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This thesis constructs an abstract framework in which the dynamic

programming principle (DPP) can be proven for a broad range of stochastic

control problems. Using a distributional formulation of stochastic control, we

prove the DPP for problems that optimize over sets of martingale measures. As

an application, we use the classical martingale problem to prove the DPP for

weak solutions of controlled diffusions, and use it show that the value function

is a viscosity solution of the associated Hamilton-Jacobi-Bellman equation.
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Chapter 1

Introduction

There are two main goals in this thesis: create a framework, sufficiently

abstract to encompass many stochastic control problems, in which the dynamic

programming principle can be shown to hold, and then apply this framework

to weak solutions of controlled diffusion SDEs.

The representation of stochastic control problems used in the abstract

framework follows the distributional formulation similar to [11]. The system

being modeled has an implicit state, which evolves over time according to a

probability distribution that is chosen by the controller from an admissible set

of measures. The set of admissible measures depends on the current state, and

is analogous in spirit to the set of admissible controls typically used in strong

formulations. Ultimately, the controller wants to choose the best measure to

maximize an objective function at the infinite time horizon.

The dynamic programming principle (abbreviated as DPP from here

on) is an old idea in which, intuitively speaking, an optimization problem is

broken up into smaller pieces, where optimizing the overall problem is equiva-

lent to optimizing the sub-problems. In our abstract framework for stochastic

control, these sub-problems involve choosing one measure up to a stopping
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time, and then a selector of measures to be used after that time.

One of the major difficulties in building a framework where the DPP

holds for general stochastic control problems is the conflict between the simple

measurability structure needed to prove the DPP, and the messy completed

filtration needed to define weak solutions of SDEs. To make this problem

tractable, we use the classic martingale problem go between measures in the

distributional framework and weak solutions of controlled diffusions.

Previous work on the DPP for stochastic control problems includes a

rigorous and complete treatment of the discrete time case by Bertsekas and

Shreve in [2]. Several authors have also worked on the continuous time case,

including Bouchard and Touzi in [3], and Karoui and Tan in [5]. A different

approach that skips the DPP in favor of directly getting viscocity solutions, is

the stochastic Perron method by Bayraktar and Ŝırbu in [1].

The approach taken in this thesis is to first build a minimal framework

(T-space, Definition 2.1.1), which is designed to have an easy-to-use filtration

that extends well to stopping times. This framework is then augmented with

concatenation operators for both paths and measures (TC-space, Definition

2.5.1), which allows for a rigorous proof of an abstract DPP (Theorem 2.10.1).

Using this robust foundation, a martingale oriented control structure (Section

3.1) is shown to satisfy the three main assumptions for the DPP: analyticity,

concatenability, and disintegrability. This results in a martingale version of

the DPP (Theorem 3.5.1). Finally, the classical martingale problem is used to

bridge the gap between weak solutions and the martingale control structure,
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which gives a DPP for weak solutions (Theorem 4.1.3).

1.1 Notation and Conventions

1.1.1 Integration.

Both probabilistic EP[X] and analytic
∫
Gdµ notation for integration

will be used. The former will appear mostly in examples, and the latter in the

abstract part.

1.1.2 Polish spaces.

Many of our probability spaces come with Polish (completely metriz-

able, separable) sample spaces and Borel probability measures or their com-

pletions. When the Polish structure is present, measurability will always refer

to the associated Borel σ-alebra, denoted by Borel(Ω).

1.1.3 Analytic sets.

A subset A of a Polish space Ω is called analytic if it can be realized as

a projection of a Borel subset of Ω×R onto Ω. We remind the reader that an-

alytic subsets of Polish spaces are closed under countable unions, intersections

and products, but not necessarily under complements. It will be important for

us that each analytic set is in the universal σ-algebra - denoted by Univ(Ω) -

i.e., the family of all sets which belong to the completion (Borel(Ω))∗µ for each

µ ∈ Prob(Ω). We refer the reader to [9] for all the necessary details concerning

descriptive set theory.
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1.1.4 Probability measures and kernels

The set of all probability measures on Borel(Ω) is denoted by Prob(Ω).

We topologize Prob(Ω) with the topology of (probabilist’s) weak convergence.

This way, Prob(Ω) becomes a Polish space. The following well-known fact,

proved in a standard way via the monotone-class theorem, will be used through-

out without mention: Let U and V be Polish spaces and let f : U×V → [0,∞]

be a Borel-measurable function. The map

U × Prob(V ) 3 (x, µ) 7→ Eµ[f(x, ·)] =

∫
V

f(x, y)µ(dy)

is Borel measurable.

A probability measure defined on Borel(Ω) admits a natural extension

to Univ(Ω). Similarly, our kernels will always be universally measurable. More

precisely, for Polish spaces Ω, Ω̃, a map ν : Ω × Borel(Ω̃) → [0, 1] is called

a kernel if ν(ω, ·) ∈ Prob(Ω̃) for each ω ∈ Ω and ν(·, B) is a universally-

measurable map on Ω, for each B ∈ Borel(Ω̃). Depending on the situation we

use both notations ν(ω, ·) and νω for the probability measure associated by ν

to ω.

1.1.5 Standard Borel spaces

A standard Borel space is, by definition, a measurable space which

admits a measurable bijection to a Borel subset of some Rn, whose inverse is

also measurable (a bimesurable isomorphism). All standard Borel spaces

of the same cardinality are bimesurable isomorphic, and, so, each standard
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Borel space can be given a complete and separable (Polish) metric so that the

induced measurable structure matches the original one. With this in mind,

we talk standard Borel spaces when only the measurable structure is relevant,

and about Polish spaces when topological properties are required.

5



Chapter 2

An Abstract Framework for the DPP

Let the time set Time be either [0,∞) or N0. An overwhelming ma-

jority of applications will only use these two time sets, so we do not aim for

greater generality. We do note that the results of this section will hold for more

general time structures (such as intersections with [0,∞) of Borel-measurable

additive subgroups of R).

2.1 T-spaces (truncated spaces)

Definition 2.1.1 (T-spaces). A filtered measurable space (Ω,F,F = {Ft}t∈Time)

is called a T-space (or a truncated space) if

1. Ω is a standard Borel space and F =
∨
t∈Time Ft.

2. there exists a family {Tt}t∈Time of maps Tt : Ω→ Ω - called a truncation

- such that

(a) (t, ω) 7→ Tt(ω) is (jointly) measurable,

(b) Tt ◦ Ts = Ts∧t for all s, t ∈ Time, and

(c) Ft = σ(Tt) for each t ∈ Time.
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2.2 First examples of T-spaces

As T-spaces are necessarily countably generated, not every filtered

probability space can be endowed with the structure of a T-space. Never-

theless, as our examples below aim to show, many spaces used in stochastic

analysis and optimal stochastic control are natural T-spaces.

In all of the examples below we take Time = [0,∞). We leave it to the

reader to make the necessary minor adjustments needed to translate all of the

examples below to Time = N0. Once we describe various natural constructions

involving T-space in subsection 2.4 below, the reader will be able to produce

many more examples.

2.2.1 The path space DE

Let E be a Polish space, and let DE denote the family of all càdlàg

functions from Time to E. For t ∈ Time, we define the truncation map Tt :

DE → DE by

Tt(ω)(s) = ω(t ∧ s) for s ∈ Time,

so that (2b) of Definition 2.1.1 holds. It is well-known that DE is a Polish space

under the Skorokhod topology. The map Tt is Skorokhod-continuous, and

therefore, measurable. Therefore, as a Caratheodory function, T : Time×Ω→

Ω is (jointly) measurable. The filtration Ft = σ(Tt), t ∈ Time clearly conincides

with the (raw) filtration generated by the coordinate maps ω 7→ ω(t).
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2.2.2 The path space GE and the related spaces

Analogous constructions can be performed on the space GE of left-

continuous and right limited paths (with the suitable variation of the Sko-

rokhod topology) from Time to E. In the case E = R, all three DR, CR and

GR are subspaces of the (generalized) Skorokhod space of paths whose left and

right limits exist at each point, but do not necessarily match the value. This

space is also a Polish space (see [8, Section VII.6., p. 231] for details), and can

be given a truncation structure (in several ways).

We will also have use for the space LipL,x0R consisting of all functions

x : [0,∞) → R such that x(0) = x0 and |x(t)− x(s)| ≤ L |t− s| for all

s, t ∈ [0,∞).

2.2.3 The space L0
A

Let A be a standard Borel space, let λ be the Lebesgue measure (or any

other Radon measure) on [0,∞), and let λ̂ denote an equivalent probability

measure on [0,∞) (e.g., λ̂(dt) = e−t λ(dt), when λ is the Lebesgue measure).

We define L0
A as the set of all λ-a.e.-equivalence classes of Borel functions

α : [0,∞) → A. Given a bimeasurable isomorphism φ : A → [−1, 1] (which

exists thanks to the standard Borel property of A) we metrize L0
A by

d(α, β) = ||φ(α)− φ(β)||L1(λ̂).
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This way, Ω = L0
A becomes a Polish space and a natural truncation on it is

defined by

Tt(α) =

{
αu, u < t

φ−1(0), u ≥ t.

We note that the equivalence class of the right-hand side depends on α only

through its equivalence class, and that, while d and the induced Polish topology

depend on the choice of φ and λ̂, the resulting standard Borel structure does

not. The choice of the particular φ makes it easy to show that Tt is jointly

measurable; indeed, it will be continuous under d in both of its arguments.

2.2.4 Spaces of measures

For a metrized Polish space U , let M#(U) be the family of all boundedly-

finite Borel measures on U , i.e,. those measures µ such that µ(B) <∞, as soon

as B is a bounded Borel set. There exists a metric on M#(U), whose topology

coincides with the topology of weak convergence when restricted to measures

supported by a fixed bounded set (see [4, Section A2.6, p. 402] for the proof of

this and other statements about the space M#(U) we make below). Under the

full topology induced by this metric, called the w#-topology, M#(U) becomes

a Polish space. Moreover, a sequence {µn}n∈N in M#(U) converges if and only

if
∫
f dµn →

∫
fµ for each bounded and continuous function f : Ω→ R which

vanishes outside a bounded set. The Borel σ-algebra on M#(U) is generated

by the evaluation maps µ 7→ µ(A), where A ranges over a family of all bounded

Borel subsets of U . The subsets Mf (U) and Mp(U) = Prob(U) of M#(U), con-

sisting only of finite or probability measures (respectively), are easily seen to

9



be Borel subsets of M#(Ω), and, therefore, standard Borel spaces themselves.

