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Solar sails are emerging as a viable alternative to conventional forms of 

propulsion. Still at their infancy and relatively untested, many sources of uncertainty 

remain that are unique to solar sails and which will continue to affect their design as solar 

sails increase in performance and size. Controlling their attitude in the context of these 

uncertainties therefore becomes critical to spaceflight missions that will explore our solar 

system and beyond from new, previously-unattainable perspectives. Two distinct 

frameworks are developed to manage these uncertainties to control the attitude of solar 

sails. The first utilizes a provided system model and utilizes an observation of the control 

history to operate the sail about an equilibrium position that is passively stable. The 

approach utilizes past information about controller input for the purposes of rejecting 

disturbances that arise from several sources of uncertainty.  

The second approach is forward-looking and is inspired by trajectory-based 

reachability analysis. This approach was developed in the context of  six degree-of-

freedom supervised control of an unmanned aerial vehicle whose faster dynamics in a 

disturbance-rich environment provide a computational challenge and thus require 

machine-learned approximations to a reachable set of safe inputs. 



 vii 

These methodologies are then applied to the original solar sail attitude control 

problem. Predictions are made about the future state of the sail after performing a 

minimum-time large angle maneuver. Uncertainty distributions are assumed a priori and 

are then used to create a buffer angle for the maneuver such that no overshoot occurs 

within a tunable statistical measure of safety. Uncertainties handled in this way include 

the sail effective reflectivity, flexural rigidity, and moment of inertia. However, the 

framework is designed to be very adaptable and so is able to accommodate arbitrary 

sources of uncertainties and flexible modeling techniques. Utilization of machine 

learning allows for arbitrary complexity in the simulation and modeling framework 

without impacting the on-board computational requirements of the solar sail hardware.  
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Chapter 1 

Introduction 

Solar sails are spacecraft that utilize large sails to reflect sunlight as a means for 

thrust generation. They enable a multitude of new mission concepts and unique non-

Keplerian orbits that are either currently unattainable or prohibitively expensive. By 

exploiting the momentum carried by photons from the Sun, spacecraft that utilize solar 

sails have the potential of traveling to regions currently unreachable by conventional 

forms of propulsion. Owing to the continuous force supplied by the solar radiation 

pressure (SRP), solar sails can be particularly beneficial in missions requiring high Δv. 

The possibilities are mostly limited by the lifetime of the sail. Missions such as a 

Mercury sample return [1], Solar Polar Orbiter, Kuiper-Belt fly-through [2], and many 

others have been suggested to take advantage of solar sails’ properties. 

The existence of a pressure produced by light was shown by Maxwell in 1873, 

and its application to solar sailing design began showing up the 1920s in works by soviet 

scientists Friedrich Zander and Konstantin Tsiolkovsky. Solar sailing became popularized 

in the US with Arthur C. Clarke’s “Sunjammer” short science fiction story first published 

in 1963. In the 1970s NASA began low-level studies of solar sailing which shifted 

towards design of a solar sail that could rendezvous with the Halley comet in the mid-

1980s. An initial design of an 800𝑚 × 800𝑚 sail was later dropped in favor of a spin-

stabilized heliogyro design which had twelve 7.5km long blades of film [14]. The 

mission design shifted once again and an alternative form of propulsion was selected and 

the mission was later cancelled due to cost concerns. Recent missions such as JAXA’s 

IKAROS, NASA’s Nanosail-D, The Planetary Society’s LightSail 1 along with the 

upcoming LightSail 2 highlight growing international interest in solar sailing as an 

alternative to traditional forms of propulsion. 
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In order to produce appreciable accelerations that enable a greater variety of 

orbits, the ratio of solar sail area to overall spacecraft mass must remain high and in fact 

increase. This has led a drive towards lighter sail structures and thinner sails along with 

an effort to increase solar sail size and performance as highlighted by NASA’s 

technology roadmap [3]. The potential of using solar sails is also increasing as satellite 

masses have decreased due to miniaturization technologies. 

Current solar sail designs have been modestly sized. LightSail has an area of 32 

m
2
, Nanosail-D has an area of 10 m

2
, and IKAROS an area of 200 m

2
. The proposed and 

defunded Sunjammer mission had the biggest area at 1200 m
2
, however, it too is small 

when compared to the solar sail sizes envisioned for truly revolutionary missions such as 

the Halley rendezvous mission (640,000 m
2
). In July 2015, NASA’s technological 

roadmap projected solar sail technology to progress from a 40𝑚 × 40𝑚 1
st
 generation 

sail with areal density of 10 to 25 𝑔/𝑚2 to a 150𝑚 × 150𝑚  2
nd

  generation sail with an 

areal density of <10 𝑔/𝑚2  to a 3
rd

 generation sail that is 300𝑚 × 300𝑚.  

 

Figure 1.1 Three generations of solar sails next to the empire state building 
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The report cites ultra-lightweight flexible materials which are more mass efficient 

than metalized films with sufficient thermal and mechanical durability and flexibility for 

long duration missions as the key technological development needed to achieve progress 

between generations of solar sails. 

The force produced by a solar sail can be directed in order to change the velocity 

of the spacecraft. This change of velocity can thus directly affect the orbit’s semi-major 

axis, inclination, and eccentricity, and can indirectly change all other parameters of the 

orbit and trajectory. Thus control of the spacecraft’s trajectory is accomplished by 

controlling the sail’s attitude relative to the Sun, leading to a variety of solutions that 

have been proposed for solar sail attitude control [4, 5]. Since solar sails provide a low 

thrust, missions that utilize solar sails are typically longer. The Halley rendezvous 

trajectory would have taken approximately 4 years just to achieve rendezvous, and the 

Mercury sample return mission proposed in [1] would take 4.4 years. To take full 

advantage of the long duration of solar sail missions, an approach which requires little to 

no fuel is preferred. Proposed solutions include actively changing the mass distribution of 

the sail [6], utilizing control vanes [7], sail optical properties manipulation, and the use of 

highly efficient pulse plasma thrusters [8]. 

Regardless of the means of providing attitude control, most proposed solutions 

approximate the sail geometry as a flat plate and thus ignore significant shape-related 

effects [9]. In addition, the rigid body assumption for the sail is usually used, which will 

become less valid as the achievable solar sail size increases and its areal density 

decreases. A control scheme that appears to work well utilizing a flat, rigid plate model 

may fail when considering moment biases and sail imperfections that are expected in the 

sail’s real environment. Flight data from the IKAROS mission suggests that shape effects 

are not negligible [10]; therefore, they must be taken into consideration in a realistic 
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control system design. While the effects of a shaped sail have been presented in literature 

[9], they have only recently started to be incorporated in a design of closed-loop attitude 

control systems. 

1.1 CONTRIBUTIONS 

This dissertation creates new algorithms which facilitate the use of higher 

performance sails of increasing flexibility and robustly manage uncertainties in the 

attitude control of solar sails, including unknown model parameters. Several approaches 

are taken to this end. Initially, a simulation framework for attitude determination and 

control is implemented. The developed algorithm uses a concept derived from trimming 

aircraft about an equilibrium state which is applied to propellantless solar sail attitude 

control. In addition, this controller incorporates a tunable magnitude of passive stability 

about this equilibrium state to further reduce required control action. Since it is difficult 

to test and model the forces and moment experienced by solar sails, a robust and 

adaptable controller is needed. A formulation for observing past system behavior in order 

to estimate and correct for disturbances is developed in this framework in order to 

achieve the desired robustness. Then, the perspective of the research changes from 

looking at past behavior to looking at possible future states of the system inspired by 

reachability concepts.  This approach is tested using a UAV platform which leads to the 

development of real time computation of safe future input sets for UAVs. Finally, the 

forward-looking perspective is adapted in development of large-angle minimum-time 

attitude control of a flexible solar sail with model uncertainties. Another contribution that 

is made in the forward-looking approach is creating a separation between real time 

control and offline predictions of future states such that high levels of performance can be 

obtained in a realizable framework, i.e. one which does not require unrealistic 



 5 

computational power. This is accomplished using machine learning. Machine learning is 

also shown to assist in reducing uncertainties in model parameters through a proposed 

offline learning and quick on-orbit calibration procedure. 

1.2 DISSERTATION ORGANIZATION 

This dissertation is divided into three main chapters. Chapter 2 is inspired by the 

author’s work in developing an attitude control system for the Sunjammer solar sailing 

mission. The chapter develops a robust disturbance rejection controller wrapped around a 

standard PD controller for a propellantless solar sail.  The control system incorporates 

passive stability and utilizes the concept of learned equilibrium conditions based on 

control surface time histories to minimize the required motion in the actuating tip-vanes 

and to counteract various sources of uncertainties. These uncertain parameters include 

bias and scaling in the modeled solar radiation pressure, center of mass – center of 

pressure offset, spacecraft moments of inertia, actuator orientation, and state estimation 

errors. The model used for this chapter is one which includes effects of sail billowing and 

wrinkling, however, since it was provided as a “black-box”, little information is available 

on how it was constructed and thus it is treated as a reference model with the above 

sources of uncertainties. 

Chapter 3 shifts focus away from solar sails in order to investigate reachability 

concepts and the possibility of using them in real time embedded systems. The testbed 

used for this investigation is a UAV where control of its six degrees of freedom is 

explored. A trajectory-based reachability algorithm is developed in which all admissible 

inputs and disturbances are used in generating trajectories from an uncertain initial state 

over a fixed time horizon. The set of inputs which do not violate state constraints are 

deemed safe and are approximated using an ellipsoid. The algorithm utilizes a machine-
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learned ellipsoidal approximation for a range of UAV states in order to be able to rapidly 

formulate a sense of allowable inputs and supervise and correct any inputs from an 

autopilot or human operator so that the UAV remains in a safe state. Development of 

these control algorithms on a readily available platform with accessible and modifiable 

hardware and software helps validate them and provides intuition for the solving the 

problem at hand. 

Chapter 4 then applies the techniques introduced in Chapter 3 back to solar sails 

in order to construct a time-optimal control for large angle maneuvers about the pitch axis 

using a simplified flexible solar sail model. The model uncertainties of three sails of 

increasing size and flexibility are investigated in this process. These uncertainties lead to 

a required buffer on the target orientation in order to avoid overshoot. A machine-learned 

relationship between model uncertainties and the required buffer angle is used for 

computational reasons. The model uncertainties included in this chapter are the following 

sail parameters:  flexural rigidity, surface reflectance, and moment of inertia. A process 

for reducing the uncertainties of these parameters through learning the sail’s dynamic 

behavior in a given maneuver is established. This approach allows for more efficient 

maneuvers with a smaller required buffer angle to avoid overshoot. 

The dissertation closes with concluding remarks and a discussion of future work 

as an extension to topics covered herein. 
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Chapter 2 

Propellantless Attitude Control of a Nonplanar Solar Sail 

As an initial example, a robust propellantless attitude control scheme for solar 

sails is developed for a square sail with articulating control vanes1.  The algorithm was 

developed in support of NASA’s Sunjammer mission, which was to use a 35𝑚 ×  35𝑚 

solar sail for technology demonstration. After a preliminary design activity, the mission 

was cancelled by NASA in 2015.  

 

Figure 2.1: Ground deployment of one quadrant of Sunjammer 

The algorithm incorporates an experimentally-derived sail moment and force 

model which includes non-planar sail effects. For example, the model produces a far 

                                                 
1 The work discussed in this chapter has been published in a peer-reviewed journal and presented at a 

conference. Analysis and write-up was performed by Ofer Eldad with supervision by Glenn Lightsey. 

 Eldad, O., and Lightsey, E.G., “Propellantless Attitude Control of a Nonplanar Solar Sail,” 

Journal of Guidance, Control, and Dynamics, Vol. 38. No. 8, 2015, pp. 1531-1534 

 Eldad, O. and Lightsey, E.G., “Attitude Control of the Sunjammer Solar Sail Mission” 

Proceedings of the AIAA/USU Conference on Small Satellites, AIAA/Utah State Univ. Paper 

SSC14-X-4, Logan, UT, 2014. 
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greater restoring moment than predicted by the idealized flat-plate model. The controller 

design builds upon a novel method of eliminating moment bias through the use of trim 

angles and takes advantage of passive stability about 2 axes. The trim angles are 

calculated a-priori but are adjusted on-board based on observing the control history of a 

standard PD-controller. The design is shown to achieve a pointing accuracy better than 2 

degrees for a variety of maneuvers and under a wide range of disturbances.  

