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A model is developed for the dynamics of an acoustically driven bubble in a

channel. The bubble is assumed to be smaller than the transverse dimension of the

channel and spherical in shape. The channels considered are infinite in length and

formed by either parallel planes or tubes with triangular, rectangular, or hexagonal

cross sections. For surfaces that are rigid or pressure release, the boundary conditions

on the channel walls in each of these geometries can be satisfied using the method

of images. Effects due to confinement by the channel walls are thus determined

by an analysis of coupled bubble interactions in line and plane arrays. An existing

model for the coupled dynamics of spherical bubbles provides the basis for the model.

Liquid compressibility is an essential feature of the model, both in terms of radiation

damping and the finite propagation speed of acoustic waves radiated by the bubble.

Solutions for the frequency response are obtained analytically by perturbation for

low drive amplitudes and weak nonlinearity, and by numerical solution for high drive

amplitudes and strong nonlinearity. The perturbation solutions for the radial motion
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at the drive frequency and its second harmonic are obtained in closed form for a

bubble between parallel planes. The response of a bubble between rigid parallel

planes is found to be mass controlled, whereas for a rigid tube it is found to be

radiation damping controlled. The dynamics of a bubble located near the center

of a tube are found to depend on the area but not the specific geometry of the

cross section. At drive amplitudes below which subharmonic generation occurs, the

numerical solutions for high drive amplitudes reveal the same general properties as the

perturbation solutions for low drive amplitudes. All of the solutions can be extended

to tubes with arbitrary wall impedance if the radiation impedance on the bubble is

known, for example calculated by normal mode expansion.
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Chapter 1

Introduction

This dissertation investigates the linear and nonlinear responses and radiation

impedance of acoustically driven bubbles in channels. Channels formed by two parallel

plates and tubes of triangular, square, rectangular and hexagonal cross sections are

chosen because they are the only geometries for which the method of images can be

used to satisfy the boundary conditions. The main goal of this work is to understand

the effect of boundaries on the dynamics of bubbles, and the method of images permits

us to use well-established theories for the nonlinear dynamics of interacting bubbles.

The motivation for this work was the modeling of bubble dynamics in confined

spaces when ultrasound is present. Medical applications such as use of microbubbles

as contrast agents in ultrasound imaging, their development for drug and gene deliv-

ery, and their role in shock wave lithotripsy all involve bubbles in constrained media.

Some fluid-handling microdevices also involve bubble cavitation in confined spaces

where the bubble size is comparable to the surrounding environment [1]. Our first

step was to model the simplest geometry of two parallel plates with an intention

to provide benchmarks for more advanced analysis. The methodology and solutions

developed for plates were extended to tubes with cross sections that can tessellate

two-dimensional space, i.e., triangular, square, rectangular, and hexagonal, with the
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last being the closest approximation to a circle. The radiation impedance of a bubble

in a tube was derived using the method of images and was compared with the radia-

tion impedance obtained from a normal mode expansion by Morse and Ingard [2]. It

shows that the expression for the linear and nonlinear frequency responses obtained

via the method of images can be extended to tubes of other cross sections, including

a cylindrical tube, and arbitrary wall impedance can be addressed.

1.1 Motivation and Background

Bubbles in liquid have been associated with many interesting phenomena: the

babbling of a brook, the cavitation damage to ship propellers and the fragmentation

of kidney stones. Research on bubbles interacting with sound thus has a long history.

Minnaert [3] in 1933 was interested in finding the origin of “the murmur of the brook,

the roar of the cataract, or the humming of the sea.” He treated bubbles in liquid as

simple harmonic pulsators and examined how such oscillations gave rise to natural

acoustic emissions. The role bubbles play in cavitation damage was recognized in the

late 19th century. In 1894 in England [4], a test was made to examine why ships

could not reach their design speed at the trial runs of a high speed marine propeller,

and cavitation phenomena were discovered to be one of the factors preventing im-

provement in the performance of hydraulic machinery. Rayleigh [5] in 1917 studied

theoretically the motion of an empty spherical cavity in an infinite inviscid and in-

compressible liquid and derived an expression for the pressure developed in the liquid

upon collapse of the cavity, following the formulation presented by Besant in 1859 [6].

These pioneering works were followed by thousands of papers and several books [7–
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12] focusing on cavitation and bubble dynamics research. Various aspects of bubble

dynamics have been considered at length under different simplifying assumptions for

a bubble in an unbounded liquid.

In the last two decades, ultrasound contrast agents (UCAs)1 were investigated

for diagnostic and therapeutic ultrasound applications [13, 14]. A bubble has a signif-

icant acoustic response due to the impedance mismatch between the gas inside and

the surrounding liquid medium, and an even greater response when excited at its res-

onance frequency. At resonance, a bubble scatters and absorbs much more acoustic

power than one would expect from its cross-sectional area. For diagnostic applications

the resonant scattering properties of contrast agents are used to improve imaging, as

the harmonic and subharmonic responses of the bubbles assist in distinguishing the

acoustic scattering of blood from that of the surrounding tissue. It is reported [15]

that the image intensity of blood containing UCAs is as much as 40 dB higher than

UCA-free blood. Microbubbles can also be used as delivery vehicles for drugs or

genes, and targeted drug delivery can reduce the systemic toxicity and improve the

efficacy. Ultrasound-mediated delivery of medicine and DNA using encapsulated mi-

crobubbles has been demonstrated in vitro [16–19]. Low amplitude ultrasound pulses

are administrated to control the travel of microbubbles in the bloodstream to the tar-

get site, where the bubbles are ruptured by fragmenting ultrasound pulses, and drugs

and DNA are released. Bubble cavitation effects are used in ultrasonic fragmenta-

tion and emulsification [20–24]. When high amplitude ultrasound or a shock wave is

1Ultrasound contrast agents (UCAs) are encapsulated microbubbles that are filled with air or
gas such as nitrogen, or a perfluorocarbon to act as echo-enhancers.
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applied to a liquid medium, cavitation bubbles form (or the pre-existing cavities or

nuclei grow explosively) as the local pressure drops. The bubbles grow and with each

collapse release strong forces to fragment and disintegrate stones. High intensity fo-

cused ultrasound (HIFU) is a treatment used to cause localized cell necrosis. The heat

generated by the bubble oscillation can enhance localized heating, which is applied

in noninvasive ablation. HIFU can also cause coagulative necrosis by increasing the

local temperature above the threshold level of protein denaturation. Applying ultra-

sound in this manner is extremely appealing as it offers an opportunity for treatment

without mechanically penetrating the target organ while preserving healthy tissue

and nerve structures [25, 26].

Optimization of these medical applications requires accurate mathematical

models of bubble dynamics in blood vessels and other confined spaces. In the contrast-

enhanced ultrasound imaging and the ultrasound-mediated microbubble drug deliv-

ery applications, it is essential to predict the resonance frequency and the damping

of microbubbles in constrained media. Shock wave lithotripsy (SWL) has been rou-

tinely used to treat kidney stones [27], yet stone comminution can be accompanied

by damage to surrounding tissue. Experimental studies both in vitro and in vivo

indicate vascular injuries can result from both localized drug and gene delivery and

SWL [28, 29]. In gas-rich organs such as the lungs and the intestine, bubble activ-

ities can cause microscopic hemorrhage [29–31]. It is important to understand the

mechanism responsible for enhancing vascular permeability and vascular injuries and

the interaction between bubbles and tissues in lithotripsy to minimize any permanent

damage to blood vessels and tissues and to optimize treatment. Predictive models
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of bubble oscillation in confined space could be used to enhance the efficacy of med-

ical treatments and could increase the efficiency and performance of the industrial

applications.

1.2 Review of the Literature

There is an extensive literature on modeling a single bubble in an unbounded

liquid. A comprehensive review is provided by Timothy Leighton’s book The Acous-

tic Bubble, which contains references to over 1,400 cited works [11]. For bubbles

confined in narrow spaces the literature is far less rich. Only recently has research

been reported in the literature that concentrates on the mathematical modeling of a

bubble in constrained environments [15, 27, 32–38]. The present review will focus on

the mathematical modeling of bubbles in confined spaces, and the related modeling

of arrays of bubbles in unbounded liquid.

1.2.1 Models of Bubbles in Constrained Media

1.2.1.1 Approximate Analytical Model

Prosperetti and co-workers [1, 39] pioneered development of a model for a

bubble in short liquid-filled tubes. Motivated by the applications of gas bubbles

as actuators in small fluid-handling systems, Oğuz and Prosperetti [1] performed

a numerical study of the natural frequencies of gas bubbles in rigid tubes of finite

length and obtained approximate analytical solutions. When bubble radii are not

small compared with the radius of the tube, the gas bubble was assumed to occupy

the entire cross section of the tube. The two columns of incompressible liquid on
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either side of the bubble were modeled as lumped, finite masses.

Sassaroli and Hynynen [33, 35] extended the model by Oğuz and Prosperetti

to include thermal and viscous damping. They performed parametric studies of the

natural frequency, damping coefficient, and forced frequency responses of a gas mi-

crobubble in blood capillaries. Their justification for assuming rigid capillaries was

that they considered capillaries which are embedded in rather rigid tissue.

1.2.1.2 Numerical Models

Finite Length Tube Models

Ye and Bull developed fluid-structure interaction models to study unsteady

microbubble expansion in rigid [40] and flexible [41] tubes in order to assess the risk

of vessel damage from acoustic droplet vaporization in a potential gas embolotherapy

technique for the treatment of tumors. Their models used a fixed grid, multi-domain,

interface tracking, direct numerical simulation method that treated all interfaces and

boundaries as sharp discontinuities. The tube in their model has an aspect ratio of

7:1, liquid compressibility was neglected, and the tube end conditions were assumed

to be pressure release. They obtained numerical results that in 2006 required more

than 400 CPU hours per simulation of each set of parameter values.

Qin and Ferrara [15, 37] developed a lumped-parameter model to study the

acoustic response of a microbubble in a microvessel. In Ref. [37], they performed a

numerical study of the circumferential stress of blood vessels with compliant walls,

predicting the vascular permeability to be enhanced in the presence of ultrasound

contrast agents. In Ref. [38] their work focused on the natural frequency of the
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nonlinear oscillation of a microbubble in blood vessels with three types of wall condi-

tions: rigid vessels, compliant vessels, and vessels with increasing stiffness that could

correspond to tumor vasculature. Their results showed that the natural frequency

of oscillation of a bubble in a compliant vessel increased with decreasing vessel size

and decreased with increasing values of vessel rigidity. This finding may be useful for

choosing the transmitted frequency in ultrasound contrast imaging and drug delivery.

Their models were also based on a finite length tube, and liquid compressibility was

not included.

For the models mentioned above, the finite effective tube lengths ensure that

the mechanical impedance at the bubble wall due to inertia of the liquid is finite,

even though the liquid in the channel is assumed to be incompressible. For tubes

of infinite length, Oğuz and Prosperetti [1] pointed out that “volume changes of the

bubble would only be possible in a compressible fluid.”

Infinite Channels

Krasovitski and Kimmel [42] developed a numerical model for bubble pulsation

in an infinite planar liquid layer bounded by two rigid walls. The evolution of the

bubble shape was calculated using the boundary integral method. Hu et al. [27]

analyzed the constrained oscillations of a bubble inside a blood vessel that is modeled

as a rigid tube of infinite length. They attempted to evaluate the non-spherical bubble

shape due to the bubble-vessel interaction using a perturbation approach. In these

two papers the liquid was assumed to be incompressible.
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Models Including Liquid Compressibility

There are two papers by Leighton in which liquid compressibility was included

for modeling a bubble in a tube and in a rectangular tank. Using a Green’s function

approach to derive the acoustic radiation impedance of a pulsating sphere, and thus

accounting for compressibility of the liquid, Leighton et al. [43] developed an approxi-

mate expression for the resonance frequency shift of a bubble in an infinite cylindrical

pipe. Calculations are presented for a pipe with diameter so large, more than 100

times the bubble radius, that the shift in resonance frequency due to constraint of

the flow by the pipe is negligible. In contrast, our emphasis is on relatively narrow

channels, with wall separations of order 10 times the bubble radius, for which the

corresponding resonance frequency shift can be substantial.

A subsequent paper by Leighton et al. [44] extends the earlier analysis of a

bubble in a cylindrical pipe [43] to a bubble in a rectangular tank. Using a Green’s

function solution and the method of images, they obtained results for the acoustic

radiation impedance of the bubble, and thus for the resonance frequency and damping

factor. Their focus was on radiation damping of a bubble in a large tank, and no

results for the resonance frequency were presented.

1.2.2 Our Models

We derive analytical models describing bubble dynamics in channels and ob-

tain analytical or semi-analytical solutions for the resonance frequency, quality factor,

radiation impedance and frequency responses. The advantage of an analytical model

is that it can provide insights into the underlying physics of the systems that are diffi-
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cult to gain from numerical solutions. In addition, solving analytical model equations

numerically is less computationally intensive than obtaining solutions from purely

numerical models. Our model includes liquid compressibility and focuses on its role

in the dynamics of a bubble in channels. Infinite parallel plates and tubes are used

in the present work to permit use of the method of images.

1.2.3 Literature on Bubble Interactions in Arrays

When the method of images is applied to satisfy the boundary conditions on

the channel walls, the bubble and its images form an array, a line array for a bubble

between two parallel plates, and a plane array for a bubble in a tube with triangular,

square, rectangular, or hexagonal cross section. The method of images works for these

geometries because they possess shapes that individually tessellate a planar surface.

No other cross-sectional shapes can be solved by the image method.

The interactions in bubble arrays were investigated previously for various pur-

poses [45–51]. Zabolotskaya [46] derived a system of nonlinear dynamical equations

for two interacting gas bubbles. She investigated the normal modes of the system

and determined the Bjerknes force between the bubbles. Twersky [45] studied a pair

of symmetrically excited monopole scatterers using a self-consistent integral equation

approach and obtained the scattered intensity and phase. His method was later ex-

tended by Weston [47] to a line and plane array of identical bubbles. Weston was the

first to derive a mathematical model for acoustic scattering from an infinite line array

of bubbles that accounts for multiple scattering between the bubbles. In other words,

the bubbles were considered to be dynamically coupled. His analysis was restricted
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to bubble separations that are small on the scale of a wavelength, and therefore free-

field results are not recovered for large bubble separations. Tolstoy and Tolstoy [48]

provided improved models of line and plane bubble arrays, using a method similar to

that of Weston, but were able to eliminate the restriction to small bubble separation.

Their results and discussion described the scattering amplitude as a function of the

propagation direction of a plane sound wave incident on the line array. They did not

investigate bubble resonance frequency or damping. In general, while the papers by

Weston and subsequently Tolstoy and Tolstoy provided models that are relevant to

our problem at hand, their focus on target strength entails theoretical formulations

that are not well suited to the study of bubble dynamics.

Feuillade [49] investigated acoustic scattering from schools of fish at frequencies

near the swim bladder resonance. He performed an exhaustive analysis of resonances

and damping associated with pairs and triplets of acoustically excited bubbles. Both

in-phase and antiphase pulsations were considered. The results for in-phase excitation

displayed trends that were similar to those found in the present work for a bubble

between parallel plates. Feuillade’s paper concluded with a solution for excitation of

an infinite line array. The discussion of this case was brief and focused on acoustic

scattering. The solution was used to illustrate the limiting target strength as the

number of bubbles in a line array was increased. Solutions were not presented by

Feuillade for the resonance frequency or damping.

Nonlinear models of clusters of interacting bubbles in three-dimensional space

were developed recently [50, 52, 53]. The mathematical models in the present work

are based on a model developed by Hamilton et al. [52] in which liquid compressibility
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was included. This model was subsequently extended to include bubble translation by

Ilinskii et al. [53]. A model by Doinikov [50] included translation as well as pulsation,

but not time delays associated with liquid compressibility. Later Doinikov et al. [51]

modeled a two-bubble system and a bubble chain containing up to 16 equispaced

bubbles to illustrate that time delays caused by liquid compressibility can considerably

change the damping constants of free oscillations of coupled gas bubbles. Analytical

solutions were obtained for the two-bubble system, and numerical solutions were

obtained for a line array of up to 16 equispaced bubbles. By comparing the numerical

data with measurements, they showed that allowing for time delays considerably

improved agreement between theory and experiment. The focus of their work was

not on modeling a bubble in confined spaces.

1.3 Outline of Dissertation

Chapter 2 reviews mathematical models for a single bubble and a cluster

of bubbles in unbounded liquid that form the basis of our model equations. The

method of images is used to account for the reverberant field due to reflections from

the boundaries. Channels formed by parallel plates and tubes of triangular, square,

rectangular, and hexagonal cross sections are considered. Through use of the image

method, the study of the boundary effects on a bubble becomes a study of bubble

interactions in a two-dimensional cluster formed by the bubble and its images.

The linearized models and their solutions are discussed in Chapter 3. The

frequency response of a bubble between two parallel rigid plates is presented first,

and explicit expressions for the resonance frequency, the quality factor, and the fre-
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quency response are provided. These results have been published previously by the

author [54]. Next the frequency responses of bubbles confined in tubes with differ-

ent cross sections are compared. Special cases of finite wall impedance (including

pressure-release walls) are investigated for certain channels.

In Chapter 4 the radiation impedances of a bubble between plates and in

square and rectangular tubes are derived. The radiation resistances and reactances

of a bubble in free space, between two parallel plates, and in a square tube are

compared and the different behavior in parallel plates and tubes is discussed. Results

of radiation impedance obtained using the method of images are compared to those

derived by Morse and Ingard [2] using normal mode theory. An expression for the

frequency response in terms of the radiation impedance is presented.

As the drive amplitude increases, nonlinearity must be taken into account.

Chapters 5 and 6 are devoted to the nonlinear frequency response of the bubble.

Chapter 5 covers the weakly nonlinear regime, where the drive amplitudes are mod-

erate (acoustic pressure amplitudes less than about 5% of atmospheric pressure) and

harmonics are generated. The nonlinearity in this regime is investigated by keeping

only quadratic nonlinear terms. Coupled systems of equations for the hamonic am-

plitudes are presented and generalized to include tubes of other cross-sections. The

frequency responses of the first five harmonics are discussed. The perturbation solu-

tions derived for the second harmonic and dc component were published previously

by the author [55].

The strongly nonlinear regime is associated with high drive amplitudes (acous-

tic pressure amplitudes up to atmospheric pressure, i.e., 1 bar) and violent bubble
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responses. A hybrid time-frequency domain method was developed to solve the model

equations with their full nonlinearity. Frequency responses for the first five harmonics

are investigated in Chapter 6, and the limitation of the hybrid method is discussed.

Chapter 7 provides a summary of the work and suggestions for future work. Finally,

several appendices are included with supporting material.
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Chapter 2

Basic Equations

In this chapter we review the equations for single and coupled bubble dynamics

that form the bases for our analyses in subsequent chapters of bubbles in channels. We

then show how we adapt an existing bubble cluster model to describe the dynamics of

a bubble confined in channels via the method of images. The channels studied in this

dissertation are liquid-filled and formed by two infinite parallel plates, or by infinite

length tubes with square, hexagonal and triangular cross sections.

2.1 Rayleigh-Plesset Equation

We begin with the Rayleigh-Plesset equation describing the motion of the

bubble wall [11, 56] in an unbounded incompressible liquid:

RR̈ +
3

2
Ṙ2 =

PL − P∞(t)

ρ0

, (2.1)

where R is the instantaneous bubble radius, the dots indicate time derivatives, ρ0 is

the liquid density, PL is the pressure in the liquid immediately outside the bubble

wall, and P∞(t) is the pressure an infinite distance away. With the gas in the bubble

assumed to obey a polytropic law, PL is given by

PL =

(
P0 +

2σ

R
− Pv

)(
R0

R

)3γ

+ Pv −
2σ

R
− 4µ

Ṙ

R
. (2.2)
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The term (P0 +2σ/R−Pv)(R0/R)3γ is the gas pressure within the bubble, which is a

function of the bubble radius, and γ is the ratio of specific heats. The ambient pressure

is denoted by P0, Pv is the vapor pressure, µ denotes the kinematic viscosity of the

liquid, and σ is the surface tension. For acoustic excitation one lets P∞(t) = P0+pac(t)

in Eq. (2.1), where pac(t) is the applied acoustic pressure. Equation (2.1) was derived

under the assumption that the bubble remains spherical at all times, its radius is

small compared with the acoustic wavelength, and that the surrounding liquid is

incompressible. Also inherent in the derivation, the gas content of the bubble is

assumed to be constant and the physical conditions in the bubble are assumed to be

spatially uniform. No body forces (e.g., gravitational) are included.

2.2 Liquid Compressibility

The Rayleigh-Plesset model works very well in many situations, but the as-

sumption of liquid incompressibility implies that the speed of sound is infinite. There-

fore the equation becomes inaccurate as the bubble wall velocity approaches the sound

speed, and it also cannot account for radiation damping even for moderate bubble

wall velocities. Many modifications of the Rayleigh-Plesset equation have been pro-

posed to include liquid compressibility. The correction for compressibility used in

the present work, and which is incorporated in our model equations for a bubble in

constrained media, is the new term included in the following augmentation of the

Rayleigh-Plesset equation developed by Ilinskii and Zabolotskaya [57]:

RR̈ +
3

2
Ṙ2 =

PL − P∞

ρ0

+

...
V

4πc0

, (2.3)
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where V = 4
3
πR3 is the bubble volume, and c0 is the sound speed in the liquid.

Equation (2.3) includes liquid compressibility to O(1/c0). Ilinskii and Zabolotskaya

thus described the effect of liquid compressibility on a single bubble in an unbounded

liquid in terms of the bubble volume rather than bubble radius. One can express
...
V

in terms of bubble radius as
...
V = 4π(R2

...
R + 6RṘR̈ + 2Ṙ3), and Eq. (2.3) becomes

RR̈ +
3

2
Ṙ2 − 1

c0

(R2
...
R + 6RṘR̈ + 2Ṙ3) =

PL − P∞

ρ0

. (2.4)

Equation (2.4) was derived previously by Prosperetti [58].

Augmentations of the Rayleigh-Plesset equation that include a correction for

liquid compressibility are more commonly expressed as equations that are only second

order in the time derivative. One reason for this is the practical matter of numerical

calculation. Since the terms with third derivatives in Eqs. (2.3) and (2.4) are small in

relation to the terms with second derivatives, numerical solutions of these equations

are inherently unstable. We now show that Eq. (2.3) is consistent with second-

order formulations that are more commonly encountered in the literature. First write

Eq. (2.3) as

RR̈ +
3

2
Ṙ2 =

PL − P∞

ρ0

+ O(1/c0), (2.5)

and then
...
V /4πc0 as

...
V

4πc0

=
1

3c0

d3R3

dt3
=

1

c0

d

dt
[R(RR̈ + 2Ṙ2)]. (2.6)

Substituting Eq. (2.5) into Eq. (2.6) yields at O(1/c0)

...
V

4πc0

=
1

2c0

Ṙ3 +
1

c0

RṘR̈ +
1

ρ0c0

d

dt
[R(PL − P∞)]. (2.7)
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Now substitution of Eq. (2.7) into Eq. (2.3) along with reorganization yields(
1− Ṙ

c0

)
RR̈ +

3

2

(
1− Ṙ

3c0

)
Ṙ2 =

1

ρ0

(
1 +

Ṙ

c0

+
R

c0

d

dt

)
(PL − P∞). (2.8)

Equation (2.8) is equivalent to the Keller-Miksis equation [59] at O(1/c0). The dif-

ference is in how the term containing P∞ is expressed in the two equations, but

this difference is at O(1/c2
0). The Keller-Miksis equation is a frequently used model

equation for bubble dynamics when liquid compressibility is included. In the present

work, Eq. (2.3) is used because the term
...
V /4πc0 has a physical origin that is easy

to understand [57], in addition to being the most compact correction for liquid com-

pressibility.

2.3 Models of Interacting Bubbles

When a bubble is part of a cluster (see Fig. 2.1), an additional term is needed

in Eq. (2.3) to account for the pressure on that bubble due to acoustic radiation

from all of the other bubbles in the cluster. The acoustic pressure radiated from a

monopole is [60]

p =
ρ0Q̇(t− r/c0)

4πr
, (2.9)

where r is the distance from the monopole to any arbitrary point in space, and Q is

the volume velocity of the monopole. Since Q̇ = V̈ , the total pressure on bubble i

due to radiation from the neighboring bubbles is

pi =
ρ0

4π

∑
j

1

dij

V̈ (t− dij/c0), (2.10)

where dij is the distance between bubble i and bubble j. Ilinskii and Zabolotskaya [57]

have shown, by other means, that Eq. (2.10) is not a linear approximation. Adding
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Ri

Rj

dij

Figure 2.1: Bubble cluster.

this acoustic pressure to Eq. (2.3), we obtain the following model equation for a

bubble cluster as an augmented version of Eq. (2.3):

RiR̈i +
3

2
Ṙi

2
=

PL(Ri)− P∞(t)

ρ0

+

...
Vi

4πc0

− 1

4π

∑
j

1

dij

V̈j

(
t− dij

c0

)
. (2.11)

The term dij/c0 accounts for the finite time it takes for sound to propagate from

bubble j to bubble i. In most of this dissertation, the vapor pressure and effects

of surface tension and viscosity are omitted in Eq. (2.2) to focus on effects of liquid

compressibility, in which case we have

PL(Ri) = P0

(
Ri0

Ri

)3γ

(2.12)

in Eq. (2.11).1 Equation (2.11) is the model equation developed by Hamilton et

al. [52, Eq. (2)] for a bubble cluster including the liquid compressibility, and it forms

the basis of our model for a bubble in a channel.

1In Chapters 5 and 6, viscosity is taken into account by including the term 4µṘi/Ri in Eq. (2.12).
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d

R1

R2

Figure 2.2: Two interacting bubbles in unbounded incompressible liquid.