For a Polish space E, we set Ω = M∗(U), where U = [0,∞) × E and

∗ ∈ {#, f, p}. The truncation maps are given by

µ≤t(A) = µ
(

([0, t]× E) ∩ A
)
, for t ∈ [0,∞), A ∈ [0,∞)× E.

With the filtration generated by the maps Tt, it is clear that ∨tFt is the Borel

σ-algebra on Ω. The only remaining property from Definition 2.1.1 is (2a),

for which it is sufficient to note that for any boundedly supported function

f we have
∫
f dµ≤t =

∫
f1[0,t]×E dµ. Indeed, it follows that (t, µ) 7→ µ≤t is a

Caratheodory functions as it is right continuous in t and measurable in µ.

2.2.5 Predictable truncations

In many the examples above, it is possible to define several different

truncations on the same underlying Polish space. For example, in the case of

the canonical space DE, we may set

T ′t(ω)(s) =

{
ωs, s < t

ωt−, s ≥ t
.

It is easily checked that T ′t is indeed, a truncation on DE.

2.3 Truncating at stopping times

With the set of all stopping times is denoted by Stop, the index set for

the family of truncation operators on a T-space can be extended to Stop by

10



setting

Tτ (ω) = Tτ(ω)(ω) for τ ∈ Stop and ω ∈ Ω,

where the convention that T∞ is the identity map is used. The notation Tτ (ω)

will often be replaced by the less cumbersome (and more suggestive) ω≤τ .

Proposition 2.3.1. For all t ∈ Time, ω ∈ Ω, τ, κ ∈ Stop and we have

1. Tτ and Tκ are measurable maps on Ω and Tτ ◦ Tκ = Tτ∧κ

2. σ(Tτ ) = {A ∈ F : T−1
τ (A) = A}, and

“A ∈ σ(Tτ )” is equivalent to “ω ∈ A ⇔ ω≤τ ∈ A′′

3. τ(ω) = τ(Tτ (ω)), and hence τ is σ(Tτ )-measurable

4. σ(Tτ ) = Fτ , where Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft,∀t ∈ Time}

5. Let (S, S) be a standard Borel space. An (F, S)-measurable map Z : Ω→

S is (Fτ , S)-measurable if and only if Z ◦ Tτ = Z.

Proof.

1. Measurability of Tτ follows directly from the measurability of stopping

times and the joint measurability of (t, ω) 7→ Tt(ω) on (Time∪{∞})×Ω.

Applying Definition 2.1.1, part (2b) pointwise for t = τ(ω) and s = κ(ω)

gives Tτ ◦ Tκ = Tτ∧κ.
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2. By part (1) we have Tτ = Tτ ◦ Tτ for each τ ∈ Stop, and so for any

A ∈ F, we have

A = T−1
τ (B) for some B ∈ F ⇔ A = T−1

τ (A).

Furthermore the condition A = T−1
τ (A) is equivalent to:

ω ∈ A ⇔ ω≤τ ∈ A

3. Fix ω ∈ Ω, let t = τ(ω), and let A = {τ = t}. Since τ ∈ Stop, then

A ∈ Ft = σ(Tt). Combining part (2) with the fact that ω ∈ A implies

Tt(ω) ∈ A. Therefore:

τ(Tτ(ω)(ω)) = τ(Tt(ω)) = t = τ(ω)

4. For the forward inclusion, let A ∈ σ(Tτ ). Thanks to (2) above, we have

A = T−1
τ (A). Therefore for all t ∈ Time we have:

A ∩ {τ ≤ t} = {ω ∈ Ω : Tτ(ω)(ω) ∈ A, τ(ω) ≤ t}

= {ω ∈ Ω : Tτ(ω)∧t(ω) ∈ A, τ(ω) ≤ t}

= T−1
τ∧t(A) ∩ {τ ≤ t} ∈ Ft,

where we used the fact that Tτ∧t = Tτ∧t ◦Tt is Ft-measurable. Therefore

A ∈ Fτ , and hence σ(Tτ ) ⊂ Fτ .

For the backward inclusion, let A ∈ Fτ . By part (2), it suffices to show:

ω ∈ A ⇔ ω≤τ ∈ A

12



First suppose ω ∈ A and let t = τ(ω). Since A ∈ Fτ , then ω ∈ A∩ {τ ≤

t} ∈ Ft. Applying (2) to A ∩ {τ ≤ t} gives ω≤τ ∈ A ∩ {τ ≤ t} ⊂ A.

For the other direction, suppose ω≤τ ∈ A. By part (3) we have τ(ω≤τ ) =

τ(ω) and hence ω≤τ ∈ A ∩ {τ ≤ t} ∈ Ft. Applying (2) to A ∩ {τ ≤ t}

gives ω ∈ A ∩ {τ ≤ t} ⊂ A.

5. If Z = Z ◦ Tτ , then Z is Fτ -measurable as a measurable transforma-

tion of the Fτ -measurable map Tτ . Conversely, if Z is Fτ -measurable,

the standard Borel propery and the Doob-Dynkin lemma guarantee the

existence of a measurable map ζ : Ω → S such that Z = ζ ◦ Tτ . A

composition with Tτ yields that

Z ◦ Tτ = ζ ◦ Tτ ◦ Tτ = ζ ◦ Tτ = Z.

2.4 Constructions on T-spaces

Next, we describe several natural notions and constructions on T-

spaces, as well as various operations that produce new T-spaces from the

old ones. For the remainder of this subsection, let (Ω,F,F = {Ft}t∈Time)

and (Ω̃, F̃, F̃ = {F̃t}t∈Time) be two T-spaces, with truncations {Tt}t∈Time and

{T̃t}t∈Time, respectively.

2.4.1 Structure-preserving maps

A measurable map F : Ω → Ω̃ is said to be non-anticipating if it

is (Ft, F̃t)-measurable, i.e. F−1(F̃t) ⊆ Ft for each t ∈ Time. We have the

13



following characterization using the truncation maps:

Proposition 2.4.1. A measurable map F : (Ω,F)→ (Ω̃, F̃) is non-anticipating

if and only if T̃t ◦ F ◦ Tt = T̃t ◦ F , for all t ∈ Time.

Proof. By Proposition 2.3.1 part (2) we have F̃t = σ(T̃t) = T̃−1
t (F̃), and by

part (5) we have T̃t ◦ F is Ft-measurable if and only if T̃t ◦ F ◦ Tt = T̃t ◦ F .

Therefore for all t ∈ Time:

F−1(F̃t) ⊂ Ft ⇔ F−1(T̃−1
t (F̃)) ⊂ Ft

⇔ T̃t ◦ F is Ft-measurable

⇔ T̃t ◦ F ◦ Tt = T̃t ◦ F

2.4.2 T-subspaces

We say that a T-space (Ω̃, F̃, F̃ = {F̃t}t∈Time) is a T -subspace of

(Ω,F,F = {Ft}t∈Time) if Ω̃ ⊆ Ω and F̃t ⊆ Ft, for all t ∈ Time. As the fol-

lowing result show, subsets preserved by truncation inherit a structure of a

T-space:

Proposition 2.4.2. Let (Ω,F,F = {Ft}t∈Time) be a T-space, and let Ω′ be a

measurable subset of Ω with the property that Tt(Ω
′) ⊆ Ω′, for all t ∈ Time.

Then the family {T ′t}t∈Time given by T ′t = Tt|Ω′, is a truncation, and the filtered

space (Ω′,F′, {F′t}t∈Time), given by F′ = {B ∈ F : B ⊆ Ω′}, Ft = σ(T ′t),

t ∈ Time, is a T-space and a subspace of (Ω,F,F = {Ft}t∈Time).
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Proof. Clearly (Ω′,F′) is a subspace of (Ω,F). To satisfy Definition 2.5.1 of

T-spaces, note that part (1) follows from the construction of Ω′ and F′, and

the properties of part (2) are passed down from T to T ′.

Example 2.4.3. Truncation operators on DE leave invariant several impor-

tant measurable subsets of DE. Among the examples are

1. CE, the family of all everywhere continuous elements of DE

2. DE0
E , the family of paths in DE which start from a point in E0

3. DEF , the family of paths in DE stopped once they hit the closed subset

F of E

4. FV (FV +, FV −), the family of all paths in DR all of whose components

are of finite variation (nondecreasing, nonincreasing)

5. LipLR, the family of all Lipschitz continuous maps from [0,∞) to R, with

the Lipschitz constant at most L

2.4.3 Products

T-spaces behave well under products, too. Indeed, the standard Borel

space Ω̂ = Ω × Ω̃ admits a natural truncation given by the family {T̂t}t∈Time

of maps on Ω̂ defined by

T̃t(ω, ω̃) = (Tt(ω), T̃t(ω̃)). (2.4.1)
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The resulting T-space Ω̂, together with the natural filtration generated by

{T̂t}t∈Time, is called the product of the truncated spaces Ω and Ω̃. It is not

difficult to see that the same construction can be applied to countable products

of truncated spaces.

2.4.4 State maps

A measurable map X : Ω → E, where E is a Polish space is called a

state map. Such maps define a class of progressively measurable E-valued

stochastic processes on Ω via

Xt(ω) = X(Tt(ω)), t ∈ Time ∪ {∞}, ω ∈ Ω

(where the convention T∞(ω) = ω is used). We can also write Xτ for X ◦ Tτ

when τ ∈ Stop.

2.4.5 Actions on measures and kernels

For a probability measure µ ∈ Prob(Ω), and a stopping time τ ∈ Stop

we define the truncated measure µ≤τ as the push-forward of µ via the

truncation map Tτ .

Two analogous operations can be applied to kernels ν from Ω to Ω.

We can truncate the second argument, leading to the truncated kernel ν≤τ ,

where, for each ω ∈ Ω, ν≤τ (ω, ·) is the truncation of the measure ν(ω, ·), as

above. On the other hand, we can define define the restricted kernel ν≤τ by
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truncating in the first argument, i.e., by setting

ν≤τ (ω,B) = ν(Tτ (ω), B).