2.1 INTRODUCTION 

This chapter investigates 3-axis attitude control of a standard square-sail design 

with four control vanes, one at each corner of the sail shown in Figure 2.2.  

 

Figure 2.2: Sail schematic and axis definition 

A proposed control strategy that incorporates passive stability and trimming the 

sail moments about the x- and y-axes has been previously presented [11]. In a sun-

pointing configuration, stability about the x-axis is achieved by moving both control 

vanes 2 and 4 away from the Sun by an identical angle. This configuration is passively 
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stable since a positive rotation about the x-axis results in vane 4 having a larger projected 

area towards the Sun, while vane 2’s projected area to the Sun is decreased. This 

combination produces a negative moment about the x-axis which forces the sail back 

toward the equilibrium sun-pointing orientation. This effect is similar to the dihedral 

effect on an aircraft. A similar methodology is then applied to stabilize rotation about the 

y-axis using control vanes 1 and 3. The vane angles can be adjusted to achieve passive 

stability in all other orientations. To accurately control the sail’s attitude, this strategy 

requires accurate pre-determination of the on-orbit moments. 

This chapter extends this approach in several ways and demonstrates its 

effectiveness in controlling solar sail attitude in the presence of disturbance torques. 

These torques arise primarily from a lack of an accurate prediction of the solar radiation 

pressure moments and forces, deviation of the flexible solar sail from the rigid body 

assumption, unmodeled lifetime changes of the sail material’s optical properties, and on-

orbit faults such as rips in the sail material.  The controller uses an initial guess of the 

trim angles necessary for each desired attitude relative to the Sun and adjusts this guess 

based on the observed sail behavior. In addition, the controller implements a standard PD 

controller in order to approach the trimmed orientation and facilitate convergence and 

disturbance rejection.  

The control scheme developed here uses the command time history to estimate the 

moment bias experienced by the spacecraft and is thus much more capable in achieving 

robust attitude control in the presence of model uncertainty and error. The performance of 

the controller is determined using variations in solar radiation pressure moment and 

forces (scaling and bias errors), sailcraft moments of inertia, unmodeled bend and twist of 

the control vanes, and a z-axis center of mass offset. The demonstration of a robust 

propellantless closed-loop attitude control system utilizing non-flat-plate sail forces and 
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moments creates a flyable and realizable design that enables wider adoption of solar sails 

as an alternative means of spacecraft propulsion.  

The remainder of the chapter is organized as follows: Sections 2.2 and 2.3 

discusses the sail dynamic model and the forces and moments model. Section 2.4 

discusses the concept of passive stability. Section 2.5 then describes how the desired 

moment is calculated and how it is allocated to the four vanes for attitude control. Trim 

angle and the algorithm for their autonomous adjustment are presented in Section 2.6 and 

the effects of passive stability is shown in Section 2.7. Results of applying this algorithm 

to the solar sail are shown in Section 2.8 and this chapter end with concluding remarks in 

Section 2.9.  

2.2 THE SAIL MODEL 

A rigid body model of the sail is assumed, and thus the equations of motion are, 

 𝒒̇ = [

𝑞1̇

𝑞2̇

𝑞3̇

] =
1

2
(𝑞4𝝎 − 𝝎 × 𝒒) (2.1) 

 𝑞4̇ = −
1

2
𝝎𝑻𝒒 (2.2) 

 𝝎̇ = 𝐼−1(𝑴 + 𝒅 − 𝝎 × 𝐼𝝎) (2.3) 

 

where 𝒒 is a quaternion representing the orientation of the body frame in relation to an 

inertial frame, 𝝎 is the angular velocity vector, M is the control input torque applied by 

the sail and vanes about the system’s center of mass, d is the disturbance torque, and 𝐼 is 

the system’s inertia matrix. Moments of inertia representative of the Sunjammer solar sail 

are used in subsequent simulations. The inertia matrix utilizes the body axes defined in 

Figure 2.2 and is diagonal due to symmetry when all vane angles are zero. 
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Disturbance torques arise primarily from a lack of an accurate prediction of the 

solar radiation pressure moments and forces, deviation of the flexible solar sail from the 

rigid body assumption. 

While quaternions are used in the control algorithm, the attitude of the sail is 

presented in terms of 3 sun angles for the purpose of readability. These angles represent a 

3-2-3 rotation sequence of Euler angles. Beginning with a coordinate system centered at 

the sail with its z-axis pointing towards the Sun and the x-axis parallel to the ecliptic 

plane, the Euler sequence rotates by a top angle about the 3-axis, by a sun-incidence 

angle about the 2-axis and ends with a rotation by a flat-spin angle about the 3-axis to 

arrive at the body frame. The sun-incidence angle most directly affects the magnitude of 

the force created by the solar sail, while the top angle is used to direct the force vector in 

the desired direction. An explanation of the coordinate systems used in this chapter is 

available in Appendix A. 

2.3 SOLAR RADIATION FORCES AND MOMENTS MODEL 

A commonly used model in literature for the force produced by solar radiation is 

presented in [14] and reproduced in Equation 2.4. 

𝐹 = 𝑃𝐴{[(1 + 𝜎𝑟𝑠) cos2 𝛼 + 𝐵𝑓𝜎𝑟𝑑 cos 𝛼]𝒏̂ + (1 − 𝜎𝑟𝑠) cos 𝛼 sin 𝛼 𝒕̂} (2.4) 

where 𝑃 is the solar radiation pressure equal to 4.56 × 10−6 𝑁/𝑚2 at the Earth, A is the 

area of the reflective surface, 𝜎𝑟𝑠 is the coefficient of specular reflection, 𝜎𝑟𝑑 is the 

coefficient of diffuse reflection, 𝒏̂ and 𝒕̂ are the surface normal and transverse unit 

vectors, 𝐵𝑓 is the non-Lambertian coefficient, and 𝛼 is the sun-incidence angle as 

illustrated in Figure 2.3 for the 2-dimensional case: 
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Figure 2.3: Resultant force from specular and diffuse solar radiation 

This model accounts for both diffuse and specular reflection, but will only 

produce a moment about the center of mass if it is offset from the center of pressure of 

the sail. It does not account for moments created due to sail billowing, wrinkling of the 

sail material, and deformable-body effects.  

An alternative force and moments model that was derived experimentally for the 

Sunjammer mission was provided by L’Garde which shows a significantly greater 

restoring moment at increasing sun-incidence angle than the flat-plate model. The 

moments generated by the two models are compared using Sunjammer’s sail area [13] 

with a CM-CP offset of 10cm (the expected offset for Sunjammer) and the following 

value for the coefficient of specular reflection, 𝜎𝑟𝑠 = 0.827 as suggested in [14].  

While both models produce a restoring moment due to the center of mass being 

located between the center of pressure and the Sun, the magnitude of the restoring 

moment in the experimental model is significantly larger. At a sun-incidence angle of 40° 

the experimental model predicts a restoring moment of  -1.66 milli-Newtons compared 

with the moment generated by the flat plate model of -0.09 milli-Newtons. The order of 

magnitude difference can have a significant effect on the attitude control scheme. A 
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control system developed in light of the flat-plate model combined with a CM-CP offset 

may not be well suited to control a solar sail that experiences much larger disturbance 

torques resulting from non-flat-plate behavior.  

 

Figure 2.4: Experimental vs. flat-plate model moments 

The experimental solar radiation pressure forces and moments are tabulated for 

both the main sail and the control vanes as a function of the projection of the surface-sun 

vector onto the plane of the sail and vanes. The tables are then accessed using the 

system’s knowledge of the main sail’s orientation relative to the Sun and orientation of 

each vane relative to the main sail. 

The moments and forces obtained from these tables are then combined to 

calculate the overall moment produced by the sail and vanes about the system’s center of 

mass as shown in Equation 2.5.  

𝑴𝑎𝑝𝑝 = 𝑴𝑠𝑎𝑖𝑙 + ∑ 𝑴𝑣𝑎𝑛𝑒𝑖

4
𝑖=1 − 𝒓𝐶𝑀 × (𝑭𝑠𝑎𝑖𝑙 + ∑ 𝑭𝑣𝑎𝑛𝑒𝑖

4
𝑖=1 ) (2.5) 
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2.4 PASSIVE STABILITY 

The controller takes advantage of passive stability about the x- and y- axes. The 

concept of solar sail passive stability has been discussed in [11] and is shown in Figure 

2.5 using a 2-dimensional representation of the sail. 

 

Figure 2.5: Passive stability in a Sun-pointing orientation 

The sail in Figure 2.5 has the top and bottom vanes canted away from the Sun to 

generate passive stability. In the center diagram, the sail has been rotated counter-

clockwise due to some perturbation. This motion away from the Sun-pointing orientation 

results in a greater force applied on the top vane and a smaller force applied to the bottom 

vane, which creates a restoring moment. Any motion away from a Sun-pointing 

orientation causes a restoring moment and maintains the sail in the Sun-pointing 

orientation when both vanes are canted away from the Sun by an equal amount. As 

discussed above, this restoring moment also exists due to an imperfect sail and the CM-

CP offset; however, cant angles can be designed to determine the magnitude of the 

restoring torque of the sail in this orientation. Furthermore, the same concept can be 

applied to other orientations relative to the Sun, which require opposing vanes to have 

different cant angles.    
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2.5 CONTROL LAW AND MOMENT ALLOCATION 

The control law is comprised from a standard proportional-derivative algorithm  

and a term that accounts for the moment bias estimate as shown in Equation 2.6. 

 𝑴𝑑𝑒𝑠 = −𝐾𝒒̂𝑬𝒓𝒓 − 𝐶𝝎̂𝐸𝑟𝑟 + 𝑴̂𝑏𝑖𝑎𝑠 (2.6) 

where K and C are pre-determined gain matrices, 𝒒̂𝑬𝒓𝒓 is the vector component of the 

error quaternion, 𝝎̂𝐸𝑟𝑟 is the error in angular velocity, and 𝑴̂𝑏𝑖𝑎𝑠 is the estimate of the 

moment bias in the current orientation. 

If the desired moment calculated by the controller is above the threshold for the 

use of the trim angles, the commanded moment is allocated to the control vanes such that 

each axis is controlled independently. Moment around the sail’s x-axis is generated by 

canting vanes 2 and 4 orthogonal to each vane’s rotational axis. Similarly, moment 

around the sail’s y-axis is generating by canting vanes 1 and 3 orthogonal to each vane’s 

rotational axis. To generate moment about the roll, or z-axis, all 4 vanes are twirled about 

the vane’s x-axis by the same angle. The motion of the vanes is assumes instantaneous 

since they can be moved into any orientation in less than a minute whereas large attitude 

maneuvers take place in a matter of hours. 

Generating the required moment about the x- and y- axis can be seen to have an 

infinite set of solutions due to the two degrees of freedom capable of generating this 

moment. The process of allocating moment is thus performed by first rotating the 

appropriate vane towards a more Sun-facing orientation where the appropriate vane is 

determined through Equation 2.7 (using the y-axis as an example): 

 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 𝑣𝑎𝑛𝑒 = {

1, 𝑀𝑦𝑑𝑒𝑠
− 𝑀𝑦𝑐𝑢𝑟

≥ 𝜖𝑑𝑦

3, 𝑀𝑦𝑑𝑒𝑠
− 𝑀𝑦𝑐𝑢𝑟

≤ −𝜖𝑑𝑦

𝑛𝑜𝑛𝑒, −𝜖𝑑𝑦
< 𝑀𝑦𝑑𝑒𝑠

− 𝑀𝑦𝑐𝑢𝑟
< 𝜖𝑑𝑦

 (2.7) 
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where 𝑀𝑦𝑑𝑒𝑠
 is the desired moment about the y-axis as calculated by the control law, 

𝑀𝑦𝑐𝑢𝑟
 is the current moment generated by the sail and the vanes, and 𝜖𝑑𝑦

 is the threshold 

used to avoid excessive motion of the vanes. If the desired moment cannot be obtained by 

rotating the appropriate vane toward the Sun, the opposite vane is rotated away from the 

Sun.  The moment distribution control logic for the y-axis is presented in Figure 2.6. 