If only two bubbles are involved and the liquid is assumed to be incompressible,

in which case c0 = ∞, Eq. (2.11) reduces to the following two coupled equations for

bubbles with radii R1(t) and R2(t):

R1R̈1 +
3

2
Ṙ2

1 +
R2

d
(R2R̈2 + 2Ṙ2

2) =
PL(R1)− P∞(t)

ρ0

, (2.13)

R2R̈2 +
3

2
Ṙ2

2 +
R1

d
(R1R̈1 + 2Ṙ2

1) =
PL(R2)− P∞(t)

ρ0

, (2.14)

where d is the separation between the two bubbles (see Fig. 2.2). Note that V̈j/4π =

Rj(RjR̈j + 2Ṙ2
j ). Equation (2.14) was derived previously by Zabolotskaya [46].

2.4 Model of a Bubble Confined in a Channel

Liquid-filled channels formed by two infinite parallel plates, and by infinite

length tubes of triangular, rectangular, square and hexagonal cross-sections, were

studied. These geometries were chosen since they are the only geometries where the

method of images can be applied, owing to the fact that their cross sections tessellate

two-dimensional space.
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2.4.1 Method of Images

The method of images is a basic tool used in acoustics and electromagnetics

to satisfy the boundary conditions of a problem by replacing certain elements of

the original system with images. An example that illustrates the idea is shown in

Fig. 2.3. A simple source radiating sound omnidirectionally is located a distance h

below a rigid plate. The sound pressure at an arbitrary location below the plate

consists of a direct arrival from the source and a reflected arrival from the boundary.

We can account for this by removing the rigid plate and replacing it with an image

located at distance h above the plate so the normal particle velocity vanishes in the

plane originally occupied by the plate. This boundary condition requires the image

to be identical to the source. As indicated in the figure, the image and the source are

in phase. This example can be extended to another situation where the rigid plate

is replaced with a pressure release surface, such as a water-air interface. Since the

pressure must vanish at y = 0, the image must be identical to the source but of the

opposite phase.

2.4.2 Bubble between Two Parallel Rigid Plates

The geometry of a channel formed by two parallel plates is shown in Fig 2.4.

The plates are assumed to be rigid and extend to infinity, and the channel is filled

with liquid. The two plates are separated by distance d, and a spherical bubble of

equilibrium radius R0 is in the middle of the channel. The bubble is assumed to

be spherical at all times. Viscous effects are neglected here along with the effect

of heat conduction and surface tension in order to focus on the effect of the liquid
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Figure 2.3: Illustration of the method of images. (a) The initial system: a simple
sound source located a distance h from a rigid wall; (b) a mathematically equivalent
system: the rigid plate is replaced by an identical image source.
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Figure 2.4: Geometry of a bubble located midway in a channel formed by two parallel
plates.

compressibility. The initial pressure in the liquid and inside the bubble is assumed

to be uniform and equal to P0. The gas inside the bubble is assumed to behave adia-

batically, with its pressure given by Pg = P0(R0/R)3γ, where R is the instantaneous

radius of the bubble and γ is the ratio of specific heats. An acoustic pressure pac(t)

is applied to the liquid.

We remove the channel walls and extend the liquid-filled space between the

plates to infinity. For the two plates, a pair of images will be needed, I1 and I−1.

Then pairs of images of I1 and I−1 will be needed, and so on until an infinite line

array of bubbles is created with separation d in both directions. The geometry is

shown in Fig. 2.5.

Equation (2.11) can be applied directly to the geometry of the infinite line array

of the bubble and its images. All images are at distances that are integer multiples

of d away from the bubble. For the mth image, dm = md, where −∞ ≤ m ≤ ∞

(m 6= 0) and m is an integer. The time delays to be considered here are therefore

in the explicit form t − md/c0. Noticing the symmetry inherent in the infinite line
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Figure 2.5: The geometry of the infinite line array is shown. The image bubbles are
indicated with open circles and labeled Im. They are separated by distance d and are
shown extending indefinitely in both directions. Although the plates are no longer
part of the model, they are shown in their original positions for convenience.
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array, we will only need one model equation for one bubble to represent the whole

system. Thus instead of the coupled model equations, Eq. (2.11), we now have the

single equation

RR̈ +
3

2
Ṙ2 =

1

ρ0

[
P0

(
R0

R

)3γ

− P0 − pac(t)

]
+

...
V

4πc0

− 1

2πd

∞∑
m=1

1

m
V̈

(
t− md

c0

)
.

(2.15)

The summation accounts for the interaction of the bubble with all of its images. For

image m at distance md from the bubble, it takes time md/c0 for the sound to arrive,

so its effect is evaluated at the delayed time t − md/c0. The summation accounts

for the boundary effects of the plates, namely, for the pressure acting on the bubble

due to successive reflections from the plates. The linear form of Eq. (2.15) becomes

similar to Eqs. (2) of Doinikov et al. [51] when the latter are applied to the geometry

depicted in Fig. 2.5 and the external sound field is taken into account. The linear

form may also be obtained from Eqs. (7) of Feuillade [49] under the same conditions.

2.4.3 Bubble in a Tube

The geometries of channels formed by rigid infinite tubes with different cross-

sections are shown in Fig. 2.6. Bubbles of initial radius R0 are assumed to be at

the center of the channels. The same assumptions used in Sec. 2.4.2 are also used

here. Viscosity, surface tension and thermal conductivity are neglected. The bubble

is assumed to be spherical at all times, and the liquid is compressible.

For the cross-sectional geometries in Fig. 2.6 we can again apply the method

of images to satisfy the boundary conditions on the rigid surfaces. The layouts of

the bubble and its images for triangular, square and hexagonal tubes are shown in

24



Figure 2.6: The three tube cross sections considered in the present study.

Figs. 2.7, 2.8 and 2.9, respectively. The bubbles and the tube cross sections are shown

with dark lines, while the image bubbles and the image tube cross sections are shown

in gray. As can be seen, for the shapes of triangle, square and hexagon, they tessellate

the two-dimensional space. The bubble and its images form infinite plane arrays for

these three cross sections.

To account for the reflections of sound waves from the tube walls, we need

to account for the collective effects of the interactions between the bubble and all

its images. It becomes critical how we count the images. We do not want to count

any image twice or miss counting any of them. In other words, we need strategies to

index the images for Figs. 2.7, 2.8 and 2.9. The counting techniques we developed

for different geometries may be found in Appendix A. To generalize, we use rlm to

indicate the distance between the bubble and its images identified by the indices

(l,m). The time delays are expressed as t− rlm/c0. A 3-fold (or a 4-fold, or a 6-fold)

symmetry is used for a triangular (or a square, or a hexagonal) tube. Only the images

in one of the symmetric regions are summed over, and the result is multiplied by 3

(or 4, or 6) to obtain the total contribution from all the images (see Appendix A).
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rlm

Figure 2.7: Plane array of bubble images for a triangular tube.

rlm

Figure 2.8: Plane array of bubble images for a square tube.
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rlm

Figure 2.9: Plane array of bubble images for a hexagonal tube.

Extending Eq. (2.15) to the planar arrays of images yields

RR̈ +
3

2
Ṙ2 =

1

ρ0

[
P0

(
R0

R

)3γ

− P0 − pac(t)

]
+

...
V

4πc0

− 1

4π

∑
l,m

1

rlm

V̈

(
t− rlm

c0

)
.

(2.16)

Use of Eq. (2.16) is restricted to the tube cross sections that are triangular, rect-

angular, square or hexagonal. Although images of a centered bubble are shown in

Figs. 2.5, 2.7, 2.8, and 2.9, Eq. (2.16) can be used for an arbitrary bubble position,

as long as the terms rlm are correctly accounted for. Off-centered bubble positions

are considered for a square tube in later chapters. Also note that while Eq. (2.15) is

only applicable to a bubble centered between parallel plates, it too can be modified

for use with off-centered bubble positions, as discussed in Chapter 3.

The method of images cannot be applied to a cylindrical tube, which is the
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case of most practical interest. With the progression from triangle to square to

hexagon we may illustrate the transition to circular tubes, with the hexagon being

the closest approximation to a circle. A different approach, normal mode expansion,

was recently developed by others in our group for studying the dynamics of a bubble

in a cylindrical tube [61], and the results from the two approaches will be compared.

Rigid walls are implied in both Eqs. (2.15) and (2.16), but modifications can be made

to the summations to accommodate deviation from the rigid wall assumption. In

Chapter 3, pressure release walls are investigated for two parallel plates and a square

tube. The effect of finite wall impedance is also studied for the parallel plates in

Chapter 3.
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Chapter 3

Linear Solutions

In this chapter we present solutions of Eqs. (2.15) and (2.16) in the linear

approximation. The essential role of liquid compressibility for a bubble in an infinite

channel with rigid walls is discussed in detail. For the case of parallel plates, analytic

expressions for the frequency response, resonance frequency and quality factor are de-

rived. For tubes, numerical summation over the images is required. A simplification

of the summation is investigated for a square tube. Pressure release walls are consid-

ered for the parallel plates and a square tube. Finite wall impedance is considered

for a bubble between two widely spaced plates.

3.1 Channels Formed by Parallel Plates

If we express the bubble radius as R(t) = R0+ξ(t), where ξ is the perturbation

of the bubble radius, and linearize Eq. (2.15) with respect to ξ we obtain the following

model equation for an acoustically driven bubble between two rigid parallel plates:

ξ̈(t) + ω2
0ξ(t) =

R0

c0

...
ξ (t)− 2

R0

d

∞∑
m=1

1

m
ξ̈(t−md/c0)−

pac(t)

ρ0R0

, (3.1)

where ω0 = (3γP0/ρ0R
2
0)

1/2 is the natural (Minnaert) angular frequency for a bubble

in an unbounded liquid. Equation (3.1) forms the basis for the analyses in Secs. 3.1.1–
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3.1.5. It is modified slightly in the frequency domain to describe parallel plate channels

with pressure release walls in Sec. 3.1.6.

3.1.1 Liquid Compressibility Revisited

As pointed out in Chapter 2, compressibility of the liquid is taken into ac-

count by the term with three time derivatives in Eq. (3.1), corresponding to radiation

damping, and by the time delays appearing in the summation. The time delays are

due to the finite sound speed in compressible liquid. For an incompressible liquid and

therefore infinite sound speed, Eq. (3.1) reduces to(
1 + 2

R0

d

∞∑
m=1

1

m

)
ξ̈(t) + ω2

0ξ(t) = −pac(t)

ρ0R2
0

, c0 →∞. (3.2)

The expression multiplying ξ̈ represents the effective inertia of the liquid in contact

with the bubble wall. Since the summation over 1/m diverges, the effective inertia

is infinite, and there is no dynamical solution of Eq. (3.2). The infinite mechanical

impedance at the bubble wall is produced by pressure waves arriving simultaneously,

and therefore in phase, from the infinity of reflections between the plates.

In the context of incompressible flow in a rigid channel, a physical explanation

of the aforementioned infinite impedance is readily appreciated on the basis of energy

considerations. In free space, the total kinetic energy surrounding a spherical bubble

whose wall moves radially with velocity ξ̇(t) is 2πρ0R
3
0ξ̇

2(t), a finite quantity [11].

Now consider the same bubble in the channel depicted in Fig. 2.4. Far from the

bubble, where the streamlines are parallel to the walls and the flow is uniform across

the channel (see Fig. 3.1), the velocity of the liquid at distance r from the bubble
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is proportional to ξ̇(t)/r on account of cylindrical divergence, such that the kinetic

energy per unit volume is proportional to 1/r2. The kinetic energy in a thin cylindrical

shell of volume d× 2πr dr is thus proportional to dr/r, the integral of which between

inner radius ri and outer radius ro yields ln(ro/ri) for a shell of finite thickness. The

total kinetic energy in a liquid constrained by rigid plates of infinite extent, ro = ∞, is

therefore infinite. Unlike spherical divergence of the flow in an unconstrained liquid,

cylindrical divergence is insufficient for the kinetic energy to be finite. The bubble

must perform infinite work to change its volume in the channel, however small that

change may be, and therefore radial motion of the bubble wall is prohibited. The same

argument applies to a bubble in an infinite rigid tube with constant cross section, for

which there is no divergence of the flow far from the bubble, and the kinetic energy

increases linearly with distance, rather than logarithmically. Equation (3.1) is free of

this shortcoming associated with incompressible flow.

Figure 3.1: View of streamlines of the flow emanating from a bubble between two
parallel rigid plates.

We emphasize that the essential role of compressibility discussed above is a

consequence of assuming that the channel has infinite length and rigid walls. Re-

laxing either of these assumptions permits dynamical solutions to be obtained with-

out accounting for compressibility. Models of bubble dynamics in incompressible
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liquid constrained by a rigid but finite tube have been developed by Oğuz and Pros-

peretti [1]. An approximate approach to modeling bubble dynamics in incompressible

liquid constrained by parallel plates with walls having finite impedance is described

in Sec. 3.1.4. For tubes of finite length that are sufficiently long, or having walls with

finite but not sufficiently large impedance, compressibility of the liquid competes with

and eventually dominates these other mechanisms for reducing the effective inertia of

the flow.

3.1.2 Frequency Response

The summation in Eq. (3.1) is history dependent, and therefore to solve

Eq. (3.1) in the time domain requires storage of ξ̈(t − md/c0) at the delayed times

t − md/c0 at every time step. However, a closed-form solution can be obtained in

the frequency domain. For harmonic excitation by an externally applied sound pres-

sure pac(t) = p0e
jωt, the response takes the form ξ(t) = Ξ(ω)ejωt, and substitution in

Eq. (3.1) yields[
1−

(
1 + 2

R0

d

∞∑
m=1

e−jmkd

m

)
ω2

ω2
0

+ jk0R0
ω3

ω3
0

]
Ξ(ω)

R0

= − p0

3γP0

, (3.3)

where k = ω/c0 and k0 = ω0/c0. The third derivative
...
ξ manifests itself as the term

containing ω3, and the time delays appear as the phase shifts e−jmkd. The summation

may be evaluated in closed form as follows [62]:

∞∑
m=1

e−jmkd

m
= − ln(1− e−jkd), for all kd, (3.4)

= − ln

(
2 sin

kd

2

)
− j

2
(π − kd), 0 < kd < 2π. (3.5)
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Use of Eq. (3.4) in (3.3) yields{
1−

[
1− 2

R0

d
ln(1− e−jkd)

]
ω2

ω2
0

+ jk0R0
ω3

ω3
0

}
Ξ(ω)

R0

= − p0

3γP0

, (3.6)

which we rewrite as

Ξ(ω)

Ξ(0)
=

{
1−

[
1− 2

R0

d
ln(1− e−jkd)

]
ω2

ω2
0

+ jk0R0
ω3

ω3
0

}−1

, (3.7)

where Ξ(0) = −(p0/3γP0)R0 is the response at zero frequency.

Figure 3.2: Frequency response of a bubble between two parallel rigid plates for
different dimensionless plate separations d/R0.
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The effect of the plate separation d/R0 on the frequency response of a bubble

centered between the plates is shown in Fig. 3.2 for an air bubble in water, for which

k0R0 = (3γP0/ρ0c
2
0)

1/2 = 0.014. It is seen that as the plate separation is reduced, the

resonance frequency decreases from its value of ω0 in a free field and the radiation

damping increases. When the plates are far apart the response is effectively the

same as that in the free field. The same behavior was observed by Weston [47] and

Feuillade [49] in connection with line arrays of bubbles.

3.1.3 Resonance Frequency and Quality Factor

Explicit expressions for the resonance frequency and quality factor may be

obtained using the relation given by Eq. (3.5). Although restricted to 0 < kd < 2π,

it permits separation of the real and imaginary parts of the solution. This relation

may be used for all values of kd by understanding that it represents just one cycle of

a function that is periodic in 2π. When Eq. (3.5) is substituted in Eq. (3.3), the term

jkd/2 in the former cancels the term jk0R0ω
3/ω3

0 in the latter, and the result is

Ξ(ω)

Ξ(0)
=

{
1−

[
1− 2

R0

d
ln

(
2 sin

kd

2

)]
ω2

ω2
0

+ jπ
R0

d

ω2

ω2
0

}−1

, kd < 2π. (3.8)

The restriction kd < 2π is equivalent to d < λ. For kd → 0 (incompressible liquid)

and kd → 2π (for which arrivals from all images are in phase with radiation from the

bubble), it is seen that Ξ(ω) → 0, corresponding to the absence of a response due to

the infinite effective inertia discussed in connection with Eq. (3.2).

The resonance frequency ωr is defined by setting the real part of the expression

within the braces in Eq. (3.8) to zero, which yields the following transcendental
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relation:

ωr =
ω0√

1− 2(R0/d) ln |2 sin(ωrd/2c0)|
. (3.9)

While Eq. (3.8) is restricted to kd < 2π, Eq. (3.9) has been rendered valid for all

kd by taking the absolute value of the sine function to account for the periodicity of

Eqs. (3.4) and (3.5). Equation (3.9) also follows from the expression for the resonance

frequency in a tank given by Eq. (42) of Leighton et al. [44], when the latter is

evaluated for the geometry in Fig. 2.4 together with rigid boundary conditions, and

the relation in Eq. (3.5) is used. [We note that the subscript 0 was omitted from the

wavenumber k in their Eq. (42), corresponding to omitting the subscript r on the

right side of our Eq. (3.9). Leighton et al. do not present solutions of their Eq. (42).]

The solution of Eq. (3.9) is shown in Fig. 3.3(a), which reveals the resonance

frequency shift to be significant for plate separations less than about 10 bubble di-

ameters, d/R0 . 20. Resonance frequency is decreased because the plates prohibit

the ideal radial expansion of flow that occurs in an unbounded liquid, thus increasing

the effective fluid inertia. Figure 3.3(a) is qualitatively the same as Fig. 3 of Feuil-

lade [49] for arrays of two and three bubbles. Quantitatively, the resonance frequency

shift depicted in Fig. 3.3(a) is about twice that which is predicted for three bubbles

separated by distance d.
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Figure 3.3: (a) Resonance frequency and (b) quality factor as functions of plate
separation for an air bubble in water.
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The quality factor is defined by the relation Q = |Ξ(ωr)/Ξ(0)|, such that

Q =
ω2

0

ω2
r

d

πR0

, k0d < 2π, (3.10)

' d

πR0

,
d

R0

� 1, k0d < 2π, (3.11)

=
1

k0R0

, k0d →∞. (3.12)

Equations (3.10) and (3.11) follow from (3.8), and Eq. (3.12) follows from (3.7). The

dependence of Q on d/R0 is shown in Fig. 3.3(b). Since losses due to viscosity and

heat conduction are not included in the analysis, damping associated with the quality

factor is due entirely to compressibility. The limiting value for a channel of infinite

width, Q ∼ 1/k0R0, corresponds to radiation damping in an unbounded liquid. The

transition to this limiting value, Q ∼ 72 for an air bubble in water, is illustrated in

Fig. 3.4, where λ0 = 2π/k0 is the acoustic wavelength in the liquid at the natural

frequency of the bubble when the liquid is unbounded, and the periodic structure is

due to the sawtooth behavior connected with the term j(π − kd)/2 in Eq. (3.5). For

comparison, the value d/λ0 = 1 in Fig. 3.4 corresponds to d/R0 = 450 in Fig. 3.3(b).

3.1.4 Finite Wall Impedance

We consider here the effect of channel walls having finite acoustic impedance,

whether due to the transmission of sound outside the channel, or due to wall compli-

ance or inertia. A solution of this problem for arbitrary wall impedance is difficult,

but solutions under certain restricted conditions suggest the dynamic response of a

bubble that may be expected under more general conditions. In the limit of geomet-
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Figure 3.4: Convergence of the quality factor to its value of 1/k0R0 for a bubble in
an unbounded liquid as plate separation is increased indefinitely.
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rical acoustics (high frequencies), waves radiated by the bubble and reflected from

the channel walls back toward the bubble follow ray paths that are approximately

perpendicular to the channel walls. The characteristic impedance of the wave is ρ0c0

in this limit, and use of the plane-wave reflection coefficient for normal incidence on

the channel wall is then appropriate. The necessary condition for these assumptions

to be reasonable is that wavenumber times the radius of curvature of the wavefront in-

cident on the wall is large compared to unity. In our case this corresponds to kd � 1,

or d & λ.

If we assume that the surface of the wall is locally reacting, then for kd � 1

finite wall impedance can be taken into account by introducing a pressure reflection

coefficient β in the summation in Eq. (3.3) as follows:

∞∑
m=1

e−jmkd

m
→

∞∑
m=1

βm e−jmkd

m
, kd � 1. (3.13)

The quantity β is applied once for every reflection. Writing βm = em ln β, we can

achieve the same result by replacing the real wavenumber k = ω/c0 in either Eq. (3.3)

or (3.7) by the complex wavenumber

k̃ =
ω

c0

+ j
ln β

d
. (3.14)

This substitution cannot be made directly in Eq. (3.8); instead, it must be made one

step earlier, in Eq. (3.5), because of how terms were combined to obtain Eq. (3.8).

For example, in Eq. (3.7) one obtains

ln(1− e−jk̃d) = ln(1− |β|e−j(kd−φ)), (3.15)

= ln(1− |β|ejφ), c0 →∞, (3.16)
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where the reflection coefficient has been expressed in polar form as β = |β|ejφ. For

an arbitrary specific acoustic wall impedance zw the reflection coefficient is

β =
zw − ρ0c0

zw + ρ0c0

. (3.17)

The wall impedance may now be expressed as zw = rw + jxw, where the real part rw

accounts for the loss of acoustic energy in the channel due to transmission through

the walls, and the imaginary part xw is the reactance associated with inertia and

compliance of the walls. Since |β| < 1 for any finite value of rw, and φ 6= 0 for any

finite value of xw, the expression in Eq. (3.16) is bounded in either case. This is to say,

the problem with the prediction of infinite inertia resulting from the assumption of

an incompressible liquid in an infinite channel with rigid walls is avoided by allowing

for finite wall impedance.

As indicated in Eq. (3.13), our analysis of finite wall impedance is restricted to

channels having widths greater than about one wavelength. However, the implication

of the underlying physics is clear. Change in bubble volume is possible in a constrained

incompressible liquid only if the channel walls have finite impedance, allowing them

to move in order to accommodate the liquid displaced by motion of the bubble wall.

We note that an alternative use of a complex wavenumber is to account for

the attenuation of sound in the liquid.

3.1.5 Bubble Off-Center

When the bubble is off center, say an arbitrary distance b from one plate as

shown in Fig. 3.5, simplicity is lost because of the asymmetric distribution of the

40



images required to satisfy the boundary conditions. The solution in this case is given

by Eq. (3.3) after replacing the summation as follows:

∞∑
m=1

e−jmkd

m
→ 1

4

∞∑
m=1

(
2

m
+

ej2kb

m− b/d
+

ej2k(d−b)

m− 1 + b/d

)
e−j2mkd. (3.18)

The two summations are equivalent for a bubble in the midplane, b = d/2. For

a bubble off center, the summation no the right longer admits a closed form as in

Eqs. (3.4) and (3.5). Dependence of the pulsation amplitude on the position of the

bubble in the channel is shown in Fig. 3.6 for d/R0 = 30. Resonance frequency is

decreased, and the amplitude response is slightly increased, as the bubble is moved

closer to the wall.

Figure 3.5: Geometry of a bubble located off-center in a channel formed by two
parallel plates.
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Figure 3.6: Dependence of amplitude response on distance b of bubble from channel
wall, for d/R0 = 30.
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3.1.6 Pressure Release Walls

Equation (3.1) is easily modified to describe parallel plate channels with pres-

sure release walls. The boundary condition is that the pressure at the interface is

zero, which requires the first image to be in antiphase (differing by π radians, or op-

posite sign) with the bubble. For parallel surfaces, the images and the bubble form an

infinite line array extending in both directions, with alternating phase from image to

image. The summation accounting for radiation from the images in Eq. (3.3) becomes∑∞
m=1(−1)me−jmkd/m. The closed forms for the series, corresponding to Eqs. (3.4)

and (3.5), are

∞∑
m=1

(−1)m e−jmkd

m
= − ln(1 + e−jkd), for all kd, (3.19)

= − ln

(
2 cos

kd

2

)
+ j

kd

2
, −π < kd < π. (3.20)

Alternatively, Eq. (3.19) can be obtained by setting β = −1 = ejπ in Eq. (3.13), but

Eq. (3.19) is free of the restriction kd � 1. Equation (3.19) is substituted in Eq. (3.3)

to obtain

Ξ(ω)

Ξ(0)
=

{
1−

[
1− 2

R0

d
ln(1 + e−jkd)

]
ω2

ω2
0

+ jk0R0
ω3

ω3
0

}−1

. (3.21)

The magnitude of this frequency response is plotted in Fig. 3.7. From Fig. 3.7

we see that as the plate separation decreases, the resonance frequency increases.

Since the path of least resistance for the liquid confined between two free surfaces is

toward the free surfaces, when the channel becomes narrower less mass is in motion,

the inertance decreases, and therefore the resonance frequency increases. This is

in contrast to the rigid plates, for which the resonance frequency decreases as the
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Figure 3.7: Frequency response of a bubble between two pressure release plates.

plate separation decreases owing to the increase in inertia (see Fig. 3.2). We also

notice that the amplitudes at resonance are infinite for d/R0 ≤ 100. The reason

for this is that, unlike a channel with rigid walls, a channel formed by free surfaces

cannot support propagation at arbitrarily low frequencies. Consequently, there can

be no radiation loss, and the quality factor is infinite, at frequencies below the cut-on

frequency for the lowest propagating mode. The first propagating mode excited by

the bubble cuts on at kd = π. Since kd = k0R0(ω/ω0)(d/R0), for an air bubble in

water and ω = ω0 the first excited higher-order mode cuts on at d/R0 = 224. Thus

only when d/R0 > 224 (half wavelength) can sound propagate, and only then will the

bubble experience radiation loss. This explains the finite quality factor observed for

d/R0 = 300.