That ν≤τ is, indeed, a kernel follows from the fact that a Borel measurable

function (like Tτ ) between to Polish spaces remains measurable under the pair

of universal σ-algebras (see [2, Proposition 7.44, p. 172]).

2.5 TC-spaces (truncation-concatenation spaces)

Definition 2.5.1. A truncation-concatenation space (or a TC-space) is

a truncation space (Ω,F,F = {Ft}t∈Time) together with a jointly measurable

map ∗ : C→ Ω, called the concatenation operator, defined on a measurable

subset C ⊆ Ω×Time×Ω, such that the following compatibility conditions hold:

1. for all ω, ω′ ∈ Ω and s, t ∈ Time we have

(ω, t, ω′) ∈ C⇔ (ω≤t, t, ω
′) ∈ C⇔ (ω, t, ω′≤s) ∈ C. (2.5.1)

2. if (ω, t, ω′) ∈ C, then, for all s ∈ Time we have

ω ∗t ω′ = ω≤t ∗t ω′, as well as (2.5.2)

(ω ∗t ω′)≤s =

{
ω≤s, s ≤ t

ω ∗t ω≤s−t, s > t
(2.5.3)

The action of the concatenation operator on the triplet (ω, t, ω′) ∈ C is

denoted by ω ∗t ω′ and is usually interpreted as an element of Ω “obtained by

following ω until time t, with ω′ attached afterwards”. The set C - the domain
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of ∗ - encodes a possible compatibility relation necessary for the concatenation

to be possible. The set of all ω′ ∈ Ω such that (ω, t, ω′) ∈ C is denoted by Cω,t,

and we say that ω′ is compatible with ω at t if ω′ ∈ Cω,t.

In many examples compatibility is established via a state map (as de-

fined in subsection 2.4.4 above):

Definition 2.5.2. Given a TC-space (Ω,F,F = {Ft}t∈Time) and a state map

X, we say that the concatenation operator ∗

1. factors through X if

Xt(ω) = X0(ω′)

⇒ (ω, t, ω′) ∈ C, and

2. is a factor of X if

(ω, t, ω′) ∈ C ⇒ Xt(ω) = X0(ω′).

When needed, we also define ω ∗∞ ω′ = ω, declaring, implicitly, any

two elements of Ω compatible at t =∞, so that Cω,∞ = Ω. This way, as in the

case of the truncation spaces, the time-set Time can be extended to the set of

all stopping times by setting:

ω ∗τ ω′ = ω ∗τ(ω) ω
′ for ω′ ∈ Cω,τ(ω). (2.5.4)

By Proposition 2.3.1, part (3), τ(ω≤τ ) = τ(ω), and, so, the stopping-time

analogue of (2.5.2) holds in TC spaces:

ω ∗τ ω′ = ω ∗τ(ω) ω
′ = ω≤τ(ω) ∗τ(ω) ω

′ = ω≤τ ∗τ(ω≤τ ) ω
′ = ω≤τ ∗τ ω′.
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2.6 Examples of TC-spaces

We go through the list of examples of T-spaces from subsection 2.2 and

describe how a natural concatenation operator can be introduced.

2.6.1 Strict concatenation on path spaces DE and CE

We consider the space DE with the truncation ω≤t(s) = ω(s ∧ t). The

strict concatenation operation • is given by

(ω •t ω′)s =

{
ω(s), s ≤ t

ω′(s− t), s > t,

for ω, ω′ ∈ DE, where ω and ω′ are considered t-compatible if and only if

ω(t) = ω′(0). To check that • is, indeed, a concatenation is straightforward,

and we only remark that the joint measurability of • (in all three of its argu-

ments) follows from the observation that, as a function of the inner argument

t, it is right-continuous in the Skorokhod topology. When applied on its com-

patibility set C, the operation • preserves continuity, so it can be used to define

a concatenation operator on CE, as well. Finally, it is straightforward that

X(ω) := lim inf
t→∞

ω(t)

defines an E = R̄-valued state map with the property Xt(ω) = ω(t) for t ∈

Time and such that the concatenation operator • factors through it.

Remark 2.6.1. We note that many subspaces of DE are closed under the strict

concatenation. The reader will easily check that all the spaces in Example

2.4.3 have this property, making them into TC-spaces themselves.
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2.6.2 Adjusted concatenation on DE and CE

When E admits the structure of a linear space, we can define another

concatenation operator on it, namely the adjusted concatenation operator

?. It is given for ω, ω′ ∈ DE by

(ω ?t ω
′)s =

{
ω(s), s ≤ t

ω(t) + ω′(s− t)− ω′(0), s > t,

with no restrictions on compatibility, i.e., with C = Ω × Time × Ω. It is

clear that the strict and the adjusted concatenation operators agree on the

compatibility set of •, and that ∗ can be restricted to CE without loosing any

properties required of a concatenation.

2.6.3 Spaces of measures

We define the concatenation operator ∗ on the space Ω = M#([0,∞)×

E), described in subsection 2.2 as follows. For µ, µ′ ∈ Ω, we set

(µ ∗t µ′)(A) = µ
(

([0, t)× E) ∩ A
)

+ µ′
((

([t,∞)× E) ∩ A
)
− t
)
,

where B − t = {(x, s− t) : (x, s) ∈ B}, for B ⊆ [t,∞)×E. No compatibility

restrictions are imposed. There should be no difficulty in checking that ∗

satisfies all defining properties of a concatenation, without. We also note that

the same construction applies when M# is replaced by Mf .

In the case when Mp is considered, the above operation does not pre-

serve total mass. This cannot be fixed by restricting compatibility, but can be

overcome by defining another concatenation operation as follows:

(µ ∗̃t µ′)(A) = µ
(

([0, t)×E)∩A
)

+
(

1−µ([0, t)×E)
)
µ′
((

([t,∞)×E)∩A
)
−t
)
,
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2.6.4 L0
A spaces

When the underlying measure λ is the Lebesgue measure, we usually

concatenate L0
A functions as follows:

(f ∗t g)u =

{
fu, u ≤ t

gu−t, u > t
,

with no compatibility restriction.

2.7 Concatenation of measures in TC-spaces

The ability to concatenate elements of Ω extends to probability mea-

sures and kernels on Ω. We say that a measure µ ∈ Prob(Ω) and a kernel

ν ∈ Kern(Ω) on a TC-space are compatible at the stopping time τ if

ν≤τω (Cω,τ(ω)) = 1, for µ-almost all ω.

When ∗ factors through a state map X, a sufficient condition for com-

patibility of µ ∈ Prob(Ω) and ν ∈ Kern(Ω) at τ is that

ν≤τω

(
X0 = Xτ (ω)

)
= 1, for µ-almost all ω with τ(ω) <∞. (2.7.1)

Using the convention, as above, that Ω×{∞}×Ω′ ⊆ C, we also note that, given

a stopping time τ , the set Cτ = {(ω, ω′) : (ω, τ(ω), ω′) ∈ C} is a pullback of

the Borel set C via the measurable map (ω, ω′) 7→ (ω, τ(ω), ω′), and, therefore,

itself measurable.

For µ ∈ Prob(Ω) and a τ -compatible kernel ν ∈ Kern(Ω) let µ⊗ ν≤τ ∈

Prob(Ω × Ω) denote the product of µ and the τ -restriction of ν. The con-

catenation µ ∗τ ν is then defined as the push-forward of this product via the
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measurable map Cτ 3 (ω, ω′) 7→ ω ∗τ(ω) ω
′. We note that the compatibility

relation introduced above implies that µ ⊗ ν≤τ (Cτ ) = 1, so that µ ∗τ ν is,

indeed, a probability measure. Moreover, we have∫
G(ω) (µ ∗τ ν)(dω) =

∫
G(ω ∗τ ω′) (µ⊗ ν≤τ )(dω, dω′)

=

∫∫
G(ω ∗τ ω′) ν≤τω (dω′)µ(dω),

for any sufficiently integrable random variable G on Ω. The compatibility

condition (2.5.2) implies further that∫
Gd(µ ∗τ ν) =

∫∫
G(ω≤τ ∗τ ω′) ν≤τω (dω′)µ(dω) (2.7.2)

=

∫∫
G(ω̃ ∗τ ω′) ν≤τω (dω′)µ≤τ (dω̃), (2.7.3)

where µ≤τ is the push forward of µ via Tτ .

2.7.1 Tail maps

Tail maps on TC-spaces will play an important role in the dynamic pro-

gramming principle and will model payoffs associated to controlled processes.

Definition 2.7.1. A measurable map G from a TC-space to a measurable

space S is called a tail map if G(ω ∗t ω′) = G(ω′) for all t ∈ Time, all ω ∈ Ω

and all ω′ ∈ Cω,t. When S = R (S = R̄), a tail map is called a tail random

variable (extended tail random variable).

The tail property of random variables extends readily to stopping times
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in the following form:

G(ω ∗τ ω′) =

{
G(ω′), τ(ω) <∞
G(ω), τ(ω) =∞,

as long as ω′ is compatible with ω at τ . Combining this expression with (2.7.2)

we obtain the following equality, valid for each stopping time τ , probability

µ ∈ Prob(Ω), a τ -compatible kernel ν ∈ Kern(Ω), and a sufficiently integrable

tail random variable G:∫
Gd(µ ∗τ ν) =

∫
G̃(ω≤τ )µ(dω), (2.7.4)

where

G̃(ω) = G(ω)1{τ(ω)=∞} +

∫
G(ω′) νω(dω′)1{τ(ω)<∞}.

2.8 Control Structures

A map P : A → 2B, where 2B denotes the power-set of B is called a

correspondence from A to B, denoted by f : A � B. Its graph Γ(f) ⊆

A × B is given by Γ(f) = {(a, b) : a ∈ A, b ∈ f(a)}, and its image by

Im(f) = ∪a∈Af(a). A correspondence is said to be non-empty-valued if

f(a) 6= ∅ for all a ∈ A.

Definition 2.8.1. A non-empty-valued correspondence P : Ω � Prob(Ω), on

a measurable space Ω is called a control structure.