Each green diamond represents a decision point in the logic. 

 

Figure 2.6: Moment allocation scheme for generating moments about the y-axis 

2.6 TRIM ANGLES AND THEIR AUTONOMOUS ADJUSTMENT 

In order to counteract the restoring moment generated by the sail while 

minimizing the required motion in the vanes, the control scheme utilizes trim angles for  

the vanes. In a trimmed orientation, the net moment acting on the center of mass is zero. 

A trim table is generated a priori based on the model of the forces and moments 

generated on the sail and vanes at each orientation of the main sail relative to the Sun. 

Since the trim orientation should induce no moment on the sail, this orientation of the 
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vanes is used whenever the desired moment calculated by the control law is below a pre-

determined threshold.  

Utilizing trim angles allows the PD controller to operate about an equilibrium 

position. This removes the effects of the restoring moments caused by the CM-CP offset, 

the imperfect optical properties of the sail, and the deviation of the true sail shape from 

that of a flat plate under the effect of the solar radiation pressure. However, populating an 

a priori trim table requires a force and moment model sufficiently accurate to determine 

the equilibrium position of the vanes. Inaccuracies of the moment and force models will 

result in excessive actuation to counteract the unmodeled moment bias. The source of 

these inaccuracies include static and dynamic bending and twisting of the sail and vane 

booms, deviation of the observed and modelled shape effects from those effects on orbit, 

and other simplifications made in the modeling process. Furthermore, on-orbit faults such 

as part of the sail tearing or not deploying correctly and decay of the sail’s optical 

properties can result in a significant difference between the calculated trim angles and 

those needed to trim the sail on orbit. 

Therefore, an on-board adjustment of the trim table is introduced to handle these 

unmodeled or poorly modeled effects. The adjustment is made by maintaining a running 

average of the motion of the control vanes. In the presence of an unaccounted moment, 

the PD controller will continuously adjust the vanes. This is a result of the controller 

commanding the vanes to move between the moment necessary to overcome the bias and 

the trim orientation of the vanes. When the trim orientation of the vanes is significantly 

different than the actual trim condition, the resulting motion of the vanes will experience 

jitter. The control scheme monitors the motion of the vanes and uses that motion to 

estimate the true moment bias on the sail.  
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In order to avoid the task of updating the moment and force tables as a result of 

the observed attitude dynamics, the tables are assumed to be true and the observed 

deviations are lumped into the moment bias estimate accounted in the control law in 

Equation 6. Therefore, each time the trim angles are adjusted for a particular orientation 

due to control jitter of the vanes, the moment bias is updated. This creates a convergence 

upon the true moment bias which can be seen in the control history as a significant 

reduction in the high frequency jitter of the control vanes. 

The pointing accuracy is improved using this technique since an unmodeled 

moment bias creates a bias in the attitude error. By estimating the moment bias and 

accounting for it by adjusting the trim angles, the pointing error is significantly reduced. 

The effects of the moment bias and its elimination through trim angle adjustment 

are seen in Figure 2.7 and Figure 2.7 where the bias adjustment begins at t = 15 hours. 

The unmodeled moment bias in this case is introduced through an error in the pre-

calculated trim angle for vane #1 shown in the top section of Figure 2.7. The orientation 

of the vane that is appropriate for the desired attitude control is approximately -8°, 

however, the original commanded value was set to +4° for demonstration purposes. The 

vane is seen to move from the trim angle (when no moment is desired) to approximately  

-8° in order to exert the desired moment and then cycles back to the trim angle. The 

amplitude of the oscillations increases as the PD controller attempts to eliminate the 

pointing error. The attitude shown in Figure 2.8 is approaching the desired Sun-incidence 

angle of 35°, however, at the 15-hour mark it can be seen that a pointing bias exists that 

the controller will not be able to overcome. The oscillating motion of the vanes will 

continue and the pointing bias will persist without the adjustment of the trim angles. 

After the observation period of 15 hours has concluded, the algorithm determines 

the new best estimate of the actual trim angle. Once the adjustment mode is enabled at  
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t = 15 hours, the vane angle quickly converges to the correct trim orientation based on the 

observed motion. This adjustment eliminates the moment bias in the controller and 

allows the sail to converge to the target orientation marked by the dashed line in Figure 

2.8.  

 

Figure 2.7: Effect of trim angle adjustment on control vane motion 
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Figure 2.8: Effect of trim angle adjustment on pointing accuracy 

2.7 EFFECT OF PASSIVE STABILITY 

Utilizing passive stability in the control scheme as described in Section 2.4 allows 

for further reduction in the required control effort to maintain a given attitude. This effect 

is shown in Figure 2.9-2.12. Figure 2.9 shows the control effort required to reorient the 

sail by a Sun-incidence angle of 35 degrees. The reorientation is achieved in 

approximately five hours as seen by the convergence of the cant angles. However, after 

approximately 20 hours, the cant angles begin to oscillate and limit cycle about the 

desired orientation as the controller attempts to maintain the spacecraft’s attitude. 
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Figure 2.9: Control effort without passive stability 

The instability in the controller vanes can be seen to affect the attitude of the 

spacecraft in Figure 2.10 where the Euler angles are seen to oscillate for approximately 

10 hours before finally settling back down to the desired values. 
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Figure 2.10: Spacecraft attitude without passive stability 

With the addition of passive stability, the control effort is seen to lack the 

oscillation and maintains the desired vane orientation as seen in Figure 2.11. Only minor 

and infrequent adjustments are made to maintain the attitude of the spacecraft. 
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Figure 2.11: Control effort with passive stability 

 Consequently, the attitude, as shown in Figure 2.12 is also stable and does 

not vary greatly from the desired orientation once it converges. 

 

Figure 2.12: Attitude with passive stability 
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2.8 RESULTS 

Investigation of the controller performance was conducted using 50-hour 

simulations of six baseline rest-to-rest maneuvers as detailed in Table 2.1. While the 

controller uses quaternions, these maneuvers are defined in terms of the three Euler 

angles introduced in Section 2.2: top angle 𝜃𝑡, Sun-incidence angle 𝜃𝑆𝐼, and flat-spin 

angle 𝜃𝐹𝑆. 

Table 2.1: Maneuvers used for controller performance testing 

 Starting Orientation Target Orientation 

Maneuver 𝜃𝑡 𝜃𝑆𝐼 𝜃𝐹𝑆 𝜃𝑡 𝜃𝑆𝐼 𝜃𝐹𝑆 

1 0° 0° 0° 10° 35° 0° 
2 0° 0° 0° 0° 5° 0° 
3 0° 0° 0° 5° 0° 0° 
4 0° 0° 0° 180° 45° 0° 
5 0° 0° 0° 10° -25° 0° 
6 0° 0° 0° 0° 0° 0° 

The orientations achieved by maneuvers 1 and 5 are those that maximize or nearly 

maximize the transverse force in the orbital velocity direction or against it. These 

orientations would typically be used to increase or decrease the spacecraft’s heliocentric 

semi-major axis. Maneuvers 2, 3, and 4 were chosen to ensure good performance of the 

control scheme for both small and large slews, and the maneuver 6 serves to test how 

well the controller can maintain its attitude. It was deemed unnecessary to test changes in 

flat-spin angle, 𝜃𝐹𝑆, since it is typically held at zero [11]. 

These maneuvers were used to test both a baseline case where no disturbances are 

present and various other cases in which disturbances were introduced to the system. The 

disturbances provide a test of the robustness of the design in the presence of significant 

uncertainty. The sources of the disturbances are summarized in Table 2.2. The 

disturbance levels were used as an amplitude for a uniform error distribution for that 
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case. To illustrate using the first error source, 50 simulations were conducted for each one 

of the six maneuvers with the true moments of inertia uniformly distributed between -5% 

and +5% of the moments of inertia used by the attitude controller. 

Table 2.2: Summary of disturbance sources and their magnitude 

Disturbance Disturbance levels used 

Sailcraft moments of inertia 
±5%, ±10%, ±20%, and ±50% 

error in all moment of inertia matrix components 

Forces and Moment 

coefficient scaling 
±5%, ±10%, ±20%, and ±30% 

Of all forces and moments 

Moment bias 

5 × 10−5 𝑁𝑚 

1 × 10−4 𝑁𝑚 

2 × 10−4 𝑁𝑚 

3 × 10−4 𝑁𝑚 

Unmodeled sail static bend Bending model error: 1°, 2°, 5°, 10° 
Unmodeled sail static twist Twisting model error: 1°, 2°, 5°, 10° 

Center of mass offset -0.5m to +1.1m in the z-axis 

Each error level was simulated 50 times for each one of the six test maneuvers. 

Running the simulation 50 times for the same case allows for statistical characterization 

of the controller performance in light of the error level as well as its interaction with the 

Gaussian error introduced by the estimation algorithms used.  

The moment bias levels were selected based on a percentage of the maximum 

moment produced by the vanes (1𝑥10−3𝑁𝑚). Moment bias levels tested represent 5%, 

10%, 20%, and 30% of this maximum moment. The center of mass (CM) z-axis offset, 

unlike the other disturbances, is known to the control system since this parameter can be 

analyzed on the ground. Thus, this performance test serves to indicate the control 

authority of the system as opposed to its handling of uncertainty. Uncertainty in z-axis 

CM-location is captured by the moment bias cases. Variations in the x- and y-coordinate 
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of the center of mass were not tested since these can usually be easily controlled in the 

structural design of the spacecraft.  

The effect of each disturbance was checked independently of the other 

disturbances. One disturbance was introduced while the others were kept at zero in order 

to characterize its effect on the controller. Interactions between the various disturbances 

which may lead to poorer performance were not investigation in the scope of this work. 

One such interaction can be moments of inertia being larger than expected while the 

available control moment being smaller than expected. These two can act in unison to 

reduce the control authority of the controller. 

Evaluation of the control performance was based on performance metrics relating 

to pointing error and control effort. A definition of these metrics as well as target values 

listed for each is shown in Table 2.3.  

Table 2.3: Performance metrics for controller evaluation 

Metric Description Target Value 

Control 

Effort 

Average cant motion of the four vanes over the last 

five hours of the simulation 

 
< 10°/ℎ𝑟 

Average twirl motion of the four vanes over the last 

five hours of the simulation 

 
< 5°/ℎ𝑟 

Pointing 

Accuracy 

Angle represented by the error quaternion between 

the desired orientation and the true (not estimated) 

attitude quaternion: 

𝒒̃𝑒𝑟𝑟 = 𝒒̃𝑑𝑒𝑠
−1 ⨂𝒒̃𝑡𝑟𝑢𝑒 

𝜃𝑒𝑟𝑟 = 2 cos−1(𝒒̃𝑒𝑟𝑟(4)) 

< 2° 

The measure of centrality used for this analysis is the upper limit of a 95% 

confidence interval based on the median of the individual simulated runs. This upper 

limit is used for both the pointing accuracy and the control effort. The median is used as 

opposed to the mean so as to reduce the effects of outliers. Control effort is being used as 
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a performance metric since it is desired to reduce motions of the vanes that may induce 

dynamic modes in the sails that are not modeled in this analysis. The target values were 

chosen based on the results of running the controller without any induced disturbances, 

the baseline case.  

A time history of 50 simulations that were run with maneuver 1 for the baseline 

case is shown in Figure 2.13. 

 

Figure 2.13: Sample attitude time history for the baseline case - maneuver 1 
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Figure 2.14: Cant angle time history for baseline case – maneuver 1 

 

Figure 2.15: Twirl angle time history for baseline case – maneuver 1 
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Due to the lack of disturbances after the moment bias has been adjusted, minimal 

actuation in cant and twirl are required to maintain the attitude once the desired 

orientation has been reached.  

The baseline performance of the controller without any disturbances added for all 

six maneuvers is presented in Table 2.4.  

Table 2.4: Baseline performance metrics (no disturbances) 

 Upper Limit of 95% Confidence Interval 

Maneuver 
Pointing Error 

Average Cant 

Motion 

Average Twirl 

Motion 

1 0.80° 0.52°/ℎ𝑟 0.08°/ℎ𝑟 

2 0.55° 0.46°/ℎ𝑟 0.10°/ℎ𝑟 

3 1.11° 0.60°/ℎ𝑟 0.10°/ℎ𝑟 

4 0.60° 0.56°/ℎ𝑟 0.05°/ℎ𝑟 

5 1.30° 1.07°/ℎ𝑟 0.10°/ℎ𝑟 

6 1.08° 0.64°/ℎ𝑟 0.10°/ℎ𝑟 

The errors shown in the baseline case above are a result of errors in the estimation 

algorithms, a restriction on the frequency of actuation, and the finite rotation step size 

allowed for each of the vanes. The deadband used in an effort to reduce the frequency of 

actuation was the major source of pointing error.  