Explicit expressions for the resonance frequency and quality factor are obtained
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by substituting Eq. (3.20) in Eq. (3.3), which yields

Ξ(ω)

Ξ(0)
=

{
1−

[
1− 2

R0

d
ln

(
2 cos

kd

2

)]
ω2

ω2
0

}−1

, kd < π. (3.22)

Setting the real part of the expression within the braces in Eq. (3.22) to zero, we

obtain

ωPR
r =

ω0√
1− 2(R0/d) ln |2 cos(ωPR

r d/2c0)|
. (3.23)

Using the relation QPR = |Ξ(ωPR
r )/Ξ(0)|, we have for the quality factor

QPR = ∞, k0d < π, (3.24)

=
1

k0R0

, k0d →∞. (3.25)

Equation (3.24) follows from (3.22), and Eq. (3.25) follows from (3.21). The solution

Figure 3.8: Resonance frequency of a bubble centered between two pressure release
plates.

of Eq. (3.23) is shown in Fig. 3.8, which confirms what we observe in Fig. 3.7(a),

45



that the resonance frequency increases from its value of ω0 in a free field as the plate

separation is reduced.

3.2 Channels Formed by Tubes

The model equation for a bubble confined in a rigid tube, Eq. (2.16), can be

linearized to obtain

ξ̈(t) + ω2
0ξ(t) =

R0

c0

...
ξ (t)−R0

∑
l,m

1

rlm

ξ̈

(
t− rlm

c0

)
− pac(t)

ρ0R0

, (3.26)

where rlm is the distance from the bubble to its image designated by the index pair

(l,m), as shown in Figs. 2.7, 2.8 and 2.9.

3.2.1 Frequency Response

Again, time-harmonic excitation by an externally applied sound pressure is

assumed. With pac(t) = p0e
jωt, the response takes the form ξ(t) = Ξ(ω)ejωt, and

substitution of pac(t) and ξ(t) in Eq. (3.26) yields[
1−

(
1 + R0

∑
l,m

e−jkrlm

rlm

)
ω2

ω2
0

+ jk0R0
ω3

ω3
0

]
Ξ(ω)

R0

= − p0

3γP0

, (3.27)

or

Ξ(ω)

Ξ(0)
=

[
1−

(
1 + R0

∑
l,m

e−jkrlm

rlm

)
ω2

ω2
0

+ jk0R0
ω3

ω3
0

]−1

. (3.28)
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Explicit expressions for rlm when the bubble is in the center of a tube with a square,

rectangular, or hexagonal cross section are

rlm = (l2 + m2)1/2s4 square tube, (3.29)

=
√

3(l2 + lm + m2)1/2s6 hexagonal tube, (3.30)

= [(lb)2 + (md)2]1/2 rectangular tube. (3.31)

Here s4 and s6 are the lengths of the sides for the square and hexagon, respectively,

and b and d are the breadth and height of the rectangle, respectively. For triangular

cross section, no explicit expression was obtained for rlm, and the method we used to

calculate rlm is given in Appendix A. An expression for dlm for a bubble off center in

a rectangular (square) tube was also obtained. Figure 3.9 shows an arbitrary position

(xs, ys) of a bubble in a rectangular tube. The map of the images for an off-center

bubble in a rectangular tube is shown in Fig. 3.10. The distance between the bubble

d

b

-

6

r
xs

ys

x

y

Figure 3.9: The coordinate system for an off-center bubble in a rectangular tube.
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rlm

d

b

Figure 3.10: Image map for a bubble located off-center in a rectangular tube.

and any image with indices l,m is

rlm =
√

x2
l + y2

m,

where

xl = lb l even (3.32)

= lb− 2xs l odd

ym = md m even

= md− 2ys m odd.

When b = d = s4, Eq. (3.32) applies to an off-center bubble in a square tube. When

xs = ys = 0, Eq. (3.31) is recovered.
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We focus first on the case of a bubble located in the center of the tube. The

frequency response is obtained from Eq. (3.28) for different tube geometries. Two

questions are addressed: How does the shape of the tube cross section affect the

bubble dynamics, and how does the width of the tube affect the bubble response? To

address the first question, we normalize the three cross-sectional areas (triangular,

square, and hexagonal) using the following relations to make them equal:

31/4

2
s3 = s4 =

33/4

21/2
s6, (3.33)

where s3, s4 and s6 refer to the side length of a triangle, square, and hexagon, respec-

tively. To address the second question, we vary the normalized tube size
√

S/R0 to

see how the responses are affected. Thus for each tube size
√

S/R0, a group of three

curves corresponding to the three geometries is plotted together.

The double summation over the images is taken out to a circle of radius Ns4.

For a square tube, the relation l2 + m2 ≤ N2 ensures that the images included fall

within the circular region. For triangular and hexagonal tubes, the images outside

the circle were excluded from the summation. Details are provided in Appendix A.

In our calculations, N was taken to be 1000.

Figure 3.11(a) shows five groups of frequency responses corresponding to five

different cross-sectional areas, with each group containing three different tube geome-

tries. For the range of
√

S/R0 considered, 10 to 100, this would correspond to bubbles

of radii 1 µm to 5 µm in tubes of radii from 10 µm to 500 µm (e.g., corresponding to

contrast agents in blood vessels).

In Fig. 3.11(a) we see that the curves for the three different geometries overlap.
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The cross-sectional shape of an infinite rigid tube thus has little effect on the bubble

dynamics provided the cross-sectional areas are the same. This can be explained in

terms of the number of images being summed. In any ring of radius r and thickness

dr, since the number of images per unit area is the same (asymptotically) when the

cross-sectional areas are the same, the number of images in any given ring is the same

for all three geometries. We may also expect that Fig. 3.11(a) applies to cylindrical

tubes when the tube areas match those of the three geometries considered. The

frequency response of a bubble in a cylindrical tube will be investigated in Chapter

4 using a normal mode expansion. The ripples in the curves for
√

S/R0 = 10 at very

small values of ω/ω0 result from numerical truncation error in the calculation of the

summation. The more terms that are included in the summation, the less pronounced

are the ripples. Figure 3.11(b) is an expanded view of the ripples, distinguishing the

three different curves.

Notice also that as the cross-sectional area becomes smaller the damping

increases, similar to what occurs for a bubble between rigid parallel plates. For
√

S/R0 = 20 and below the resonance peaks disappear completely. For
√

S/R0 = 100,

the response is nearly the same as that in a free field. As will be discussed in more

detail in the context of radiation impedance in Secs. 4.1.2 and 4.2.1, the radiation in

a rigid tube couples with the plane wave mode, resulting in large radiation loss and

leading to greater damping than for a bubble between rigid plates. The dynamics of a

bubble in a rigid tube is controlled by the damping of the system, and the resonance

peaks shift to lower frequencies as a result of the higher damping. This is different

from the dynamics of a bubble between rigid plates, where the effect of mass loading
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on the bubble is the dominant effect.

The trend of decreasing resonance frequency with decreasing tube diameter

was also observed by Sassaroli and Hynynen [33–35] and Qin and Ferrara [15]. In

their numerical study of the resonance frequency of a bubble in a blood vessel, Sas-

saroli and Hynynen [35] found that for a 2 µm bubble in a vessel with radius of 6 µm,

the resonance frequency is 20% of its value in a free field. In their investigations a

short tube model was used, where the length of the tube is much smaller than the

wavelength of sound in the liquid (see Fig. 3.12, where L/a is small). The short tube

approximation permits the liquid to be treated as incompressible in their study. Sim-

ilarly, a short tube model is also the basis of the analysis by Oğuz and Prosperetti [1]

and Ye and Bull [40, 41]. Ye and Bull [40, 41] performed a numerical simulation of

the stresses on a short tube wall (L/a = 7) induced by a bubble expanding inside the

tube. Both rigid and compliant tube walls were investigated.

The geometries of the finite-length tubes considered by Oğuz and Prosperetti [1]

are shown in Fig. 3.13. They performed a numerical study of the natural frequencies

of the systems and an approximate analytical solution was obtained.1 They approxi-

mated the bubble as a cylindrical mass of gas spanning the cross section of the tube

to obtain

ftube

f0

=
a√
R0L

, (3.34)

where ftube is the natural frequency of a bubble located in the middle of the tube,

f0 is the natural frequency in a free field, a is the tube radius, R0 is the equilibrium

1The approximate solution works very well except when the bubble radius is much smaller than
that of the tube, for which an alternative approximate solution was developed.
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Figure 3.11: (a) Frequency responses for different tube cross-sections. The term√
S/R0 is the effective tube diameter normalized by the bubble radius. (b) Expanded

view of the three curves for square, hexagonal and triangular tubes for
√

S/R0 = 10.
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Figure 3.12: Bubble in a short tube.

static pressurep` , the previous relation becomes

pi52r
]f

]t
1p`1sC , ~2!

wherer is the liquid density. The bubble internal pressurepi

can be assumed to remain spatially uniform at all times.
Sincep` is a constant, this equation implies then thatf will
remain essentially uniform over the bubble surface provided
it is uniform ~e.g., equal to zero! at the initial time, and
provided the surface curvature is either uniform or small.
The former possibility prevails in the case of small bubbles,
which tend to remain spherical, while the latter one is en-
countered for large bubbles for which the surface tension
contribution is negligible. Upon balancing variations in cur-
vature and variations in internal pressure, it is found that the
appropriate scale to judge whether a bubble is to be consid-
ered ‘‘small’’ or ‘‘large’’ is of the order ofs/p` which, for
the case of water at atmospheric pressure, is a few microme-
ters.

With the assumption of a uniform internal pressure, av-
eraging Eq.~2! over the bubble surface, we have

pi52r K ]f

]t L 1p`1s^C &, ~3!

where^...& denotes the surface average. In the linear approxi-
mation, to which we confine ourselves, the surface average
of any first-order quantity can consistently be calculated on
the unperturbed equilibrium surface, rather than on the mov-
ing one. As a consequence, time differentiation and surface
averaging commute and therefore, upon differentiating once
more with respect to time, we find

r
d2

dt2
^f&52

dpi

dt
1s

d

dt
^C &. ~4!

For linear oscillations at a single frequencyv, any variable is
proportional to any other so that we may write

dpi

dt
5

dpi

dV

dV

dt
, ~5!

whereV is the instantaneous bubble volume anddpi /dV a
possibly complex constant. Furthermore,

dV

dt
5E

S
u–n dS[SK ]f

]n L , ~6!

wheren is the outward directed unit normal to the bubble
surfaceS. With the neglect of gravity, the equilibrium con-
figuration of the bubble is necessarily spherical, although the
instantaneous shape during volume oscillations is not neces-
sarily so. However, again in the linear approximation, it is
easy to show that

d

dt
^C &5^C 0&K ]f

]n L , ~7!

where ^C 0&52/a is the curvature of a spherical bubble of
radius a. Upon substituting these results into Eq.~4!, and
further writing iv for d/dt, we find

v252
1

r S S
dpi

dV
1

2s

a2 D 1

^f& K ]f

]n L . ~8!

For a spherical bubble in an infinite liquidf5(a2/r )
3(da/dt) ~where r is the distance from the bubble center
andda/dt the radial velocity! and this expression reduces to

v0
252

1

ar S S
dpi

dV
1

2s

a2 D , ~9!

wherev0 denotes the bubble angular frequency in this case.
Upon taking the ratio with Eq.~8! and introducing the fre-
quenciesf 5v/2p, f 05v0/2p, we thus have

S f

f 0
D 2

5
a

^f& K ]f

]n L , ~10!

which expresses in a compact form the change in the natural
frequency of the bubble due to the presence of boundaries.
The validity of this result presupposes of course thatdpi /dV
in Eq. ~8! has the same value as for a bubble in an infinite
fluid. This assumption may be justified as follows. The rate
of change of the internal pressure with volume is determined
essentially by the thermal processes in the bubble. It is well
known that, to an excellent approximation, these can be
evaluated assuming the bubble surface temperature to remain
undisturbed~see, e.g., Kamathet al., 1993!, which effec-
tively decouples the thermal problem from the environment
surrounding the bubble.

If the length of the tube were infinite, volume changes of
the bubble would only be possible in a compressible fluid.
However, if the length of the tube is much smaller than the
wavelength of sound in the liquid, we may use the incom-
pressible approximation so that the velocity potential satis-
fies Laplace’s equation¹2f50. For simplicity we only con-
sider axisymmetric situations. The boundary condition on the
surrounding solid boundaries is of coursen–“f50. If the
liquid mass in the tube is bounded by a free surface in con-

FIG. 1. The various configurations of a bubble in a tube considered in this
paper:~a! open tube with infinite thickness immersed in an unbounded liq-
uid; ~a! open tube with negligible thickness immersed in an unbounded
liquid; ~b! partially filled tube with liquid surfaces exposed to the atmo-
sphere;~c! rigidly terminated tube in the bottom of a large container;~d!
partially filled tube closed at one end.

3302 3302J. Acoust. Soc. Am., Vol. 103, No. 6, June 1998 H. N. Og̃uz and A. Prosperetti: Oscillation of gas bubbles in tubes

Figure 3.13: Geometries of tubes investigated by Oğuz and Prosperetti [1].
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radius of the bubble, and L stands for the tube length with end corrections.

The physical interpretation of Eq. (3.34) is rather simple. Resonance frequency

is proportional to the square root of the ratio of an effective stiffness to an effective

mass. For both a bubble in a free field and a bubble in a rigid tube the effective

stiffness is the same, being determined for an incompressible liquid only by the com-

pressibility of the gas inside the bubble. The frequency ratio in Eq. (3.34) may thus

be written as ftube/f0 = (m0/mtube)
1/2, where m0 is the effective mass in the free

field, and mtube is the effective mass in the presence of the tube. The former is given

by m0 = 4πρ0R
3
0, the well known result for mass loading on a small pulsating sphere

(equal to three times the mass of liquid displaced by the sphere). To estimate mtube

we assume that the inertia of the liquid is associated primarily with the liquid inside

the tube, and that the inertia of the rapidly diverging flow fields at the ends of the

tube is negligible in comparison. Begin by calculating the velocity v of the liquid in

the tube assuming plug flow throughout the tube to the left and right of the bubble

(recall Fig. 3.1), with R0 � a. Considering, e.g., the right half of the tube, equate

the volume velocity on the right half of the bubble wall, 2πR2
0ξ̇, with the volume

velocity in the tube, πa2v, to obtain v = 2(R2
0/a

2)ξ̇. The kinetic energy of the liquid

in the entire tube is thus KEtube = 1
2
(πa2Lρ0)v

2, which after substitution for v may

be written KEtube = 1
2
mtubeξ̇

2, and one thus identifies mtube = 4πρ0LR4
0/a

2 as the

effective mass loading concentrated at the bubble wall. Substitution of the expres-

sions for the effective masses in (m0/mtube)
1/2 yields the right-hand side of Eq. (3.34)

exactly.

For L → ∞ one sees that ftube → 0, meaning that in this model there can
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be no bubble pulsation due to the infinite inertia, which on the surface would seem

to be consistent with our interpretation of bubble pulsation between infinite parallel

plates. However, the assumption of incompressibility must be abandoned for long

rigid tubes. Indeed, as noted in the discussion of Fig. 3.11(a) and analyzed in greater

detail in Sec. 4.2.1, when compressibility of the liquid is taken into account for infinite

rigid tubes it is radiation damping, not inertia, that reduces the resonance frequency

below its value in a free field.

3.2.2 Square Tube

The square tube is a special case for which approximate analytical results

can be obtained. For a bubble centered in a square tube with sides of length a,

the summation in Eq. (3.27) can be written explicitly using the relation given in

Eq. (3.29):[
1−

(
1 + 4

R0

a

∞∑
l=0

∞∑
m=1

e−j(l2+m2)1/2ka

(l2 + m2)1/2

)
ω2

ω2
0

+ jk0R0
ω3

ω3
0

]
Ξ(ω)

R0

= − p0

3γP0

. (3.35)

A simplification of the summation is determined as follows. Use of ejx = cos x+j sin x

leads to

∞∑
l=0

∞∑
m=1

e−j(l2+m2)1/2ka

(l2 + m2)1/2
=

∞∑
l=0

∞∑
m=1

cos ka(l2 + m2)1/2

(l2 + m2)1/2

− j

∞∑
l=0

∞∑
m=1

sin ka(l2 + m2)1/2

(l2 + m2)1/2
. (3.36)

Tolstoy and Tolstoy [48] obtained the following closed-form expression for the sine

series:
∞∑
l=0

∞∑
m=1

sin ka(l2 + m2)1/2

(l2 + m2)1/2
=

π

2

1

ka
− ka

4
, 0 < ka < 2π. (3.37)
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For the cosine series, we show the numerical results for N = 1000 in Fig. 3.14(a). From

Fig. 3.14(b) it can be seen that the asymptote of the cosine series is approximately

−1 for ka/π < 1, and we can thus write

∞∑
l=0

∞∑
m=1

cos ka(l2 + m2)1/2

(l2 + m2)1/2
' −1, ka < π. (3.38)

To generalize to tubes with other cross sections, we replace side a with
√

S, and the

following approximate analytical result for the frequency response is obtained:

Ξ(ω)

Ξ(0)
=

[
1−

{
1− 4

R0√
S

[
1 + j

(
π

2

1

k
√

S
− k

√
S

4

)]}
ω2

ω2
0

+ jk0R0
ω3

ω3
0

]−1

,

k
√

S < π. (3.39)

Comparisons of numerical results obtained from the complete solution given

by Eq. (3.35) (red curves) and the approximate analytical result given by Eq. (3.39)

(blue curves) are shown in Fig. 3.15. Given that the admissible values of k
√

S must be

less than π for the approximation in Eq. (3.38) to be valid, and that for an air bubble

in water k0R0 = 0.014, the admissible values of
√

S/R0 are less than 224/(ω/ω0), or
√

S/R0 . 150 for ω/ω0 < 1.5, which is indeed satisfied in Fig. 3.15. The analytical

approximation is seen to provide reasonable agreement with the complete solution

for the frequency response. Approximately 4 million terms needed to be summed in

Eq. (3.35) to achieve convergence.

One benefit of having an analytical approximation such as Eq. (3.39) is that

it permits us to estimate the quality factor Q. We restrict our attention to values

of
√

S/R0 & 30 in order to have an identifiable peak in the frequency response. As
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Figure 3.14: Summation results for a square tube. (a) Numerical summation of sine
and cosine series in Eq. (3.35). (b) Expanded view of summation of cosine series.
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Figure 3.15: Comparison of the complete solution in Eq. (3.35) for a square tube with
the approximate analytical solution in Eq. (3.39).
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at the end of Sec. 3.1.3, define the quality factor by Q = |Ξ(ωr)/Ξ(0)| in Eq. (3.39),

approximating ωr by ω0 to obtain

Q ' k0R0

2π

(√
S

R0

)2

, (3.40a)

= 2.23× 10−3

(√
S

R0

)2

. (3.40b)

To obtain Eq. (3.40b) the value k0R0 = 0.014 for an air bubble in water was used.

From Eq. (3.40b) we see that the dependence of Q on
√

S/R0 is quadratic. A plot

of Eq. (3.40b) is shown in Fig. 3.16. The behavior shown in Fig. 3.16 is qualitatively

Figure 3.16: Quality factor based on the approximate result given by Eq. (3.40).

the same as shown in Fig. 3.3(b) for a bubble between rigid parallel plates. We

remind the reader that the quality factors plotted in Figs. 3.3(b) and 3.13 account

for loss associated only with radiation, and for wide tubes the quality factor will be
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dominated by losses due to viscosity and heat conduction.

If the tube walls are instead pressure release, as for pressure release parallel

plates the images will alternate phase. The summation in Eq. (3.27) becomes, for a

square tube, ∑
l,m

e−jkrlm

rlm

=
4

a

∞∑
l=0

∞∑
m=1

(−1)l+m e−j(l2+m2)1/2ka

(l2 + m2)1/2
, (3.41)

and the frequency response is obtained from an obvious modification of Eq. (3.35).

Figure 3.17 shows the frequency responses of a bubble in square tubes of different

sizes. For a/R0 ≤ 30, the nearby presence of the free surfaces requires less liquid to be

in motion, thus causing the inertia to decrease and therefore the resonance frequency

to increase. The trend of increasing natural frequency of oscillation of a bubble with

decreasing compliant tube size was also observed by Qin and Ferrara [15]. For tubes

sizes a/R0 ≤ 100 and drive frequencies shown in Fig. 3.17 there is no propagating

mode in the tube. Consequently there is no radiation loss and the quality factor

is infinite. For
√

S/R0 ≥ 317 the first propagating mode excited by the bubble

produces radiation damping and thus the resonance amplitude is bounded (as shown

in Fig. 3.17 for a/R0 = 450). For sufficiently wide tubes the free field value of the

quality factor is recovered.

Pressure release triangular and hexagonal tubes are not investigated here. In-

stead, a pressure release cylindrical tube will be studied, but this analysis is postponed

to Chapter 4, where a normal mode expansion is used to study the problem.
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Figure 3.17: Frequency response of a bubble in the center of a square tube with
pressure release walls. The tube walls have side length a.

3.2.3 Bubble in a Rectangular Tube

In this section we focus on the frequency response of a bubble centered in a

rectangular tube. We are interested in showing the transition from a square tube to

a rectangular tube to parallel plates as the aspect ratio of the sides of the rectangular

tube are varied from unity to infinity. Let the rectangular cross-section have breadth

b and height d, such that rlm = [(lb)2 + (md)2]1/2. The frequency response is then

obtained by substituting this relation into Eq. (3.27). We show in Fig. 3.18 the

resonance curves for a bubble centered in rectangular tubes with fixed side d/R0 = 30

and ratios b/d ranging from 1 (square) to 100 (approximating infinite parallel plates).

Along with the curves for the rectangular tube (black curves), we also plotted the

frequency response for bubbles in a parallel-plate channel (red curves) and a square
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tube (blue curves). The parallel-plate channel has a normalized separation of d/R0 =

30, corresponding to the same ratio for the rectangular tube. The square tube has

a cross-sectional area equal to that of the rectangle, such that each of its sides has

length a =
√

bd.

For reference, the only curve that does not vary in Fig. 3.18 is the red line

for the parallel plates (taking into account that the scale on the vertical axis may

change), because the relative plate separation d/R0 = 30 is fixed. As b/d is increased,

the black curve for the rectangular tube moves away from the blue curve for the

square tube and toward the red curve for the parallel plates. It can be seen that the

rectangular tube approximates the parallel plates for b/d > 20.

The red curves in Fig. 3.18 correspond to the curve with d/R0 = 30 in Fig. 3.2,

where the confinement by the plates results in a suppressed resonance peak and a

lower resonance frequency compared to free field values. The black and blue curves

in Fig. 3.18(a) correspond to the curve for
√

S/R0 = 30 in Fig. 3.11. As discussed in

Sec. 3.2.1, the response of a bubble in a rigid duct is much more damped than between

rigid plates due to coupling with the plane wave mode in the tube. As the rectangular

tube becomes wider, it becomes more like two parallel plates. This transition can be

seem from Fig. 3.18(a) to (f). In Fig. 3.18(f), the curves for the rectangular tube and

parallel plates overlap, and the curve for the square tube corresponds to the response

in a free field, with a/R0 = 300.
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Figure 3.18: Transition of the frequency response of a bubble centered in a rigid
rectangular tube. Black lines: bubble in a rectangular tube with width d (d/R0 = 30)
and varying height b (d ≤ b ≤ 50d). Blue lines: bubble centered in a rigid square tube
with same cross-sectional area as the rectangle. Red lines: bubble centered between
two rigid parallel plates with d/R0 = 30.
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3.2.4 Bubble Off-Center in a Square Tube

We also studied how the position of a bubble in a square tube affects the

frequency response of the bubble. The geometry of a bubble off-center is shown in

Fig. 3.9, and the expression for the bubble separation rlm is given by Eq. (3.32) when

b = d = s4. The frequency response is obtained by substituting Eq. (3.32) into (3.27).

Plots of the influence of the bubble position on the frequency response are shown in

Fig. 3.19. Similar observations can be made as for a bubble off-center in the parallel

plate channel shown in Fig. 3.6. Resonance frequency is decreased, and amplitude

response is slightly increased, as the bubble is moved away from the center.
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Figure 3.19: Frequency response of a bubble off-center in a square tube.
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Chapter 4

Radiation Impedance

In the linear approximation, the radiation impedance of the bubble is the

single most important property determining the dynamics of bubble pulsation in

response to an applied sound field. The imaginary part of the radiation impedance, or

reactance, influences the natural frequency, and the real part, or radiation resistance,

influences the damping. Moreover, when recast as a function of radiation impedance,

the frequency response of the bubble pulsation is easily related to existing analytical

descriptions of simple sources in confined spaces created by ducts or cavities. In

particular, following physical interpretation of the radiation impedance of bubbles in

channels, we compare our expressions based on the method of images with Morse and

Ingard’s normal mode theory [2] for the radiation impedance of a simple source in a

waveguide. The two approaches are found to be entirely consistent.

4.1 Radiation Impedance Based on Method of Images

We begin by deriving a general form of the frequency response given by

Eq. (3.7) for parallel plates and Eq. (3.28) for tubes as a function of radiation

impedance. As before, effects of viscosity, heat conduction, and surface tension are

not considered here, and the frequencies under consideration are presumed to be such

66



that bubble radius is small in comparison with the acoustic wavelength.

The gas inside the bubble is assumed to behave adiabatically such that its

pressure is Pgas = P0(R0/R)3γ, where P0 is atmospheric pressure, R(t) the instanta-

neous bubble radius, and γ the ratio of specific heats. In the linear approximation

this becomes, with R(t) = R0 + ξ(t),

Pgas(t) = P0 − (3γP0/R0)ξ(t) . (4.1)

The gas pressure must equal the pressure Pliq in the liquid at the bubble wall. The

latter is expressed as

Pliq(t) = P0 + pac(t) + prad(t) , (4.2)

where pac is the externally applied acoustic pressure, and prad is the acoustic pressure

due to radiation from the bubble. Setting Pgas = Pliq thus yields

−(3γP0/R0)ξ(t) = pac(t) + prad(t) . (4.3)

For harmonic excitation by an externally applied sound pressure pac(t) = p0e
jωt

the response takes the form ξ(t) = Ξ(ω)ejωt, and the acoustic pressure at the bubble

wall may be expressed as prad(t) = jωΞ(ω)ejωtzrad(ω), where jωΞ(ω)ejωt = ξ̇(t) is the

radial particle velocity in the liquid at the bubble wall and zrad(ω) is the acoustic

radiation impedance. Making these substitutions in Eq. (4.3) one obtains(
1 +

jωR0zrad

3γP0

)
Ξ(ω) = −p0R0

3γP0

(4.4)

or, recognizing that Ξ(0) = −p0R0/3γP0,

Ξ(ω)

Ξ(0)
=

(
1 +

jωR0zrad

3γP0

)−1

. (4.5)
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Finally, it is convenient for our purposes to recast the previous equation as

Ξ(ω)

Ξ(0)
=

[
1−
(

1

jk0R0

)(
zrad

ρ0c0

)
ω

ω0

]−1

, (4.6)

where ω0 = (3γP0/ρ0R
2
0)

1/2 is again the natural angular frequency of a bubble in an

unbounded liquid, k0 = ω0/c0 is the associated acoustic wavenumber in the liquid,

and as noted previously for an air bubble in water k0R0 = 0.014.