Given a control structure P, a universally measurable random variable

G is said to be P-lower semi-integrable, denoted by G ∈ L0−1(P), if G− ∈
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L1(µ) for each µ ∈ ImP. To each control structure P and each G ∈ L0−1(P)

we associate the value function v : Ω→ (−∞,∞], given by

v(ω) = sup
µ∈P(ω)

∫
Gdµ. (2.8.1)

2.9 Three key properties

As we will see below, there are three key properties that control struc-

tures must satisfy in order for our main results to apply. one:

Definition 2.9.1. A control structure P on standard Borel space Ω is called

1. analytic if its graph Γ(P) is an analytic subset of the (standard Borel)

space Ω× Prob(Ω).

A control structure P defined on a TC space (Ω,F,F = {Ft}t∈Time) is said to

be

2. concatenable if for each ω ∈ Ω, µ ∈ P(ω), ν ∈ S(P), and each stopping

time τ , ν is τ -compatible with µ and

µ ∗τ ν ∈ P(ω).

3. disintegrable if for each ω ∈ Ω, µ ∈ P(ω) and a stopping time τ there

exists ν ∈ S(P) such that ν is µ-compatible at τ and

µ = µ ∗τ ν.
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We state for completeness the following result which will be used in

the sequel, and the proof of which follows almost verbatim the argument in

[11, Theorem 2.4, part 1., p. 1605], which, in turn, is a reformulation of the

standard argument available, for example, in [2]. We recall that a universally

measurable selector (or, simply, a selector) is a (universally measurable)

kernel form Ω to Prob(Ω) with the property that ν(ω) ∈ P(ω), for each ω; the

family of all selectors is denoted by S(P). We also remind the reader of the

convention +∞− ε = 1/ε, for ε > 0.

Proposition 2.9.2 (Universal measurability of value functions). Suppose that

Ω is a standard Borel space, P an analytic control structure, G : Ω→ [−∞,∞]

a Borel measurable function, and v the associated value function, given by

(2.8.1). Then v is universally measurable and for each ε > 0 there exists a

(universally measurable) selector νε ∈ S(P) such that

v(ω)− ε ≤
∫
Gdνεω, for all ω ∈ Ω.

2.10 An abstract version of the dynamic programming
principle

We are ready to state the most abstract version of the DPP that holds

in our setting. A more directly applicable - and more familiar-looking - version,

based on the notion of a state map will be given below. The ideas in the proof

are entirely standard. In fact, our setting is constructed as the most flexible

one where this proof can be applied. We provide the details in our setting for

the reader’s convenience.
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Theorem 2.10.1 (DPP). Let P be an analytic control structure on a TC space

Ω, G ∈ L0−1(P) a tail random variable, and v the associated value function,

given by (2.8.1). Then,

1. If P is concatenable, then, for each ω ∈ Ω and each stopping time τ we

have

v(ω) ≥ sup
µ∈P(ω)

∫
v ◦ Tτ1{τ<∞} +G1{τ=∞} dµ (2.10.1)

2. If P is disintegrable, then, for each ω ∈ Ω and each stopping time τ we

have

v(ω) ≤ sup
µ∈P(ω)

∫
v ◦ Tτ1{τ<∞} +G1{τ=∞} dµ (2.10.2)

Proof. Suppose, first, that P is concatenable and pick ω ∈ Ω, µ ∈ P(ω) and

a stopping time τ . Given ε > 0, Proposition 2.9.2 guarantees the existence of

an ε-optimizing selector νε, i.e., such that vε(ω) :=
∫
Gdνεω ≥ v(ω) − ε, for

each ω ∈ Ω. We construct the measure µ′ by concatenating µ and νε at τ .

The assumption of concatenability implies that they are compatible and that

µ′ ∈ P(ω). Therefore,

v(ω) ≥
∫
Gdµ′ =

∫
Gd(µ ∗τ νε) =

∫∫
G(ω ∗τ ω′) (νε)≤τω (dω′)µ(dω)

=

∫∫
G(ω)1{τ(ω)=∞} +G(ω′)1{τ(ω)<∞}(ν

ε)≤τω (dω′)µ(dω)

≥
∫
G(ω)1{τ(ω)=∞} + (v(ω≤τ )− ε)1{τ(ω)<∞} µ(dω),

which implies (2.10.1).
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In the disintegrable case, we pick ε > 0, ω ∈ Ω, τ ∈ Stop and choose

µε ∈ P(ω) such that v(ω) − ε ≤
∫
Gdµε. By disintegrability, we can write

µε = µε ∗τ ν for some ν ∈ S(P), and so

v(ω)− ε ≤
∫
Gd(µε ∗τ ν)

=

∫
G(ω)1{τ=∞} + 1{τ<∞}

(∫
G(ω′)ν≤τω (dω′)

)
µ(dω)

≤
∫
G(ω)1{τ=∞} + v(ω≤τ )1{τ<∞} µ(dω).

2.10.1 State maps and factoring

We remind the reader that, as defined in subsection 2.4.4, a state map

X : Ω → E is simply a measurable map from a T-space to a Polish space E,

and that Xτ is a shortcut for X ◦ Tτ , for τ ∈ Stop. Just like (concatenation)

compatibility may factor through X, so can a control structure:

Definition 2.10.2. A control structure P on Ω is said to factor through

a state map X if there exists a correspondence P̄ : E � Prob(Ω) such that

P(ω) = P̄(X(ω)) ⊆ Prob(Ω), i.e., the following diagram commutes:

Ω E

Prob(Ω)

X

P
P̄

(2.10.3)

A very simple, but important, consequence of the existence of a state

map through which the control structure P factors is that, in that case, v

factors through it, as well. Indeed, the function v̄ : E → [−∞,∞], given
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by v̄(x) = supµ∈P̄(x)

∫
Gdµ, then has the property that v̄(X(ω)) = v(ω) and,

under the conditions of Theorem 2.10.1, satisfies

v̄(x) ≤ (≥) sup
µ∈P(x)

∫ (
v̄(Xτ )1{τ<∞} +G1{τ=∞}

)
dµ

for all x ∈ ImX, and all stopping times τ ∈ Stop.
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Chapter 3

Martingale-Generated Control Structures

The next task is so take the abstraction level down a notch and study a

class of control structures defined via a family of martingale conditions. These

structures generalize the standard martingale formulation in the theory of

stochastic optimal control and are defined via a family of structure-preserving

maps into the model space space D0
R of R-valued càdlàg paths x : Time → R

with x(0) = 0.

3.1 Canonical local martingale measures

With the T -space structure of DR described in subsection 2.2, each non-

anticipating map F from a T-space (Ω,F,F = {Ft}t∈Time) into DR induces a

sequence {F n} of non-anticipating maps

F n
t = FτFn ∧t where τFn (ω) = inf{t ≥ 0 : |Ft(ω)| ≥ n} ∧ n. (3.1.1)

When the choice of F is evident from context, we may drop the superscript

and write τn = τFn .

Definition 3.1.1. A probability measure µ ∈ Prob(Ω) is said to be a canoni-

cal local-martingale probability for F if the stochastic process {F n
t (·)}t∈Time
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is a martingale under (µ,F) for each n ∈ N. The set of all canonical local mar-

tingale probabilities for F is denoted by MF,loc.

Remark 3.1.2. The notion of a canonical local martingale differs from the

standard notion of a local martingale in that it requires that the reducing se-

quence takes a particular form, namely that of the sequence of space-time exit

times. This requirement is nontrivial, as it is known that there are local mar-

tingales that cannot be reduced by this particular sequence (see [10, Lemme

2.1., p. 57]). On the other hand, this notion suffices for applications, as we

will be dealing with continuous processes or processes with bounded jumps; in

those classes all local martingales are canonical in our sense.

With the notion of a canonical local martingale probability under our

belt, we can define a large class of control structures. Housed on T-spaces,

they need two ingredients to be specified: 1) a family of D of non-anticipating

maps from Ω→ DR, and 2) a state map X from Ω to a Polish space E. Once

these are specified, for x ∈ E we define

P (x) =
⋂
F∈D

MF,loc ∩
{
µ ∈ Prob(Ω) : X0 = x, µ-a.s.

}
, (3.1.2)

where, as usual, X0 is the shortcut for X ◦T0. The (D, X)-generated control

structure P = P(D, X) : Ω � Prob(Ω) is then defined by

P(ω) = P (X(ω)) for ω ∈ Ω,

so that it naturally factors through X.
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3.2 Sufficient conditions for analyticity

The ubiquitous Polish-space structure woven into all the ingredients of

our setup makes it possible to give widely met sufficient conditions on the

family D such that the resulting (D, X)-structure becomes analytic. The

countability condition we impose on D is not the weakest possible, but since

it holds in most relevant examples, we only comment on some possible routes

towards establishing weaker versions in Remark 3.2.3 below.

Proposition 3.2.1. Let D be a countable family of nonanticipating maps from

a T-space Ω to DR and let X : Ω → E be a state map. Then the (D, X)-

generated control structure P is analytic.

The proof is based on a modification of [11, Lemma 3.6, p. 1611], where

QStop =
{
q1A + r1Ac : q ≤ r ∈ QTime, A ∈ Πq

}
with QTime denoting a countable dense set in Time, and {Πq}q∈QTime a col-

lection of countable π-systems such that σ(Πq) = Fq for all q ∈ QTime. The

exact choice of QTime or {Πq}q∈QTime is unimportant, as long as it is fixed

throughout.

Lemma 3.2.2. For each non-anticipative map F , we have

MF,loc =
⋂{

µ ∈ Prob(Ω) : F n
q , F

n
r ∈ L1(µ) and Eµ[F n

r 1A] = Eµ[F n
q 1A]

}
(3.2.1)

where the intersection is taken over all n ∈ N, q < r ∈ QTime and A ∈ Πq.
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Proof. The inclusion MF,loc ⊆ . . . is straightforward. Conversely, let µ ∈

Prob(Ω) be an element of the right-hand side of (3.2.1). We first show that

µ ∈MFn

QTime, where MFn

QTime denotes the set of all µ ∈ Prob(Ω) with the property

that {F n
t }t∈QTime is a µ-martingale with respect to {Ft}t∈QTime. That is an

immediate consequence of the equalities of expectations under µ on the right-

hand-side of (3.2.1). Considered over all A ∈ Πq, with q < r ∈ QTime, they

amount to Eµ[F n
r |Fq] = F n

q , a.s., by π-λ-theorem.

