistent network, 〈V,N (V)〉, for any two nodes, x and y,

x ∈ V , y ∈ V and x 6= y, if y 6∈ Nx(0, x[0]), then there exist at least min(K, |Vy[0]|)
disjoint paths from x to y; if y ∈ Nx(0, x[0]), then there exist at least min(K, |Vy[0]|)−
1 disjoint paths from x to y.

Proof of Theorem 1: Let A be the event that there exist at least K disjoint paths

from x to y, and B be the event that y 6∈ Nx(0, x[0]) (which includes y 6∈ x.table

and y ∈ x.table∧ y 6∈ Nx(0, x[0])). Note that if y ∈ Nx(0, x[0]), then it must be that

y[0] = x[0]. For any event X, let P (X) denote the probability of X. We first derive

P (A ∧B).

We know P (A ∧ B) = P (A|B)P (B). P (A|B) is the probability that there

exist at least K disjoint paths from x to y, given y 6∈ Nx(0, x[0]). By Lemma 3.3, if

y 6∈ Nx(0, x[0]), then there exist at least min(K, |Vy[0]|) disjoint paths from x to y.

Thus, P (A|B) = P (min(K, |Vy[0]|) = K) = P (|Vy[0]| ≥ K). |Vy[0]| ≥ K means that

there exist at least K nodes in V with suffix y[0].

P (A|B) = P (|Vy[0]| ≥ K) =
n∑

i=K

C(bd−1, i)C(bd − bd−1, n− i)
C(bd, n)

22

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

150 200 250 300 350 400 450 500

Lo
w

er
 b

ou
nd

 o
f p

ro
ba

bi
lit

y

Number of nodes in the network (n)

K=2
K=3
K=4
K=5

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

150 200 250 300 350 400 450 500

Fr
ac

tio
n

Number of nodes in the network (n)

K=2
K=3
K=4
K=5

(a) (b)

Figure 3.2: (a) Lower bound of the probability that there exist at least K dis-
joint paths for each source-destination pair, (b) simulation results on the fraction of
source-destination pairs with at least K disjoint paths. b = 16, d = 40

To derive P (B), let K ′ be the number of neighbors stored in Nx(0, x[0])

other than x itself. Since there are at most K nodes stored in Nx(0, x[0]) (by

Definition 3.3) and one of them is x (Nx(0, x[0]).first = x), we have K ′ ≤ K − 1.

P (B) = 1− P (y ∈ Nx(0, x[0])) ≥ 1− K − 1
n− 1

Combining the above results, we have

P (A) ≥ P (A ∧B)

= P (A|B)P (B)

= P (B)
n∑

i=K

C(bd−1, i)C(bd − bd−1, n − i)
C(bd, n)

≥ (1− K − 1
n− 1

)
n∑

i=K

C(bd−1, i)C(bd − bd−1, n− i)
C(bd, n)

Figure 3.2(a) plots the lower bound of the probability that there exist at least

K disjoint paths for every source-destination pair in a K-consistent network, where

b = 16 and d = 40.4 Observe that when n increases, the lower bound approaches 1.

For example, the lower bound is higher than 0.99 for n = 300 and K = 3.
4b = 16 and d = 40 are the values used in some other systems such as Tapestry. Results for

lower bounds of the probability with other values of b and d show the same trend.

23

We complement the above analysis with simulation experiments. A set of

simulations were conducted to evaluate the number of disjoint paths for each source-

destination pair in K-consistent networks with different values of K, b, d and n. In

each simulation, each node has a randomly generated ID, and the neighbor table

of each node was constructed according to Definition 3.3, with Nx(i, x[i]).first = x

for all x ∈ V , i ∈ [d]. Then for each source-destination pair, the number of disjoint

paths from source to destination was counted. For each combination of b, d, n and

K values, we ran five simulations and obtained the average value of the ratio of the

number of source-destination pairs that have at least K disjoint paths to the total

number of source-destination pairs. Figure 3.2(b) presents some of our simulation

results. Observe that the results in Figure 3.2(a) are much closer to 1 than the

corresponding lower bound results in Figure 3.2(a), as expected. For example, the

fraction of source-destination pairs with at least K disjoint paths is greater than

0.996 for n = 300 and K = 3.

3.2 Definitions

In this section, we present a set of important definitions to be used in this disser-

tation, including the definitions for the joining period of a node, sequential joins,

concurrent joins, dependent joins, independent joins, and the notification set of a

joining node.

Definition 3.4 Let tbx be the time when node x begins joining a network, and tex be

the time when x becomes an S-node (to be defined in Section 4.1). The period from

tbx to tex, denoted by [tbx, tex], is the joining period (or join duration) of x.

Definition 3.5 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 2, join a network.

If the joining period of each node does not overlap with that of any other, then the

joins are sequential.

24

Definition 3.6 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 2, join a network.

Let tb = min(tbx1
, ..., tbxm

) and te = max(tex1
, ..., texm

). If for each node x, x ∈ W ,

there exists a node y, y ∈ W and y 6= x, such that their joining periods overlap, and

there does not exist a sub-interval of [tb,te] that does not overlap with the joining

period of any node in W , then the joins are concurrent.

Definition 3.7 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 1, join a K-

consistent network 〈V,N (V)〉. For any node x, x ∈ W , if |Vx[k−1]...x[0]| ≥ K and

|Vx[k]...x[0]| < K, k ∈ [d], then V x[k−1]...x[0] is the notification set of x regarding V

(or noti-set, in short).

Intuitively, V Notify
x is the set of nodes in V that need to update their neighbor

tables to satisfy K-consistency conditions after the joins, if x were the only node

that joins 〈V,N (V)〉. For instance, suppose x = 10261 (b = 8, d = 5), and V =

{13061, 31701, 11261, 10353}. If K = 1, then V Notify
x = V261 = {11261} (V261 =

{11261} and V0261 = ∅, thus |V261| ≥ 1 and and |V0261| < 1, then by Definition 3.7,

V Notify
x = V261); if K = 2, then V Notify

x = V61 = {11261, 13061}; if K = 3, then

V Notify
x = V1 = {11261, 13061, 31701}.

Definition 3.8 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 2, join a network

〈V,N (V)〉. The joins are independent if for any pair of nodes x and y, x ∈ W ,

y ∈ W , x 6= y, V Notify
x ∩ V Notify

y = ∅.

Definition 3.9 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 2, join a network

〈V,N (V)〉. The joins are dependent if for any pair of nodes x and y, x ∈ W ,

y ∈ W , x 6= y, one of the following is true:

• V Notify
x ∩ V Notify

y 6= ∅.

• ∃u, u ∈ W , u 6= x ∧ u 6= y, such that V Notify
x ⊂ V Notify

u and V Notify
y ⊂ V Notify

u .

25

3.3 C-set tree

C-set tree is the conceptual foundation that guides our protocol design and reasoning

about K-consistency, especially for the join protocol. When a set of nodes W join

a K-consistent network 〈V,N (V)〉, by copying neighbor information from nodes in

V , a joining node can reach any node in V since the initial network is consistent.

However, how to establish neighbor pointers from nodes in V to nodes in W and

between nodes in W is a more complex task. C-set tree is a conceptual tool that

guides our protocol design to establish these pointers. We next illustrate the concept

of C-set tree through the operations of joins, and then present the formal definitions.

3.3.1 Operations of a single join

When x joins a K-consistent network 〈V,N (V)〉, it is given a node g0, g0 ∈ V . The

task for the join protocol is to construct the neighbor table for x, and notify nodes

in V that should update their neighbor tables to satisfy K-consistency conditions in

the new network, 〈V ∪ {x},N (V ∪ {x})〉. First, x constructs its own table level by

level by copying neighbors from nodes in V . It starts by copying level-0 neighbors of

g0 into level-0 of its own table. Among these level-0 neighbors, x searches for a node

g1 such that g1[0] = x[0] (note that the nodes in Ng0(0, x[0]), if there is any, must

have suffix x[0] in their node IDs). Then x copies level-1 neighbors of g1 into level-1

of its own table and searches for a node g2 that shares the rightmost 2 digits with it,

and so on. This process is repeated until after copying level-i neighbors from node gi,

x finds that there are less than K neighbors stored in the (i, x[i])-entry in the table

of gi. Since the initial network is K-consistent, the fact that Ngi(i, x[i]).size < K

indicates that there are less than K nodes in V with suffix x[i]...x[0], that is, there

are less than K nodes in V that share the rightmost i+1 digits with x. Next, x adds

itself into its table and starts to notify some nodes in V to update their neighbor

tables. Note that at this point, x is already able to reach any node in V .

26

Since there exist at least K nodes in V that share the rightmost i digits

with x, but less than K nodes share the rightmost i + 1 digits with x, we know

|Vx[i−1]...x[0]| ≥ K, however, |Vx[i]...x[0]| < K. Hence nodes in Vx[i−1]...x[0] need to

be notified and their (i,x[i])-entries need to be updated. Conceptually, nodes in

Vx[i−1]...x[0] form a forest whose roots are the level-i neighbors of x. By following

neighbor pointers, x traverses the forest and notifies all nodes in Vx[i−1]...x[0] even-

tually.

During x’s join, K-consistency of the original network 〈V,N (V)〉 is preserved

because nodes in V will fill x into a table entry only if that entry has not stored K

neighbors.

3.3.2 Operations of multiple joins

If multiple nodes join a network sequentially, then the joins do not interfere with

each other, because when a node joins, any node that joined earlier has already been

integrated into the network. Also, if multiple nodes join a network concurrently and

the joins are independent, then intuitively the joins do not interfere with each other

either, because the sets of nodes that these joining nodes need to notify do not

intersect and none of the joining nodes needs to store any other joining node in its

table. The most difficult case is concurrent and dependent joins, where the views

different joining nodes have about the current network may conflict. For example,

suppose nodes 30633 and 41633 (b = 8, d = 5) join a network concurrently, and there

is no node in the network with suffix 663 before their joins. If the join protocol does

not work correctly to enable 30633 and 41633 to be aware of each other eventually,

each of them may think of itself as the only node with suffix 633 in the network.

In other words, if handled incorrectly, views of the joining nodes may not converge

eventually, which would result in inconsistent neighbor tables.

We first analyze the desirable results of multiple joins by using an example

27

(b = 8, d = 5). Suppose a set of nodes, W = {30633, 41633, 33153}, join a

K-consistent network 〈V,N (V)〉, V = {02700, 14233, 53013, 62332, 72430}, and

K = 2. Then by Definition 3.7, all nodes in W have the same noti-set, which is

V3.5 Consider a joining node, say 33153. At the end of joins, for any y to reach

33153, y ∈ V , there should exist a neighbor sequence (u0, u1, ..., u5) such that u0 is

y, u5 is 33153, and the IDs of u1 to u4 have suffix 3, 53, 153, and 3153, respectively.

Figure 3.3 illustrates how the establishment of these neighbor pointers is related to

neighbor table construction. The figure shows a path for any node (with ID xxxxx,

where “x” represents any digit from 0 to 7) to reach 33153. Under each node, one

level of that node’s neighbor table is shown, with the required suffix of each entry

presented inside that entry. To establish the neighbor pointers along the path, each

entry that is pointed by an arrow needs to be eventually filled with some nodes with

the required suffix.

xxxxx xxxx3 x3153xx153xxx53 33153

 0
 1
 2
 3

 03
 13
 23
 33

 053
 153
 253
 353

 0153
 1153
 2153
 3153

03153
13153
23153

Level−0

 4
 5
 6
 7

 43
 53
 63
 73

 453
 553
 653
 753

 4153
 5153
 6153
 7153

33153
43153
53153
63153
73153

Level−1

Level−2

Level−3
Level−4

Figure 3.3: Establishing neighbor pointers along a path vs. storing neighbors into
table entries.

Since before the joins, 〈V,N (V)〉 is K-consistent, then for any node y, y ∈ V ,

y must have stored at least one neighbor with suffix 3, which is a node in V3. Let

the set of (1, 5)-neighbors of nodes in V3 be C53, the set of (2, 1)-neighbors of nodes
5That is, nodes in V3, 14233 and 53013, need to update their neighbor tables when nodes in W

join: each of them should update its (1, 3)-entry to store two neighbors with suffix 33 eventually;
and each should update its (1, 5)-entry to store one neighbor with suffix 53 eventually.

28

in C53 be C153, ..., and the set of (4, 3)-neighbors of nodes in C3153 be C33153. We

call these sets C-sets and the sequence of sets from V3 to C33153 form a C-set path.

Generally, from any node in V to each node in W , there is an associated C-set

path, and all the paths form a tree rooted at V3, called a C-set tree, as shown in

Figure 3.4(a).

C33

C633

C53

C1633 0633C

C30633

C153

C3153

C33153C41633

C53

C153

C33153

C3153

V314233 53013

C33

C633

C41633 C30633

0633CC1633

V3
14233 53013

C41633 C30633

C53

C153

C3153

C33153

V3

0633CC1633

C633

V

14233 30633

41633 30633

41633

41633

33153

33153

33153

V

14233 53013

30633

30633

33153

V33
14233

(a) Tree template, K=2 (c) Tree template, K=1(b) Tree realization, K=2

Figure 3.4: C-set tree examples

The above example is a special case of multiple joins, where the noti-sets of

all nodes in W are the same (namely, V3 in the example). Generally, the noti-sets

of all nodes in W may not be the same. Then, nodes with the same noti-set belong

to the same C-set tree and the C-set trees for all nodes in W form a forest. Each

C-set tree can be treated separately. Hence, in the balance of this subsection, our

discussion is focused on a single C-set tree.

We next present formal definitions for a C-set tree. In what follows, we use l

to denote one digit, l ∈ [b], and lj ...l1 to denote a string of j digits (we define lj ...l1 to

be the empty string if j = 0). Note that C-set trees are conceptual structures used

for protocol design and reasoning about K-consistency. They are not implemented

in any node.

Definition 3.10 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 1, join a K-

consistent network 〈V,N (V)〉, and for any node x, x ∈ W , V Notify
x = Vω, where

29

|ω| = k. Then the C-set tree template associated with V , W , and K, denoted by

C(V,W,K), is defined as follows:

• Vω is the root of the tree (the root is not a C-set);

• If Wl1·ω 6= ∅, l1 ∈ [b], then set Cl1·ω is a child of Vω, and l1 ·ω is the associated

suffix of Cl1·ω;

• If Wlj ...l1·ω 6= ∅, 2 ≤ j ≤ d− k, l1,...,lj ∈ [b], then set Clj ...l1·ω is a child of set

Clj−1...l1·ω.

Given V , W and K, the tree template is determined. The value of K affects

the tree template through the noti-sets of nodes in W . Suppose K = 1 in the above

example. Then, by Definition 3.7, nodes 41633 and 30633 have {14233} as their

noti-set, and node 33153 has {53013, 14233} as its noti-set. And there would be

two separate C-set trees instead of one, as shown in Figure 3.4(c).

The task of the join protocol is to construct and update neighbor tables such

that paths are established between nodes; conceptually nodes are filled into each C-

set and the C-set tree is realized. For instance, in the above example (K = 2), when

14233 updates its (1,3)-entry and fills 30633 into the entry, conceptually 30633 is

filled into C33. For different sequences of protocol message exchange, different nodes

could be filled into each C-set, which would result in different realizations of the tree

template. We use cset(V,W,K) to denote the C-set tree realized at the end of all

joins, defined below, where te = max(tex1
, ..., texm

), as defined in Table 3.1.

Definition 3.11 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 2, join a K-

consistent network 〈V,N (V)〉, and for any node x, x ∈ W , V Notify
x = Vω, |ω| =

k. Then the C-set tree realized at time te, denoted as cset(V,W,K), is defined as

follows:

• Vω is the root of the tree.

• Let Cl1·ω = {x, x ∈ (V ∪W)l1·ω ∧ (∃u, u ∈ Vω ∧x ∈ Nu(k, l1))}, where l1 ∈ [b].

Then Cl1·ω is a child of Vω, if Cl1·ω 6= ∅ and Wl1·ω 6= ∅.

30

• Let Clj ...l1·ω = {x, x ∈ (V ∪W)lj ...l1·ω ∧ (∃u, u ∈ Clj−1...l1·ω ∧ x ∈ Nu(k + j −
1, lj))}, where 2 ≤ j ≤ d − k and l1,...,lj ∈ [b]. Then Clj ...l1·ω is a child of

Clj−1...l1·ω, if Clj ...l1·ω 6= ∅ and Wlj ...l1·ω 6= ∅.

Intuitively, to obtain the C-set tree realized at the end of all joins, we take a

snapshot of all of the neighbor tables at time te and construct a C-set tree realization

as follows. First, for each node u, u ∈ Vω, and for each l1 such that l1 ∈ [b] and

Wl1·ω 6= ∅, put all (k, l1)-neighbors of u into Cl1·ω, if u has such neighbors. Next, for

each node v and each l1, v ∈ Cl1·ω, and for each l2 such that l2 ∈ [b] and Wl2l1·ω 6= ∅,
put all (k + 1, l2)-neighbors of v into Cl2l1·ω, and so on. Note that in a C-set tree

realization for K = 1, C-sets only contain nodes in W , while for K ≥ 2, a C-set

may also contain nodes in Vω, the root set of the tree. Figure 3.4(b) shows one

possible realization of the tree template in Figure 3.4(a), which indicates that the

union of (1,3)-neighbors of 14233 and 53013 are {14233, 30633} (the nodes in C33),

the union of the (2,6)-neighbors of 14233 and 30633 are {41633, 30633} (the nodes

in C633), and so on. Observe that since for any node x, we set Nx(i, x[i]).first = x

for routing efficiency, i ∈ [b], once x is filled into a C-set, it is automatically filled

into those descendants of the C-set in the tree, whose suffix is also a suffix of x.ID.

For instance, if both 14233 and 53013 store 30633 in (1, 3)-entry, then conceptually

30633 is filled in C33 and consequently, 30633 ∈ C633, C0633, and C30633.

The concept of C-set tree not only helps us in protocol design, but also

guides us in reasoning about K-consistency. To prove that by the end of all joins,

the neighbor tables have been constructed and updated such that they satisfy the

K-consistency conditions, our approach is to prove the following correctness con-

ditions, based on the C-set tree realization.

(1) cset(V,W,K) has the same structure as C(V,W,K). Also, for any C-set in

cset(V,W,K), say Cω′ , it contains at least K nodes with suffix ω′ if there exist

at least K nodes in (V ∪W)ω′ ; otherwise, it contains all nodes in (V ∪W)ω′ .

31

(2) For each node y, y ∈ Vω (root of the C-set tree), and for each C-set Cl·ω′ ,

l ∈ [b], such that ω′ is a suffix of y.ID, y has stored min(K, |C ′
l·ω|) nodes with

suffix l · ω′ in Ny(k′, l), where k′ = |ω′|.
(3) For each node x, x ∈ W , the C-set whose suffix is x.ID is a leaf C-set in the

tree. Let path-x denote the path from this leaf C-set to the root of the tree.

Then, for any C-set, Cl·ω′ , such that Cl·ω′ is a C-set along path-x, or a sibling

C-set of a C-set along path-x, x has stored min(K, |Cl·ω′ |) nodes with suffix

l · ω′ in Nx(k′, l), k′ = |ω′|.

By the end of joins, if condition (1) is satisfied, then for every C-set that

exists in the tree template (recall that given V , W , and K, the tree template is

determined), it also exists in the tree realization and is not empty. Moreover, for

each C-set in the tree realization, if there exist at least K nodes in V ∪W that have

the suffix of the C-set, then the C-set is filled with at least K nodes with the suffix;

otherwise, all nodes in V ∪ W that have the suffix are included in the C-set. If

conditions (1) and (2) are satisfied, then every table entry in the neighbor tables of

nodes in V that needs to be updated has been updated and satisfies K-consistency

conditions. If conditions (1) and (3) are satisfied, plus that each joining node has

copied neighbor pointers from nodes in V , then for any joining node, its table has

been constructed such that every table entry satisfies K-consistency conditions.

Hence, the above three correctness conditions, together with each joining node’s

copying neighbors from nodes in V , ensure that the network is K-consistent after

the joins.

3.4 Summary

For the hypercube routing scheme applied in several structured P2P systems [20, 29,

34, 43], we introduced the property of K-consistency, and showed that K-consistent

neighbor tables enable reliable and resilient routing even when a large fraction of

32

nodes in the network fail. From our analytic and simulation results, we found that

the improvement in network resilience from K = 1 to K = 2 is dramatic. We

conclude that hypercube routing networks should be K-consistent with K ≥ 2.

Furthermore, we presented the concept of C-set trees as a foundation for the

hypercube routing scheme to design and reason about protocols that handle node

dynamics. We shall see in the next a few chapters how C-set trees are applied and

guide our protocol design and correctness reasoning.

33

Chapter 4

Handling Joins

In this chapter, we present our design of a join protocol for the hypercube routing

scheme. The goal is to design the protocol such that it generates K-consistent

neighbor tables for an arbitrary number of joins.

To achieve this goal, a major difficulty is as follows. For every table entry in

a joining node’s table, the node needs to discover min(H,K) neighbors without any

global knowledge, where H is the total number of nodes that have the required suffix

of the entry and H could be any value equal to or greater than 0. (One approach to

discover enough neighbors for an entry is through broadcasting, which is obviously

not scalable.) To overcome this difficulty, we first have introduced the concept of

C-set trees in Chapter 3. Second, based on the observation that in a K-consistent

network, it is possible for a node to store the same neighbor at multiple levels in

its neighbor table, we introduce in this chapter a concept called attach level. It is

a constraint on the lowest level that a joining node can be stored in a table and is

important for the protocol’s correctness.

This chapter is organized as follows. In Section 4.1, we analyze the tasks

for a join protocol to generate K-consistent neighbor tables and present the de-

tailed specification of our join protocol. In Section 4.2, we present our correctness

34

proofs for the join protocol, evaluate the protocol performance through both theo-

retical analysis and simulation experiments. We then demonstrate how to initialize

a network using the join protocol in Section 4.3, and summarize in Section 4.4.

4.1 Join Protocol for K-consistency

4.1.1 Assumptions and goals

In designing the protocol for a node to join network 〈V,N (V)〉, we make the following

assumptions: (i) V 6= ∅ and 〈V,N (V)〉 is a K-consistent network, (ii) each joining

node, by some means, knows a node in V initially, (iii) messages between nodes are

delivered reliably, and (iv) there is no node deletion (leave or failure) during the

joins.

In a decentralized P2P network, global knowledge is difficult (if not impossi-

ble) to get. Therefore, a node should utilize local information to construct or update

neighbor tables. Under the assumption that there is no node deletion during joins,

condition (b) in Definition 3.3 can be satisfied easily, since once a node has joined, it

always exists in the network. Hence, given a K-consistent network, 〈V,N (V)〉, and

a set W of joining nodes, the goals of the join protocol are to construct neighbor

tables for joining nodes and update tables of existing nodes such that eventually

condition (a) in Definition 3.3 is satisfied in network 〈V ∪ W,N (V ∪ W)〉. More

specifically:

• Goal 1: For each node x, x ∈ W , and for each (i, j)-entry in x.table, i ∈ [d]

and j ∈ [b], eventually min(K,H) nodes with suffix j · x[i− 1]...x[0] are stored

in the entry, where H = |(V ∪W)j·x[i−1]...x[0]|.

• Goal 2: For each node, y, y ∈ V , and for each (i, j)-entry in y.table , i ∈ [d] and

j ∈ [b], if Ny(i, j).size < K before the joins and Wj·y[i−1]...y[0] 6= ∅, eventually

35

the entry is updated and stores min(K,H) nodes with suffix j · y[i− 1]...y[0],

where H = |(V ∪W)j·y[i−1]...y[0]|.

4.1.2 Lowest attach-level

We present an important concept in the design of our join protocol, called lowest

attach-level. We will discuss the cases where the concept is applied later in protocol

specification.

In an 1-consistent network, a neighbor, say x, is only stored at one level in

the table of a node y, given x 6= y. More specifically, x is only stored at level-k in

y.table, where k = |csuf (x.ID, y.ID)|, since y itself is stored in Ny(i, x[i]) for all

level-i, 0 ≤ i < k (both x and y have the required suffix for these entries). For

example, consider two nodes 00261 and 10261 in a 1-consistent network (b = 8,

d = 5). If 00261 is a neighbor stored in the 10261’s neighbor table, then 00261 is

only stored at level-4 in the table of 10261, since 10261 itself is already filled into

entries at lower levels, i.e., (0,1)-entry, (1,6)-entry, (2,2)-entry, and (3,0)-entry.

For K ≥ 2, however, it is possible for y to store x at any level that is no

higher than level-k. Thus, level-k is the highest level that x can be stored in y.table.

In constructing a correctness proof for the join protocol, we found that a constraint

on the lowest level that x can be stored in y.table is also needed. We call it the

lowest attach-level of x, or simply the attach-level of x for notational convenience.

Definition 4.1 The attach-level of node x in the table of node y (x 6= y) is j,

0 ≤ j ≤ d− 1, determined as follows. (Let k denote |csuf (x.ID, y.ID)|.)

• j = 0 if Ny(i, x[i]).size < K for all i, 0 ≤ i ≤ k;

• j = i if there exists a level i, such that 0 < i ≤ k, Ny(i− 1, x[i− 1]).size = K,

and Ny(i′, x[i′]).size < K for all i′, i ≤ i′ ≤ k;

• an attach-level does not exist if Ny(k, x[k]).size = K.

36

4.1.3 Protocol specification

In Section 3.3.1, we have described the process of a single join. In this section, we

present a detailed specification of the join protocol we have designed that handles

an arbitrary number of joins. We present the protocol specification in pseudocode.

In our protocol, each node keeps its own status, which could be copying,

waiting, notifying, and in system. When a node starts joining, its status is set

to copying. A node with status in system is called an S-node (or system-node);

otherwise, it is a T-node (or transient-node). Each node also stores the state of

each neighbor as T or S in its table, where S indicates that the neighbor is in status

in system, while T means the neighbor is in a status other than in system.

Briefly, in status copying, a joining node, x, copies neighbor information

from some S-nodes to construct most part of its table. In status waiting, x tries to

“attach” itself to the network, i.e., to find an S-node that will store it as a neighbor,

which indicates that conceptually it is filled into a C-set in the C-set tree. In status

notifying, x seeks and notifies nodes that are conceptually in the subtree rooted at

the parent set of the C-set x is filled into. Lastly, when it finds no more node to

notify, x changes status to in system and becomes an S-node.

Suppose a set of nodes W join a K-consistent network 〈V,N (V)〉. Figure 4.1

presents the state variables of a joining node (a node in W). Note for each neighbor

in its table, a node also stores the neighbor’s state, which can be S indicating that

the neighbor is in status in system or T indicating that it is not yet. Variables in

the first part in Figure 4.1 are also used by nodes in V , where initially for each node

u, u ∈ V , u.status = in system, u.table is populated with nodes in V in such a way

that satisfies conditions in Definition 3.3, and u.state(v) = S for every neighbor v

that is stored in u.table. Figure 4.2 presents the protocol messages. Figures 4.3 to

4.8 present the pseudocode of the protocol, in which x, y, u and v denote nodes,

and i, j and k denote integers. Note that when any node, x, stores a neighbor,

37

say y, into Nx(i, j), x needs to send a RvNghNotiMsg(y, x.state(y)) to y if y 6= x,

and y should reply to x if x.state(y) is not consistent with y.status. For clarity of

presentation, we have omitted the sending and reception of these messages in the

pseudocode.

State variables of a joining node x:

x.status ∈ {copying, waiting, notifying, in system}, initially copying.
Nx(i, j): the set of (i, j)-neighbors of x, initially empty.
x.state(y) ∈ {T, S}, the state of neighbor y stored in x.table.
Rx(i, j): the set of reverse(i, j)-neighbors of x, initially empty.

x.att level : an integer, initially 0.
Qr: a set of nodes from which x waits for replies, initially empty.
Qn: a set of nodes x has sent notifications to, initially empty.
Qj : a set of nodes that have sent x a JoinWaitMsg, initially empty.
Qsr, Qsn: a set of nodes, initially empty.

Figure 4.1: State variables

Messages exchanged by nodes:

CpRstMsg, sent by x to request a copy of receiver’s neighbor table.
CpRlyMsg(x.table), sent by x in response to a CpRstMsg.
JoinWaitMsg, sent by x to notify receiver of the existence of x and request the receiver

to store x, when x.status is waiting.
JoinWaitRlyMsg(r, i, x.table), sent by x in response to a JoinWaitMsg, when x.status

is in system. r ∈ {negative, positive}, i: an integer.
JoinNotiMsg(i, x.table), sent by x to notify receiver of the existence of x, when x.status

is notifying. i: an integer.
JoinNotiRlyMsg(r, Q, x.table, f), sent by x in response to a JoinNotiMsg.

r ∈ {negative, positive}, Q: a set of integers, f ∈ {true, false}.
InSysNotiMsg, sent by x when x.status changes to in system.
SpeNotiMsg(x, y), sent or forwarded by a node to inform receiver of the existence of y,

where x is the initial sender.
SpeNotiRlyMsg(x, y), response to a SpeNotiMsg.
RvNghNotiMsg(y, s), sent by x to notify y that x is a reverse neighbor of y, s ∈ {T, S}.
RvNghNotiRlyMsg(s), sent by x in response to a RvNghNotiMsg, s = S if x.status

is in system; otherwise s = T .

Figure 4.2: Protocol messages

Action in status copying In status copying, a joining node, x, fills most

of its table entries by copying neighbor information from S-nodes, as follows. To

construct its table at level-i, i ∈ [d], x needs to find a node, gi, that is an S-node and

38

shares the rightmost i digits with it so that x can send a CpRstMsg to gi to request

a copy of gi.table . We assume that each joining node knows a node in V . Let this

node be g0 for x. From g0.table , x searches for a node that shares the rightmost

digit with it and is an S-node. Let this node be g1. x then contacts g1 to request a

copy of g1.table . From g1.table, x searches for a node, g2, that shares the rightmost

two digits with it and is an S-node, and so on. Figure 4.3 depicts the action in

this status. The subroutine Set Neighbor() is specified in Figure 4.8. (For clarity

of presentation, we have omitted the sending of a CpRstMsg from x to g, and the

reception of a CpRlyMsg from g to x.)

In status copying, each time after receiving a CpRlyMsg, x checks whether

it should change status to waiting. Suppose x receives a CpRlyMsg from y. Then

the condition for x to change status to waiting is: (i) There exists an attach-level

for x in the copy of y.table included in the reply, or (ii) an attach-level does not

exist for x in the copy of y.table but node u is a T-node, where u = Ny(k, x[k]).first

and k = |csuf (x.ID, y.ID)|. If the condition is satisfied, then x changes status to

waiting and sends a JoinWaitMsg to y (case (i) holds) or to u (case (ii) holds).

Otherwise, x remains in status copying and sends a CpRstMsg to u.

Action in status waiting In status waiting, the main task of x is to find

an S-node in the network to store x as a neighbor by sending out JoinWaitMsg;

another task is to copy more neighbors into its table. The JoinWaitMsg x sends

to a node, say y, serves as a notification to y that x is waiting to be stored in y’s

table. When y receives the JoinWaitMsg from x, there are two cases. (1) If y is still

a T-node, it stores the message to be processed after it has become an S-node. (2)

If y is an S-node, it checks whether there exists an attach-level for x in its table.

If an attach-level exists, say level-j, y stores x into level-j through level-k, where

k = |csuf (x.ID, y.ID)| and k ≥ j, and sends a JoinWaitRlyMsg(positive, j, y.table)

to inform x that the lowest level x is stored is level-j. Level-j then becomes the

39

Action of x on joining 〈V,N (V)〉, given node g0, g0 ∈ V :

i: initially 0. p, g: a node, initially g0. s ∈ {T , S}, initially S.

x.status = copying;
for(i = 0; i < d; i++) {Nx(i, x[i]).first = x; x.state(x) = T ;}
while (g 6= null and s == S) {

// copy level-i neighbors of g (send CpRstMsg to y, and proceed to the following
// after receiving CpRlyMsg from y)
h = −1; k = |csuf(x.ID, g.ID)|;
while (i ≤ k ∧ h == −1){
for (j = 0; j < b; j++)
for (each v, v ∈ Ng(i, j))
for (l = i, l ≤ k, l++) { Set Neighbor(l, v[l], v, g.state(v)); }

if ((for each l, i ≤ l ≤ k, Ng(l, x[l]).size < K) ∧ h == −1)
{ p = g; g = null; h = i; }

i++;
}
if (h == −1){ p = g; g = Np(k, x[k]).first; s = p.state(g);}

}
x.status = waiting;
if (g == null)
{ Send JoinWaitMsg to p;Qn = Qn ∪ {p};Qr = Qr ∪ {p};}

else
{ Send JoinWaitMsg to g; Qn = Qn ∪ {g}; Qr = Qr ∪ {g}; }

Figure 4.3: Action in status copying

attach-level of x in the network, stored by x in x.att level . If an attach-level

does not exist for x, y sends JoinWaitRlyMsg(negative, −1, y.table) to x. After

receiving the reply (positive or negative), x searches the copy of y.table included in

the reply for new neighbors to update its own table.

Note that if an attach-level does not exist for x in y.table, then even if

there is some entry, for which x has the required suffix, is not full (fewer than K

neighbors), y will not store x. For example, consider two nodes 30061 and 00261

in a K-consistent network, K > 1. When 30061 receives a JoinWaitMsg from node

00261, if in the table of node 30061, (2, 2)-entry is full (thus an attach-level does not

exists for 00261 by Definition 4.1), then even if (1, 6)-entry is not full, 30061 will not

store 00261 into (1, 6)-entry. In such a case, as shown in our proofs, the (1, 6)-entry

will eventually be filled up by other nodes.

40

Upon receiving a negative reply from y, x has to send another JoinWaitMsg,

this time to u, u = Ny(k, x[k]).first , k = |csuf (x.ID, y.ID)|.1 This process may be

repeated for several times (at most d times since each time the receiver shares at least

one more digit with x than the previous receiver) until x receives a positive reply,

which indicates that x has been stored by an S-node and therefore attached to the

network. x then changes status to notifying. Note that before x is attached to the

network, communication between the network and node x is one-way: x can reach

nodes in the network. After x is attached to the network, communication becomes

two-way: other nodes already in the network can reach x now. Figure 4.4 presents

actions for a node upon receiving JoinWaitMsg and JoinWaitRlyMsg. Subroutines

Check Ngh Table() and Switch To S Node() are specified in Figure 4.8.

Action of y on receiving JoinWaitMsg from x:

k = |csuf(x.ID, y.ID)|; h = −1; j = 0;
if (y.status == in system) {

while (j ≤ k ∧ h == −1) {
if (for each l, j ≤ l ≤ k, Ny(l, x[l]).size < K) {

h = j; for (l = j; l ≤ k; l++) { Set Neighbor(l, x[l], x, T); }
}else j++;

}
if (h == −1) Send JoinWaitRlyMsg(negative, h, y.table) to x;
else Send JoinWaitRlyMsg(positive, h, y.table) to x;

}else Qj = Qj ∪ {x};

Action of x on receiving JoinWaitRlyMsg(r, i, y.table) from y:

Qr = Qr − {y}; k = |csuf(x.ID, y.ID)|; x.state(y) = S;
if (r == positive) {

x.status = notifying; x.att level = i;
for (j = i; j ≤ k; j++) { Rx(j, x[j]) = Rx(j, x[j]) ∪ {y}; }

}else { // a negative reply, needs to send another JoinWaitMsg
v = Ny(k, x[k]).first;
Send JoinWaitMsg to v; Qn = Qn ∪{v}; Qr = Qr ∪ {v};

}
Check Ngh Table(y.table);
if (x.status == notifying ∧ Qr == φ ∧ Qsr == φ) Switch To S Node();

Figure 4.4: Action on receiving JoinWaitMsg and JoinWaitRlyMsg
1u can be any node in Ny(k, x[k]). We choose it to be Ny(k, x[k]).first consistently in our

protocol implementation.

41

Action in status notifying In status notifying, x searches and notifies

nodes that share the rightmost j digits with it, j = x.att level , so that these nodes

will update their neighbor tables if necessary. (Conceptually, these nodes, the nodes

with suffix x[i − 1]...x[0], form a forest whose roots are the level-i neighbors of x.)

x starts this process by sending JoinNotiMsg, which includes both x.att level and a

copy of x.table , to its neighbors at levels j and higher. Each JoinNotiMsg serves as

a notification as well as a request for a copy of the receiver’s table. Upon receiving

a JoinNotiMsg, a receiver, z, stores x into all (i, x[i])-entries that are not full with

K neighbors yet, where x.att level ≤ i ≤ |csuf (x.ID, z.ID)|, searches the copy of

x.table for new neighbors to update z’s table, and then replies to x with z.table

included in the reply. From the reply, if x find any node, say v, in z.table such

that v shares the right most j digits with x, j = x.att level , and if x has not sent

JoinNotiMsg to v before, x will notify v by sending a JoinNotiMsg to it. Meanwhile,

x searches the copy of z.table for new nodes to update its own table. Figure 4.5

presents actions for a node on receiving JoinNotiMsg and JoinNotiRlyMsg.

So far, three cases for a node x to know another node y have been presented:

(i) x copies y in status copying, (ii) x receives a JoinWaitMsg or a JoinNotiMsg from

y, and (iii) x receives a message from z, which includes z.table, and y is in z.table.

There is one more case, as shown in Figures 4.5 and 4.6. Suppose in status notifying,

x sends a JoinNotiMsg to y. When y receives the message, if y is an S-node and finds

that y is not included in Nx(k, y[k]), where k = |csuf(x.ID, y.ID)|, then y sets a

flag f to be true in its reply. (Note that y is a qualified node for Nx(k, y[k]).) Seeing

the flag in the reply, x sends a SpeNotiMsg(x, y) to u1 to inform it about y if x has

not done so and if k > x.att level , where u1 = Nx(k, y[k]).first . If when u1 receives

the SpeNotiMsg(x, y) from x, its (k1, y[k1])-entry is already filled with K neighbors

and y is not one of them, k1 = |csuf(u1.ID, y.ID)|, it forwards the message to

u2, where u2 = Nx(k1, y[k1]).first . This process stops when a receiver stores or has

42

Action of y on receiving JoinNotiMsg(i, x.table) from x:

Q: a set of integers, initially empty

k = |csuf(x.ID, y.ID)|; f = false;
for (j = i; j ≤ k, j++){ Set Neighbor(j, x[j], x, T);}
for (j = i; j ≤ k, j++) {if (x ∈ Ny(j, x[j])) {Q = Q ∪ {j};}}
if (y 6∈ Nx(k, y[k]) ∧ y.status == in system) f = true;
if (Q 6= ∅)

Send JoinNotiRlyMsg(positive, Q, y.table, f) to x;
else}

Send JoinNotiRlyMsg(negative, ∅, y.table, f) to x;
Check Ngh Table(x.table);

Action of x on receiving JoinNotiRlyMsg(r, Q, y.table, f) from y:

if (r==positive) {for (each i in Q) Rx(i, x[i]) = Rx(i, x[i]) ∪ {y};}
Qr = Qr − {y}; k = |csuf(x.ID, y.ID)|;
if (f == true ∧ k > x.att level ∧ y 6∈ Nx(k, y[k]) ∧ y 6∈ Qsn){

Send SpeNotiMsg(x,y) to Nx(k, y[k]).first;
Qsn = Qsn ∪ {y}; Qsr = Qsr ∪ {y};

}
Check Ngh Table(y.table);
if (Qr == φ ∧ Qsr == φ) Switch To S Node();

Figure 4.5: Action on receiving JoinNotiMsg and JoinNotiRlyMsg

stored y in its table and sends a SpeNotiRlyMsg(x, y) to x. (The process can be

repeated at most d times.) Figure 4.6 depicts the actions on receiving SpeNotiMsg

and SpeNotiRlyMsg.

Action in status in system When x has received replies from all of the

nodes it has notified and finds no more node to notify, it changes status to in system

and becomes an S-node. It then informs all of its reverse-neighbors, i.e., nodes

that have stored x as a neighbor, that it has become an S-node. If x has delayed

processing JoinWaitMsg from some nodes, it should process these messages and

reply to these nodes at this time. Figure 4.7 and the subroutine Switch To S Node()

in Figure 4.8 present the peudocode for this part.

43

Action of u on receiving SpeNotiMsg(x, y) from v:

k = |csuf(y.ID, u.ID)|; Set Neighbor(k, y[k], y, S);
if (y 6∈ Nu(k, y[k]))

Send SpeNotiMsg(x, y) to Nu(k, y[k]).first ;
else

Send SpeNotiRlyMsg(x, y) to x;

Action of x on receiving SpeNotiRlyMsg(x, y) from u:

Qsr = Qsr− {y}; if (Qr==φ and Qsr==φ) Switch To S Node();

Figure 4.6: Action on receiving SpeNotiMsg and SpeNotiRlyMsg

Action of y on receiving a InSysNotiMsg from x:

y.state(x) = S;

Figure 4.7: Action on receiving InSysNotiMsg

4.1.4 A simple example

To illustrate how the join protocol works, we present a simple example in this

subsection. We use the same nodes as in the example presented in Section 3.3.2.

Suppose a set of nodes, W = {30633, 41633, 33153}, join a K-consistent network

〈V,N (V)〉 concurrently, where V = {02700, 14233, 53013, 62332, 72430}, and K =

2. The assumptions are that 〈V,N (V)〉 is K-consistent and each joining node knows

one node from V to start its joining process. The goal is that after the joins, the

new network, 〈(V ∪W),N ((V ∪W))〉, is K-consistent.

Suppose when 30633 starts joining, it knows 02700. Then during the copying

status, 30633 copies level-0 neighbors from 02700, and finds that the (0,3)-neighbors

of 02700 are {14233, 53013}. (By the definition of K-consistency, K = 2, and

the assumption that neighbor tables of nodes in V are initially consistent, 02700

would have two neighbors with suffix 3 stored in its (0,3)-entry.) Suppose 30633

next contacts 14233 to copy level-1 neighbors, and suppose when 14233 receives

the request from 30633, its (1,3)-entry only stores itself (i.e., no other joining node

44

Check Ngh Table(y.table) at x:

for (each u, u ∈ Ny(i, j) ∧ u 6= x, i ∈ [d], j ∈ [b]) {
k = |csuf(x.ID, u.ID)|; s = y.state(u);
for (h = i; h ≤ k; h++) { Set Neighbor(h, u[h], u, s); }
if (x.status == notifying ∧ k ≥ x.att level ∧ u 6∈ Qn) {
Send JoinNotiMsg(x.att level, x.table) to u;
Qn = Qn ∪ {u}; Qr = Qr ∪ {u};

}
}

Set Neighbor(i, j, u, s) at x:

if (u 6= x ∧ Nx(i, j).size < K ∧ u 6∈ Nx(i, j))
{ Nx(i, j) = Nx(i, j) ∪ {u}; x.state(u) = s;}

Switch To S Node() at x:

x.status = in system; x.state(x) = S;
for (each v of x’s reverse neighbors) Send InSysNotiMsg to v;
for (each node u, u ∈ Qj) {

//see Figure 4.1 for the meaning of Qj

k = |csuf(x.ID, u.ID)|; h = −1; j = 0;
while (j ≤ k ∧ h == −1){
if (for each l, j ≤ l ≤ k, Nx(l, u[l]).size < K){

h = j; for (l = h; l ≤ k; l++) { Set Neighbor(l, u[l], u, T); }
}else j++;

}
if (h 6= −1) Send JoinWaitRlyMsg(positive, h, x.table) to u;
else Send JoinWaitRlyMsg(negative, h, x.table) to u;

}

Figure 4.8: Subroutines

has contacted 14233 and requested to be filled into its (1,3)-entry). After copying

the level-1 neighbors from 14233, 30366 finds it is time to switch to waiting status,

because the (1,3)-entry of 14233’s table does not have 2 neighbors stored yet and

itself is a candidate to be stored into the entry (in other words, it finds that there

exists an attach-level for itself in the table of 14233).