In an unbounded fluid, the acoustic radiation impedance of a sphere with

arbitrary radius R0 is, in dimensionless form [60],

zrad

ρ0c0

=
jkR0

1 + jkR0

. (4.7)

For kR0 � 1 the expression reduces to zrad/ρ0c0 ' jkR0 at leading order, and the

right-hand side of Eq. (4.6) becomes (1− ω2/ω2
0)

−1, which is the classical result for a

bubble in an unbounded incompressible liquid.

We now apply Eq. (4.6) to specific geometries.

4.1.1 Bubble between Parallel Plates

For a bubble centered between parallel plates, comparison of Eqs. (3.7) and (4.6)

reveals that

zrad

ρ0c0

= jkR0 + (kR0)
2 − j2kR0

R0

d
ln(1− e−jkd) (4.8)

or equivalently

zrad

ρ0c0

= jkR0 + (kR0)
2 + j2kR0

R0

d

∞∑
m=1

e−jmkd

m
. (4.9)
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The first two terms in these expressions are the first two terms in the expansion of

Eq. (4.7) for small kR0. The first term thus accounts for mass loading in a free

field, the second for radiation damping in a free field. The real and imaginary parts

of the third term in Eqs. (4.8) and (4.9) are likewise the contributions to radiation

damping and mass loading, respectively, due to the presence of the plates. To make

the different contributions more clear, real and imaginary terms in Eq. (4.9) may be

separated and regrouped as follows:

zrad

ρ0c0

= jkR0

(
1 + 2

R0

d

∞∑
m=1

cos mkd

m

)
+ (kR0)

2

(
1 +

2

kd

∞∑
m=1

sin mkd

m

)
, (4.10)

or, making use of Eq. (3.4) for kd < 2π,

zrad

ρ0c0

= jkR0

[
1− 2

R0

d
ln

(
2 sin

kd

2

)]
+ πkR0

R0

d
, kd < 2π . (4.11)

The real and imaginary parts of Eq. (4.8), corresponding to the radiation

resistance and radiation reactance, repeatedly are plotted in Fig. 4.1 for d/R0 = 30.

The dashed lines in Fig. 4.1, corresponding to the first two terms in Eq. (4.8), are

included for comparison with the results for an unbounded liquid. From Fig. 4.1(a)

we see that for kd/π < 1 the radiation resistance of a bubble centered between two

parallel plates is larger than that of a bubble in a free field. This in turn corresponds

to higher damping and lower quality factor for d/R0 ≤ 100, as shown in Fig. 3.2.

The maximum value of kd, which occurs for d/R0 = 100, can be calculated as kd =

(ω/ω0)(d/R0)(k0R0) = 2× 100× 0.014 = 2.8 for the drive frequency range ω/ω0 ≤ 2,

and so we have kd/π < 1 over this entire frequency range of d/R0 under consideration.

Similarly, from Fig. 4.1(c) we notice that the radiation reactance of a bubble between
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Figure 4.1: Radiation impedance of a bubble in the middle between two parallel
rigid plates for d/R0 = 30, obtained from Eq. (4.8). (a) Radiation resistance, (b)
radiation reactance, (c) expanded view of radiation reactance for kd/π < 0.4. Solid
lines: bubble between two parallel rigid plates. Dashed lines: bubble in free space.
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plates is slightly larger than that in a free field for kd/π < 0.33. This corresponds

to higher mass loading and results in lower resonance frequencies for d/R0 ≤ 30, as

observed in Fig. 3.2. Also for d/R0 ≤ 30, we have kd/π < 0.3 over the entire range

of the drive frequency.

The crossover points in Fig. 4.1 at kd/π = 1 for the radiation resistance and

kd/π = 0.33 for the radiation reactance can be calculated as follows. Equating

the second terms in Eqs. (4.8) and (4.11) yields kd = π for the crossover point

for the resistance, independent of d/R0. Likewise, equating the first terms yields

kd = 2 arcsin(0.5) = π/3, or kd/π = 0.33, for the reactance, again independent of

d/R0.

Figure 4.2: Radiation impedance of a bubble in the middle between two parallel
rigid plates and the resonance pattern for d/R0 = 30, obtained from Eq. (4.8). (a)
Radiation resistance, (b) radiation reactance. Solid lines: bubble between two parallel
rigid plates. Dashed lines: bubble in free space.

The radiation resistance and reactance are plotted up to kd = 5π in Fig. 4.2

to show the resonance pattern. As kd (or the drive frequency) increases, both the
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Figure 4.3: Radiation impedance of a bubble off-center between two parallel rigid
plates and the resonance pattern for d/R0 = 30, and with b/d = 1/3 (see Fig. 3.5).
(a) Radiation resistance, (b) radiation reactance. Solid lines: bubble between two
parallel rigid plates. Dashed lines: bubble in free space.

radiation resistance and reactance increase, and each new mode is introduced by a

step (for the radiation resistance) or a spike (for the radiation reactance) at its cuton

frequency. Notice that the resonance spikes/steps occur only where kd is a multiple of

2π (or when the plate separation d is an even multiple of a half wavelength), instead

of at all integer multiples of π at which the acoustic resonances occur. This is because

the bubble is located midway between the plates, and when the plate separation d

is an odd multiple of a half wavelength there is a particle velocity antinode at the

location of the bubble, and those modes are not excited. Once the bubble is moved

off-center,1 and not at locations that are distances d/2, d/4, d/8, etc., away from one

of the plates, the spikes/steps for both radiation resistance and reactance occur when

kd is an integer multiple of π, as can be seen in Fig. 4.3, where the bubble is located

1For this case, the summation in Eq. (4.9) is replaced by Eq. (3.18).
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distance d/3 away from one of the plates.

In Eq. (4.9), the factor of jkR0 multiplying the summation corresponds to the

first term in the expansion of Eq. (4.7) for the image bubbles, and one can likewise keep

higher-order terms. Results including the next higher-order term are now discussed.

The first two terms in the expansion of Eq. (4.7) are jkR0(1−jkR0). Replacing jkR0

by jkR0(1− jkR0) in Eq. (4.8), we obtain

zrad

ρ0c0

= jkR0 + (kR0)
2 − j2kR0(1− jkR0)

R0

d
ln(1− e−jkd). (4.12)

Plots of Eq. (4.12) corresponding to Figs. 4.1–4.3 are shown in Figs. 4.4–4.6. No

obvious differences are observed in the radiation reactance plots, but in the radiation

resistance plots the spikes at the resonances become more pronounced when the next

higher-order term is retained.

Figure 4.4: Radiation impedance of a bubble in the middle between two parallel
rigid plates for d/R0 = 30, obtained from Eq. (4.12). (a) Radiation resistance, (b)
radiation reactance. Solid lines: bubble between two parallel rigid plates. Dashed
lines: bubble in free space.
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Figure 4.5: Radiation impedance of a bubble in the middle between two parallel
rigid plates and the resonance pattern for d/R0 = 30, obtained from Eq. (4.12). (a)
Radiation resistance, (b) radiation reactance. Solid lines: bubble between two parallel
rigid plates. Dashed lines: bubble in free space.

Figure 4.6: Radiation impedance of a bubble off-center between two parallel rigid
plates and the resonance pattern for d/R0 = 30 and with b/d = 1/3 (see Fig. 3.5),
obtained from Eq. (4.9). (a) Radiation resistance, (b) radiation reactance. Solid lines:
bubble between two parallel rigid plates. Dashed lines: bubble in free space.
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4.1.2 Bubble in a Square Tube

For a bubble in a tube, comparison of Eqs. (3.28) and (4.6) shows that

ztube
rad

ρ0c0

= jkR0 + (kR0)
2 + jkR2

0

∑
l,m

e−jkrlm

rlm

, (4.13)

where ztube
rad denotes the radiation impedance inside a tube. As before, the first two

terms are the radiation impedance for a simple source in a free field, and the third

term accounts for the effects from the reverberation field produced by the tube walls.

For a square tube with side a we have rlm = a(l2 + m2)1/2 and Eq. (4.13) becomes

zsq
rad

ρ0c0

= jkR0 + (kR0)
2 + j4kR0

R0

a

∞∑
l=0

∞∑
m=1

e−j(l2+m2)1/2ka

(l2 + m2)1/2
, (4.14)

where the superscript “sq” denotes square tube. The real and imaginary parts of the

double summation in Eq. (4.14) account for the contributions to radiation damping

and mass loading, respectively, due to the presence of the tube walls. To make the

different contributions more clear, real and imaginary terms in Eq. (4.14) may be

separated and regrouped as follows:

zsq
rad

ρ0c0

= jkR0

[
1 + 4

R0

a

∞∑
l=0

∞∑
m=1

cos[(l2 + m2)1/2ka]

(l2 + m2)1/2

]

+ (kR0)
2

[
1 +

4

ka

∞∑
l=0

∞∑
m=1

sin[(l2 + m2)1/2ka]

(l2 + m2)1/2

]
. (4.15)

Employing the expression Tolstoy and Tolstoy [48] obtained for the sine series, Eq. (3.37),

we get

zsq
rad

ρ0c0

= 2π
R2

0

a2
+ jkR0

[
1 + 4

R0

a

∞∑
l=0

∞∑
m=1

cos[(l2 + m2)1/2ka]

(l2 + m2)1/2

]
, ka < 2π. (4.16)
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The first term in Eq. (4.16) is the radiation resistance, and it is independent

of frequency (for ka < 2π). This term accounts for coupling of radiation from the

bubble into the plane wave mode of the tube, the only propagating mode that is

excited by a bubble in the center of the tube for ka < 2π, which is the condition

under which Eq. (4.16) was obtained. It is therefore the only mode that can permit

radiation when the bubble is in the center of the tube, and consequently the only

mode that can contribute to the radiation resistance. This coupling into the plane

wave mode acts as an impedance transformer due to conservation of volume velocity.

The volume velocity of the bubble is 4πR2
0ξ̇, and the volume velocity in the tube may

be expressed as 2a2uavg, where uavg is the average particle velocity across the tube,

and the factor of two is due to the fact that sound is radiated in both directions.

Equating these expressions and taking the ratio uavg/ξ̇ yields 2πR2
0/a

2, which is the

first term in Eq. (4.16). The second term in Eq. (4.16) is the radiation reactance.

The radiation resistance and reactance calculated from Eq. (4.15) are plotted

in Fig. 4.7 for a/R0 = 30. The dashed lines in Fig. 4.7 are again the results for a

bubble in an unbounded liquid. As seen from Fig. 4.7(a), the radiation resistance of

the bubble is independent of frequency in the range ka < 2π, with Re(zrad/ρ0c0) '

0.007 for a/R0 = 30, associated with coupling into the plane wave mode. High

radiation resistance corresponds to high damping and low quality factor, as observed

in Fig. 3.11. From Fig. 4.7(b) we see that the radiation reactance is slightly lower

than its value for free space over the region of interest, ka < π, which suggests that

the mass loading on the bubble in a square tube is slightly lower than that in a free

field. But as seen from Fig. 3.11, the resonance frequency for a bubble in a square
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tube with a/R0 < 30 is lower than its free field value. Therefore the downshift of the

resonance frequency is not caused by larger mass loading. Instead, it is caused by

the high damping in the system. Also, for a/R0 < 20 the resonance peaks become

difficult to identify because the system is overdamped. At ka = 2π we see spikes in

both the radiation resistance and reactance, where mode (2, 0) cuts on. For a bubble

centered in the tube, mode (2, 0) is the first propagating nonplanar mode that can be

excited. Modes (1, 0) and (1, 1) are not excited because they have velocity antinodes

at the location of the bubble.

Plots of the real and imaginary parts of Eq. (4.15) for a rigid square tube,

showing a larger number of propagating modes, are presented in Fig. 4.8 for a bubble

located at the center. Similar to the cases where the bubble is located midway between

the parallel plates, the symmetry renders some modes unexcited. If a bubble is located

off-center (see Fig. 3.10), Eq. (4.13) with rlm given by Eq. (3.32) is used instead of

Eq. (4.15) to obtain the radiation impedance. Figure 4.9 is for a bubble located

off-center with xs = −a/6, and ys = −a/6 (see Fig. 3.9). The cutoff frequencies

for different modes in a square tube are given by flm = (c0/2a)
√

l2 + m2 [60], and

the values of ka/π for these modes can be calculated from klma/π = (l2 + m2)1/2.

Table 4.1 gives the values of klma for the first six modes. [Note: Due to the symmetry

of the square tube, modes (l,m) mode (m, l) are interchangeable.] When the bubble

is located off-center, all six propagating modes for ka/π ≤ 3 are excited, whereas for

a bubble at the center, only two modes, (2, 0) and (2, 2), are excited. In general, for

the bubble located at the center, since it is a velocity source, only those modes with

an antinode at the center will be excited. Further, the symmetry about the x and
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y axes of the source location causes the modes with either l or m odd to disappear.

Only the mode with both l and m even are excited.

Figure 4.7: Radiation impedance of a bubble in the center of a rigid square tube
for a/R0 = 30, obtained from Eq. (4.15). (a) Radiation resistance, (b) radiation
reactance. Solid lines: bubble in tube. Dashed lines: bubble in free space.

Mode klma/π
(0, 1) 1.0
(1, 1) 1.414
(2, 0) 2.0
(2, 1) 2.236
(2, 2) 2.828
(3, 0) 3.0

Table 4.1: Values of klma for the first six propagating modes in a square tube with
a/R0 = 30, xs = −a/6, and ys = −a/6 (see Fig. 3.9).

As in Eq. (4.12), we can keep the first two terms in the expansion of Eq. (4.7)

for the images associated with rectangular tubes. Equation (4.13) then becomes

ztube
rad

ρ0c0

= jkR0 + (kR0)
2 + jkR2

0(1− jkR0)
∑
l,m

e−jkrlm

rlm

(4.17)
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Figure 4.8: Radiation impedance of a bubble in the center of a rigid square tube
showing the propagation modes for a/R0 = 30, obtained from Eq. (4.15). (a) Radi-
ation resistance, (b) radiation reactance. Solid lines: bubble in tube. Dashed lines:
bubble in free space.

Figure 4.9: Radiation impedance of a bubble located off-center in a rigid square tube
showing the propagation modes for a/R0 = 30 with xs = −a/6, and ys = −a/6 (see
Fig. 3.9), obtained from Eq. (4.13). (a) Radiation resistance, (b) radiation reactance.
Solid lines: bubble between two parallel rigid plates. Dashed lines: bubble in free
space.
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or, for a square tube,

zsq
rad

ρ0c0

= jkR0 + (kR0)
2 + j4kR0

R0

a
(1− jkR0)

∞∑
l=0

∞∑
m=1

e−j(l2+m2)1/2ka

(l2 + m2)1/2
. (4.18)

Plots of Eq. (4.18) corresponding to Figs. 4.7–4.9 are shown in Figs. 4.10–4.12. No

obvious changes can be observed from the new set of plots. Due to kR0 � 1, the

second higher-order term has little effect on the results.

Figure 4.10: Radiation impedance of a bubble in the center of a rigid square tube,
Eq. (4.18) for a/R0 = 30, obtained from Eq. (4.18). (a) Radiation resistance, (b)
radiation reactance. Solid lines: bubble in tube. Dashed lines: bubble in free space.

Dividing the first term of Eq. (4.16) by the second term of Eq. (4.13), the

radiation resistance of a bubble in free field, we get

Re(z sq
rad)

Re(z free
rad )

=
2π

(ka)2
, (4.19a)

and therefore

Re(z sq
rad)

Re(z free
rad )

� 1 for ka < 1. (4.19b)
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Figure 4.11: Propagating modes of a bubble in the center of a rigid square tube,
Eq. (4.18) for a/R0 = 30, obtained from Eq. (4.18). (a) Radiation resistance, (b)
radiation reactance. Solid lines: bubble in tube. Dashed lines: bubble in free space.

Figure 4.12: Radiation impedance of a bubble off center in a rigid square tube and
the propagating modes for a/R0 = 30 with xs = −a/6, and ys = −a/6 (see Fig. 3.9),
obtained from Eq. (4.17). (a) Radiation resistance, (b) radiation reactance. Solid
lines: bubble between two parallel rigid plates. Dashed lines: bubble in free space.
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For ka < 1 there is thus a huge increase in the radiation resistance for a bubble

in a square tube compared to that for a bubble in free space, the increase being

proportional to (1/ka)2.

Equation (4.16) can be further simplified by using the approximation of the

cosine series given by Eq. (3.38):

zsq
rad

ρ0c0

' 2π
R2

0

a2
+ jkR0

(
1− 4

R0

a

)
, ka/π . 1. (4.20)

As seen from the imaginary part of Eq. (4.20), the radiation reactance (the effective

mass loading on the bubble) is decreased only slightly compared to that of a bubble

in a free field.

4.2 Normal Mode Solution of Morse and Ingard

Morse and Ingard [2] studied the radiation impedance of a simple source in

a waveguide using a Green’s function expressed in terms of normal modes, i.e., a

series of eigenfunctions. The Green’s function g(r|rs) is a solution of the following

inhomogeneous wave equation for an unbounded medium:

∇2g(r|rs) + k2g(r|rs) = −δ(r− rs). (4.21)

In rectangular coordinates δ(r− rs) = δ(x− xs)δ(y − ys)δ(z − zs) is the Dirac delta

function for three dimensions. The Green’s function g(r|rs) is the spatial factor for

a wave radiated by a simple time-harmonic source at location rs, and in free space it

takes the form g(r|rs) = ejkR/4πR, where R2 = |r−rs|2 = (x−xs)
2 +(y−ys)

2 +(z−

zs)
2. In this section alone, R also stands for the spherical radial coordinate in order
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to be consistent with the notation used by Morse and Ingard. For calculation of the

radiation impedance below, R will be set equal to the equilibrium bubble radius R0

to evaluate the field at the bubble wall.

The boundary condition on the eigenfunctions Ψlm along the walls of the

waveguide is

∂Ψlm

∂n
= −jklmβΨlm, (4.22)

where β = ρ0c0/zwall is a normalized specific acoustic admittance and zwall the wall

impedance. The normal is directed into the wall, away from the interior of the

waveguide. The eigenfunctions satisfy(
∂2

∂x2
+

∂2

∂y2

)
Ψlm = −κ2

lmΨlm , (4.23)

where κlm are the eigenvalues and

klm =

[(
ω

c0

)2

− κ2
lm

] 1
2

(4.24)

are the corresponding propagation wavenumbers. Note that these klm are not the

same as those used in the previous section, e.g., as in Table 4.1. The waveguide walls

are assumed to be locally reactive, and therefore the eigenfunctions are orthogonal

and satisfy the relation ∫∫
S

ΨlmΨl′m′ dx dy = SΛlmδll′δmm′ , (4.25)

where Λlm is the mean value of Ψ2
lm averaged over the waveguide cross-sectional area

S, and δlm is the Kronecker delta.
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The Green’s function for an infinite waveguide with constant cross section,

satisfying Eq. (4.21) and the boundary conditions on the walls, is expressed in terms

of the eigenfunctions Ψlm as

g(x, y, z|xs, ys, zs) = − j

2S

∑
l,m

Ψlm(x, y)Ψlm(xs, ys)

klmΛlm

e−jklm|z−zs| . (4.26)

Equation (4.26) is a general result that is applicable for arbitrary normally reactive

wall impedances and arbitrary cross-sectional geometries.

For a rigid tube, the boundary condition is that the normal component of the

particle velocity is zero at every point on the perimeter, or ∂Ψlm/∂n = 0. In this case,

the lowest propagating mode is the plane wave mode, also called the fundamental

mode, for which the corresponding eigenvalue is κ00 = 0, and the corresponding

eigenfunction is Ψ00 = 1, with Λ00 = 1. The eigenvalues κlm and the eigenfunctions

Ψlm are both real for a rigid tube. Below the cutoff frequency of the lowest higher

mode only the fundamental mode is propagated without attenuation; all higher modes

are strongly attenuated evanescent waves. As the frequency is increased, successively

higher modes start to propagate without attenuation.

Morse and Ingard [2] state that “For wavelengths of the same size as the duct

dimensions, or longer” Eq. (4.26) may be approximated by

g '

[
1

4πR
− j

2Sk
e−jk|z−zs| +

|z − zs|
2S

−
N∑
l,m

Ψlm(x, y)Ψlm(xs, ys)

2SΛlm

(
je−jklm|z−zs|

klm

+
e−κlm|z−zs|

κlm

)]
ejωt , (4.27)

where N is the nominal number of modes retained in the summation. The term 1/4πR

in Eq. (4.27) is the free space Green’s function at zero frequency, and factoring this
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analytical expression out of Eq. (4.26) permits summing over a small number N of

modes to obtain convergence. The second and third terms in Eq. (4.27) are associated

with the plane wave mode. Although not stated by Morse and Ingard, Eq. (4.27)

applies only to rigid tubes because of the terms for the plane wave mode

The pressure field in the tube is obtained directly from the Green’s function.

For a small source located at point rs = (xs, ys, zs) the pressure is [2]

P (r|rs)e
jωt = jkρ0c0Ug(r|rs)e

jωt , (4.28)

where U stands for the instantaneous value of the total flow of fluid (volume velocity)

away from the center of the source, and therefore U = 4πR2
0u0, where u0 is the radial

particle velocity on the surface of a small pulsating sphere of radius R0. The mean

pressure jωρ0Ug on a small spherical source of radius R0 (kR0 � 1) is thus

P ' ρ0ω

2S

[
jS

2πR0

+
1

k
+

N∑
l,m

Ψ2
lm(xs, ys)

Λlm

(
1

klm

− j

κlm

)]
4πR2

0u0e
jωt . (4.29)

Note that mode (0, 0) is separated out of the normal mode summation, thus l and m

can not be zeros at the same time. The radiation impedance of the source is obtained

by dividing by u0e
jωt to obtain [2, Eq. (9.2.12)]

zrad

ρ0c0

' jkR0

[
1− 2π

R0

S

N∑
l,m

Ψ2
lm(xs, ys)

Λlmκlm

]
+2π

R2
0

S

[
1 +

N∑
l,m

k

klm

Ψ2
lm(xs, ys)

Λlm

]
. (4.30)

Comparison of Eq. (4.30) with Eq. (4.7) reveals that the leading term in the

radiation reactance of a simple source in a tube is the same as the radiation reactance

in a free field (kR0 � 1). Thus the presence of tube walls only reduces the mass

loading on the source by a small amount that is proportional to the ratio of the
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source radius R0 to the mean dimension
√

S of the tube cross section, and the exact

amount is dependent on the location of the source. The same observation can be

made from Eq. (4.20). For a small bubble centered in a square tube with side length

a, this amount is approximately 4R0/a for ka < π.

Comparison of Eq. (4.30) with Eq. (4.20) shows that the leading terms of the

radiation resistance 2πR2
0/S in both equations are the same. For small kR0, the

normalized radiation resistance for a source in a rigid tube approaches the constant

value 2πR2
0/S instead of going to zero. This is different from the behavior in a free field

due to coupling with the plane wave mode. The real part of the second summation

in Eq. (4.30) accounts for higher-order modes which propagate at the drive frequency

and cause the resistance to vary with frequency. Contributions from the summations

to the imaginary part of zrad account for the deviation of the radiation reactance from

the free field radiation reactance. As shown in Figs. 4.8 and 4.9, and later in Fig. 4.14,

as the frequency is increased the radiation resistance and reactance increase stepwise,

each new step corresponding to a new propagating mode.

Now consider specifically a rectangular cross section, as in Fig. 4.13, where the

rectangle has breadth b in the x direction and depth d in the y direction. We assume

a simple source is located at (xs, ys) and let the z axis run along one corner of the

tube, such that the boundary conditions are

∂p

∂x
= 0 at x = 0, x = b , (4.31a)

∂p

∂y
= 0 at y = 0, y = d . (4.31b)

The eigenvalues, eigenfunctions, and normalization constant for the rectangular tube
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are

κlm =
√

(lπ/b)2 + (mπ/d)2, (4.32a)

Ψlm = cos(lπxs/b) cos(mπys/d), (4.32b)

Λlm =
1

εlεm

, εm =

{
1 m = 0
2 m > 0

. (4.32c)

Substitution into Eq. (4.30) with S = bd yields

zzad

ρ0c0

' jkR0

[
1− 2

R0

bd

N∑
l,m

cos2(lπxs/b) cos2(mπys/d)

Λlm

√
(lπ/b)2 + (mπ/d)2

]

+ 2π
R2

0

bd

[
1 +

N∑
l,m

k cos2(lπxs/b) cos2(mπys/d)

Λlm

√
k2 − (lπ/b)2 − (mπ/d)2

2

]
. (4.33)

Equation (4.33) is applicable for an arbitrary source location in a rectangular (or

square) tube. Shown in Fig. 4.13 is one specific example, where a simple source is

located at (xs, ys) = (b/4, d/10), with d = (4/5)b. The calculated radiation resistance

and reactance for this case, based on Eq. (4.33), are shown in Fig. 4.14 by blue curves.

The red curves are obtained using the method of images, as follows. The

radiation impedance of a simple source in a rectangular rigid tube, based on the

method of images, is given by Eq. (4.13). The geometry of the source (bubble) location

and the plane array of images are shown in Figs. 3.9 and 3.10, respectively. For the

specific bubble position shown in Fig. 4.13, based on Fig. 3.9, the new coordinates

are xs = −b/4, ys = −2d/5, and thus d = (4/5)b. These coordinates were chosen

to coincide with those used in Fig. 9.10 of Morse and Ingard [2]. Equation (3.32) is

used in Eq. (4.13) to obtain the plots shown as red lines in Fig. 4.14 for the radiation

resistance and reactance.
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Figure 4.13: Coordinate system for an off-center bubble in a rectangular tube, with
the z axis passing through the lower left corner of the tube, used as an example for
the normal mode expansion approach.