It remains to argue that F n is a µ-martingale on entire Time. Assuming,

without loss of generality, that Time = [0,∞), we start by picking s ∈ Time \

QTime and r ∈ QTime with r > s. The backward martingale convergence

theorem implies that

Eµ[F n
r |Fs+] = F n

s , µ-a.s.

Since F n is non-anticipative, F n
s is Fs-measurable and we may replace Fs+ by

Fs in the equality above. Finally, for t ∈ Time with t > s, we approximate F n
t

by a sequence {F n
rm}m∈N with rm ↘ t and rm ∈ QTime, to conclude that F n

is, indeed, a martingale under µ.

Proof of Proposition 3.2.1. For each r ∈ Time, the coordinate maps are Borel

measurable on DR and, so, µ 7→ Eµ[Fr1A] is Borel on Ω. It is easy to see that

the family of probability measure under which a given real-valued Borel map

is integrable is also a Borel set, so it follows that MF,loc is Borel for each F .

The countability of D guarantees that ∩F∈DMF,loc, as well. Finally, the graph
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of P is analytic (in fact Borel) as it is given as an intersection of a Borel sets

Γ(P) =
{

(ω, µ) : µ
(
X0 = X0(ω)

)
= 1
}
∩

(
Ω×

⋂
F∈D

MF

)
.

Remark 3.2.3. When D is not countable, the set ∩F∈DMF,loc is not necessarily

Borel measurable (or even analytic) in general. The situation is somewhat

more pleasant when D admits a structure of a Borel space with the property

that the maps

D 3 F 7→ Eµ[Fr], r ∈ Time,

are measurable for each probability measure µ ∈ Prob(Ω). In that case, the

intersection ∩F∈DMF,loc can be represented as a co-projection

{µ ∈ Prob(Ω) : ∀F ∈ D, (F, µ) ∈M}

of the Borel set M = {(F, µ) ∈ D×Prob(Ω) : µ ∈MF,loc}. Unlike projections,

the images of co-projections are co-analytic, but not necessarily analytic sets.

Not everything is lost, however, as we usually know a great deal more about

the set M, other than the fact that it is a Borel set. Indeed, the countable

case of Proposition (3.2.1) corresponds to the measurable-selection theorem

of Lusin for sets with countable sections (see [9, Theorem 5.7.2, p. 205]. On

the other side of the spectrum are measurable selection theorems with large

sections (see Section 5.8 in [9]), which can be used for certain uncountable D.

3.3 Sufficient conditions for concatenability

Having discussed analyticity, we turn to the second major assumption

of our abstract DPP theorem, namely concatenability. It is not hard to see that
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without additional requirements on D, no (D, X)-generated control structure

should be expected to be concatenable. A natural requirement, as we will see

below, is that the maps F preserve the structure of TC-spaces.

Definition 3.3.1. A measurable map F : Ω → Ω̃ between two TC-spaces,

with concatenation operators ∗ and ∗̃ (and compatibility sets C and C̃) is

called a TC-morphism if

1. F is non-anticipating, and

2. for all t ∈ Time, and all ω, ω′ ∈ Ω with ω′ ∈ Cω,t we have F (ω′) ∈ C̃F (ω),t

and

F (ω ∗t ω′) = F (ω) ∗̃t F (ω′).

TC-morphisms intoD0
R are especially important for martingale-generated

structures. We remind the reader that DR comes with two different, natural,

concatenations, namely, the strict one (•) and the adjusted one (?). We will

only work with the adjusted one in this section, but, in order to avoid any

confusion, we will write (DR, ?) and (D0
R, ?) throughout.

Definition 3.3.2. A map F : Ω → DR is said to be canonically locally

bounded if there exists a sequence {Mn}n∈N of positive constants so that

|F n(ω)t| ≤Mn for all ω ∈ Ω, t ∈ Time. (3.3.1)

A simple sufficient condition for canonical local boundedness is that the jumps

of F (when seen as a stochastic process on Ω) are uniformly bounded.
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Proposition 3.3.3. Let D a family of canonically locally bounded TC-morphisms

into (D0
R, ?), and let X be a state map. Then the (D, X)-generated control

structure P is closed under concatenation.

The proof is based on the several lemmas. We omit the straightforward

proof of the first one.

Lemma 3.3.4. Suppose that F is a TC-morphism into (DR, ?). For all stop-

ping times κ we have

Fκ+t(ω ∗κ ω′)− Fκ+s(ω ∗κ ω′) = Ft(ω
′)− Fs(ω′)

for all ω ∈ Ω with κ(ω) <∞, ω′ ∈ Cω,κ(ω) and all s, t ∈ Time.

Our second lemma gives a convenient characterization of canonical local

martingales. We use Stop, as in the case of T-spaces, to denote the set of all

Time-valued (raw) stopping times. We also write Y n = Y τn , where τn =

inf{t ≥ 0 : |Yt| ≥ n} ∧ n, and note that all sampled values of Y in the

statement are well-defined thanks to the fact that each Y n is constant after

t = n.

Lemma 3.3.5. Let (Ω,F,F = {Ft}t∈Time,P) be a filtered probability space,

{Yt}t∈Time a càdlàg and adapted process, and κ a stopping time with Y n
κ ∈ L1

for each n ∈ N. Then, the following two statements are equivalent

1. Y is a canonical local martingale.
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2. G ∈ L1 and E[G] = 0 for all

G ∈
⋃
n∈N

X≤κn (Y ) ∪ X≥κn (Y ),

where the countable sets X≤κn and X≥κn are given by

X≤κn (Y ) =
{
Y n
τ∧κ − Y n

κ : τ ∈ QStop
}
,

X≥κn (Y ) =
{
Y n
τ∨κ − Y n

κ : τ ∈ QStop
}
.

Proof. (1)⇒ (2) Assuming that Y is a canonical local martingale, each Y n is

martingale constant after t = n, and, so, a uniformly-integrable martingale.

Stopping times in QStop are bounded, so, by the optional sampling theorem,

(2) holds.

(2)⇒ (1) Suppose that (2) holds and that n ∈ N is fixed. We take the

advantage of the fact that Y is càdlàg to conclude (as in the proof of Lemma

3.2.2) that it suffices to show that Y n is a martingale on QTime. For that, in

turn, we choose τ ∈ QStop, so that τ = p1A + q1Ac for some p ≤ q ∈ QTime

and A ∈ Πp and note that

Y n
τ − Y n

κ =
(
Y n
τ∧κ − Y n

κ

)
+
(
Y n
τ∨κ − Y n

κ

)
.

Since Y n
τ∧κ − Y n

κ ∈ X≤κ Y n
τ∨κ − Y n

κ ∈ X≥κ and Y n
κ ∈ L1, we conclude that

Y n
τ ∈ L1 and that E[Y n

τ ] = E[Y n
κ ]. It follows that the value of E[Y n

τ ] does not

depend on the choice of τ , making Y n into a martingale.
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Lemma 3.3.6. Let Ω be a TC-space and κ, τ ∈ Stop such that κ ≤ τ . For

ω ∈ Ω we define τ ′ω by

τ ′ω(ω′) =

{
τ(ω ∗κ ω′)− κ(ω), κ(ω) <∞ and ω′ ∈ Cω,κ(ω)

+∞, otherwise,

Then the map (ω, ω′) 7→ τ ′ω(ω′) is jointly measurable, τ ′ω ∈ Stop for any fixed

ω ∈ Ω, and τ(ω ∗κ ω′) = κ(ω) + τ ′ω(ω′).

Proof. By construction, we clearly have τ(ω ∗κ ω′) = κ(ω) + τ ′ω(ω′). With the

convention that τ(ω ∗κ ω′)− κ(ω) = ∞ when κ(ω) = ∞, we note that τ ′ can

be expressed as:

τ ′ω(ω′) = (+∞)1Cc(ω, κ(ω), ω′) + (τ(ω ∗κ ω′)− κ(ω))1C(ω, κ(ω), ω′)

and is hence jointly measurable. It remains to argue that τ ′ω is a stopping

time. We fix ω ∈ Ω with k = κ(ω) <∞, and for s ∈ Time define

A = {ω′ ∈ Ω : τ ′(ω′) ≤ s} = {ω′ ∈ Cω,k : τ(ω ∗k ω′) ≤ s+ k}.

By Proposition 2.3.1, part (1), it will suffice to show that T−1
s (A) = A, i.e.,

for ω′ ∈ Ω we have (a)⇔ (b), where

(a) ω′ ∈ Cω,k and τ(ω ∗k ω′) ≤ s+ k, and

(b) (ω′)≤s ∈ Cω,k and τ(ω ∗k (ω′≤s)) ≤ s+ k.

The first, compatibility-related, parts of statements of (a) and (b) are equiv-

alent to each other by the assumptions in (2.5.1) of Definition 2.5.1. To deal
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with the inequalities involving τ we use Proposition 2.3.1, part (2), as well as

the assumption 2.5.3 of Definition 2.5.1 to conclude that

τ
(
ω ∗k (ω′≤s)

)
≤ s+ k ⇔ τ

((
ω ∗k (ω′≤s)

)
≤s+k

)
≤ s+ k

⇔ τ
(

(ω ∗k ω′)≤s+k
)
≤ s+ k

⇔ τ
(
ω ∗k ω′

)
≤ s+ k.

Proof of Proposition 3.3.3. Let P be the (D, X)-generated control structure

as in the statement, and let ω0 ∈ Ω, µ ∈ P(ω0), a kernel ν ∈ S(P) and a

stopping time κ be given.

First, we argue that ν is κ-compatible with µ. By the definition of P,

we have νω(X0 = X(ω)) = 1 for each ω ∈ Ω. After a composition with Tκ,

we get ν≤κω (X0 = Xκ(ω)) = 1 for each ω ∈ Ω, which implies compatibility,

according to the criterion of (2.7.1).

Next, we show that µ′ = µ ∗κ ν ∈ P(ω0). Part (2) of Definition 2.5.1

makes it clear that for x = X0(ω0) we have µ′(X0 = x) = 1. Therefore, we

need to argue that µ′ ∈ MF,loc, for each F ∈ D. By Lemma 3.3.5, this is

equivalent to checking
∫
Gd(µ ∗κ ν) = 0 for all G ∈ ∪n∈NX≤κn (F ) ∪ X≥κn (F ).