Once 30366 is in waiting status, it sends a JoinWaitMsg to 14233. Again,

suppose when 14233 receives this message, its (1,3)-entry still only has itself stored,

it then stores 30366 into the entry, and sends a positive JoinWaitRlyMsg back to

30366.2 Upon receiving the positive reply, 30366 switches to notifying status.
214233 can send back this reply immediately after it receives the request from 30366, because it

45

The change of status to notifying indicates that conceptually 30366 has found

itself a position in the C-set tree (it has conceptually been inserted into C33, as shown

in Figure 3.4(b)). Next, 30633 needs to send JoinNotiMsg to nodes that are in the

subtree rooted at the parent set of the C-set it is inserted into. More specifically,

it needs to notify nodes in the subtree rooted at V3, that is, it needs to find out

nodes with suffix 3 as many as it can to notify them so that they can update their

table entries if necessary. To do so, 30366 starts by sending JoinNotiMsg to all its

neighbors at level-1 and up, since all these neighbors have suffix 3. When it receives

replies from these neighbors, which include copies of their neighbor tables, if it finds

that there is a node that has suffix 3 and it has not sent a JoinNotiMsg to yet, it

sends such a message to that node. For example, when 53103 receives a JoinNotiMsg

from 30533, it may already stored 33153 in its table. Then, from the reply 53103

sends back, 30633 finds 33153 in the copy of 53103’s neighbor table. This enables

30633 to update its own table by storing 33153, and to send a JoinNotiMsg to 33153

to ensure that 33153 will also know the existence of 30633. Once it has received all

the JoinNotiRlyMsg it waits for, and cannot find any more nodes that have suffix

3 and have not been notified by it, it changes status to in system and becomes an

S-node.

14233

Level−2

entry−2

entry−6

t4t2t1 t3

41633

30633

14233

t5

time

(a) (b) (c)

14233

Level−2

entry−2

entry−6 30633t
1

2

3

4
5

6

Figure 4.9: An example of concurrent joins: (a) message chart, (b) the level-2
neighbor table of 14233 before t3, (c) the level-2 neighbor table of 14233 after t3

is already an S-node.

46

When a joining node is in status waiting, it is also possible that after it

sends out a JoinWaitMsg, it may receive a negative reply and have to try again.

For instance, consider the above example and suppose K = 1. Recall that K = 1

indicates that for each table entry, either there is one neighbor stored or it is empty.

This time, both 30633 and 41633 would copy neighbors up to level-2 and both

they would copy level-2 neighbors from 14233. (The corresponding C-set trees for

K = 1 are shown in Figure 3.4(c).) Suppose the messages are exchanged in the

order as shown in Figure 4.9. First, both 30633 and 41633 send CpRstMsg to 14233

(messages 1 and 2). Suppose the request from 30633 arrives at 14233 earlier (at time

t1). Then, from 14233’s CpRlyMsg, 30633 observes that the (2,6)-entry in 14233’s

table is empty and thus switches status to waiting and sends a JoinWaitMsg to

14233 (message 3), which arrives at 14233 at time t3. At time t2, when 14233 sends

its CpRlyMsg to 41633, its (2,6)-entry is still empty. Then 41633 will also send a

JoinWaitMsg to 14233 (message 4) since it also believes itself as a candidate for the

(2,6)-entry in 14233’s table. However, at time t4, when this JoinWaitMsg arrives at

14233, 14233 has already received the JoinWaitMsg from 30633 and stored 30633

into (2,6)-entry. In this case, 14233 will send back a negative reply to 41633, with

a copy of its current neighbor table. From the negative reply, 41633 notices the

existence of 30633. It then sends another JoinWaitMsg to 30633 (message 5). 30633

will delay processing the message if when it receives the message, it is still a T-node.

Once it turns into an S-node (at time t6), it processes the message, stores 41633 into

its (3,1)-entry, and sends a positive reply. This position reply indicates that 41633

has been conceptually inserted into C1633 and 41633 can change status to notifying.

The next step for 41633 is to search and notify nodes with suffix 633 and switch to

status in system when it finds no more such nodes to notify.

47

4.2 Protocol Analysis

4.2.1 Correctness of join protocol

We first present two theorems. Suppose an arbitrary number of nodes join an

initially K-consistent network by using the join protocol. Theorem 2 states that

the join process of each node eventually terminates, and Theorem 3 states that at

the end of joins, the resulting network is K-consistent. We only present important

lemmas and proof outlines in this section. Proof details are included in Appendix B.

Recall that tbx denotes the starting time of the join duration of node x, tex denotes

the end of the join duration of x, and te denotes max(tex1
, ..., texm

).

Theorem 2 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉. Then, each node x, x ∈ W , eventually becomes an S-node.

Proof of Theorem 2: First, consider a joining node, x, in status copying. x

eventually changes status to waiting because it sends at most d CpRstMsg and each

receiver of a CpRstMsg replies to x with no waiting. Second, consider a joining node,

x, in status waiting. In this status, x sends JoinWaitMsg to at most d nodes. We

next show that for each JoinWaitMsg it sends out, x eventually receives a reply. If

the receiver of a JoinWaitMsg, y, is an S-node, then y replies with no waiting; if y is

not yet an S-node, then it is a joining node in status notifying and will wait until it

becomes an S-node before replying to x. Thus, to complete the proof, it suffices to

show that any joining node in status notifying eventually becomes an S-node. Last,

consider a joining node, z, in status notifying. There are two types of messages sent

by z in this status, JoinNotiMsg and SpeNotiMsg. z only sends JoinNotiMsg to a

subset of nodes in V ∪W that share the rightmost i digits with itself, i = z.att level ,

and each receiver of a JoinNotiMsg replies to z with no waiting. Also, z only sends

SpeNotiMsg to a subset of nodes in W that share the rightmost i+1 digits with it.3

3In simulations, we observed that SpeNotiMsg is rarely sent.

48

Each SpeNotiMsg is forwarded at most d times before a reply is sent to z, and each

receiver of the message replies to z or forwards the message to another node with

no waiting. Therefore, z eventually becomes an S-node.

Theorem 3 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉. Then, at time te, 〈V ∪W,N (V ∪W)〉 is a K-consistent network.

To prove Theorem 3, we first divide nodes in W into different groups, where

nodes in the same group join concurrently and any two nodes that are in different

groups join sequentially. Next, for each group of concurrent joins, we divide nodes

in that group into several sub-groups, such that joins of nodes in the same sub-

group are dependent while joins of any two nodes that are in different sub-groups

are independent. (We will discuss how to do the node divisions later in this section.)

We start by presenting Lemmas 4.1 to 4.4, which state the correctness of the join

protocol for a single join, sequential joins, concurrent and independent joins, and

concurrent and dependent joins.

Lemma 4.1 Suppose node x joins a K-consistent network 〈V,N (V)〉. Then, at

time tex, 〈V ∪ {x},N (V ∪ {x})〉 is a K-consistent network.

Lemma 4.2 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 sequentially. Then, at time te, 〈V ∪ W,N (V ∪ W)〉 is a K-

consistent network.

Lemma 4.3 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 concurrently. If the joins are independent, then at time te,

〈V ∪W,N (V ∪W)〉 is K-consistent.

Lemma 4.4 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 concurrently. If the joins are dependent, then at time te, 〈V ∪
W,N (V ∪W)〉 is K-consistent.

49

To prove Lemma 4.4, consider any two nodes in W , say x and y. If their noti-

sets are the same, i.e., V Notify
x = V Notify

y , then x and y belong to the same C-set tree

rooted at V Notify
x , otherwise they belong to different C-set trees. We consider nodes

in the same C-set tree first. To simplify presentation in the following propositions,

we make the following assumption:

Assumption 1 (for Propositions 4.1 to 4.7)

A set of nodes, W = {x1, ..., xm}, m ≥ 2, join a K-consistent network 〈V,N (V)〉
concurrently and for any x, x ∈ W , V Notify

x = Vω and |ω| = k.

Propositions 4.1 states that every joining node is filled into some C-set in

the C-set tree by the end of joins. Note that ω is the suffix of the root set in

the C-set tree, as stated in Assumption 1. Propositions 4.2 and 4.3 state that

correctness conditions (1) and (2), stated in Section 3.3, are satisfied by time te,

respectively. (Recall that lj ...l1 denotes the empty string if j = 0.) Proposition 4.4

states that for a C-set that node x belongs to (l = lj), or a sibling C-set of a C-set

x belongs to (l 6= lj), x eventually stores enough neighbors with the suffix of that

C-set. For instance, consider the example in Figure 3.4(b) and let x = 41633. By

Proposition 4.4, for any C-set of C633, C1633, C41633, and C0633 (the former three are

the C-sets x belongs to, and C0633 is a sibling C-set of C1633), say C633, eventually x

stores min(K,H) neighbors in its (2, 6)-entry, where H is the total number of nodes

with suffix 633 in V ∪W . Proofs of the propositions are based on induction upon

the C-set tree realized at time te.

Proposition 4.1 For each node x, x ∈ W , there exists a C-set Clj ...l1·ω, 1 ≤ j ≤
d− k, such that by time te, x ∈ Clj ...l1·ω, where lj ...l1 · ω is a suffix of x.ID.

Proposition 4.2 If Wlj ...l1·ω 6= ∅, 1 ≤ j ≤ d−k, then by time te, the followings are

true:

(a) Clj ...l1·ω ⊆ (V ∪W)lj ...l1·ω and Clj ...l1·ω ⊇ Vlj ...l1·ω.

50

(b) if |(V ∪W)lj ...l1·ω| < K, then Clj ...l1·ω = (V ∪W)lj ...l1·ω;

(c) if |(V ∪W)lj ...l1·ω| ≥ K, then |Clj ...l1·ω| ≥ K.

Proposition 4.3 Consider any node x, x ∈ Vω. For any C-set Cl·lj ...l1·ω, 0 ≤ j ≤
d − k − 1 and l ∈ [b], if lj ...l1 · ω is a suffix of x.ID, then Nx(k + j, l).size =

min(K, |(V ∪W)l·lj ...l1·ω|) holds by time te.

Proposition 4.4 For any C-set, Clj ...l1·ω, 1 ≤ j ≤ d−k, l1,...,lj ∈ [b], the following

assertion holds by time te: For each x, x ∈ Clj ...l1·ω and x ∈ W , Nx(k+j−1, l).size =

min(K, |(V ∪W)l·lj−1...l1·ω|), l ∈ [b].

For any node x, x ∈ W , we define the first C-set x belongs to for x in a

C-set tree realization to be (i) Cl1·ω if x ∈ Cl1·ω; (ii) Clj ...l1·ω for j > 1, if x ∈ Clj ...l1·ω

and x 6∈ Clj−1...l1·ω.

Proposition 4.5 states that for any ancestor C-set of the first C-set node x

belongs to (or for any sibling C-set of such an ancestor C-set), x eventually stores

enough neighbors with the suffix of that C-set (or of that sibling C-set). For instance,

consider again the example in Figure 3.4(b) and node 41633. The first C-set 41633

belongs to is C633. There is one ancestor C-set of C633, C33, which also has a

sibling C-set, C53. Then by Proposition 4.5, 41633 has stored min(K, |(V ∪W)33|)
neighbors in its (1, 3)-entry by time te; moreover, 41633 has stored min(K, |(V ∪
W)53|) neighbors in its (1, 5)-entry by time te.

Based on Propositions 4.4 and 4.5, we prove Proposition 4.6, which states

that correctness condition (3), stated in Section 3.3, is satisfied by time te. Note

that in Propositions 4.3 and 4.6, l · lj ...l1 · ω is the required suffix of the (k + j, l)-

entry in x.table , where k = |ω|. Next, based on Propositions 4.2, 4.3, and 4.6, we

prove Proposition 4.7, which states that by time te, every table entry in the network

satisfies K-consistency conditions and hence the network is K-consistent. (Recall

that Propositions 4.1 to 4.7 are stated under Assumption 1.)

51

Proposition 4.5 For any x, x ∈ W , suppose Clj ...l1·ω is the first C-set x belongs

to, where lj ...l1 · ω is a suffix of x.ID, 1 ≤ j ≤ d − k. Then for any i, 0 ≤ i ≤ j,

and any l, l ∈ [b], Nx(k + i, l).size = min(K, |(V ∪W)l·li...l1·ω|) .

Proposition 4.6 For any node x, x ∈ W , if (V ∪W)l·lj ...l1·ω 6= ∅, where lj...l1 · ω
is a suffix of x.ID, 0 ≤ j ≤ d − k − 1, and l ∈ [b], then Nx(k + j, l).size =

min(K, |(V ∪W)l·lj ...l1·ω|) holds by time te.

Proposition 4.7 For each node x, x ∈ V ∪ W , Nx(i + k, j).size = min(K, |(V ∪
W)j·x[i−1]...x[0]|) holds by time te, i ∈ [d], j ∈ [b].

So far, we have proved correctness of the join protocol for the case where a

set of nodes join dependently and all joining nodes belong to the same C-set tree.

Next, Proposition 4.8 extends the result to joining nodes that belong to different

C-set trees. It states that for any joining node, say x, for any suffix that exists in a

different C-set tree other than the one x belongs to, if the suffix is also the required

suffix of a table entry in x.table, then eventually x has stored enough neighbors in

that table entry. (Note that in Proposition 4.8, l · ω2 is the required suffix for the

(k2, l)-entry in x.table.) Based on the propositions, we can then prove Lemma 4.4

and Lemma 4.5.

Proposition 4.8 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 2, join a K-

consistent network 〈V,N (V)〉 concurrently. Let G(Vω1) = {x, x ∈ W,V Notify
x =

Vω1}, G(Vω2) = {y, y ∈ W,V Notify
y = Vω2}, where ω1 6= ω2 and ω2 is a suffix of ω1.

Let k2 = |ω2|. Then, by time te, for any x, x ∈ G(Vω1), the following assertion

holds: Nx(k2, l).size = min(K, |(V ∪W)l·ω2|), l ∈ [b].

Proof of Lemma 4.4: . (Outline) First, separate nodes in W into groups {G(Vωi),

1 ≤ i ≤ h}, where ωi 6= ωj if i 6= j, such that for any node x in W , x ∈ G(Vωi) if

and only if V Notify
x = Vωi , 1 ≤ i ≤ h. Then, by Propositions 4.3, 4.7, and 4.8, the

lemma holds.

52

Lemma 4.5 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 concurrently. Then at time te, 〈V ∪ W,N (V ∪ W)〉 is a K-

consistent network.

Proof of Lemma 4.5: (Outline) First, separate nodes in W into groups, such

that joins of nodes in the same group are dependent and joins of nodes in different

groups are mutually independent, as follows (initially, let i = 1 and G1 = ∅; and we

define
⋃0

j=1 Gj to be ∅):

1. Pick any node x, x ∈ W− ⋃i−1
j=1 Gj , and put x in Gi.

2. For each node y, y ∈ W− ⋃i
j=1 Gj ,

(a) if there exists a node z, z ∈ Gi, such that (V Notify
y ∩ V Notify

z 6= ∅), then

put y in Gi; or

(b) if there exists a node z, z ∈ Gi, and a node u, u ∈ Gi, such that the

following is true: (V Notify
y ⊂ V Notify

u) ∧ (V Notify
z ⊂ V Notify

u), then put y in

Gi; or

(c) if there exists a node z, z ∈ Gi, and a node u, u ∈ W − ⋃i
j=1 Gj , such

that the following is true: (V Notify
y ⊂ V Notify

u) ∧ (V Notify
z ⊂ V Notify

u), then

put both y and u in Gi.

3. Increment i and repeat steps 1 to 3 until
⋃i

j=1 Gj = W .

Then, we get groups {Gi, 1 ≤ i ≤ l}. It can be checked that V Notify
x ∩ V Notify

y = ∅
for any node x, x ∈ Gi, and any node y, y ∈ Gj , where 1 ≤ i ≤ l, 1 ≤ j ≤ l, and

i 6= j. By Lemmas 4.3 and 4.4, the lemma holds.

Proof of Theorem 3: If m = 1, then by Lemma 4.1, the theorem holds.

If m ≥ 2, then according to their joining periods, nodes in W can be separated

into several groups, {Gi, 1 ≤ i ≤ l}, such that nodes in the same group join

concurrently and nodes in different groups join sequentially. Let the joining period

of Gi be [tbGi
, teGi

], 1 ≤ i ≤ l, where tbGi
= min(tbx, x ∈ Gi) and teGi

= max(tex, x ∈ Gi).

53

We number the groups in such a way that teGi
≤ tbGi+1

. Then, if |G1| ≥ 2, by

Lemma 4.5, at time teG1
, 〈V ∪G1,N (V ∪G1)〉 is a K-consistent network; if |G1| = 1,

then by Lemma 4.1, 〈V ∪ G1,N (V ∪ G1)〉 is a K-consistent network at time teG1
.

Similarly, by applying Lemma 4.5 (or Lemma 4.1 if there is only one joining node in

the group) to G2, ..., Gl, we conclude that eventually, at time te, 〈V ∪W,N (V ∪W)〉
is a K-consistent network.

4.2.2 Protocol performance

We first analyze the communication cost of a join theoretically. Here we only present

results for the number of messages of type CpRstMsg, JoinWaitMsg, JoinNotiMsg,

and their corresponding replies,4 since these messages may include a copy of a

neighbor table and thus could be big in size. The other types of messages are all

small in size (see Figure 4.2). Ananlysis of numbers of small messages can be found

in Appendix C. In general, the number of each type of the small messages is at most

O(log n), and some of these messages can be piggy-backed by probing messages to

reduce the cost.

Let C(X,Y) denote the number of Y -combinations of X objects, n denote the

number of nodes in the initial network, and m denote the number of joining nodes.

Moreover, we define two functions, Qi(r) and Pi(r), to be used in Theorems 4 to 6,

where Qi(r) ≥ K, 0 ≤ Pi(r) ≤ 1, and
∑d−1

i=0 Pi(r) = 1, for 0 ≤ i ≤ d − 1. We note

that when bd � r, Qi(r) can be approximated by K + r
bi .

Definition 4.2 Let Pi(r) denote a function defined as follows, where r and i denote

integers, r ≥ 1 and 0 ≤ i ≤ d− 1.

• If 1 ≤ r < K, then Pi(r) = 1 for i = 0 and Pi(r) = 0 for 1 ≤ i ≤ d− 1;

• If r ≥ K, then
4The number of replies to these messages, CpRlyMsg, JoinWaitRlyMsg, and JoinNotiRlyMsg,

are the same since requests and replies are one-to-one related.

54

– Pi(r) =
∑K

j=0
C(bd−1−1,j)C(bd−bd−1,r−j)

C(bd−1,r)
for i = 0;

– Pi(r) =
∑K

j=0
C(bd−1−i−1,j)

∑min(r−j,B)

k=K−j
C(B,k)C(bd−bd−i,r−k−j)

C(bd−1,r)

where B = (b− 1)bd−i−1, for 1 ≤ i < d− 1;

– Pi(r) = 1−∑d−2
j=0 Pj(r) for i = d− 1.

Definition 4.3 Let Qi(r) denote a function defined as follows, where r and i denote

integers, r ≥ 1 and 0 ≤ i ≤ d− 1.

• If 1 ≤ r < K, then Qi(r) = r;

• If r ≥ K, then Qi(r) = K +
∑min(r,D)

j=0
C(D,j)C(bd−bd−i,r−j)

C(bd−K−1,r)

where D = bd−i −K − 1.

Theorem 4 Suppose a set of nodes, W = {x1,..., xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉, |V | = n. Then for any x, x ∈ W , an upper bound of the expected

number of CpRstMsg and JoinWaitMsg sent by x is
∑d−1

i=0 (i + 2)Pi(n + m− 1).

Theorem 5 Suppose node x joins a K-consistent network 〈V,N (V)〉, |V | = n.

Then, the expected number of JoinNotiMsg sent by x is
∑d−1

i=0 Qi(n−K)Pi(n)− 1.

Theorem 6 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉, |V | = n. Then for any node x, x ∈ W , an upper bound of the

expected number of JoinNotiMsg sent by x is
∑d−1

i=0 Qi(n + m− 1−K)Pi(n).

Proofs of the above theorems are presented in Appendix C. Here we only

present the intuitions for proving Theorem 5. Suppose V Notify
x = Vω. Since only

node x joins, x needs to send JoinNotiMsg to all nodes in V Notify
x , except the one

it has sent a JoinWaitMsg to. Let X denote the number of nodes in Vω, i.e.,

X = |Vω|. Then the number of JoinNotiMsg x sends out is X − 1. Let Y = |ω|
and P (Y = i) denote the probability of Y = i. To compute E(X − 1), we have

E(X) = E(E(X|Y)) =
∑d−1

i=0 (E(X|Y = i)P (Y = i)). It can then be proved that

E(X|Y = i) = Qi(n−K) and P (Y = i) = Pi(n), where n = |V |.

55

3

4

5

6

7

8

9

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Up
pe

r
bo

un
d

of
 E

(C
P+

JW
)

Number of nodes in the initial network (n)

 K=3, m=500
 K=3, m=1000

 K=2, m=500
 K=2, m=1000

 K=1, m=500
 K=1, m=1000

0

5

10

15

20

25

30

35

40

45

50

5000 10000 15000 20000 25000 30000 35000 40000

Up
pe

r
bo

un
d

of
 E

(J
)

Number of nodes in the network (n)

 K=3, m=500
 K=3, m=1000

 K=2, m=500
 K=2, m=1000

 K=1, m=500
 K=1, m=1000

(a) CpRstMsg + JoinWaitMsg (b) JoinNotiMsg

Figure 4.10: Theoretical upper bound of expected number of messages vs. n, for
different values of K and m, b = 16, d = 40

Figure 4.10 plots the upper bounds presented in Theorem 4 and Theorem 6,

where E(CP +JW) is the expected number of CpRstMsg and JoinWaitMsg sent by

a joining node, and E(JN) is the expected number of JoinNotiMsg. In calculating

the numbers, we set b = 16 and d = 40. We find that the value of d is insignificant for

the number of messages when bd � n, where n is the number of nodes in a network.

This is also confirmed by our experiment results. Moreover, d is insignificant for

join durations either.

Notice that for a fixed value of K, both upper bounds are insensitive to

the value of m (number of joins), and increase very slightly as n becomes large.

Moreover, for the same values of n and m, the upper bound of E(JN) increases

when K value increases, while the upper bound of E(CP + JW) decreases when K

value increases.

Next, we study performance of the protocol through simulation experiments.

We have implemented our join protocol in detail in an event-driven simulator. To

generate network topologies, we used the GT ITM package [39]. We simulated the

sending of a message and the reception of a message as events, but abstracted away

queueing delays. The end-to-end delay of a message from its source to destination

was modeled as a random variable with mean value proportional to the shortest path

length in the underlying network. For the experiments reported in this section, a

56

topology of 2112 routers was used, with 4000 nodes (end hosts) randomly attached

to the routers. The end-to-end delays were in the range of 0 to 329 ms, with the

average being 113 ms. In each simulation, we let all joins start at the same time,

which maximizes the number of nodes that join concurrently and dependently and

thus maximizes the average join durations.

Figure 4.11 summarizes results from experiments where 800 nodes joined

a network that initially had 3,200 nodes. Figure 4.11(a) shows simulation results

of cumulative distribution of the number of CpRstMsg and JoinWaitMsg sent by

joining nodes, and Figure 4.11(b) shows results of cumulative distribution of the

number of JoinNotiMsg sent by joining nodes. As shown in the figure, the number

of CpRstMsg and JoinWaitMsg sent by a joining node is small, which is less than

seven in Figure 4.11(a). Moreover, majority of joining nodes sent a small number

of JoinNotiMsg. For example, in Figure 4.11(b), for K = 3, more than 75% joining

nodes sent less than ten JoinNotiMsg.5

Both the theoretical analysis and simulation results show that when the

value of K increases, communication cost also increases. (Besides the number of

JoinNotiMsg, numbers of small messages also increase with K. See Appendix C.)

Clearly, there is a tradeoff between benefits and maintenance overhead of a K-

consistent network for different K values. (Detailed study of the tradeoff will be

presented Section 5.3.)

Lastly, we study lengths of join durations through simulation experiments.

For each simulation setup, we ran five experiments to obtain the average join dura-

tions. Figure 4.12(a) presents average join durations for 1000 nodes joining networks

of different sizes (different values of n), where K = 1. Each error-bar shows the
5For the results shown in Figure 4.11(a), the average number of CpRstMsg and JoinWaitMsg

sent by a joining node was 4.381 for K = 1, 4.071 for K = 2, 3.907 for K = 3, and 3.892 for K = 4;
the corresponding theoretical upper bounds are 4.68, 4.25, 4.07, and 4.017, respectively. For the
results shown in Figure 4.11(b), the average number of JoinNotiMsg was 6.714 for K = 1, 11.649
for K = 2, 13.971 for K = 3, and 14.751 for K = 4; the corresponding theoretical upper bounds
are 8.636, 14.924, 18.033, and 19.842, respectively.

57

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Number of CpRstMsg and JoinWaitMsg sent by a joining node

K=1
K=2
K=3
K=4

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Number of JoinNotiMsg sent by a joining node

K=1
K=2
K=3
K=4

(a) CpRstMsg+JoinWaitMsg (b) JoinNotiMsg

Figure 4.11: Cumulative distribution of messages sent by a joining node, n = 3200,
m = 800, b = 16, d = 40

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500

Jo
in

 d
ur

at
io

n
(s

ec
on

ds
)

Number of nodes in the intial network (n)

Average join duration

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

0 500 1000 1500 2000 2500 3000 3500Av
er

ag
e

jo
in

 d
ur

at
io

n
(s

ec
on

ds
)

Number of nodes in the intial network (n)

K=1
K=2
K=3
K=4

(a) K = 1 (b) Average join durations

Figure 4.12: Join durations, m = 1000, b = 16, d = 40

minimum and maximum join durations observed in the five experiments for that

simulation setup. Figure 4.12(b) presents the average join duration as a function

of n, for different values of K. From the results, we observe that the average join

duration is short in general, and increases very slightly when n increases (in some

cases, e.g., for K = 4, it even decreases when n increases).

4.3 Network Initialization

To initialize a K-consistent network of n nodes, we can put any one of the n nodes,

say x, in V , and construct x.table as follows.

• Nx(i, x[i]).first = x, x.state(x) = S, i ∈ [d].

• Nx(i, j) = ∅, i ∈ [d], j ∈ [b] and j 6= x[i].

58

Next, let the other n−1 nodes join the network by executing the join protocol,

each is given x to start with. Then, when all of the joins terminate, a K-consistent

network is constructed.

4.4 Summary

To design a join protocol that handles arbitrary number of joins is an important

part in designing a routing infrastructure for P2P networks. In this chapter, we

have presented a join protocol for the hypercube routing scheme. An important

feature of our protocol is that in our design, only nodes that are still in the join

process need to keep extra state information about the join process. Besides a

detailed specification of the join protocol, we have also proved rigorously that the

join protocol generates K-consistent neighbor tables for an arbitrary number of

concurrent joins. The expected communication cost of integrating a new node into

the network is shown to be small by both theoretical analysis and simulations. The

join protocol can also be used to initialize a K-consistent network.

59

Chapter 5

Integrating Failure Recovery

Our first objective in this chapter is the design of a failure recovery protocol for nodes

to re-establish connectivity after other nodes have failed and to maintain resilient

routing in the network. 1 We design and evaluate a basic failure recovery protocol,

which includes recovery from voluntary leave as a special case, for K-consistent

networks. The protocol is found to be highly effective for K ≥ 2. From 2,080

simulation experiments in which up to 50% of network nodes failed at the same

time, we find that all “recoverable holes” in neighbor tables due to failed nodes

were repaired by the protocol for K ≥ 2, that is, the neighbor tables recovered

K-consistency after the failures in every experiment for K ≥ 2. Furthermore, the

vast majority of the holes in neighbor tables were repaired with no communication

cost. The protocol uses only local information at each node and is thus scalable to

a large network size.

Our second objective is integration of the basic failure recovery protocol with

the join protocol presented in Chapter 4. Such integration requires extensions to

both the failure recovery and join protocols. For a network with concurrent joins and

failures, the failure recovery protocol needs to distinguish between nodes that are still
1When a node fails, it becomes silent. We do not consider Byzantine failures in this dissertation.

60

in the process of joining (i.e., the T-nodes), and nodes that have joined successfully

(i.e, the S-nodes). The join protocol, on the other hand, needs to be extended with

the ability to invoke failure recovery and the ability to backtrack. Furthermore,

when a node is performing failure recovery, its replies to some join protocol messages

must be delayed. We have run 980 simulation experiments in which the number of

concurrent joins and failures was up to 50% of the initial network size. We find that,

for K ≥ 2, our protocols constructed and maintained K-consistent neighbor tables

after the concurrent joins and failures in every experiment.

The rest of this chapter is organized as follows. In Section 5.1, we present

our basic failure recovery protocol for K-consistent networks and demonstrate its

effectiveness. In Section 5.2, we describe how to integrate the basic failure recovery

protocol with the join protocol presented in Section 4.1, and present results of simu-

lation experiments for the effectiveness of the integrated protocols. Next, we analyze

the benefits versus maintenance cost in maintaining K-consistency in Section 5.3,

and summarize in Section 5.4.

5.1 Basic Failure Recovery

In this section, we present a basic failure recovery protocol for K-consistent networks

and demonstrate its effectiveness. We consider the “fail-stop” model only, i.e., when

a node fails, it becomes silent and stays silent. If some neighbor in a node’s table

has failed, we assume that the node will detect the failure after some time, e.g.,

timeout after sending a periodic probe. Note that the failure of a reverse-neighbor

affects neither K-consistency nor consistency of a neighbor table. Therefore, if a

reverse-neighbor has failed, the reverse-neighbor pointer is simply deleted without

any recovery action. Hence, the protocol being designed is for recovery from neighbor

failures only.

Consider a network of n nodes that satisfies K-consistency initially. Suppose

61

f out of the n nodes (chosen randomly) fail at the same time or within a short time

duration. Our objective in this section is to design a protocol for each remaining

node to repair its neighbor table such that some time after the f failures have

occurred, neighbor tables in the remaining n− f nodes satisfy K-consistency again.

Suppose a node in the network, say y, has failed and y has been stored in

the (i, j)-entry of the table of node x. We say that the failure of y leaves a hole in

the (i, j)-entry of x.table. To maintain K-consistency, x needs to find a qualified

substitute for y, i.e., x needs to find a qualified node u for the entry, such that

u has not failed and u is not already stored in the entry. (It is possible that u

fails later and x needs to find a qualified substitute for u.) To determine whether

or not the network of n− f remaining nodes satisfies K-consistency, we distinguish

between recoverable holes and irrecoverable holes. A hole in the (i, j)-entry of x.table

is irrecoverable after the f failures if a qualified substitute does not exist among

the n− f remaining nodes.

The objective of failure recovery is to find a qualified substitute for every

recoverable hole in neighbor tables of all remaining nodes. Irrecoverable holes, on

the other hand, cannot possibly be filled and do not have to be filled for the neigh-

bor tables to satisfy K-consistency. The main difficulty in failure recovery is that

individual nodes do not have global information and cannot distinguish recoverable

from irrecoverable holes. (If the network is not partitioned, a broadcast protocol

can be used to search all nodes to determine if a hole is recoverable. A broadcast

protocol, of course, is not a scalable approach.)

The recovery process for each hole in a node’s table is designed to be a se-

quence of four search steps executed by the node based on local information (its

neighbors and reverse-neighbors). After the entire sequence of steps has been exe-

cuted and no qualified substitute is found, the node considers the hole to be irrecov-

erable and the recovery process terminates. The effectiveness of our failure recovery

62

protocol is evaluated in a large number of simulation experiments. In a simulation

experiment, we can check how fast our failure recovery protocol finds a qualified

substitute for a recoverable hole. Furthermore, we can check how often our failure

recovery protocol terminates correctly when it considers a hole to be irrecoverable

(since we have global information in simulation).

5.1.1 Protocol design

Suppose a node, x, detects that a neighbor, y, has failed and left a hole in the (i, j)-

entry, i ∈ [d], j ∈ [b], in x.table. Let ω denote the required suffix of the (i, j)-entry

in x.table. To find a qualified substitute for y with reasonable cost, we propose a

sequence of four search steps, (a)-(d) below, based upon node x’s local information.

At the beginning of each step, except step (a), x sets a timer. If the timer expires

and no qualified substitute for y has been found, then x proceeds to the next step.

To determine whether some node u is a qualified substitute for y, x needs to

know whether u has failed. In our protocol, x makes this decision also based upon

local information. More specifically, x maintains a list of failed nodes it has detected

so far.2 x accepts u as a qualified substitute for y if u is not on the list, u has the

required suffix ω, and u 6∈ Nx(i, j).

Step (a) x deletes y from its table, then searches its neighbors and reverse-

neighbors to find a qualified substitute for y.

Step (b) x queries each of the remaining neighbors in the (i, j)-entry of its

table (if any). In each query, x includes a copy of nodes in Nx(i, j). When a node,

say z, receives such a query from x, it searches its neighbors and reverse-neighbors

to find a node that has suffix ω and is not in Nx(i, j). If one is found, z replies to

x with the node’s ID (and IP address).
2In implementation, a failed node only needs to stay in the list long enough for all its reverse-

neighbors to detect its failure. To keep the list from growing without bound, x can delete nodes
that have been in the list for a sufficiently long time.

63

Step (c) x queries each of its neighbors at level-i (all entries) including

neighbors in the (i, j)-entry, using a protocol same as the one in step (b).

Step (d) x queries each one of its neighbors (all levels) including neighbors

at level-i, using a protocol same as the one in step (b).

When the timer in step (d) expires and no qualified substitute has been

found, x terminates the recovery process and considers the hole left by y to be

irrecoverable. The earlier a hole is repaired with a qualified substitute, the less is

the communication overhead incurred. If a hole is repaired in step (a), there is no

communication overhead. If a hole is repaired in step (b), at most 2(K−1) messages

are exchanged, K−1 queries and K−1 replies. If a hole is repaired in step (c), there

are at most 2Kb messages, plus the messages exchanged in step (b). If a hole is

repaired in step (d), approximately 2Kb logb n messages, plus the messages in steps

(b) and (c), are exchanged.

5.1.2 Simulation experiments

Methodology To evaluate the performance of our failure recovery protocol,

2,080 simulation experiments were conducted on our own discrete-event packet-

level simulator.3 We used the GT ITM package [39] to generate network topologies.

For a generated topology with a set of routers, n nodes (end hosts) were attached

randomly to the routers. For the simulations reported in Table 5.1, three topologies

were used. The 1000-node and 2000-node simulations used a topology with 1056

routers. The 4000-node simulations used a topology with 2112 routers. The 8000-

node simulations used a topology with 8320 routers. We simulated the sending of

a message and the reception of a message as events, but abstracted away queueing

delays. The end-to-end delay of a message from its source to destination was modeled
3These 2,080 experiments together with the 980 experiments to be presented in Section 5.2

required several months of execution time on several workstations. A typical experiment took
several hours to run on a Linux workstation with 2.66 GHz CPU and 2 GB memory. Each simulation
experiment for 8,000 nodes, b = 16, and K ≥ 3 shown in Table 5.1 took 40 - 72 hours to run.

64

as a random variable with mean value proportional to the shortest path length in

the underlying network.4

In each simulation, a network of n nodes with K-consistent neighbor tables

was first constructed. Then a number, f , of randomly chosen nodes failed. For 1000-

node and 8000-node simulations, the f nodes failed at the same time. For 2000-node

simulations and each specific K value, the f nodes failed at the same time for 84

out of the 180 experiments; a Poisson process was used to generate failures in the

balance of the experiments, with half of the experiments at the rate of 1 failure per

second and the other half at the rate of 1 failure every 10 seconds. For comparison,

the timeout value used to determine whether a neighbor has failed was 5 seconds,

and the timeout value used in each of the protocol steps (b)-(d) was 20 seconds.

Therefore, most failure recovery processes ran concurrently even when the Poisson

rate was slowed to one failure every ten seconds. For 4000-node experiments and

each specific K value, the f nodes failed at the same time in 104 out of the 116

experiments, with a Poisson process at the rate of 1 failure per second used in the

balance of the experiments.

We conducted simulations for different combinations of b, d, K, n and f

values. For each network of n nodes, n ∈ {1000,2000,4000, 8000}, four pairs of (b, d)

were used, namely: (4,16), (4,64), (16,8), and (16,40). Then, for each (b, d) pair, K

was varied from 1 to 5. For each (n, b, d, K) combination, f was varied from 0.05n

to 0.1n, 0.15n, 0.2n, 0.3n, 0.4n, and 0.5n (1540 experiments were run for f = 0.05n

to f = 0.2n, with approximately the same number of experiments for each; 540

experiments were run for f = 0.3n to f = 0.5n, with 180 experiments for each).

To construct the initial K-consistent networks for simulations, we exper-

imented with four approaches to choose neighbors for each entry: (i) choose K

neighbors randomly from qualified nodes, (ii) choose K closest neighbors from qual-
4The maximum end-to-end delay in 8000-node simulations was 969 ms.

65

ified nodes, (iii) choose K neighbors randomly from qualified nodes that are within

a multiple of the closest neighbor’s distance, (iv) use our join protocol in Section 4.1

to construct a K-consistent network. We conjecture that a K-consistent network

constructed by approach (iii) would be closest to a real network whose neighbor

tables have been optimized by some heuristics. As shown below, we found that for

K ≥ 2, our failure recovery protocol was very effective irrespective of the approach

used for initial network construction. (All four approaches were used for different

experiments in the set of 2,080 experiments.)

Results Table 5.1 shows a summary of results from 2,080 simulation ex-

periments. In a simulation, if all recoverable holes are repaired (thus K-consistency

recovered) at the end of the simulation, it is recorded as a perfect recovery in Ta-

ble 5.1. In the 2,080 simulation experiments, every simulation for K ≥ 2 finished

as a perfect recovery, i.e., every recoverable hole was repaired with a qualified sub-

stitute. Thus in K-consistent networks, for K ≥ 2, our failure recovery protocol is

extremely effective.

K, n Number of Number of K, n Number of Number of
simulations perfect recoveries simulations perfect recoveries

1,1000 100 51 1, 2000 180 96
2,1000 100 100 2, 2000 180 180
3,1000 100 100 3, 2000 180 180
4,1000 100 100 4, 2000 180 180
5,1000 100 100 5, 2000 180 180

1,4000 116 65 1, 8000 20 14
2,4000 116 116 2, 8000 20 20
3,4000 116 116 3, 8000 20 20
4,4000 116 116 4, 8000 20 20
5,4000 116 116 5, 8000 20 20

Table 5.1: Results from 2,080 simulation experiments (f was 0.05n, 0.1n,
0.15n, 0.2n, 0.3n, 0.4n or 0.5n)

Table 5.2 presents results from ten simulations for a network with 4,000 nodes

and 800 failures, where the initial neighbor tables were constructed using approach

(iii), described above. The results show the cumulative fraction of recoverable holes

66

that were repaired by the end of each step in the recovery protocol. For instance, for

the simulation with parameters b = 4, d = 64 and K = 2, more than 66.8% percent

of recoverable holes were repaired by the end of step (a), 93.8% were repaired by the

end of step (b), 99.8% were repaired by the end of step (c), and all were repaired by

the end of step (d). From Table 5.2, observe that step (d) in our recovery protocol

was rarely used. There was a dramatic improvement in the recovery protocol’s

performance when K was increased from 1 to 2. Also observe that the fraction of

recoverable holes that were repaired after each step increases with K.

Aside from being extremely effective, our failure recovery protocol is also

very efficient because recoverable holes repaired in step (a) incur no communication

cost, while each hole repaired in step (b) incurs a communication cost of at most

2(K − 1) messages. Table 5.2 shows that, for K ≥ 2, the majority of recoverable

holes were repaired in step (a) and almost all of them were repaired by the end of

step (b). Note that if a recoverable hole is repaired in step (a), its recovery time is

(almost) zero. The time required for each subsequent step ((b)-(d)) is at most the

step’s timeout value. For the timeout value of 20 seconds per step, the average time

to repair a recoverable hole was less than 5.88 seconds for b=16, d=40, and K=3 in

Table 5.2. For a timeout value of 5 seconds per step, the average time to repair a

recoverable hole was found to be less than 1.45 seconds for b=16, d=40, and K=3

from a different set of experiments.

Table 5.3 shows the total number of holes, the number of irrecoverable holes,

as well as the number of recoverable holes repaired at each step for the same sim-

ulation experiments shown in Table 5.2. Observe from Table 5.3 that when K was

increased, even though the total number of holes increased, the number of recover-

able holes repaired in step (b) did not increase much with K; the number of holes

repaired actually declined in steps (c) and (d). Thus while increasing K causes

the number of recoverable holes repaired in step (a) to increase, these repairs are

67

b, d, K step (a) step (b) step (c) step (d)
4, 64, 1 0.451594 0.451594 0.920969 0.998883
4, 64, 2 0.668176 0.938131 0.998077 1.000000
4, 64, 3 0.760213 0.98974 0.998774 1.000000
4, 64, 4 0.816133 0.997837 0.999252 1.000000
4, 64, 5 0.851577 0.999126 0.999736 1.000000

16, 40, 1 0.453649 0.453649 0.999093 1.000000
16, 40, 2 0.633784 0.932868 0.999854 1.000000
16, 40, 3 0.716517 0.989295 0.999986 1.000000
16, 40, 4 0.77311 0.997785 1.000000 1.000000
16, 40, 5 0.823924 0.999441 1.000000 1.000000

Table 5.2: Cumulative fraction of recoverable holes repaired by the end of
each step, n = 4000, f = 800

b, d, K Total number Irrecoverable Number of recoverable
of holes holes holes repaired at each step

step (a) step (b) step (c) step (d) not recovered
4, 64, 1 13125 1484 5257 0 5464 907 13
4, 64, 2 28616 3660 16675 6737 1496 48 0
4, 64, 3 43323 5798 28527 8613 339 46 0
4, 64, 4 57462 7997 40370 8988 70 37 0
4, 64, 5 70798 10174 51626 8945 37 16 0

16, 40, 1 29803 4442 11505 0 13833 23 0
16, 40, 2 55977 8161 30305 14301 3203 7 0
16, 40, 3 81406 9945 51203 19493 764 1 0
16, 40, 4 107547 10500 75028 21804 215 0 0
16, 40, 5 132257 10696 100157 21336 68 0 0

Table 5.3: Total number of holes, irrecoverable holes, and recoverable holes
repaired at each step, n = 4000, f = 800

performed with zero communication cost. Nevertheless, the communication cost of

failure recovery increases with K because the number of irrecoverable holes increases

with K. Note that for each irrecoverable hole, all four steps of failure recovery are

executed.