For ka < 3π there are six modes that propagate. The cutoff frequencies of these

modes for a rectangular tube are given by flm = (c0/2)[(l/b)2+(m/d)2]1/2. The values

of klmb/π for these these cutoff frequencies are given by klmb/π = [l2 + (mb/d)2]1/2,

which are listed in Table 4.2. Two modes are missing for this range of ka, (2, 0) and

Mode klmb/π
(1, 0) 1.0
(0, 1) 1.25
(1, 1) 1.6008
(0, 2) 2.0
(1, 2) 2.6926
(3, 0) 3.0

Table 4.2: Values of kb for the first six propagating modes for a rectangular tube with
d = (4/5)b, and (xs, ys) = (b/4, d/10) (See Fig. 4.13), where b and d are sides of the
rectangle.

(2, 1). The missing modes are due to the fact that the source is located distance b/4
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Figure 4.14: Comparison of (a) radiation impedance and (b) radiation reactance
calculated using normal mode theory (blue lines) and the method of images (red
lines). The black dashed lines are again the free field results. The bubble is positioned
as shown in Fig. 4.13. The ordered pairs adjacent to resonance peaks are the mode
numbers (l,m).
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away from one wall, and these two modes have velocity antinodes at this location.

From Fig. 4.14 we see that the red and blue curves overlap, and the two approaches

are thus in excellent agreement.

Using Eq. (4.6), we can also calculate the frequency response of a bubble

centered in a rectangular tube using normal mode theory. For this comparison we

position the bubble in the center of a square tube. In Fig. 4.15, the red lines are the

frequency response curves obtained using the method of images and the black lines

are obtained from Eq. (4.6) with zrad given by Eq. (4.33). The two approaches are in

good agreement.

Figure 4.15: Comparison of frequency response of a bubble in the center of a square
rigid tube calculated using the normal mode theory [Eq. (4.6), black lines] and the
method of images [Eq. (3.35), red lines].
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4.2.1 Differences between the Parallel-Plates Channel and a Tube

Because of cylindrical spreading between parallel plates, both the radiation

resistance as well as the radiation reactance go to zero for small ka. The radiation

efficiency is thus very poor for small ka. On the other hand, the restraint of the

radial expansion of the flow by parallel plates increases the effective mass loading on

the bubble, causing the resonance frequency to decrease. The radiation reactance

increases as the plate separation decreases. For parallel plates, change in inertia is

the dominant factor, and the damping is negligible. The dynamics of the bubble is

thus mass controlled.

For a rigid tube, the plane wave mode is the only mode that can propagate

for small ka, and the radiation resistance is constant in this region. In general, the

resistance is proportional to 1/a2, and as a/R0 decreases the damping experienced by

the bubble increases according to R2
0/S, where S is cross-sectional area of the tube.

As observed in Figs. 3.11 and 4.15, the frequency response of a bubble in a rigid

square tube is highly damped for narrow tubes, and for a/R0 < 20 the resonance

peak vanishes. In contrast, for a bubble between two parallel rigid plates we see a

distinct resonance peak for a channel as narrow as 1.5 times the bubble diameter

(see Fig. 3.2). On the other hand, the radiation reactance of a bubble in a square

tube is slightly smaller than its value in a free field, suggesting less mass loading.

As mentioned above, the resonance is barely noticeable for a/R0 < 20 due to high

damping. The slight downshift of the resonance frequencies for a/R0 = 30 in Figs. 3.11

is just a manifestation of the damping. The dynamics of a bubble in a rigid tube is

damping controlled.
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4.3 Pressure Release Walls

In Chapter 3 we examined the frequency response of a bubble centered be-

tween two parallel plates, and in a square tube, with pressure release walls. Here we

investigate the radiation impedance of a bubble in pressure release channels with the

same geometries. Applying Eq. (3.19) to Eq. (4.9) and keeping the first two terms in

the expansion of Eq. (4.7), we obtain the radiation impedance of a bubble centered

between two parallel pressure release walls:

zpr
rad

ρ0c0

= jkR0 + (kR0)
2 − j2kR0(1− jkR0)

R0

d
ln(1 + e−jkd) , (4.34)

or, for low frequencies,

zpr
rad

ρ0c0

= −2(kR0)
2R0

d
ln

(
2 cos

kd

2

)
+ jkR0

[
1− 2

R0

d
ln

(
2 cos

kd

2

)]
, kd < π. (4.35)

The superscript “pr” in zpr
rad stands for pressure release walls. The radiation resistance

and reactance are plotted in Fig. 4.16 for d/R0 = 30. Again, the dashed lines are

the free field results. From Eq. (4.35) we see that for kd < π the radiation resistance

is zero, which is also observed in Fig. 4.16(a). This means that for d/R0 < 224

there is no radiation loss for an air bubble in water (k0R0 = 0.014) when excited at

resonance (d/R0 = π/k0R0 = 224). In other words, the quality factor is infinite for

d/R0 < 224. For d/R0 > 224 the first propagating mode excited by the source cuts

on and the quality factor recovers the value for a free field, those observations were

made in Fig. 3.7. From Fig. 4.16(b) we notice that the radiation reactance of a bubble

between free plates is lower than in a free field for kd/π < 0.66, which corresponds

to smaller mass loading and higher resonance frequencies. For plate separations in
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Figure 4.16: Radiation impedance of a bubble centered between two parallel pressure
release plates for d/R0 = 30. (a) Radiation resistance, (b) radiation reactance. Solid
lines: bubble between two parallel free plates. Dashed lines: bubble in free space.

which we are interested, 3 ≤ d/R0 ≤ 100, we have kd/π < 0.5 for the frequency range

ω ≤ ω0.

The crossover point kd/π = 0.66 where the radiation reactance exceeds the free

field value is calculated as follows. Equating the first terms in Eqs. (4.34) and (4.35)

yields kd = 2 arccos(0.5) = 2π/3, or kd/π = 2/3, independent of d/R0.

The radiation resistance and reactance for two pressure release plates are plot-

ted up to kd = 5π in Fig. 4.17. As kd (e.g., the drive frequency) increases, both the

radiation resistance and reactance increase stepwise corresponding to each new mode

of propagation. Each step begins with a spike showing the resonance at that fre-

quency. For this case, we notice that the resonance spikes occur only where values of

kd are odd multiples of π (i.e., when the plate separation d is an odd multiple of a

half wavelength), instead of all integer multiples of π at which the acoustic resonances

occur. This is because the bubble is located midway between two pressure release
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Figure 4.17: Radiation impedance of a bubble centered between two parallel free
plates and the resonance pattern for d/R0 = 30. (a) Radiation resistance, (b) radi-
ation reactance. Solid lines: bubble between two parallel free plates. Dashed lines:
bubble in free space.

plates, and when the plate separation d is an even multiple of a half wavelength, there

is an antinode at the bubble location, and those modes are not excited. Once the

bubble is moved off-center, and not at locations of d/2, d/4, d/8, etc., away from one

of the plates, the spikes for both radiation resistance and reactance occur where kd

is an integer multiple of π.

The pressure release boundary condition is now applied to a tube. Using the

method of images, we write the summation in Eq. (4.13) as
∑

l,m(−1)l+me−jkrlm/rlm

to obtain

zFtube
rad

ρ0c0

= jkR0 + (kR0)
2 + jkR2

0

∑
l,m

(−1)l+m e−jkrlm

rlm

. (4.36)

Here, only the first term in the expansion of Eq. (4.7) is retained since, as shown

earlier, the second term has little effect on the results for a tube. For a square tube
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with side length a we have rlm = a(l2 + m2)1/2 and Eq. (4.13) becomes

zFsq
rad

ρ0c0

= jkR0 + (kR0)
2 + j4kR0

R0

a

∞∑
l=0

∞∑
m=1

(−1)l+m e−j(l2+m2)1/2ka

(l2 + m2)1/2
, (4.37)

where F in the superscripts zFtube
rad and zFsq

rad indicates that the tube walls are free.

The normal mode expansion of the radiation impedance of a simple source at

an arbitrary location inside a free tube of arbitrary cross section can be calculated by

modifying Eq. (4.30) to account for pressure release boundary conditions. Specifically,

for a rectangular tube with pressure release walls and with the geometry shown in

Fig. 4.13, the boundary conditions are

p = 0 at x = 0, b, and y = 0, d. (4.38)

The eigenvalues and eigenfunctions for this case are

κlm =
√

(lπ/b)2 + (mπ/d)2, (4.39a)

Ψlm = sin(lπxs/b) sin(mπys/d), (4.39b)

Λlm =
1

εlεm

, (4.39c)

which are the same as in Eqs. (4.32) except with the cosines replaced by sines. For

this case, however, neither l nor m can be zero. Substitution of Eqs. (4.39) into

Eq. (4.30) with S = bd thus yields, taking into account the absence of the plane wave

mode,

zpr

ρ0c0

' jkR0

[
1− 2

R0

bd

N∑
l,m

sin2(lπxs/b) sin2(mπys/d)

Λlm

√
(lπ/b)2 + (mπ/d)2

]

+ 2π
R2

0

bd

N∑
l,m

k sin2(lπxs/b) sin2(mπys/d)

Λlm

√
k2 − (lπ/b)2 − (mπ/d)2

. (4.40)
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The radiation resistance of a bubble in the center of a square tube with free

walls, calculated using Eq. (4.40) with a/R0 = 10, is plotted in Fig. 4.18(a). As

seen from Fig. 4.18(a), for ka < 1.414π the radiation resistance vanishes and the

bubble experiences no damping. Since the plane wave mode is not supported by

tubes with free surfaces, there can be no radiation before the first propagating mode

cuts on. Neither l nor m can be zero, and therefore the first propagating mode is

(1, 1), for which the cutoff frequency is determined by k11a/π = (12 + 12)1/2 = 1.414,

or a/R0 = 1.414×π/k0R0 = 317. So only when the tube cross-sectional area satisfies

a/R0 ≥ 317 does the bubble experience radiation loss. When a/R0 < 317 there is

no radiation damping and the quality factor is unbounded. This was observed in

Fig. 3.17.

From Fig. 4.18(b) we observe that the radiation reactance for a source in a

tube with free surfaces is smaller than that in free space for the typical values of

ka encountered in bubble dynamics. The underlying physics is similar to that for a

channel formed by two parallel free surfaces. The free surfaces of the tube provide

the least resistance to the flow, and therefore the effective liquid inertia is less than

that in free space. When the tube size is reduced, the liquid mass enclosed decreases,

and thus the resonance frequency increases. This trend is also observed in Fig. 3.17,

and also in Fig. 4.19 that follows.

The radiation impedance in a cylindrical tube was calculated recently by Hay

et al. [61] using normal mode theory. Their impedance data were used in Eq. (4.6)

to obtain the frequency responses for different sized cylindrical tubes as shown in

Fig. 4.19(b). Figure 4.19(a) [note that Fig. 4.19(a) is a repetition of Fig. 3.17] shows
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the frequency responses of a bubble in four different sized square tubes, where S is

the area of the tube, and
√

S/R0 = 10, 20, 30, 100. The cylindrical tubes are chosen

to have the same cross-sectional areas as the square tubes.

Figure 4.19 shows again that when the tubes have the same cross-sectional

areas, the dynamics of a bubble are the same for both the square tube and the

cylindrical tube. This confirms what was observed in Fig. 3.11, that the cross-sectional

shape of the tube does not affect the dynamics of the bubble. Again, Fig. 4.19 shows

that the two approaches for radiation impedance produce almost identical results. The

reason we use the method of images is that the nonlinearity of the bubble response

is our focus, and the normal mode theory is less easily extended to the nonlinear

regime. The agreement of the two approaches forms the basis for generalization of

solutions obtained using the method of images to other tube geometries with finite

wall impedance.

Figure 4.18: Radiation impedance of a bubble in the center of a free square tube with
a/R0 = 10. (a) Radiation resistance, (b) radiation reactance. Solid lines: bubble in
tube. Dashed lines: bubble in free space.
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Figure 4.19: Frequency response of a bubble in the center of two equal-area tubes with
free walls: (a) square tube, with plot generated from Eq. (3.35) based on the method
of images, and (b) cylindrical tube, calculated using Eq. (4.6) with zrad obtained by
normal mode expansion.
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Chapter 5

Weakly Nonlinear Oscillations

As the amplitude of the acoustic drive pressure increases, nonlinear effects in

the bubble dynamics become significant. Chapters 5 and 6 are devoted to developing

methodologies for handling the nonlinear terms and obtaining solutions for bubbles

constrained by channel walls. The objective of the present chapter is to investigate

the weakly nonlinear response of a confined bubble to an acoustic field with moderate

drive amplitude (about 5% of atmospheric pressure). The model equations for a

confined bubble, Eqs. (2.15) and (2.16), are expanded in terms of the perturbation

of the bubble radius, and only terms of linear and quadratic order are retained.

Solutions of the quadratic model equations are obtained in the frequency domain

using the Newton-Raphson interation method. Frequency response curves for the first

five harmonics are presented. Perturbation solutions for the frequency response are

derived for the second harmonic and dc component. The numerical solutions obtained

in the frequency domain are compared with the numerical solutions obtained in the

time domain using a Runge-Kutta method.
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5.1 Bubble between Parallel Plates

To obtain the model equation accounting for nonlinearity through quadratic

order we substitute R = R0 + ξ in Eq. (2.15) to obtain

ξ̈(t) + ω2
0ξ(t)−

R0

c0

...
ξ (t) + 2

R0

d

∞∑
m=1

1

m
ξ̈(t−md/c0) = F (ξ)− pac(t)

ρ0R0

, (5.1)

where all quadratic terms, which are responsible for harmonic generation, are collected

in the expression

F (ξ) =− ξξ̈ − 3

2
ξ̇2 +

1

2
(3γ + 1)ω2

0ξ
2 + 2

R0

c0

(3ξ̇ξ̈ + ξ
...
ξ )

− 4
R0

d

∞∑
m=1

1

m

[
ξ̇2

(
t− md

c0

)
+ ξ

(
t− md

c0

)
ξ̈

(
t− md

c0

)]
. (5.2)

The first two terms in Eq. (5.2) correspond to the quadratic terms on the left-hand

side of Eq. (2.15). The third term accounts for the gas nonlinearity at quadratic

order, and the fourth term contains the quadratic nonlinearity in the expansion of

the compressibility term
...
V . The summation contains the quadratic terms in the

expansion of V̈ in Eq. (2.15), including the time delays due to liquid compressibility.

Details involved in obtaining Eq. (5.1) from Eq. (2.15) are presented in Appendix C,

as well as other intermediate steps for subsequent equations.

In Eq. (5.1), linear terms are grouped on the left-hand side, quadratic terms

and the applied acoustic pressure on the right. If F (ξ) is discarded, Eq. (5.1) reduces

to Eq. (3.1). Like Eq. (3.1), Eq. (5.1) will also be solved in the frequency domain. The

primary reason is that, as in the linear approximation, the summation in Eq. (5.2)

can also be expressed in closed form in the frequency domain.
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Begin by assuming a harmonic acoustic excitation at frequency ω:

pac(t) =
1

2
p0e

jωt + c.c. (5.3)

The response to this excitation is a full spectrum of harmonics of the drive frequency,

plus a dc component. The perturbation of the bubble radius is thus expressed as the

Fourier series expansion

ξ(t)

R0

= C0 +
1

2

N∑
n=1

Cne
jnωt + c.c., (5.4)

which is normalized by the equilibrium radius R0 in order for the spectral amplitudes

Cn to be dimensionless. The notation c.c. stands for complex conjugates, and C0

is the dimensionless amplitude of the dc component. The summation is terminated

with the Nth harmonic in anticipation of numerical solution. Before solving Eq. (5.1)

for an arbitrary number of harmonics, we consider analytical solutions for the second

harmonic and dc component.

5.1.1 Analytical Solution for the Second Harmonic and DC Component

Let the perturbation ξ include only the fundamental, the second harmonic,

and the dc component:

ξ = ξ1 + ξ2 + ξ0, (5.5)
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where ξ1 is O(ε), and ξ2 and ξ0 are O(ε2).The perturbations are now expressed in the

frequency domain as

ξ1

R0

=
1

2
C1(ω)ejωt + c.c., (5.6a)

ξ2

R0

=
1

2
C2(ω)ej2ωt + c.c., (5.6b)

ξ0

R0

= C0. (5.6c)

Substitution of Eq. (5.6b) into the left-hand side of Eq. (5.1), Eq (5.6a) into the

right-hand side, and equating terms at the second harmonic yields

1

2
C2(ω)

[
ω2

0 − 4

(
1 + 2

R0

d

∞∑
m=1

e−j2mkd

m

)
ω2 + j8

R0

c0

ω3

]

= C2
1(ω)

[
3γ + 1

8
ω2

0 +

(
5

8
+ 2

R0

d

∞∑
m=1

e−j2mkd

m

)
ω2 − j2

R0

c0

ω3

]
. (5.7)

After making use of Eq. (3.4) to write the summations in closed form and substituting

C1(ω) = Ξ(ω)/R0 from Eq. (3.7) one obtains

C2(ω)

C2(0)
=

(
4

3γ + 1

)
Γ(ω)

∆2
1(ω)∆2(ω)

, (5.8)

where

∆n(ω) = 1− n2

[
1− 2

R0

d
ln(1− e−jnkd)

]
ω2

ω2
0

+ jn3k0R0
ω3

ω3
0

, (5.9)

Γ(ω) =
3γ + 1

4
+

[
5

4
− 4

R0

d
ln(1− e−j2kd)

]
ω2

ω2
0

− j4k0R0
ω3

ω3
0

. (5.10)

Likewise, the terms at zero frequency yield

C0(ω)

C0(0)
=

(
1− 1

3γ + 1

ω2

ω2
0

)
1

|∆1(ω)|2
. (5.11)
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Equations (5.8) and (5.11) have been normalized by the harmonic amplitudes at zero

frequency, which are given by

C0(0) = C2(0) =
3γ + 1

4

(
p0

3γP0

)2

. (5.12)

Plots of the magnitudes of Eqs. (5.8) and (5.11) are shown in Fig. 5.1 for several

values of the normalized plate separation d/R0. The normalized frequency response

for the second harmonic possesses two maxima. The primary, higher-frequency res-

onance occurs when the drive frequency matches the bubble resonance near ω = ω0.

The secondary, lower-frequency resonance occurs near ω = ω0/2 because the second

harmonic of the drive frequency, produced by the bubble, matches the bubble reso-

nance. The frequency response of the dc component possesses one maximum and one

minimum. The maximum occurs at the resonance of the bubble, and the minimum

happens when ω = (3γ + 1)1/2ω0 = 2.28ω0, at which C0 = 0.

Figure 5.2 displays the amplitudes of the resonance peaks in Figs. 3.2 and 5.1(a)

versus plate separation using the metrics Q1 = |Ξ1(ωr)/Ξ1(0)|, Q2P = |Ξ2(ωr)/Ξ2(0)|,

and Q2S = |Ξ2(ωr/2)/Ξ2(0)|. Thus, Q1 is the quality factor in linear theory, and it

was presented previously in Eqs. (3.10)–(3.12). It is the amplitude at resonance rela-

tive to its value at zero frequency, and it is inversely proportional to damping. While

the quantities Q2P and Q2S are defined in the same way for the second-harmonic

amplitudes of the primary (P) and secondary (S) resonances, respectively, no specific

connection to damping is intended. It is seen that Q2P varies roughly as the square

of Q1, while apart from the oscillations for large plate separations the dependence of

Q2S on Q1 is more nearly linear.
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Figure 5.1: Frequency response of the for several different normalized plate separa-
tions d/R0. (a) Second harmonic. (b) The dc component.
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Figure 5.2: Relative amplitudes of the resonance peaks in the frequency responses at
the fundamental and second harmonic frequencies.
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5.1.2 Coupled Spectral Equations

In our numerical solutions of the quadratic model equation we include the

effect of viscosity. The effect of viscosity on the dynamics of a bubble in a free field is

given by the last term in Eq. (2.2), 4µṘ/R. Adding this term to Eq. (2.15), we have

RR̈+
3

2
Ṙ2 =

1

ρ

[
P0

(
R0

R

)3γ

− P0 − 4µ
Ṙ

R
− pac(t)

]
+

...
V

4πc0

− 1

2πd

∞∑
m=1

1

m
V̈

(
t− md

c0

)
,

(5.13)

and in place of Eq. (5.1) we now have

ξ̈(t)+ω2
0ξ(t)−

R0

c0

...
ξ (t)+2

R0

d

∞∑
m=1

1

m
ξ̈(t−md/c0)+

4µ

ρ0R2
0

ξ̇(t) = F (ξ)− pac(t)

ρ0R2
0

. (5.14)

Substituting Eqs. (5.3) and (5.4) into (5.14), we obtain the following system of N +1

coupled nonlinear equations for the harmonic amplitudes:

∆nCn =
n∑

m=0

amnCmCn−m +
N∑

m=n+1

bmnCmC∗
m−n −

p0δ1n

3γP0

, (5.15)

where the asterisk denotes complex conjugate, and the Kronecker delta ensures that

the excitation frequency is ω. The coefficient of Cn is defined by

∆n = 1 + jn
4µ

ρ0R2
0ω0

ω

ω0

− n2

[
1− 2

R0

d
ln(1− e−jnkd)

]
ω2

ω2
0

+ jn3k0R0
ω3

ω3
0

, (5.16)

which is the same as Eq. (5.9) except with viscosity included. The quality factor

associated with viscosity alone is given by

1

Qvis

=
4µ

ρ0R2
0ω0

=
4µ

R0

√
3γρ0P0

. (5.17)

The coefficients in the summations, which are derived in Appendix C, are defined by

amn =
3γ + 1

4
+ j

m− n

Qvis

ω

ω0

+ (n−m)

[(n

2
+

m

4

)
− 2n

R0

d
ln(1− e−jnkd)

]
ω2

ω2
0

− j[n3 + m2(2m− 3n)]k0R0
ω3

ω3
0

, (5.18)
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bmn =
3γ + 1

2
+ j

m

Qvis

ω

ω0

+

[
1

2
(n2 + mn−m2)− 2n2R0

d
ln(1− e−jnkd)

]
ω2

ω2
0

− jn3k0R0
ω3

ω3
0

. (5.19)

The first summation in Eq. (5.15) accounts for sum frequency generation due to the

quadratic nonlinearity, and the second summation accounts for difference frequency

generation.

Alternatively, Eq. (5.16) can be expressed in terms of the radiation impedance

as follows:

∆n = 1 + j

(
1

Qvis

+
zrad(nω)

k0R0ρ0c0

)
nω

ω0

, (5.20)

where zrad/ρ0c0 is given by Eq. (4.9). Likewise, Eqs. (5.18) and (5.19) become

amn =
3γ + 1

4
+ j(m− n)

[
1

Qvis

+
zrad(nω)

k0R0ρ0c0

]
ω

ω0

+ (n−m)
(m

4
− n

2

) ω2

ω2
0

− j(2m3 − 3m2n + mn2)k0R0
ω3

ω3
0

, (5.21)

bmn =
3γ + 1

2
+ j

[
m

Qvis

− nzrad(nω)

k0R0ρ0c0

]
ω

ω0

− 1

2
[m2 −mn + n2]

ω2

ω2
0

. (5.22)

The importance of writing Eqs. (5.20)–(5.22) in terms of radiation impedance is that

the coupled system of Eqs. (5.15) is now easily generalized to account for all of the

channels for which we derived the radiation impedance in Chapter 4, including those

based on normal mode theory to account for arbitrary channel wall impedance.

Given p0/P0, ω/ω0, d/R0 and Qvis, Eq. (5.15) is solved iteratively to find Cn

using a Newton-Raphson iteration method. Comparisons will be made with direct

numerical solutions of Eq. (2.15) in the time domain for the response in a free field,
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and subsequently with the analytical solutions for the first and second harmonics and

dc component derived in Section 5.1.1 for the response between parallel plates.

5.1.3 Numerical Solution and Verification of Procedure

Appendix C provides an introduction to the Newton-Raphson method for solv-

ing an equation with one independent variable. The method can also be generalized to

multiple dimensions to solve a system of N nonlinear equations with N independent

variables x = {x1, x2, . . . , xN} [63, Chapter 9]:

F = 0, F = {F1(x), F2(x), . . . , FN(x)}. (5.23)

In the neighborhood of x, each of the functions Fi can be expanded in a Taylor series:

Fi(x + ∆x) = Fi(x) +
N∑

j=1

∂Fi

∂xj

∆xj + O(∆x2), i = 1, 2, . . . , N, (5.24)

or in matrix notation,

F(x + ∆x) = F(x) + J ·∆x + O[(∆x)2], (5.25)

where J is the Jacobian with

Jij ≡
∂Fi

∂xj

, i, j = 1, 2, . . . , N. (5.26)

By neglecting terms of order (∆x)2 and higher and by setting F(x + ∆x) = 0, we

obtain a set of linear equations for the corrections ∆x that move each function closer

to zero simultaneously, namely,

∆x = −J−1F. (5.27)
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The corrections are then added to the solution vector,

xnew = xold + ∆x, (5.28)

and the process of the iteration continues until it converges, i.e., until ∆x is smaller

than the accuracy desired in the solution, or until all Fj(x) are sufficiently close to 0.

Similar to the one-dimensional Newton-Raphson method, the N -dimensional

method generally converges quadratically provided an accurate starting value is given

and the inverse of the Jacobian exists. One drawback of this procedure is that inver-

sion of the matrix J is necessary for each iteration.