We fix n ∈ N and treat the two cases separately:

1. G ∈ X≤κn (F ): In this case there exists τ ∈ QStop, such that G(ω) =

F n
(τ∧κ)(ω)(ω)−F n

κ(ω)(ω). By Definition 2.5.1, part (2), we have (τ∧κ)(ω∗κω′) =

(τ∧κ)(ω) and κ(ω∗κω′) = κ(ω), so that, by the non-anticipativity of F n (which
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follows from the non-anticipativity of F ), we have

G(ω ∗κ ω′) = F n
(τ∧κ)(ω)(ω ∗κ ω′)− F n

κ(ω)(ω ∗κ ω′)

= F n
(τ∧κ)(ω)(ω)− F n

κ(ω)(ω) = G(ω).

Since G is bounded (since so is F n) we have∫
Gdµ′ =

∫∫
G(ω ∗κ ω′) ν≤κω (dω′)µ(dω) =

∫
G(ω)µ(dω) = 0,

where the last equality follows from the fact that µ ∈MF,loc.

2. G ∈ X≥κn (F ): Let τ ∈ QStop be such that G = F n
τ∨κ − F n

κ . Then∫
F n
τ∨κ(ω)− F n

κ (ω)µ′(dω) =

∫
1{τn>κ}(ω)(F n

τ∨κ(ω)− F n
κ (ω))µ′(dω)

=

∫
1{τn>κ}(ω)(F(τ∧τn)∨κ(ω)− Fκ(ω))µ′(dω)

Note that (τ ∧ τn) ∨ κ ≥ κ, and let τ ′ be as in Lemma 3.3.6 (applied to

(τ ∧ τn) ∨ κ). Also note that by Proposition 2.3.1, {τn > κ} ∈ Fκ = σ(Tκ).

Therefore 1{τn>κ} is σ(Tκ)-measurable and so 1{τn>κ}(ω∗κω′) = 1{τn>κ}(ω≤κ) =

1{τn>κ}(ω). Continuing with the equalities from above, we have∫
F n
τ∨κ(ω)− F n

κ (ω)µ′(dω) =

=

∫∫
1{τn>κ}(ω)(Fκ(ω)+τ ′ω(ω′)(ω ∗κ ω′)− Fκ(ω ∗κ ω′)) νω(dω′)µ(dω)

=

∫∫
1{τn>κ}(ω)(Fτ ′ω(ω′)− F0(ω′)) νω(dω′)µ(dω)

=

∫∫
1{τn>κ}(ω)Fτ ′ω(ω′) νω(dω′)µ(dω).

where the last equality used the TC-morphism assumption together with

Lemma 3.3.4. With Mn given by (3.3.1), |F | is bounded on [0, τ ′ω] by 2M2n
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when ω ∈ {κ < τn}, By the canonical local martingale property, we have∫
Fτ ′ω(ω′) νω(dω′) = 0 for each ω ∈ {κ < τn}. Thanks to boundedness, again,

the integral of G can be computed as an iterated integral:∫
Gdµ′ =

∫
1{τn>κ}(ω)

(∫
Fτ ′ω(ω′) νω(dω′)

)
µ(dω)

and therefore
∫
Gdµ′ = 0.

3.4 Sufficient conditions for disintegrability

The key to disintegrability for martingale-generated control structures

is the existence of a shift operator, as described below. It plays the role of a

partial inverse of the concatenation operator in the second argument.

Definition 3.4.1. A measurable map θ : Time× Ω→ Ω is said to be a shift

operator if for all ω ∈ Ω, t, s ∈ Time and ω′ ∈ Cω,t:

1. θt(ω) ∈ Cω,t and ω ∗t θt(ω) = ω,

2. (θt(ω))≤t+s = (θt(ω≤s))≤t+s

Remark 3.4.2. Since Ft = σ(Tt) on Ω, then part (2) of Definition 3.4.1 is

equivalent to:

∀ t, s ∈ Time : θ−1
t (Ft+s) ⊂ Fs

The stopping-time version of a shift operator θ is defined in the natural

way

θτ (ω) = θτ(ω)(ω),
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where, for definiteness, we set θ∞(ω) = ω, for all ω. This way, θτ : Ω → Ω is

Borel measurable and retains the property that ω ∗τ θτ (ω) = ω, for all ω ∈ Ω

and τ ∈ Stop.

Lemma 3.4.3. For any κ, σ ∈ Stop, the following is also a stopping time:

τ(ω) := κ(ω) + σ(θκ(ω))

Proof. Fix any t ∈ Time and ω ∈ Ω. In order to show {τ ≤ t} ∈ Ft, it is enough

to show that τ(ω) ≤ t if and only if τ(ω≤t) ≤ t. Applying Proposition 2.3.1 to

σ and using part (2) of the definition of θ gives the following equivalence:

τ(ω) ≤ t⇔ σ(θκ(ω)(ω)) ≤ t− κ(ω)

⇔ σ((θκ(ω)(ω))≤t−κ(ω)) ≤ t− κ(ω)

⇔ σ((θκ(ω)(ω≤t))≤t−κ(ω)) ≤ t− κ(ω)

⇔ σ(θκ(ω)(ω≤t)) ≤ t− κ(ω)

First suppose τ(ω) ≤ t. Since κ is a stopping time and κ(ω) ≤ τ(ω) ≤ t, then

κ(ω) = κ(ω≤t). Together with the above equivalence, this implies:

τ(ω≤t) = κ(ω≤t) + σ(θκ(ω≤t)(ω≤t))

= κ(ω) + σ(θκ(ω)(ω≤t)) ≤ t

For the other direction, suppose τ(ω≤t) ≤ t. Since κ is a stopping time and

κ(ω≤t) ≤ τ(ω≤t) ≤ t, then κ(ω≤t) = κ(ω). Therefore:

κ(ω) + σ(θκ(ω)(ω≤t)) = κ(ω≤t) + σ(θκ(ω≤t)(ω≤t)) = τ(ω≤t) ≤ t,

which implies τ(ω) ≤ t by the equivalence above.
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Proposition 3.4.4. Let (Ω,F,F = {Ft}t∈Time) be a TC-space with concatena-

tion operator ∗, on which a shift operator θ is defined. Suppose each F ∈ D is

a canonically locally bounded TC-morphism into (D0
R, ?), and that ∗ is a factor

of X. Then P(D, X) is disintegrable.

Proof. Having fixed a shift operator θ, we pick ω0 ∈ Ω, µ ∈ P(ω0) and κ ∈ Stop.

For a stopping time σ ∈ QStop and define

σn(ω) = (σ ∧ τn)(ω)

τ(ω) = κ(ω) + σ(θκ(ω))

so that τ is a stopping time by Lemma 3.4.3. Since F is a TC-morphism into

(D0
R, ?) Lemma 3.3.4 implies that

Fτ (ω)− Fκ(ω) = Fκ+σn(θκ)(ω ∗κ θκω)− Fκ(ω) = Fσn(θκω) = F n
σ (θκω).

The same Lemma implies that |F | is bounded by |Fκ| + Mn on the entire

stochastic interval [0, τ ]. In particular, for Am = {|Fκ| ≤ m} we have

1AmFσn ◦ θκ = 1Am

(
Fτ − Fκ

)
= 1Am

(
Fm+Mn
τ − Fm+Mn

κ

)
.

Since Fm+Mn is a bounded martingale under µ, for any bounded measurable

function H on E we have
∫
H(X(ω≤κ))1Am(ω)F n

σ (θκω)µ(dω) = 0, and, given

that F n is bounded, we can pass to the limit m → ∞ by the dominated

convergence theorem to obtain∫
H(X(ω≤κ))F

n
σ (θκω)µ(dω) = 0, (3.4.1)
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for all bounded and measurable H. With νx denoting a version of the regular

conditional distribution of θκ given Xκ = x, we then have

0 =

∫
H(X(ω≤κ))F

n
σ (θκω)µ(dω) =

∫∫
H(x)F n

σ (ω′) νx(dω
′)µXκ(dx),

where µXκ is the µ-distribution of Xκ. Since H is arbitrary, it follows that∫
F n
σ dνx = 0 for µXκ-almost all x ∈ E, (3.4.2)

for all σ ∈ QStop and all n ∈ N. Since QStop is countable, there exists a set

N1 ∈ Borel(E) such that µXκ(N1) = 0, and the equality in (3.4.2) holds for all

x ∈ E \N1 and σ ∈ QStop. Therefore νx ∈MF,loc for all x ∈ E \N1.

Since ∗ is a factor of X, we have X(Tκ(ω)) = X0(θκ(ω)) for all ω, and

so

1 =

∫
1{Xκ(ω)=X0(ω≥κ)} µ(dω) =

∫∫
1{x=X0(ω′)}νx(dω

′)µXκ(dx),

This implies that there exists another zero set N2 ∈ Borel(E) such that

µXκ(N2) = 0 and X0 = x, νx-a.s. for all x ∈ E \ N2. Hence, νx ∈ P̄(x)

for all x /∈ N1 ∪ N2. By picking a selector ν ′ of P̄ (which is nonempty by

Proposition 2.9.2) and using it to set the values of νx on N1 ∪ N2, we can

arrange that νx ∈ P̄(x), for all x ∈ E.

3.5 Main Result

Theorem 3.5.1 (DPP for Martingales). Let (Ω,F,F = {Ft}t∈Time) be a TC-

space with concatenation operator ∗ and a shift operator θ. Suppose that X is
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state map from Ω to a Polish space E such that ∗ is a factor of X, and that

D is a countable collection of canonically locally bounded TC-morphisms from

(Ω, ∗) into (D0
R, ?). Define the control structure as:

P (x) =
⋂
F∈D

MF,loc ∩
{
µ ∈ Prob(Ω) : X0 = x, µ-a.s.