5.1.3 Voluntary leaves

A voluntary leave can be handled as a special case of node failure if necessary. When

a node, say x, leaves, it can actively inform its reverse-neighbors and neighbors. To

each reverse-neighbor, x suggests a possible substitute for itself. When a node

receives a leave notification from x, for each hole left by x, it checks whether the

68

substitute provided by x is a qualified substitute. If so, the hole is filled with the

substitute; otherwise, failure recovery is initiated for the hole left by x.

5.2 Protocol Design for Concurrent Joins and Failures

In this section we describe how to integrate the basic failure recovery protocol pre-

sented in Section 5.1 with the basic join protocol presented in Section 4.1. Such

integration requires extensions to both protocols.

Consider a K-consistent network, 〈V,N (V)〉. Suppose a set of new nodes,

W , join the network while a set of nodes, F , fail, F ⊂ V ∪ W and V − F 6= ∅.
Our goal in this section is to design extended join and failure recovery protocols

such that eventually the join process of each node in W − F terminates and 〈(V ∪
W)−F,N ((V ∪W)−F)〉 is a K-consistent network. In general, designing a failure

recovery protocol to provide perfect recovery is an impossible task; for example,

consider a scenario in which an arbitrary number of nodes in V ∪ W fail. On

the other hand, we observed in Section 5.1 that the basic failure recovery protocol

achieved perfect recovery for K-consistent networks, for K ≥ 2, in which up to 50%

of the nodes failed. This level of performance, we believe, would be adequate for

many applications.

Design of extended join and failure protocols in this section follows the ap-

proach in [17] on how to compose modules. The service provided by a composition

of the two protocols herein is construction and maintenance of K-consistent neigh-

bor tables. The extended join protocol is designed with the assumption that the

extended failure recovery protocol provides a “perfect recovery” service, that is, for

every hole found in the neighbor table of a node, the node calls failure recovery and

within a bounded duration, failure recovery returns with a qualified substitute for

the hole or the conclusion that the hole is irrecoverable at that time. To avoid circu-

lar reasoning [17], we ensure that progress of the failure recovery protocol does not

69

depend upon progress of the join protocol. Thus in the extensions to be presented,

failure recovery actions are always executed before join actions.

5.2.1 Protocol extensions

For networks with concurrent joins and failures, the failure recovery protocol needs

to distinguish between nodes that are still in the process of joining (T-nodes) and

nodes that have joined successfully (S-nodes). The join protocol, on the other hand,

needs to be extended with the ability to invoke failure recovery and to backtrack.

Furthermore, when a node is performing failure recovery, its replies to some join

protocol messages must be delayed. A more detailed description follows.

We specify extensions to the join protocol presented in Section 4.1 (hereafter

referred as the basic join protocol) and basic failure recovery protocol in Section 5.1.1

as a set of eight rules. Rule 0 extends the basic join protocol with the ability to

invoke failure recovery. Rule 1 is an extension that applies to both the basic failure

recovery and join protocols. Rules 2 to 7 are extensions to the basic join protocol.

Rule 0 Each node, S-node or T-node, starts an error recovery process when

it detects a hole in its neighbor table left by a failed neighbor.

Rule 1 In filling a table entry with a qualified node, do not choose a T-node

unless there is no qualified S-node.

Rule 1 extends the basic failure recovery protocol as follows: When a node,

x, locates a qualified substitute for a hole in x.table using step (a), (b), (c), or (d) of

the failure recovery protocol, if the qualified substitute is an S-node, then x fills the

hole with it and terminates the recovery process. However, if the qualified substitute

is a T-node, x saves the T-node in a waiting list for the entry and continues the

recovery process. Only when the recovery process terminates at the end of step (d)

without locating any S-node as a qualified substitute, will x remove a T-node from

the entry’s waiting list to fill the hole (provided that the list is not empty). Also,

70

because of Rule 1, when a node searches among its neighbors and reverse-neighbors

to find a qualified substitute in response to a recovery query from another node, it

does not select a T-node as long as there are S-nodes that are qualified.

Rule 1 extends the basic join protocol as follows: Consider a node, x, that

discovers a new neighbor, y, for one of its table entries after receiving a join protocol

message from another node. x can store y in the table entry, if the table entry is

not full with K neighbors yet and y is an S-node, according to the following steps.

First, x checks if there exists any vacancy among the K “slots” of the entry that is

not a hole for which failure recovery is in progress. If there exists such a vacancy,

y is filled into it; otherwise, y (an S-node) is filled into a hole in the entry and the

recovery process for the hole is terminated. On the other hand, if the new neighbor

y is a T-node, then y can be stored in the entry if the total number of neighbors and

holes in the entry is less than K. Otherwise, y (a T-node) is saved in the entry’s

waiting list and may be stored into the entry later when the recovery process of a

hole in the entry terminates.

Rule 2 Each node, S-node or T-node, cannot reply to CpRstMsg, JoinWait-

Msg or JoinNotiMsg, if the node has any ongoing recovery process at the time it

receives such a message.

When a node, x, receives a CpRstMsg, JoinWaitMsg or JoinNotiMsg, if x has

at least one recovery process that has not terminated, x needs to save the message

and process it later. Each time a recovery process terminates, x checks whether

there is any more recovery process still running. If not, x can process the above

three types of messages it has saved so far.

Rule 3 When a T-node detects failure of a neighbor in its table, it starts a

failure recovery process for each hole left by the failed neighbor according to Rule

0 with the following exception, which requires the T-node to backtrack in its join

process.

71

Consider a T-node, say x. In order to backtrack, x keeps a list of nodes,

(g0, ..., gi), to which it has sent a CpRstMsg or a JoinWaitMsg, in order of sending

times. Backtracking is required if one of the following conditions holds: (i) x is in

status copying, waiting for a CpRlyMsg from gi, and has detected the failure of gi;

(ii) x is in status waiting, waiting for a JoinWaitRlyMsg from gi, and has detected

the failure of gi; (iii) x, in status notifying, finds that it has no live reverse-neighbor

left and it is not expecting any more JoinNotiRlyMsg when it receives a negative

JoinNotiRlyMsg or when it detects the failure of gi, some neighbor y, or a node from

which x is waiting for a JoinNotiRlyMsg.

In cases (i) and (ii), x has not been attached to the network (no S-node has

stored it as a neighbor). In case (iii), x is detached from the network and has no

prospect of attachment since it is not expecting a JoinNotiRlyMsg. In each case,

x backtracks by deleting from its table the failed node(s) it detected, setting its

status to waiting, and sending a JoinWaitMsg to gi−1 to inform gi−1 about the

failed node(s) and request gi−1 to store x into gi−1.table . If gi−1 has also failed,

then x contacts gi−2, and so on. If x backtracks to g0 and g0 has also failed, then x

has to obtain another S-node from the network to start joining from the beginning

again.

Rule 4 A T-node must wait until its status is notifying before it can send

RvNghNotiMsg to its neighbors, which will then store it as a reverse-neighbor. (This

is to prevent a T-node from being selected as a substitute for a hole before it is

attached to the network.)

Rule 5 When a T-node receives a reply with a substitute node for a hole

in its table, if the T-node is in status notifying and the substitute node should

be notified,5 then the T-node sends a JoinNotiMsg to the substitute, even if the

substitute is not used to fill the hole.
5Let x denote the T-node in status notifying and y the substitute node received. The condition

for x to notify y is |csuf (x .ID , y .ID)| ≥ x.att level and x has not sent a JoinNotiMsg to y.

72

Rule 6 A T-node cannot change status to in system (become an S-node) if

it has any ongoing failure recovery process.

Rule 7 When a T-node changes status to in system, it must inform all its

reverse-neighbors (by sending InSysNotiMsg), in addition to its neighbors, that it

has become an S-node.

5.2.2 Simulation results

We implemented the extended join and failure recovery protocols and conducted

980 simulation experiments to evaluate them. Each simulation began with a K-

consistent network, 〈V,N (V)〉, of n nodes (n = |V |). Then a set W of nodes joined

and a set F of randomly chosen nodes failed during the simulation. Each simulation

was identified by a combination of b, d, K, n, and |W |+ |F | values, where |W |+ |F |
is the total number of join and failure events. K was varied from 1 to 5, (b, d)

values were chosen from (4,16),(4,64), (16,8) and (16,40), and three values, 1600,

3200 and 3600, were used for the initial network size (n). For 3200-node and 3600-

node simulations, all joins and failures occurred at the same time. For 1600-node

simulations, join and failure events were generated according to a Poisson process

at the rate of 1 event per second in 220 experiments, 1 event every 10 seconds in

180 experiments, 1 event every 20 seconds in 60 experiments, and 1 event every 100

seconds in 60 experiments. K-consistent neighbor tables for the initial network were

constructed using the four approaches described in Section 5.1.2.

At the end of every simulation, we checked whether the join processes of

all joining nodes that did not fail (nodes in W − F) terminated. We then checked

whether the neighbor tables of all remaining nodes (nodes in V ∪ W − F) satisfy

K-consistency. Table 5.4 presents a summary of results of the 980 simulation exper-

iments. We observed that, for K ≥ 2, in every simulation, the join processes of all

nodes in W −F terminated and the neighbor tables of all remaining nodes satisfied

73

K-consistency. Each such experiment is referred to in Table 5.4 as a simulation with

perfect outcome.

K = 1 K = 2, 3, 4, 5
n Number of events Number of Number of simulation Number of Number of simulation

(|W |+ |F |) simulation w/ perfect outcome simulation w/ perfect outcome
1600 200 (38+162) 16 16 64 64
1600 200 (110+90) 16 16 64 64
1600 200 (160+40) 12 12 48 48
1600 400 (85+315) 12 10 48 48
1600 400 (204+196) 12 11 48 48
1600 400 (323+77) 12 12 48 48
1600 800 (386+414) 24 22 96 96
3600 400 (81+319) 16 13 64 64
3600 400 (210+190) 16 15 64 64
3600 400 (324+76) 12 12 48 48
3600 800 (169+631) 12 9 48 48
3600 800 (387+413) 12 11 48 48
3600 548 (400+148) 12 10 48 48
3200 1600 (780+820) 12 9 48 48

Table 5.4: Results for concurrent joins and failures

5.3 K vs. Maintenance Cost

As shown by previous results, a K-consistent network with a larger K provides

more alternate paths and is more resilient to failures. However, these benefits come

with costs. With a larger K, more neighbors are stored in each neighbor table. As

a result, each node incurs a larger storage cost and sends more messages when it

probes neighbors or exchanges information with neighbors, and each message that

includes a neighbor table is larger. Furthermore, with a larger K, each joining node

needs to find more nodes to store into its neighbor table and more nodes to notify.

We first study the number of neighbors in a neighbor table for different K

values. We ran simulations for different combinations of K, b, d, and n values. In

each simulation, neighbor tables were constructed according to the K-consistency

definition. Then the number of neighbors in each node’s table was counted.6 For
6The node itself is not included in the count, but a neighbor stored in different entries of the

table is counted multiple times. As a result, the total number of neighbors per node does not depend

74

50

100

150

200

1 2 3 4 5

Av
er
ag
e
nu
mb
er
 o
f
ne
ig
hb
or
s

K

b=16, d=40, n=5000
b=16, d=40, n=1000

b=4, d=64, n=5000
b=4, d=64, n=1000

Figure 5.1: Average number of neighbors per node in a K-consistent network

each combination of parameter values, we ran a set of five simulations and computed

the average number of neighbors per node. The results are shown in Figure 5.1,

where error-bars show the maximum and minimum values in the set. Observe that

the average number of neighbors in a node’s table increases with K, b, and n, but

does not depend on the value of d.

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

N
um

be
r o

f m
es

sa
ge

s

K

b=4, d=64
b=16, d=40

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

N
um

be
r o

f m
es

sa
ge

s

K

b=4, d=64
b=16, d=40

(a) n = 1600, J = 400, F = 385 (b) n = 3600, J = 387, F = 413

Figure 5.2: Average number of JoinNotiMsg sent by a joining node

Next, we investigate communication costs versus K. We conducted simula-

tions with different values of n, J and F , where n is the number of nodes in the

initial network, J is the number of joins, and F is the number of failures. All joins

and failures happened at the same time in each simulation. For each combination of

n, J , and F values, K was varied from 1 to 5, while (b, d) values were chosen from

(4,64) and (16,40).

on how the neighbors in each entry are chosen from the set of qualified nodes in the network.

75

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Number of JoinNotiMsg

K=1
K=2
K=3
K=4
K=5 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Number of JoinNotiMsg

K=1
K=2
K=3
K=4
K=5

(a) n = 1600, J = 400, F = 385 (b) n = 3600, J = 387, F = 413

Figure 5.3: Cumulative distribution of JoinNotiMsg sent by a joining node, b =
4, d = 64

3

4

5

6

7

8

0 1 2 3 4 5 6

N
um

be
r o

f m
es

sa
ge

s

K

b=4, d=64
b=16, d=40

3

4

5

6

7

8

0 1 2 3 4 5 6

N
um

be
r o

f m
es

sa
ge

s

K

b=4, d=64
b=16, d=40

(a)n = 1600, J = 400, F = 385 (b) n = 3600, J = 387, F = 413

Figure 5.4: Average total number of CpRstMsg and JoinWaitMsg sent by a joining
node

We first show the communication costs of joins. Figure 5.2 shows the average

number of JoinNotiMsg sent by a joining node versus K. Each average value was

obtained by running 5 simulations for the same combination of parameter values.

As expected, the average number of JoinNotiMsg sent by a joining node increases

with K. Figure 5.3 presents cumulative distributions of the number of JoinNotiMsg

sent by a joining node from 10 simulations for b = 4 and d = 64. Again, as expected,

the percentage of joining nodes that send a small number of JoinNotiMsg decreases

as K increases.

76

Figure 5.4 shows the average number of CpRstMsg and JoinWaitMsg sent by

a joining node versus K. The average number decreases slightly when K increases,

because when K increases, the attach-level of a joining node tends to be lower,

which limits the total number of CpRstMsg and JoinWaitMsg sent by the node.

Other join protocol messages, such as InSysNotiMsg and RvNghNotiMsg, are

small messages which do not contain a neighbor table. The number of these messages

depends on the number of neighbors in the sender’s neighbor table and increases

with K (see Appendix C). However, these small messages can be piggybacked in

probes when a node probes its neighbors. Thus their communication cost is small.

Lastly, we investigated the communication cost of failure recovery in the

presence of concurrent joins. We found the simulation results to be similar to those

presented in Tables 5.2 and 5.3. The only difference is that with concurrent joins,

approximately 3% to 4% of the recoverable holes were repaired by the join protocol.

5.4 Summary

In this chapter, we have presented our design of a basic failure recovery protocol for

K-consistent networks. The protocol has been evaluated with extensive simulations

and found to be efficient and effective for networks of up to 8,000 nodes in size.

Since our protocol uses local information, we believe that it is scalable to networks

larger than 8,000 nodes.

The failure recovery protocol is then integrated with the join protocol that

has been proved to construct K-consistent networks for concurrent joins and shown

analytically to be scalable to a large network size. From extensive simulations,

in which massive joins and failures occurred at the same time, we find that the

integrated protocols maintained K-consistent neighbor tables after the joins and

failures in every experiment.

The storage and communication costs of our protocols are found to increase

77

approximately linearly with K. The results in Chapter 3 has shown that the net-

work robustness improvement is dramatic when K is increased from 1 to 2. We

believe that P2P networks using hypercube routing should be designed with K ≥ 2.

However, a bigger K value results in higher storage and communication overhead;

and as shown in the churn experiments in Chapter 6, a large K also reduces the

“join capacity” of a network. Thus, for P2P networks with a high churn rate, we

recommend a K value of 2 or at most 3. For P2P networks with a low churn rate,

K may be 3 or higher (say 4 or 5) if additional route redundancy is desired.

78

Chapter 6

System Behaviors under Churn

The objective of this chapter is to explore how high a rate of node dynamics can be

sustained by the routing infrastructure we have designed in previous chapters. We

have performed a number of (relatively) long duration experiments, in which nodes

joined a 2000-node network at a given rate, and nodes (both existing and joining

nodes) were randomly selected to fail concurrently at the same rate. In each such

churn experiment, we took a snapshot of neighbor tables in the network once every

50 simulation seconds and evaluated network connectivity and consistency measures

over time as a function of the churn rate, timeout value in failure recovery, and K.

Our protocols are found to be effective, efficient, and stable for a churn rate up to

4 joins and 4 failures per second. By Little’s Law, the average lifetime of a node is

8.3 minutes at this rate. For comparison, the median lifetime measured for Gnutella

and Napster is 60 minutes [36].

We also find that, for a given network, its sustainable churn rate is upper

bounded by the rate at which new nodes can join the network successfully (become

S-nodes). We refer to this upper bound as the network’s join capacity. We find

that a network’s join capacity decreases as the network’s failure rate increases. For

a given failure rate, we find two ways to improve a network’s join capacity: (i) use

79

the smallest possible timeout value in failure recovery, and (ii) choose a smaller

K value. Since improving a network’s join capacity improves its sustainable churn

rate, our observation that a smaller K (less redundancy) leads to a higher join

capacity is consistent with the conclusion in [2]. Furthermore, we found that a

network’s maximum sustainable churn rate increases at least linearly with n (the

number of network nodes) for n from 500 to 2000. This validates a conjecture

that our protocols’ stability improves as the number of S-nodes in the network

increases. Experiment results also show that our protocols, by striving to maintain

K-consistency, were able to provide pairwise connectivity higher than 99.9995%

(between S-nodes) at a churn rate of 2 joins and 2 failures per second for n=2000

and K=3. Furthermore, the average routing delay increased only slightly even when

the churn rate is greatly increased.

We start this chapter by presenting the design and results of our churn ex-

periments in Section 6.1. In Section 6.2, we evaluate the routing performance of our

system under different churn rates. We then summarize in Section 6.3.

6.1 Churn Experiments

Our simulation results in Chapter 5 show that for K ≥ 2, K-consistency has been

recovered in every experiment some time after the simultaneous occurrence of mas-

sive joins and failures. Such convergence to K-consistency provides assurance that

our protocols are effective and error-free. For a real system, however, there may

not be any quiescent time period long enough for neighbor tables to converge to

K-consistency after joins and failures. Protocols designed to achieve K-consistency,

K ≥ 2, provide redundancy in neighbor tables to ensure that a dynamically chang-

ing network is always fully connected, i.e., there exists at least one path from any

node to every other node in the network. In this section, we investigate the impact

of node dynamics on protocol performance. In particular, we address the question

80

of how high a rate of node dynamics can be sustained by our protocols and, more

specifically, what are the limiting factors? By “sustaining a rate of node dynamics”,

we mean that the system is able to maintain a large, stable, and connected set of

S-nodes under the given rate of node dynamics.

6.1.1 Experiment setup

To simulate node dynamics, Poisson processes with rates λjoin and λfail are used

to generate join and failure events, respectively. For each join event, a new node

(T-node) is given the ID and IP address of a randomly chosen S-node to whom

it sends a CpRstMsg to begin its join process. For each failure event, an existing

node, S-node or T-node, is randomly chosen to fail and stay silent. In experiments

to be presented in this section, we set λjoin = λfail = λ, which is said to be the

churn rate. Periodically in each experiment, we took snapshots of the neighbor

tables of all S-nodes. Intuitively, the set of S-nodes is the “core” of the network.

The periodic snapshots provide information on network connectivity and indicate

whether our protocols can sustain a large stable core for a particular churn rate over

the long term. The time from when a new node starts joining to when it becomes an

S-node is said to be its join duration. Note that each new node can get network

services as a “client” as soon as it has the ID and IP address of an existing S-node.

However, it cannot provide services to others as a “server” until it has become an

S-node.

Each experiment in this section began with 2,000 S-nodes, where b = 16,

d = 8, and K is 3 or 2. Neighbor tables in the initial network were constructed using

approach (iii) as described in Section 5.1.2. The underlying topology used in the

experiments had 2,112 routers. Of the average end-to-end delays, 23.3% were below

10 ms and 72.2% were below 100 ms, with the largest average value being 596 ms.

The timeout value for each step in failure recovery (see Section 5.1.1) was 10, 5 or

81

2 seconds.1 We ran experiments for values of λ ranging from 0.25 to 4 joins/second

(also failures/second). By Little’s Law, at a churn rate of λ = 4, the average

lifetime of a node in a 2000-node network is 8.3 minutes.2 (For comparison, the

median node lifetime in Napster and Gnutella was measured to be 60 minutes [36].)

Each experiment ran for 10,000 seconds of simulated time.3 After 10,000 seconds, no

more join or failure event was generated, and the experiment continued until all join

and failure recovery processes terminated. We took snapshots of neighbor tables and

evaluated connectivity and consistency measures once every 50 simulation seconds

throughout each experiment. We also checked whether a network converged to K-

consistency (K = 3 or 2) at termination and measured the time duration needed for

convergence.

6.1.2 Results

Figure 6.1 plots the total number of nodes (S-nodes and T-nodes) and the number of

S-nodes in the network at each snapshot, for experiments with λ = 0.5, λ = 1, and

λ = 1.5, and K = 3. Fluctuations in the curves are mainly due to fluctuations in

the Poisson processes for generating join and failure events. The difference between

the two curves of each experiment is the number of T-nodes. With λjoin = λfail = λ,

a stable number of T-nodes over time indicates that our protocols were effective and

stable. Observe that some time after 10,000 seconds, all T-nodes became S-nodes

(the two curves converged). Experiments illustrated on the left side and the right

side of Figure 6.1 used timeout values of 10 seconds and 5 seconds, respectively.

For the same λ, the average number of S-nodes is larger and the average number of

T-nodes is smaller in experiments with 5-second timeouts than those with 10-second
1The timeout value is used in each failure recovery step to wait for replies. A timeout value of

10 seconds might be unnecessarily long for today’s Internet.
2By Little’s Law, the average node lifetime is n/λ (seconds), where n is the number of nodes in

the network.
3Each experiment for λ = 2 and K = 3 took about twelve days to run on a Linux workstation

with 3.06GHz CPU and 4GB memory.

82

timeouts. This is because join duration is much smaller with 5-second timeouts than

with 10-second timeouts, which suggests that the timeout value in failure recovery

should be as small as possible.

In general when the failure rate of a network increases, join duration in-

creases. The reason is as follows. In our protocol design, to avoid circular reasoning,

failure recovery actions have priority over join protocol actions. More specifically,

when a node has an ongoing failure recovery process, it must wait until the process

terminates before it can reply to certain join protocol messages; moreover, a T-node

must wait to change status to an S-node if it has an ongoing recovery process. With

more failures, there are more holes in neighbor tables and the join processes of T-

nodes will be delayed longer. Figure 6.2(a) shows the cumulative distribution of

join duration for different values of λ. When λ increases (failure rate increases), join

duration increases. In Figure 6.2(a), observe that not only is the mean join dura-

tion for λ = 1 larger than that of λ = 0.5, but the tail of the distribution is very

much longer. (In the absence of failures, join durations of nodes are substantially

shorter. From a different set of experiments in which 1000 nodes concurrently join

an existing 3000-node network with no failure, the average join duration was found

to be 1.9 seconds and the 90 percentile value 2.7 seconds.)

For a given failure rate, the join durations of nodes can be reduced by two

system parameters, namely: timeout value in failure recovery and K. We have

already inferred from Figure 6.1 that join duration can be reduced by using a smaller

timeout in failure recovery. This point is illustrated explicitly from comparing the

two curves in Figure 6.2(b), where one curve shows the cumulative distribution

for λ = 1, K = 3, and 10-second timeout, and the other shows the cumulative

distribution for λ = 1, K = 3, and 5-second timeout. (Intuitively, using a smaller

timeout value reduces the average duration of failure recovery processes. As a result,

join processes that wait for failure recovery processes can terminate faster.) Also

83

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

N
um

be
r o

f n
od

es

Time (seconds)

Number of nodes in network
Number of S-nodes

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

N
um

be
r o

f n
od

es

Time (seconds)

Number of nodes in network
Number of S-nodes

(a) λ = 0.5, timeout = 10 sec (b)λ = 0.5, timeout = 5 sec

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

N
um

be
r o

f n
od

es

Time (seconds)

Number of nodes in network
Number of S-nodes

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

N
um

be
r o

f n
od

es

Time (seconds)

Number of nodes in network
Number of S-nodes

(c)λ = 1, timeout = 10 sec (d)λ = 1, timeout = 5 sec

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

N
um

be
r o

f n
od

es

Time (seconds)

Number of nodes in network
Number of S-nodes

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 2000 4000 6000 8000 10000

N
um

be
r o

f n
od

es

Time (seconds)

Number of nodes in network
Number of S-nodes

(e)λ = 1.5, timeout = 10 sec (f)λ = 1.5, timeout = 5 sec

Figure 6.1: Number of nodes and S-nodes in the network, K = 3

84

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Join duration (seconds)

lambda=0.5, K=3, 10sec timeout
lambda=1, K=3, 10sec timeout

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Join duration (seconds)

lambda=1, K=3, 5sec timeout
lambda=1, K=3, 10sec timeout

(a) K = 3, timeout = 10 sec (b) λ = 1, K = 3

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Join duration (seconds)

lambda=1, K=2, 10sec timeout
lambda=1, K=3, 10sec timeout

(c) λ = 1, timeout = 10sec

Figure 6.2: Cumulative distribution of join durations

observe from Figure 6.2(c) for λ = 1 and 10-second timeout, reducing the K value

from 3 to 2 decreases the mean join duration slightly. However, the tail of the

distribution is substantially shorter for K = 2 than for K = 3. The tradeoff is

that a K-consistent network for a smaller K offers fewer alternate paths and its

connectivity measures are slightly lower.

Figure 6.3(a) shows results for an experiment with λ = 2, K = 3, and 10-

second timeout. Observe that the number of S-nodes declines while the number

of T-nodes increases over time (from 0 to 10,000 seconds). This behavior indicates

that at a failure rate of 2 nodes/second, the network’s join capacity (we have defined

“join capacity” to be the rate at which T-nodes can turn into S-nodes successfully

in the network) was less than 2 joins per second. As a result, the number of T-nodes

grows like a queue whose arrival rate is higher than its service rate. The network’s

85

1000

1200

1400

1600

1800

2000

2200

0 2000 4000 6000 8000 10000

Nu
mb

er
 o

f
no

de
s

Time (seconds)

Number of nodes in network
Number of S-nodes 800

1000

1200

1400

1600

1800

2000

0 2000 4000 6000 8000 10000

N
um

be
r o

f n
od

es

Time (seconds)

Number of nodes in network
Number of S-nodes

(a) K = 3, timeout = 10 sec (b)K = 2, timeout = 10 sec

1000

1200

1400

1600

1800

2000

2200

0 2000 4000 6000 8000 10000

Nu
mb

er
 o

f
no

de
s

Time (seconds)

Number of nodes in network
Number of S-nodes

(c) K = 3, timeout = 5 sec

Figure 6.3: Number of nodes and S-nodes in the network, λ = 2, K = 3

join capacity can be increased by reducing the join durations of T-nodes. As shown

in Figure 6.2, the average join duration can be reduced substantially by changing

the timeout value from 10 seconds to 5 seconds, or it can be reduced slightly by

changing K from 3 to 2 (with the variance greatly reduced). We found that either

of these approaches would stabilize the network for λ = 2. The results of another

experiment with λ = 2, K = 2, and 10-second timeout are shown in Figure 6.3(b),

and the results of a third experiment with λ = 2, K = 3, and 5-second timeout

are shown in Figure 6.3(c). Observe that the number of T-nodes was stable over

time indicating that the network’s join capacity was higher than the join rate. In

all three experiments in Figure 6.3, some time after 10,000 seconds, when no more

join or failure event was generated, all T-nodes became S-nodes, showing that our

join protocol worked correctly irrespective of the network’s join capacity. In both

86

the experiments in Figure 6.3(b) and Figure 6.3(c), the network converged to K-

consistency at termination (see Tables 6.2 and 6.3).

λ (#joins/sec = #failures/sec) 0.25 0.5 0.75 1 1.25 1.5 2
number of joins 2413 5095 7621 10080 12474 15011 19957
number of failures 2473 5066 7423 9890 12468 14919 19960

% snapshots, 3-consistency-SAT 100 100 100 100 100 100 100
convergence to 3-consistency at end yes yes yes yes yes yes no
convergence time (seconds) 150 200 400 350 450 400 —

% snapshots, 1-consistency 100 100 99.5 97.5 97.5 88.5 62
% snapshots, full connectivity 100 100 99.5 98 98 98.5 92
average %, connected S-D pairs 100 100 99.99998 99.99991 99.99993 99.99991 99.9996

Table 6.1: Summary of churn experiments, n = 2000, K = 3, timeout = 10 sec

λ 0.25 0.5 0.75 1 1.25 1.5 1.75 2
number of joins 2413 5059 7621 10080 12474 15011 17563 19957
number of failures 2473 5066 7423 9890 12468 14919 17563 19960

% snapshots, 100 100 100 100 100 100 100 100
3-consistency-SAT
convergence to 3-con. yes yes yes yes yes yes yes yes
convergence time (sec.) 50 150 150 150 150 400 250 350

% snapshots, 1-consistency 100 100 99.5 100 99.5 99 95.5 93
% snapshots, 100 100 99.5 100 99.5 99.5 96.5 95
full connectivity
average connected S-D pairs 100 100 99.99999 100 99.99998 99.99998 99.99993 99.9997

Table 6.2: Summary of churn experiments, n = 2000, K = 3, timeout = 5 sec

We next examine neighbor tables at each snapshot more carefully. For each

snapshot at time t, the following properties have been checked:

• Percentage of connected S-D pairs. For each source-destination pair of S-nodes,

if there exists a path (definition in Section 3.1) from source to destination, then

the pair is connected. (Both S-nodes and T-nodes can appear in a path.)

• Full connectivity. If at time t, all S-D pairs of S-nodes are connected, then full

connectivity holds (over the set of S-nodes at time t).

• K-consistency. Same as the K-consistency definition in Section 3.1, with V

being the set of S-nodes at time t.

87

• K-consistency-SAT. Suppose there is no more node failure after time t. If each

recoverable hole in the neighbor tables of S-nodes at time t can be repaired

by the four steps of failure recovery, then K-consistency is satisfiable or K-

consistency-SAT holds.

Note that full connectivity in the presence of continuous churn is a desired

property of any routing infrastructure. Consistency is a stronger property than full

connectivity, and K-consistency, for K ≥ 2, is even stronger. In any network with

churn, it is obvious that K-consistency is most likely not satisfied by the neighbor

tables in a snapshot at time t, because some failure(s) might have occurred just prior

to t and failure recovery takes time. On the other hand, the neighbor tables at time

t contain sufficient information for us to check whether K-consistency is satisfiable

at time t or not. If K-consistency-SAT holds for every snapshot in an experiment,

then we are assured that our protocols are effective and error-free.

Table 6.1 presents a summary of results from experiments for K = 3 and 10-

second timeouts, versus the churn rate (top row). The second and third rows show

the number of joins and failures, respectively, for each experiment. Observe that

3-consistency-SAT holds for every snapshot in every experiment. Each experiment

also converged to 3-consistency some time after 10,000 seconds, except the one for

λ = 2, with the convergence time shown in the 6th row. Since we took a snapshot

once every 50 seconds, the convergence time has a granularity of 50 seconds. The 7th

and 8th rows present the percentage of snapshots (taken from 0 to 10,000 seconds)

for which 1-consistency and full connectivity held. Even though these properties did

not hold for 100% of the snapshots for λ ≥ 0.75, perfection was missed by a very

small margin, as shown in the last row. The average percentage of connected S-D

pairs of S-nodes was higher than 99.9996% in every experiment.

In the λ = 2 experiment shown in Table 6.1, 3-consistency-SAT held at time

10,000 seconds, but the network did not converge to 3-consistency at termination.

88

Why? We believe it was due to the very large number of T-nodes at time 10,000

seconds. Note that only S-nodes in neighbor tables are considered in testing whether

3-consistency holds. 3-consistency (among S-nodes) was satisfiable at time 10,000

seconds when some qualified substitutes for “irrecoverable holes” were T-nodes.

Subsequently, at termination when all T-nodes became S-nodes, these previously

irrecoverable holes became recoverable, and 3-consistency did not hold because all

error recovery processes had already terminated by then (the network did satisfy

1-consistency at the end). We conclude that our protocols behaved as intended.

These recoverable holes will get filled over time by the join protocol when more

joins arrive.

λ 0.5 1 2
number of joins 5095 10080 19911
number of failures 5066 9890 20017

% snapshots, 2-consistency-SAT 100 100 100
convergence to 2-consistency at end yes yes yes
convergence time (seconds) 150 150 400

% snapshots, 1-consistency 88 62.5 12.5
% snapshots, full connectivity 91 68.5 27
average %, connected S-D pairs 99.9994 99.996 99.978

Table 6.3: Summary of churn experiments, n = 2000, K = 2, timeout = 10 sec

As discussed above, one way to increase the join capacity of a network is

to reduce the timeout value. Table 6.2 summarizes results for experiments with

timeout value reduced to 5 seconds (K = 3). Reducing the timeout value provides

improvement in every performance measure in the table (provided that there is room

for improvement). In particular, comparison with Table 6.1 shows that convergence

time to 3-consistency is shorter, percentage of snapshots with full connectivity is

higher, and average percentage of connected S-D pairs is higher in Table 6.2.

Reducing the value of K is another way to increase the join capacity of a

network. There is a tradeoff involved however. Choosing a smaller K results in

less routing redundancy in neighbor tables. We conducted experiments for K = 2,

89

0

1

2

3

4

5

0 500 1000 1500 2000

Ma
xi

mu
m

ch
ur

n
ra

te
 (

no
de

s/
se

co
nd

)

Network size (n)

K=3
K=2

0
200
400
600
800

1000
1200
1400

0 500 1000 1500 2000

Mi
ni

mu
m

av
er

ag
e

li
fe

ti
me

 (
se

co
nd

s)

Network size (n)

K=3
K=2

(a) (b)

Figure 6.4: Maximum churn rate (a) and minimum average lifetime (b), timeout =
5 sec

timeout = 10 seconds, with λ equal to 0.5, 1 and 2. The results are summarized

in Table 6.3. Comparing Table 6.3 and Table 6.1, we see that the percentage of

snapshots with 1-consistency (also full connectivity) was much lower for K = 2

than that for K = 3. The average percentage of connected S-D pairs was also lower.

6.1.3 Maximum sustainable churn rate

We performed experiments with increasing values of λ to estimate the maximum

sustainable churn rate as a function of the initial network size (n) for K = 2 or 3.

For given values of n and K, our estimate is determined by the largest λ value such

that after 10,000 seconds (simulated time) of churn, the network was able to recover

K-consistency afterwards.4 Figure 6.4(a) shows our results from experiments with

5-second timeout and K = 2 or 3. Observe that the maximum rate is higher for

K = 2 than for K = 3.

Note also that, for n ≥ 500, the maximum rate increases at least linearly

as n increases. This observation validates a conjecture that our protocols’ stability

improves as the number of S-nodes increases. However, the conjecture does not
4Since the maximum sustainable churn rate is a random variable, our estimate is only a sample

value of that random variable.

90

hold for n < 500. This can be explained as follows. For n < 500 and b = 16, the

number of neighbors stored in each node is a large fraction of n and failure recovery

is relatively easy to do. As n decreases further, the number of neighbors stored in

each node as a fraction of n increases, and failure recovery becomes even easier.

Using Little’s law, we calculated the minimum average node lifetime for each

maximum rate in Figure 6.4(a). The results are presented in Figure 6.4(b). The

trend in each curve suggests that as n increases beyond 2000 nodes, the minimum

average node lifetime is less than 12.1 minutes for K = 3 and 8.3 minutes for K = 2.

6.1.4 Protocol overheads

We next present protocol overheads in the churn experiments as a function of λ for

n = 2000. (Recall that analyses of protocol overheads as a function of K have been

presented in Section 5.3.) Figure 6.5 presents cumulative distributions of the number

of three types of join protocol messages sent by joining nodes whose join processes

terminated. We are interested in these messages (as well as their replies) because

each such message (or reply) may include a copy of a neighbor table and thus can

be large in size. Figure 6.5(a) shows that a large fraction of joining nodes sent a

small number of JoinNotiMsg (e.g., for λ = 1, more than 98% of nodes sent less

than 20 JoinNotiMsg). However, as λ becomes larger, the tail of its distribution be-

comes longer. Figure 6.5(b) shows that the number of CPRstMsg and JoinWaitMsg

(combined) sent by each joining node is very small.

Figure 6.6 presents cumulative distributions of the number of queries for

repairing a hole (for holes that were repaired as well as holes declared as irrecoverable

by their recovery processes). Similar to results in Section 5.1.2, most holes were

repaired by steps (a) and (b) (for the distributions shown in Figure 6.6, more than

86% percent of holes were repaired by the end of step (b)). Recall that holes repaired

in step (a) incur no communication cost, while holes repaired in step (b) require up

91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Number of JoinNotiMsg

lambda=1
lambda=0.5

lambda=0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Number of CPRstMsg and JoinWaitMsg

lambda=1
lambda=0.5

lambda=0.25

(a) JoinNotiMsg (b) CpRstMsg + JoinWaitMsg

Figure 6.5: Cumulative distribution of join protocol messages sent by joining nodes,
K = 3, timeout = 10 sec

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160C
u
m
u
l
a
t
i
v
e

d
i
s
t
r
i
b
u
t
i
o
n

Number of query messages

lambda=0.25
lambda=0.5

lambda=1

Figure 6.6: Cumulative distribution of query messages sent for recovering a hole,
K = 3, timeout = 10 sec

to 2(K − 1) messages. As λ increases, the percentage of holes repaired by step (a)

decreases: the percentage is 56%, 48% and 42% for λ = 0.25, λ = 0.5 and λ = 1,

respectively. The long tails of the distributions are due to holes found by failure

recovery to be irrecoverable.

6.2 Routing Performance under Churn

Experiment results in Section 6.1 show that our protocols, by striving to maintain K-

consistency, are able to provide pairwise connectivity better than 99.9995% (between

92

S-nodes) at a churn rate of 2 joins and 2 failures per second for n=2000 and K=3.

(see Tables 6.1 and 6.2). This suggests that for each source-destination node pair, it

is almost always the case that there exists a path of average length O(logb n) hops,

so long as both nodes are still in the system. Thus, even at a high churn rate, if the

rate can be sustained by the system, then the average routing performance should

not degrade much.

To validate the above conjecture, we have conducted more experiments to

study routing performance under node churn. In particular, we are interested in the

follow performance criteria: When the churn rate increases, how often will routing

succeed? Also, how much will average routing delay increase?

6.2.1 Experiment setup

We used the same method to generate node joins and failures and the same underly-

ing topology as the one used in Section 6.1.1. Each experiment in this section began

with 2,000 S-nodes and ran for 3,600 simulation seconds, for K = 3 and timeout =

2 sec. We ran experiments for a range of churn rates, from λ = 0.125, λ = 0.25, and

up to λ = 8, with corresponding median node lifetime equal to 184.84 minutes, 92.4

minutes, and down to 2.888 minutes, respectively.5

In these experiments, each S-node generated routing tests once every ten

seconds.6 For each routing test, another S-node was chosen randomly to be the

destination. If the destination was eventually reached, the test was recorded as suc-

cessful; otherwise, it was recorded as unsuccessful. For each successful routing test,

we also recorded the number of hops along the path from its source to destination,

as well as the routing delay. For each median node lifetime, we calculated the per-
5Since we generate node churn according to a Poisson process, for a given churn rate, λ, the

corresponding median node lifetime can be calculated as n(ln 2)/λ, where n is the average number
of nodes in the system [32].

6T-nodes did not generate routing tests, since their neighbor tables are still under construction.
Failed nodes did not generate routing tests.

93

centage of successful routing tests, as well as the average number of hops and the

average routing delay over all successful routing tests.

We experimented with two different routing strategies. A straightforward

approach is to let the source create one routing message for each test. Each node

along the path, say x, forwards the message to a primary-neighbor (the closest

neighbor in the table entry that should be looked up) following the hypercube routing

scheme. That is, if x is the ith node along the path (the source is the 0th node),

then it forwards the message to the primary-neighbor in its (i, u[i])-entry, where u is

the destination node. If the forwarding request times out (because the neighbor has

failed), x backtracks and forwards the message to the next closest neighbor in the

same entry. We refer to this approach as backtracking. (A node may backtrack

again if the next closest neighbor also has failed, until it could not find a qualified

next hop neighbor from its neighbor table.)

We also evaluated another routing strategy that exploits routing redundancy

provided by K-consistent neighbor tables. In this approach, the source sends du-

plicates of the routing message, one to each of the two closest neighbors for the

destination following the hypercube routing scheme. Each node that receives such a

message simply forwards the message without further duplication, and backtracks if

necessary. We refer to this approach as source-duplication and backtracking.7

Results: Figure 6.7 summarizes our results, which are plotted versus median

node lifetime along the horizontal axis. A smaller median node lifetime corresponds

to a higher churn rate. Hence, in each figure, churn rate increases from right to

left.8

Figure 6.7(a) shows the percentage of successful routing tests. Figure 6.7(b)

shows the average number of hops from source to destination over successful routing
7In [42], the authors presented a detailed discussion on how to exploit routing redundancy in

structured P2P networks.
8These results are plotted such that they can be compared with similar churn experiment results

presented in [32]. Node lifetime herein corresponds to session time in [32].