5.1.3.1 Weakly-Nonlinear and Fully-Nonlinear Solutions of the Rayleigh-
Plesset Equation

Numerical solutions of Eq. (5.15), without the effects of the parallel plates and

the radiation damping, are now compared with direct time-domain (Runge-Kutta)

solutions of Eq. (2.15) for a bubble in a free field, or Eq. (2.1) without the effects

of surface tension and vapor pressure, which are not needed for the purposes of the

comparisons:

RR̈ +
3

2
Ṙ2 =

1

ρ0

[
P0

(
R0

R

)3γ

− P0 − 4µ
Ṙ

R
− pac(t)

]
. (5.29)

Without the effects of the parallel plates and the radiation damping, Eq. (5.15) re-

duces to

∆′
nCn =

n∑
m=0

a′mnCmCn−m +
N∑

m=n+1

b′mnCmC∗
m−n −

p0δ1n

3γP0

, (5.30)
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where

∆′
n = 1 +

jn

Qvis

ω

ω0

− n2ω2

ω2
0

, (5.31)

a′mn =
3γ + 1

4
+ j

m− n

Qvis

ω

ω0

+
1

2
(n−m)

(
n +

m

2

) ω2

ω2
0

, (5.32)

b′mn =
3γ + 1

2
+ j

m

Qvis

ω

ω0

+
1

2
(n2 + mn−m2)

ω2

ω2
0

. (5.33)

With N = ∞, Eq. (5.30) is the quadratic approximation of Eq. (5.29) in the frequency

domain.

Equations (5.30)–(5.33) resemble Eqs. (6)–(10) derived and solved by Kumar

and Brennen [64], except that they included vapor pressure and surface tension. With-

out the surface tension terms, their Eqs. (6)–(10) are equivalent to our Eqs. (5.30)–

(5.33), except that they did not include the dc component.

Comparisons of numerical solutions of Eqs. (5.29) and (5.30) serve two pur-

poses. One is to validate the algebra underlying the derivation of Eqs. (5.15), (5.18)

and (5.19). The other is to determine the domain of validity (i.e., the maximum drive

pressure amplitude) in which the quadratic approximation (i.e., discarding all cubic

and higher-order terms) underlying Eq. (5.15) is valid.

Given the drive pressure amplitude p0/P0, the excitation frequency ω/ω0, and

the viscosity parameter Qvis, Eq. (5.30) is solved using the Newton-Raphson method

for the first N harmonics and the dc component. Calculation of the Jacobian is

described in Appendix C. Three excitation frequencies are chosen, ω/ω0 = 1/3, 1/2,

and 1. The drive pressure amplitude varies from p0/P0 = 0.01 to 0.2. We use Qvis = 10

for all calculations. Once we have the Cn’s, the harmonic amplitudes are substituted
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ω/ω0 = 1/3 ω/ω0 = 1/2 ω/ω0 = 1

Figure 5.3: Time waveforms for bubble pulsation in a free field, calculated numer-
ically in the frequency domain using a quadratic approximation of the nonlinearity
[Eq. (5.30), blue lines] and in the time domain with full nonlinearity [Eq. (5.29), red
lines]. Viscous losses are determined by Qvis = 10.
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back in Eq. (5.4) and summed up to obtain the time waveform. As explained later in

this section, we use N = 11 for the calculations.

The weakly nonlinear solutions for ξ(t) are compared in Fig. 5.3 with numeri-

cal solutions obtained by integrating Eq. (5.29) using a Runge-Kutta scheme for three

excitation frequencies. The blue lines are the weakly nonlinear solutions obtained in

the quadratic approximation, and the red lines are the numerical solutions obtained

using the Runge-Kutta method. As illustrated in these figures, the quadratic approx-

imation works quite well for sufficiently small drive amplitudes. It can also be seen

that the limiting amplitude at which the quadratic approximation begins to fail is

strongly dependent on the excitation frequency. As expected, the approximation be-

gins to fail first (at around p0/P0 = 0.05) for ω/ω0 = 1 (i.e., near resonance), whereas

it works very well for ω/ω0 = 1/3 up to p0/P0 = 0.2.

In terms of the bubble radius perturbation ξ(t), the quadratic approximation

is only valid for |ξ| . 0.1R0. This inequality sets the upper limit on the magnitude of

p0/P0. As seen from Fig. 5.3, the bubble has the strongest response around resonance,

ω = ω0, so the upper limit of the drive amplitude is largely determined by the

oscillations of the bubble at resonance. From Fig. 5.3 it is seen that this limit is

p0/P0 = 0.05. At this amplitude, the 5th harmonic is of order 10−7 and the 11th

harmonic is of order 10−15 for ω/ω0 = 1. At this drive frequency, with the combination

of p0/P0 = 0.05 and Qvis = 10, the number of harmonics to be included can be as small

as 6 (the first 5 harmonics and the dc component) to achieve excellent agreement with

the time domain solution. Including more harmonics has very little effect on the time

waveforms shown in Fig. 5.3. The nonlinearity of the bubble oscillation is roughly
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proportional to Qvisp0, the product of the drive pressure amplitude and the quality

factor. As long as this product stays the same, the relative nonlinearity remains

about the same, and the agreement of the two solutions is excellent. Increasing the

product by increasing either the drive amplitude or the quality factor eventually leads

to disagreement between the two solutions.

We included the first 11 harmonics in subsequent calculations. In the frequency

response plots, only the first five harmonics (the dc component is included in Fig. 5.5)

are presented.

5.1.3.2 Analytical and Numerical Solutions

As a second validation, the numerical solution of Eq. (5.15) obtained by the

Newton-Raphson method is now compared to the analytical solutions. The frequency

response of the fundamental, the second harmonic, and the dc component obtained

numerically are compared with their analytical solutions given in Section 5.1.1. The

frequency responses are generated by sweeping through the frequency range (say

0 ≤ ω/ω0 ≤ 3) in steps of ∆ω/ω0 = 0.0025. At each step, the solutions for Cn are

collected. The final collection of Cn is plotted against ω/ω0 to obtain the frequency

responses. We included the first ten harmonics and the dc component in the calcu-

lations. Comparisons are made with and without viscosity included. For the former

we chose Qvis = 10, and for the latter we have Qvis = ∞. To include viscosity in the

analytical solutions, we replaced Eq. (5.9) by Eq. (5.16), and Eq. (5.10) by

Γ′(ω) =
3γ + 1

4
+

[
5

4
− 4

R0

d
ln(1− e−j2kd)

]
ω2

ω2
0

+
1

Qvis

ω2

ω2
0

− j4k0R0
ω3

ω3
0

. (5.34)
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Figure 5.4: Comparison of numerical solutions (black lines) based on the Newton-
Raphson method with analytical solutions (red lines) obtained by perturbation for
d/R0 = 300.
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Figure 5.4 shows the comparisons between the numerical and the analytical

solutions. Black curves are obtained from the numerical solutions using a Newton-

Raphson method, and the red curves are obtained analytically using Eq. (5.8). In

Fig. 5.4(b), with Qvis = 10, the two solutions match very well at the maximum drive

amplitude, p0/P0 = 0.05. But when viscosity is neglected, the computer program

for the Newton-Raphson method becomes unstable near resonance for p0/P0 > 0.01.

As shown in Fig. 5.4(a), for drive amplitude p0/P0 = 0.01 and lower, the two results

match very well.

5.1.4 Frequency Response

We now solve Eq. (5.15) for 0 ≤ ω/ω0 ≤ 1.5 at the maximum drive amplitude

valid for the weakly nonlinear approximation. Equation (5.15) is solved using the

Newton-Raphson method for the first ten harmonics and dc component. We again

have Qvis = 10 for all calculations. If we set d/R0 = 300, the results are basically the

same as the free-field solution. Figure 5.5 displays two sets of frequency responses

for the first five harmonics. The solid lines are from calculations that include the dc

component (the dc component is the solid red line), while the dashed lines are based

on calculations where the dc component is not included. We notice the following

shifts in the resonance peaks. First, the resonance peaks for the curves including the

dc component shift slightly lower in frequency than those without the dc component.

This occurs because the mean radius of the bubble gets bigger. Second, the curves

shift slightly upward because the drive frequency (based on the mean radius without

dc generation) shifts to a higher relative frequency on the tuning curves.
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Figure 5.5: Frequency responses of the first five harmonics of the drive frequency,
and including the dc component. The solid lines are the numerical solutions obtained
with the dc component included in the calculations, and the dashed lines are the
corresponding solutions obtained without taking the dc component into account. The
parameter values are p0/P0 = 0.05, d/R0 = 300 and Qvis = 10.
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The curves labeled n = 1 are the magnitude of the response at the fundamental

excitation frequency ω, the curves labeled n = 2 are the magnitude of the response

at twice the excitation frequency, etc. We note that the fundamental component

dominates all the other harmonics in amplitude, as it must for weak nonlinearity. Like

the fundamental, the dc component, indicated by the red curve, also has a resonance

peak at ω/ω0 = 1. As observed from Fig. 5.1, the amplitude response at twice the

drive frequency has two maxima, one at ω/ω0 = 1, where the drive frequency matches

the bubble resonance, and the other at ω/ω0 = 1/2, where the second harmonic of

the drive frequency matches the bubble resonance. There are three maxima in the

amplitude response at three times the drive frequency. The first two exist for the

reason explained above. The third happens at ω/ω0 = 1/3, where the third harmonic

of the drive frequency matches the bubble resonance. The same trend is observed for

all higher harmonics.

The effect of plate separation on the amplitude responses of the first five har-

monics is shown in Fig. 5.6. As for the fundamental, when the plate separation be-

comes narrower, all resonance peaks of all higher harmonics shift to lower frequencies,

and the magnitudes of the peaks become smaller and broader. The overall physics

underlying the response is as described in Chapter 3, namely, as plate separation

decreases, the effective mass loading and radiation damping also increase, reducing

the resonance frequencies and broadening the peak in the spectra of all harmonics.
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Figure 5.6: Frequency responses of the first five harmonics as functions of plate
separation. The drive amplitude is p0/P0 = 0.05 and the viscosity parameter is
Qvis = 10.
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5.2 Quadratic Model for a Bubble in a Tube

We now substitute R = R0 + ξ in Eq. (2.16) to obtain, in place of Eq. (5.1),

ξ̈(t) + ω2
0ξ(t)−

R0

c0

...
ξ (t) + R0

∑
p,q

1

rp,q

ξ̈(t− rpq/c0) +
4µ

ρ0

ξ̇(t) = Fduct(ξ)−
pac(t)

ρ0R2
0

, (5.35)

where

Fduct(ξ) =− ξξ̈ − 3

2
ξ̇2 +

ω2
0

2
(3γ + 1)ξ2 + 2

R0

c0

(3ξ̇ξ̈ + ξ
...
ξ )

− 2R0

∑
p,q

1

rpq

[
ξ̇2(t− rpq

c0

) + ξ(t− rpq

c0

)ξ̈(t− rpq

c0

)

]
. (5.36)

Here in Eqs. (5.35)–(5.40), and only here, we have replaced the indices (l,m) with

(p, q) in the summations over images to avoid conflict with the indices (m, n) used in

the summations over frequencies. In the frequency domain we now have

∆duct
n Cn =

n∑
m=0

aduct
mn CmCn−m +

N∑
m=n+1

bduct
mn CmC∗

m−n −
p0δ1n

3γP0

, (5.37)

where

∆duct
n = 1 + j

n

Qvis

ω

ω0

− n2

(
1 + R0

∑
p,q

e−jnkrpq

rpq

)
ω2

ω2
0

+ jn3k0R0
ω3

ω3
0

, (5.38)

aduct
mn =

3γ + 1

4
+ j

m− n

Qvis

ω

ω0

+ (n−m)

[(n

2
+

m

4

)
+ nR0

∑
p,q

e−jnkrpq

rpq

]
ω2

ω2
0

(5.39)

− j[n3 + m2(2m− 3n)]k0R0
ω3

ω3
0

,

bduct
mn =

3γ + 1

2
+ j

m

Qvis

ω

ω0

+

[
1

2
(n2 + mn−m2) + n2R0

∑
p,q

e−jnkrpq

rpq

]
ω2

ω2
0

(5.40)

− jn3k0R0
ω3

ω3
0

.
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Equations (5.38)–(5.40) also result from substituting Eq. (4.13), with k replaced ev-

erywhere by nk, into Eqs. (5.20)–(5.22). The summations in Eqs. (5.38)–(5.40) must

be calculated numerically. Once the summations are calculated (for details refer to

Appendix A), the Newton-Raphson method can be used to solve Eq. (5.37).

5.2.1 Frequency Response for a Bubble in a Tube

Using the same techniques outlined in Sec. 5.1.3.2 we can obtain the frequency

responses at harmonics of the excitation frequency for a bubble centered in a tube

with a triangular, square, or hexagonal cross section. Plots of the frequency responses

of the first five harmonics are shown in Fig. 5.7 as the tube size decreases from
√

S/R0 = 100 to 10, and the acoustic pressure amplitude is held constant at p0/P0 =

0.05. For each tube size, the response curves for all three cross-sections are plotted

in each graph, black lines for the square tube, blue lines for the hexagonal tube,

and red lines for the triangular tube. It can be seen that in all cases the curves

are virtually indistinguishable. This shows that what was observed previously in the

linear approximation, as shown in Fig. 3.11, extends to the nonlinear response of the

bubble. It is the cross-sectional area of the tube, not its cross-sectional geometry, that

primarily determines the dynamic response of a bubble located near the center of the

tube. Figure 5.8 shows an expanded view of the three curves for the response at the

fifth harmonic for a tube with
√

S/R0 = 10. The frequency responses in Figs. 5.6

and 5.7 also confirm the difference between the dynamics of a bubble between plates

and of a bubble in a tube that we observed in Sec. 4.2.1. Namely, the response of a

bubble in a tube is damping controlled, and it is seen that the responses of the first
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five harmonics are indeed heavily damped.
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Figure 5.7: Harmonic frequency responses (n = 1 through n = 5) as functions of tube
cross-sectional area. The drive amplitude is p0/P0 = 0.05 and the viscosity parameter
is Qvis = 10. Three cross-sectional shapes are included: black lines for square, blue
lines for hexagonal, and red lines for triangular.
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Figure 5.8: Expanded view of the three curves in Fig. 5.7(f) for square, hexagonal and
triangular tubes: (a) normal view, (b) close-up. The drive amplitude is p0/P0 = 0.05,
the tube dimension is S1/2/R0 = 10, and the viscosity parameter is Qvis = 10.
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Chapter 6

Strongly Nonlinear Oscillations

In this chapter we investigate the fully nonlinear response of a bubble in a chan-

nel. A hybrid time-frequency domain method is developed for the purpose of modeling

the dynamics of a bubble driven acoustically between two parallel plates [Eq. (2.15)]

or in a tube [Eq. (2.16)] with the full nonlinearity taken into account. The same

method can be extended directly to tubes with arbitrary shape and wall impedance

provided an expression for the radiation impedance is available. We start with an

overview of the method, and then validation is conducted by comparing solutions of

the Rayleigh-Plesset equation obtained using this method with those obtained using a

straightforward Runge-Kutta integration scheme. Solutions of Eqs. (2.15) and (2.16)

are presented in the form of frequency responses of the first five harmonics. The fully

nonlinear results are also compared to the weakly nonlinear solutions.

6.1 Hybrid Method

The model equation for a bubble between two parallel plates, Eq. (2.15), is

used as an example to illustrate the hybrid method. The method can also be applied

to solve the Rayleigh-Plesset equation [Eq. (5.29)] and the model equation for a bubble

in a tube [Eq. (2.16)]. Equation (2.15) is repeated here with the effect of viscosity

124



included:

RR̈ +
3

2
Ṙ2 =

1

ρ0

[
P0

(
R0

R

)3γ

− P0 − 4µ
Ṙ

R
− pac(t)

]

+

...
V

4πc0

− 1

2πd

∞∑
m=1

1

m
V̈

(
t− md

c0

)
. (6.1)

As discussed in previous chapters, the summation in Eq. (6.1) is history dependent,

but it assumes a closed form in the frequency domain. Also, the third time derivative

of V is easier to evaluate in the frequency domain. Thus it is preferable to transform

the last two terms into the frequency domain. As shown below, the gas nonlinearity

and the volume V itself are easier to calculate in the time domain, so a hybrid time-

frequency method was developed to solve Eq. (6.1) as follows.

Begin by taking the Fourier transform of Eq. (6.1):

F

{
RR̈ +

3

2
Ṙ2 − 1

ρ0

[
P0

(
R0

R

)3γ

− P0 − 4µ
Ṙ

R
− pac(t)

]}

=

[
(jω)3

4πc0

+
(jω)2

2πd
ln(1− e−jkd)

]
F

(
4

3
πR3

)
,

(6.2)

where F is the Fourier transform operator. The terms multiplying the Fourier trans-

form on the right-hand side account for the time derivatives of the bubble volume and

the time delays due to the reflections. After making the substitution R(t) = R0+ξ(t),

linearizing the viscosity term, and converting to a discrete Fourier transform in which

the applied pressure and radial displacement are expressed as in Eqs. (5.3) and (5.4)
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(repeated here for convenience),

pac(t) =
1

2
p0e

jωt + c.c., (6.3)

ξ(t)

R0

= C0 +
1

2

N∑
n=1

Cne
jnωt + c.c., (6.4)

we obtain for our model equation

Fn

{
R0

(
1 +

ξ

R0

)
ξ̈ +

3

2
ξ̇2 − 1

ρ0

[
P0

(
1 +

ξ

R0

)−3γ

− P0 − pac(t)

]
− ω0

Qvis

R0ξ̇

}

= V0

[
(jnω)3

4πc0

+
(jnω)2

2πd
ln(1− e−jnkd)

]
Fn

[(
1 +

ξ

R0

)3
]

,

(6.5)

where V0 is the equilibrium bubble volume. The subscript n on F indicates dis-

cretization in the frequency domain. It can be seen that the gas nonlinearity term

[1 + ξ(t)/R0]
−3γ and the volume term [1 + ξ(t)/R0]

3 are easier to evaluate in the

time domain. Recall, e.g., from Eq. (5.15) that simple quadratic nonlinearity requires

convolution in the frequency domain, and higher order nonlinearities are even more

complicated to calculate numerically in the frequency domain.

Equation (6.5) is a system of coupled equations for the harmonic amplitudes

Cn as we used in the quadratic approximation. However, unlike in the quadratic

approximation, no explicit equations are obtained in the fully nonlinear regime. The

Fourier transform in Eq. (6.5) is obtained numerically, and a fast Fourier transform

(FFT) ‘realft’ from the Numerical Recipes [63] was used. Alternatively, Eq. (6.5) can
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be expressed in terms of radiation impedance as follows:

Fn

{
R0

(
1 +

ξ

R0

)
ξ̈ +

3

2
ξ̇2 − 1

ρ0

[
P0

(
1 +

ξ

R0

)−3γ

− P0 − pac(t)

]
− ω0

Qvis

R0ξ̇

}
=

V0

{
(jnω)3

4πc0

− ω2

4πR0

[
n− jn2k0R0

ω

ω0

− zrad(ω)

jk0R0ρ0c0

ω

ω

]}
Fn

[(
1 +

ξ

R0

)3
]

.

(6.6)

Equation (6.6) is the generalized form for all of the channels for which we derived

radiation impedance in Chapter 4, including those based on normal mode theory to

account for arbitrary channel wall impedance.

We solved Eq. (6.5) in the frequency domain using a Newton-Raphson iteration

method. Embedded in each iteration is a loop that transforms ξ(t) and its derivatives

obtained in the frequency domain to the time domain where the arguments of the

Fourier transforms in Eq. (6.5) are evaluated, and then transforms the results back

to the frequency domain.

Given initial guesses for Cn, and the excitation pressure p0 and quality factor

Qvis, we begin by obtaining ξ and its first and second time derivatives in the frequency

domain. An inverse FFT is taken to obtain ξ(t) and its derivatives in the time

domain. Next, terms containing ξ(t) and its derivatives [the arguments of the Fourier

transforms in Eq. (6.5)] are calculated. A flow chart of the hybrid method is shown

in Fig. 6.1. The operations just described account for the first two stages, F1 and

T1. Blue and red colors are used to designate the frequency domain and the time

domain, respectively.

Next, an FFT of the volume term [1 + ξ(t)/R0]
3 is taken, followed by calcula-

tions of the terms (jnω)3/(4πc0) and [(jnω)2/(2πd)] ln(1 − e−jnkd). We thus obtain
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Figure 6.1: Flow chart of the hybrid method.
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the spectral components of the pressure due to the radiation damping and reflections

from the plates. Meanwhile, the expression on the left-hand side of Eq. (6.5) that

is calculated in the time domain is transformed to the frequency domain using an

FFT. A system of N + 1 coupled equations is thus obtained [Eq. (6.5)], which is

converted to a system of N + 1 functions GFull
n corresponding to Fn in Eq. (C.54). A

Newton-Raphson iteration method from Numerical Recipes [63] called ‘newt’ is used

to find the roots of these functions, and the iteration begins. These steps correspond

to stage F2 in the flow chart. After each iteration, new values of Cn are obtained,

and the functions GFull
n are evaluated. When the values of GFull

n fall within a given

tolerance range, the iteration stops and the values of Cn are the solutions. Otherwise,

the values of Cn are fed back to stage F1 and the iteration continues. The program

aborts when calculation error occurs.

6.2 Validation of the Hybrid Method

Without the two terms accounting for the pressure on the bubble due to the

radiation loss and the plates, Eq. (6.1) reduces to the Rayleigh-Plesset equation,

Eq. (5.29). As a verification of the hybrid method, next we solve Eq. (6.5) without the

two pressure terms [the right hand-side of Eq. (6.5) becomes zero], and the results are

compared with the fully-nonlinear time-domain solutions of Eq. (5.29) by the Runge-

Kutta method. Solutions of Cn obtained from the hybrid method are substituted

into Eq. (6.4) to obtain ξ/R0 so that the time waveforms from the two methods can

be compared. The quality factor we used is Qvis = 10, and the first 10 harmonics

(N = 10) plus the dc component were included in the calculation.
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Figure 6.2: Time waveforms for bubble pulsation in a free field, calculated numerically
in the frequency domain using the hybrid method (blue lines) and in the time domain
with a Runge-Kutta method (red lines), for Qvis = 10, ω/ω0 = 0.7.
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Figure 6.3: Time waveforms for bubble pulsation in a free field, calculated numerically
in the frequency domain using the hybrid method (blue lines) and in the time domain
with a Runge-Kutta method (red lines), for Qvis = 10, ω/ω0 = 1.

131



Figures 6.2 and 6.3 show two groups of comparisons for ω/ω0 = 0.7 and ω/ω0 =

1, respectively. The blue lines are results from the hybrid method and the red lines

are obtained from the Runge-Kutta integration. It is observed that for low drive

amplitudes (p0/P0 ≤ 0.7 for ω/ω0 = 0.7 and p0/P0 ≤ 0.15 for ω/ω0 = 1) the results

from the two methods are almost identical. As the amplitude of the drive pressure

increases, the two solutions start to show discrepancy. For ω/ω0 = 0.7, at p0/P0 =

0.87 the maximum value of ξ/R0 is about 2 from the Runge-Kutta solution, which

means that at its maximum the bubble radius is three times its equilibrium value R0,

while the solution from the hybrid method shows −0.5 ≤ ξ/R0 ≤ 0.5.

We see a drastic jump in the magnitudes of the Runge-Kutta solutions from

Fig. 6.2(b) to 6.2(c), i.e., when the drive pressure changes from p0/P0 = 0.7 to p0/P0 =

0.75. More Runge-Kutta solutions were obtained for drive amplitudes in the range

0.7 ≤ p0/P0 ≤ 0.75, and Fig. 6.4 shows the solutions for p0/P0 = [0.70, 0.74, 0.75],

from which we notice that the sudden increase in the response occurs in the range

0.74 < p0/P0 ≤ 0.75.

An expanded view of Fig. 6.3(d) is shown in Fig. 6.5. For p0/P0 = 2 the period

of the Runge-Kutta solution at drive frequency ω = ω0 is seen to be about twice that

of the drive frequency, suggesting generation of the subharmonic at half the drive

frequency(period doubling). Both the jump in the solutions and the generation of

subharmonics are due to the nonlinear effects of the response at high drive amplitudes.

Lauterborn [65] obtained numerical solutions of the Rayleigh-Plesset equation for

increasing drive amplitudes for a wide range of drive frequencies. The frequency

response curves obtained by Lauterborn are shown in Fig. 6.6, where the curves
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Figure 6.4: Comparison of Runge-Kutta solutions of the Rayleigh-Plesset equation
for several drive amplitudes. Black line: p0/P0 = 0.7. Blue line: p0/P0 = 0.74. Red
line: p0/P0 = 0.75.

Figure 6.5: Expanded view of Fig. 6.3(d).
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indicate the peak value of the time waveform. As the drive amplitude increases

(indicated by the numbers to the left of the family of curves) the resonances begin

to lean toward lower frequencies (indicating softening of the system “stiffness”) until

eventually a jump in the solution occurs (the discontinuities indicated by the dashed

vertical lines). These jumps correspond to bifurcations or sudden transitions between

two valid solutions for a given drive frequency. This distortion of the frequency

response is a well-known property of nonlinear oscillations. One possible reason for

the discrepancy in Fig. 6.2(c) between the Runge-Kutta time domain solution and

the hybrid frequency domain solution could be that the two methods follow different

branches of the bifurcating solutions, or it could be that the hybrid solution is not

accurate since no subharmonic component is included.

A frequency response similar to Fig. 6.6 was obtained with the hybrid method,

and it is shown in Fig. 6.7. For a given drive frequency the maximum deviation

relative to the equilibrium radius is calculated based on an approximation given by

Brennen [12, Eq. (4.22)], but without the dc term:

Rmax −R0

R0

=
N∑

n=0

|Cn|. (6.7)

The purpose of Eq. (6.7) is to capture the features in Fig. 6.6 qualitatively. This

is done for convenience to avoid the computational burden of searching for peaks in

highly nonlinear waveforms at every frequency and amplitude of the drive. Solutions

for Cn for frequencies in the range 0.005 ≤ ω/ω0 ≤ 1.5 were obtained to generate

Fig. 6.7. It may be inferred that failure of the Newton-Raphson method might be an

indicator of a jump in the solution.
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Figure 6.6: Frequency response of a bubble with R0 = 1 µm in water at a mean
ambient pressure of 1 bar. The amplitudes of the drive pressures (in bar) are labeled
to the left of the curves. Adapted from Lauterborn [65].
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Figure 6.7: Frequency response of bubble radius. Blue curve: p0/P0 = 0.21. Black
curves: p0/P0 = 0.3. Green curves: p0/P0 = 0.5. Red curves: p0/P0 = 0.6.
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6.3 Subharmonics

Subharmonics are integer submultiples of the drive frequency, i.e., ω/2, ω/3,

ω/4, etc. To show the presence of subharmonics, spectral analysis of the Runge-Kutta

solutions was performed for increasing drive amplitudes at drive frequency ω = ω0.