Table 2.5 summarizes the simulation results for the different cases outlined in 

Table 2.2. The pointing error column indicates the maximum of the upper limit of the 

95% confidence level out of the six maneuvers run for each disturbance case. The 

disturbance level tolerated column indicates the amplitude of the disturbance for which 

the controller was still able to meet the target performance metrics.  
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Table 2.5: Simulation results 

Disturbance Source 

Disturbance 

Level 

Tolerated 

Pointing 

Error 

Max Cant 

Motion 

Max Twirl 

Motion 

Moment of inertia error ± 50% 1.70° 1.53°/ℎ𝑟 0.10°/ℎ𝑟 

Scaling error in moment and 

force coefficients 
± 30% 1.37° 

1.27°/ℎ𝑟 0.10°/ℎ𝑟 

Disturbance Moment Bias – 

x-axis 
3 × 10−4 𝑁𝑚 1.58° 

2.99°/ℎ𝑟 0.46°/ℎ𝑟 

Disturbance Moment Bias – 

y-axis 
3 × 10−4 𝑁𝑚 1.84° 

1.39°/ℎ𝑟 0.10°/ℎ𝑟 

Disturbance Moment Bias – 

z-axis 
2 × 10−4 𝑁𝑚 2.13° 

7.96°/ℎ𝑟 0.60°/ℎ𝑟 

Unmodeled Vane Bend ± 5° 2.25° 1.24°/ℎ𝑟 0.10°/ℎ𝑟 

Unmodeled Vane Twist ± 5° 2.16° 4.78°/ℎ𝑟 0.76°/ℎ𝑟 

Varying z-axis CG Location 
-0.5m to 

+1.1m 
1.44° 

1.14°/ℎ𝑟 1.42°/ℎ𝑟 

The controller was able to meet its requirements in the presence of the maximal 

levels of disturbances in all the cases tested except for the highest level tested for 

unmodeled vane twisting, bending, and z-axis bias. Unmodeled twisting and bending of 

the vanes of 10° caused a maximum pointing error that exceeded 2°. It should be noted 

though, that typical vane twist commands are less than 1° in magnitude, in which case 

unmodeled twist of 10° may be overly conservative. Furthermore, the upper bound of the 

95% confidence interval of the median pointing error at the 10° level while above the 2° 

threshold was still under 2.5° for all cases. The deviation was seen only in maneuver 2 for 

both unmodeled twirl and unmodeled bend while the deviation in the z-axis moment bias 

case was observed only in maneuver 5.  The pointing error fell below 2° for unmodeled 

vane twist and cant of 5° and z-axis moment bias of 2 × 10−4𝑁𝑚. 

The controller was able to meet the target value for average cant and twirl motion 

for all tested cases. Twirl motion was kept to less than 1° per hour for almost all cases. 
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Cant motion was kept to less than 3° per hour in most cases with a notable exception 

being moment bias in the z-axis.  

 2.9 CONCLUSION 

A propellantless solar sail attitude control scheme using actuating control vanes 

has been developed. The technique was demonstrated by analysis using the Sunjammer 

mission design as an example application.  By performing on-orbit adjustment of the a 

priori trim angles, the controller was shown to estimate and overcome moment biases 

arising from a nonplanar solar sail along with biases arising from various other sources. 

Estimating the moment bias and using this estimate in the control law greatly improved 

the performance in the presence of these disturbances. Incorporation of a more realistic 

sail model in conjunction with a sensitivity analysis increases the robustness of the 

algorithm and allows for its use in real solar sailing missions. The results show that the 

controller is able to meet the target pointing error of less than 2° over a wide variety of 

disturbance conditions and amplitudes with an acceptable level of actuation. 
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Chapter 3 

Real time Computation of Safe Input Sequences for UAVs 

Fixed-wing unmanned aerial vehicles (UAVs) typically operate in disturbance-

rich environments, and their dynamics are governed by high-dimensional, coupled non-

linear equations of motion. Devising a real time flight envelope protection system for 

UAVs somehow requires simplifications of the dynamical model. Indeed, the reachability 

analysis of a system with a large number of degrees of freedom cannot be accomplished 

in a reasonable amount of time with currently available embedded computers, even for 

very short time horizons. In this chapter it is shown that through offline simulation of the 

reachable states and a compact representation of the future safe-input set, a fixed-wing 

UAV is statistically ensured to remain within its pre-defined safe region. This is achieved 

over a specified time horizon, while maximizing the authority of the controller (human or 

autopilot)2. This future safe-input set is here characterized by a hyper-ellipsoid. Machine 

learning is used to allow the system to learn the safe input sequence set as a function of 

its current state, and to then use this knowledge to project potentially unsafe input signals 

inside the safe input sequence set. This procedure is computationally very efficient, and 

can be applied to human-in-the-loop and autonomous control of unmanned aerial 

vehicles. 

3.1 INTRODUCTION 

The operation of unmanned aerial vehicles (UAVs) in demanding environments 

can significantly increase their utility and viability as replacements of manned platforms 

which can inherently tolerate less risk. Among UAVs, fixed-wing UAVs are unmanned 

                                                 
2 The work presented in this chapter has been published in a peer-reviewed journal. Analysis and write-up 

was performed by Ofer Eldad with supervision by Christian Claudel. 

 Eldad, O., and Claudel, C., “Real-time Computation of Safe Input Sequences for UAVs,” Journal 

of Guidance, Control, and Navigation, July 2016. 
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airplanes for which lift is primarily generated by a wing. Though rotorcraft UAVs are 

easier to fly and operate than fixed-wing UAVs, the latter typically have a much longer 

endurance, autonomy, and top speed. Unfortunately, fixed-wing UAVs are also prone to 

catastrophic aerodynamic events: flutter (overspeed), aerodynamic stalls, spins or high 

wing forces can cause the loss of control or structural damage to an UAV. These 

phenomena are typically avoided by operating the UAV in a narrow flight envelope in 

relatively good weather, though this also greatly reduces the operational capabilities of 

UAVs. Increasing the robustness of the UAVs’ control system (whether piloted by a 

human or an autopilot)  in light of unknown disturbances allows for a higher mission 

success rate and can push their flight envelope into previously unattainable regions, 

increasing the reliability of the system in severe weather conditions or in low-speed loiter 

missions. Verifying the robustness of the control system to disturbances is also an 

important part of this process. 

Reachability analysis can enable a UAV controller to be more robust to 

disturbances, and to operate the UAV in a much larger flight domain. The question that is 

addressed in this chapter is the following: does the state of the system remain in a safe 

region over some time horizon given uncertain knowledge of the current state, and given 

bounded disturbances, and can the answer to this question be determined in real time on 

an embedded platform? The exact computation of the reachable set in high dimensional 

systems is very difficult and usually intractable in real time, even for some linear systems 

[15].  Commonly available methodologies for reachability analysis are either intended for 

linear / affine systems [16, 17, 18, 19], switched/hybrid linear systems [20, 21, 22], or 

non-linear systems with a low dimensionality, typically 3 or 4. In the latter case, the 

computational time is exponential in the dimensionality of the system, which prevents the 

reachable set of the high dimensional dynamical system that describes an UAV from 
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being computed in real time.  The reachability methods outlined earlier typically rely on 

dynamic programming, or on level set methods [23, 24], and have additionally 

incorporated concepts from viability theory [25, 26, 27]. An approximate approach for 

solving the reachability / viability problem using a neural network approach has been 

proposed in [28].  

Forward simulations can also be used to compute the reachable set of a system, 

though a considerable number of simulation runs is required to accurately characterize 

the reachable set [29, 30]. These simulations require too many computational resources to 

be used in real time on an embedded hardware platform. 

The equations of motion of a fixed wing UAV are non-linear, coupled, and of 

degree 12 in their usual state-space formulation [31]. Therefore, most reachability 

analysis tools are ill-suited to these particular systems [32]. This is especially true when 

considering performing this analysis in a way that is sufficiently accurate and fast as to be 

used as part of an active real-time control system for the UAV. Linearization schemes 

have been proposed in the literature and are typically approached by either separating the 

lateral-directional and longitudinal degrees of freedom and considering them separately, 

or by linearizing about various equilibrium points of interest [31, 33]. However, both 

methodologies do not allow for analysis of the complete coupled dynamics over the full 

range of state values and of the possible disturbances or maneuvers across the flight 

envelope of the UAV. 

Once a reachable set has been computed, it must be represented in a compact 

manner, given the limited computational resources available. Diverse representations can 

be found in the literature, including polyhedra obtained from convex hull computations 

[34, 35, 36], oriented rectangular hulls [37], hyper-rectangles [38], and ellipsoids [15, 

39].  
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Machine learning has been employed in various aerospace control applications in 

literature. Applications include trajectory prediction [40], low level control [41], 

navigation [42], and incorporation with classical control methodologies [43, 44]. 

Machine learning has recently been proposed in the context of reachability analysis of 

dynamical systems. Machine learning was shown in [32] to provide four orders of 

magnitude improvement in computation time when classifying a cost-limited reachable 

set. The downside of using machine learning is that theoretical correctness guarantees can 

no longer be made and that many learning input sets are needed to cover the entire 

domain of interest. In safety-critical applications, this concern can be alleviated by adding 

a buffer region and employing statistical measures of safety that allow the user to 

judiciously select his or her desired level of risk.  

This chapter proposes a new method for determining the set of inputs sequences 

over a finite time horizon that will keep the trajectory of the aircraft in a safe region as 

defined by multiple state constraints. Trajectories are simulated offline over a finite-time 

horizon using a range of possible input and disturbance signals to determine the set of 

safe inputs. This set is then approximated by an ellipsoid. Note that while ellipsoidal 

approximation of the safe set is utilized, ellipsoidal calculus is not used in the reachability 

analysis, but rather is accomplished through simulated trajectories. The functional 

relationship between the initial state of the system, the disturbance set and the ellipsoidal 

approximation of the safe input sequence set is then learned offline using a technique 

known as supervised machine learning. The ellipsoidal approximation of the safe input 

sequence set can thus be established in real-time by computing the image of a vector by a 

given function. Offline computation allows for more accurate simulation of the complete 

non-linear coupled equations of motion, and does not pose a problem in practice, since 

the parameters of the dynamical model are time invariant. 
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The remainder of this chapter is organized as follows: Section 3.2 presents the 

dynamical model used to describe the fixed-wing UAV equations of motion along with 

the form of the input and disturbance signals used in the simulation. Section 3.3 provides 

an overview of the main algorithm discussed in the chapter. Section 3.4 discusses the 

method used to calculate the cost function, and how the cost function can be used to 

generate a set of points that define the safe input signals over the given time horizon. 

Section 3.5 defines an ellipsoidal approximation of this set. Section 3.6 introduces a 

machine learning framework to learn the functional relationship between the current state 

of the UAV, the set of disturbances, and the ellipsoidal approximation of the safe input 

sequence set. Section 3.7 discussed the experimental platform and Section 3.8 provides 

results for an example case and discusses some limitations of the proposed algorithm 

followed by concluding remarks. 

3.2 DYNAMICAL MODEL OF A FIXED-WING UAV 

The aircraft is modeled as a six degree of freedom rigid body, as described in 

[31]. The equations of motion are written as twelve coupled non-linear differential 

equations in state-space form. The system states are, 

 𝑿 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑥
𝑦
ℎ
𝑢
𝑣
𝑤
𝜙
𝜃
𝜓
𝑝
𝑞
𝑟 ]
 
 
 
 
 
 
 
 
 
 
 

 (3.1) 
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where x,y,h represent an inertial position, u, v, and w are given in the body frame, attitude 

is defined by the three Euler angles 𝜙, 𝜃, 𝜓, where an inertial frame is rotated into the 

body frame using a 3-2-1 rotation sequence by angles 𝜓, 𝜃,  and 𝜙 respectively, and p, q, 

and r are instantaneous rotation rates, and thus not simple derivatives of the Euler angles. 