94

 99.8

 99.85

 99.9

 99.95

 100

 2 4 8 16 32 64 128 256

Ro
ut

in
g

su
cc

es
s

pe
rc

en
ta

ge

Median node life time (minutes)

source-duplication + backtracking, K=3
backtracking only, K=3

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 4 8 16 32 64 128 256

Av
er

ag
e

nu
mb

er
 o

f
ho

ps

Median node life time (minutes)

backtracking only, K=3
source-duplication + backtracking, K=3

(a) Percentage of successful routing (b) Average number of hops

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 8 16 32 64 128 256

Av
er

ag
e

ro
ut

in
g

la
te

nc
y

Median node life time (minutes)

backtracking only, K=3
source-duplication + backtracking, K=3

(c) Average delay

Figure 6.7: Routing experiment results, n=2000, b =16, timeout = 2 sec

tests. In the source-duplication and backtracking approach, for each routing test,

we used the number of hops traveled by the message that arrived at the destination

first. Figure 6.7(c) shows the average delay over successful routing tests.

Observe from Figure 6.7(a) that with backtracking only, the percentage of

successful routing (among S-nodes) is already very close to 100%. With the addition

of source-duplication, the success percentage becomes even closer to 100% (with

K = 3, the percentage was in fact 100% for all median lifetimes greater than or

equal to 46.2 minutes, and higher than 99.994% for all median lifetimes greater

than or equal to 2.888 minutes).

Also observe from Figures 6.7(b) and 6.7(c), when the median node lifetime

decreases (from right to left), the average number of hops and average routing delay

increase very slightly. Each such increase is due to a small increase in backtracking

95

occurrences when node failures become more frequent. In particular, the average

number of hops for all lifetimes of both curves in Figure 6.7(b) is within the range

of 2.275 to 2.496, and actually less than log16(2000), which is 2.74. This confirms

our conjecture that by striving to maintain K-consistency in neighbor tables, our

protocols preserve scalable routing in the hypercube routing scheme even in the

presence of heavy churn.

Lastly, from Figures 6.7(b) and 6.7(c), observe that the addition of source-

duplication to backtracking provides only a small improvement in the average num-

ber of hops and routing delay.

6.3 Summary

From a set of long-duration churn experiments, our protocols are found to be ef-

fective, efficient, and stable up to a churn rate of 4 joins and 4 failures per second

for 2000-node networks (with K = 2 and 5-second timeout). By Little’s Law, the

average node lifetime is 8.3 minutes. We discovered that each network has a join

capacity that upper bounds its join rate. The join capacity decreases as the failure

rate increases. For a given failure rate, the join capacity can be increased by using

the smallest timeout value possible in failure recovery or by choosing a smaller K.

We also observed from simulations that our protocols’ stability improves as

the number of S-nodes increases. More specifically, for 500 ≤ n ≤ 2, 000, we found

that a network’s maximum sustainable churn rate increases at least linearly with

network size n. The trend in our simulation results suggests that as network size

increases beyond 2000 nodes, the minimum average node lifetime is less than 12.1

minutes for K = 3 and less than 8.3 minutes for K = 2.

Furthermore, by conducting experiments to study routing performance under

node churn, we found that our protocols are able to maintain a resilient routing

infrastructure even under high churn rates. The percentage of successful routing

96

provided by the routing infrastructure is maintained very close to 100% (higher

than 99.994% when K = 3) even at a churn rate of 8 joins and 8 failures per second.

Moreover, the average routing delay increased only slightly even when the churn

rate is greatly increased.

97

Chapter 7

Consistency-preserving

Neighbor Table Optimization

Another important issue in routing infrastructure maintenance is to optimize neigh-

bor tables to reduce routing delays. That is, to choose neighbors for each entry

as close as possible so that the average distance a message travels at each hop is

optimized (this problem is also referred as the routing locality problem). Various

ideas have been proposed to optimize neighbor tables for improving routing local-

ity [3, 9, 10, 25, 31].

An important problem that has not been addressed adequately is how to

preserve consistency (and thus preserve established reachability) while optimizing

neighbor tables, when there are nodes that join, leave, or fail concurrently and fre-

quently. We address the problem in this chapter and present a general strategy:

Identify a consistent subnet as large as possible, and only allow a neighbor to be

replaced by a closer one if both of them belong to the subnet. To implement this

strategy in a P2P network, a decentralized network where there is no global knowl-

edge, the following problems need to be addressed: (1) how to identify nodes that

belong to such a consistent subnet with minimum cost, (2) how to expand the sub-

98

net when new nodes join, and (3) how to maintain consistency of the subnet when

nodes leave or fail.

In this chapter, we realize the general strategy in the context of the hypercube

routing scheme. In particular:

• We extend the join protocol presented in Chapter 4 and prove that with the

extended protocol, for any time t, the set of S-nodes at time t form a consistent

subnet. The extended protocol enables easy identification of nodes in the

consistent subnet, and the costs of protocol extensions are shown to be very

low.

• We present an optimization rule. Optimization algorithms should be applied

within the constraint of this rule to preserve consistency. To optimize neighbor

tables with low cost, we present a set of heuristics that search for nearby

neighbors by primarily using information carried by join protocol messages.

• We integrate the extended join protocol with our failure recovery protocol and

evaluate the protocols and the optimization heuristics by simulation experi-

ments.

• We show that the extended join protocol and the optimization heuristics can

also be used for initializing a K-consistent and optimized network.

The rest of this chapter is organized as follows. In Section 7.1, we present our

general strategy for consistency-preserving optimization, extend the join protocol

following the strategy, and present an optimization rule and a set of optimization

heuristics. Correctness of the extended join protocol is proved and scalability of the

protocol is analyzed. In Section 7.2, we evaluate the effectiveness of optimization

heuristics by conducting simulation experiments in which nodes may join and fail

concurrently and frequently. We illustrate how to initialize a network with K-

consistent and optimized neighbor tables in Section 7.3. Finally, we summarize in

Section 7.4.

99

7.1 Consistency-preserving Optimization

To date, correctness of proposed join protocols for the hypercube routing scheme [9,

22, 24] depends on preserved reachability, i.e., once a node can reach another node,

it always can thereafter. Therefore, if optimization operations are to be performed,

they should preserve established reachability. There is a common operation in all

optimization algorithms: replacing an old neighbor with a new one that is measured

to be closer. However, if there is no constraint on such a replacement, it may break

reachability of some source-destination pairs, affect correctness of the join protocol,

and result in an inconsistent network after nodes join.

For example, suppose nodes 41633 (x) and 30633 (y) join a network concur-

rently with some other nodes. Let t2 be the time that neighbor pointers along the

path from x to y are completely established. Then x cannot reach y before time t2.

If at some time t1, t1 < t2, some node that has stored y, say node 14263 (u), finds

x to be closer and replaces y with x, then after the replacement, u cannot reach y

until time t2, as illustrated by Figure 7.1. In this case, reachability of pair (u, y)

is not preserved by the optimization operation even if both join processes of x and

y have terminated by time t1, since some nodes along the path from x to y may

be still joining and neighbor pointers are still being established. Then, during the

period [t1, t2], joining nodes that are supposed to find out y through u will fail to do

so and thus cannot construct their neighbor tables correctly. Even worse, the period

may be arbitrarily long, if messages are delayed arbitrarily long in the network, or

if reachability of some source-destination pair along the path from u to y is also

broken.

To construct and optimize neighbor tables without breaking established reach-

ability when new nodes join a network, one possible approach is to first construct

and update neighbor tables so that they are K-consistent, and then optimize neigh-

bor tables after the joins. However, this approach is not practical in a P2P network,

100

30633
y

before

after

u

u

14263 30633

14263

y

41633
x

Figure 7.1: Paths before and after neighbor replacement

since nodes keep joining and none of them is aware of any quiescent time period in

which there is no node joining and which is long enough for optimization operations,

if such a period exists.

7.1.1 Our strategy

We observe that for the hypercube routing scheme, within a subnet that is already

consistent, replacing any neighbor with any other neighbor does not break con-

sistency conditions if both neighbors belong to the consistent subnet. (Basically,

consistency conditions require that for each table entry, if there exists qualified

nodes in the subnet, then the entry is filled with at least such a node.) If a neighbor

replacement does not break the consistency conditions, then after the replacement,

nodes that are previously reachable via the old neighbor can now be reached via the

new neighbor. This observation is also applicable to other structured P2P networks,

such as the system proposed in [27].

When new nodes are joining a network, if we can identify a “core” of the

network such that if we only consider the nodes in this core, their neighbor tables are

consistent and they can reach each other, then we know that replacing a neighbor

with a closer neighbor, both of which are in the core, is a safe operation and will not

break established reachability. Note that before the joins start, the initial network is

consistent and thus is the “core” of the network. However, if we optimize neighbor

tables by only considering nodes in the initial network, the extent of optimization

would be greatly limited. It is desired that after a node has joined the network, it

101

becomes part of the core so that it can also be considered for optimization. It is also

desired that when nodes fail, consistency of the core is maintained. To summarize,

we present a general strategy for consistency-preserving neighbor table optimization

in presence of node dynamics.

A general strategy for consistency-preserving optimization: Identify

a consistent subnet as large as possible; only allow a neighbor to be replaced by a

closer one if both of them belong to the subnet; expand the consistent subnet after

new nodes join; and maintain consistency of the subnet when nodes fail.

The join protocol presented in Chapter 4 guarantees that when a set of

nodes join an initially K-consistent network, the network is K-consistent (and thus

consistent) again after all join processes terminate. To implement the above strategy,

we need another property from the join protocol: at any time, the subnet consisting

of all nodes whose join processes have terminated plus nodes in the initial network

is consistent. With this property, identifying nodes or neighbors that belong to the

consistent subnet becomes easy: if the join process of a node has terminated, then

it belongs to the subnet; otherwise, it is not. The property also ensures that the

consistent subnet keeps growing when more join processes terminate. To maintain

consistency of the subnet when nodes fail, a failure recovery protocol is needed to

recover K-consistency.1 The failure recovery protocol should always try to recover a

hole left by a failed neighbor with a qualified node that is in the consistent subnet.

Recall that in our protocol design, when a node’s join process terminates, it

becomes an S-node. (Nodes in the initial network are also S-nodes.) Hence, more

specifically, our goals are to

(1) design a join protocol so that at any time, the set of S-nodes form a consistent

subnet, and

(2) design a failure recovery protocol that recovers K-consistency of the subnet
1K-consistency provides redundancy in neighbor tables to ensure that a dynamically changing

network remains fully connected.

102

by repairing holes left by failed neighbors with qualified S-nodes.

The failure recovery protocol presented in Chapter 5 naturally fits into the general

strategy with minor extensions. Basically, it works in the following way. When a

neighbor failure is detected by a node, a recovery process is initiated. The process

always tries to repair a hole left by the failed neighbor with a qualified S-node, by

searching in the node’s own neighbor table and querying the node’s neighbors. Only

when it fails to find a qualified S-node will it repair the hole with a T-node. The

failure recovery protocol has been shown to maintain consistency and re-establish

K-consistency for networks with K ≥ 2. Therefore, in this section, we focus on how

to extend the join protocol in Chapter 4 to achieve goal (1).

7.1.2 Extended join protocol

To extend the join protocol, we first consider the basis of the proofs of protocol

correctness. Proof for the correctness of the join protocol (in particular, Theorem 3)

rely on the following properties of a network.

1. Once two S-nodes can reach each other, they always can thereafter.

2. Once a T-node can reach an S-node, it always can thereafter.

3. After a T-node, say x, is stored by another node, say y, x remains in the table

of y when x is still a T-node.

If there is no table optimization involved during the joins, i.e., no neighbor

in any entry would be replaced, the above properties hold trivially: once a path is

established, the neighbor pointers from one hop to another along the path are always

there and remain the same. When there are optimization operations that happen

concurrently with joins, the above three properties must be preserved to ensure the

correctness of the join protocol. To preserved property 3 is not difficult: we require

that if a neighbor is still a T-node, it cannot be replaced even if another node is

found to be closer than it. To preserve properties 1 and 2, goal (1) stated above

103

needs to be achieved and neighbor replacement should be constrained to neighbors

that are S-nodes.

Extended state variables of a joining node x:

x.status ∈ {copying, waiting, notifying, cset waiting, in system}, initially copying.
Nx(i, j): the set of (i, j)-neighbors of x, initially empty.
x.state(y) ∈ {T, S}, the state of neighbor y stored in x.table.
Rx(i, j): the set of reverse(i, j)-neighbors of x, initially empty.

x.att level: an integer, initially 0.
Qr: a set of nodes from which x waits for replies, initially empty.
Qn: a set of nodes x has sent notifications to, initially empty.
Qj : a set of nodes that have sent x a JoinWaitMsg, initially empty.
Qsr, Qsn: a set of nodes, initially empty.
Qcset wait : a set of nodes found by x that may be in the same c-set with x, initially empty.
Qcset recv : a set of nodes from which x has received SameCsetMsg before x enters

status cset waiting, initially empty.
Qcset sent , a set of nodes, initially empty.

Figure 7.2: Extended state variables for join protocol

SameCsetMsg(s), sent by x when x is in status cset waiting, or in response to
a SameCsetMsg from another node.
s = S if x.status is in system; otherwise s = T .

Figure 7.3: New join protocol message

We extend the join protocol to achieve goal (1) as follows. In short, a new

status, cset waiting, is inserted between notifying and in system. When a joining

node has finished its tasks and exited status notifying, it will not change to status

in system and become an S-node immediately. Instead, the node waits in status

cset waiting for some nodes that are joining concurrently and are likely to be in

the same C-set with it (conceptually). When it is confirmed that all these nodes

have exited status notifying, it changes status to in system. (Pseudocode of the join

protocol extensions is presented in Figures 7.4 and 7.5.) The extensions ensure that

when two nodes have both become S-nodes, paths between them (in both directions)

have already been established.

104

Check Ngh Table(y.table) at x:

for (each u, u ∈ Ny(i, j) ∧ u 6= x, i ∈ [d], j ∈ [b]) {
k = |csuf(x.ID, u.ID)|; s = y.state(u);
for (h = i; h ≤ k; h++) { Set Neighbor(h, u[h], u, s); }
if (x.status == notifying ∧ k ≥ x.att level ∧ u 6∈ Qn) {
Send JoinNotiMsg(x.att level, x.table) to u;
Qn = Qn ∪ {u}; Qr = Qr ∪ {u};

}
// following is new and is part of protocol extensions
if (x.status == notifying ∧ k ≥ x.att level ∧ y.state(u) == T)

Qcset wait = Qcset wait ∪ {u};
}

Switch To Cset Wait() at x:

x.status = cset waiting;
for (each v, v ∈ Qcset recv ∪Qcset wait) {

Send SameCsetMsg(T) to v; Qcset sent = Qcset sent ∪ {y};
}
for (each u, u ∈ Qcset recv)

if (u ∈ Qcset wait)
Qcset wait = Qcset wait − {u};

if (Qcset wait == ∅ ∧ Qr == ∅ ∧ Qsr == ∅)
Switch To S Nodes();

Figure 7.4: Extended and new subroutines

Extension 1: A new joining status, cset waiting, is added after status

notifying, as shown in Figure 7.2. Moreover, one more join protocol message,

SameCsetMsg(s), is introduced, where s is S if the sender is already an S-node

and T otherwise, as shown in Figure 7.3.

Extension 2: When a node, say x, receives a JoinNotiMsg or a JoinNotiR-

lyMsg, the message includes a copy of the sender’s table. If x is in status notifying

when it receives the message, and if from the copy of the sender’s table, x finds a

T-node, say y, that shares with x a suffix of length k, k ≥ x.att level , x saves y in

set Qcset wait. (Recall that as defined in Chapter 4, x.att level is the attach-level of

x in the network, which is the lowest level x is stored in the table of the first S-node

that stored x.) This extension is reflected in the subroutine Check Ngh Table(), as

shown in Figure 7.4.

105

Action of x on receiving a SameCsetMsg(s) from y

if (x.status == in system ∧ s == T)
Send SameCsetMsg(S) to y;

else if (x.status == cset waiting) {
Qcset wait = Qcset wait − {y};
if (y 6∈ Qcset sent ∧ s == T){
Send SameCsetMsg(T) to y; Qcset sent = Qcset sent ∪ {y};

}
if (Qcset wait == ∅ ∧ Qr == ∅ ∧ Qsr == ∅)
Switch To S Nodes();

}else
Qcset recv = Qcset recv ∪ {y};

Figure 7.5: Action on receiving a SameCsetMsg

Extension 3: When a node in status notifying finds that it is not expecting

any more JoinNotiRlyMsg or SpeNotiRlyMsg, it changes status to cset waiting. It

then sends a SameCsetMsg(T) to each node in set Qcset wait and waits for their

replies. It also replies to each node in set Qcset recv (see discussion below) with a

SameCsetMsg(T). Each node that is in both Qcset recv and Qcset wait is then removed

from Qcset wait. See the subroutine Switch To Cset Wait() in Figure 7.4 for details.

Also, all places in Section 4.1.3 that call subroutine Switch To S Node() should be

replaced by calls to the new subroutine Switch To Cset Wait().

Extension 4: When a node, say x, receives a SameCsetMsg(s), if it is al-

ready in status in system, it sends a SameCsetMsg(S) back immediately if s is T

(if s is S, x simply ignores the message). If x is in status cset waiting, it sends a

SameCsetMsg(T) back immediately if it has not done so, and removes the sender

from Qcset wait. If x is in any other status, x saves the sender into Qcset recv to

reply later when x changes status from notifying to cset waiting. See Figure 7.5 for

details.

Extension 5: When a node is in status cset waiting and finds that Qcset wait

is empty, it changes status to in system. This extension is reflected in the subroutine

Switch To Cset Wait() in Figure 7.5.

106

The above extensions add extra delay into each join process. With the extra

delay, a joining node will not become an S-node until it believes that nodes cur-

rently in the same C-set with it (conceptually) have all entered status cset waiting

or in system. Since only after a node becomes an S-node can it store another joining

node that has requested it for attachment (by sending a JoinWaitMsg), the above

extensions ensure that only after a set of nodes in a parent C-set have all finished

their joining tasks (that is, have exited status notifying), will new joining nodes

be attached to these nodes and filled into children C-sets. In the correctness proof

(Appendix D), we show that when a new node is filled into a child C-set, neigh-

bor pointers among the nodes that have been filled in ancestor C-sets have been

established and those nodes already can reach each other.

C33

C633

C41633 C30633

0633CC1633

C33

C1633 0633C

C30633C41633

V

V3

V

V3

41633 30633

41633

41633

30633

30633

C633C

C

C

533

0533

10533

14263 72413 14263 72413

10533

10533

10533

C

C

C

533

0533

10533

41633 30633

(a) Template (b) Realization

Figure 7.6: C-set tree example (K = 1)

For instance, suppose a set of nodes, W = {30633, 41633, 10533} (b = 8, d =

5), join a K-consistent network, V = {02700, 14263, 62332, 72413}. The correspond-

ing C-set tree template is shown in Figure 7.6(a). Here we assume K = 1 to simplify

illustration. In this example, noti-set of the joining nodes is the set of nodes in V

with suffix 3, denoted by V3. With the extended join protocol, the C-set tree is

realized in the following way: only after C-set C33 is filled and nodes in it have all

entered status cset waiting or in system, will new nodes (nodes other than those in

107

C33) be filled into the children C-sets, C633 and C533, and so on.2 For example, for

the realization as shown in Figure 7.6(b), it is realized as follows: only after nodes

41633 and 30633 (nodes in C33) have entered status cset waiting or in system, will

node 10533 be filled into C533. Figure 7.7 shows the corresponding evolution of the

consistent subnet.

02700, 14263, 62332,
72413

02700, 14263, 62332,
72413, 30633, 41633

02700, 14263, 62332,
72413, 30633, 41633,
10533

Figure 7.7: Evolution of consistent subnet

7.1.3 Correctness and scalability of join protocol

We first present three theorems. Theorem 7 states that with the extended join

protocol, each join process is still able to terminate. Theorem 8 states that when a

set of new nodes join a network, at any time, all S-nodes at that time belong to a

consistent subnet. This property guarantees that replacing a neighbor with another

one is safe if both of them are S-nodes. Finally, Theorem 9 concludes that the

extended join protocol generates K-consistent neighbor tables when an arbitrary

number of nodes join an initially K-consistent network. Proofs of the theorems are

based on the assumptions stated in Section 4.1.1, and the proof details are presented

in Appendix D.

Theorem 7 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉 using the extended join protocol presented in this chapter. Then,

each node x, x ∈ W , eventually becomes an S-node.
2A node is a neighbor of itself and is stored in each entry whose required suffix is a suffix of

its node ID. Therefore, after a node is filled into a C-set, it is automatically filled into descendant
C-sets. For instance, when 41633 is filled into C33, it is automatically filled into C633, C1633, and
C41633.

108

Theorem 8 Suppose a set of nodes, W = {x1, ...xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉 using the extended join protocol presented in this chapter. Then

at any time t, any node in set S(t) can reach any other node in S(t), where S(t) is

the set of S-nodes at time t.

Theorem 9 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉. Then, at time te, 〈V ∪W,N (V ∪W)〉 is a K-consistent network.

Next, we demonstrate the scalability of the extended join protocol by ana-

lyzing communication costs of protocol extensions through simulation experiments.

We have implemented the extended join protocol in an event-driven simulator, and

used the GT ITM package [39] to generate network topologies. For a generated

topology with a set of routers, endhosts were attached randomly to the routers.

For the simulations reported in this chapter, two topologies were used: a topology

with 1056 routers to which 1000 endhosts were attached, and a topology with 2112

routers to which 4000 endhosts were attached. We simulated the sending of a mes-

sage and the reception of a message as events, but abstracted away queueing delays.

The end-to-end delay of a message from its source to destination was modeled as

a random variable with mean value proportional to the shortest path length in the

underlying network. For the 1056-router topology, end-to-end delays were in the

range of 0 to 329 ms, with the average being 113 ms; for the 2112-router topology,

end-to-end delays were in the range of 0 to 596 ms, with the average being 163 ms.

In each experiment, we let m nodes join an initial network of n nodes, m � n. We

set parameters b to be 16 and d to be 8.3

We first study the extra delay caused by the new status, cset waiting. Recall

that we have defined the join duration of a node to be the duration from the time

the node starts joining to the time it changes status to in system. Figure 7.8(a)

3We find that the value of d is insignificant when bd � n, where n is the number of nodes in a
network.

109

plots the average join durations for 990 nodes joining an initial network of 10 nodes,

as a function of K, for simulations using the original join protocol (presented in

Section 4.1) and the extended join protocol, respectively. The underlying topology

was the 1056-router topology. In each experiment, all joins started at exactly the

same time. As shown in the figure, the average join durations for the extended

protocol are only slightly longer than those for the original protocol, which indicates

that the extra delay caused by waiting in status cset waiting is small. The same

conclusion can be drawn from Figure 7.8(b), where 1990 nodes joined an initial

network of 10 nodes and the underlying topology is the 2112-router topology. Error-

bars in Figure 7.8 show the minimum and maximum join durations observed from

simulations using the extended join protocol.

0

2

4

6

8

10

0 1 2 3 4 5

Jo
in

 d
ur

at
io

n
(s

ec
)

K

Average join duration, extended join protocol
Average join duration, original join protocol

0

2

4

6

8

10

0 1 2 3 4 5

Jo
in

 d
ur

at
io

n
(s

ec
)

K

Average join duration, extended join protocol
Average join duration, original join protocol

(a) n = 10, m = 990 (b) n = 10, m = 1990

Figure 7.8: Join durations with/without protocol extensions

Next, we study communication costs of the extended join protocol in terms

of numbers of messages sent by a joining node. In Section 4.2.2, we have analyzed

numbers of protocol messages sent by a joining node, for all message types except the

one introduced in this chapter (SameCsetMsg), and showed that the communication

costs are scalable to large networks. Hence, in this chapter we only need to study

the number of SameCsetMsg sent by a joining node.

Figure 7.9 presents average numbers of SameCsetMsg sent by joining nodes as

a function of K. The numbers are small in general, and increase when K increases.

110

0

1

2

3

4

5

6

0 1 2 3 4 5

Av
er

ag
e

nu
mb

er
 o

f
me

ss
ag

es

K

joins start at same time
joins start within 1 minute

0

1

2

3

4

5

6

0 1 2 3 4 5

Av
er

ag
e

nu
mb

er
 o

f
me

ss
ag

es

K

joins start at same time
joins start within 1 minute

(a) n = 10, m = 990 (b) n = 10, m = 1990

Figure 7.9: Average number of SameCsetMsg

This is because when K increases, more neighbors are stored in each entry and

thus each C-set tends to contain more nodes. By comparing the two curves in each

diagram, we observe that in the simulations where joins did not start at exactly

the same time,4 average numbers of SameCsetMsg were greatly reduced. Moreover,

comparing Figure 7.9(a) and Figure 7.9(b), we see that with other parameters being

the same, the average number of SameCsetMsg remained almost the same when the

number of concurrent joins (m) was increased from 990 to 1990.

We conclude that the communication costs of the protocol extensions are

very low and the extended join protocol is scalable to a large number of network

nodes.

7.1.4 Optimization rule and heuristics

We now have an extended join protocol that expands the consistent subnet while

nodes join a network, and a failure recovery protocol that maintains consistency

of the consistent subnet when nodes fail. To implement the general strategy (Sec-

tion 7.1.1), we also need the following rule.
4By “joins starting within 1 minute,” we mean that the starting time of a join was generated

randomly from the interval [0 sec, 60sec].

111

Optimization Rule When a node, x, intends to replace a neighbor, y, with

a closer one, z, the replacement is only allowed when both y and z are S-nodes.

Recall that for each neighbor, a node also stores the state of the neighbor.

State S indicates that the neighbor is in status in system, while state T indicates

it is not yet. To implement the above rule, when x intends to replace y with z, it

only does so when the states associated with both y and z are S. With the extended

join protocol and the optimization rule, the three properties stated in Section 7.1.2

will be preserved even when optimization operations happen concurrently with joins

(see Appendix D).

To optimize neighbor tables, an algorithm is needed to search for qualified

nodes that are closer than current neighbors. We next present a set of heuristics to

optimize neighbor tables when new nodes are joining a network and new tables are

constructed. To search for closer neighbors with low cost, the heuristics are designed

by primarily utilizing information carried in join protocol messages. Notice that

whenever a closer neighbor is found for a table entry, it can be used to replace an

old neighbor only if the replacement is allowed by the optimization rule.

Heuristic 1: Copy neighbor information from nearby nodes. Recall that in

the copying status, a joining node, x, constructs most part of its neighbor table by

copying neighbor information from other nodes (S-nodes). Suppose y is the node

that x starts joining with. Instead of directly copying level-0 neighbors from y, x

chooses the closest node from y’s neighbors, say g0, and copies level-0 neighbors

from g0. If the level-0 neighbors of g0 are close to g0, and g0 and x are close to

each other, then it is highly likely that these level-0 neighbors are also close to x

(as discussed in [3]). To copy level-1 neighbors, x chooses a level-0 neighbor of g0

that shares suffix x[0] with it, say z, if such a node exists. Then from the level-1

neighbors of z (whose IDs all have suffix x[0]), x chooses the closest one to copy

level-1 neighbors from, and so on.

112

Heuristic 2: Utilize protocol messages that include copies of neighbor tables.

During status waiting and notifying, a joining node, x, sends out messages (Join-

WaitMsg and JoinNotiMsg) to some nodes to notify them about itself. Replies to

these messages all include copies of the neighbor tables of the senders. From each

reply message, x searches for qualified nodes that are closer than some current neigh-

bors for every table entry. Moreover, when x is in status notifying, a notification

message sent by x includes a copy of x.table. The receiver of such a message also

searches for closer nodes in x.table to replace old neighbors.

Heuristic 3: Optimize neighbor tables when a node’s join process terminates.

When a joining node, x, changes status to in system, it informs both its reverse-

neighbors (nodes that have stored x as a neighbor) and its neighbors that it becomes

an S-node. These nodes then update the state of x to be S in their tables and try to

optimize their table entries for which x is a qualified node. In addition to informing

neighbors, x exchanges neighbor tables with its neighbors (not including reverse-

neighbors) so that both x and its neighbors can optimize their tables at this time.

7.2 Experimental Results

We have integrated the extended join protocol with our failure recovery protocol and

the optimization heuristics, under the constraint of the optimization rule.5 In this

section, we validate our strategy for consistency-preserving optimization and evalu-

ate the effectiveness of the heuristics through simulation experiments. To evaluate

the optimization heuristics, we use a metric called p-ratio, defined below. Recall

that the closest neighbor in an entry is called the primary-neighbor of that entry.

For a table entry of a node, say x, suppose the primary-neighbor of the entry is y,

and the closest node among all qualified nodes of the entry is z. We define p-ratio
5The extensions to the join protocol presented in this chapter do not affect failure recovery

actions, hence the integration of the extended join protocol and the failure recovery protocol still
follows the same rules as presented in Section 5.2.1.

113

of the entry to be the ratio of the communication delay from x to y to the delay

from x to z. A p-ratio of 1 indicates that y and z are of the same distance. If for

every table entry in a network, p-ratio is 1, then the neighbor tables are optimal.

7.2.1 Optimization during joins

In each experiment where optimization happened concurrently with joins, we let m

nodes join an initial K-consistent network of n nodes, m � n. Neighbor tables were

then constructed, updated, and optimized according to the extended join protocol

and the optimization heuristics. In the protocol implementation, an old neighbor is

only replaced by a new neighbor if the distance of the new one is measured to be 10%

shorter than the old one (plus that the replacement is allowed by the optimization

rule). This is to prevent oscillation, since each end-to-end delay is modeled as a

random number with a mean value proportional to the shortest path length in the

underlying network. When all join processes had terminated, we checked whether

K-consistency was maintained and calculated p-ratio for every table entry.

0

5

10

15

20

25

30

0 1 2 3 4 5

p-
ra

ti
o

K

95th percentile p-ratio, w/o opt
avg. p-ratio, w/o opt

95th percentile p-ratio, w/ opt
avg. p-ratio, w/ opt

0

5

10

15

20

25

30

0 1 2 3 4 5

p-
ra

ti
o

K

95th percentile p-ratio, w/o opt
avg. p-ratio, w/o opt

95th percentile p-ratio, w/ opt
avg. p-ratio, w/ opt

(a) n = 10, m = 990 (b) n = 10, m = 1990

Figure 7.10: Effectiveness of optimization heuristics

Figures 7.10 presents results from experiments with n = 10 and m = 990,

and from experiments with n = 10 and m = 1990. In each experiment, starting

times of the joins were drawn randomly from range [0s, 60s] (i.e., all nodes joined

within 1 minute). The results show that by primarily using information carried

114

in join protocol messages, table entries can be greatly optimized. For instance, in

Figure 7.10(a), without any optimization, the average p-ratio for K = 1 is more

than 6.82, and the 95th percentile of p-ratio for K = 1 is 26.67 (i.e., 95% of p-ratios

are no greater than 26.67); with the optimization heuristics, the values drop to 2.21

and 7.51, respectively. We also found that in every experiment, K-consistency was

maintained after all joins had terminated, which demonstrates that our strategy

preserves consistency and ensures correctness of the join protocol.

Results in Figure 7.10 also show that when K is increased, the average p-

ratio decreases. The reason is that when K becomes larger, more neighbors are

stored in each table entry, thus more neighbor information is carried in protocol

messages, thus more information to be used in optimizing neighbor tables. Once

again, we see tradeoffs between the benefits and maintenance costs of K-consistency.

(In Chapter 5, we have investigated the tradeoff in detail.)

7.2.2 Optimization with concurrent joins and failures

The extensions to the join protocol presented in this chapter do not affect failure

recovery actions, thus integrating the extended join protocol with the failure recovery

protocol should not affect success of failure recoveries. (The integration process

is as described in Section 5.2.) On the other hand, since a substitute for a failed

neighbor is searched locally (see Section 5.1), if neighbor tables have been optimized,

the substitute node would not be too far away. Hence the average p-ratio would

not be affected too much after a recovery action. Therefore, integration of the

extended join protocol, the failure recovery protocol, and the optimization heuristics

should be effective and stable in both consistency maintenance and neighbor table

optimization.6 To demonstrate this, we conducted experiments with concurrent

joins and failures as well as churn experiments.
6In Chapter 5, we have shown that the integration of the original join protocol and the failure

recovery protocol is effective and stable in consistency maintenance.

115

Massive joins and failures We first conducted simulations in which

massive number of joins and failures happened concurrently. Each experiment began

with a K-consistent network, 〈V,N (V)〉, which was constructed and optimized by

the extended join protocol and optimization heuristics. Then, a set W of nodes

joined and a set F of randomly chosen nodes failed. Join and failure events were

generated according to a Poisson process at the rate of 10 events every second.

From the experiments, we found that K-consistency was maintained when

all join and failure recovery processes had terminated, in every experiment with

K ≥ 2. This result indicates that our protocols are effective in consistency mainte-

nance. Figure 7.11 presents results of average p-ratios at the end of the simulations.

The lower curve presents results from simulations where 494 joins and 506 failures

happened in a network that initially had 1000 nodes. The upper curve presents

results from simulations where 968 joins and 1032 failures happened in a network

that initially had 2000 nodes. As shown in the figure, even with massive joins and

failures, the table entries were still optimized greatly: For K ≥ 2, average p-ratios

were less than 3.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5

Av
er

ag
e

p-
ra

ti
o

K

2000 nodes initially, 968 joins, 1032 failures
1000 nodes initially, 494 joins, 506 failures

Figure 7.11: Optimization with massive joins and failures

Churn experiments We also investigated the impact of continuous node

dynamics on protocol performance. To simulate node dynamics, Poisson processes

with rates λjoin and λfail were used to generate join and failure events, respectively.

116

We set λjoin = λfail = λ, which is said to be the churn rate. For each join event, a

new node (T-node) was given a randomly chosen S-node to begin its join process.

For each failure event, an S-node or a T-node was randomly chosen to fail and stay

silent. Periodically in each experiment, we took snapshots of the neighbor tables of

all S-nodes (the “core” of the network). For each snapshot, we calculated the average

p-ratio as an indicator of how well table entries were optimized at the moment. We

also checked whether consistency was maintained at each snapshot.

0

1

2

3

4

5

6

7

8

1000 1500 2000 2500 3000 3500 4000

Av
er

ag
e

p-
ra

ti
o

Time (sec)

without opt
with opt

1800

1850

1900

1950

2000

2050

2100

1000 1500 2000 2500 3000 3500 4000

Nu
mb

er
 o

f
no

de
s

Time (sec)

Number of nodes in network
Number of S-nodes

(a) Average p-ratio (b) Number of nodes and S-nodes

Figure 7.12: Churn experiment, λ = 1, K = 3

Figure 7.12 presents results from an experiment with λ = 1, i.e., join events

were generated at a rate of 1 per second and so were the failure events. The initial

K-consistent network of 2000 nodes, K = 3, was constructed and optimized by

letting 1990 nodes join a network of 10 nodes. In the experiment, join and failure

events were generated from the 1,000th second to the 4,000th second (simulated

time). After that, no more join or failure events was generated and the experiment

continued until all join, failure recovery, and optimization processes terminated.

Snapshots were taken every 50 seconds. The lower curve in Figure 7.12(a) plots

the average p-ratio for each snapshot. Although there were continuous joins and

failures, neighbor tables remained optimized to a certain degree: The average p-ratio

increased slightly at first, when joins and failures started to happen; it then remained

117

below 2.3. (For comparison, the upper curve shows the average p-ratios from an

experiment with the same simulation setup, in which no optimization heuristics were

applied.) We also found that consistency was maintained at every snapshot, and

K-consistency (K = 3) was recovered at the end of the simulation. Figure 7.12(b)

plots the number of nodes in the network (T-nodes and S-nodes) versus the number

of S-nodes for each snapshot. Note that the two curves are very close to each other,

which demonstrates that at the given churn rate, the size of the subnet formed by

S-nodes is consistently close to that of the entire network. It also demonstrates

that with the given churn rate and the network size, our protocols can sustain a

large stable “core” over the long term even when joins, failures, and neighbor table

optimization happen concurrently.

7.3 Network Initialization

To initialize a K-consistent and optimized network of n nodes, the algorithm is very

similar to the one presented in Section 4.3. Initially, we can put any one of the n

nodes, say x, in V , and construct x.table as follows. (Recall that x.state(y) denote

the state of neighbor y stored in the table of x. Also, let Nx(i, x[i]).prim denote the

primary-neighbor of the (i, x[i])-entry in x.table, that is, the closest neighbor stored

in the entry.)

• Nx(i, x[i]).prim = x, x.state(x) = S, i ∈ [d].

• Nx(i, j) = ∅, i ∈ [d], j ∈ [b] and j 6= x[i].

Next, let the other n− 1 nodes join the network concurrently. Each node is

given x to start with and executes the extended join protocol with the optimization

heuristics implemented. At the end of joins, a K-consistent network is constructed

and table entries are optimized.

118

7.4 Summary

Constructing and maintaining consistent neighbor tables and optimizing neighbor

tables to improve routing locality are two important issues in P2P networks. To

construct and maintain consistent neighbor tables in presence of node dynamics,

especially when new nodes are joining, it is desired that neighbor pointers remain

unmodified once they are established so that new nodes are ensured to construct

neighbor tables correctly following the pointers. On the other hand, to improve

routing locality, it is desired that once closer neighbors are found, old neighbors

that are father away are replaced.

In this chapter, we showed that the “divergence” between the two issues can

be resolved by a general strategy: to replace a neighbor with a closer one only when

they both belong to a consistent subnet. We realized the strategy in the context

of hypercube routing. We first extended our join protocol in Section 4.1 so that

the following property holds in a network: at any time, the set of S-nodes form

a consistent subnet. This property enables both easy identification of a consistent

subnet and expansion of the consistent subset whenever a join process terminates.

Nevertheless, utilization of this property is not limited to consistency-preserving

optimization.

The extended join protocol was then integrated with our failure recovery pro-

tocol and a set of optimization heuristics. The integrated protocols were evaluated

through simulation experiments. We showed that our protocols are effective and

efficient in maintaining K-consistency and scalable to a large number of network

nodes. We also showed that by primarily using information in join protocol mes-

sages, neighbor tables can be greatly optimized. For P2P networks that have higher

demand for optimality of neighbor tables, algorithms presented in [3, 9, 40] can be

further applied with extra costs. No matter which algorithm is applied, it should

be applied within the constraint of the optimization rule to preserve consistency.

119

Chapter 8

Silk: the Prototype System

In this chapter, we present our design and implementation of a prototype system,

named Silk, for the resilient routing infrastructure designed in the previous chapters.

Silk is implemented in Java and consists of approximately 18,000 lines of code.

8.1 System Design

8.1.1 Silk node architecture

Figure 8.1 shows the architecture of a Silk node. A Silk node corresponds to a peer

node in a P2P network. Each Silk node has the following components that implement

the routing infrastructure: Node Dynamics Management, Neighbor Database, Link

Monitor, Traffic Controller, and Router. Details of each component are described

below:

• Neighbor Database: This component contains both the Neighbor Table and

the lists of reverse-neighbors maintained at the node. For each neighbor (and

each reverse-neighbor), the stored information includes the node-ID and the IP

address of the neighbor, the TCP and UDP ports that the neighbor listens for

120

Reverse Neighbors)
(Neighbor Table +Router Management

Node Dynamic
Link Monitor

Neighbor table lookup

Traffic Controller

Application

Link quality monitoring request / quality update

Join / leave the network

Outgoing messagesIncoming messages

Neighbor Database

Routing requests / results

Link quality update

Maintenance

Link maintenance / quality update

Figure 8.1: Architecture of a Silk node

incoming traffic, and information of the link quality to the neighbor (currently,

only round trip times, or RTT, to the neighbor is included).1

• Node Dynamics Management (NDM): This component is responsible for man-

aging node dynamics. It implements the integrated protocols designed in pre-

vious chapters to construct and maintain the Neighbor Table when there are

nodes join, leave, or fail in the network. (Recall that in our system, node

leaves are treated as a special case of node failures.) It also updates the

reverse-neighbor lists.

• Link Monitor: This component monitors the quality of links to the node’s

neighbors. It periodically probes the neighbors and measures the RTT to each

of them. It will modify the RTT value of a neighbor if it detects significant
1There could be more information stored for each neighbor. For instance, if secure communica-

tion is desired, then the public key of each neighbor would also be stored.

121

changes from its measurements. Link Monitor will also notify NDM if a neigh-

bor failure has been detected and NDM will initiate a failure recovery process

to repair the Neighbor Table.

• Traffic Controller: This is the transport component for a Silk node. It receives

messages from NDM, Link Monitor, and Router, and sends out the messages to

the network using either TCP or UDP.2 It is also the component that receives

and processes incoming messages, and delivers each message to NDM, Link

Monitor, or Router, according to the message type.

• Router: The Router component implements the hypercube routing scheme.

For each message that is passed to it, it first decides whether the message

should terminate at the node (e.g. the node is the desired destination) or be

passed to a next-hop node. If the message needs to be passed further, Router

looks up the Neighbor Table to search for a neighbor that is qualified as the

next hop. (Refer to Section 2.2 for how the next hop is chosen.) The message

is then passed back to Traffic Controller to be forwarded to the next hop.

Note that the Neighbor Table is continuously modified by NDM and by Link

Monitor. NDM will add or remove neighbors from the table entries after node

arrivals or departures. Also, in response to changed link quality, Link Monitor will

modify the information of link quality of each neighbor.3

8.1.2 Message format

Figure 8.2 presents the format of messages exchanged by Silk nodes. It contains the

following fields:

• Version: The version of the Silk protocols implemented.
2In the current implementation, probing messages and protocol messages that do not require a

reply, such as InSysNotiMsg, are sent by UDP; other messages are sent by TCP.
3In the current version of Silk, the neighbor table optimization algorithms have not been imple-

mented yet.

122

Version MessageType

MessageID

ReceiverNodeID

PayloadLength

SenderNodeID

1 byte 1 byte 1 byte 1 byte

NodeIDLength

Payload

Reserved

Figure 8.2: Message format

• MessageType: The type of this Silk message, including all the join protocol

messages, failure recovery messages, routing messages, and probing messages.

• resIDLength: the length of the Node IDs. (Currently this field is not used,

since it is assumed that all node IDs in the network are of the same length.)

• Reserved: a reserved field, currently not in use.

• SenderNodeID: the node-ID of the sender of this message.

• ReceiverNodeID: the node-ID of the receiver of this message.

• MessgeLength: the number of bytes in the payload.

• Payload: the data carried by the message.

All the fields in the message header, except the SenderNodeID and Re-

ceiverNodeID, occupy 12 bytes. The actual length of SenderNodeID (and ReceiverN-

odeID) depends on the b and d values. For instance, if b = 16 and d = 40, then each

node ID occupies 20 bytes; if b = 16 and d = 8, then each node ID only occupies 4

bytes. A larger d value not only indicates a larger size of the message header, but on

average a larger size of the whole message. For example, when creating a message

that contains a copy of a neighbor table, there are many node IDs copied into the

123

message. Hence, the value of d directly affects the size of messages, and as a result,

the overall communication overhead of the protocols.