Figures 6.8 and 6.9 display the gradual increase of the subharmonic and its own

harmonics. The plots show that at p0/P0 = 1.67 the subharmonic components become

substantial, and for p0/P0 > 1.8 the subharmonic dominates the fundamental. Since

no subharmonics are included in the hybrid method, the results from the two methods

differ for high drive amplitudes. Table 6.1 provides the ratios of the amplitude of the

subharmonic to that of the fundamental.

For the drive frequency ω = ω0 we can see from Figs. 6.8 and 6.9 and Table 6.1

that the threshold for generation of subharmonics is p0/P0 = 1.67. As shown in

Figs. 6.6 and 6.7 the resonance peaks lean to the left, and thus the thresholds for the

subharmonics can be lower for drive frequencies around ω/ω0 = 0.88.

To include subharmonics in the hybrid method, we rewrite the Fourier expan-

sion as follows:

ξ(t)

R0

= C0 +
1

2

2N∑
n=1

Cne
jn 1

2
ωt + c.c. (6.8)

For an example to examine the validity of the modified hybrid method, we take

ω/ω0 = 2 and p0/P0 = 0.7 and compare frequency spectra obtained from the Runge-

Kutta method and the hybrid method. As is shown in Fig. 6.10, the two solutions

are in excellent agreement. However, the modified hybrid method fails for most other
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Figure 6.8: Time waveforms and frequency spectra obtained from Runge-Kutta solu-
tions of Eq. (5.29) for different drive amplitudes with ω/ω0 = 1. The drive amplitudes
are p0/P0 = 1.66, 1.67 and 1.7. The viscosity parameter Qvis = 10 is included in the
calculations.
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Figure 6.9: Continuation of Fig. 6.8, with p0/P0 = 1.8, 1.9 and 2.0.
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p0/P0 |C 1
2
|/|C1|

1.60 1.9821× 10−9

1.65 4.0367× 10−5

1.66 0.0064
1.67 0.2053
1.68 0.2455
1.69 0.3275
1.7 0.3938
1.8 0.8616
1.9 1.2428
2.0 1.4860

Table 6.1: Values of the ratio |C 1
2
|/|C1| for different drive amplitudes with drive

frequency ω = ω0.

drive frequencies. We were unable to solve this problem satisfactorily, and conse-

quently we were restricted to acoustic drive amplitudes less than one atmosphere,

but this still accommodates a reasonably large range of drive amplitudes. For exam-

ple, it should be noted that p0 ∼ P0 is the nominal cavitation threshold for a liquid.

Therefore, in the following sections solutions are obtained using the hybrid method

without subharmonics. As the threshold for generation of subharmonics for a bubble

in confined channels is unknown, we seek solutions for fairly high drive amplitudes,

i.e., p0/P0 ∼ 0.8 for parallel plates and p0/P0 ∼ 1.1 for tubes. The Newton-Raphson

method used in the hybrid code fails to produce solutions for drive amplitudes above

these two values.
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Figure 6.10: Comparison of the Runge-Kutta soluion and the hybrid solutions for
drive frequency ω/ω0 = 2 and drive pressure p0/P0 = 0.7. (a) Time waveform ob-
tained using the Runge-Kutta method. (b) Spectrum obtained by taking an FFT of
the time domain solution. (c) Spectral solution obtained using the hybrid method.
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6.4 Bubble between Plates

In this section, solutions of Eq. (6.5) are presented for the time waveforms and

the first five harmonics. The frequency responses are obtained numerically as outlined

in Sec. 5.1.3.2. For low drive amplitudes the frequency responses are compared to

the weakly nonlinear solutions obtained in the quadratic approximation in Chapter

5. Since for the weakly nonlinear regime we must have p0/P0 . 0.05, here we let

p0/P0 = 0.05 and Qvis = 10. The drive frequency ranges up to ω/ω0 = 1.5, and six

values of plate separations are considered.

From Fig. 6.11 we can see that the two solutions agree quite well in general,

especially for the fundamental and the second harmonic. Slight differences appear

in the solutions for the third and higher harmonics. The good agreement of the two

solutions first of all validates the hybrid method. Secondly, it also indicates that for

low drive amplitudes, the weakly nonlinear approximation is appropriate.

Next, frequency responses for higher drive amplitudes are investigated. Four

values of plate separations are considered. Figures 6.12–6.17 show the frequency

response of the first five harmonics for four different plate separations. Higher drive

amplitudes than what was indicated by Fig. 6.7 to be possible to model for unbounded

liquid can be accommodated for bubbles in channels because the flow is constrained

and the bubble oscillations are suppressed, e.g., p0/P0 = 0.8 in Fig.6.17(d). Therefore

the narrower the channel, or the more constrained the flow (e.g., a bubble in a tube

rather than between parallel plates), the higher the drive amplitude that can be used

with the current version of the hybrid code.
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Figure 6.11: Comparison of the fully-nonlinear solutions obtained using the hybrid
method (solid lines) and the weakly-nonlinear solutions obtained in Chapter 5 us-
ing quadratic approximation (dashed lines) for the first five harmonics of a bubble
between plates. The parameter values are p0/P0 = 0.05 and Qvis = 10.
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The plots show that as the drive amplitude increases, the nonlinearity in-

creases, as expected, causing the curves to move closer together. Also, as the drive

amplitude increases, the resonance peaks become less pronounced. For narrow plate

separations (d/R0 ≤ 10), for p0/P0 ≥ 0.6 the harmonics display the strongest re-

sponse in the region 0 < ω/ω0 ≤ 0.8. To illustrate the progression of nonlinearity in

the response (waveform distortion) with increase in drive amplitude, time waveforms

at ω/ω0 = 0.5 for d/R0 = 100 and ω/ω0 = 0.3 for d/R0 = 10 are plotted in Figs. 6.13

and 6.16, corresponding to Figs. 6.12 and 6.15, respectively. As can be seen from

Figs. 6.13 and 6.16, the oscillation of the bubble is rather violent for higher drive

amplitudes.

6.5 Bubble in a Square Tube

In this section, the model equation for a bubble confined in a square tube

is solved using the hybrid method. The solution procedure is similar to that for a

bubble between plates, the only difference being that the summation in Eq. (2.16) has

no closed-form solution in the frequency domain and must be calculated numerically.

In the frequency domain this summation becomes
∑

l,m e−jnkrlm/rlm, where rlm is

the distance between the bubble and an image with indices (l,m) and is given by

Eq. (3.32). Substituting the negative of this summation for ln(1− ejnkd) in Eq. (6.5)
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Figure 6.12: Harmonic frequency responses of a bubble centered between two rigid
plates as functions of drive amplitude. The plate separation is d/R0 = 100 and the
viscosity parameter is Qvis = 10.
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Figure 6.13: Corresponding time waveforms at ω/ω0 = 0.5 for Fig. 6.12. The plate
separation is d/R0 = 100 and the viscosity parameter is Qvis = 10.
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Figure 6.14: Harmonic frequency responses of a bubble centered between two rigid
plates as functions of drive amplitude. The plates separation is d/R0 = 30 and the
viscosity parameter is Qvis = 10.
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Figure 6.15: Harmonic frequency responses of a bubble centered between two rigid
plates as functions of drive amplitude. The plate separation is d/R0 = 10 and the
viscosity parameter is Qvis = 10.
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Figure 6.16: Corresponding time waveforms at ω/ω0 = 0.3 for Fig. 6.15. The plate
separation is d/R0 = 10 and the viscosity parameter is Qvis = 10.
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Figure 6.17: Harmonic frequency responses of a bubble centered between two rigid
plates as functions of drive amplitude. The plate separation is d/R0 = 3 and the
viscosity parameter is Qvis = 10.

150



we obtain

Fn

{
R0

(
1 +

ξ

R0

)
ξ̈ +

3

2
ξ̇2 − 1

ρ0

[
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(
1 +

ξ
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)−3γ
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]
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}
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[
(jnω)3

4πc0

− (jnω)2

4π

∑
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e−jnkrlm
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]
Fn

[(
1 +

ξ

R0

)3
]

. (6.9)

Alternatively, Eq. (6.9) can be obtained by substituting Eq. (4.13), with k replaced

everywhere by nk, into Eq. (6.6).

The frequency responses for the first five harmonics are presented in Fig. 6.18.

First we keep the drive amplitude low, p0/P0 = 0.05, and the fully-nonlinear solutions

are compared to the weakly-nonlinear solutions. Shown in Fig. 6.18 are comparisons

for the four tube sizes a/R0 = 100, 50, 30, 20, where a is the length of a side of the

square. From Fig. 6.18 we can see that we again obtain good agreement for the two

solutions. Next, solutions for higher drive amplitudes are sought.

Figures 6.19–6.25 are frequency responses of a bubble in a square tube with

five different cross-sectional areas, and the acoustic drive amplitude ranges from

p0/P0 = 0.1 to p0/P0 = 1.1. For tubes with fairly large cross-sectional areas,

a/R0 ≥ 30, the responses of the harmonics display similar trends as observed for

parallel plates, the nonlinearity in the response dominates as the drive pressure gets

high. For tubes of smaller cross-sectional areas (a/R0 ≤ 20), the responses of the har-

monics are highly damped, which is consistent with observations from the quadratic

nonlinear solutions. As was done for parallel plates, time waveforms at ω/ω0 = 0.5

for a/R0 = 100 and ω/ω0 = 0.3 for a/R0 = 30 are plotted in Figs. 6.20 and 6.23, cor-

responding to Figs. 6.19 and 6.22, respectively. From both the frequency responses

151



Figure 6.18: Comparison of the fully-nonlinear solutions obtained using the hybrid
method (dashed lines) and the weakly-nonlinear solutions obtained in Chapter 5
using quadratic approximation (solid lines) for the first five harmonics of a bubble in
a square duct. The parameter values are p0/P0 = 0.05 and Qvis = 10.
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Figure 6.19: Harmonic frequency responses of a bubble centered in a square rigid tube
as functions of drive amplitude. The parameter values are a/R0 = 100 and Qvis = 10.
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Figure 6.20: Corresponding time waveforms at ω/ω0 = 0.5 for Fig. 6.19. The param-
eter values are a/R0 = 100 and Qvis = 10.
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Figure 6.21: Harmonic frequency responses of a bubble centered in a square rigid tube
as functions of drive amplitude. The parameter values are a/R0 = 50 and Qvis = 10.
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Figure 6.22: Harmonic frequency responses of a bubble centered in a square rigid tube
as functions of drive amplitude. The parameter values are a/R0 = 30 and Qvis = 10.
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Figure 6.23: Corresponding time waveforms at ω/ω0 = 0.3 for Fig. 6.22. The param-
eter values are a/R0 = 30 and Qvis = 10.
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Figure 6.24: Harmonic frequency responses of a bubble centered in a square rigid tube
as functions of drive amplitude. The parameter values are a/R0 = 20 and Qvis = 10.
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Figure 6.25: Harmonic frequency responses of a bubble centered in a square rigid tube
as functions of drive amplitude. The parameter values are a/R0 = 10 and Qvis = 10.
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and the time waveforms, we note that the response of a bubble in a wide channel

(d/R0 = 100) formed by two rigid parallel plates and in a wide rigid tube (a/R0 = 100)

are very similar. Quantitatively, the response of bubble between plates with a separa-

tion d/R0 = 10 is comparable to the response of a bubble in a tube with a/R0 = 30.

The responses of a bubble in channels for higher drive amplitudes (larger than half

an atmosphere) are characterized by violent oscillations and rebounds. As the cur-

rent solutions are obtained without including subharmonics (due to the fact that the

threshold for subharmonic generation for a bubble in channels is unknown and the

computer program including subharmonics does not work properly), we should be

aware of the possibility that subharmonics could be generated in the responses for

higher drive amplitudes (larger than half an atmosphere).
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Chapter 7

Conclusion and Future Work

This dissertation covered a wide range of topics regarding the dynamics of a

bubble in water-filled channels formed by parallel plates and tubes. A review of the

literature showed that most mathematical models of a bubble in a confined region

are numerical, and a frequently-used approximate analytical model is that of a short

tube with rigid walls filled with an incompressible liquid. In the present work, ana-

lytical models that include liquid compressibility were derived. Linear and nonlinear

responses of a bubble between parallel plates and in tubes of triangular, square, rect-

angle, and hexagonal cross sections were investigated. Radiation impedences of a

bubble between plates and in rectangular or square tubes were also derived.

In Chapter 2, the equations of bubble dynamics that formed the basis for our

models of a confined bubble were presented. The starting point was the Rayleigh-

Plesset equation, which descibes the motion of the wall of a spherical bubble in an

unbounded incompressible liquid. The Rayleigh-Plesset equation was modified to

account for liquid compressibility in the manner of Ilinskii and Zabolotskaya [57] by

including a term in bubble volume for radiation damping. The result was shown

to be equivalent to an equation developed by Prosperetti [58] and also equivalent

to the Keller-Miksis equation [59] at O(1/c0). When a bubble is part of a cluster
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of bubbles, the radiation pressure from each neighboring bubble impinges upon it.

This was accounted for in the manner of Hamilton et al. [52, Eq. (2)] by modeling

each neighboring bubble as a monopole acoustic source at an arbitrary position,

which yields an additional term in the Rayleigh-Plesset equation for each neighboring

bubble. The same is done for all the bubbles in the cluster, and the result is a

set of coupled equations describing the dynamics of every bubble in the cluster. A

single bubble in a channel can be modeled using the cluster approach by invoking

the method of images to satisfy the boundary conditions on the channel walls. Thus,

the channel walls were replaced by an infinite series of image bubbles. For a bubble

between infinite parallel plates, the image bubbles form an infinite line array. For

a bubble in a tube of triangular, rectangular, square or hexagonal cross-section, an

infinite planar array is formed. Model equations for each of these cases were derived

from the bubble cluster model.

In Chapter 3, the model equations were solved in the linear approximation and

the frequency response was obtained. For parallel plates, explicit expressions were

derived for the frequency response, the resonance frequency, and the quality factor.

For tubes of triangular, square, and hexagonal cross-sections, the frequency responses

were found to be almost identical when the cross-sectional areas are the same. Both

rigid and pressure release boundary conditions were investigated for parallel plates

and a square tube. The rigid plates alter the ideal radial expansion of flow that

occurs in an unbounded liquid, and thus the effective fluid inertia increases and the

resonance frequency decreases as the plate separation decreases. On the other hand,

the pressure release plates provide the least impedance to the liquid, and thus as the
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plate separation decreases, less liquid is in motion, the effective fluid inertia decreases,

and the resonance frequency increases. Finite wall impedance was considered for

plates when kd � 1, or d & λ. Off-center bubble positions were found to have

little effect on the overall bubble dynamics. An approximate analytical expression

for the frequency response of a bubble centered in a rigid square tube was derived.

Frequency responses of a bubble confined in square and cylindrical tubes with equal

cross-sectional areas and pressure release walls are compared, and the results agreed

quite well.

Chapter 4 began with the derivation of the radiation impedance of a bubble

between plates and in a square tube based on the method of images. The radiation

resistance and reactance of a bubble centered or off-centered between plates and in

tubes were compared to the corresponding values in a free field. The comparision

again revealed that the radiation reactance for a bubble between rigid plates was

larger than the value in a free field, and thus the resonance frequency is reduced in

comparison to its free field value. The radiation resistance in the presence of rigid

plates was larger than that in a free field, so the damping was increased. Constant

radiation resistance was observed for a bubble in rigid tubes for ka ≤ π. This is

because radiation couples with the plane wave mode. As expected, cases which yielded

high radiation resistance were found to correspond with highly damped regimes of the

frequency response. Finally, the fundamental physical difference between confinement

by plates and by tubes was determined. The dynamics of a bubble is mass controlled

when confined between plates and resistance controlled when in a tube. The second

part of Chapter 4 was devoted to a comparison of the radiation impedance obtained
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for square and rectangular tubes by the method of images to that obtained by the

normal mode expansion of Morse and Ingard [2], and excellent agreement was found.

In Chapter 5, a methodology was developed to solve the model equations in

the quadratic approximation for the weakly nonlinear regime and solutions were ob-

tained. The chapter began with a derivation of the model equation for plates at

quadratic order, then the equation was solved in the frequency domain. Initially,

analytical solutions were obtained for the fundamental, the second harmonic and the

dc component. Finally, a full spectrum solution was obtained in the form of coupled

equations of the harmonic amplitudes, which were generalized to channels with arbi-

trary cross-sections and wall impedance. A Newton-Raphson iteration method was

used to solve the coupled spectral equations. To verify the validity of this solution

method, the terms accounting for plate reflections and the radiation damping were

eliminated and the results were compared to time domain solutions obtained with

a Runge-Kutta method. The two results agreed quite well. Time waveforms were

used to determine the range of drive amplitudes in which the quadratic approxima-

tion is valid, i.e. |ξ|/R0 . 0.1, which sets the upper bound for the drive amplitude,

p0/P0 ≤ 0.05. Next, the frequency responses for a bubble between rigid plates and in

a rigid tube were obtained and the first five harmonics plus the dc component were

plotted. The weakly nonlinear response of the bubble was found to be similar to

the linear response in that the cross-sectional area of the duct, not its cross-sectional

geometry, primarily determines the dynamic response.

In Chapter 6, the model equations were solved with their full nonlinearity.

A hybrid time-frequency domain method was developed specially for this case. The
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chapter began with an overview of the method, followed by comparison of solutions of

the Rayleigh-Plesset equaton obtained with this method and with the Runge-Kutta

method. For p0/P0 ' 1.5 and at drive frequency ω = ω0, only harmonics of the

drive frequency were included in the hybrid method and the two solutions were in

excellent agreement. For p0/P0 ≥ 1.7 we observed poor agreement between the two

methods. This was due to the omission of the subharmonics of the drive frequency

in the hybrid method. It was found that for drive frequency ω = ω0, the threshold

for subharmonics was p0/P0 ≥ 1.67. With subharmonics included we again obtained

excellent agreement between the two methods. We studied the same cases reported

in the previous chapters using the hybrid method for drive levels above the weakly

nonlinear regime, but below the threshold for the generation of subharmonics. No

qualitatively different results were observed in this fully-nonliniear regime.

Appendix A provides detailed accounts of the image counting strategy that

was developed for triangular, rectangular, and hexagonal tubes. In Appendix B, the

Newton-Raphson method was briefly reviewed. In Appendix C, detailed derivations

of the analytical solutions for the second harmonic and the dc component, and for

the coupled nonlinear equations for the harmonic amplitudes, were presented, as well

as the derivation of the Jacobian.

Three aspects of this work should be carried forward. One is to perform a

systematic parametric study of cylindrical tubes with arbitrary wall impedances us-

ing the generalized solutions provided in Chapters 5 and 6. The second possibility

is to study bubbles of arbitrary shape by using spherical harmonic expansions. Fi-

nally, future experimental work should be focused on varifying the models and results
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presented here.
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Appendix A

Image Counting Strategies

For harmonic motion, the summation in Eq. (3.1) can be expressed in closed

form for a bubble centered between two parallel plates, as in Eq. (3.6). If the bubble is

off-center, the symmetry in the image array is lost and an image counting strategy is

needed to perform the summation. Also, no analytical expression is available for the

summation in Eq. (3.26) for a bubble in a tube, and a strategy is needed to index those

images. In this appendix the strategies for counting images will be discussed, first

for a bubble located off-center between two parallel plates, then for a bubble in the

center of a rectangular (or square), triangular, or hexagonal tube. For simplicity, only

linear equations of motion are considered in this appendix, but the same approaches

are used for the nonlinear equation of motion given by Eq. (5.35).

A.1 Bubble Off-Center between Parallel Plates

Without the symmetry for a centered bubble, Eq. (3.1) takes the form

ξ̈(t) + ω2
0ξ(t) =

R0

c0

...
ξ (t)−R0

∑
m

1

dm

ξ̈(t− dm/c0)−
pac(t)

ρ0R0

, (A.1)

and Eq. (3.3) becomes[
1−

(
1 + R0

∑
m

e−jkdm

dm

)
ω2

ω2
0

+ jk0R0
ω3

ω3
0

]
Ξ(ω) = − p1

3γP0

. (A.2)
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Figure A.1 shows the array of images. The black circle is the bubble and the rest

Figure A.1: Array of images for a bubble located off center between two parallel rigid
plates. Black circle is the bubble, and colored circles are images.

are its images. Since no general symmetry is found in the images, they are grouped

into three categories, designated by the colors red, blue and yellow, to facilitate the

calculation of their distances from the bubble. The red group is symmetric about the

bubble and extends infinitely in both directions, while the blue and yellow groups

each form an infinite line array, one extending in one direction away from the bubble,

and the other extending in the opposite direction. The distance from any image to
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the bubble is given as follows:

dred
m = 2md, red

dblu
m = 2(d− b) + 2(m− 1)d, blue

dyel
m = 2b + 2(m− 1)d, yellow

 . (A.3)

The superscripts indicate the colors of the images. There is no closed form for the

summations, and instead we have
∞∑

m=−∞

e−jkdm

dm

=
∑
m

(
2
e−jkdred

m

dred
m

+
e−jkdblue

m

dblu
m

+
e−jkdyel

m

dyel
m

)
. (A.4)

The coefficient 2 in front of the red image series accounts for the doubly infinite arrays

in both the up and down directions. Substituting Eq. (A.3) in Eq. (A.4), we obtain
∞∑

m=1

e−jkdm

dm

=
1

2d

∞∑
m=1

(
2

m
+

ej2kb

m− b/d
+

ej2k(d−b)

m− 1 + b/d

)
e−j2mkd . (A.5)

Equation (A.5) was used to obtain Eq. (3.18).

A.2 Rectangular Tube

The indexing for the images of a bubble in a rectangular (or square) tube is

straightforward. The index for each row is l and the index for each column is m, with

l = m = 0 for the cell where the bubble resides, as shown in Fig. A.2. As indicated, l

increases or decreases by one for every row going upward or downward; m increases

or decreases by one every column going right or left. The distance between an image

and the bubble is then given in Eq. (3.32). The 4-fold symmetry is used to divide the

grid into 4 regions. The highlighted region in Fig. A.2 is one of these 4 regions. Thus

the summation over all the images can be written as

4
∞∑
l=0

∞∑
m=1

e−j(l2+m2)1/2ka

(l2 + m2)1/2
(A.6)

for a square tube.
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Figure A.2: Grid for images of a bubble centered in a rectangular (or square) tube
showing indexing in one quadrant of the 4-fold symmetry.
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A.3 Triangular Tube

Figure A.3 shows the infinite plane array of images of a bubble in the center

of a triangular tube. Three symmetric regions are identified, the boundary of each

highlighted by the red, blue and yellow images. We only need to sum over the images

in one of the three regions, the result of which is multiplied by 3 to obtain the total

contribution from the entire plane. Figure A.4 shows the details of the indexing

scheme developed for one of the regions. The images are color coded by row in red,

green, blue, and brown. The pattern repeats itself every four rows and every two

columns. The rows are indexed by the integers l and l′ and the columns by m.

Starting from the row including the black bubble going upwards, l increases by one

for every four rows (including the group of red, green, blue and brown rows). In other

words, the first red, green, blue, and brown rows all have a same index l = 1, the

second red, green, blue, and brown rows all have a same index l = 2, and so on. From

the line including the bubble going downwards, a triangular region is formed. The

rows for the triangular region are indexed by l′, and l′ increases by one downwards

for every four rows. Starting from the column including the bubble going right, every

two columns share the same index m. So for the first two columns they have the same

index m = 1, then the next two columns have m = 2, and so on. Given the indices l
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Figure A.3: Plane array of images for a bubble in a triangular tube. A 3-fold sym-
metry is used to group the images.
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Figure A.4: Details of the indexing strategy for a triangular tube.
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and m, we calculated the distance dlm as follows. For region A

dred
lm =

(
3l2 − 2l + m2 − 2m +

4

3

) 1
2

s red, (A.7)

dgrn
lm =

(
3l2 + m2 − 2m + 1

) 1
2 s green, (A.8)

dblu
lm =

(
3l2 + l + m2 −m +

1

3

) 1
2

s blue, (A.9)

dbrn
lm =

(
3l2 − 3l + m2 −m + 1

) 1
2 s brown, (A.10)

and for region B

dred
l′m =

(
3l′2 − 4l′ + m2 + 2m +

7

3

) 1
2

s red, (A.11)

dgrn
l′m =

(
3l′2 − 6l′ + m2 + 3

) 1
2 s green, (A.12)

dblu
l′m =

(
3l′2 − 7l′ + m2 −m +

13

3

) 1
2

s blue, (A.13)

dbrn
l′m =

(
3l′2 − 3l′ + m2 + 3m + 3

) 1
2 s brown. (A.14)

In Sec. 3.2.1 we discussed how the summation in Eq. (3.26) was evaluated. We sum

over images in a circular region of radius Ns4, where N is a large number and s4 is the

length of a side of the square tube. The dashed line in Fig. A.4 indicates this region.

In the computer code that calculates the summation, the distances between images

and the bubble in a rectangular region (l ≤ 0.58N , m ≤ N) were calculated first,

then images with distances larger than Ns4 are eliminated before the summation.

A.4 Hexagonal tube

Figure A.5 is the grid for a bubble centered in a hexagonal tube. It possesses

the 6-fold symmetry obtained by replicating the images colored red. The indexing
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for the red images is shown in Fig. A.6. With s6 denoting the length of a side of

the hexagon, r the distance from the center to any side and R the distance from the

center to a corner, we obtain for the distance from an image with indices (l,m) to

the bubble rlm =
√

3(l2 + lm + m2)1/2s6. The summation over all images is 6 times

the summation over the red images.