The Euler angle sequence as well as the rotation rate explanation is described in 

Appendix B. The inputs to the system come from the aircraft elevator, ailerons, motor, 

and rudder, and can be written as, 𝑢 = [𝛿𝑎 𝛿𝑒 𝛿𝑡 𝛿𝑟]
𝑇.  

Using the above states and inputs, the equations of motion become: 
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𝑿̇ = 𝑓(𝑿, 𝒖, 𝒅) =

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑥̇
𝑦̇

ℎ̇
𝑢̇
𝑣̇
𝑤̇
𝜙̇

𝜃̇
𝜓̇
𝑝̇
𝑞̇
𝑟̇ ]
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓)𝑢 + (𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓)𝑣 + (𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓)𝑤
(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓)𝑢 + (𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓)𝑣 + (𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓)𝑤

𝑢𝑠𝑖𝑛𝜃 − 𝑣𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃 − 𝑤𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

𝑟𝑣 − 𝑞𝑤 − 𝑔𝑠𝑖𝑛𝜃 +
𝜌𝑉𝑎

2𝑆

2𝑚
(𝐶𝑋(𝛼) +

𝐶𝑋𝑞
(𝛼)𝑐𝑞

2𝑉𝑎
+ 𝐶𝑋𝛿𝑒

(𝛼)𝛿𝑒) +
𝜌𝑆𝑝𝑟𝑜𝑝𝑐𝑝𝑟𝑜𝑝

2𝑚
((𝑘𝑚𝑜𝑡𝑜𝑟𝛿𝑡)

2 − 𝑉𝑎
2)

𝑝𝑤 − 𝑟𝑢 + 𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 +
𝜌𝑉𝑎

2𝑆

2𝑚
(𝐶𝑌0

+ 𝐶𝑌𝛽
𝛽 +

𝐶𝑌𝑝
𝑏𝑝

2𝑉𝑎
+

𝐶𝑌𝑟
𝑏𝑟

2𝑉𝑎
+ 𝐶𝑌𝛿𝑎

𝛿𝑎 + 𝐶𝑌𝛿𝑟
𝛿𝑟)

𝑞𝑢 − 𝑝𝑣 + 𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 +
𝜌𝑉𝑎

2𝑆

2𝑚
(𝐶𝑍(𝛼) +

𝐶𝑍𝑞
(𝛼)𝑐𝑞

2𝑉𝑎
+ 𝐶𝑍𝛿𝑒

(𝛼)𝛿𝑒)

𝑝 + 𝑞𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃 + 𝑟𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃
𝑞𝑐𝑜𝑠𝜙 − 𝑟𝑠𝑖𝑛𝜙

𝑞𝑠𝑖𝑛𝜙𝑠𝑒𝑐𝜃 + 𝑟𝑐𝑜𝑠𝜙𝑠𝑒𝑐𝜃

Γ1𝑝𝑞 − Γ2𝑞𝑟 +
1

2
𝜌𝑉𝑎

2𝑆𝑏 (𝐶𝑝0
+ 𝐶𝑝𝛽

𝛽 +
𝐶𝑝𝑝

𝑏𝑝

2𝑉𝑎
+

𝐶𝑝𝑟
𝑏𝑟

2𝑉𝑎
+ 𝐶𝑝𝛿𝑎

𝛿𝑎 + 𝐶𝑝𝛿𝑟
𝛿𝑟)

Γ5𝑝𝑟 − Γ6(𝑝
2 − 𝑟2) +

𝜌𝑉𝑎
2𝑆𝑐

2𝐽𝑦
(𝐶𝑚0

+ 𝐶𝑚𝛼
𝛼 +

𝐶𝑚𝑞
𝑐𝑞

2𝑉𝑎
+ 𝐶𝑚𝛿𝑒

𝛿𝑒)

Γ7𝑝𝑞 − Γ1𝑞𝑟 +
1

2
𝜌𝑉𝑎

2𝑆𝑏 (𝐶𝑟0 + 𝐶𝑟𝛽
𝛽 +

𝐶𝑟𝑝𝑏𝑝

2𝑉𝑎
+

𝐶𝑟𝑟𝑏𝑟

2𝑉𝑎
+ 𝐶𝑟𝛿𝑟

𝛿𝑟)
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (3.2) 

where, 𝐶𝑋(𝛼), 𝐶𝑋𝑞
(𝛼), 𝐶𝑋𝛿𝑒

(𝛼), 𝐶𝑍(𝛼), 𝐶𝑍𝑞
(𝛼), 𝐶𝑍𝛿𝑒

(𝛼) are nonlinear functions of 𝛼, g is 

the acceleration due to gravity, and 𝜌 is a slowly varying function of altitude and the rest 

are constant system parameters, see [31] for more detail and Appendix B for complete 

nomenclature of all terms in the equations of motion.  
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 𝛼 ≡ tan−1 (
𝑤𝑟

𝑢𝑟
) 

 𝛽 ≡ sin−1 (
𝑣𝑟

𝑉𝑎
)   

𝑉𝑎 = |𝑽𝒂| = √𝑢𝑟
2 + 𝑣𝑟

2 + 𝑤𝑟
2 

where,  

[

𝑢𝑟

𝑣𝑟

𝑤𝑟

] = [

𝑢 − 𝑢𝑤

𝑣 − 𝑣𝑤

𝑤 − 𝑤𝑤

] 

u, v, w, are the 3 components of the vehicle velocity in the body frame, and 

𝑢𝑤, 𝑣𝑤 , 𝑎𝑛𝑑 𝑤𝑤 are the components of the wind velocity. 𝑢𝑟 , 𝑣𝑟 , 𝑤𝑟 are thus the velocities 

of the vehicle relative to the wind. 

Equation 3.2 shows the coupling between the lateral-directional and longitudinal 

equations as well as various nonlinearities inherent to the system. Wind disturbances 

appear in the system dynamics through the angle of attack, angle of sideslip, and 

airspeed. 

To obtain the reachable states through simulation, four separate input functions 

are created that are consistent with the physical performance of the actuators. The 

possible input signals are characterized by a finite number of values, the function being 

constructed by linearly increasing the value of the input between these points at a given 

rate to account for the slew rate or time constants of the actuators. In the present 

application, each input function is assumed to be characterized by two values describing 

the position of each output at two different points in time, the midpoint time and the final 

time. These values are randomly generated using a uniform distribution over the range of 

allowable values for each input. The input is then varied linearly from the initial input 

state to the midpoint value and again linearly from the midpoint value to the final value, 
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as shown in Figure 3.1. If the desired midpoint value is reached before the midpoint time, 

the input value remains constant until the midpoint time. 

 

Figure 3.1: Simulated Input Signals over the Receding Time Horizon 

This class of input signals is chosen in order to simulate a wide range inputs that 

covers the reachable states while keeping the problem numerically tractable, and being 

consistent with the physics of the actuators. By analyzing the trajectories obtained using 

the above input definition, it appears that sufficient variation in the final state is achieved 

to cover potential controller input. 

Each combination of initial condition and input signal is simulated with a set of 

disturbances. These disturbances are chosen as ramp functions starting at zero and 

reaching a predetermined maximum level at the end of the time horizon, though more 

complex disturbance models could be thought of. At the end of the time horizon each 

axis’ disturbance will either be zero, a predetermined maximum value, or a 

predetermined minimum value. With three components of wind, there are 27 possible 

disturbance signals simulated for each initial condition / input signal combination. For 
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clarification, an example of one of the 27 disturbances is shown in Figure 3.2. This is the 

case where the x-component of the disturbance ramps up to a maximum value, the y-

component ramps down to a minimum value, while the z-component stays a constant 0. 

 

Figure 3.2: Example Disturbance 

The time horizon chosen for these simulations is 2 seconds. This time horizon 

allows the control system of the aircraft sufficient time to adjust based on the computed 

ellipsoid. Using a relatively short time horizon also increases the validity of the 

approximations used for the allowable input signals and disturbances. In addition, the 

machine-learned function to approximate the safety ellipsoid can be applied over a wider 

range of initial conditions as the time horizon becomes shorter. Finally, UAVs are usually 

very small, and thus have very fast dynamics, which can be accurately captured over a 

short time horizon. Airframe dynamics that are longer than two seconds will be captured 

over time in the receding horizon approach. 

Once the inputs and disturbances for each trajectory are defined, the equations of 

motion are integrated forward in time. Since these simulations are performed offline, 
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arbitrarily accurate integrators can be used without increasing the online computation 

time. In addition to the variation of inputs and disturbances, it is critical to include 

uncertainty in the initial condition and initial input value, to account for UAV state 

estimation uncertainty. This leads to an increasing number of simulations needed to 

accurately capture the reachable space. 

3.3 ALGORITHM OVERVIEW 

The algorithm at the core of this chapter can be separated into two main parts: 

Offline generation of a functional relation between the state and safety ellipsoid and 

online usage of the functional relation for evaluating the safety of candidate input signals 

in real-time, as shown in Figure 3.3. The reachable states are generated through multiple 

simulations with random inputs, and the inputs which correspond to a safe state are 

characterized by an ellipsoid. Approximately 5,000 simulations were required to 

sufficiently capture the reachable states. 

3.3.1 Functional Relation Generation (Performed Offline) 

The generation of a functional relation between the current states and inputs of a 

system and its approximated safe input sequence set is done through the following steps: 

 Step 1: Define the current system state center 𝑿𝒄 and current actuator state center, 

𝒖𝑐 along with their associated uncertainty. 

 Step 2: Choose a particular initial system and actuator states, 𝑿𝟎, 𝒖𝟎 within the 

predefined range of uncertainty and set the number of simulations to run, 𝑝, using 

these initial conditions. 

 Step 3: Define the set of allowable inputs 𝒖(𝒕) for 𝑡 ∈ [𝑡0, 𝑇] 

 Step 4: Define the set of allowable disturbances 𝒅(𝒕) for 𝑡 ∈ [𝑡0, 𝑇] 

 Step 5: Simulate the trajectory of the system with disturbance set to obtain 
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𝑿(𝑡) = 𝑓(𝑿𝟎, 𝒖𝟎, 𝒅(𝒕), 𝒖(𝒕)) for 𝑡 ∈ [𝑡0, 𝑇] 

 Step 6: Assign each trajectory a cost based on pre-defined constraints 𝐽(𝑿(𝑡)) 

 Step 7: Define a set of points based on input sequences whose associated costs are 

below a threshold value. 

𝑮𝒊 = {{𝒖𝑖 (
𝑇

2
) , 𝒖𝒊(𝑇)} : 𝐽𝑖(𝑿(𝑡)) < 𝐽𝑚𝑎𝑥} , 𝑮𝒊 ∈ ℝ8, 𝑖 = 1,2, … 𝑝 

 Step 8: Construct an ellipsoidal approximation, 𝐸, to this set of points and retain 

the center of the ellipsoid 𝒄(𝐸), the eigenvalues of the shape matrix defining the 

ellipsoid 𝝀(𝐸), and their associated eigenvectors 𝒗(𝐸)  

 Step 9: Repeat steps 2-8 to obtain multiple ellipsoidal approximations based on 

multiple initial conditions centered around 𝑿𝒄, 𝒖𝒄. 

 Step 10: Use each of the initial states 𝑿𝟎, 𝒖𝟎 and their associated ellipsoidal 

approximation defined by 𝒄, 𝝀, 𝒗 as inputs and outputs respectively to obtain a 

functional relationship between them using a machine learning algorithm. 

3.3.2 Online Usage 

 Step 1: Obtain current system state estimate and actuator location, 𝑿̂𝟎, 𝒖̂𝟎  

 Step 2: Use the previously generated functional relationship to obtain 𝒄̂, 𝝀̂, and 

𝒗̂𝑖 and thus an estimate of the safety ellipsoid, 𝐸̂. 

 Step 3: Shape the control signal by projecting the desired control as calculated by 

the onboard controller inside the safety ellipsoid. 

The functional relationship used in the offline portion of the algorithm must be 

stored on board the aircraft so that it can be accessed during the online portion. The 

storage requirement is insignificant due to the compactness of the representation. 