We have presented the content (payload) of the join protocol messages in

Chapter 4. Here we present the remaining protocol messages in Table 8.1.

8.1.3 Neighbor failure detection

Link Monitor periodically probes each neighbor and calculates the RTT for each

neighbor. We follow a well-adapted approach in calculating the average RTT for a

neighbor based on the probing results. In particular, we use the following formula

to estimate the average RTT and set the value of α to be 0.875 (the same value as

used in TCP implementations):

avgRTT = α× avgRTT + (1− α)newRTT

After Link Monitor sends out a probe, it sets up a timer that expires after

RTT+4VAR amount of time, where VAR is the measured mean variance of RTT.

If a reply has not been received when the timer expires, another timer is set with

the timeout value doubled. After 3 consecutive probing timeouts, Link Monitor

concludes that the neighbor has failed and notifies NDM for failure recovery.

8.2 System Evaluation

In this section, we evaluate the prototype system on a distributed testbed. Note

that the current implementation of Silk is more of a proof-of-concept. It is possible

to optimize the Java code and the protocol implementation to produce better system

performance. As we discuss later in this section, the results presented in this section,

especially the results for bandwidth overhead, should be deemed as upper bounds.

Several possible ways to optimize the system and reduce bandwidth overhead are

discussed in Section 8.2.3.

124

Message Type Payload

Messages for failure recovery

SubNghRst (1) a node y, the failed neighbor detected by the sender
(2) a set of neighbors Q, which are the set of neighbors in the same entries

with y in the sender’s table
(3) an integer i, the number of neighbors in Q
(4) a set of integers I , the set of levels y was stored in the sender’s table
(5) an integer j, the number of integers in I

SubNghRly (1) a node y, the failed neighbor reported by the receiver
(2) a set of nodes Q, which are the substitutes the sender suggests for

replacing y
(3) an integer i, the number of nodes in Q

Messages for link quality monitoring

Probe (1) a float number t, which records the time the Probe message is sent out
(2) a flag s, s ∈ {S, T}, where s indicates whether the sender is

an S-node or a T-node at the time the message is sent out

ProbeRly (1) a float number t, which records the time the corresponding Probe
message is sent out

(2) a flag s, s ∈ {S, T}

Messages for routing

RoutingMsg (1) the ID of the node that initiates the routing message
(2) the targeted destination ID (it could be the ID of a node, or the

ID of an object)
(3) an integer i, the hop number of the current hop (i = 0 at the

initiator of the message)
(4) a flag f , which indicates whether the current hop is on the primary path

or not (if each node along a path is the primary-neighbor of its
predecessor along the path, then such a path is a primary-path)

(5) an integer j, which indicates the type of routing service required by the
initiator of the message (e.g. whether to implement routing with
backtracking, source-duplication plus backtracking, or simply
forwarding without backtracking nor source-duplication)

(6) data from the application that initiates the routing message

Table 8.1: Protocol messages for failure recovery, link quality monitoring,
and routing

125

Global Controller

Silk node Silk node Silk node Silk node

Local Controller Local Controller

Experiment control messages

An instance of Silk node

Entity that runs on one machine

Figure 8.3: Components involved in each experiment

8.2.1 Experiment setup

To evaluate the system with a reasonable large network size on a limited number of

local machines, we create multiple Silk nodes on each machine and introduce extra

delays to message transmission among the nodes. Moreover, to experiment with

various scenarios (e.g. joins, failures, concurrent joins and failures), each machine

that participates in an experiment has a control layer, which triggers node joins and

failures according to an event-file.

Figure 8.3 presents the entities that are involved in an experiment. The

Global-Controller (GC) coordinates with each Local-Controller (LC) to drive the

experiment. There is only one GC in each experiment, and one LC for each partic-

ipating machine. For each experiment, an event file is pre-generated and specifies

the Silk nodes that exist in the initial network. The information for each initial Silk

node includes its node ID, the machine it will reside in, and the TCP/UDP ports

it will use for communication. The file also specifies join and failure events that

will happen in the experiment, including the ID of each Silk node, the machine on

126

which the node will be created, the TCP/UDP ports it will use for communication,

and the time the join/failure event will happen after the start of the experiment.

When each LC starts, it reads from the event-file and creates each Silk node that

are specified to be in the initial network and reside at the same machine. It also

reads in the join and failure events that will happen to the Silk nodes that reside at

the same machine. After an LC finishes its initialization work, it notifies GC. When

GC has received such a notification from every LC, it signals the LC’s to start the

experiment. Each LC then triggers Silk nodes on the same machine to join or leave

the network (once a node leaves, it leaves silently to simulate a node failure) after

the amount of delays specified by the event file.

Once an LC finds that there are no more node join or failure events that

are associated with any Silk node residing on the same machine, it reports to GC.

When GC receives such a report from each LC, it signals each LC to terminate the

experiment. (To give enough time for failure recovery actions after the last event,

GC waits for a certain period of time before it signals each LC for termination.)

All experiments in this section run on eight local machines. They are all Dell

Linux machines, where six of them are with 2.66GHz CPU and 1 GB memory, one

with 2.4 GHz CPU and 512 MB memory, and one with 2.53GHz CPU and 512 MB

memory. Also, in all experiments, we set b = 16.

To emulate RTTs between two machines on Internet, we introduce extra

delays to the message transmission among Silk nodes. More specifically, the delays

are drawn from a topology generated by using the GT ITM package [39]. For the

experiments presented in this section, a topology with 1056 routers are used, where

600 endhosts are attached randomly to the routers. The end-to-end delays drawn

from the topology are as follows: 4.2% of delays are in the range of (0ms, 10ms],

32.6% are in the range of (10ms, 50ms], 36.6% are in the range of (50ms, 100ms],

19.9% are in the range of (100ms, 200ms], and 7.1% are greater than 200ms. Each

127

Silk node is then mapped randomly to an endhost in the generated topology. When

a Silk node, say x, sends out a message to another Silk node, say y, the message

is delayed for an amount of time that is modeled as a random variable with mean

value proportional to the delay specified by the topology for the two endhosts x and

y are mapped to. After the amount of time elapses, the message is sent out the to

network towards y.4

8.2.2 System performance under node dynamics

We first measure the communication overhead and convergence time for node joins.

Recall that in Chapter 4, we have analyzed the communication overhead of node

joins and presented the results in terms of number of messages. In this section, we

present the communication overhead in term of bandwidth. Figure 8.4(a) shows

the average bandwidth overhead for a single join as a function of network size.5 As

shown by the figure, the bandwidth overhead for a single join grows approximately

logarithmically with network size. Also, the bigger the K value, the higher the

bandwidth overhead on average. This is because that (1) with a bigger K, there are

more neighbors in each neighbor table, thus the bigger the join protocol messages

that contain copies of neighbor tables, and (2) there are more nodes that need to

be contacted by a joining node. Figure 8.4(b) shows the average join duration (see

Definition 3.4) for a single join as a function of network size. The value of K does

not affect the average join duration much, as we can see from the figure, and the

average join duration increases slightly when the network size increases.

Figure 8.5 presents performance results for concurrent joins. In these exper-
4Currently in Silk, the extra delay in message transmission is emulated by the Traffic Controller

in each Silk node. A better way would be to let the Traffic Control pass each message to the Local
Controller, which calculates the sending time of each message according to the delays specified
by the topology file, puts messages into a queue in order of their sending time, and sends out a
message to the network when the message’s sending time comes. In this way, the delay emulation
is transparent to the implementation of an Silk node.

5For each data point presented in the figures in this subsection, we run the experiment five times
to obtain the average value.

128

 0

 20

 40

 60

 80

 100

 120

 140

 8 16 32 64 128 256 512

Av
er

ag
e

ba
nd

wi
dt

h
fo

r
a

jo
in

 (
KB

)

Network size (n)

K=1
K=2
K=3

 0

 1

 2

 3

 4

 5

 8 16 32 64 128 256 512

Av
er

ag
e

jo
in

 d
ur

at
io

n
(s

ec
)

Network size (n)

K=1
K=2
K=3

(a) Average join bandwidth overhead (b) Average join duration

Figure 8.4: Performance of a single join

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50

Av
er

ag
e

ba
nd

wi
dt

h
fo

r
ea

ch
 j

oi
n

(K
B)

Number of concurrent joins

K=1
K=2
K=3

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50

Av
er

ag
e

jo
in

 d
ur

at
io

n
(s

ec
)

Number of concurrent joins

K=1
K=2
K=3

(a) Average join bandwidth overhead (b) Average join duration

Figure 8.5: Performance of concurrent joins, n = 400

iments, we fixed the size of the initial network (400 nodes in the initial network),

then let a certain number of nodes join the network concurrently. Figure 8.5(a)

plots the average bandwidth overhead for each join, which does not increase much

when the number of concurrent joins increases. However, the bandwidth overhead

becomes bigger when the K values becomes larger. Figure 8.5(b) shows that the

average join durations for the concurrent joins increases slightly when the number

of joins increase.6

Figure 8.6 presents results for failure recovery. In these experiments, there

were 300 nodes in the initial network. Then 10, 20, or 30 randomly chosen nodes

failed. Figure 8.6(a) shows the average bandwidth overhead for each node that had

run failure recovery processes to repair holes left by failed neighbors. The bandwidth
6Note that a portion of the delay increase may due to the fact that many Silk nodes are running

on the same machine, which result in CPU processing delays.

129

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

Av
g.

 f
ai

lu
re

 r
ec

ov
er

y
ba

nd
wi

dt
h

(K
B)

Number of concurrent failures

K=2
K=3

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40

Av
g.

 d
el

ay
 i

n
re

pa
ir

in
g

a
ho

le
 (

se
c)

Number of concurrent failures

K=2
K=3

(a) Average bandwidth overhead per node (b) Average delay in recovering a recoverable hole

Figure 8.6: Performance of failure recovery, n = 300

overhead increases with the number of failures. This is because with more failures,

there are more irrecoverable holes, the repairing of which triggers the most number of

messages. (If a hole is irrecoverable, then all the steps in failure recovery have to be

executed before the node concludes that the hole is irrecoverable.) Figure 8.6(a) also

suggests that the bandwidth overhead increases with K. The reason is as follows.

First, with a larger K value, more neighbors would be queried during a failure

recovery process since each node has more neighbors with a larger K, thus more

messages would be exchanged. Second, in the current prototype implementation,

when a node, say x, receives a request from another node, say y, for qualified

substitutes for a failed neighbor of y, x would prepare a reply message that contains

all the qualified substitutes it could find from its own neighbor table. Thus, the

higher the K values, the more qualified substitutes x would find in its table and

the bigger the reply message. The implementation could be optimized to let x

only include a few qualified substitutes to reduce the bandwidth overhead. Hence,

results presented in Figure 8.6(a) should be deemed as upper bounds. Figure 8.6(b)

shows the average duration in repairing each recoverable hole, and it shows that this

duration does not increase much when the number of concurrent failures increase

(the timeout value for each failure recovery step has been set to 2 seconds).

Figure 8.7(a) presents the average bandwidth overhead for each node that ran

failure recovery processes, as a function of network size. In each of these experiments,

130

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500

Av
g.

 f
ai

lu
re

 r
ec

ov
er

y
ba

nd
wi

dt
h

(K
B)

Network size (n)

K=2

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

Av
g.

 f
ai

lu
re

 r
ec

ov
er

y
ba

nd
wi

dt
h

(K
B)

K

(a) Different network sizes (b) Different K values

Figure 8.7: Performance of failure recovery, 10 failures in each experiment

10 randomly chosen nodes failed concurrently. The figure shows that the bandwidth

overhead does not necessarily increase with the network size. One reason is that

when network grows bigger, the chance is higher that a hole left by a failed neighbor

is recoverable, since there would be more nodes in the network with a given suffix. If

a hole is recoverable, then the communication cost in repairing the hole is much less

than that of repairing an irrecoverable hole. Thus, with a larger network size, the

number of irrecoverable holes could become smaller, which results in less bandwidth

overhead.

Figure 8.7(b) presents the average bandwidth overhead for each node that

ran failure recovery processes, as a function of K. It shows that the bandwidth

overhead increases with the K value. As we have pointed out in Section 5.1.1,

the communication cost of failure recovery increases with K because the number of

irrecoverable holes increases with K.

8.2.3 Discussions

There are a number of ways to further reduce the bandwidth overhead introduced

by joins and failure recoveries. First, as we have discussed before, the value of d

directly affects the bandwidth overhead, and the bigger the d value, the higher the

bandwidth overhead would be. Figure 8.8 shows the average bandwidth overhead

of a join under different d values, for d = 8 and d = 40, where in each experiment,

131

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35 40
Av

er
ag

e
ba

nd
wi

dt
h

fo
r

ea
ch

 j
oi

n
(K

B)
Number of concurrent joins

d=40
d=8

Figure 8.8: Average join bandwidth overhead for different d values, n = 400, K = 2

a number of nodes joined an network that initially had 400 nodes. (The results

for d = 40 are the same results from Figure 8.5(a).) The figure shows that using

a smaller d value in the network reduces the bandwidth overhead significantly. On

the other hand, a smaller d results in a smaller ID space, and it is more challenging

to generate unique node IDs when the IDs are generated in a distributed fashion.7

Second, for the join protocol messages that include a copy of the sender’s

neighbor table, several enhancements can be made to reduce the size of such a

message:

• When node x sends a JoinNotiMsg to node y, it does not need to include

its whole table in the message. Only including level-i to level-k, where i =

x.noti level and k = |csuf(x.ID, y.ID)|, is enough.

• Moreover, x can include a bit vector in the JoinNotiMsg (or JoinWaitMsg) it

sends to a node, say y, as suggested in [9]. Each bit corresponds to an entry in

x.table, with ‘1’ meaning that the entry is already filled with K neighbors and

‘0’ meaning the entry has less than K neighbors stored. Then, in its reply to

x, y only needs to include neighbors in level-i entries that correspond to a ‘0’

in the bit vector, for each 0 ≤ i < x .noti level , as well as all level-i′ neighbors,

for each x .noti level ≤ i′ ≤ d− 1.
7Systems such as Tapestry choose 160-bit ID length, that is, d = 40 if we set b = 16. The number

is chosen because a secure hash algorithm, SHA-1, is used by each Tapestry node to generate its
node ID, and the output of SHA-1 algorithm is a string of 160-bit.

132

Third, the small messages in the join protocol, including InSysNotiMsg,

RvNghNotiMsg, and RvNghNotiRlyMsg, can be piggybacked in probing messages

(Probe and ProbeRly) to reduce bandwidth overhead.

8.3 Summary

We have presented the design and implementation of Silk, a prototype system for

the resilient routing infrastructure we have designed for P2P networks. We also have

run experiments with the prototype implementation and evaluated system perfor-

mance. In particular, we have reported bandwidth overhead for routing infrastruc-

ture construction and maintenance under node dynamics. The results indicate that

for a fixed number of joins or failures, the bandwidth overhead increases at most

logarithmically with the network size.

To support P2P applications, such as object location, additional compo-

nents need to be integrated into the prototype. For different applications, different

additional components may be needed, which could interact with the routing infras-

tructure through the application interface as shown in Figure 8.1.

133

Chapter 9

Related Work

In this chapter, we discuss the related work. We start by briefly describing unstruc-

tured P2P networks, then discuss related work in structured P2P networks, which

includes work on routing infrastructure maintenance, different approaches in failure

recovery, and recent studies on system behaviors of P2P networks under node churn.

9.1 Unstructured P2P Networks

Unstructured P2P networks refer to P2P networks where there are no specific rules

on how the neighbors of each node are chosen from the network, and messages

from one node to another can be forwarded via an arbitrary path. (Examples of

unstructured P2P networks include Gnutella [6], Kazaa [11], and Freenet [5].) Since

the neighbors of a node is usually chosen arbitrarily from the network, to enhance

successful routing, the underlying routing schemes in unstructured P2P networks

often involve flooding and limit the scalability of these networks. Moreover, due to

the lack of structures, an unstructured P2P network can only provide best-effort

routing services (that is, routing towards a particular node or an object in the

network is not guaranteed to succeed, even if the node or the object exist in the

134

network). It still remains a challenge for unstructured P2P networks to provide

reliable and scalable routing services.

9.2 Routing Infrastructure Maintenance

The hypercube routing scheme is first presented in PRR [29]. As we mentioned

before, in PRR, a static set of nodes and pre-existence of consistent and optimal

neighbor tables are assumed.

CAN [30] and Pastry [34] each has join, leave, and failure recovery protocols,

but the issue of neighbor table consistency is not explicitly addressed in their work.

Pastry uses an optimistic approach to control concurrent node joins and leaves

because “contention” is believed to be rare [34].

In Chord [38], maintaining consistency of neighbor tables (“finger tables” in

Chord) is considered difficult in the presence of concurrent joins in a large network.

A stabilization protocol is designed to maintain consistency of just one neighbor

pointer per node (“successor pointer”), which is sufficient to guarantee correctness

of object location.

In Tapestry [9], a join protocol is presented with a proof of correctness for

concurrent joins. Their join protocol is based upon the use of multicast. The

existence of a joining node is announced by a multicast message. Each intermediate

node in the multicast tree keeps the joining node on a list (one list per table entry

being updated) until it has received acknowledgments from all downstream nodes.

In their approach, many existing nodes have to store and process extra states as well

as send and receive messages on behalf of joining nodes. We take a very different

approach in our join protocol design. We put the burden of the join process on

joining nodes only.

Li, Misra, and Plaxton present protocols to maintain a routing infrastructure

that is based on multiple logical rings [19]. In particular, they present protocols that

135

handle concurrent joins and leaves (voluntary leaves), with correctness proofs that

are based on an assertional method. Their work, however, does not specify a failure

recovery protocol to repair the routing infrastructure after node failures (involuntary

leaves).

9.3 Failure Recovery

Storing several qualified nodes in each neighbor table entry for the hypercube scheme

is first suggested in PRR [29] to facilitate the location of replicated objects. In

Tapestry [43], the basic approach for failure recovery is similar to ours in that it

also stores multiple nodes in a neighbor table entry. However, these systems do

not have the K-consistency concept. Therefore they provide neither protocols to

construct K-consistent neighbor tables nor any theoretical analysis of the benefits

of K-consistency.

The approach for failure recovery in Pastry [34] is very different from the

one in this dissertation. In addition to a neighbor table for hypercube routing, each

Pastry node maintains a leaf set of 32 nearest nodes on the ID ring to improve

resilience. Leaf set membership is actively maintained. Pointers for hypercube

routing, on the other hand, are used as shortcuts and repaired lazily.

9.4 Churn studies

Recently, two other papers also addressing the problem of churn in structured P2P

networks have been published. Li et al. [18] used a single workload to compare the

performance of four routing algorithms under churn. In their experiments, the churn

rate is fixed with the corresponding average node lifetime equal to 60 minutes. Their

goal was to study the impact of algorithm parameter values on system performance,

more specifically, the tradeoff between routing latency and bandwidth overhead.

136

Rhea et al. [32] identified and evaluated three factors affecting performance

of structured P2P networks under churn, namely: reactive versus periodic failure

recovery, algorithm for calculating timeout values, and proximity neighbor selection.

They have also investigated the impact of a wide range of churn rates on average

routing delay (called lookup latency in their paper) as the performance measure for

several structured P2P networks.

We have a different set of objectives on our churn experiments. We use a

stronger definition of consistency (for neighbor tables) than the consistency defini-

tion (for lookups) used in [32]. In addition to the impact of churn rate on average

routing delay, we have also evaluated the impact of churn rate on neighbor table

consistency and pairwise node connectivity provided by the neighbor tables. Fur-

thermore, we have explored the notion of a sustainable churn rate and found that it

is upper bounded by the rate at which new nodes can join the network successfully.

We refer to this upper bound as the join capacity of a network. We find two ways

to improve a network’s join capacity, namely, by using the smallest possible timeout

value in failure recovery steps and by choosing a smaller K value.

We can directly compare Figure 6.7(c) in this dissertation for 3-consistent

hypercube routing to Figures 7 and 9 in [32] for Bamboo and Chord. In each

figure, average routing delay is plotted versus median node lifetime (same as median

session time in [32]). Consider and compare the shapes of the average routing delay

graphs (ignore the absolute delay values since different topologies and link delays

were used in different experiments). Observe that when the median node lifetime

decreases, the average routing delay increases much more significantly for Chord

and also Bamboo than for 3-consistent hypercube routing. We conjecture that such

performance degradation is due to the different failure recovery strategies used in

Bamboo and Chord. In Bamboo, which follows Pastry, neighbors in a node’s leaf set

are actively maintained while neighbors in the node’s hypercube routing table are

137

repaired lazily. As stated in [32], “the leaf set allows forward progress (in exchange

for potentially longer paths) in the case that the routing table is incomplete.” Thus,

when failures happen more and more frequently during periods of high churn, the

average routing delay of Bamboo increases much more than in a hypercube routing

scheme that strives to maintain K-consistency of its routing tables. Figure 6.7(b)

shows that with 3-consistent hypercube routing, the average number of hops remains

at approximately O(logb n) for the entire range of churn rates (or node lifetimes).

138

Chapter 10

Conclusions and Future Work

10.1 Conclusions

P2P networks, especially structured P2P networks, are evolving towards a shared

infrastructure for large-scale distributed applications. To effectively support such

applications, a fundamental requirement for P2P networks is to maintain a resilient

routing infrastructure and provide reliable, scalable, and efficient routing services.

The absence of global knowledge, the large number of nodes involved, and the high

dynamics of participating nodes in P2P networks, however, pose great challenges to

solving the problem.

This dissertation has successfully addressed the above challenges and de-

signed a resilient routing infrastructure for P2P networks. Our work is based on the

hypercube routing scheme that have been used in several famous P2P networks. We

first introduced the property of K-consistency to formally define “good states” for

the routing infrastructure. We then developed a theoretical foundation, C-set trees,

which is the first theoretical foundation introduced for designing and reasoning about

protocols that handle node dynamics in P2P networks based on hypercube routing.

The definition of K-consistency together with the introduction of C-set trees have de-

139

veloped a solid foundation for protocol design and enabled rigorous reasoning about

protocol correctness. We have also presented detailed specifications for a suite of

protocols, including a join protocol, a failure recovery protocol, the integration of

the two protocols, extensions to both protocols to support consistency-preserving

neighbor table optimization, and initialization of a network by using the join pro-

tocol. The detailed specification of protocols and the implementation of Silk, the

prototype system, will facilitate spread of the work in this dissertation.

The storage and communication costs of our protocols are found to increase

approximately linearly with K. Our theoretical analysis and experiment results

have shown that the communication cost of the join protocol is scalable to a large

n, the network size. The failure recovery protocol has been evaluated with extensive

simulations and found to be efficient and effective for networks of up to 8,000 nodes

in size. Since this protocol uses only local information available at each node, we

believe that it is scalable to networks larger than 8,000 nodes. We conclude that

our protocols are scalable to a large network size.

In addition to evaluation of the communication costs of the protocols, we have

also designed and conducted comprehensive simulation experiments, called churn

experiments, to study system behaviors under node churn. Our study is among

the first comprehensive studies on the behaviors of structured P2P networks under

churn. Our experiment results not only demonstrate that the designed routing in-

frastructure is able to provide reliable, scalable, and efficient routing services under

high rates of node dynamics, but also provide insights into study and improvement

of such a system’s ability to sustain node dynamics. In particular, our protocols

are found to be effective, efficient, and stable up to a churn rate of 4 joins and 4

failures per second for 2000-node networks (with K = 2 and 5-second timeout). For

comparison, the median lifetime measured for two deployed P2P systems, Gnutella

and Napster, is 60 minutes [36]. Moreover, experiment results also show that our

140

protocols, by striving to maintain K-consistency, are able to provide pairwise con-

nectivity very close to 100% even under high churn rates. Furthermore, the average

routing delay increased only slightly even when the churn rate is greatly increased.

Based on our design of the resilient routing infrastructure, we have also

implemented a prototype system, named Silk, and evaluated it on a distributed

testbed.

The protocols designed in this dissertation research have also been applied

to assist other applications. In [41], we have applied the protocols to support group

rekeying (changing the group key from time to time for secure group communication)

based on application-layer multicast, where each user in the group maintains a

neighbor table and the neighbor tables embed many multicast trees rooted at each

user. The protocols have been applied to maintain consistent neighbor tables when

users join or leave the group to ensure that each user is guaranteed to receive a

copy of a rekey message through multicast. By combining these protocols with

other proposed schemes, our approach in [41] is shown to provide fast and reliable

delivery of rekey messages and to significantly reduce rekey bandwidth overhead.

In summary, the results of this dissertation research establish that the re-

silient routing infrastructure we have designed is able to provide reliable, scalable,

and efficient routing services, even under high churn rates. It potentially could

become a shared infrastructure for large-scale distributed applications.

10.2 Future Work

To advance technologies in building robust, autonomous, and trustworthy large-

scale networked systems and distributed applications, there are still many challenges

ahead that need to be addressed. Such challenges include establishing theoretical

foundations, developing systematic methodologies, and building practical tools for

system and protocol design, analysis, verification, and evaluation. Along the path to

141

address the great challenges, following are a few potential future research directions.

10.2.1 Sustaining node dynamics

Large-scale networked systems, especially decentralized and self-organizing systems,

typically exhibit high complexity and high node dynamics. Studying behaviors of

such a system under high rates of node dynamics is an important aspect in building

the system. Yet research in this area is still in the early stage. Based on our

research, next steps could be to incorporate more services into the infrastructure we

have designed to support more P2P applications, to investigate methods and metrics

for analysis and evaluation of system robustness in dynamic environments, and to

investigate methodologies for improving the ability of such a system to maintain,

configure, and heal itself autonomously under node dynamics. Such kind of work

will shed new light on understanding the capabilities and constraints of large-scale

networked systems in sustaining high rates of dynamics of participating nodes.

10.2.2 Trust management

Trust is an important issue in every non-trivial distributed application, especially

in decentralized P2P networks. For example, in a P2P file-sharing network, an

adversary node may spread harmful content or simply be a free-rider. To shield a

system from such threats, more and more system designs choose to use community-

based reputations (or trust values). A primary challenge in managing trust values

is how to securely store, distribute, and access these values. It is unlikely that

a single mechanism will solve the problem. A promising approach is to integrate

various mechanisms, for instance, providing anonymity to trust value holders and

reporters to prevent them from being attacked, using FEC (forward error correction)

mechanisms to handle malicious or corrupted trust value holders, and establishing

secure tunnels to protect trust values en route.

142

10.2.3 Systematic support for design and correctness reasoning of

large-scale distributed applications

Nowadays, researchers are still facing the difficulties in designing distributed pro-

tocols and reasoning about their correctness. Unfortunately, lack of systematic

methodologies forces researchers to design and reason about protocols from scratch

each time a new large-scale distributed application is introduced. Moreover, such

reasoning is application-specific and hard to apply to other systems. To address the

above problem, we could investigate the commonalities of the design and reasoning

methodologies involved in our work and other research projects, as well as to in-

vestigate how to apply these methodologies to other distributed applications. The

goal is to develop systematic approaches and frameworks for design and reasoning

of distributed application families.

10.2.4 Simulation or emulation of large-scale networked systems

To deeply understand behaviors of large-scale networked systems, it is essential to

evaluate such a system under a wide variety of conditions. However, it is quite dif-

ficult to conduct large-scale experiments across the Internet. Network simulations

and emulations therefore become essential tools in studying these systems. One

primary challenge in simulations is how to manage tradeoffs between scalability and

accuracy and provide simulation tools at an appropriate level of realism. Most of the

simulators currently used in research of large-scale networks abstract away details

such as queueing delay to achieve scalability. As a result, the simulated network

is not accurate and may hide certain limitations of the system design. Traditional

network simulators, on the other hand, simulate detailed behaviors of network links

and have difficulties in scaling to large networks. It is desired to develop frame-

works that will bridge the gap between the two extremes by employing distributed

simulations and integrating network simulation and emulation techniques. Such a

143

framework should enable simulation of a proposed design at different levels of net-

work detail, support simulations up to tens of thousands of nodes, and should not

have strong dependencies on hardware facilities so that a tool developed under the

framework can be easily deployed.

144

Appendix A

Proofs of Lemmas 3.2 and 3.3

Proof of Lemma 3.2: We prove the lemma by constructing K disjoint paths from

x to y. Consider Nx(0, y[0]). y 6∈ x.table implies y 6∈ Nx(0, y[0]). Hence, there must

exist K neighbors in Nx(0, y[0]); otherwise, Nx(0, y[0]).size < K implies |Vy[0]| < K

and all nodes in Vy[0], including y, would be stored in Nx(0, y[0]).

We denote the K paths to be constructed as P0 to PK−1. Also, we use uj
i to

denote the jth node in path Pi. According to Definition 3.2, we need to establish

paths as follows: Pi = {u0
i , ..., u

k
i }, i ∈ [K], 1 ≤ k ≤ d, where u0

i = x, uk
i = y, and

uj
i ∈ N

uj−1
i

(j − 1, y[j − 1]), 1 ≤ j ≤ k. First, let u0
i = x for each path Pi, i ∈ [K].

Next, starting with P0, for each path Pi, let u1
i = v, such that v ∈ Nx(0, y[0]) and

v 6∈ Pl for all l, 0 ≤ l ≤ i−1, that is, v is not included in paths P0 to Pi−1 (this is easy

to achieve since there are K nodes in Nx(0, y[0])). Let j = 1, f = min(K, |Vy[j]...y[0]|),
and execute the following steps (referred to as round j).

1. For each path Pi, i ∈ [K], if uj
i = y, then mark Pi as “done”. Let P ′ = {Pi,

Pi is not marked “done”} and |P ′| = I. Note I ≤ K. In the next three steps,

we will assign a node to uj+1
i for each path Pi in P ′.

2. For each Pi, Pi ∈ P ′, if uj
i [j] = y[j] then let uj+1

i = uj
i . Suppose there are

145

h such paths. Then, re-number these paths as P0 to Ph−1, and the other

paths in P ′ as Ph to PI−1. Then, for any path Pi, h ≤ i ≤ I − 1, we have

uj
i [j] 6= y[j]. In the next two steps, we will assign a node to uj+1

i for each path

Pi in {Ph, Ph+1, ..., PI−1}.

3. If f ≥ I, then starting with Ph, for each path Pi, h ≤ i ≤ I − 1, let uj+1
i = v,

such that v ∈ N
uj

i
(j, y[j]) and v 6= uj+1

l for all l, 0 ≤ l ≤ i− 1. Such a node v

must exist, since there are f different nodes in N
uj

i
(j, y[j]), and at most I − 1

of them are already assigned to other paths in P ′ (where there are I− 1 paths

other than Pi) for the (j + 1)th position.

4. If f < I, then (i) starting with Ph, for path Pi, h ≤ i ≤ f − 1, let uj+1
i = v,

such that v ∈ N
uj

i
(j, y[j]) and v 6= uj+1

l for all l, 0 ≤ l ≤ i − 1, and (ii) for

each path Pi, f ≤ i ≤ I − 1, let uj+1
i = y, because f < I indicates f < K, i.e.,

|Vy[j]...y[0]| < K, so every node in Vy[j]...y[0], including y, is in N
uj

i
(j, y[j]).

Next, increase j by 1 and execute the above four steps for another round if

there still exist paths that are not marked “done” yet. Eventually, each path will

be marked “done”, since the network is a K-consistent network, and a path exists

from any node (including node u1
i , i ∈ [K]) to y (see Lemma 3.1).

So far we have established K paths from x to y. We then prove that they

are disjoint. First, we point out that any two paths, say Pi and Pj , among the K

paths are different from each other, since at least u1
i is different from u1

j .

Second, we need to prove the following claim, which states that for any

two paths, the nodes at the jth position are different if none of the nodes is the

destination node y.

Claim A.1 For any two paths Pi and Pl, if uj
i 6= y and uj

l 6= y, j ≥ 1, then uj
i 6= uj

l .

Proof of Claim A.1: Prove by induction. Base step (j = 1): According to the

way we assign nodes to u1
i′ for each path Pi′ , i′ ∈ [K], we know that u1

i 6= u1
l .

146

Inductive step: Suppose uj
i 6= uj

l , j ≥ 1, where uj
i 6= y and uj

l 6= y. We next

prove that uj+1
i 6= uj+1

l if neither uj+1
i nor uj+1

l is y.

• If uj
i [j] = y[j] and uj

l [j] = y[j], then according to step 2 in each round of path

construction, uj+1
i = uj

i and uj+1
l = uj

l , thus uj+1
i 6= uj+1

l .

• If uj
i [j] 6= y[j] or uj

l [j] 6= y[j], then without loss of generality, suppose uj
l [j] 6=

y[j]. Also, suppose in this round of node assignment (round j + 1), path Pi is

re-numbered as Pi′ (see step 2), path Pl is re-numbered as Pl′ , and i′ < l′ (if

uj
i [j] = y[j], then according to step 2, we have i′ < l′; otherwise, we suppose

i′ < l′). Let v = uj+1
i . According to step 3 (or 4) in path construction,

if uj+1
l 6= y, then uj+1

l is chosen in such a way that it is not the same as

any (j + 1)th node in the 0th path to the l′th path (the paths that are re-

numbered as the 0th path to the l′th path in round j + 1). Hence, uj+1
l 6= v,

i.e., uj+1
l 6= uj+1

i .

Third, by Claim A.1, we can show (by contradiction) that among the K

paths we have constructed, no path is of the form (x, ..., z, ..., x, ..., y), where z 6= x.

Suppose there exists a path Pi of the above form, that is, there exists a path Pi

such that for the nodes in Pi, u0
i = x, uj

i = z, and uj+1
i = x, where j > 0. uj+1

i = x

indicates that x.ID shares the rightmost j + 1 digits with y.ID, then, x[0] = y[0]

and x ∈ Nx(0, y[0]). Hence, there must exist a path Pl such that u1
l = x (according

to the way we assign nodes to u1
i′ for each path Pi′). Thus, Pl is not the same path

with Pi. Then, by step 2, in path Pl, u1
l = ... = uj

l = uj+1
l = x. Next, by Claim A.1,

for any other path Ph, h 6= l, uj′
h 6= uj′

l for 1 ≤ j′ ≤ j +1. Hence, no j′th node in any

path other than Pl could be node x for 1 ≤ j′ ≤ j + 1. We conclude with uj+1
i 6= x,

which contradicts with the assumption uj+1
i = x.

Based on the above results, we prove that the K paths are disjoint. Consider

any two paths Pi and Pl. By Claim A.1, uj
i 6= uj

l , that is, the jth node in Pi is

147

different from the jth node in Pl. We next show that uj
i is different from any j′th

node in Pl, j′ < j, by contradiction. Suppose uj
i = uj′

l . Then since uj
i has suffix

y[j]...y[0], so does uj′
l . According to step 2 in path construction, uj′

l = uj′+1
l =

... = uj
l . Thus, we get uj

i = uj
l , a contradiction. Similarly, we can prove that uj

i is

different from any j′th node in Pl, for j′ > j. Therefore, any node in Pi that is not

x or y does not appear in any other path Pl. Thus, the K paths are disjoint.

Proof of Lemma 3.3: By Lemma 3.2, if y 6∈ x.table, then there exist at least K

disjoint paths from x to y. Also, as shown in the proof of Lemma 3.2, if y 6∈ x.table,

then Nx(0, y[0]).size = K and thus min(K, |Vy[0]|) = K. Hence, the lemma holds

when y 6∈ x.table. If y ∈ x.table, however, y 6∈ Nx(0, x[0]), then, Nx(0, y[0]).size =

min(K, |Vy[0]|). Similar to the proof for Lemma 3.2, we can construct h disjoint

paths from x to y, where h = min(K, |Vy[0]|). If y ∈ x.table and y ∈ Nx(0, x[0]),

then y[0] = x[0]. Recall that x ∈ Nx(0, x[0]). Similar to the proof for Lemma 3.2, we

can construct h− 1 paths from x to y, h = min(K, |Vy[0]|), where in assigning nodes

to u1
i for each path, we only consider the nodes in set N ′, N ′ = Nx(0, x[0])−{x}. (If

we also consider x in assigning nodes to u1
i , two of the paths maybe the same path

that goes directly from x to y: path Pi, where u1
i = x and path Pl where u1

l = y.)

Hence, at least h− 1 disjoint paths exist from x to y.

148

Appendix B

Proofs of Lemmas 4.1 to 4.5

In this chapter, we present our proofs for the lemmas presented in Section 4.2.1 in

detail. Recall that we made the following assumptions in designing the join protocol:

(i) The initial network is a K-consistent network, (ii) each joining node, by some

means, knows a node in the initial network initially, (iii) messages between nodes

are delivered reliably, and (iv) there is no node deletion (leave or failure) during

the joins. We also assume that the actions specified in Figures 4.3, 4.4, 4.5, 4.6,

and 4.7 are atomic.

Theorem 3 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉. Then, at time te, 〈V ∪W,N (V ∪W)〉 is a K-consistent network.

To prove Theorem 3, we first prove some auxilary lemmas and propositions.

Table B.1 shows the abbreviations we will use for protocol messages in the proofs,

and Table B.2 presents the notation to be used in the following proofs. Moreover,

we define “strongly reachable” as follows.

Definition B.1 Consider two nodes, x and y, in network 〈V,N (V)〉. If there exists

a neighbor sequence (a path), (uh, uh+1..., uk), 0 ≤ h ≤ k ≤ d, such that uh = x,

uk = y, and ui+1 ∈ Nui(i, y[i]), h ≤ i ≤ k − 1, where h = |csuf (x.ID, y.ID)|, then

149

we say that y is strongly reachable from x, or x can strongly reach y, in k

hops.

Protocol Message Abbreviation

CpRlyMsg CPRly
JoinWaitMsg JW
JoinWaitRlyMsg JWRly
JoinNotiMsg JN
JoinNotiRlyMsg JNRly
SpeNotiMsg SN
SpeNotiRlyMsg SNRly
RvNghNotiMsg RN
RvNghNotiRlyMsg RNRly

Table B.1: Abbreviations for protocol messages

Notation Definition

〈x → y〉k x can strongly reach y within k hops

x
j→ y the action that x sends a JN or a JW to y

x
jn→ y the action that x sends a JN to y

x
jw→ y the action that x sends a JW to y

x
c→ y the action that x sends a CP to y

A(x) the attaching-node of x, which is the node that
sends a positive JWRly to x

tb
x the time at which x starts joining the network

tb min(tb
x1 , ..., tb

xm
)

te
x the time x changes status to in system, i.e., the end

of x’s join process,

te max(te
x1 , ..., t

e
xm

)

Table B.2: Notation used in proofs

The following facts, which can be easily observed from the join protocol, are

used frequently in the proofs. (In what follows, unless explicitly stated, when we

say “x can reach y”, we mean “x can strongly reach y.”)

Fact B.1 Messages of type CP, JW, and JN are only sent by T-nodes.

Fact B.2 If node x sends out a JWRly at time t, then x is already an S-node at

time t.

150

Fact B.3 If A(x) = u, then x.att level ≤ h, where h = |csuf(x.ID, u.ID)|, and for

each j, x.att level ≤ j ≤ h, x ∈ Nu(h, x[h]) after u receives the JW from x. Also,

x changes status from waiting to notifying immediately after it receives the positive

JWRly from u.

Fact B.4 If A(x) = u and x.att level = k, 0 ≤ k ≤ |csuf(x.ID, u.ID)|, then before

u receives a JW from x, Nu(j, x[j]).size < K for all j, k ≤ j ≤ |csuf(x.ID, u.ID)|.

Fact B.5 A joining node, x, only sends a JN to y if x is in status notifying and

|csuf(x.ID, y.ID)| ≥ x.att level.

Fact B.6 If x
jn→ y happens, y will send a reply that includes y.table to x immedi-

ately. Moreover, each JN sent by x includes x.table.

Fact B.7 x sends a message of type JW or JN to y at most once (x does not send

both types of messages to y).

Fact B.8 By time tex, x has received all of the replies for messages of type CP, JW,

JN, and SN it has sent out.

Proposition B.1 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 1, join a consis-

tent network 〈V,N (V)〉. Consider node x, x ∈ W . Let u = A(x) and let t be the

time u sends its positive reply, JWRly, to x. Suppose one of the following is true,

where y ∈ V ∪W and y 6= x:

• x
jn→ y happens;

• y = u.

Then, if at time t, 〈y → z〉d, z ∈ V ∪W , and |csuf(x.ID, z.ID)| ≥ x.att level, then

x
j→ z happens before time tex.

Proof: Since at time t, y can reach z, there must exist a neighbor sequence at

time t, (uh, uh+1, ..., ud), h = |csuf(y.ID, z.ID)|, such that uh = y, ud = z, and

151

ui+1 ∈ Nui(i, z[i]) for h ≤ i ≤ d− 1. Note that the ID of each node in the sequence

has suffix y[h− 1]...y[0] (which is the same with z[h− 1]...z[0]).

Next, we prove the following claim: For nodes in {uh, uh+1, ..., ud}, If x
jn→ y

happens, then x
jn→ ui eventually happens for each i, h + 1 ≤ i ≤ d.

First, observe that at time t, x is still in status waiting, if x
jn→ y happens,

it must happen after time t, by Facts B.4. Let k = x.att level . If x
jn→ y happens

(i.e., x sends a JN to y, then it must be that k ≤ |csuf(x.ID, ui.ID)|, by Fact B.5.

Therefore, y must share the suffix x[k − 1]...x[0] with x. On the other hand, it

is given that |csuf(x.ID, z.ID)| ≥ k, thus z also shares suffix x[k − 1]...x[0] with

x. Since both y and z have suffix x[k − 1]...x[0] in their IDs, it follows that each

node along the path from y to z, {uh, uh+1, ..., ud} shares suffix x[k − 1]...x[0].

Thus, k ≤ |csuf(x.ID, ui.ID)| for each i, h ≤ i ≤ d. Then, if x
jn→ ui happens,

h ≤ i ≤ d − 1 from the JNRly ui sends to x, x finds ui+1 from the reply and then

sends a JN to ui+1. Thus, the above claim is true.

Therefore, if x
jn→ y happens, then eventually x

jn→ ud will happen, where

ud = z. The proposition holds in the first case.

If y = u, that is, y is the attching-node of x, then by Fact B.3, k ≤
|csuf(x.ID, y.ID)|. From the JWRly y sends to x, x will find uh+1 and sends a

JN to uh+1. Then similar to the above argument, it can be shown that x
jn→ ui

eventually happens, h + 1 ≤ i ≤ d. Therefore, x
jn→ ud will happen, ud = z.