}
P(ω) = P (X(ω)) for ω ∈ Ω

Let G ∈ L0−1(P) be a tail random variable, and define the value function as

v̄(x) = sup
µ∈P (x)

∫
Gdµ

Then for all ω ∈ Ω, x ∈ E, and τ ∈ Stop we have:

v̄(x) = sup
µ∈P (x)

∫
v̄(Xτ )1{τ<∞} +G1{τ=∞} dµ

Proof. Use Propositions 3.2.1, 3.3.3, and 3.4.4 to get the analyticity, con-

catenability, and disintegrability (respectively) of the control structure (D, X).

Then apply Theorem 2.10.1.
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Chapter 4

Controlled Diffusions: the Weak Formulation

4.1 Problem formulation and the main result

Throughout this section we fix the following:

1. a nonempty open set O in Rn and set E = ClO (the state space),

2. a nonempty standard Borel space A, (the control space),

3. Borel measurable functions β : E×A→ Rn and σ : E×A→ Rn×n (the

coefficients),

4. a Borel measurable function g : E → [−∞,∞] (the objective func-

tion).

We remind the reader that CE∂O denotes the set of all continuous tra-

jectories with values in E that get absorbed once they hit the boundary ∂O.

4.1.1 Weak solutions to controlled SDEs

With Einstein’s summation convention used throughout, we start by

making precise what we mean by a controlled diffusion.
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Definition 4.1.1 (Weak solutions to controlled SDEs). A probability measure

µ on CE∂O is said to be a weak solution of the controlled SDE

dξit = βi(ξt, αt) dt+ σik(ξt, αt) dW
k
t , ξ0 = x, (4.1.1)

with absorption in ∂O - denoted by µ ∈ Lx(β, σ) - if there exists fil-

tered probability space (Ω,F, {Ft}t∈[0,∞),P) on which three stochastic process

{Wt}t∈[0,∞), {ξt}t∈[0,∞) and {αt}t∈[0,∞) are defined, such that:

1. W is an Rn valued {Ft}t∈[0,∞)-Brownian motion,

2. ξ is adapted and ξ(ω) ∈ CE∂O for all ω,

3. α is A-valued and progressively measurable,

4.
∫ t

0
|βi(ξu, αu)| du+

∫ t
0
(σik(ξu, αu))

2 du <∞, a.s. for all i, k and t ≥ 0,

5. ξt = x +
∫ t

0
βi(ξu, αu) du +

∫ t
0
σik(ξu, αu) dW

k
t , a.s., for all t ∈ [0, τ∂O],

where

τ∂O = inf{t ≥ 0 : ξt ∈ ∂O}, and

6. µ is the law of ξ· on CE∂O .

4.1.2 The stochastic optimal control problem

Given x ∈ E and µ ∈ Lx(β, σ), we set

J(µ) = Eµ[G(ξ)] where G(ξ) = lim inf
t→∞

g(ξt), (4.1.2)
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with ξ denoting the coordinate map on CE∂O , where we use the convention that

E[Y ] = −∞ as soon as E[Y −] = ∞. The value function of the associated

control problem is then given by

v(x) = sup
µ∈Lx(β,σ)

J(µ), x ∈ E. (4.1.3)

Remark 4.1.2. By choosing the state process ξ appropriately, this setup in-

cludes various common formulations of optimal stochasting control, including

problems on a finite horizon (when E = E0 × [0, T ] and the last component

plays the role of time) with terminal and/or running costs, discounted prob-

lems and stationary problems.

4.1.3 DPP for controlled diffusions

Theorem 4.1.3 (A dynamic programming principle for controlled diffusions

- the weak formulation). Suppose that,

1. there exist locally bounded real functions β̂ : E → R and σ̂ : E → R such

that

|βi(x, α)| ≤ β̂(x) and |σik(x, α)| ≤ σ̂(x) for all α ∈ A,

2. for each x ∈ E we have Lx(β, σ) 6= ∅, and

3. J(µ) > −∞ for each µ ∈ Lx(β, σ).

Then, the value function v : E → (−∞,∞] is universally measurable and

satisfies the dynamic programming principle:

v(x) = sup
µ∈Lx(β,σ)

Eµ[v(ξτ )1{τ<∞} +G(ξ·)1{τ=∞}], for all x ∈ R,
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for each (raw) stopping time τ on CE∂O.

Remark 4.1.4. Condition (1) in Theorem 4.1.3 is far from necessary and is

placed mostly for convenience. It can be replaced by a different condition or

relaxed by choosing a different control part Ωα of the universal space Ωαξ in

the proof below.

4.2 Proof of Theorem 4.1.3

Our proof of Theorem 4.1.3 consists of two steps. In the first one, we

observe that the family Lx(β, σ) can be manufactured by varying admissible

controls on a single, universal, filtered probability space, and that it admits

a martingale characterization there. In the second one we show that this,

equivalent, setup fits our abstract framework of Section 3 so that Theorem

3.5.1 can be applied.

4.2.1 Construction of a universal setup

Let Ωα = L0
A be the space of all Lebesgue-a.e equivalence classes of

A-valued Borel functions from [0,∞) to A, and let Ωξ be the subspace CE∂O

of the canonical space CRn . Both can be given the structure of a filtered mea-

surable space, namely (Ωα,Fα,Fα = {Fαt }t∈Time), (Ωξ,Fξ,Fξ = {Fξt }t∈Time), as

described in more detail in subsection 2.2 and in Example 2.4.3. We define

the (universal) filtered measurable space (Ωαξ,Fαξ,Fαξ = {Fαξt }t∈Time) simply

as their product. In particular F
αξ
t = Fαt ⊗ F

ξ
t . It will be used in the second

step that Ωαξ is, in fact, a T-space - the product of T-spaces Ωα and Ωξ.
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Let Coord = {xi, xixj : 1 ≤ i, j ≤ n} be the family of coordinate

functions and their products on Rn, and let QCoord denote an arbitrary, but

fixed throughout, countable family of bounded C2-functions on Rn such that

for each f ∈ Coord and each compact set K ⊆ Rn there exists f̃ ∈ QCoord

such that f = f̃ on K. Also, for f ∈ C2 and a ∈ A we define the Gaf by

(Gaf)(x) = βi(x, a)∂if(x) + 1
2
γij(a, x)∂ijf(x), with γij =

∑
k σ

i
kσ

j
k,

Proposition 4.2.1 (A martingale characterization of weak solutions to con-

trolled SDEs). The following two statements are equivalent for a probability

measure µ on CE∂O:

1. µ is a weak solution to the controlled SDE (4.1.1) with absorption at ∂O

starting at x, and

2. there exists a probability measure µ̄ on Ωαξ whose Ωξ-marginal is µ such

that

(a) ξ0 = x, µ̄-a.s.,

(b)
∫ t

0
|βi(ξu, αu)| du +

∫ t
0
(σik(ξu, αu))

2 du < ∞ for all i, k and t ∈

[0, τ∂O], µ̄-a.s., and

(c) for each f ∈ QCoord,

f(ξt)− f(ξ0)−
∫ t∧τ∂O

0

Gαuf(ξu) du

is a ({Fαξt }t∈[0,∞), µ̄)-local martingale .
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If (1) holds, then (2b) is true for all f ∈ C2(E).

The proof follows, almost verbatim, the steps in the standard proof of

the equivalence in the non-controlled case (see, e.g., Proposition 4.6, p. 315,

[7]) so we omit the details. The only observation that needs to be made is that

α is not a stochastic process in the classical sense. This difficulty can be cir-

cumvented by considering appropriate versions as in the following lemma. We

remind the reader that an A-valued process {α̂t}t∈[0,∞) is considered progres-

sively measurable if {φ(α̂t)}t∈[0,∞) is progressively measurable for each Borel

measurable φ : A→ [−1, 1].

Lemma 4.2.2. There exists an {Fαξt }t∈[0,∞)-progressively measurable process

{α̂t}t∈[0,∞) with values in A such that {α̂t(ω)}t≥0 is a Leb-a.e.-representative

of the coordinate map α(ω) for each ω.

Conversely, let (ξ, α) be a pair consisting of a continuous process ξ

with values in Rn and an A-valued progressive process α defined on some

filtered probability space (Ω, {Ft}t∈[0,∞),F,P). Then (ξ, α) admits an Ωαξ-

distribution, i.e., a probability measure µ̄ on Ωαξ such that the P-distribution

of
∫ t

0
ϕ(u, ξu, αu) du coincides with the µ̄-distribution of

∫
[0,t]

ϕ(u, α, ξ) dλ, for

each bounded and measurable ϕ and all t ≥ 0.

Proof. Let φ be an isomorphism (a bimeasurable bijection) between A and the

closed interval [−1, 1]. Given α(ω) ∈ L0([0,∞), A), we define α̂ by

α̂(t) = φ−1
(

lim inf
n→∞

Φn
t (ω)

)
where Φn

t (ω) = 1
n

∫ t

(t−1/n)+
φ
(
αu(ω)

)
du.
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It is straightforward to check that α̂(ω) is a representative of α(ω) for each ω.

Moreover φ(α̂) (and, therefore, α) is a progressively-measurable process, as a

pointwise limit of continuous adapted processes.

For the converse, and under the assumptions of the second part of the

Lemma, let µ̄ be the pushforward of P via the map Φ : Ω → Ωαξ defined as

follows:

Φ(ω) =
(

(ξt(ω))t≥0, α(ω)
)
,

where α(ω) is the Leb-a.e.-equivalence class of (αt(ω))t≥0. (Progressive) mea-

surability of α guarantees that Φ is a measurable map. The equality of the

distributions of two integrals in the statement is then a simple consequence of

the monotone-class theorem.

4.2.2 An application of the abstract DPP

Proposition 4.2.1 allows us to reformulate our control problem so as to

fit the setting of the first part of our paper. Indeed, it states that the value

function v(x) can be represented as

v(x) = sup
µ̄∈P̄x

Eµ[G(ξ)]

where P̄x is the family of all probability measures on Ωαξ such that (2a), (2b)

and (2c) hold, and our job is to show that it is, in fact, a martingale generated

control structure which satisfies all the requirements of the abstract Theorem

3.5.1.
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Thanks to the discussion and examples in subsections 2.4 and 2.6, the

space Ωαξ admits a natural structure of a TC-space, with the strict con-

catenation used for the ξ component. The map X : Ωαξ → E, given by

X(ξ, α) = lim inft→∞ ξt computed componentwise, and suitably measurably

altered to take values in E and when the limits inferior take infinite values,

so that Xt(ξ, α) = ξt. Given that the concatenation operator in α requires

no compatibility conditions, and the one in ξ is strict, the product concate-

nation operator ∗ factors through X (and is a factor of X). Also, there is a

naturally-defined shift operator θ on Ωαξ.