 44 

As discussed in detail in Section 3.6, this algorithm must be run for a given range 

of 𝑿𝒄 and 𝒖𝑐 for applicability over the entire state space. The last step of the online 

portion depends on the type of controller used to operate the UAV (human or autopilot), 

and on the objectives of the controller. For example, a human controller may only be 

interested in limiting the current values of the control, and thus projecting the set of 

desired inputs on the intersection of the ellipsoid and the set associated with current 

controls. The projection can be chosen to prioritize some inputs over some other inputs. 

For example prioritizing thrust control over elevator control would make the UAV pitch 

down when it is about to stall, while prioritizing the elevator over the thrust would 

increase the engine thrust in the same situation while keeping the same elevator position. 

For autopilots following a given objective, this last step can be identical to the human 

controller case. It could also be used as part of a Model Predictive Control (MPC) 

approach to define the constraints of the optimization problem over some time horizon. 

The process used in determining the safe input sets is outlined in Figure 3.3. 
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Figure 3.3: Algorithm overview 

3.4 COST FUNCTION CALCULATION 

The simulated trajectories must be characterized as “safe” or “unsafe”, which is 

done through a cost function. The cost function for each trajectory is the sum of four 

different functions that involve the angle of attack and angle of sideslip (defining the risk 

of aerodynamic stall or spin), maximum allowable vertical acceleration (defining the risk 

of structural damage to the wings), minimum allowable height (defining the risk of crash 

to the ground), and maximum allowable velocity (defining the risk of aerodynamic flutter 

or structural damage to the wings), as shown in Equation 3.3. 
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𝐽(𝑿(𝑡)) =

𝑤1𝐽𝛼𝛽𝑚𝑎𝑥
(𝜶(𝑡), 𝜷(𝑡), 𝑃𝛼𝛽) + 𝑤2𝐽𝑎𝑧𝑚𝑎𝑥

(𝑎𝑧𝑚𝑎𝑥
, 𝒂𝒛(𝑡)) + 𝑤3𝐽𝑉𝑚𝑎𝑥

(𝑉𝑚𝑎𝑥 , 𝑽(𝑡)) + 𝑤4𝐽ℎ𝑚𝑖𝑛
(ℎ𝑚𝑖𝑛 , 𝒉(𝑡))

 (3.3) 

where 𝑤1, 𝑤2, 𝑤3, 𝑤4 are the weights assigned for each term of the cost function. All cost 

functions are evaluated based on the aircraft’s states at pre-determined regular intervals 

during its trajectories. The cost function for the angle of attack and sideslip is based on 

the distance between the point defined by angle of attack and sideslip to the polygon 𝑃𝛼𝛽 

shown in Figure 3.4 that defines the allowable envelope. The allowable envelope protects 

against stall at high and low angles of attack structural failure at high angles of sideslip 

and dynamic instabilities. This envelope was chosen based on an examination of 

envelopes of similar shape in [45]. When applying this algorithm, the user must 

judiciously modify this envelope to apply for their specific aircraft. 

 

Figure 3.4: Polygon 𝑃𝛼𝛽 - Allowable envelope for angle of attack and sideslip 
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 𝐽𝛼𝛽𝑚𝑎𝑥
= max{𝜶(𝑡),𝜷(𝑡)} 𝐽𝛼𝛽(𝛼, 𝛽, 𝑃𝛼𝛽);     

  𝐽𝛼𝛽(𝛼, 𝛽, 𝑃𝛼𝛽) = {
0, if {𝛼, 𝛽} is inside 𝑃𝛼𝛽 

distance({𝛼, 𝛽}, 𝑃𝛼𝛽), if {𝛼, 𝛽} is not inside 𝑃𝛼𝛽

 (3.4) 

The distance function in Equation 3.4 is defined by the L2-norm. The three other 

cost functions are defined by logarithmic barrier functions as shown in Equation 3.5. 

 𝐽𝑎𝑧𝑚𝑎𝑥
= max𝒂𝑧(𝑡) 𝐽𝑎𝑧

(𝑎𝑧𝑚𝑎𝑥
, 𝑎𝑧);        

𝐽𝑎𝑧
(𝑎𝑧𝑚𝑎𝑥

, 𝑎𝑧) = {
−𝑙𝑜𝑔(𝑎𝑧𝑚𝑎𝑥

− 𝑎𝑧), 𝑎𝑧 < 𝑎𝑧𝑚𝑎𝑥

𝐵 𝑎𝑧 ≥ 𝑎𝑧𝑚𝑎𝑥

 

 𝐽𝑉𝑚𝑎𝑥
= max𝑽(𝑡) 𝐽𝑉 (𝑉𝑚𝑎𝑥, 𝑉);        𝐽𝑉(𝑉𝑚𝑎𝑥, 𝑉) = {

−𝑙𝑜𝑔(𝑉𝑚𝑎𝑥 − 𝑉), 𝑉 < 𝑉𝑚𝑎𝑥

𝐵 𝑉 ≥ 𝑉𝑚𝑎𝑥
  

 𝐽ℎ𝑚𝑖𝑛
= max𝒉(𝑡) 𝐽ℎ𝑚𝑖𝑛

(ℎ𝑚𝑖𝑛, ℎ);       𝐽ℎ𝑚𝑖𝑛
 (ℎ𝑚𝑖𝑛, ℎ) = {

−𝑙𝑜𝑔(ℎ − ℎ𝑚𝑖𝑛), ℎ > ℎ𝑚𝑖𝑛

𝐵 ℎ ≤ ℎ𝑚𝑖𝑛
 

 (3.5) 

where B is a very large constant. 

The trajectories that correspond to a cost function smaller than a threshold cost 

𝐽𝑚𝑎𝑥 are determined to be safe over the chosen time horizon. The input signal associated 

with each safe trajectory, as defined by the value of each of the four inputs (aileron, 

elevator, motor thrust, and rudder) at the midpoint time and final time of the simulation, 

is captured as a point in 8-dimensional space. 

This process is repeated such that a set of points, 𝑮𝒊, is defined, 

𝑮𝒊 = {{𝑢𝑖 (
𝑇

2
) , 𝑢𝑖(𝑇)} : 𝐽𝑖(𝑿(𝑡)) < 𝐽𝑚𝑎𝑥} , 𝑮𝒊 ∈ ℝ8, 𝑖 = 1,2, … 𝑝 (3.6) 

where 𝑝 is the number of simulated trajectories. 

All weights used in the cost function along with the maximum thresholds for each 

individual cost function are application-specific and depend on the user’s approach to 

safety. They can also be modified for different phases of a mission where risk priorities 

and tolerances may change. For example, by increasing 𝑤2 in relation to 𝑤1 may disallow 
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trajectories that produce a larger acceleration in the z-direction and may allow a larger 

deviation from the envelope presented in Figure 3.4. 

3.5 ELLIPSOIDAL APPROXIMATION 

The safe points found in the previous section define a region in the input signal 

set that is considered safe. This region has no specific topological property, and may not 

be convex or even not connected. To describe the region a convex hull approximation of 

this set can be used for example, though in this situation the number of coefficients 

required to define this region greatly increases with the number of safe points, which 

makes it unsuitable for use in a real-time system. Therefore, a more compact 

approximation is needed to keep the problem tractable in real-time. Two promising 

alternatives were considered, the oriented rectangular hull (ORH) presented in [37] and 

an ellipsoidal approximation [46]. Both alternatives require a fixed number of 

coefficients for their definition. The three representations, projected into the elevator 

input signal subspace for clarity are shown in Figure 3.5. 

 

Figure 3.5: Comparison of convex hull, ORH, and ellipsoidal approximation 
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Ideally, the approximation would be such that every safe point is inside the 

convex shape and the volume of the convex shape is as close as possible to the volume of 

the convex hull. After comparing these two approaches, the ellipsoidal approximation is 

found to be superior. Metrics used for comparison include the percentage of safe points 

correctly captured inside the geometry and the overall volume of the approximation 

compared with the convex hull. A major drawback of the ORH is its over-approximation 

of the safe set which in this case leads to unsafe inputs to be deemed as safe. 

Using the set of points in 𝐺, an ellipsoidal representation of the set is constructed. 

The ellipsoidal representation requires 𝑛2 + 2𝑛 coefficients, where n is the 

dimensionality of the input sequences (in this case, n=8). Note that the number of 

coefficients is independent of the number of simulations that use the same initial 

condition and thus the number of points that define the input signals. This allows one to 

use as many input signals as desired to fully capture the shape of the safe input sequence 

set.  

The construction of the ellipsoid is accomplished by first determining the center 

of the ellipsoid, 

 𝒄 =
1

𝑝
∑ 𝑮𝒊

𝑝
𝑖=1  (3.7) 

All points are then expressed relative to the center: 

 𝑮̅𝒊 = 𝑮𝒊 − 𝒄 (3.8) 

The points are then arranged in a matrix whose covariance is calculated. The 

singular value decomposition of the covariance matrix is then calculated in order to 

compute the eigenvalues and eigenvectors that define the shape and size of the ellipsoidal 

approximation using principal component analysis [47, 48]. 

 𝑮̅ = [𝑮̅𝟏 ⋯ 𝑮̅𝒑] (3.9) 

 𝐶𝑜𝑣(𝑮̅) =
1

𝑝−1
𝑮̅𝑮̅𝑻 = 𝑈𝛴𝑉𝑇  
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where 𝑈 ∈ ℝ𝑛×𝑛, Σ ∈ ℝ𝑛×𝑛 are used in the following definition of the ellipsoid, 

 𝐸 = {𝒙|(𝒙 − 𝒄)𝑇𝑈𝛴2𝑈𝑇(𝒙 − 𝒄) ≤ 1} (3.10) 

noting that 𝑈 = 𝑉 since the covariance matrix is symmetric by construction and positive 

definite when an ellipsoid exists. The direction of the principal axes of the ellipsoid is 

defined by the columns of 𝑈 and their lengths by the diagonal entries in Σ. The lengths of 

the principal axes can be scaled in order to change the desired buffer distance from the 

undesirable input signals, those whose associated cost function is higher than 𝐽𝑚𝑎𝑥.  This 

scaling can be tuned judiciously during implementation in which a conservative approach 

would reduce the size of the ellipsoid using a smaller scaling factor at the expense of 

limiting the allowable input signal and potentially causing a decrease in the performance 

of the control system through a reduction of the allowed flight domain. 

Finding whether a point x is inside the ellipsoid is fairly straightforward by 

determining if the inequality in Equation 3.10 holds, and there exist algorithms to 

efficiently find distances to the ellipsoid and find the closest point on the ellipsoid to a 

given point using a quadratic minimization formulation [49]. In this formulation, the 

definition is of the ellipsoid matrix is transformed to, 

 𝐸 = {𝒙|(𝒙 − 𝒄)𝑇𝐿𝐿𝑇(𝒙 − 𝒄) ≤ 1} (3.11) 

 𝐸 = {𝒚|𝒚𝑻𝒚 ≤ 1} (3.12) 

with, 

 𝒚 ≡ 𝐿𝑇(𝒙 − 𝒄) (3.13) 

So that the minimizing the distance, 𝑠 ≡ √(𝒙 − 𝒌)𝑇(𝒙 − 𝒌), between a point k 

and a point x on the ellipse, becomes, after substitution for x, a matter of minimizing the 

following quantity, 

 Χ ≡
1

2
𝒚𝑻𝐿−1𝐿−𝑇𝒚 + (𝒄 − 𝒌)𝑇𝒚 (3.14) 



 51 

subject to ‖𝒚‖ ≤ 1, which is a convex quadratically constrained quadratic program due to 

the positive definite nature of the ellipsoid shape equation, when one exists. This 

optimization problem can be solved using the Lagrange Multiplier technique to augment 

the cost function as show in Equation 3.15. 