Lemma 4.1 Suppose node x joins a K-consistent network 〈V,N (V)〉. Then, at

time tex, 〈V ∪ {x},N (V ∪ {x})〉 is a K-consistent network.

Proof: Suppose V Notify
x = Vx[k−1]...x[0], that is, |Vx[k]...x[0]| < K and |Vx[k−1]...x[0]| ≥

K. Let V ′ = V ∪ {x}. Then V ′
j·x[i−1]...x[0] = Vj·x[i−1]...x[0] if j 6= x[i], i ∈ [d], and

V ′
x[i]...x[0] = Vx[i]...x[0] ∪ {x}.

Let g be the last node that x sends a CP to in status copying. Then it

must be that g ∈ Vx[k−1]...x[0]: Because the condition for x to change status is

152

that x finds there exists a level-h in the table of g, such that Ng(i, x[i]).size < K,

for all h ≤ i ≤ |csuf(x.ID, g.ID)|. And since Vx[k−1]...x[0] ≥ K, Vx[k]...x[0] < K,

and 〈V,N (V)〉 is K-consistent, then before x is stored in any other node’s table,

Ng(i, x[i]).size ≥ K for 0 ≤ i ≤ k − 1, and Ng(k, x[k]).size < K. Therefore, by

copying neighbor information from nodes in V , by the time x changes status to

waiting, Nx(i, j).size = min(K, |Vj·x[i−1]...x[0]|) = min(K, |V ′
j·x[i−1]...x[0]|) if j 6= x[i];

if j = x[i] and 0 ≤ i < k, then Nx(i, j).size = K since |Vj·x[i−1]...x[0]| ≥ K; for

(i, x[i])-entry, k ≤ i ≤ d − 1, for any node y, if y ∈ Vx[i]...x[0], then y ∈ Nx(i, x[i]).

Moreover, since x ∈ Nx(i, x[i]), i ∈ [d], it follows that for k ≤ i ≤ d−1, Nx(i, x[i]) =

Vx[i]...x[0] ∪ {x} = V ′
x[i]...x[0]. Therefore, entries in x.tabe satisfy the conditions in

Definition 3.3.

After x changes status from copying to waiting, it sends a JW to node g, which

will then store x in Nx(k, x[k]) (and levels higher than k if x and g share a suffix that

is longer than x[k−1]...x[0]) and sends back a positive JWRly. Thus, x.att level = k.

Next, x needs to notify any node z, z ∈ Vx[k−1]...x[0] about its join. Since the

initial network is K-consistent, thus 〈g → z〉d at the time g sends the positive

JWRly to x. By Proposition B.1, x
j→ z eventually happens. Therefore, eventually,

Nz(i, x[i]) = Vx[i]...x[0] ∪ {x}, i.e., Nz(i, x[i]) = V ′
x[i]...x[0], k ≤ i ≤ |csuf(x.ID, z.ID)|.

The other entries remain unchanged. It is trivial to check that the unchanged entries

satisfy conditions in Definition 3.3 for the new network.

Corollary B.1 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉. Then for any node x, x ∈ W , by time tex, Nx(i, j).size = K if

|Vj·x[i−1]...x[0]| ≥ K; and Nx(i, j) ⊇ Vj·x[i−1]...x[0] if |Vj·x[i−1]...x[0]| < K.

Corollary B.2 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉. Then for any node x, x ∈ W , and any node y, y ∈ V , 〈x → y〉d
by time tex.

153

Lemma 4.2 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 sequentially. Then, at time te, 〈V ∪ W,N (V ∪ W)〉 is a K-

consistent network.

Proof: Prove by induction on texi
, 1 ≤ i ≤ m. By Lemma 4.1, Lemma 4.2

holds when i = 1. Assume when 1 ≤ i < m, Lemma 4.2 holds. Then at time texi
,

〈V ∪W ′,N (V ∪W ′)〉 is a K-consistent network, where W ′ = {x1, ..., xi}. Since the

nodes join sequentially, tbxi+1
≥ texi

. Thus, when xi+1 joins, the network, which is

composed of nodes in V ∪W ′, is K-consistent and there is no other joins in the period

of [tbxi+1
, texi+1

]. By Lemma 4.1, at time texi+1
, 〈V ∪{x1, ..., xi+1},N (V ∪{x1, ..., xi+1})〉

is K-consistent. Hence, Lemma 4.2 also holds for i + 1.

Lemma B.1 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 independently. For any node x, x ∈ W , if |Vj·x[i−1]...x[0]| < K,

0 ≤ i < d−1, j ∈ [b], then (V ∪W ′)j·x[i−1]...x[0] = Vj·x[i−1]...x[0], where W ′ ⊆ W−{x}.

Proof: We prove by contradiction. Assume (V ∪W ′)j·x[i−1]...x[0] ⊃ Vj·x[i−1]...x[0].

Then there exists a least a node y such that y ∈ W ′ and y.ID has suffix j · x[i −
1]...x[0]. Since |Vj·x[i−1]...x[0]| < K and j ·x[i−1]...x[0] is a suffix of y.ID, we rewrite it

as |Vy[i]y[i−1]...x[0]| < K. Let V Notify
y = Vy[i′−1]...y[0]. Then by the definition of V Notify

y ,

we know |Vy[i′]y[i′−1]...y[0]| < K. Therefore, we know i′ ≤ i. Since y[i − 1]...y[0] =

x[i− 1]...x[0] and i′ ≤ i, we know y[i′ − 1]...y[0] = x[i′ − 1]...x[0].

Now consider V Notify
x . Suppose V Notify

x = Vx[j−1]...x[0]. If 1 ≤ j ≤ i′, then

Vx[j−1]...x[0] ⊃ Vx[i′−1]...x[0]; if i′ < j ≤ d − 1, then Vx[j−1]...x[0] ⊂ Vx[i′−1]...x[0]. Thus,

Vx[j−1]...x[0] ∩ Vx[i′−1]...x[0] 6= ∅, i.e., Vx[j−1]...x[0] ∩ Vy[i′−1]...y[0] 6= ∅. Then we get

V Notify
x ∩ V Notify

y 6= ∅. However, by Definition 3.8, V Notify
x ∩ V Notify

y = ∅. Contradic-

tion.

Corollary B.3 Suppose a set of nodes, W = {x1, ..., xm}, join a K-consistent

network 〈V,N (V)〉. Let G(Vω1) = {x, x ∈ W,V Notify
x = Vω1}, G(Vω2) = {y, y ∈

154

W,V Notify
y = Vω2}. If Vω1 ∩ Vω2 = ∅, then for any node x, x ∈ G(Vω1), (V ∪

G(Vω2))j·x[i−1]...x[0] = Vj·x[i−1]...x[0] if |Vj·x[i−1]...x[0]| < K.

Lemma 4.3 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 concurrently. If the joins are independent, then at time te,

〈V ∪W,N (V ∪W)〉 is K-consistent.

Proof: Consider any node x, x ∈ W . If |Vj·x[i−1]...x[0]| ≥ K, then by Corollary B.1,

by time te, Nx(i, j).size = K. If |Vj·x[i−1]...x[0]| < K, then by Lemma B.1, we

have (V ∪ W)j·x[i−1]...x[0] = Vj·x[i−1]...x[0] for j 6= x[i], and (V ∪ W)j·x[i−1]...x[0] =

Vj·x[i−1]...x[0] ∪ {x} for j = x[i], i ∈ [d] and j ∈ [b]. Then, by Corollary B.1,

Nx(i, j).size = |Vj·x[i−1]...x[0]| for j 6= x[i]; and Nx(i, j).size = |Vj·x[i−1]...x[0]| + 1

for j = x[i], where Nx(i, j) = Vj·x[i−1]...x[0] ∪ {x}. Therefore, entries in the table of

x satisfy conditions in Definition 3.3.

Next, consider any node y, y ∈ V , and the (i, j)-entry in y.table, i ∈ [d]

and j ∈ [b]. If |Vj·y[i−1]...y[0]| ≥ K, then Ny(i, j).size = K since the initial net-

work is K-consistent. If |Vj·y[i−1]...y[0]| < K and Wj·y[i−1]...y[0] = ∅, then Ny(i, j) =

Vj·y[i−1]...y[0] = (V ∪ W)j·y[i−1]...y[0]. If |Vj·y[i−1]...y[0]| < K and Wj·y[i−1]...y[0] 6= ∅,
then there exists a node x, x ∈ W , such that j · y[i − 1]...y[0] is a suffix of x. By

Lemma B.1, x is the only node in W has the suffix j · y[i− 1]...y[0]. Similar to the

argument in proving Lemma 4.1, we can prove that x
j→ y happens before time tex.

Hence, Ny(i, j) = Vj·y[i−1]...y[0] ∪ {x} = (V ∪W)j·y[i−1]...y[0].

The above results are true for every node in W . Hence, by time te, 〈V ∪
W,N (V ∪W)〉 is a K-consistent network.

Proposition B.2 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 1, join a K-

consistent network 〈V,N (V)〉. For any two nodes x and y, x ∈ W and y ∈ V ∪W ,

if x
j→ y happens, then by time tex, 〈y → x〉d.

Proof: Initially, let i = 0 and u0 = y. Let the time ui sends its reply to x be ti.

Also, let h = |csuf(x.ID, y.ID)|.

155

(1) If at time ti, x ∈ Nui(hi, x[hi]), hi = |csuf (x.ID, ui.ID)|, then 〈y → x〉d, since

a neighbor sequence from y to x, (u0, u1, ..., ui, x), exists, where u0 = y.

(2) If at time ti, Nui(hi, x[hi]).size < K and x 6∈ Nui(hi, x[hi]), hi = |csuf (x.ID, ui.ID)|,
then ui stores x into Nui(h, x[h]). Hence, 〈y → x〉d, since a neighbor sequence

from y to x, (u0, u1, ..., ui, x), exists, where u0 = y.

(3) If at time ti, Nui(hi, x[hi]).size = K and x 6∈ Nui(hi, x[hi]), then from ui’s reply

(either a JWRly or a JNRly, both includes ui.table), x finds v in ui.table. Let

ui+1 = v and |csuf(x.ID, ui+1.ID)| = hi+1. Let the time x receives the reply

from y be ti+1. If x
jn→ ui happens, then x is in status notifying at time ti+1

and since hi+1 ≥ hi ≥ x.att level , x needs to send a JN to ui+1; if x
jw→ ui

happens, then x is in status waiting at time ti+1 and needs to send ui+1 a JW.

Therefore, x
j→ ui+1 eventually happens (before tex).

(4) Increment i and repeat steps (1) to (4).

We claim that steps (1) and (4) are repeated at most d times, because

• At round i, hi > hi−1.

• At each round i, hi ≤ d− 1. The reason is that x.ID is unique in the system,

therefore, any other node can share at most d− 1 digits (rightmost) with x.

Hence, eventually there exists a node, uj, 1 ≤ i < d − h, such that x ∈
Nuj (hi, x[hj]), where hj = |csuf(x.ID, uj .ID)|. Therefore, eventually, there exists

a neighbor sequence from y to x, which is (u0, u1, ..., uj, x), where u0 = y. Moreover,

at time tex, x must have received all replies it expects, which include the reply from

uj . Hence, at time tex, 〈y → x〉d.

Before we present Proposition B.3, we introduce a concept named contact-

chain(y, u).

Definition B.2 Suppose y
j→ u or y

c→ u happens. Then we can construct a

chain of nodes that y contacts after it sends out the message to u, called contact-

chain(y, u).

156

• If y
j→ u happens, then contact-chain(y, u) is a sequence of nodes, constructed

as follows: Let u0 = u, i = 0, and put u0 in the chain initially.

Let |csuf(ui.ID, y.ID)| = hi, i ≥ 0.

(1) If after u receives the message from y, y ∈ Nui(hi, y[hi]), then ui is the

last node in the chain.

(2) If after u receives the message from y, y ∈ Nui(hi, y[hi]), then let ui+1 =

Nui(hi, y[hi]).first . Add ui+1 to the chain. (It can be shown that y
j→ ui+1

eventually happens.) Increment i and repeat the two steps.

• If y
c→ u happens, then contact-chain(y, u) is a chain of nodes, (u0, u1, ...,

uj), j ≥ 0, concatenated with contact-chain(y, uj). The chain of nodes, (u0,

u1, ..., uj), is obtained as follows: u0 = u, and y requests neighbor tables from

u0 to uj , where ui+1 = Nui(i, y[i]).first and uj is the node that y finds an

attach-level for it exists in the copy of uj .table. (Note that after y receives a

CPRLy from ui, y will send a JW to uj, thus y
j→ u happens and there exists

a contact-chain(y, uj).)

Proposition B.3 If y
j→ u or y

c→ u happens, then there exists a contact-chain(y, u).

Proof: If y
j→ u, and if after u receives the message from y, y ∈ Nu(h, y[h]), then

{u} is the contact-chain, where h = |csuf(y.ID, u.ID)|.
Otherwise, let i = 0 and u0 = u, and suppose after ui receives the message

from y, y ∈ Nui(hi, y[hi]). Let hi = |csuf(y.ID, ui.ID)| and ui+1 = Nui(hi, y[hi]).first .

First, we show that y
j→ ui+1 eventually will happen. The reason is as follows.

(1) If the message y sent to ui is JN, then it must be that hi ≥ y.att level . ui+1

shares more digits with y than ui does. Hence, hi+1 ≥ hi ≥ y.att level . Therefore,

after y knows ui+1 from ui’s reply, it will send a JN to ui+1. If the message y sent

to ui is JW, then ui must reply y with a negative JWRly since it didn’t store y.

According to the join protocol, y will send out another JW, this time to ui+1.

157

Second, we show that there exists a last node in the chain. That is, the

step that after y
j→ ui, y is not stored by ui, and y sends another message to ui+1

(y j→ ui) will not be repeated infinitely. Because:

• At round i, hi > hi−1.

• At each round i, hi ≤ d− 1. The reason is that x.ID is unique in the system,

therefore, any other node can share at most d− 1 digits (rightmost) with x.

Similarly, we can show that a contact-chain(y, u) exists if y
c→ u happens.

Proposition B.4 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 2, join a K-

consistent network 〈V,N (V)〉. Let x and y be two nodes in W . Suppose there exists

a node u, u ∈ V ∪ W , such that by time te, x
j→ u has happened, and y

j→ u

or y
c→ u has happened. If |csuf(x.ID, y.ID)| = h and x.att level ≤ h, then by

time txy, txy = max(tex, tey), at least one of the following is true: x ∈ Ny(h, x[h]) or

Ny(h, x[h]).size = K.

Proof: Case 1: |csuf(u.ID, x.ID)| ≥ h. Let the time u replies to x be tx, and

the time u replies to y be ty.

If tx < ty, then after receiving the notification from x (i.e., time tx), u will

store x in Nu(h, x[h]) if Nu(h, x[h]).size < K before tx (x.att level ≤ h, hence

u can store x at level h). Since tx < ty, at time ty, either x ∈ Nu(h, x[h]) or

Nu(h, x[h]).size = K is true. Next, from u’s reply that includes u.table, y copies

nodes in Nu(h, x[h]) (after time ty but before time txy). Thus, either x ∈ Ny(h, x[h])

or Ny(h, x[h]).size = K by time txy.

If tx > ty, then consider the nodes y contacts after it sends the CP message

to u, i.e., contact-chain(y,u). Suppose contact-chain(y,u) is (u0, u1, ..., uf , uf+1),

where u0 = u and uf+1 = y. Then, for each node in the chain, ui, either y
c→ ui

or y
j→ ui happens, 0 ≤ i ≤ f . Observe that |csuf(x.ID, ui.ID)| ≥ h (because

each ui.ID has suffix x[h − 1]...x[0] since both u0.ID and y.ID have this suffix),

158

therefore, |csuf(x.ID, ui.ID)| ≥ x.att level for each i, 0 ≤ i ≤ f . We then prove

the following claim:

Claim B.1 (Property of contact-chain(y, u)) If after y has received all replies from

u0 to ui and copied nodes from neighbor tables included in the replies, Ny(h, x[h]).size <

K and x 6∈ Ny(h, x[h]), then x
j→ ui+1 happens eventually, 0 ≤ i ≤ f .

We prove the above claim by induction on i. In what follows, we say that

link (ui, ui+1) exists at time t, if ui+1 ∈ ui.table by time t.

Proof of Claim B.1: Base step At time ty, link (u0, u1) already exists (otherwise,

u1 = y). Therefore, the link also exists at time tx (we have assumed tx > ty). x then

learns y from u0’s reply. If the reply is a JNRly, then x
jn→ u1 eventually happens

because x.att level ≤ h (by the assumption of the proposition); if the reply is a

JWRly, then x will send another JW to u1, that is x
jw→ u1 will happen. Thus,

x
j→ u1 eventually happens.

Inductive step Assume the claim holds for all j, 0 ≤ j ≤ i. We now prove it also

holds for i + 1. Let t1 be the time ui+1 sends its reply to y, and t2 be the time

ui+1 sends its reply to x. Then it must be t1 < t2, otherwise, at time t1, either

x ∈ Nui+1(h, x[h]) or Nui+1(h, x[h]).size = K is true, which implies after y copies

nodes from ui+1’s reply, either x ∈ Ny(h, x[h]) or Ny(h, x[h]).size = K is true, which

contradicts with the assumption of the claim. Hence, link (ui+1, ui+2) exists at time

t1 as well as t2. Consequently, x knows ui+2 from ui+1’s reply and will notify ui+1

if it has not done so (similar to the argument in the base step, x sends either a JW

or a JN to ui+1).

It can then be shown that if after receiving all of the replies from u0 to uf ,

Ny(h, x[h]).size < K and x 6∈ Ny(h, x[h]), then eventually x
j→ y happens. Thus,

the proposition holds in Case 1.

Case 2: |csuf(u.ID, x.ID)| < h. Then, it follows that |csuf(u.ID, x.ID)| =

|csuf(u.ID, y.ID)|. Let |csuf(u.ID, x.ID)| = h′, then x[h′] = y[h′], since x[h −

159

1]...x[0] = y[h − 1]...y[0] and h′ < h. Let the time u receives the message from x

(either a JW or a JN) be t1, and the time u receives the message from y (a CP, JW,

or a JN) be t2.

(1) If t1 < t2, and x ∈ Nu(h′, x[h′]) after t1, then from u’s reply to y, y finds

x and copies x into y.table (if y sends a CP or a JW to u) or y
jn→ x happens. Hence,

after y receives the reply from u, x ∈ Ny(h, x[h]) or Ny(h, x[h]).size = K.

(2) If t1 < t2, and x 6∈ Nu(h′, x[h′]) after t1, then Nu(h′, x[h′]) has stored K

nodes by time t1. Let v = Nu(h′, x[h′]).first . Then x
j→ v will happen (if the message

x sent to u is JN, then x
jn→ v happens; otherwise, x

jw→ v happens). Similarly, y
j→ v

or y
c→ v will happen, since t2 > t1 and Nu(h′, x[h′]) already stores K nodes by t1.

(3) If t1 > t2, and y ∈ Nu(h′, x[h′]) by time t1, then x finds y from u’s reply.

Then x
jn→ y will happen since x.att level ≤ h (either that (1) x copies y into x.table

and sends a JN to y later, if x has sent a JW to u, or (2) x sends a JN to y right

after it receives the JNRly from u).

(4) If t1 > t2, y 6∈ Nu(h′, x[h′]) by time t1, and the message y sends to u is

a JW or JN, then Nu(h′, x[h′]) must have stored K nodes by time t2 (otherwise, u

would store y at time t2). Let v = Nu(h′, x[h′]).first . Then both x
j→ v and y

j→ v

eventually happen.

(5) If t1 > t2, y 6∈ Nu(h′, x[h′]) by time t1, the message y sends to u is a CP,

and Nu(h′, x[h′]) has stored K nodes by time t2, then x
j→ v and y

c→ v eventually

happen.

(6) If t1 > t2, y 6∈ Nu(h′, x[h′]) by time t1, the message y sends to u is a CP,

and Nu(h′, x[h′]) has not stored K nodes by time t2, then y must send a JW to u

after it receives the CPRly from u. Then, it is the same with the case that x
j→ u

and y
j→ u both happen.

In (2), (4), and (5), both x
j→ v and y

c→ v happen. Moreover, v shares

more digits with x and y than u. If |csuf(v.ID, x.ID)| ≥ h, then by applying the

160

arguments in Case 1 (replacing u with v), we can show that the proposition holds.

If |csuf(v.ID, x.ID)| < h, then arguments in Case 2 can be applied, hence either

we conclude that the proposition holds in (1), (3) and (6), or we get that x
j→ v′ and

y
c→ v′ happen, where v′ shares more digits with x and y than v. In the latter case,

we repeat the above steps until at a step, we find a node w, such that x
j→ w and

y
c→ w both happen and |csuf(w.ID, x.ID)| ≥ h. Then by applying the arguments

in Case 1 (by replacing u with w), we conclude that the proposition holds.

Lemma 4.4 Suppose a set of nodes, W ={x1,...,xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 concurrently. If the joins are dependent, then at time te, 〈V ∪
W,N (V ∪W)〉 is K-consistent.

To prove Lemma 4.4, consider any two nodes in W , say x and y. If their

noti-sets are the same, i.e., V Notify
x = V Notify

y , then x and y belong to the same C-set

tree rooted at V Notify
x , otherwise they belong to different C-set trees. We consider

nodes in the same C-set tree first and prove Propositions 4.1 to 4.7. Then, we

prove Proposition 4.8, which states when joining nodes belong to different C-set

trees, their neighbor tables eventually satisfy K-consistency conditions. Based on

Proposition 4.7 and Proposition 4.8, we present our proof of Lemma 4.4. To simplify

presentation in the following propositions, we make the following assumption:

Assumption 1 (for Propositions 4.1 to 4.7)

A set of nodes, W = {x1, ..., xm}, m ≥ 2, join a K-consistent network 〈V,N (V)〉
concurrently and for any x, x ∈ W , V Notify

x = Vω and |ω| = k.

Proposition 4.1 For each node x, x ∈ W , there exists a C-set Clj ...l1·ω, 1 ≤ j ≤
d− k, such that by time te, x ∈ Clj ...l1·ω, where lj ...l1 · ω is a suffix of x.ID.

Proof: Consider contact-chain(x,g), where g is the node that x is given to start

its join process. Suppose contact-chain(x,g) is (u0, u1, ...uf , uf+1), where u0 = g

and uf+1 = x. Then uf is the node that sends a positive JWRly to x. Let the

161

lowest level uf stores x in uf .table (the attach-level of x) be level-h, then k ≤ h ≤
|csuf(u.ID, x.ID)| (recall k = |ω|, as defined in Assumption 1). Create a new

sequence (g0, ..., gh) based on contact-chain(x,g) as follows:

• Let g0 = g and j = 0.

• For each i, 0 ≤ i ≤ h−1, let gi+1 = gi if gi[i] = x[i] and i < h−1; if gi[i] 6= x[i]

and i < h− 1, let gi = uj and increase j.

• gh = uf .

Then, gk ∈ Vω, because gk ∈ V and gk[k − 1]...gk[0] = x[k − 1]...x[0]. Hence,

gk+1 ∈ Cl1·ω, where l1 = x[k], since gk+1 ∈ Ngk
(k, x[k]) (by the definition of contact-

chain) and gk+1[k] = x[k]. Consequently, gk+2 ∈ Cl2l1·ω, ..., gh−1 ∈ Clh−k−1...l1·ω,

and gh ∈ Clh−k...l1·ω. Hence x ∈ Cx[h]·lh−k...l1·ω.

Corollary B.4 For each node x, x ∈ W , there exists a node u such that u = A(x),

and u belongs to a C-set in cset(V,W) or u ∈ Vω.

Proposition 4.2 If Wlj ...l1·ω 6= ∅, 1 ≤ j ≤ d − k, then by time te, the followings

are true:

(a) Clj ...l1·ω ⊆ (V ∪W)lj ...l1·ω and Clj ...l1·ω ⊇ Vlj ...l1·ω.

(b) if |(V ∪W)lj ...l1·ω| < K, then Clj ...l1·ω = (V ∪W)lj ...l1·ω;

(c) if |(V ∪W)lj ...l1·ω| ≥ K, then |Clj ...l1·ω| ≥ K.

Proof: Consider set Clj ...l1·ω. For any node u, u ∈ Vω, if u.ID has suffix lj ...l1 · ω,

then u ∈ Clj ...l1·ω by the definition of cset(V,W). Hence, part (a) holds trivially.

We prove parts (b) and (c) by contradiction. Assume |Clj ...l1·ω| < h, where

h = |(V ∪W)lj ...l1·ω| if |(V ∪W)lj ...l1·ω| < K, and h = K if |(V ∪W)lj ...l1·ω| ≥ K. If

|Clj ...l1·ω| < h, then there exists a node x, such that x ∈ Wlj ...l1·ω and x 6∈ Clj ...l1·ω.

By Corollary B.4, there exists a node u, such that u = A(x) and u.ID has suffix ω.

First, consider the case where j = 1, then x ∈ Wl1·ω and x 6∈ Cl1·ω. Since

u = A(x) and u.ID has suffix ω, then it must be that u ∈ Vω. However, by

162

Definition 3.11, this implies x ∈ Cl1·ω. A contradiction. Second, consider the

case where j > 1. Suppose u ∈ Cli...l1·ω, where li...l1 · ω is a suffix of both u.ID

and x.ID. By the definition of cset(V,W), x ∈ Cli+1...l1·ω, lj+1 = x[i + k], and

hence, x ∈ Cli′ ...l1·ω for all i′, i + 1 ≤ i′ ≤ d − k, where li′ ...l1 · ω is a suffix of

x.ID. Therefore, it must be that i + 1 > j, i.e., i ≥ j (otherwise, x ∈ Clj ...l1·ω).

However, by Corollary B.5, |Clj′ ...l1·ω| ≥ K for 1 ≤ j′ ≤ i, thus, |Clj ...l1·ω| ≥ K. A

contradiction.

Proposition B.5 Consider any node x, x ∈ W , if x ∈ Clj+1...l1·ω and x 6∈ Clj ...l1·ω,

1 ≤ j ≤ d− k − 1, (or if x ∈ Cl1·ω, respectively), then

(a) there exists a node v, v ∈ Clj ...l1·ω (or v ∈ Vω), such that x ∈ Nv(j + k, lj+1)

(or x ∈ Nv(k, l1)) and A(x) = v;

(b) x.att level = j + k (or x.att level = k).

Proof: By Corollary B.4, there exists a node u, such that A(x) = u. Suppose

u ∈ Cli...l1·ω and x ∈ Nu(i+k, x[i+k]), where i+k is the attach-level of x in u.table,

0 ≤ i ≤ d− k − 1. Hence, x ∈ Cli+1...l1·ω, where li+1 = x[i + k] and according to the

algorithm, x sets x.att level = i + k.

Then it must be that i ≥ j. Otherwise, if i < j, then since x ∈ Cli+1...l1·ω, it

follows that x ∈ Cli′ ...l1·ω, i′ ≤ i ≤ d − k, thus x ∈ Clj ...l1·ω, which contradicts with

the assumption in the proposition.

Next, we show that i ≤ j, proving by contradiction. Assume i > j. Thus

li...l1 · ω is a longer suffix than lj...l1 · ω. Since x only sends JN to nodes with

suffix x[i + k − 1]...x[0] (i.e. suffix li...l1 · ω), other nodes can only know x through

these nodes plus node u. (Note that x would not be a neighbor at any level lower

than level-(i + k) in tables of these nodes, because when a node, y, copies x, from

z.table, where z is one of the nodes x has sent JN to or z = u, if x is stored at levels

no lower than level-i + k in z.table, then y will not store x at a level lower than

i + k. See Figures 4.5 and 4.8.) Given that x ∈ Clj+1...l1·ω and x 6∈ Clj ...l1·ω, by

163

the definition of cset(V,W), there must exist one node y, y ∈ Clj ...l1·ω and y 6= x,

such that x ∈ Ny(j + k, lj+1) by time te. y can not store x by receiving a JW from

x, since that indicates A(x) = y and i = j, which contradicts with the assumption

that i > j. Also as discussed above, since i > j, x will only send JN to nodes with

suffix li...l1 ·ω and thus will not send a JN to y. Hence, y knows x through another

node, z. There are three possible cases: (i) y copies x from z during c-phase; (ii)

y knows x through a reply (a JWRly or a JNRly) from z or a JN from z; (iii) y

receives a SN informing it about x, which is sent or forwarded by z. Both cases (i)

and (ii) are impossible, because z can only store x at a level no lower than i + k

(see Figure 4.6), thus when y copies x from z.table, it can not fill x into a level

lower than i + k (again, see Figure 4.8). Now consider case (iii). If z sends or

forwards a SN to y, then |csuf(x.ID, y.ID)| > |csuf(x.ID, z.ID)|, since both x.ID

and y.ID have the same desired suffix of an entry in z.table. However, we know

that |csuf(x.ID, y.ID)| < |csuf(x.ID, z.ID)|, because |csuf(x.ID, y.ID)| = j + k,

|csuf(x.ID, z.ID)| = i + k and i > j. Therefore, case (iii) is impossible, either.

Thus, we conclude that i ≤ j.

Since i ≥ j and i ≤ j, we conclude that i = j. Hence, u ∈ Clj ...l1·ω and

x.att level = j + k, where u = A(x).

Corollary B.5 If Clj ...l1·ω is the first C-set x belongs to, 2 ≤ j ≤ d − k, then

|Cli...l1·ω| ≥ K for 1 ≤ i < j.

Proof: Consider contact-chain(x,g) and construct a sequence of nodes, (g0, ..., gh),

where h = j + k, based on contact-chain(x,g), in the same way described in the

proof of Proposition 4.1. Thus, gj [i′−1]...g0[0] = x[i′−1]...x[0], 0 ≤ i′ ≤ h. Assume

|Cli...l1·ω| < K. We know that gk+i ∈ Cli...l1. Then, by the definition of contact-

chain(x,g), gk+1 is a node that x has sent a CP or a JW to. If |Cli...l1·ω| < K, then

it must be that Ngk+i
(k + i, x[k + i]).size < K (implied by Definition 3.11), and

hence Ngk+i
(h′, x[h′]).size < K, where k + i ≤ h′ ≤ |csuf(x.ID, gk+i.ID)|. Then x

164

would not send a CP to gk+1, since when x finds Ngk+i
(k + i, x[k + i]).size < K, it

will change status to waiting and send a JW to gk+1. However, if x has sent a JW

to gk+i, then gk+i would store x since an attach-level of x in gk+i.table exists, which

x ∈ Cli...l1·ω. A contradiction with that the Clj ...l1·ω is the first C-set x belongs to,

j > i.

Proposition B.6 Consider a node y, y ∈ W , and let uy = A(y). Suppose Clj ...l1·ω

is the first C-set y belongs to, 1 ≤ j ≤ d− k. Then for a node x, x ∈ W and x.ID

has suffix lj−1...l1 ·ω, if x
j→ uy happens, or x ∈ Nuy(j + k− 1, lj) before uy receives

the JW from y, then by time txy, txy = max(tex, tey), 〈y → x〉d.

Proof: Let ty be the time uy sends its positive JWRly to y, and tx be the time uy

receives the notification from x if x
j→ uy happens. Since uy = A(y), y ∈ Clj ...l1·ω

and y 6∈ Clj−1...l1·ω, by Proposition B.5, uy ∈ Clj−1...l1·ω (or uy ∈ Vω if j = 1) and

y.att level = k+j−1. Also, we know that before time ty, Nuy(k+j−1, lj).size < K

(by Fact B.4).

If x
j→ uy happens and tx > ty, then x knows y from uy’s reply and x

j→ y

will happen. By Proposition B.2, 〈y → x〉d by time tex.

If x
j→ uy happens and tx < ty, then at time tx, Nuy(k + j − 1, lj).size < K,

therefore, uy stores x into Nuy(k+ j−1, lj). Then, by time ty, x ∈ Nuy(k+ j−1, lj).

In what follows, we only consider the case that x ∈ Nuy(k + j − 1, lj) before uy

receives the JW from y. In this case, y learns x from uy’s JWRly. (i) If y also stores

x into Ny(k + j − 1, lj), then trivially, 〈y → x〉d by time tey. (ii) Otherwise, y
j→ x

eventually happens (|csuf(x.ID, y.ID)| ≥ k + j > y.att level).

(1) If by the time x receives the notification from y, x is still a T-node, then x
j→ v

must happen eventually, where v = Ny(h, x[h]).f irst, h = |csuf(x.ID, y.ID)|.
Thus, 〈v → x〉d is by time tex, which implies 〈y → x〉d by time tex, since

there exists a neighbor sequence (y, v, v1, ..., vf , x), where (v, v1, ..., vf , x) is

the neighbor sequence from v to x.

165

(2) If by the time x receives the notification from y, x is already an S-node, then x

will set a flag to be true in its reply to y (see Figure 4.5). Seeing the flag, y will

send a SN(y, x) to v, v = Ny(h, x[h]).f irst, h = |csuf(x.ID, y.ID)|. v will

either store x into Nv(h′, x[h′]), h′ = |csuf(v.ID, x.ID)|, or forward SN(y, x)

to Nv(h′, x[h′]).f irst), until eventually x is or has been stored by a receiver of

the message SN(y, x) (see Figure 4.6) and a SNRly is sent back to y. Thus,

by time tey, 〈v → x〉d. Therefore, 〈y → x〉d by time tey.

Corollary B.6 If y
j→ x happens, where x ∈ W and y ∈ W , and |csuf(x.ID, y.ID)| >

y.att level, then 〈y → x〉d by time txy, txy = max(tex, tey).

Proof: See case (2) in the last part of the proof of Proposition B.6.

Proposition B.7 Consider any node x, x ∈ Vω. For any C-set, Cl·lj−1...l1·ω,

l1,...,lj−1 ∈ [b] and l ∈ [b], if lj−1...l1 · ω is a suffix of x.ID, then,

(a) for any node y, y ∈ Cl·lj−1...l1·ω and y ∈ W , y
j→ x happens before time tey;

(b) Nx(k + j − 1, l).size = min(K, |(V ∪W)l·lj−1...l1·ω|) holds by time te.

Proof: For any node y, y ∈ Cl·lj−1...l1·ω, if y ∈ W , then by Proposition B.5,

y.att level ≤ j + k − 1 and there exists a node u, such that u = A(y). Then

〈u → x〉d by the time u sends its JWRly to y. (If u ∈ V , then 〈u → x〉d because

the initial network is consistent; if u ∈ W , then by Corollary B.2, 〈u → x〉d.) By

Proposition B.1, y
j→ x has happened by tey, since |csuf(x.ID, y.ID)| ≥ j − 1 +

k ≥ y.att level. Moreover, by Proposition B.2, 〈x → y〉d by time tey. Also, by

Corollary B.2, 〈y → x〉d by time tey. Therefore, part (a) holds.

Since the initial network is K-consistent, we know that before any join hap-

pens, Nx(k + j − 1, l) = Vl·lj−1...l1·ω since |Vl·lj−1...l1·ω| < K. Part (a) shows that

for any y, y ∈ Cl·lj−1...l1·ω and y ∈ W , y
j→ x eventually happens. It then fol-

lows that Nx(k + j − 1, l).size = min(K, |(V ∪ W)l·lj−1...l1·ω|) by time te, since by

166

Proposition 4.2, Cl·lj−1...l1·ω = (V ∪ W)l·lj−1...l1·ω if |(V ∪ W)l·lj−1...l1·ω| < K, and

|Cl·lj−1...l1·ω| ≥ K if |(V ∪W)l·lj−1...l1·ω| ≥ K.

Proposition 4.3 Consider any node x, x ∈ Vω. For any C-set Cl·lj ...l1·ω, 0 ≤
j ≤ d − k − 1 and l ∈ [b], if lj...l1 · ω is a suffix of x.ID, then Nx(k + j, l).size =

min(K, |(V ∪W)l·lj ...l1·ω|) holds by time te.

Proof: By Proposition B.7 (b), the proposition holds.

Proposition B.8 For any C-set, Clj ...l1·ω, 1 ≤ j ≤ d−k, l1,...,lj ∈ [b], the following

assertions hold:

(a) If |Wlj ...l1·ω| ≥ 2, then for any two nodes, x and y, where x ∈ Clj ...l1·ω, y ∈
Clj ...l1·ω, x 6= y, and x and y are both in W , by time txy, at least one of x

j→ y

and y
j→ x has happened, where txy = max(tex, tey). Moreover, at time txy,

〈x → y〉d and 〈y → x〉d.
(b) For each x, x ∈ Clj ...l1·ω and x ∈ W , Nx(k + j − 1, l).size = min(K, |(V ∪

W)l·lj−1...l1·ω|) by time te, where l ∈ [b].

Proof: We prove the proposition by induction on j.

Base step: j = 1. Consider nodes x and y, x ∈ W and x ∈ Cl1·ω, y ∈ W and

y ∈ Cl·ω, where l1 ∈ [b], l ∈ [b] (l may or may not be the same with l1), and x 6= y.

By Proposition B.5, there exists a node ux, ux ∈ Vω, such that ux = A(x) (thus,

x ∈ Nux(k, l)). Likewise there exists a node uy, uy ∈ Vω, such that y ∈ Nuy(k, l)

and uy = A(y). By Proposition B.5, x.att level = y.att level = k. Therefore, both

x
j→ ux and y

j→ uy happens. Also, by part(a) of Proposition B.7, x
j→ uy happens.

Likewise, y
j→ ux happens. By Proposition B.6, 〈y → x〉d and 〈x → y〉d by time txy.

Let t1 be the time ux sends its reply to x, t2 be the time ux sends its reply

to y, t3 be the time uy sends its reply to y, and t4 be the time uy sends its reply to

x. Clearly, t4 > t1, because at t1, x is in status waiting, while at t4, x is in status

notifying. Likewise, t2 > t3. Note that at time t1, ux stores x in Nux(k, l), and at

time t3, uy stores y in Nuy(k, l).

167

u y

u
x

y
u y

u
x

y
u y

u
x

y

t1t1

t2

t3

t4

t3

t4

t2

t1

t2

t3

t4

(a)

x

(b) (c)

x x

Figure B.1: Message sequence chart for base case

If t1 > t2, then it must be t4 > t3, as shown in Figure B.1(a). By Fact B.4,

Nux(k, l).size < K before time t1. Thus, at time t2, Nux(k, l).size < K. Since y.ID

also has suffix l ·ω, ux stores y in Nux(k, l) at time t2. Consequently, from ux’s reply,

x knows y and stores y in Nx(k, l). (In the copy of ux.table included in ux’s reply,

Since |csuf(x.ID, y.ID)| ≥ k + 1 and x.att level = k, x
j→ y will happen.

If t1 < t2, then consider the following cases.

• If t3 > t4, as shown in Figure B.1(b), then this case is symmetric to the case

where t1 > t2, by reversing the role of x and y.

• If t3 < t4, as shown in Figure B.1(c), then from uy’s reply, x knows y and will

notify y if it has not done so. Similarly, y knows x from ux’s reply and will

notify x if it has not done so.

Then, if l = l1, that is, both x and y belong to Cl1·ω, part (a) of the propo-

sition holds, since we have shown above that at least one of x
j→ y and y

j→ x will

happen before time txy, and 〈x → y〉d and 〈y → x〉d by time txy.

Part (b) of the proposition also holds, since we have shown above that for

any l, l ∈ [b], x
j→ y or y

j→ x will happen. Thus, eventually x knows y, for

each y, y ∈ Cl·ω and y ∈ W . By Corollary B.1, Nx(k, l) ⊇ Vl·ω. Then, eventually,

Nx(k, l).size = min(K, |(V ∪W)l·ω|).

Inductive step: Next, we prove that if the proposition holds at j, then it also

holds at j + 1, 1 ≤ j ≤ d− k − 1.

168

Observe that if statement (a) is true, then statement (b) is true if l = x[k +

j − 1] (i.e. l = lj). The reason is as follows. Statement (a) shows that for any other

node in Clj ...l1·ω, say y, eventually at least one of x
j→ y and y

j→ x happens. Either

way, x gets to know y. If x has not stored K neighbors in Nx(k + j − 1, lj) by the

time it knows y, it will store y into that entry. By Proposition 4.2, min(K, |(V ∪
W)lj ...l1·ω|) = min(K, |Cl·lj ...l1·ω|). Thus, by time te, either that x has stored K

neighbors in Nx(k + j− 1, lj), or it has stored all nodes in Cl·lj ...l1·ω if the number of

nodes in this C-set is less than K. Based on the observation, in what follows, when

we prove statement (b), we focus on the cases where l 6= lj.

Consider node x, x ∈ Clj+1...l1·ω and the following cases:

• Case 1: x ∈ Clj+1...l1·ω and x 6∈ Clj ...l1·ω.

– 1.a In this case, we prove part(a) of the proposition holds. If |Clj+1...l1·ω| >
1, then consider any node y, y ∈ Clj+1...l1·ω, y 6= x and y ∈ W :

∗ 1.a.1 y 6∈ Clj ...l1·ω.

∗ 1.a.2 y ∈ Clj ...l1·ω.
– 1.b In this case, we prove part(b) of the proposition holds. Consider any

node y, y ∈ Cl·lj ...l1·ω, where l 6= li and Cl·lj ...l1·ω 6= ∅:
∗ 1.b.1 y 6∈ Clj ...l1·ω.

∗ 1.b.2 y ∈ Clj ...l1·ω.

• Case 2: x ∈ Clj+1...l1·ω and x ∈ Clj ...l1·ω.

– 2.a To prove part(a) of the proposition holds, consider any node y, y ∈
Clj+1...l1·ω, y 6= x and y ∈ W :

∗ 2.a.1 y 6∈ Clj ...l1·ω.

∗ 2.a.2 y ∈ Clj ...l1·ω.
– 2.b To prove part(b) of the proposition holds, consider any node y, y ∈

Cl·lj ...l1·ω, where l 6= li and Cl·lj ...l1·ω 6= ∅:
∗ 2.b.1 y 6∈ Clj ...l1·ω.

∗ 2.b.2 y ∈ Clj ...l1·ω.

We will use the following claim in our proof:

169

Claim B.2 Suppose Proposition B.8 holds at j, 1 ≤ j ≤ d−k−1. If x ∈ Clj+1...l1·ω,

y ∈ Cl·lj ...l1·ω, where l ∈ [b], however, x 6∈ Clj ...l1·ω and y 6∈ Clj ...l1·ω, then either

x
j→ y or y

j→ x eventually happens.