Figure A.5: Grid for images of a bubble centered in a hexagonal tube showing the
6-fold symmetry.
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Figure A.6: Indexing for the images in one of the 6 symmetric triangular regions for
a hexagonal tube.
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Appendix B

Newton-Raphson Iteration Method

The Newton-Raphson method, also called Newton’s method, is one of the

most powerful and well-known root-finding algorithms. It is based on using linear

approximations to solve equations. The iterative process to approximate one root of

a function f(x) is as follows [63].

Suppose the function f(x) is twice continuously differentiable on a given inter-

val [a, b]. Let x0 ∈ [a, b] be an approximation of the root xr and expand f(x) about

the point x0 in Taylor series to obtain

f(xr) = f(x0) + f ′(x0)(xr − x0) +
1

2
f ′′(x0)(xr − x0)

2 + · · · . (B.1)

Keeping terms only to first order we get

f(xr) ' f(x0) + f ′(x0)(xr − x0). (B.2)

Since by definition f(xr) = 0, solve Eq. (B.2) to obtain

xr ' x0 −
f(x0)

f ′(x0)
, (B.3)

which is a better approximation of xr than is x0. This sets the stage for the iteration

using Newton’s method. The sequence {xn} is generated until it converges to root

xr:

xn = xn−1 −
f(xn−1)

f ′(xn−1)
. (B.4)
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With a good initial guess of the root, the algorithm can approach the root very

quickly. Newton’s method is powerful mainly because of its quadratic convergence

rate. Expand f(x) in a Taylor series about x = xn up to second order:

f(xr) = f(xn) + f ′(xn)En +
1

2
f ′′(xn)E2

n, (B.5)

where En = xr − xn is the error after the nth iteration. Since f(xr) = 0, we obtain

f(xn) + f ′(xn)En = −1

2
f ′′(xn)E2

n. (B.6)

With the assumption f ′(x) 6= 0 for all x near the root xr, so f ′(xn) 6= 0, Eq. (B.6)

can be divided by f ′(xn) to obtain

f(xn)

f ′(xn)
+

f ′(xn)

f ′(xn)
En = − f ′′(xn)

2f ′(xn)
E2

n. (B.7)

Rearrange the terms and simplify to get

En +
f(xn)

f ′(xn)
= − f ′′(xn)

2f ′(xn)
E2

n, (B.8)

or

xr −
[
xn −

f(xn)

f ′(xn)

]
= − f ′′(xn)

2f ′(xn)
(xr − xn)2. (B.9)

Substitute Eq. (B.4) into Eq. (B.9) to obtain

En+1 = − f ′′(xn)

2f ′(xn)
E2

n. (B.10)

Since f ′(xn) = f ′(xr) + O(En) and f ′′(xn) = f ′′(xr) + O(En), Eq. (B.10) becomes, to

the same order,

En+1 = − f ′′(xr)

2f ′(xr)
E2

n. (B.11)
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Now take absolute values and obtain

|En+1| = − |f
′′(xr)|

|2f ′(xr)|
|En|2. (B.12)

The convergence rate is thus quadratic. Once in the neighborhood of the root, the sig-

nificant digits approximately double with each step. This strong convergence property

makes Newton’s method efficient for any function whose derivative can be evaluated

easily, and whose derivative is continuous and nonzero in the neighborhood of a root.

However, the iteration procedure can be unstable near a horizontal asymptote and

a local extremum, and Newton’s method can fail for these cases. Also, a bad initial

guess can cause the procedure to enter a nonconvergent cycle in which no solution

can be achieved. Refer to Ref. [63] for further details.
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Appendix C

Quadratic Approximation

This appendix includes two sections. The first section fills in the steps between

Eq. (2.15) and its quadratic approximation in the frequency domain, Eq. (5.15). The

steps for obtaining the analytical perturbation solution for the second harmonic,

Eq. (5.8), are also included. The second section shows the details in obtaining the

Jacobian for Eq. (5.15) when the Newton-Raphson iteration method is used to solve

the nonlinear system of equations.

C.1 Derivation of the Quadratic Model Equation in the Fre-
quency Domain

First we fill in the steps leading from Eq. (2.15) to Eq. (5.1) for a bubble

between plates, and then the steps leading from Eq. (5.1) to the equations for the

harmonics, Eq. (5.15). The same procedure applies to a bubble in a tube, Eq. (2.16),

except no closed form for the summation is available.

Equation (2.15) is repeated here:

RR̈+
3

2
Ṙ2 =

1

ρ0

[
P0

(
R0

R

)3γ

− P0 − pac(t)

]
+

...
V

4πc0

− 1

2πd

∞∑
m=1

1

m
V̈ (t−md/c0) . (C.1)

Let R = R0 + ξ, with Ṙ = ξ̇ and R̈ = ξ̈, and let V = 4
3
πR3, V0 = 4

3
πR3

0, to obtain
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following expansion to quadratic order in ξ:

V = V0 + 4πR2
0ξ + 4πR0ξ

2, (C.2)

V̇ = 4πR2
0ξ̇ + 8πR0ξξ̇, (C.3)

V̈ = 4πR2
0ξ̈ + 8πR0ξ̇

2 + 8πR0ξξ̈, (C.4)

...
V = 4πR2

0

...
ξ + 24πR0ξξ̈ + 8πR0ξ

...
ξ . (C.5)

The pressure term becomes

P0

(
R0

R

)3γ

− P0 = P0

(
1 +

ξ

R0

)−3γ

− P0

= P0

[
1− 3γ

ξ

R0

+
3γ(3γ + 1)

2

ξ2

R2
0

+ · · ·
]
− P0

=
3γP0

R0

ξ +
3γ(3γ + 1)P0

2R2
0

ξ2. (C.6)

Now substitute in Eq. (C.1) to obtain

R0ξ̈ + ξξ̈ +
3

2
ξ̇2 + 2

R0

d

∑
m

1

m

[[
R0ξ̈ + 2ξ̇2 + 2ξξ̈

]]
− R0

c0

(R0

...
ξ + 6ξ̇ξ̈ + 2ξ

...
ξ )

= −3γP0

ρ0R0

ξ +
3γ(3γ + 1)P0

2ρ0R2
0

ξ2 − pac(t)

ρ0

, (C.7)

where [[·]] indicates evaluation at the delayed times t−md/c0. Grouping linear terms

on the left-hand side and the quadratic terms on the right-hand side, and dividing

the equation by R0, we get

ξ̈(t) + ω2
0ξ(t)−

R0

c0

...
ξ (t) + 2

R0

d

∞∑
m=1

1

m
ξ̈(t−md/c0)

= − 1

R0

(
ξξ̈ +

3

2
ξ̇2

)
+

ω2
0

2R0

(3γ + 1)ξ2 +
2

c0

(3ξ̇ξ̈ + ξ
...
ξ )

− 4

d

∞∑
m=1

1

m

[
ξ̇2(t−md/c0) + ξ(t−md/c0)ξ̈(t−md/c0)

]
− pac(t)

ρ0R0

, (C.8)
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where ω2
0 = 3γP0/ρ0R

2
0. Equation (C.8) is the combined form of Eqs. (5.1) and (5.2).

The perturbation ξ can be expanded as follows to just include the fundamental,

the second harmonic, and the dc component:

ξ = ξ1 + ξ2 + ξ0, (C.9)

where

ξ1 =
1

2
A1(ω)ejωt + c.c., (C.10a)

ξ2 =
1

2
A2(ω)ej2ωt + c.c., (C.10b)

ξ0 = A0, (C.10c)

and it is assumed that |A2| � |A1|, |A0| � |A1|. We may now solve Eq. (C.8) by

successive approximations. In the first approximation, the solution for A1 is obtained

by setting the right-hand side of Eq. (C.8) to zero and substituting Eq. (C.10a) into

the left-hand side. One thus obtains A1 = Ξ, where Ξ is defined by Eq. (3.7). In the

second approximation, Eq. (C.10b) or Eq. (C.10c) is substituted into the left-hand

side and Eq. (C.10a) into the right-hand side.

For the second harmonic, the left-hand side becomes

LHS =
1

2
A2e

j2ωt

(
−4ω2 + ω2

0 + j8ω3R0

c0

− 8ω2R0

d

∞∑
m=1

1

m
ej2mkd

)
+ c.c.

=
1

2
A2e

j2ωt

[
ω2

0 − 4ω2 + j8ω3R0

c0

+ 8ω2R0

d
ln(1− e−j2kd)

]
+ c.c.

=
1

2
A2e

j2ωtω2
0

{
1− 4

[
1− 2

R0

d
ln(1− e−j2kd)

]
ω2

ω2
0

+ j8k0R0
ω3

ω3
0

}
+ c.c.

=
1

2
A2e

j2ωtω2
0∆2(ω) + c.c., (C.11)
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where ∆2(ω) is defined in Eq. (5.9). On the right-hand side, retaining only terms

containing the second harmonic, we have

ξ1ξ̈1 = −ω2

4
A2

1e
j2ωt + c.c., (C.12a)

ξ̇2
1 = −ω2

4
A2

1e
j2ωt + c.c., (C.12b)

ξ̇1ξ̈1 = −j
ω3

4
A2

1e
j2ωt + c.c., (C.12c)

ξ1

...
ξ 1 = −j

ω3

4
A2

1e
j2ωt + c.c., (C.12d)

ξ2
1 =

1

4
A2

1e
j2ωt + c.c., (C.12e)

ξ̇2
1

(
t− md

c0

)
= −ω2

4
A2

1e
j2ωte−j2mkd + c.c., (C.12f)

ξ1

(
t− md

c0

)
ξ̈1

(
t− md

c0

)
= −ω2

4
A2

1e
j2ωte−j2mkd + c.c. (C.12g)

Finally, the right-hand side becomes

RHS = A2
1e

j2ωt

[
5

8

ω2

R0

− j2
ω3

c0

+ (3γ + 1)
ω2

8R0

− 2
ω2

d
ln(1− e−j2kd)

]
+ c.c.

=
ω2

2R0

A2
1e

j2ωt

[
5

4

ω2

ω2
0

− j4k0R0
ω3

ω3
0

+
3γ + 1

4
− 4

R0

d
ln(1− ej2kd)

]
+ c.c.

=
ω2

2R0

A2
1e

j2ωtΓ(ω) + c.c., (C.13)

where Γ(ω) is defined in Eq. (5.10).

Equating LHS with RHS we get

ω2

2
A2e

j2ωt∆2(ω) =
ω2

2R0

A2
1e

j2ωtΓ(ω), (C.14)

or

A2 =
A2

1

R0

Γ(ω)

∆2(ω)
. (C.15)
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The dimensionless amplitudes C1(ω) and C2(ω) defined in Eqs. (5.6a) and (5.6b) are

thus

C1(ω) =
C1(0)

∆1(ω)
= − p0

3γP0

1

∆1(ω)
, (C.16)

so

C2(ω) ≡ A2

R0

=

(
p0

3γP0

)2
Γ(ω)

∆2
1(ω)∆2(ω)

. (C.17)

Equation (C.17) is equivalent to Eq. (5.8).

For the dc component, the left-hand side becomes

LHS = ω2
0A0, (C.18)

which comes from the term ω2
0ξ, and all other terms on the left-hand side are zeros

after derivatives are taken. On the right-hand side, retaining only dc terms we have

ξ1ξ̈1 = −ω2

2
|A1|2, (C.19a)

ξ̇2
1 =

ω2

2
|A1|2, (C.19b)

ξ̇1ξ̈1 = 0, (C.19c)

ξ1

...
ξ 1 = 0, (C.19d)

ξ2
1 =

ω2

2
|A1|2, (C.19e)

ξ̇2
1

(
t− md

c0

)
= −ω2

2
|A1|2, (C.19f)

ξ1

(
t− md

c0

)
ξ̈1

(
t− md

c0

)
=

ω2

2
|A1|2. (C.19g)
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Finally, the right-hand side becomes

RHS = −ω2

R0

(
−1

2
|A1|2 +

3

4
|A1|2

)
+

ω2
0

2R0

(3γ + 1)
ω2

2
|A1|2

=
ω2

0

4R0

(
3γ + 1− ω2

ω2
0

)
|A1|2. (C.20)

Equating LHS with RHS we get

A0 =
1

4R0

(
3γ + 1− ω2

ω2
0

)
|A1|2. (C.21)

C.1.1 Coupled Nonlinear Equations for the Harmonics

Expressing ξ in the frequency domain using a Fourier expansion, we have

ξ(t) =
1

2

∞∑
n=−∞

Ane
jnωt. (C.22)

Let α and β both be integers, such that the αth (and βth) order derivatives of ξ take

the following form:

dαξ

dtα
=

1

2

∞∑
n=−∞

(jnω)αAne
jnωt, (C.23)

so (
dαξ

dtα

)(
dβξ

dtβ

)
=

1

4

∞∑
l=−∞

(jlω)αAle
jlωt

∞∑
m=−∞

(jmω)βAmejmωt

=
1

4
(jω)α+β

∞∑
l=−∞

∞∑
m=−∞

lαmβAlAmej(l+m)ωt

=
∞∑

n=−∞

1

4
(jω)α+β

[
∞∑

m=−∞

mα(n−m)βAmAn−m

]
ejnωt

,
∞∑

n=−∞

1

4
(jω)α+βSn(α, β)ejnωt, (C.24)
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where l + m = n,

Sn(α, β) =
∞∑

m=−∞

mα(n−m)βAmAn−m, (C.25)

and it can be seen that Sn(α, β) = Sn(β, α). The summation in Eq. (C.8) can be

rewritten as follows:

∞∑
m=1

1

m
ξ̈

(
t− md

c0

)
=

∞∑
m=1

1

m

1

2

∞∑
n=−∞

(−n2ω2)Ane
j(nωt−mnkd)

= −ω2

2

∞∑
n=−∞

n2Ane
jnωt

∞∑
m=1

1

m
e−jmnkd

=
ω2

2

∞∑
n=−∞

n2Ane
jnωt ln(1− e−jnkd). (C.26)

Now the left-hand side of Eq. (C.8) becomes

LHS =
1

2

∞∑
n=−∞

Ane
jnωt

[
− (nω)2 + ω2

0 + 2
R0

d
(nω)2 ln(1− e−jnkd) + j(nω)3R0

c0

]

=
ω2

2

∞∑
n=−∞

Ane
jnωt

[
1− (nω)2

ω2
0

+ 2
R0

d

(nω)2

ω2
0

ln(1− e−jnkd) + jk0R0
(nω)3

ω3
0

]

=
ω2

2

∞∑
n=−∞

Ane
jnωt∆n, (C.27)

where

∆n = 1− n2

[
1− 2

R0

d
ln(1− e−jnkd)

]
ω2

ω2
0

+ jn3k0R0
ω3

ω3
0

. (C.28)

187



Equation (C.28) is equivalent to Eq. (5.31) when the viscous term in the latter is

omitted. For the right-hand side, term by term we have

ξξ̈ =
1

4

∞∑
n=−∞

(jω)2Sn(0, 2)ejnωt, (C.29)

ξ̇2 =
1

4

∞∑
n=−∞

(jω)2Sn(1, 1)ejnωt, (C.30)

ξ̇ξ̈ =
1

4

∞∑
n=−∞

(jω)3Sn(1, 2)ejnωt, (C.31)

ξ
...
ξ =

1

4

∞∑
n=−∞

(jω)3Sn(0, 3)ejnωt, (C.32)

ξ2 =
1

4

∞∑
n=−∞

Sn(0, 0)ejnωt, (C.33)

∞∑
m=1

1

m
ξ̇2

(
t− md

c0

)
= −ω2

4

∞∑
n=−∞

Sn(1, 1)ejnωt

∞∑
m=1

e−jnmkd

m
(C.34)

=
ω2

4

∞∑
n=−∞

Sn(1, 1)ejnωt ln(1− e−jnkd), (C.35)

ξ

(
t− md

c0

)
ξ̈

(
t− md

c0

)
= −ω2

4

∞∑
n=−∞

Sn(0, 2)ejnωte−jnmkd. (C.36)

Substitute all the above equations into the right-hand side of Eq. (C.8) to obtain

RHS =
∞∑

n=−∞

ejnωt

{
ω2

4R0

[
Sn(0, 2) +

3

2
Sn(1, 1)

]
− jω3

2c0

[Sn(0, 3) + 3Sn(1, 2)]

+ (3γ + 1)
ω2

0

8R0

Sn(0, 0)− ω2

d
[Sn(0, 2) + Sn(1, 1)] ln(1− e−jnkd)

}
− p0e

jωt

2ρ0R0

.

(C.37)
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Now define

Zn =
3γ + 1

4R0

Sn(0, 0) +
1

2R0

[
Sn(0, 2) +

3

2
Sn(1, 1)

]
ω2

ω2
0

− 2

d
ln(1− e−jnkd)[Sn(0, 2) + Sn(1, 1)]

ω2

ω2
0

− jk0[Sn(0, 3) + 3Sn(1, 2)]
ω3

ω3
0

− δ1np0

ρ0R0ω2
0

, (C.38)

where δlm is the Kronecker delta and thus

RHS =
ω2

2

∞∑
n=−∞

e jnωtZn . (C.39)

Equating the LHS to the RHS and we get

ω2

2

∞∑
n=−∞

∆nAne
jnωt =

ω2

2

∞∑
n=−∞

ejnωtZn, (C.40)

or

∆nAn = Zn. (C.41)

Equation (C.25) is now expanded as follows:

Sn(α, β) =
∞∑

m=−∞

mα(n−m)βAmAn−m

= δα0n
βA0An + δβ0n

αA0An

+

(
−1∑

m=−∞

+
n−1∑
m=1

+
∞∑

m=n+1

)
mα(n−m)βAmAn−m, (C.42)

where
−1∑

m=−∞

mα(n−m)βAmAn−m =
n+1∑

m=∞

(n− l)αlβAn−lAl

=
∞∑

m=n+1

(n− l)αlβAlA
∗
l−n

=
∞∑

m=n+1

(n−m)αmβAmA∗
m−n. (C.43)
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Thus

Sn(α, β) =
n∑

m=0

mα(n−m)βAmAn−m

+
∞∑

m=n+1

[mα(n−m)β + mβ(n−m)α]AmA∗
m−n, (C.44)

where the first summation accounts for sum frequency generation, the second for

difference frequency generation. If we are only interested in the first N harmonics, the

upper limit ∞ in Sn(α, β) is replaced by N . Now let Cn = An/R0 and Qn = Sn/R
2
0,

such that Eq. (C.41) becomes

∆nCn =
3γ + 1

4
Qn(0, 0) +

1

2

[
Qn(0, 2) +

3

2
Qn(1, 1)

]
ω2

ω2
0

− R0

d
ln(1− e−jnkd)[Qn(0, 2) + Qn(1, 1)]

ω2

ω2
0

− jk0R0[Qn(0, 3) + 3Qn(1, 2)]
ω3

ω3
0

− δ1np0

3γP0

. (C.45)

From Eq. (C.44) we get

Qn(0, 2) =
n∑

m=0

(n−m)2CmCn−m +
∞∑

m=n+1

[(n−m)2 + m2]CmC∗
n−m, (C.46)

Qn(0, 3) =
n∑

m=0

(n−m)3CmCn−m +
∞∑

m=n+1

[(n−m)3 + m3]CmC∗
n−m, (C.47)

Qn(1, 1) =
n∑

m=0

m(n−m)CmCn−m +
∞∑

m=n+1

2m(n−m)CmC∗
n−m, (C.48)

Qn(1, 2) =
n∑

m=0

m(n−m)2CmCn−m

+
∞∑

m=n+1

[m(n−m)2 + m2(n−m)]CmC∗
n−m. (C.49)
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The first two terms on the right-hand side of Eq. (C.45) can be rewritten as follows:

3γ + 1

4
Qn(0, 0) +

1

2

[
Qn(0, 2) +

3

2
Qn(1, 1)

]
ω2

ω2
0

=
n∑

m=0

{
3γ + 1

4
+

1

2

[
(n−m)2 +

3

2
m(n−m)

]
ω2

ω2
0

}
CmCn−m

+
∞∑

m=n+1

{
3γ + 1

2
+

1

2

[
(n−m)2 + m2 + 3m(n−m)

]
ω2

ω2
0

}
CmC∗

m−n

=
n∑

m=0

[
3γ + 1

4
+

1

2
(n−m)

(
n +

m

2

) ω2

ω2
0

]
CmCn−m

+
∞∑

m=n+1

[
3γ + 1

2
+

1

2
(n2 + mn−m2)

]
ω2

ω2
0

CmC∗
m−n. (C.50)

The remaining coefficients in Eq. (C.45) become

Qn(0, 2) + Qn(1, 1) =
n∑

m=0

[(n−m)2 + m(n−m)]CmCn−m

+
∞∑

m=n+1

[(n−m)2 + m2 + 2m(n−m)]CmC∗
m−n

=
n∑

m=0

n(n−m)CmCn−m +
∞∑

m=n+1

n2CmC∗
m−n, (C.51)

and

Qn(0, 3) + 3Qn(1, 2) =
n∑

m=0

[(n−m)3 + 3m(n−m)2]CmCn−m

+
∞∑

m=n+1

[(n−m)3 + m3 + 3m(n−m)2 + 3m2(n−m)]CmC∗
m−n

=
n∑

m=0

[n3 + m2(2m− 3n)]CmCn−m +
∞∑

m=n+1

n3CmC∗
m−n.

(C.52)
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Equation (C.45) thus becomes, exactly,

∆nCn =
n∑

m=0

amnCmCn−m +
∞∑

m=n+1

bmnCmC∗
m−n −

p0δ1n

3γP0

, (C.53)

which is equivalent to Eq. (5.15) after truncating the Fourier expansion to N har-

monics. The coefficients ∆n, amn and bmn are given by Eqs. (5.16), (5.18) and (5.19),

respectively, omitting the viscous terms.

C.2 Jacobian Matrix

To solve Eq. (C.53) using the Newton-Raphson iteration method, we need the

Jacobian of the function F(C1, · · · , CN), where F = (F1, · · · , FN) and

Fn =
p0δ1n

3γP0

+ ∆nCn −
n∑

m=0

amnCmCn−m −
N∑

m=n+1

bmnCmC∗
m−n, (C.54)

where we now acknowledge truncation of the Fourier expansion at the Nth harmonic

for the purpose of numerical calculations. With Fn = F r
n + jF i

n expressed in real and
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imaginary parts, Eq. (C.54) becomes

Fn =
p0δ1n

3γP0

+ (∆r
n + j∆i

n)(Cr
n + jC i

n)

−
n∑

m=0

(ar
mn + jai

mn)(Cr
m + jC i

m)(Cr
n−m + jC i

n−m)

−
N∑

m=n+1

(br
mn + jbi

mn)(Cr
m + jC i

m)(C∗r
m−n + jC∗i

m−n),

=
p0δ1n

3γP0

+ (∆r
nC

r
n −∆i

nC
i
n) + j(∆i

nC
r
n + ∆r

nC
i
n)

−
n∑

m=0

{[
ar

mn(Cr
mCr

n−m − C i
mC i

n−m)− ai
mn(C i

mCr
n−m + Cr

mC i
n−m)

]
+ j
[
ai

mn(Cr
mCr

n−m − C i
mC i

n−m)− ai
mn(C i

mCr
n−m + Cr

mC i
n−m)

]}
−

N∑
m=n+1

{[
br
mn(Cr

mCr
n−m + C i

mC i
n−m)− bi

mn(C i
mCr

n−m − Cr
mC i

n−m)
]

+ j
[
bi
mn(Cr

mCr
n−m + C i

mC i
n−m) + br

mn(C i
mCr

n−m − Cr
mC i

n−m)
]}

. (C.55)

Therefore

F r
n =

pr
0δ1n

3γP0

+ (∆r
nC

r
n −∆i

nC
i
n)

−
n∑

m=0

[
ar

mn(Cr
mCr

n−m − C i
mC i

n−m)− ai
mn(C i

mCr
n−m + Cr

mC i
n−m)

]
−

N∑
m=n+1

[
br
mn(Cr

mCr
n−m + C i

mC i
n−m)− bi

mn(C i
mCr

n−m − Cr
mC i

n−m)
]
, (C.56)

193



and

F i
n =

pi
0δ1n

3γP0

+ (∆i
nC

r
n + ∆r

nC
i
n)

−
n∑

m=0

[
ai

mn(Cr
mCr

n−m − C i
mC i

n−m)− ai
mn(C i

mCr
n−m + Cr

mC i
n−m)

]
−

N∑
m=n+1

[
bi
mn(Cr

mCr
n−m + C i

mC i
n−m) + br

mn(C i
mCr

n−m − Cr
mC i

n−m)
]
. (C.57)

The Jacobian J(Cr
1, . . . , C

r
N , C i

1, . . . , C
i
N , C0) is obtained by taking partial derivatives

of the real and imaginary parts of F with respect to real and imaginary parts of C.

Including the dc component, the matrix will be 2(N + 1) by 2(N + 1). When taking

partial derivatives with respect to Cr
n, we treat Cr

m as constant for all m not equal to

n, and C i
m constant for any m, including C0. The 2(N + 1) by 2(N + 1) Jacobian is

defined as follows:

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1
r

∂C1
r . . . ∂F1

r

∂CN
r

∂F1
r

∂C1
i . . . ∂F1

r

∂CN
i

∂F1
r

∂C0

∂F1
i

∂C1
r . . . ∂F1

i

∂CN
r

∂F1
i

∂C1
i . . . ∂F1

i

∂CN
i

∂F1
i

∂C0

... . . .
...

... . . .
...

...
∂FN

r

∂C1
r . . . ∂FN

r

∂CN
r

∂FN
r

∂C1
i . . . ∂FN

r

∂CN
i

∂FN
r

∂C0

∂FN
i

∂C1
r . . . ∂FN

i

∂CN
r

∂FN
i

∂C1
i . . . ∂FN

i

∂CN
i

∂FN
i

∂C0
∂F0

∂C1
r . . . ∂F0

∂CN
r

∂F0

∂C1
i . . . ∂F0

∂CN
i

∂F0

∂C0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Equation (C.53) can also be solved using Numerical Recipes [63], in which case the

Jacobian is obtained numerically.
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