Condition (1) of Theorem 4.1.3 takes care of the integrability condition

(2b) of Proposition 4.2.1, so we can conclude that we are, indeed, dealing with

a martingale-generated control structure with the state map X, generated by

the family D which consist of (well-defined) maps of the form

F (α, ξ)t = f(ξt)− f(ξ0)−
∫ t∧τ∂O

0

Gαuf(ξu) du

with f ranging through the countable set QCoord. The last thing we need

to check, before we can apply Theorem 3.5.1, is that each such F is a TC-

morphism into (D0
R, ?). We fix f ∈ QCoord, and note that the corresponding

functional F clearly takes values in D0
R and that it is non-anticipating. To

establish the TC-morphism property let us fix s, t ∈ Time and ω, ω′ ∈ Ωαξ

such that ω is compatible with ω′ at t. The case of s ≤ t is straightforward, so

suppose s > t. Since the ξ component uses the strict concatenation operator,
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then ξt(ω) = ξ0(ω′), and furthermore:

τ∂O(ω) ≤ t ⇔ ξt(ω) ∈ ∂O ⇔ ξ0(ω′) ∈ ∂O ⇔ τ∂O(ω′) = 0

Combining this with the properties of concatenation gives:∫ s∧τ∂O

t∧τ∂O
Gαuf(ξu(ω ∗t ω′)) du = 1{τ∂O>t}(ω)

∫ s∧τ∂O

t∧τ∂O
Gαuf(ξu(ω ∗t ω′)) du

= 1{τ∂O>0}(ω
′)

∫ (s−t)∧τ∂O

0

Gαuf(ξu(ω
′)) du

=

∫ (s−t)∧τ∂O

0

Gαuf(ξu(ω
′)) du

Putting everything together gives:

F (ω ∗t ω′)s = f(ξs(ω ∗t ω′))− f(ξ0(ω ∗t ω′))−
∫ s∧τ∂O

0

Gαuf(ξu(ω ∗t ω′)) du

=

(
f(ξt(ω ∗t ω′))− f(ξ0(ω ∗t ω′))−

∫ t∧τ∂O

0

Gαuf(ξu(ω ∗t ω′)) du
)

+

(
f(ξs(ω ∗t ω′))− f(ξt(ω ∗t ω′))−

∫ s∧τ∂O

t∧τ∂O
Gαuf(ξu(ω ∗t ω′)) du

)
=

(
f(ξt(ω))− f(ξ0(ω))−

∫ t∧τ∂O

0

Gαuf(ξu(ω)) du

)
+

(
f(ξs−t(ω

′))− f(ξ0(ω′))−
∫ (s−t)∧τ∂O

0

Gαuf(ξu(ω
′)) du

)
= F (ω)t + F (ω′)t−s = (F (ω) ?t F (ω′))s

4.3 Viscosity solutions

We conclude this example by showing how our result can be applied to

show that value functions of stochastic control problems are viscosity solutions

to the associated Hamilton-Jacobi-Bellman equations under weak conditions.
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In particular, we do not require that the equation itself admit an a-priori

solution, or that any solution is smooth or unique (i.e, that the comparison

principle hold). Our results, in particular, imply some of the results in [1] and

[3] under weaker assumptions. We note that the lack of any strong ellipticity

allow us keep assuming, without loss of generality, that the problem is time-

independent; time can be incorporated as just another (space) variable with

linear dynamics and the terminal condition imposed as part of the boundary

condition.

For a C2 function ϕ : O → R we define the Hamiltonian Hϕ : O →

(−∞,∞] by

Hϕ(x) = sup
a∈A

Gaϕ(x) = sup
a∈A

(
βi(x, a)∂xiϕ(x) + 1

2
γij(x, a)∂xixjϕ(x)

)
.

4.3.1 The viscosity property of the value function

Definition 4.3.1. Let v be a real-valued function defined in a neighborhood V

of a point x̄ ∈ O, and let v∗ and v∗ denote its lower and upper semicontinuous

envelopes, respectively. We say that v is a

1. viscosity supersolution of the equation Hv = 0 at x̄ if Hϕ(x̄) ≤ 0 for

each ϕ ∈ C2(V) with the property that ϕ(x̄) = v∗(x̄) and ϕ(x) < v∗(x)

for x ∈ V \ {x̄} , and

2. viscosity subsolution of the equation Hv = 0 at x̄ if Hϕ(x̄) ≤ 0 for

each ϕ ∈ C2(V) with the property that ϕ(x̄) = v∗(x̄) and ϕ(x) > v∗(x)

for x ∈ V \ {x̄} .
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A function which is both a viscosity supersolution and a viscosity subsolution

is called a viscosity solution to Hv = 0 at x̄.

For x ∈ Rn and r > 0 we define

τ r,x = inf{t ≥ 0 : d(x, ξt) ≥ r} ∧ r,

where d denotes the Euclidean distance on Rn, so that τ r,x is a raw stopping

times on Ωαξ.

Theorem 4.3.2. Given x̄ ∈ O, suppose that there exists a neighboorhood V of

x̄ in O such that

1. (availability of DPP) the assumptions of Theorem 4.1.3 hold and v

is finite on V,

2. (continuity of coefficients) x 7→ βi(x, a) and x 7→ σik(x, a) are con-

tinuous functions on V for all a ∈ A,

3. (admissibility of locally constant controls) there exists a constant

r > 0 such that for each x ∈ V and a ∈ A there exists a control process

{αt}t∈[0,∞) and an associated weak solution {ξt}t∈[0,∞) of the controlled

SDE (4.1.1) with ξ0 = x (defined on some filtered probability space) such

that

αt = a for t ∈ [0, τ ] a.s., where τ = inf{t ≥ 0 : d(ξt, x̄) ≥ r} ∧ r.

Then the value function v is a viscosity solution to Hv = 0 at x0.
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Proof. We split the proof into two parts, in which we establish the supersolu-

tion and the subsolution property of v separately.

The supersolution property. We take ϕ ∈ C2 which touches v∗ at x̄

from below, i.e. v∗(x̄) = ϕ(x̄) and ϕ(x) < v∗(x) for x 6= x̄ This implies that

there exists a sequence {xm}m∈N such that

v(xm) ≤ ϕ(xm) + 1
m

and d(xm, x̄) ≤ 1
m
. (4.3.1)

Suppose, for contradiction, that Hϕ(x̄) > 0. Then there exists a ∈ A such that

(Gaϕ)(x̄) > 0. Since Gaϕ is continuous in x, there exist constants ε > 0 and

r > 0 such that (Gaϕ)(x) ≥ ε when d(x, x̄) ≤ r. Using the fact that ϕ(x) <

v∗(x) as soon as x 6= x̄ and that the function v∗ − ϕ is lower semicontinuous,

we find that

δ = min{v∗(x)− ϕ(x) : d(x, x̄) = r} > 0.

For each m ∈ N, let µm be the law of the weak solution {ξt}t∈[0,∞) described in

part 3 of the statement, where we assume, without loss of generality, that the

same constant r > 0, as above, can be used. Proposition 4.2.1 and the local

nonnegativity of Gaϕ− ε imply that ϕ(ξt)− εt is a bounded µm-submartingale

under µm on [0, τ r,x̄]. Therefore, with τ = τ r,x̄ and for m > 1/r, we get

ϕ(xm) ≤ Eµm [ϕ(ξτ )− ετ ] ≤ Eµm [ϕ(ξτ )1{τ<r}] + Eµm [(ϕ(ξτ )− εr)1{τ=r}]

≤ Eµm [(v∗(ξτ )− δ)1{τ<r}] + Eµm [(v∗(ξτ )− εr)1{τ=r}]

≤ Eµm [v∗(ξτ )]−min(δ, εr).
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Using the dynamic programming principle of Theorem 4.1.3 and the relation

(4.3.1) above, we finally obtain

v(xm)− 1
m

+ min(δ, εr) ≤ Eµm [v∗(ξτ )] ≤ Eµm [v(ξτ )]

≤ sup
µ∈Lxm (β,σ)

Eµ[v(ξτ )] = v(xm),

and reach a contradiction by taking m large enough.

The subsolution property. We pick ϕ ∈ C2 which touches v∗ at x̄ from

above, i.e. v∗(x̄) = ϕ(x̄) and ϕ(x) > v∗(x) for x 6= x̄. As in the first part of

the proof, this implies that there exists a sequence {xm}m∈N such that

v(xm) ≥ ϕ(xm)− 1
m

and d(xm, x̄) ≤ 1
m
. (4.3.2)

Suppose, for contradiction, that Hϕ(x̄) < 0. Being representable as a supre-

mum of continuous functions, Hϕ is upper semicontinuous, and, so, there exist

constants r > 0 and ε > 0 such that Hϕ(x) ≤ −ε for all x with d(x, x̄) ≤ r.

Using the fact that ϕ(x) > v∗(x) as soon as x 6= x̄ and that the function ϕ−v∗

is lower semicontinuous, we find, as above, that

δ = min{ϕ(x)− v∗(x) : d(x, x̄) = r} > 0.

Let the laws (µm)m∈N be defined as in the first part of the proof, so that under

each µm the process ϕ(ξt) + εt is supermartingale on [0, τ r,x̄]. It follows that,
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with τ = τ r,x, we have

ϕ(xm) ≥ Eµ[ϕ(ξτ ) + ετ ]

= Eµ[(ϕ(ξτ ) + ετ)1{τ=r}] + Eµ[(ϕ(ξτ ) + ετ)1{τ<r}]

≥ Eµ[(v∗(ξτ ) + δ)1{τ=r}] + Eµ[(ϕ(ξτ ) + εr)1{τ<r}]

≥ Eµ[v(ξτ )] + min(δ, εr)

We take a supremum over all µ ∈ Pxm on the right hand side and use the DPP

to conclude that ϕ(xm) ≥ v(xm) + min(δ, εr) for all m - a contradiction with

(4.3.2).
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