Proof of Claim B.2: Observe that the first C-set x belongs to is Clj+1...l1·ω, and

the first C-set y belongs to is Cl·lj ...l1·ω. By Proposition B.5, there exists a node ux,

ux ∈ Clj ...l1·ω, such that ux = A(x). Likewise, there exists a node uy, uy ∈ Clj ...l1·ω,

such that uy = A(y). Figure B.2(a) and (b) illustrate the relationship of the four

nodes, where in Figure B.2(a), l = lj+1, and in Figure B.2(b), l 6= lj+1.

yuu x u x yu
yu

u x

(a) (b)

t

(c)

x y x y x

y

tx
t

t
y

a

Figure B.2: C-sets and message sequences, Case 1.a.1 and Case 1.b.1

Let the time ux sends the positive JWRly to x be tx, and the time uy sends

the positive JWRly to y be ty. Without loss of generality, suppose tx < ty, as shown

in Figure B.2(c). Then at time ty, both ux and uy are already S-nodes (by Fact B.2).

Since it is assumed that the proposition holds at j, by part(a) of the proposition,

by time ty, ux and uy already can reach each other. Hence, by the time y receives

the reply from uy, ux and uy can reach each other. By Proposition B.1, y
j→ ux

eventually happens. Suppose ux receives the notification from y at time ta, clearly,

ta > ty, hence, ta > tx. Then, from ux’s reply, y knows x and will notify x if it has

not done so. Thus, y
j→ x eventually happens. Likewise, if ty < tx, then x

j→ y

eventually happens. Hence, at least one of y
j→ x and x

j→ y eventually happens.

Case 1.a.1. By Proposition B.5, there exists a node ux, ux ∈ Clj ...l1·ω, such that

ux = A(x) and x.att level = j + k. Likewise, there exists a node uy, uy ∈ Clj ...l1·ω,

170

such that uy = A(y) and y.att level = j + k. Let the time ux sends the positive

JWRly to x be tx, and the time uy sends the positive JWRly to y be ty. Without loss

of generality, suppose tx < ty. By Claim B.2, y
j→ x happens. By Proposition B.2,

〈x → y〉d by time tey.

Next, we need to show 〈y → x〉d by time txy. Consider the following cases:

(i) ux ∈ V and uy ∈ V , or ux ∈ W and uy ∈ V . In these two cases,

〈ux → uy〉d by time tx. By Proposition B.1, x
j→ uy happens before tex. Then by

Proposition B.6, 〈y → x〉d.
(ii) ux ∈ V and uy ∈ W . By Proposition B.7, uy

j→ ux happens. Let ta be

the time that ux receives the notification from uy.

x

yu
u
x

y

x

yu
u
x

y

tx

ta

ty ty

ta

tx

ta

ty
tx

(c)(a) (b)

x

yu
u
x

y

Figure B.3: Message sequence chart for Case 1.a.1

(1) Suppose tx < ta, as shown in Figure B.3(a). By Fact B.3, x ∈ Nux(l + k, lj+1)

after time tx. Therefore, when ux replies to uy, x ∈ ux.table. By Facts B.1

and B.2, ta < ty. By Fact B.4, Nuy(l + k, lj+1).size < K before ty. Hence,

Nuy(l+k, lj+1).size < K at time ta and therefore, uy stores x in Nuy(l+k, lj+1)

at time ta. By Proposition B.6, 〈y → x〉d.
(2) Suppose tx > ta, as shown in Figure B.3(b). then first consider the case

that after ux receives the notification from uy, uy ∈ ux.table. Then from

ux’s reply, x knows uy and will notify uy, because |csuf(uy.ID, x.ID)| ≥
l + k = x.att level (see Fact B.5). Hence, x

j→ uy happens. By Proposi-

tion B.6, 〈y → x〉dby txy. Second, consider the case that after ux receives

the notification from uy, uy 6∈ ux.table, then Nux(h, uy [h]).size = K at time

171

ta, h = |csuf(ux.ID, uy.ID)|. Let v = Nux(h, uy[h]).f irst. Then, uy knows

v from ux’s reply Ṡince uy.att level ≤ l − 1 + k and |csuf(v.ID, uy.ID)| >

h ≥ l + k, uy
j→ v eventually happens. Likewise, x knows v from ux’s re-

ply after time tx and x
j→ v eventually happens, since x.att level = l + k

and |csuf(v.ID, uy.ID)| ≥ l + k. Then, by Proposition B.4, by time txuy ,

txuy = max(tex, teuy
), either that x ∈ Nuy(l + k, lj+1) or Nuy(l + k, lj+1) = K.

Nuy(l + k, lj+1) = K is impossible, because Nuy(l + k, lj+1) < K before time

ty, and ty > txuy (we have assumed ty > tx, and ty ≥ teuy
by Fact B.2). Thus,

x ∈ Nuy(l + k, lj+1) at time txuy . By Proposition B.6, 〈y → x〉d by txy.

(iii) ux ∈ W and uy ∈ W . Then, by assuming the proposition holds at j,

either uy
j→ ux or ux

j→ uy happens.

(1) If uy
j→ ux happens and tx < ta, then following the same arguments in part

(1) of the above case (ii) (ux ∈ V and uy ∈ W), 〈y → x〉d by txy.

(2) If uy
j→ ux happens and tx > ta, then following the same arguments in part

(2) of the above case (ii) (ux ∈ V and uy ∈ W), 〈y → x〉d by txy.

(3) If ux
j→ uy happens, let ta be the time ux sends its notification to uy, then by

Facts B.1 and B.2, it must be tx > ta, as shown in Figure B.3(c). At time ta,

ux already knows uy. Then, there are two cases to consider: uy ∈ ux.table or

uy 6∈ ux.table at time tx. Following the same argument as in part (2) of case

(ii), it can be proved that 〈y → x〉d.

Case 1.a.2 First, observe that in this case, y.att level ≤ j+k−1 < |csuf(y.ID, x.ID)|.
Let ux = A(x), then ux ∈ Clj ...l1·ω. Thus both ux and y belong to Clj ...l1·ω, as shown

in Figure B.4(a). If ux ∈ V , then by Proposition B.7, y
j→ ux happens by tey. If

ux ∈ W , by assuming the proposition holds at j, we know that by the time both ux

and y are S-nodes, they can reach each other; moreover, at least one of y
j→ ux and

ux
j→ y happens.

Let t1 be the time ux sends its JWRly to x. Also, let t2 be the time ux

172

receives the notification from y if y
j→ ux happens; otherwise, let t2 be the time ux

sends a notification to y.

ux y

x y

t 2

(b)(a)

x

xu

y

1t

t 3

Figure B.4: Message sequence chart for Case 1.a.2

(i) If t1 < t2, then at t2, x ∈ Nux(k + j, lj+1). Then t2 must be the time that

ux receives the notification from y (by Fact B.2, at time t2 ux is already an

S-node and will not send out notifications), as shown in Figure B.4(b) . Thus

y knows x from ux’s reply that includes ux.table, and will notify x if it has

not done so. Thus, y
j→ x happens by time tey. By Proposition B.2, 〈x → y〉d.

Also, since y
j→ x happens, and |csuf(x.ID, y.ID)| ≥ k + j + 1 > y.att level,

by Corollary B.6, 〈y → x〉d by txy.

(ii) If t1 > t2 and y
j→ ux happens, then it must be that y ∈ Nux(l + k, lj+1)

after time t2. By Fact B.4, Nux(l + k, lj+1).size < K before t1, thus Nux(l +

k, lj+1).size < K before t2. Then, by Proposition B.6, 〈x → y〉d. Moreover,

x
j→ y happens, because x.att level = j + k and |csuf(x.ID, y.ID)| ≤ j + k.

By Proposition B.2, 〈y → x〉d.
(iii) If t1 > t2 and ux

j→ y happens, then following the same argument above in

case (ii), it must be that y ∈ Nux(l + k, lj+1) after time t2, and therefore,

〈x → y〉d and 〈y → x〉d. Moreover, x
j→ y happens.

Case 2.a.1 This case is symmetric to Case 1.a.2.

Case 2.a.2 In this case, both x and y also belong to Clj ...l1·ω. By assuming

Proposition B.8 holds at j, part(a) holds in Case 2.a.2 trivially.

So far, we have proved that part (a) of Proposition B.8 holds. Next, we prove

part (b). As we mentioned before, here we focus on the case where l 6= lj.

173

Case 1.b Consider node y, y ∈ Cl·lj ...l1·ω. If y ∈ V , then by Corollary B.1,

y ∈ Nx(j + k, l) by time te. Hence, in what follows, we only consider the case where

y ∈ Cl·lj ...l1·ω and y ∈ W . (1) If y 6∈ Clj ...l1·ω (Case 1.b.1), then by Claim B.2,

either x
j→ y or y

j→ x eventually happens. In either case, x eventually knows y.

Therefore, either y ∈ Nx(j + k, l) or Nx(j + k, l).size = K at the time x knows y.

(2) If y ∈ Clj ...l1·ω (Case 1.b.2), then by assuming the proposition holds at j, we

have y
j→ ux or ux

j→ y happens if ux ∈ W ; and y
j→ ux happens if ux ∈ V , by

Proposition B.7. Let tx be the time ux sends its positive JWRly to x. Let ta be the

time ux receives the notification from y if y
j→ ux happens; otherwise, let ta be the

time ux sends a notification to y.

• If y
j→ ux happens and tx < ta (then ta is the time ux receives the notification

from y), then y knows x from ux’s reply and y
j→ x happens.

• If y
j→ ux happens and tx > ta, then either y ∈ Nux(j+k, l) or Nux(j+k, l) = K

at time tx, and therefore, either y ∈ Nx(j + k, l) or Nx(j + k, l).size = K after

x receives ux’s reply (JWRly) and copies nodes from ux.table.

• If ux
j→ y happens, then tx > ta. Similar to the above argument, either

y ∈ Nx(j + k, l) or Nx(j + k, l) = K after x receives ux’s reply and copies

nodes from ux.table.

The above analysis shows that for each node y, y ∈ Cl·lj ...l1·ω, either that

after time tx, y ∈ Nx(j + k, l), Nx(j + k, l) = K, or x eventually is notified by y. By

Proposition 4.2, |Cl·lj ...l1·ω| = min(K, |(V ∪W)l·lj ...l1·ω|). Hence, Nx(j + k, l).size =

min(K, |(V ∪W)l·lj ...l1·ω|).
Case 2.b Consider node y, y ∈ Cl·lj ...l1·ω. Again, we only consider the case where

y ∈ W (if y ∈ V , by Corollary B.1, y ∈ Nx(j + k, l) by time te). (i) If y ∈ Clj ...l1·ω,

then both x and y belong to Clj ...l1·ω. By assuming the proposition holds at j,

at least one of x
j→ y or y

j→ x happens. Hence, x eventually knows y. (ii) If

y 6∈ Clj ...l1·ω, then A(y) ∈ Clj ...l1·ω. Let uy = A(y), and ty be the time uy sends

174

its positive JWRly to y. Recall that in this case, both x and uy belong to Clj ...l1·ω.

If uy ∈ W , then by assuming the proposition holds at j, at least one of x
j→ uy

or uy
j→ x happens; if uy ∈ V , then by Proposition B.7, x

j→ uy happens. Let

ta be the time uy sends its notification to x if uy
j→ x happens; otherwise, let ta

be the time uy receives the notification from x. If ta < ty, then by time ta, uy

already knows x. Then by time ty, Nuy(j + k, l).size < K, and thus at time ta,

Nuy(j + k, l).size < K. Hence, uy will store x into Nuy(j + k, l) at time ta. Hence,

at time ty, x ∈ Nuy(j +k, l). Then, from uy’s reply, y knows x and will send a JN to

x (y j→ x), which enables x to know the existence of y. If ta > ty, then at time ta,

y ∈ Nuy(j + k, l). Hence, from uy’reply (or uy’s notification), x knows the existence

of y. So far, we have shown that whether y ∈ Clj ...l1·ω or not, x eventually knows

y. This is true for any y, y ∈ Cl·lj ...l1·ω. By Proposition 4.2 and Corollary B.1,

Nx(j +k, l).size = min(K, |(V ∪W)l·lj ...l1·ω|). Therefore, part (b) of the proposition

holds in Case 2.b.

Corollary B.7 If x ∈ Clj ...l1·ω and Cl·lj−1...l1·ω 6= ∅, l ∈ [b], then for any node y,

y ∈ Cl·lj−1...l1·ω and y 6= x, at least one of the following assertions is true:

1. y
j→ x has happened by time te;

2. By time tex, either y ∈ Nx(j − 1 + k, l) or Nx(j − 1 + k, l).size = K holds.

Proof: Proof of the corollary is implied by the proof of Proposition B.8. If

x ∈ V , then by Proposition B.7, the corollary holds. If x ∈ W and y ∈ V , then by

Corollary B.1, y ∈ Nx(j − 1 + k, l), hence, the corollary also holds. In what follows,

we consider the case where x ∈ W and y ∈ W .

First, suppose j = 1. Consider a node x, x ∈ Cl1·ω, l1 = x[k]. In the proof of

base case in Proposition B.8, we have shown that for any node y, and y ∈ Cl·ω 6= ∅,
l ∈ [b], at least one of y

j→ x or x
j→ y happens eventually. If y

j→ x happens, the

the proposition holds. Otherwise, if only x
j→ y happens, then x knows y before tex.

Hence, either y ∈ Nx(k, l) or Nx(k, l).size = K.

175

Second, suppose 1 < j ≤ d − k. Consider a node x, x ∈ Clj ...l1·ω, there are

following cases:

• x 6∈ Clj−1...l1·ω. Consider any node y, y ∈ Cl·lj−1...l1·ω. First, suppose y 6∈
Clj−1...l1·ω. By Claim B.2, at least one of y

j→ x and x
j→ y happens eventually.

If y
j→ x happens, then the proposition holds. Otherwise, if only x

j→ y

happens, then x knows y before tex. Hence, either y ∈ Nx(j − 1 + k, l) or

Nx(j − 1 + k, l).size = K by tex.

Second, suppose y ∈ Clj−1...l1·ω. By the proof of Case 1.b in proving Propo-

sition B.8, either y
j→ x eventually happens, or that y ∈ Nx(j + k, l) or

Nx(j + k, l) = K after x receives ux’s reply (JWRly) and copies nodes from

ux.table, where ux = A(x).

• x ∈ Clj−1...l1·ω. Again, consider any node y, y ∈ Cl·lj−1...l1·ω. First, suppose

y ∈ Clj−1...l1·ω, then both x and y belong to Clj−1...l1·ω. By part(a) of Propo-

sition B.8, at least one of x
j→ y or y

j→ x happens eventually. Similar to the

argument above, at least one of the following is true:y j→ x, y ∈ Nx(j−1+k, l)

or Nx(j − 1 + k, l).size = K.

Second, suppose y 6∈ Cl·lj−1...l1·ω. By the proof of Case 2.b in proving Propo-

sition B.8, either y
j→ x eventually happens, or that y ∈ Nx(j + k, l) or

Nx(j + k, l) = K after x receives uy’s reply (or notification) and copies nodes

from ux.table, where uy = A(y).

Proposition 4.4 For any C-set, Clj ...l1·ω, 1 ≤ j ≤ d−k, l1,...,lj ∈ [b], the following

assertion holds by time te: For each x, x ∈ Clj ...l1·ω and x ∈ W , Nx(k+j−1, l).size =

min(K, |(V ∪W)l·lj−1...l1·ω|), l ∈ [b].

Proof: By Proposition B.8(b), the proposition holds.

Proposition 4.5 For any x, x ∈ W , suppose Clj ...l1·ω is the first C-set x belongs

to, where lj ...l1 ·ω is a suffix of x.ID, 1 ≤ j ≤ d− k. Then for any i, 0 ≤ i ≤ j and

176

any l, l ∈ [b], Nx(k + i, l).size = min(K, |(V ∪W)l·li...l1·ω|) .

Proof: Consider contact-chain(x,g), where g is the node that x is given to start

its join process. Suppose contact-chain(x,g) is (u0, u1, ...uf , uf+1), where u0 = g,

uf is the node that sends an positive JWRly to x and uf+1 = x. T the lowest level

uf stores x in uf .table (the attach-level of x) is level-j (by Proposition B.5), then

k ≤ j ≤ |csuf(u.ID, x.ID)| (recall k is defined in Assumption 1). Create a new

sequence (g0, ..., gj) as described in the proof of Proposition 4.1, such that g0 = g,

gj = uf , and gi′ .ID shares suffix x[i′ − 1]...x[0] with x.ID, 0 ≤ i′ ≤ j. Then, it is

easy to check that gk ∈ Vω, and gi′+k ∈ Cli′ ...l1·ω, 1 ≤ i′ ≤ j. Thus, gi+k ∈ Cli...l1·ω.

Since gi+k is a node in contact-chain(x,g), either x
c→ gi+k or x

j→ gi+k happens.

No matter which happens, let the time gi+k sends the reply to x be t1.

If |(V ∪W)l·li...l1·ω| < K, then by Proposition 4.2, Cl·li...l1·ω = (V ∪W)l·li...l1·ω,

i.e., for each y, y ∈ Wl·li...l1·ω, y ∈ Cl·li...l1·ω. Next, consider any node y, y ∈
Wl·li...l1·ω. Then, if gi+k ∈ W , by Corollary B.7, at least one of the following is

true: y ∈ Ngi+k
(i − 1 + k, l) by time t1 (t1 > tegi+k

), or that y
j→ gi+k happens

by time tey; if gi+k ∈ V , then y
j→ gi+k eventually happens by Proposition B.7.

(i) If y ∈ Ngi+k
(i − 1 + k, l) by time t1, then x knows y from gi+k’s reply, hence

y ∈ Nx(i−1+k, l) or Nx(i−1+k, l).size after x receives the reply from gi+k. (ii) If

y
j→ gi+k happens, then by Proposition B.4, at least one of the following is true: by

time tex, y ∈ Nx(i− 1+ k, l), or that Nx(i− 1+ k, l).size = K. Since this conclusion

is true for each y, y ∈ Cl·li...l1·ω, plus that Vl·li...l1·ω ⊂ Nx(i− 1 + k, l) by time te (by

Corollary B.1), we conclude that Nx(i − 1 + k, l).size = min(K, |(V ∪W)l·li...l1·ω|)
by time te.

If |(V ∪ W)l·li...l1·ω| ≥ K, then by Proposition 4.2, |Cl·li...l1·ω| ≥ K. Next,

consider any node y, y ∈ Cl·li...l1·ω and y ∈ W . Let the time gi+k receives the

message (either a CP or a JW) from x be t1. Then, by Corollary B.7, at least one of

the following is true: y ∈ Ngi+k
(i−1+k, l) by time t1, or Ngi+k

(i−1+k, l).size = K

177

by time t1, or that y
j→ gi+k happens. (i) If at time t1, Ngi+k

(i− 1 + k, l).size = K,

then Nx(i − 1 + k, l).size = K. (ii) If at time t1, Ngi+k
(i − 1 + k, l).size < K and

y ∈ Ngi+k
(i− 1 + k, l), then y ∈ Nx(i− 1 + k, l) or Nx(i− 1 + k, l).size = K after x

receives the reply from gi+k. (iii) If y
j→ gi+k happens, then by Proposition B.4, by

time tex, either y ∈ Nx(i−1+k, l) or Nx(i−1+k, l).size = K. Therefore, for any y,

y ∈ Cl·li...l1·ω, either that y ∈ Nx(i− 1+ k, l) by time tex, or Nx(i− 1+ k, l).size = K

by time tex. Hence, Nx(i− 1 + k, l).size = K by time te.

Proposition 4.6 For any node x, x ∈ W , if (V ∪W)l·lj ...l1·ω 6= ∅, where lj ...l1 · ω
is a suffix of x.ID, 0 ≤ j ≤ d − k − 1, and l ∈ [b], then Nx(k + j, l).size =

min(K, |(V ∪W)l·lj ...l1·ω|) holds by time te.

Proof: If (V ∪W)l·li...l1·ω = Vl·li...l1·ω, by Corollary B.1, the proposition holds. If

(V ∪ W)l·li...l1·ω ⊃ Vl·li...l1·ω, then consider C-set Clj ...l1·ω. Suppose Clj ...l1·ω is the

first C-set x belongs to, 0 ≤ j ≤ d− k. If j > i, by Proposition 4.5, the proposition

holds. If j ≤ i, then by part(b) of Proposition B.8, the proposition holds.

Proposition 4.7 For each node x, x ∈ V ∪W , Nx(i + k, j).size = min(K, |(V ∪
W)j·x[i−1]...x[0]|) holds by time te, i ∈ [d], j ∈ [b].

Proof: First, pick any node x, x ∈ W .

• If 0 ≤ i < k, then by Corollary B.1, the proposition holds.

• If i = k and |Vj·x[i−1]...x[0]| ≥ K, then again by Corollary B.1, the proposition

holds.

• If i = k, |Vj·x[i−1]...x[0]| < K, however, Wj·x[i−1]...x[0] 6= ∅, or k < i ≤ d−1, then

by Proposition 4.6, the proposition holds.

Second, consider nodes in V . Pick y, y ∈ V .

• If (V ∪ W)j·y[i−1]...y[0] = Vj·y[i−1]...y[0], then given that 〈V,N (V)〉 is a K-

consistent network, Ny(i + k, l).size = min(K, |Vj·y[i−1]...y[0]|) = min(K, |(V ∪
W)j·y[i−1]...y[0]|). The proposition holds.

178

• If Vj·y[i−1]...y[0] ⊂ (V ∪W)j·y[i−1]...y[0], then ω must be a suffix of j ·y[i−1]...y[0],

which can be deduced from Assumption 1 (V Notify
x = Vω for any x, x ∈ W),

thus y ∈ Vω. If ω = j · y[i − 1]...y[0], then Vω = Vj·y[i−1]...y[0], and |Vω| ≥ K

by Assumption 1. Thus Ny(i + k, l).size = K. If ω 6= j · y[i − 1]...y[0], then

ω must be shorter than j · y[i − 1]...y[0]. By part (b) of Proposition B.7,

Ny(i + k, l).size = min(K, |(V ∪W)j·y[i−1]...y[0]|) by time te. The proposition

holds.

Propositions 4.1 to 4.7 are based on the assumption that all joining nodes

belong to the same C-set tree. Next, we consider the case where the joining nodes

belong to different C-set trees.

Proposition 4.8 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 2, join a K-

consistent network 〈V,N (V)〉 concurrently. Let G(Vω1) = {x, x ∈ W,V Notify
x =

Vω1}, G(Vω2) = {y, y ∈ W,V Notify
y = Vω2}, where ω1 6= ω2 and ω2 is a suffix of ω1.

Let k2 = |ω2|. Then by time te, for any x, x ∈ G(Vω1), the following assertion holds:

Nx(k2, l).size = min(K, |(V ∪W)l·ω2|), l ∈ [b].

Proof:

(i) If |Vl·ω2| ≥ K, then Nx(k2, l).size = K by Corollary B.1.

(ii) If |Vl·ω2| < K and Wl·ω2 = ∅ then Nx(k2, l).size = Vl·ω2 by Corollary B.1.

(iii) If |Vl·ω2| < K and Wl·ω2 6= ∅, then it must be that Wl·ω2 = G(Vω2)l·ω2 ,

that is, the set of nodes in W with suffix l · ω2 are the same set of nodes in G(Vω2)

with suffix l · ω2. We prove Wl·ω2 = G(Vω2)l·ω2 by contradiction. Suppose there

exists a node z, z ∈ Wl·ω2, however, z ∈ G(Vω3), i.e., V Notify
z = Vω3, where ω3 6= ω2.

Then, by the definition of V Notify
z , |Vω3 | ≥ K and |Vz[k3]·ω3

| < K, where k3 = |ω3|.
Since |Vl·ω2| < K, and both l · ω2 and ω3 are suffixes of z.ID, then ω3 must be a

suffix of ω2 (if l · ω2 is a suffix of ω3, then Vl·ω2 ⊇ Vω3, and thus |Vl·ω2| ≥ |Vω3 | ≥ K,

which contradicts with |Vl·ω2| ≤ |Vω2 | < K). And since ω2 6= ω3, |ω2| > |ω3|.
Hence, z[k3] · ω3 is a suffix of ω2 since both of them are suffixes of z.ID. Thus,

179

Vz[k3]·ω3
⊇ Vω2 , thus |Vz[k3]·ω3

| ≥ |Vω2 | ≥ K, which contradicts with |Vz[k3]·ω3
| < K

(by assuming V Notify
z = Vω3).

For any x, x ∈ G(Vω1), consider contain-chain(x,g), where g is the node x

is given to start joining, and create a sequence of nodes g0, g1, ..., gh following the

same way as discussed in the proof of Proposition 4.1, where g0 = g, gh = A(u), and

gi shares one more digit with x than gi−1, 1 ≤ i ≤ h. Clearly, k2 < k1 ≤ h. Then,

gk2 has suffix ω2 and thus gk2 ∈ Vω2. Also, x
c→ gk2 or x

j→ gk2 happens.

Next, we show that there exists a node in G(Vω2) such that it eventually

notifies gk2 . Consider any node v, v ∈ Cl·ω2 and v ∈ W (by Proposition 4.2 , such a

node must exist). By Proposition B.5, there exists a node uv, such that uv = A(x)

and uv ∈ Vω2. Hence, v
j→ uv happens. By Proposition B.1, v

j→ u eventually

happens for each u, u ∈ Vω2 (by the time uv replies to v, 〈uv → u〉d already holds

since the initial network is consistent). Since gk2 ∈ Vω2 , we know v
j→ gk2 eventually

happens.

Then, by Proposition B.4, by time te, either v ∈ Nx(k2, l) or Nx(k2, l).size =

K is true. This conclusion is true for each v, v ∈ Cl·ω2 and v ∈ W . That is,

Nx(k2, l).size = min(K, |Cl·ω2 |). By Proposition 4.2, min(K, |Cl·ω2) = |min(K, |(V ∪
W)l·ω2|. Therefore, by time te, Nx(k2, l).size = min(K, |(V ∪W)l·ω2|).

With the above propositions, we now can prove Lemma 4.4.

Proof of Lemma 4.4: First, separate nodes in W into groups {G(Vωi), 1 ≤ i ≤ h},
where ωi 6= ωj if i 6= j, such that for any node x in W , x ∈ G(Vωi) if and only if

V Notify
x = Vωi , 1 ≤ i ≤ h. Let Ω = {ωi, 1 ≤ i ≤ h}. Then at time te,

• Consider a node x, x ∈ V . If |Vj·x[i−1]...x[0]| ≥ K, then Nx(i, j).size = K since

initially 〈V,N (V)〉 is K-consistent. If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] =

∅, then Nx(i, j).size = |Vj·x[i−1]...x[0]| = |(V ∪W)j·x[i−1]...x[0]|.

If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] 6= ∅, then j ·x[i−1]...x[0] 6∈ Ω, because

we know that for any ω, ω ∈ Ω, |Vω| ≥ K by Definition 3.7. Also, we know

180

that there must exist a ωl, ωl ∈ Ω, such that ωl is a suffix of j · x[i− 1]...x[0],

since W = ∪h
l=1G(Vωl

) and any node in G(Vωl
) has suffix ωl, ωl ∈ Ω.

Claim B.3 Suppose |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] 6= ∅. Also suppose

there exists a ωl, such that ωl ∈ Ω, ωl is a suffix of j · x[i − 1]...x[0], and

|ωl| ≥ |ωh| for any ωh, ωh ∈ Ω and ωh is a suffix of j · x[i − 1]...x[0]. Then,

Wj·x[i−1]...x[0] = G(Vωl
)j·x[i−1]...x[0].

Proof of Claim B.3: Clearly, G(Vωl
)j·x[i−1]...x[0] ⊆ Wj·x[i−1]...x[0]. We only

need to show Wj·x[i−1]...x[0] ⊆ G(Vωl
)j·x[i−1]...x[0]. In other words, we need

to show that for any node y, y ∈ Wj·x[i−1]...x[0], V Notify
y = Vωl

(thus y ∈
G(Vωl

)j·x[i−1]...x[0]).

For any node y, y ∈ Wj·x[i−1]...x[0], j · x[i − 1]...x[0] is a suffix of y.ID. Since

ωl is a suffix of j · x[i− 1]...x[0] and ωl 6= j · x[i− 1]...x[0], ωl is also a suffix of

y.ID. By the definition of G(Vωl
), we know that |Vωl

| ≥ K. In order to prove

V Notify
y = Vωl

, we need to show that |Vy[kl]·ωl
| < K, where kl = |ωl|. We prove

it by contradiction. Assume |Vy[kl]·ωl
| ≥ K, then V Notify

y = Vωy , where y[kl] ·ωl

is a suffix of ωy. Hence, ωl is a suffix of ωy and ωl 6= ωy. Since y ∈ W , ωy ∈ Ω.

On the other hand, ωy must be a suffix of j · x[i − 1]...x[0], since it is given

|Vj·x[i−1]...x[0]| < K. However, ωl is picked in such a way that for any ωh, such

that ωh ∈ Ω and ωh is also a suffix of j · x[i− 1]...x[0], |ωl| ≥ |ωh|. Therefore,

ωy must be a suffix of ωl, which contradicts with the above conclusion: ωl is

a suffix of ωy and ωl 6= ωy.

By part (b) of Proposition B.7 Nx(i, j).size = min(K, |(V ∪G(Vωl
))j·x[i−1]...x[0]|).

Then, by Claim B.3, Nx(i, j).size = min(K, |(V ∪W)j·x[i−1]...x[0]|) by time te.

• Consider a node x, x ∈ W . Then there exists a f , 1 ≤ f ≤ h, such that

x ∈ G(Vωf
). (i) If |Vj·x[i−1]...x[0]| ≥ K, then Nx(i, j).size = K by Corol-

lary B.1. (ii) If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] = ∅, then Nx(i, j).size =

181

|Vj·x[i−1]...x[0]| = |(V ∪W)j·x[i−1]...x[0]|, again, by Corollary B.1.

(iii) If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] 6= ∅, then j · x[i − 1]...x[0] 6∈ Ω.

Since both ωf and x[i−1]...x[0] are suffixes of x.ID, we next consider two cases:

ωf is a suffix of x[i − 1]...x[0] or vice versa. If ωf is a suffix of x[i − 1]...x[0],

then for any node y, y ∈ Wj·x[i−1]...x[0], y ∈ G(Vωf
) (that is, x and y are

in the same C-set tree). By Proposition 4.6, Nx(i, j).size = min(K, |(V ∪
G(Vωf

))j·x[i−1]...x[0]|), thus Nx(i, j).size = min(K, |(V ∪W)j·x[i−1]...x[0]|).

If x[i − 1]...x[0] is a suffix of ωf , then there must exist a ωl, ωl ∈ Ω and

ωl 6= ωf , such that ωl is the longest suffix of j · x[i − 1]...x[0] among Ω.

Then, by Claim B.3, for any node y, y ∈ Wj·x[i−1]...x[0], y ∈ G(Vωl
) (x

and y are in different C-set trees). Note that since |Vj·x[i−1]...x[0]| < K and

|Vωl
| ≥ K, it is impossible that j · x[i − 1]...x[0] = ωl. Hence, ωl is a suffix

of x[i − 1]...x[0], which is a suffix ωf . Therefore, ωl is a suffix of ωf , then

by Proposition 4.8, Nx(i, j).size = min(K, |(V ∪ G(Vωl
))j·x[i−1]...x[0]|), thus

Nx(i, j).size = min(K, |(V ∪W)j·x[i−1]...x[0]|).

Lemma 4.5 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 2, join a K-consistent

network 〈V,N (V)〉 concurrently. Then at time te, 〈V ∪ W,N (V ∪ W)〉 is a K-

consistent network.

Proof of Lemma 4.5: First, separate nodes in W into groups, such that joins

of nodes in the same group are dependent and joins of nodes in different groups are

mutually independent, as follows (initially, let i = 1 and G1 = ∅):

1. Pick any node x, x ∈ W− ⋃i−1
j=1 Gj , and put x in Gi.

2. For each node y, y ∈ W− ⋃i
j=1 Gj ,

(a) if there exists a node z, z ∈ Gi, such that (V Notify
y ∩ V Notify

z 6= ∅), then

put y in Gi; or

182

(b) if there exists a node z, z ∈ Gi, and a node u, u ∈ Gi, such that the

following holds: (V Notify
y ⊂ V Notify

u) ∧ (V Notify
z ⊂ V Notify

u)), then put y in

Gi; or

(c) if there exists a node z, z ∈ Gi, and a node u, u ∈ W − ⋃i
j=1 Gj , such

that the following holds: (V Notify
y ⊂ V Notify

u) ∧ (V Notify
z ⊂ V Notify

u)), then

put both y and u in Gi.

3. Increment i and repeat steps 1 to 3 until
⋃i

j=1 Gj = W .1

Then, we get groups {Gi, 1 ≤ i ≤ l}. Moreover, for any node x, x ∈ Gi, and any node

y, y ∈ Gj , where 1 ≤ i ≤ l, 1 ≤ j ≤ l, and i 6= j, it holds that V Notify
x ∩ V Notify

y = ∅.
Otherwise, if V Notify

x ∩ V Notify
y 6= ∅, suppose i < j, then according the step 2 above,

y would be included in Gi rather than in Gj . Hence, for any two nodes that are in

different groups, their joins are independent. Similarly, it can be checked that for

any two nodes in a group, their joins are dependent.

Then, for any suffix ω, if (Gi)ω 6= ∅ and |Vω| < K, 1 ≤ i ≤ l, then by

Corollary B.3, (V ∪W)ω = (V ∪Gi)ω.

Consider any node x. If |Vj·x[i−1]...x[0]| ≥ K, then Nx(i, j).size = K since

initially 〈V,N (V)〉 is K-consistent. If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] = ∅,
then Nx(i, j).size = |Vj·x[i−1]...x[0]| = |(V ∪W)j·x[i−1]...x[0]|.

If |Vj·x[i−1]...x[0]| < K and Wj·x[i−1]...x[0] 6= ∅, then |(V ∪ W)j·x[i−1]...x[0]| =

|(V ∪ Gf)j·x[i−1]...x[0]|, where (Gf)j·x[i−1]...x[0] 6= ∅. By Lemma 4.4, Nx(i, j).size =

min(K, |(V ∪Gf)j·x[i−1]...x[0]|), hence, Nx(i, j).size = min(K, |(V ∪W)j·x[i−1]...x[0]|).

1For example, suppose V = {72430, 10353, 62332, 13141, 31701} and W = {23241, 00701, 47051,
47320}. First, let G1 = {23241}. Nodes in W − G1 are then checked one by one. Let y be the
node that is being checked. (i) G1 = {23241}, y = 00701. Then there exists a node x, x = 23241
(x ∈ G1), and a node u, u = 47051 (u ∈ W), such that V Notify

y ∈ V Notify
u and V Notify

x ∈ V Notify
u

(V Notify
y = V01, V Notify

x = V41, V Notify
u = V1). Hence, 00701 is included in G1. (ii) G1 = {23241,

00701}, y = 47051. Then there exists a node x, x = 23241 (x ∈ G1), such that V Notify
y ∩V Notify

x 6= ∅.
47051 is also included in G1. (iii) G1 = {23241, 00701, 47051}, y = 47230. Neither of the condition
mentioned above is satisfied. Thus, y is not included in G1. (iv) Put 47230 in G2, and there is no
more node left. Eventually, nodes in W are separated into two groups, G1 and G2.

183

Appendix C

Proofs of Theorems 4 to 6

The messages exchanged during a node’s join can be categorized into the following

sets:

1. CP and CPRly,

2. JW and JWRly,

3. JN and JNRly,

4. SN and SNRly,

5. InSysNotiMsg,

6. RN and RNRly

where messages in sets 1, 2 and 3 could be big in size, since they may include a

copy of a neighbor table, while messages in sets 4, 5 and 6 are small in size. In

Section 4.2.2, we have presented the number (or expected number) for messages in

sets 1, 2 and 3 sent in a node’s join process. In this section, we present proofs of

Theorems 4, 5 and 6, and analyses of numbers of messages in sets 4, 5 and 6.1

Recall that we have defined two functions, Qi(r) and Pi(r), in Section 4.2.2.

1The messages in sets 5 and 6 can be piggy-backed by probing messages to further save commu-
nication costs.

184

Lemma C.1 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉. For any node x, x ∈ W , suppose V Notify
x = Vω. Let Y = |ω|.

Then the probability that Y equals i given |V | = n , i ∈ [b], is Pi(n), where Pi(n) is

as defined in Definition 4.2.

Proof: First, let Pi(n) denote the the probability that Y equals i, i ∈ [b], given

|V | = n. We next prove that Pi(n) is as defined in Definition 4.2.

If Y = i, it indicates that |Vω| ≥ K and |Vx[i]·ω| < K. Thus, Pi(n) =

P (|Vω| ≥ K ∧ |Vx[i]·ω| < K), i.e., Pi(n) = P (|Vx[i−1]...x[0]| ≥ K ∧ |Vx[i]...x[0]| < K).

Next, we compute Pi(n), for 0 ≤ i ≤ d − 1. In general, IDs of nodes in V

are drawn from bd− 1 possible values. That is, for any y, y ∈ V , y.ID could be any

value from 0 to bd − 1 except x.ID.

If i = 0, then |Vx[0]| < K, i.e., there is less than K nodes in V with suffix

x[0]. Suppose there are h nodes in V with suffix x[0], 0 ≤ h < K. Then, IDs of

these h nodes are drawn from bd−1 − 1 possible values (all possible IDs with suffix

x[0] except x.ID); while IDs of the other n − h nodes are drawn from bd − bd−1

values, n = |V |. Therefore,

P0(n) =
∑K−1

j=0 C(bd−1 − 1, j)C(bd − bd−1, n− j)
C(bd − 1, n)

If 1 ≤ i < d − 1, then |Vx[i−1]...x[0] ≥ K| and |Vx[i]...x[0]| < K. That is, there

are only h nodes in V with suffix x[i]...x[0], where 0 ≤ h < K, however, there are

H nodes in V with suffix x[i − 1]...x[0], K ≤ H ≤ n. Then, IDs of the h nodes

with suffix x[i]...x[0] are drawn from bd−i−1 − 1 possible values (any ID with suffix

x[i]...x[0] except x.ID), H−h IDs are drawn from (b−1)bd−i−1 possible values (any

ID that has suffix x[i−1]...x[0] but does not have suffix x[i]...x[0]), and n−H IDs are

drawn from bd−bd−i possible values (any ID that does not have suffix x[i−1]...x[0]).

Let B = (b− 1)bd−i−1. Hence, for 1 ≤ i < d− 1, Pi(n) is
∑K−1

j=0 C(bd−1−i − 1, j)
∑min(n,B)

k=K−j C(B, k)C(bd − bd−i, n− k − j)
C(bd − 1, n)

185

Finally, for i = d− 1, since each ID is unique, x.ID is different than the ID

of any node in V . Therefore, |Vx[d−1]...x[0]| = 0, and thus |Vx[d−1]...x[0]| < K is always

true for K ≥ 1.

Pd−1(n) = P (|Vx[d−1]...x[0]| < K ∧ |Vx[d−2]...x[0]| ≥ K)

= P (|Vx[d−2]...x[0]| ≥ K)

= 1− P (|Vx[d−2]...x[0]| < K)

= 1− P (|Vx[0]| < K

∨(|Vx[0]| ≥ K ∧ |Vx[1]x[0]| < K) ∨ ...

∨(|Vx[d−3]...x[0]| ≥ K ∧ |Vx[d−2]...x[0]| < K))

= 1−
d−2∑

i=0

Pi(n)

Therefore, Pi(n) is as defined in Definition 4.2, i ∈ [b].

Theorem 4 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉, |V | = n. Then, for any x, x ∈ W , an upper bound of the

expected number of CpRstMsg and JoinWaitMsg sent by x is
∑d−1

i=0 (i+2)Pi(n+m−
1).

Proof: In status copying, x sends CP to nodes g0, g1,..., until x receives a CPRly

from node gi, such that x finds that there exists an attach-level for itself in gi.table.

Note that gi′ shares at least one more digit with x than gi′−1, for all 1 ≤ i′ ≤ i.

Then, x sends JW to gi, gi+1, ..., until x receives a positive JWRly from node gh.

Again, gi′ shares at least one more digit with x than gi′−1 for all i + 1 ≤ i′ ≤ h.

Hence, the number of CP x has sent is i + 1, and the number of JW x has sent is

h− i + 1. The total number of CP and JW x has sent is h + 2.

Let (V ∪W ′)Notify
x = Vω, where W ′ = W − {x}. Assume |ω| = j. Then, in

the worst case, x sends CP to nodes {g0, g1, ..., gi}, where gi′ shares exactly i′ digits

186

with x for all 1 ≤ i′ ≤ i (that is, gi′ only shares one more digit with x than gi′−1).

Then, x sends CP to nodes {gi, gi+1, ..., gj}, where gi′ shares i′ digits with x for all

i + 1 ≤ i′ ≤ h. Since (V ∪W ′)Notify
x = Vω and |ω| = j, when x sends a JW to gj ,

which is a node that shares j digits with it, there must exist an attch-level in the

table of gj for x. According to the above analysis, the total number of CP and JW

x has sent is j + 2, assuming |ω| = j.

Let Y = |ω|. Similarly to the proof of Lemma C.1, it can be shown that the

probability that Y equals j is Pj(n + m− 1) (|V ∪W ′| = n + m− 1). Let Z be the

total number of CP and JW x has sent. Therefore, we have

E(Z) = E(E(Z|Y))

=
d−1∑

i=0

(E(Z|Y = i))Pi(n + m− 1)

=
d−1∑

i=0

(i + 2)Pi(n + m− 1)

Theorem 5 Suppose node x joins a K-consistent network 〈V,N (V)〉, |V | = n.

Then, the expected number of JoinNotiMsg sent by x is
∑d−1

i=0 Qi(n−K)Pi(n)− 1.

Proof: Suppose V Notify
x = Vω. Then x needs to notify all the nodes in Vω. By

Proposition B.5, there exists a node ux, ux = A(x). Then, x sends a JW to ux,

however, x sends JN to any other node in Vω (by Proposition B.1, for any node in

Vω other than ux, x will send a JN). Hence, the number of JN x sends is |Vω| − 1.

Let Y = |ω| and Z = |Vω|. By Lemma C.1, the probability that Y equals i is Pi(n),

given |V | = n .

E(Z) = E(E(Z|Y)) =
d−1∑

i=0

(E(Z|Y = i))Pi(n) (C.1)

We next derive E(Z|Y = i)). Y = i indicates that Vω = Vx[i−1]...x[0]. Since

V Notify
x = Vω, we know |Vω| ≥ K, that is, |Vx[i−1]...x[0]| ≥ K. Therefore, among the

187

nodes in V , at least K of them have suffix x[i − 1]...x[0] in their IDs. Let X be

the expected number of nodes with suffix x[i− 1]...x[0] among the remaining n−K

nodes in V . Thus, E(Z|Y = i) = K + E(X). Suppose there are j nodes among the

n − K nodes that have suffix x[i − 1]...x[0]. Then j could be any value from 0 to

min(n−K, bd−i−K−1). IDs of these j nodes are drawn from bd−i−K−1 possible

values (there all bd−i all possible IDs with suffix x[i − 1]...x[0], and K of them are

already assigned to K nodes in V , and one is assigned to x). IDs of the remaining

n−K − j nodes are drawn from bd − bd−i possible values. Hence, E(X) is

∑min(n−K,bd−i−K−1)
j=0 C(bd−i −K − 1, j)C(bd − bd−i, n−K − j)

C(bd −K − 1, n−K)

That is, E(Z|Y = i) = Qi(n−K).2 Plug E(Z|Y = i) into Equation C.1, we

get E(Z). The expected number of JN x sends during its join is E(Z)− 1.