 Χ ≡
1

2
𝒚𝑻𝐿−1𝐿−𝑇𝒚 + (𝒄 − 𝒌)𝑇𝒚 − 𝜆(1 − 𝒚𝑇𝒚) (3.15) 

setting  
𝜕𝑋

𝜕𝒚
= 0 gives rise to the optimality condition, 

 (𝐿−1𝐿−𝑇 + 𝜆𝐼)𝒚 + (𝒄 − 𝒌) = 0 (3.16) 

 𝒚𝑇𝒚 = 1 (3.17) 

such that, 

 𝒚 = −(𝐿−1𝐿−𝑇 + 𝜆𝐼)−1(𝒄 − 𝒌) (3.18) 

 𝒚𝑇𝒚 = ‖(𝐿−1𝐿−𝑇 + 𝜆𝐼)−1(𝒄 − 𝒌)‖2 (3.19) 

The problem is thus reduced to optimizing the (scalar) Lagrange multiplier 𝜆 such 

that the difference between Equation 3.19 and 3.17 is minimized. This can be 

accomplished with a variety of optimization techniques. A simple one-dimensional 

search accomplishes this task with sufficient accuracy in under 2 milliseconds on 

MATLAB using an Intel i7-3610QM CPU running Windows 7 (commercial laptop) 

with 𝒚 ∈ ℝ8. Therefore, such a system could be used in real time where the control cycle 

is approximately 10 Hz (100 ms).  

3.6 MACHINE LEARNING REPRESENTATION 

The ellipsoid approximation for the safe set inputs discussed in the previous 

section is only valid for a given initial state and its associated uncertainty. In order to use 

this in real time, one needs to have this information for all possible initial states, which lie 

in a twelve dimensional space, which represents extreme memory requirements, far 

beyond the available memory in typical embedded systems. Therefore, a machine 
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learning framework is used to learn the relationship between the initial conditions and the 

ellipsoidal approximation of the safe input sequence set. The inputs of the machine 

learning include the center of the initial state 𝑿𝒄 ∈ ℝ12 and input  𝒖𝒄 ∈ ℝ4 while the 

output consists of the 80 coefficients needed to define the ellipsoid as discussed above. In 

order to have an accurate functional relationship between the inputs and outputs, a large 

number of simulations is required while varying the inputs to cover as much of the state 

space as possible. In the case discussed in this chapter, it was found that 5,000 

simulations were sufficient to cover the state space. This determination is based on 

comparing the reachable set obtained using 5,000 simulations to test cases that involved a 

much larger number of simulations where no discernable difference was observed. 

Machine learning is accomplished using MATLAB’s neural network toolbox. The 

toolbox uses an algorithm based on minimization of a nonlinear function developed 

independently by Levenberg [50] and Marquardt [51] to update the weights applied in the 

neural network [52]. The number of nodes in the hidden layer of MATLAB’s neural 

network affects the performance of the network. A small number of nodes may not 

capture the relationship between inputs and output fully, while a large number may cause 

the network to be overly sensitive. The accuracy of the machine-learned function is found 

to be highest when using 40 nodes in one hidden layer of the artificial neural network.  

Ordering the machine learning inputs created in the data generation phase is 

trivial, however, the desired outputs must be carefully ordered to achieve the desired 

accuracy of the desired functional relationship. The eigenvectors and eigenvalues 

representing the shape and size of the ellipsoid’s principal axes that are associated with a 

certain input signal must all be stored in the same location. Since the numerical procedure 

orders the eigenvectors according to their associated eigenvalues which are in turn stored 

according to an increasing or decreasing order, this order must be revised. This is 
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accomplished by selecting a baseline eigenvector for a given column in 𝑈, and then 

switching the order of eigenvectors (and associated eigenvalues) of the other ellipsoidal 

representations such that the eigenvector with the smallest angular deviation from the 

baseline eigenvector is stored in the same location. Following this procedure greatly 

improves the convergence of the learning step. 

Given the highly nonlinear nature of the relation between inputs and outputs, the 

accuracy of the functional relation reduces outside of a narrow region. Outside of this 

range, new functional relations must be calculated such that the desired subset of the state 

space is covered by machine-learned functional relations. Online, the correct functional 

relation must be retrieved via a lookup-table in order to obtain the correct ellipsoidal 

approximation. It is found that the machine learning function is able to match the volume 

of the ellipsoidal approximation with 3% error over a range of ±15% from a baseline 

initial condition, where 15% refers to the total possible absolute deviation of each state or 

actuator input with respect to a nominal value. This translates to a difference of under 6% 

in the number of points that are within the machine learned ellipsoid vs. an ellipsoid that 

is constructed from direct simulation of the trajectories. Achieving this level of accuracy 

requires the use of 5000 simulations around each center. The large number of simulations 

accounts for the need to learn the effects of the variations and disturbances on the final 

ellipsoid size and shape. Further inspection reveals that certain states in the initial 

condition have a more dominant effect in terms of accuracy of the machine learned 

function. The practical range of inputs that can be used for each learned representation is 

shown in Table 3.1, for each state. 
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Table 3.1: Range of Applicability of Machine Learned Function 

State Range 

x-axis velocity ±5 m/s 

y-axis velocity ±4 m/s 

z-axis velocity ±4 m/s 

Roll angle ±8° 
Pitch angle ±8° 
Yaw angle ±8° 
Roll Rate ±20°/𝑠 

Pitch Rate ±10°/𝑠 

Yaw Rate ±20°/𝑠 

 

The range allows for accurate ellipsoids to be generated over a range of 10 

degrees in angle of attack and angle of sideslip for typical flight conditions. Variation of 

the initial actuator positions or the initial position of the UAV has little effect on the 

accuracy of the machine-learned function and is thus not shown in the above table.  

The time required to generate the safety ellipsoid coefficients using the machine-

learned function, assign the output of the function to the appropriate vectors and matrices, 

and determine whether or not the desired control command is safe (or project this 

command onto the safe ellipsoid) is under a millisecond on MATLAB using an Intel i7-

3610QM CPU running Windows 7 (commercial laptop), which is considerably faster 

than the dynamics of the system. Therefore, this approach is well suited for 

implementation as a real time flight envelope protection system. The time required for 

learning the functional relationship between inputs and safety ellipsoids is on the order of 

hours on the machine described above, and depends on the number of simulated 

trajectories and the size of the neural network used. 
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3.7 EXPERIMENTAL PLATFORM 

The online portion of this algorithm has yet to be flown and thus the results 

section that follows displays results from simulation. This section provides an example of 

a flight system and computer that can be used to implement the algorithm described in 

this chapter. The experimental platform consists in a Bormatec Maja UAV (shown in 

Figure 3.6) equipped with an Odroid XU-3, receiving air data from and sending data to a 

Pixhawk autopilot (both shown in Figure 3.7). Preliminary testing of the proposed 

algorithm on the Odroid XU-3 indicates that sufficient computational power is available 

to perform the desired operations in real time, at a rate of approximately 20 Hz. This rate 

compares favorably to the actuator time constants of about 0.2-0.3 seconds. The small 

form factor and low weight of the Odroid XU-3 result in little effect on the handling 

characteristics of even this relatively small platform.  

 

 

Figure 3.6: Bormatec MAJA UAV during initial test flights 
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Figure 3.7: Hardkernel Odroid XU-3 (bottom) interfaced with laptop and Pixhawk 

autopilot (above Odroid) 

In this implementation, the Odroid XU-3 receives data from the autopilot over a 

serial connection at a rate of 10 Hz (which is used to estimate the position, attitude, 

airspeed, angle of attack and sideslip of the UAV [53]) and sends commands to the 

Pixhawk to dynamically limit the minimum or maximum values sent to the UAV 

actuators in real time. The Pixhawk is itself connected to a Remote Control receiver, and 

relays human controller inputs to the Odroid computer, which modifies these inputs if 

necessary to allow the UAV to remain in the safe set. Possible ways of modifying the 

user inputs include projecting them onto the safe ellipsoid, which amounts to solving a 

low-dimensional Quadratic Program (QP) in real time. The function used to describe 

distances in the input space can be adjusted to give more weight (more priority) to 

specific inputs, for example to give priority to the current trajectory or to the current 

airspeed, depending on the objectives of the flight. 
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3.8 RESULTS AND LIMITATIONS 

Usage of this method is demonstrated with an example scenario in which the 

UAV is descending towards the pre-set minimum height of 500 meters. At the start of the 

scenario the UAV is at a height of 510 meters and at a pitch angle of 15 degrees below 

the horizon with disturbances up to a maximum value of ±5 m/s in each axis taken into 

consideration. In this example the maximum z-acceleration was set to 50 m/s
2
 and the 

maximum airspeed to 40 m/s and all weights of the cost function were set to 1.  

The resulting safety ellipsoid for the future elevator commands is shown in Figure 

3.8. 

 

Figure 3.8: Safety ellipsoid for minimum height constraint – with disturbances 

 Since the ellipsoidal approximation is not a perfect representation of the safe 

input set, one point can be seen inside the ellipsoid that is not safe. The case of unsafe 

points inside the safety ellipsoid represents inputs that are deemed by the ellipsoidal 

approximation as safe, but will in fact result in a violation of one of the constraints.  
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The opposite case, where safe inputs sets are outside the safety ellipsoid is also 

seen in Figure 3.5, again due to the imperfection of the ellipsoidal approximation. This 

will result in the control supervisor to unnecessarily modify a proposed control command 

to make it safer even though the original command would not have resulted in a violation 

of the constraints. This may result in unnecessary degradation of the control system. 

Balancing between these two undesired effects of the approximation can thus be managed 

during the implementation of the system. This process will require simulating the 

scenarios of interest and adjusting the scaling of the ellipsoid to arrive at behavior that 

best satisfies the system’s requirements. 

The trajectory of the UAV is now simulated with a new randomly generated set of 

five inputs (along with 27 disturbances for each input signal), both belonging to the 

safety set and not. These inputs can be thought of as those generated by a human or 

computer controller in real time. The resulting height of the UAV is plotted in Figure 3.9 

where trajectories are differentiated based on whether or not they are inside or outside the 

safety ellipsoid.  

 

Figure 3.9: Simulation of UAV height 
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Figure 3.9 shows that no trajectories that were considered safe (being inside the 

safety ellipsoid) violated the minimum height constraint. The system states that comprise 

the three other cost sub-functions are shown in Figures 3.10-3.12. The envelope in Figure 

3.4 is not presented since the value of the angle of sideslip is very near zero for this 

maneuver. Instead, just the angle of attack is plotted with its appropriate bounds.  

 

Figure 3.10: Simulation of UAV z-acceleration 
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Figure 3.12: Simulation of UAV airspeed  

The same scenario above is simulated without disturbances. Figure 3.13 shows 

that the safety ellipse now expands to include more elevator values as expected. 

 

Figure 3.13: Safety ellipsoid for minimum height constraint – no disturbances 
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Figure 3.14: Safe and unsafe trajectories -  no disturbances 

The limiting cost sub-functions in this case are seen to be the maximal 

acceleration and angle of attack. 

A limitation of approximating the future input-set as a single ellipsoid arises from 

situations in which the desired set is theoretically non-convex, or worse, non-connected. 

Scenarios in which maintaining the current control command is unsafe and the required 

command to reach a safe state is contained in unconnected regions of the future input set 

will result in safe input sets that are better represented by several ellipsoids, as is depicted 

in Figure 3.15. This figure illustrates a scenario involving a vertical dive by a UAV, in 
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which the maximum airspeed constraint becomes violated without an elevator input. A 

safe elevator input can be either positive or negative (resulting in positive or inverted 

flight), which is shown by two safe regions separated by an unsafe region.  

 

Figure 3.15: Example of non-connected safe input set 
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computations. The methodology enables real time systems to obtain the coefficients of 

the safety ellipsoid with little computational effort, well within the time required to 

generate a new control solution. 

This methodology described in this chapter is particularly well suited for model 

predictive control. It enables the optimization of the control strategy while providing a 

statistical measure that the resulting optimal control sequence remains within the safety 

ellipsoid.  
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Chapter 4 

Minimum-Time Attitude Control of Deformable Solar Sails with Model 

Uncertainty 

This chapter develops a new algorithm for large-angle pitch maneuvers of 

deformable solar sails in minimum-time that avoids overshooting the target angle given a 

set of model uncertainties3. The chapter uses a simplified Euler-Bernoulli beam to model 

the sail’s flexible booms. Model uncertainties include the flexural rigidity of the sail’s 

booms, the effectiveness of the sail’s reflectivity, and its moment of inertia about the 

pitch axis. The effect of each of these sources of uncertainty is investigated for a set of 

three sails of increasing size. The algorithm relies on trajectory-based reachability 

techniques introduced in the previous chapter to obtain a distribution of final states at the 

end of a large-angle maneuver that depend on the estimated model uncertainties. Using a 

tunable measure of statistical safety, the algorithm determines the required buffer angle to 

avoid overshooting the target attitude. Machine learning is used for reducing the 

parameter uncertainties based on a calibration maneuver. In addition, it is used to obtain a 

fast-access relationship between the current uncertainty in the model parameters and the 

required buffer angle. 