Theorem 6 Suppose a set of nodes, W = {x1,...,xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉, |V | = n. Then for any node x, x ∈ W , an upper bound of the

expected number of JoinNotiMsg sent by x is
∑d−1

i=0 Qi(n + m− 1−K)Pi(n).

Proof: Consider any node x, x ∈ W . Let J be the number of JN sent by x when

it joins with other nodes concurrently. Suppose V Notify
x = Vω. Let Y = |ω|. By

Lemma C.1, the probability that Y equals i, i ∈ [d], is Pi(n), given |V | = n. No

matter how many nodes join concurrently with x, x.att level ≥ Y . Moreover, x

only sends JN to a subset of nodes whose IDs have suffix x[k − 1]...x[0], excluding

node x itself, where k = x.att level . These nodes are a subset of nodes with suffix

ω. Let Z = |(V ∪W)ω − {x}|. Hence, J < Z, which is true for every joining node.

2If bd � n − K, then E(X) ' (n−K)

bi . That is, the ID space can be consider as bi bins, with

x[i− 1]...x[0] being one of them. Each bin has a capacity limitation of bd − bd−i. Assigning n−K
IDs randomly can be considered as throwing n−K balls into the bins randomly. Thus, the expected
number of balls falling into bin x[i − 1]...x[0] is (n−K)

bi , if none of the bins were overflowed in the

process.

188

Therefore, E(J) < E(Z). To compute E(Z), we have

E(Z) = E(E(Z|Y)) =
d−1∑

i=0

(E(Z|Y = i))Pi(n)

Since V Notify
x = Vω, we know |Vω| ≥ K, that is, |Vx[i−1]...x[0]| ≥ K. Therefore,

among the nodes in V , at least K of them have suffix x[i − 1]...x[0] in their IDs.

Let X be the expected number of nodes with suffix x[i − 1]...x[0] in the remaining

n −K nodes in V , plus the expected number of nodes with suffix x[i − 1]...x[0] in

W − {x}. That is, X is the expected number of nodes with suffix x[i − 1]...x[0]

among n−K + m− 1 nodes. Similar to the proof of Theorem 5, we have E(Z|Y =

i) = K + E(X) = Qi(n + m− 1−K). Plug E(Z|Y = i) to the above equation, we

get E(Z), which is an upper bound of E(J), the expected number of JN sent by a

joining node.

Next, we present an upper bound of the expected number of messages in

set 4, SN and SNRly. We say that an SN is initialized by x, if it is in the form of

SN(x, y), where y could be any node other than x. Such a message is initially sent

out by x to inform the receiver about the existence of y. It may be forwarded a

few times before a reply is sent back to x. For example, x may send a SN(x, y) to

u1, u1 forwards the same message to u2, and u2 sends a reply to x without further

forwarding the message. In this example, there are 2 SN(x, y) and one SNRly(x, y)

transmitted in the network.3

Corollary C.1 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 2, join a consistent

network 〈V,N (V)〉. Then for any node x, x ∈ W , an upper bound of the expected

number of messages in the form of SN(x, y) or SNRly(x, y) sent during [tbx, tex] is

K − 1 +
∑d−1

i=0 (m
bi+1 + K − 1)(d − i− 1)Pi(n), where n = |V |.

Proof: Consider any node x, x ∈ W . Suppose V Notify
x = Vω, |ω| = i, and

j = x.att level , then j ≥ i. Let D = {y, SN(x, y) is sent out by x during [tbx, tex]}.
3We observe from simulations that it is rarely the case that a node sends out an SN.

189

(Recall that tbx is the time x starts joining, and tex is the time x becomes an S-

node, as defined in Table 3.1.) Then, for a particular y, y ∈ D, SN(x, y) is only

sent out by x once. Any y, y ∈ D, must share suffix x[j]...x[0] with x. Thus,

D < |(V ∪W)x[j]...x[0]| ≤ |(V ∪W)x[i]...x[0]|.
Let Y = |ω|. Then |ω| = i indicates Y = i. Let S be the total number

of SN(x, y) or SNRly(x, y) sent during the join process of x, y 6= x. Let Z =

|(V ∪W)x[i]...x[0]|. Then the number of message in the form of SN(x, y) initiated by

x is at most Z − 1 (x will not send out SN(x, x)). Since |Vx[i]...x[0]| < K, we know

Z ≤ (K − 1) + |Wx[i]...x[0]|. For each SN sent out by x, it can be forwarded at most

d−i−2 times (which includes the first time that it is sent out by x). This is because

for each y, y ∈ D, that the first receiver of the message shares at least i + 2 digits

with y (both IDs of y and the first receiver must have suffix y[i + 1]...y[0]), the last

receiver of the message shares at most d−1 digits with y, and each receiver along the

path shares at least one more digit with y than the previous receiver does. Lastly,

for each SN(x, y) sent out by x, there is one corresponding reply, SNRly(x, y), from

the last receiver of the SN(x, y).

Let X = |Wx[i]...x[0]|, the expect number of nodes in W whose IDs have suffix

x[i − 1]...x[0]. We have X = m
bi+1 . Hence, E(X|Y = i) = m

bi+1 (d − i − 2 + 1).

Summarize the results, we get

E(S) =
d−1∑

i=0

(E(D|Y = i))Pi(n)

<
d−1∑

i=0

(E(Z|Y = i))Pi(n)

≤
d−1∑

i=0

(E((K − 1 + X)|Y = i))Pi(n)

=
d−1∑

i=0

(K − 1 +
m

bi+1
)(d− i− 2)Pi(n)

190

To get the expected number of messages in set 5, InSysNotiMsg, suppose

V Notify
x = Vω. Then according to the join protocol, only a node with suffix ω may

fill x into its neighbor table. (If a node’s ID does not share any digits with ω, then

clearly it will not choose x as a neighbor; if a node, y, shares a suffix ω′ with x,

|ω′| < |ω|, then Ny(k′, x[k′]).size = K before x joins, thus x is not stored in y’s

table, either.) Let R denote the number of reverse-neighbors of x. At the end of

its join, to each reverse-neighbor, x needs to send a InSysNotiMsg. Hence, the total

number of messages in set 5 is R. Since the ID of a reverse-neighbor of x has suffix

ω, the number of nodes in V ∪W with suffix ω is an upper-bound of R. As defined

in Theorem 6, this upper-bound is
∑d−1

i=0 Qi(n + m− 1−K)Pi(n).

The number of messages in the last set, set 6, is O(db), because x needs to

inform each neighbor that x becomes a reverse-neighbor of it, by sending a RN.

Some RN may be replied (when the status of the receiver kept by x is not consistent

with the status of the receiver). Actually, some RN can be piggy-backed with some

other messages, such as JWRly and JNRly. Hence, the number of messages in set 6

that is sent by a joining node is at most 2db.

191

Appendix D

Proofs of Theorems 7 to 9

In this chapter, we present proofs for Theorems 7 to 9. Recall that we made the

following assumptions in designing the join protocol: (i) The initial network is a

K-consistent network, (ii) each joining node, by some means, knows a node in the

initial network initially, (iii) messages between nodes are delivered reliably, and (iv)

there is no node deletion (leave or failure) during the joins. We also assume that

the actions specified by Figures 4.3 to 4.7 are atomic.

Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 1, join a K-consistent network

〈V,N (V)〉. Again, we use the message abbreviations described in Table B.1 and the

notation defined in Table B.2. Table D.1 defines some additional notation to be

used in the proofs in this appendix. Unless explicitly stated, in what follows, when

we mention time t, we mean a time that is in [tb, te], i.e., tb ≤ t ≤ te. Moreover, by

“x waits for y,” we mean that y is included in the queue Qcset wait at node x by

the time x enters status cset waiting, thus, when x is in status cset waiting, x will

send an SC to y and wait for an SC back from y.

Proof of Theorem 7: The proof of Theorem 2 shows that a joining node even-

tually exits status notifying to enter status in system and become an S-node. In

the extended join protocol, a new status, cset waiting, is inserted between notifying

192

Notation Definition

d(x, y) d− |csuf(x.ID, y.ID)|
tc
x the time x changes status to cset waiting

Table D.1: Additional notation

and in system, and a new message, SameCsetMsg, is introduced. However, a node’s

actions in status cset waiting and its actions on sending and receiving SameCsetMsg

do not affect its own actions in any status preceding cset waiting. Moreover, its ac-

tions in status cset waiting and on sending and receiving SameCsetMsg do not affect

any other joining node. Therefore, the same arguments in the proof of Theorem 2

apply and we conclude that a joining node eventually exits status notifying.

We need to show that once a joining node is in status cset waiting, it even-

tually leaves this status and becomes an S-node. Let the time x enters status

cset waiting be t1. To exits status cset waiting, x needs to receives a SameCsetMsg

from each node that is included in Qcset wait at t1.

By the protocol, for each node included in Qcset wait at time t1, x sends a

SameCsetMsg(T). Consider node y, y ∈ Qcset wait . Also, let the time y receives the

SameCsetMsg(T) from x be t2.

• If y is also included in Qcset recv at time t1, then y must have sent a SameC-

setMsg to x before.

• If y is not included in Qcset recv at time t1, and y is already an S-node at time

t2, then y sends back a SameCsetMsg to x immediately. (It is not possible

that y has sent a SameCsetMsg to x before. Otherwise, y would be waiting

for a SameCsetMsg from x and y could not become an S-node before t2.)

• If y is not included in Qcset recv at time t1, and y is in status cset waiting at

time t2, it sends a SameCsetMsg to x immediately if it has not send such a

message to x before.

• If y is not included in Qcset recv at time t1, and y is in status waiting or

notifying (y could not be in status copying at this time, since y would not be

193

stored by any other node before it enters status waiting), then y saves x in

Qcset recv to reply later when y exits notifying and enters cset waiting. As we

have shown, y eventually will enter cset waiting. Therefore, y eventually will

send a SameCsetMsg to x.

Therefore, x eventually receives a message of SameCsetMsg from each node

that is included in Qcset wait at t1. x then changes status to in system and becomes

an S-node.

To prove Theorem 8, we first present and prove a few lemmas. We also need

to utilize some lemmas and propositions proved in Appendix B. Note that when we

used tex in Appendix B, we meant the time at which node x exits status notifying

(and enters in system), which corresponds to tcx in this chapter. Moreover, we use

〈x → y〉d(x,y) to denote that x can reach y within d(x, y) hops, where d(x, y) =

d − |csuf(x.ID, y.ID)|. For example, if x.ID is 41633 and y.ID is 30633. Then

d(x, y) = 2. To send a message to y, x first forwards the message to a node with

suffix 1633, which then forwards the message to 41633. (It could also be possible

that 30633 is stored in the neighbor table of 41633 and thus it only takes one hop

for 41633 to send a message to 30633.) If a network is consistent, then for any pair

x and y, 〈x → y〉d(x,y) is true.

Our proofs are based on C-set trees. To prove that any node in S(t) can

reach any other node in S(t), we consider the C-set tree realized at time t, defined

as follows. (Recall that S(t) denotes the set of S-nodes at time t.) We are also going

to use Facts D.1 and D.2 stated below.

Definition D.1 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 1, join a K-

consistent network 〈V,N (V)〉, and for any node x, x ∈ W , V Notify
x = Vω, |ω| = k.

Then the C-set tree realized at time t, denoted as cset(V,W,K, t), is defined as

follows:

• Vω is the root of the tree.

194

• Let Cl1·ω = {x, x ∈ (V ∪W)l1·ω ∧ (∃u, u ∈ Vω∧ (x ∈ Nu(k, l1) at time t))},
where l1 ∈ [b]. Then Cl1·ω is a child of Vω, if Cl1·ω 6= ∅ and Wl1·ω 6= ∅.

• Let Clj ...l1·ω = {x, x ∈ (V ∪W)lj ...l1·ω ∧ (∃u, u ∈ Clj−1...l1·ω ∧ (x ∈ Nu(k + j −
1, lj) at time t))}, where 2 ≤ j ≤ d − k and l1,...,lj ∈ [b]. Then Clj ...l1·ω is a

child of Clj−1...l1·ω, if Clj ...l1·ω 6= ∅ and Wlj ...l1·ω 6= ∅.

Fact D.1 If u = A(x), where u and x are two nodes, then x ∈ Nu(h, x[h]) by time

tex, where h = |cset(x.ID, u.ID)|.

Fact D.2 For any two nodes x and y, if at time t, y ∈ Nx(h, y[h]), where h =

|cset(x.ID, y.ID)|, then 〈x → y〉d(x,y) at time t.

Lemma D.1 For nodes x, y, and z, if y ∈ Nx(h, y[h]) and 〈y → z〉d(y,z), where

h = |csuf(x.ID, y.ID), then 〈x → z〉d(x,z).

Proof: Given 〈y → z〉d(y,z), we know that there exists a path (ul, ul+1, ..., ul+k),

where l = |csuf(y.ID, z.ID) and 1 ≤ k ≤ d− l, such that ul = y, ul+i = Nul+i−1
(l+

i, z[l + i]) for 1 ≤ i ≤ k − 1, and ul+k = z. Hence, (x, ul, ul+1, ..., ul+k) is a path

from x to z, since u1 = y and y ∈ Nx(h, y[h]).

Lemma D.2 For each C-set, Cω ∈ cset(V,W,K, t), if |Cω| ≥ 2, then for any pair of

node x and y, x ∈ Cω and y ∈ Cω, one of the followings is true by time max(tcx, tcy).

• x
jn→ y has happened and when x sends the JN to y, x.state(y) = S (i.e., y is

already an S-node).

• x
jn→ y has happened, and x waits for y.

• y
jn→ x has happened and when y sends the JN to x, y.state(x) = S (x is

already an S-node).

• y
jn→ x has happened, and y waits for x.

Moreover, by time max(tcx, tcy), 〈x → y〉d(x,y) and 〈y → x〉d(x,y) both hold.

195

Proof: By Proposition B.8, by the time both x and y have exited status notifying,

i.e., by time max(tcx, tcy), 〈x → y〉d(x,y) and 〈y → x〉d(x,y) both hold.1

Also by Proposition B.8, either x
jn→ y or y

jn→ x has happened by time

max(tcx, tcy). Suppose x
jn→ y happens. Then x sends a JN to y because x finds y

from a copy of the neighbor table some node, say u. If in the copy, the state of y is

recorded as S, then x does not need to wait for y since y is already an S-node. If the

state of y is recorded as T , then x puts y into Qcset wait and waits for y. When y

receives the SC from x at a time later than tcy, it sends back a SC to x immediately

if it hasn’t done so before; if y is still in status notifying, it saves x to reply later

when it changes status to cset waiting.

Lemma D.3 Suppose a set of nodes, W = {x1, ..., xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉. For any two nodes x and y, x ∈ W and y ∈ V ∪W , if x
j→ y

happens, then by time tcx, 〈y → x〉d(x,y), and by time tex, any node in the path from

y to x is either in status cset-waiting or in in system.

Proof: By Proposition B.2, if x
j→ y happens, then by time tcx, 〈y → x〉d(x,y).

Moreover, consider the nodes x contacts after it sends the JW (or JN) message to

y, node y1, y2, ..., yl, which are the nodes in the contact-chain(x,y). 2 Then, if the

message is JW, only when yi becomes an S-node will yi reply to x. If the message is

JN, and for some yi, its state recorded in the table of yi−1 is T (i.e yi−1.state(yi) =

T), then x will wait for yi before x becomes an S-node (see Figure 4.5). Hence, when

x becomes an S-node, all nodes from y1 to yl are in status cset-waiting or in system.

1te
x is defined as the time node x enters in system. In the original join protocol as presented in

Chapter 4, it is the same time that x exits status notifying. However, in the extended join protocol,
we have introduced a new status, cset waiting, to each join process, te

x now becomes the time that
x exits cset waiting and enters in system. On the other hand, tc

x denotes the time x exits notifying
(and enters cset waiting), thus te

(x) in propositions for the original protocol should be interpreted

as tc
x in this chapter.
2The definition of contact-chain(x,y) in a K-consistent network is presented in Appendix B.

196

Corollary D.1 If x
jn→ y happens, then tex > tcy, i.e., when x becomes an S-node, y

is already in status in system or cset waiting.

We next prove a lemma that shows that if all joining nodes belong to the

same C-set tree (i.e., all joining nodes have the same noti-set), then the statement

in Theorem 8 is true. Based on the lemma, we can prove Theorem 8.

Lemma D.4 Suppose a set of nodes, W = {x1, ...xm}, m ≥ 1, join a K-consistent

network 〈V,N (V)〉 using the extended join protocol. Moreover, suppose for each x,

x ∈ W , V Notify
x = Vω, where ω is a suffix shared by all nodes in W . Then at any

time t, any node in set S(t) can reach any other node in S(t), where S(t) is the set

of S-nodes at time t.

Proof: We need to prove that for each pair of nodes x and y, x ∈ S(t) and

y ∈ S(t), 〈x → y〉d(x,y) at time t. If x and y are both in V , then the theorem holds

trivially. Hence, in the following proof, we focus on the case in which at least one

of x and y belongs to W . Without loss of generality, suppose x ∈ W . We prove by

induction upon C-set tree. Moreover, we prove the theorem by showing that any

two nodes x and y in S(t), x and y can reach each other by the time both of them

have become S-nodes (i.e., by time max(tex, tey)).

We first define set Sj(t) as follows: Sj(t) = (∪1≤i≤j ∪li∈[b] Cli...l1·ω)∪V . That

is, Sj(t) includes nodes in V and nodes in Cli...l1·ω for each Cli...l1·ω that is in the

Cset tree realized at time t, given 1 ≤ i ≤ j.

Base step. In the base case, we consider any pair of nodes, x and y from set

S1(t), that is, any pair of nodes from set V ∪Cl1·ω, for all l1 ∈ [b]. As assumed above,

x ∈ W , thus x ∈ Cl1·ω, where l1 · ω is a suffix of x.ID. (Thus by Definition D.1,

A(x) ∈ Vω, where A(x) is the S-node that sends a positive JWRly to x and the first

S-node that stores x as a neighbor is in Vω.)

Case 1. Suppose y ∈ V and ω is a suffix of y.ID. By having x copy neighbors

197

from nodes in V , it is easy to show that 〈x → y〉d(x,y) by tex. We need to show

〈y → x〉d(x,y) next.

If y = A(x), then by time tex, x ∈ Ny(h, x[h]), h = |csuf(x.ID, y.ID)|, hence

〈y → x〉d(x,y) holds by Fact D.2.

If y 6= A(x), let z = A(x) and t1 be the time z stores x and sends a positive

reply to x. Then z ∈ Vω since x ∈ Cl1·ω. Thus 〈z → y〉d(z,y) at time t1 since the

initial network is consistent, and x
jn→ y eventually will happen (by Proposition B.1).

Therefore, 〈y → x〉d(x,y) holds by time tex (by Lemma D.1).

Case 2. Suppose y ∈ V and ω is not a suffix of y.ID. Then consider node z,

z = A(x). Similar to Case 2 above, we have 〈y → x〉d(x,y) holds by time tex.

Case 3. Suppose y ∈ Cl1·ω. By Lemma D.2, by time max(tex, tey), 〈y → x〉d
and 〈x → y〉d.

We conclude that the theorem holds in the base case.

Inductive step. Assume the theorem holds for nodes in Sj(t), 1 ≤ j ≤ d−k,

we next prove that it also holds for nodes in Sj+1(t). Consider any two nodes x and

y, where x ∈ Sj+1(t) and y ∈ Sj+1(t). If both x and y also belong to Sj(t), then by

the induction assumption, the theorem holds trivially. Without loss of generality,

we next assume x ∈ Clj+1...l1·ω and x 6∈ Clj ...l1·ω, that is, Clj+1...l1·ω is the first C-set

x belongs to (definition in Section 4.2.1). We next prove the theorem holds for

the following cases: x ∈ Clj+1...l1·ω and y ∈ V ; and x ∈ Clj+1...l1·ω and y ∈ W . We

consider the former case first.

Case 1: x ∈ Clj+1...l1·ω and y ∈ V . It follows trivially that 〈x → y〉d(x,y)

holds by time tex (by the fact that x copies neighbors from nodes in V in copying

status.) We next show that 〈y → x〉d(x,y) is also true. Let u = A(x). Then u ∈
Clj ...l1·ω (by Proposition B.5). By the induction assumption, by time max(teux

, tey),

〈y → ux〉d(ux,y) holds. Moreover, since u = A(x), x ∈ Nux(h, x[h]) by time tex, h =

|csuf(x.ID, y.ID)|. Hence 〈y → x〉d(x,y) by time max(tex, tey) (notice that tex > teux
).

198

In what follows, we consider the case where x ∈ Clj+1...l1·ω and y ∈ W , which

includes the following subcases, Case 2 to Case 6.

Case 2: x ∈ Clj+1...l1·ω and y ∈ Clj+1...l1·ω. In this case, both x and y belong

to the same C-set. By Lemma D.2, 〈y → x〉d(x,y) and 〈x → y〉d(x,y) hold by time

max(tex, tey).

Case 3: x ∈ Clj+1...l1·ω and y 6∈ Clj+1...l1·ω, however, y ∈ Cl·lj ...l1·ω, where

l 6= lj+1, and y 6∈ Clj ...l1·ω That is, the first C-sets x and y belong to have the same

parent C-set, as shown in Figure D.1(a).

uyux

V

l1jl

l1x y

....C

C Cl.....l lj l1 lj+1 j
t1

t2

tt3

(a)

tt4

JWRly JN

JNRly

(b)

x

u x

u y

y

JWRly

Figure D.1: Nodes and C-sets for Case 3

Let ux = A(x) and uy = A(y), then both ux and uy belong to Cli...l1·ω, as

shown in Figure D.1(a). Moreover, let t1 be the time that ux sends its positive

JWRly to x, and t2 be the time that uy sends its positive JWRly to y. Without

loss of generality, suppose t1 < t2. Then by time t2, both ux and uy are already

S-nodes, by the assumption for the inductive step, 〈ux → uy〉d(ux,uy) by time t2.

Therefore, y
jn→ ux eventually happens (by Proposition B.1). Let t3 be the time ux

receives the JN from y, then t3 > t2 > t1, as shown in Figure D.1(b). Hence, from

ux’s reply, y finds x in the copy of ux.table and y
jn→ x will happen (see subroutine

Check Ngh Table in Figure 4.7). Then, by tey, 〈x → y〉d(x,y) holds (by Lemma D.3).

To prove 〈y → x〉d(x,y), we notice ux and uy both belong to Sj(t). By

induction assumption, by time teux
, 〈ux → uy〉d(ux,uy), thus x

jn→ uy will happen

before time tex (by Proposition B.1). Then by Proposition B.6, 〈y → x〉d(x,y) by time

max(tex, tey).

199

Case 4: x ∈ Clj+1...l1·ω and y ∈ Clj ...l1·ω. That is, y belongs to a C-set that is

the parent C-set of the first C-set x belongs to. Let ux = A(x), then ux ∈ Clj ...l1·ω

and u and y belong to the same C-set, as shown in Figure D.2(a). Moreover, let the

time ux sends its positive JWRly to x be t1.

ux

V

l1

l1

(a)

y

....C

C Cl..... l1 l
ylj

lj+1ii j
JWRly

(c)(b)

x x’

JN JNJNRly JNRly

t t3 3

u x t1

t yct

t2
JWRly

x

yy

x

u x
t2

ttyc

t1

Figure D.2: Nodes and C-sets for Case 4

First, suppose t1 > tcy, then by the induction assumption, 〈ux → y〉d(ux,y)

by time max(teux
, tey). After receiving the JWRly from ux, x copies neighbors in

Nux(h, y[h]) into Nx(h, y[h]), where h = |csuf(x.ID, y.ID)| = |csuf(x.ID, ux.ID)|.
Thus, 〈x → y〉d(x,y) holds by time tex. On the other hand, since 〈ux → y〉d(ux,y) holds

by t1, x
jn→ y eventually happens (by Proposition B.1), and 〈y → x〉d(x,y) holds by

time tex.

Second, suppose t1 < tcy (including the case that y has not start joining by

time t1, if such a case ever exists). According to the induction assumption, by time

max(teux
, tey), either ux

jn→ y or y
jn→ ux has happened. Since teux

< t1, it follows

teux
< tcy. Therefore, ux

jn→ y cannot happen: If it happens, then when ux finds y

and send a JN to y, the state recorded for y (from the copy of the table ux finds

y) is still T , and ux will wait for y, which results in that by time teux
, y is already

in status cset waiting or in system. Hence, by time max(teux
, tey), y

jn→ ux must have

happened. Let the time ux receives the JN from y be t2. We consider the following

cases: (1) t1 < t2; (2) t1 > t2 and y ∈ Nux(h, y[h]) at time t1; and (3) t1 > t2 and

y 6∈ Nux(h, y[h]) at time t1. Moreover, let the time y receives the JNRly from ux be

t3. (See Figure D.2(b) and (c).)

200

(1) If t1 < t2, then upon receiving ux’s reply (JNRLy) at time t3, y finds

x and sends a JN to x. Thus, 〈x → y〉d(x,y) by time tey (by Lemma D.3). On the

other hand, if at time t3, y copies x into Ny(h, x[h]), where h = |csuf(x.ID, y.ID)|,
then 〈y → x〉d(x,y) holds trivially by time tey. If y does not copy x into Ny(h, x[h])

at time t3, then it must be that Ny(h, x[h]).size = K is true before time t3. Let x′

be a node in Ny(h, x[h]) at time t3, then x′ belongs to the same C-set x resides in

(see Figure D.2(a)), according to Definition D.1. Since |csuf(x′.ID, y.ID)| = h and

y.att level < h, y must have sent a JN to x′ by time tey. By Corollary D.1, tey > tcx′ ,

hence max(tex, tey) > tcx′ . Moreover, by Lemma D.2, by time max(tcx, tcx′), 〈x′ → x〉d.
Thus 〈y → x〉d by max(tex, tey).

(2) If t1 > t2, and y ∈ Nux(h, y[h]) by time t1, then x copies y from ux and

y ∈ Nx(h, y[h]), thus 〈x → y〉d(x,y) holds by time tex. Also, x
jn→ y will happen (x

finds y from ux’s JWRly) and it follows that 〈y → x〉d(x,y) holds by time tex (by

Lemma D.3).

(3) If t1 > t2, and y 6∈ Nux(h, y[h]) at time t1, then it must be that

Nux(h, y[h]).size = K is true before time t2 (otherwise, ux would have stored y).

Let z be a node in Nux(h, y[h]). Then z ∈ Nux(h, y[h]) is true by time t2. By

Definition D.1, z ∈ Cl·lj ...l1·ω, i.e., z and y belong to the same C-set. Then x copies

z into Nx(h, y[h]) after receiving the JWRly from ux. Moreover, x
jn→ z will happen

(x finds z from ux’s JWRly). On the other hand, y
jn→ z will happen since y finds z

from ux’s JNRly (recall that t2 is the time ux receives a JN from y).

We first show that 〈x → y〉d(x,y). Since x
jn→ z eventually happens, we know

tex > tcz. Therefore, max(tey, t
e
x) > max(tcy, t

c
z). By Lemma D.3, by time max(tcy, t

c
z),

〈z → y〉d(z,y). Hence, by time max(tex, tey), 〈z → y〉d(z,y). Given that z ∈ Nux(h, y[h]),

it follows that 〈x → y〉d(x,y) holds by time max(tex, tey) (by Lemma D.1).

Next, we show that 〈y → x〉d(x,y). We know that both x and y send JN to z.

Suppose contact-chain(y, z) = {v0, v1, ..., vf , vf+1} (defined in Appendix B) where

201

v0 = z, vf+1 = y and v0 to vf−1 send negative JNRly to y, while vf sends a positive

JNRly to y. By Proposition B.4, either that x
jn→ y happens before time tex, or y

has copied K nodes into Ny(h, x[h]) after y receives a JNRly from vf . If x
jn→ y

eventually happens, then 〈y → x〉d by time tex (by Lemma D.3).

If x
jn→ y does not happen, then y must have copied K nodes into Ny(h, x[h])

after y receives the JNRly from vf . Let x′ be a node in Ny(h, x[h]). Then y
jn→ x′

will happen before tey (by Fact B.5). Moreover, x′ ∈ Clj+1...l1·ω by Definition D.1,

that is, both x and x′ belong to the same C-set. Similarly to the argument in the

above case where we assume t1 < t2 (case (1)), we can show that 〈y → x〉d(x,y) by

time tex.

Case 5: x ∈ Clj+1...l1·ω} and y ∈ Cli...l1·ω}, where 1 ≤ i ≤ j − 1 and li...l1 · ω
is a suffix of lj+1...l1 · ω. That is, y belongs to a C-set that is an ancestor C-set of

the first C-set x belongs to.

Let zx be a node in Cli...l1·ω} and zx ∈ contain-chain(x, g), where g ∈ V and

g is the node x is given to start its joining. Then, for any node in the chain, x

sends either a CP or a JW to it. Note that for any node v in contain-chain(x, g),

we have tev < tex, because when x receives a reply (either a CPRly or a JWRly) from

v, v must be an S-node already. Moreover, 〈v → x〉d(v,x) by the time x receives the

positive JWRly from the last node in the chain (a path from v to x is through the

nodes after v in the chain). Thus, tezx
< tex and 〈zx → x〉d(zx,x) by tex.

By the induction assumption, by time max(tezx
, tey), 〈zx → y〉d(zx,y) already

holds. Since tezx
< tex, max(tezx

, tey) ≤ max(tex, tey). According to the join protocol,

x copies neighbors in Nzx(h, y[h]) into Nx(h, y[h]), h = |csuf(x.ID, y.ID)|, after it

receives the reply from zx. Since z can reach y via neighbors in Nzx(h, y[h]), so does

x. Therefore, 〈x → y〉d(x,y) by time max(tex, tey).

Next, we show 〈y → x〉d(x,y). Consider node ux, such that ux = A(x). Thus,

ux ∈ Clj ...l1·ω. By the induction assumption, 〈y → ux〉d(ux,y) by time max(teux
, tey).

202

Let h = |csuf(ux.ID, y.ID) and h′ = |csuf(x.ID, y.ID). Suppose by time max(teux
, tey),

a path from y to ux is as follows: {vh, vh+1, ..., vh′}, where vh = y, vh+1 ∈ Nvh
(h, ux[h]),

..., and vh′ ∈ Nvh′−1
(h′ − 1, ux[h′ − 1]). Moreover, each node in the path is either in

status in system or cset waiting. (1) If there exists such a path from y to ux such

that ux = vh′ , then after ux stores x in Nux(h′, x[h′]) (on receiving the JW from x),

{vh, vh+1, ..., vh′ , x} is a path from y to x. Hence, 〈y → x〉d(x,y). (2) If there does not

exist such a path from y to ux such that ux = vh′ , then consider nodes vh′ and ux.

Let v = vh′ . By Definition D.1, v ∈ Clj ...l1·ω. Hence by time max(teux
, tey), y can reach

ux through v. By induction assumption, v is a node either in status in system or

cset waiting by time max(teux
, tey). That is, max(teux

, tey) ≥ tcv. If max(teux
, tey) = teux

,

then teux
≥ tcv. Hence, 〈ux → v〉d by time teux

(by Lemma D.2), therefore x
jn→ v

will happen before tex and 〈v → x〉d(x,v) by time tex. Combining this result with the

fact that {vh, vh+1, ..., vh′} is a path from y to v, we know that 〈y → x〉d(x,y) holds.

If max(teux
, tey) = tey, then tey ≥ tcv. Since |csuf(y.ID, v.ID)| ≥ y.att level, y

jn→ v

must have happened and y has waited for v. By Case 4, 〈v → x〉d(x,v). Therefore,

〈y → x〉d(x,y) holds.

Case 6. x and y do not belong to the same C-set, and y is not in a ancestor

C-set of x. Let Cω′ be the highest level C-set that is an ancestor of both x and y, zx

be a node in Cω′ as well as in contact-chain(x, gx), and zy be a node in Cω′ as well as

in contact-chain(y, gy). We first show that x
jn→ y by considering zx and y. By Case

5, by time max(tezx
, tey), 〈zx → y〉d. Since when x receives a reply (either a CPRly

or a JWRly) from zx, zx is already an S-node, max(tezx
, tey) ≥ max(tex, tey). Hence, by

max(tex, tey), 〈x → y〉d holds, since x copies neighbors in Nzx(h, y[h]) into Nx(h, y[h]),

h = |csuf(x.ID, y.ID)|, and thus x can reach y through these neighbors. Similarly,

by considering zy and x, we can show that by max(tex, tey), 〈y → x〉d.

Proof of Theorem 8: First, we separate nodes in S(t) into groups, where nodes

in the same group have the same noti-set and thus belong to the same C-set tree.

203

We then consider any two nodes, x and y, in set S(t).

If x ∈ V and y ∈ V , then the theorem holds trivially. If x ∈ V and y ∈ W ,

x ∈ W and y ∈ V , or x ∈ W and y ∈ W and both x and y belong to the same C-set

tree, then by Lemma D.4, the theorem also holds.

If x ∈ W and y ∈ W but x and y belong to two different C-set trees, then we

need to combine the two C-set trees for augment purpose. Suppose V Notify
x = Vω1

and V Notify
y = Vω2, ω1 6= ω2. Let ω be the longest suffix that is both a suffix of ω1

and ω2 (it is possible that ω is the empty string). We can combine the two C-set

trees that x and y belong to into a single tree as follows.

• Let Vω be the root of the tree.

• If Vω1 = Vω (i.e., ω1 = ω), then go the the next step. Otherwise, add set Vl1·ω,

where l1 ·ω is a suffix of ω1, to the tree and make it be a child of Vω. Similarly,

we add Vli..l1·ω as a child of Vli−1..l1·ω for each i ≥ 2, until Vli..l1·ω = Vω1 . So

far, we have connected the original C-set tree that rooted at Vω1 to the new

tree.

• If Vω2 = Vω, then the original C-set tree that rooted at Vω2 is already part of

the tree. Otherwise, similarly as the second step, we can connect the C-set

tree rooted at Vω2 to the new tree.

Then both x and y now belong in the new tree that is rooted at Vω, where x

and y do not belong to the same set in the tree, and neither of them is in an ancestor

set of the other (recall that both x and y are nodes in W , thus x 6∈ Vω and y 6∈ Vω).

Following the same arguments as those in Case 6 in the proof of Lemma D.4, we

conclude that by time max(tex, tey), 〈x → y〉d(x,y) and 〈y → x〉d(x,y) hold.

Proof of Theorem 9: To prove Theorem 9, we need to show that given Theorem 8

and the optimization rule, neighbor replacement will preserve the three properties

stated in Section 7.1.2. The optimization rule automatically ensures that Property

3 is preserved. We only need to show that Properties 1 and 2 are also preserved.

204

Property 1 requires that once two S-nodes can reach each other, they always

can. Theorem 8 shows that when two nodes, say x and y, both become S-nodes,

they can reach each other, and the nodes along a path from x to y are S-nodes or

T-nodes that are already in status cset waiting. If a node along the path, say u,

is replaced by another node, say v, then by the optimization rule, both u and v

are S-nodes. By Theorem 8, 〈v → y〉d(x,y) by this time, therefore, x still can reach

y through v. Similarly, we can show that after a T-node can reach an S-node, it

always can thereafter (i.e., Property 2 is also preserved).

Thus, we conclude that the three properties stated in Section 7.1.2 are pre-

served by using the extened join protocol and by replacing neighbors following the

optimization rule. Then, following the proof of Theorem 3, Theorem 9 holds.

205

Bibliography

[1] J. Aspnes and G. Shah. Skip graphs. In ACM-SIAM Symposium on Discrete

Algorithms, January 2003.

[2] C. Blake and R. Rodrigues. High availability, scalable storage, dynamic peer

networks: Pick two. In Prof. of Ninth Workshop on Hot Topics in Operating

Systems (HotOS-IX), May 2003.

[3] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Exploiting network prox-

imity in peer-to-peer overlay networks. In Proc. of International Workshop on

Future Directions in Distributed Computing, June 2002.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area

cooperative storage with CFS. In Proc. of ACM Symposium on Operating

Systems Principles (SOSP), October 2001.

[5] Freenet. http://freenetproject.org.

[6] Gnutella. http://www.gnutella.com.

[7] R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The im-

pact of DHT routing geometry on resilience and proximity. In Proc. of ACM

SIGCOMM, August 2003.

[8] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. Skipnet:

206

A scalable overlay network with practical locality properties. In Proc. of

the Fourth USENIX Symposium on Internet Technologies and Systems, March

2003.

[9] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Distributed object

location in a dynamic network. In Proc. of ACM Symposium on Parallel Algo-

rithms and Architectures, August 2002.

[10] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted

metrics. In Proc. of ACM Symposium on Theory of Computing, May 2002.

[11] Kazaa. http://www.kazaa.com/.

[12] B. Knutsson, H. Lu, W. Xu, , and B. Hopkins. Peer-to-peer support for mas-

sively multiplayer games. In Proc. of IEEE INFOCOM, March.

[13] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,

R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.

Oceanstore: An architecture for global-scale persistent storage. In Proc. of

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), November 2000.

[14] S. S. Lam and H. Liu. Silk: a resilient routing fabric for peer-to-peer networks.

Technical Report TR-03-13, Dept. of CS, Univ. of Texas at Austin, May 2003.

[15] S. S. Lam and H. Liu. Failure recovery for structured p2p networks: Protocol

design and performance evaluation. In Proc. of ACM SIGMETRICS, June

2004.

[16] S. S. Lam and H. Liu. Failure recovery for structured p2p networks: Protocol

design and performance evaluation. Submitted for journal review, 2005.

207

[17] S. S. Lam and A. U. Shankar. A theory of interfaces and modules I–composition

theorem. IEEE Transactions on Software Engineering, January 1994.

[18] J. Li, J. Stribling, T. M. Gil, R. Morris, and F. Kaashoek. Comparing the

performance of distributed hash tables under churn. In Proc. of International

Workshop on Peer-to-Peer Systems, March 2004.

[19] X. Li, J. Misra, and C. G. Plaxton. Active and concurrent topology main-

tenance. In Proc. of the 18th Annual Conference on Distributed Computing,

October 2004.

[20] X. Li and C. G. Plaxton. On name resolution in peer-to-peer networks. In

Proc. of the 2nd Workshop on Principles of Mobile Computing, October 2002.

[21] H. Liu and S. S. Lam. Neighbor table construction and update in a dynamic

peer-to-peer network. Technical Report TR-02-46, Dept. of CS, Univ. of Texas

at Austin, September 2002.

[22] H. Liu and S. S. Lam. Neighbor table construction and update in a dynamic

peer-to-peer network. In Proc. of IEEE International Conference on Distributed

Computing Systems (ICDCS), May 2003.

[23] H. Liu and S. S. Lam. Consistency-preserving neighbor table optimization for

p2p networks. In Proc. of International Conference on Parallel and Distributed

Systems, July 2004.

[24] H. Liu and S. S. Lam. Neighbor table construction and update for resilient

hypercube routing in p2p networks. Submitted for journal review, 2004.

[25] Y. Liu, Z. Zhuang, L. Xiao, and L. M Ni. A distributed approach to solving

overlay mismatching problem. In Proc. of International Conference on Dis-

tributed Computing Systems, March 2004.

208

[26] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic emu-

lation of the butterfly. In Proc. of ACM Symposium on Principles of Distributed

Computing, July 2002.

[27] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system

based on the xor metric. In Proc. of International Workshop on Peer-to-Peer

Systems, March 2002.

[28] Napster. http://www.napster.com/.

[29] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of

replicated objects in a distributed environment. In Proc. of ACM Symposium

on Parallel Algorithms and Architectures, June 1997.

[30] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Scott Shenker. A scalable

content-addressable network. In Proc. of ACM SIGCOMM, August 2001.

[31] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware

overlay construction and server selection. In Proc. of IEEE INFOCOM, June

2002.

[32] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.

In Proceedings of the USENIX Annual Technical Conference, June 2004.

[33] M. Robshaw. MD2, MD4, MD5, SHA, and other hash functions. Technical

Report Technical Report TR-101, RSA Laboratories, July 1995.

[34] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In Proc. of IFIP/ACM Interna-

tional Conference on Distributed Systems Platforms, November 2001.

[35] A. Rowstron and P. Druschel. Storage management and caching in PAST, a

209

large-scale, persistent peer-to-peer storage utility. In Proc. of ACM Symposium

on Operating Systems Principles (SOSP), October 2001.

[36] S. Sariou, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-

peer file sharing systems. In Proc. of Multimedia Computing and Networking,

January 2002.

[37] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks.

ACM/IEEE Transactions on Networking, Vol.12(No.2), April 2004.

[38] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. In Proc. of ACM

SIGCOMM, August 2001.

[39] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork.

In Proc. of IEEE Infocom, March 1996.

[40] H. Zhang, A. Goel, and R. Govindan. Incrementally improving lookup latency

in distributed hash table systems. In Proc. of SIGMETRICS, June 2003.

[41] X. B. Zhang, S. S. Lam, and H. Liu. Efficient group rekeying over application-

layer multicast. In Proc. of IEEE International Conference on Distributed Com-

puting Systems (ICDCS), June 2005.

[42] B. Y. Zhao, L. Huang, J. Stribling, A. D. Joseph, and J. D. Kubiatowicz.

Exploiting routing redundancy via structured peer-to-peer overlays. In Proc.

of IEEE International Conference on Network Protocols (ICNP), November

2003.

[43] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubia-

towicz. Tapestry: A resilient global-scale overlay for service deployment. IEEE

Journal on Selected Areas in Communications, Vol.22(No.1), January 2004.

210

Vita

Huaiyu Liu was born to Hanting Liu and Xueqin Wang in Shenyang, Liaoning,

China. She received her B.E. in Computer Science from Northwestern Polytechnic

University, Xi’an, Shaanxi, China in 1996, and her M.E. in Computer Science from

Beijing University of Aeronautics and Astronautics, Beijing, China in 1999. She

came to the University of Texas at Austin to pursue a Ph.D. in August 1999.

Huaiyu has been happily married to Fei since 1998.

Permanent Address: 1620 West 6th St. Apt. P

Austin, TX 78703 USA

This dissertation was typeset with LATEX2ε3 by the author.

3LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay and James A. Bednar.

211