4.1 INTRODUCTION 

Solar sail attitude control has traditionally been approached using a rigid-body 

assumption [4, 5, 7, 8]. As discussed in the introduction, NASA’s technological roadmap 

[3] for solar sails highlights the need for larger sails whose performance, measured by the 

                                                 
3 The work presented in this chapter has been submitted for publication in a peer-reviewed journal. 

Analysis and write-up was performed by Ofer Eldad with supervision by Glenn Lightsey and Christian 

Claudel. 

 Eldad, O., Lightsey, E.G., and Claudel, C., “Minimum-time attitude control of deformable solar 

sails with model uncertainty,” Journal of Spacecraft and Rockets, Submitted July 2016. 
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ratio of area to mass, increases as well. Higher performance sails can achieve greater 

accelerations that allow them to obtain a wider range of orbits than could otherwise be 

reached. As sails get larger and lighter, the rigid-body assumption becomes less valid and 

the need for incorporation of flexibility effects increases.  

One significant challenge in determining the flexibility of the sail is the inability 

to deploy and test an entire sail on Earth. The sail cannot support its own weight and even 

the first generation of sails is extremely large compared to current spacecraft. The solar 

sail designed for NASA’s Sunjammer mission was a 35𝑚 × 35𝑚 spacecraft whereas 

typical large satellites have a diameter of less than 5 meters and length of less than 10 

meters for the main satellite bus (excluding solar panels). Ground vibrational testing of 

the entire sail system to determine its structural properties thus becomes unrealistic. This 

challenge will only increase as sails become larger and more flexible. It is also difficult to 

determine how the sail material will billow and wrinkle once it is deployed in space and 

thus the forces and moments generated by the sail are hard to predict. 

Modeling the flexible characteristics of solar sails has been a subject of recent 

publications, much of which stems from Taleghani, Sleight, and Muheim’s work [54, 55] 

from the Army Research Lab and NASA-Langley. In [55], parametric studies of square 

sails are performed using finite element analysis to examine the effects of sail size, 

stiffness, and sail membrane parameters on static sail deflection and natural frequencies. 

The baseline sail used in the study included a side length of 150m. This baseline sail’s 

parameters were adopted by subsequent papers. The computational expense of running a 

finite element model has led to the development of various reduced models for solar sails. 

These reduced models use a 2-dimensional distributed parameter model [56], models that 

include foreshortening effects due to foreshortening deformation of sails and booms [57] 

and a model utilizing the assumed modes method [58, 59, 60]. Results from these 
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formulations compare favorably with finite element analyses. The models that were 

developed in these manuscripts assumed perfect knowledge of the sail’s structural 

behavior. Importantly, every model of a standard square solar sail (without additional 

masses along the boom) that included the effects of structural damping showed that all 

vibrations are damped down to insignificant amplitudes with a time scale of a few 

seconds compared to maneuver times greater than 30 minutes. 

In this chapter, an algorithm is proposed for performing large angle pitch 

maneuvers of a flexible square solar sail with a statistical measure of safety to ensure that 

the maneuver will not cause the sail to overshoot its target attitude. Overshoot is 

undesirable in conservative design of control systems. Solar sails are particularly averse 

to undesirably large angles away from the sun-pointing vector. The larger the angle 

between the sail-normal vector and the vector pointing from the sail to sun, the smaller 

the control authority of the standard square propellantless sail; thus the smaller its ability 

to reject disturbances. In addition, a state in which the sail-normal vector is flipped may 

be unrecoverable and can create a mission-ending scenario.  

The model used in this chapter is a quasi-static Euler-Bernoulli beam in which 

only the static deflection of the beam is considered. Based on the results of previous 

research, the flexible dynamics of the system are ignored assuming they will be damped 

out quickly relative to the attitude dynamics of the vehicle. The computational 

complexity of using a finite-element model for on-board attitude control and the 

uncertainty in the flexible characteristics that is inherent to any model lends itself to the 

use of a simple model in which the use of an algorithm for handling this uncertainty is 

preferred over detailed modeling techniques.  

This chapter proposes a way to handle inherent uncertainties in the flexible effects 

as well as other model uncertainties such as the sail effectiveness in reflecting solar 
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radiation and the sail’s moment of inertia. Results are shown using three sail geometries 

of increasing size to highlight the increasing relative significance of flexural rigidity on 

solar sail attitude control. Sail 1 is similar to the design used in Chapter 2 of this 

dissertation and is thus similar to the Sunjammer spacecraft design. Sail 2 is identical to 

the baseline model presented in [2] for the purpose of comparison. Sail 3 is a very large 

and flexible sail used to demonstrate the effects of flexibility. The properties of these 

sails are given in Table 4.1 

Table 4.1: Sail properties 

Property Sail 1 Sail 2 Sail 3 

𝐿𝑠 
Sail side length [𝑚] 

35 150 750 

𝐸𝐼  

Flexural Rigidity [𝑁 − 𝑚2] 
6,500 35,000 158,000 

𝐽𝑦𝑦  

Pitch MOI [𝑘𝑔 − 𝑚2] 
6,000 55,000 687,500 

𝜂  
Sail effectiveness 

1.80 1.80 1.80 

𝐴𝑣 

Control vane area [𝑚2] 
15 32 80 

 

Sail effectiveness for all sails was chosen based on specular and diffuse reflection 

coefficients, front and back sail emissivities, and front and back non-Lambertian 

coefficient given in [14]. An ideal sail would have sail effectiveness of 2. Flexural 

rigidity for Sail 2 was set to be identical to the baseline presented in [54]. Flexural 

rigidity for Sail 1 was chosen based on scaling with respect to sail side length, and 

flexural rigidity for Sail 3 was chosen in order to simulate a very flexible sail with 

significant deflection. The pitch moments of inertia are scaled with the length squared, 

but then decreased by a factor of two to account for higher performance sails in future 
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generations of sail technology as per NASA’s technological roadmap [3]. The vane area 

for Sail 1 is based on the design presented in Chapter 2. Sail 2 and Sail 3 vane area is 

chosen such that the characteristic angular acceleration is similar for all three sails. 

Section 4.2 describes a simplified flexible model that is used to model each sail. 

Section 4.3 utilizes the flexible model to develop a bang-bang controller that takes into 

account the varying maximal moment that can be applied as a function of the sail’s angle 

relative to the sun. Minimum-time maneuvers for solar sails were addressed in [8], but 

used unrealizable control moment generation with tip-vanes and assumed perfect 

knowledge of system state and model parameters. In Section 4.4, the minimum-time 

controller developed in this chapter is then used with the assumed uncertainty in the 

system model to calculate the required buffer angle to ensure no overshoot by simulating 

multiple trajectories forward in time in Section 4.4. Machine learning is used in Section 

4.5 to reduce the uncertainty in the key system model parameters and to derive a relation 

between these uncertainties and the desired maneuver to the required buffer angle. 

Finally, conclusions are presented in Section 4.6. 

4.2 DEFORMABLE MODEL 

The deformable model used for static bending is one derived from Euler-

Bernoulli beam theory in which the deflection of the beam is related to the applied load 

through Equation 4.1: 

 𝐸𝐼
𝑑4𝑤

𝑑𝑥4 = 𝑞(𝑥) (4.1) 

where E is the elastic modulus of the beam, I is the second moment of area of the beam 

(their product is the beam’s flexural rigidity), 𝑤(𝑥) is the deflection of the beam, 𝑞(𝑥) is 

a distributed load, and 𝑥 is the coordinate originating from the sail center and extending 

to the boom tip.  
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The slope, bending moment, and shear force in the beam can be found through 

successive derivatives of the deflection of the beam. 

 𝐸𝐼
𝑑𝑤

𝑑𝑥
= 𝜃(𝑥) (4.2) 

 𝐸𝐼
𝑑2𝑤

𝑑𝑥2 = 𝑀(𝑥) (4.3) 

 𝐸𝐼
𝑑3𝑤

𝑑𝑥3 = −𝑉(𝑥) (4.4) 

Each boom is modeled as a cantilevered beam off of the center of the sail. In 

order to solve for 𝑤(𝑥), 𝑥 ∈ [0, L], Equation 4.1 must be integrated four times while 

applying the appropriate boundary conditions at the beam origin (no boom deflection or 

slope) and tip (no applied moment and shear force equivalent to point load of the control 

vane).  

The load applied to the beam arises from three sources, the solar radiation 

pressure on the sail membrane, the applied force by the tip vane – through solar radiation 

pressure, and the force caused by the rotation rate of the sail. The deflection is calculated 

numerically by dividing the beam into equal segments. The solar pressure applied to the 

sail is assumed to be equally distributed among the four sail booms. The force applied by 

the tip vane is modeled as a point load at the boom tip, assuming that the vane length is 

insignificant compared to the length of the sail, and the force due to the rotation rate is 

distributed according to Equation 4.5 

 𝐹𝑟𝑜𝑡 = 𝑚𝑑𝑥𝜔
2𝑥 (4.5) 

where 𝑚𝑑𝑥 is the mass of the boom element, 𝜔 is the rotation rate of the sail.  

The relative magnitude of each of the three forces is examined using the maximal 

attainable rotation rate during a largest-angle maneuver considered in this chapter (65°) 

using the chosen parameters of each of the sails. The effects of each source of deflection 

for the three sails are summarized in Table 4.2. The resulting deflection from each of the 

three forces can be simply added to obtain the overall deflection under Euler-Bernoulli 
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beam theory and thus the contribution was found by simply dividing the deflection 

caused by one source by the overall deflection from all sources combined.  

Table 4.2: Sail boom tip deflection by source 

Sail 

Sail 

Contribution 

[%] 

Vane Force 

Contribution 

[%] 

Rotation 

Contribution 

[%] 

1 97.28 1.94 0.77 

2 99.62 0.10 0.27 

3 99.77 0.01 0.22 

The insignificance of the deflection due to angular velocity and tip vane force 

even in the most extreme scenario results in neglecting these terms in this chapter. The 

vane force and rotation contribution are non-negligible for Sail 1, however, its overall 

deflection, shown below, is negligible due its relatively small size.  

The distributed load is thus determined by calculating the effective area of solar 

sail material supported by each boom element and a simplified model of the force due to 

solar radiation pressure relative to the model used in Equation 2.4. In the simplified 

model, shown in Equation 4.6, the force normal to the sail surface depends on a 

reflectivity effectiveness parameter, 𝜂, and the angle relative to the sun, 𝛼. The 

effectiveness parameter allows deviation from the perfectly reflecting sail in which 𝜂 =

2. 

 𝑭̇ ∙ 𝒏̂ = 𝜂𝑃𝐴 cos2 𝛼 (4.6) 

With the standard parameters for specular and diffuse reflection provided in [14] 

the relative error introduced by the simplified model (comparing equation 2.4 and 4.6) is 

less than 3%. The load for each boom element was then applied at the center of the 

element. The contribution of the applied load at the i
th

 element on the overall deflection 
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of the beam is given by Equation 4.7 for deflection of a cantilevered beam due to a point 

load [63]. 

 𝑤𝑖(𝑥) = {

𝑃𝑒𝑓𝑓𝑖
𝑥2(3𝑥𝑖−𝑥)

6𝐸𝐼
,         0 < 𝑥 < 𝑥𝑖

𝑃𝑒𝑓𝑓𝑖
𝑥𝑖

2(3𝑥−𝑥𝑖)

6𝐸𝐼
,         𝑥𝑖 < 𝑥 < 𝐿

      (4.7) 

where 𝑃𝑒𝑓𝑓𝑖
 is the effective load applied to the beam element and 𝑥𝑖 is the location of the 

i
th

 element. Obtaining the overall deflection of the boom is a matter of summing the 

contribution of each individual beam element. 

 𝑤(𝑥) = ∑ 𝑤𝑖(𝑥)𝑛𝑢𝑚𝐸𝑙𝑒𝑚
𝑖=1  (4.8) 

Since the applied load on each element is dependent on its projected area toward 

the Sun which in turn depends on the slope of the flexible sail’s deflection, 𝜃(𝑥), a 

number of iterations may be needed in order to converge on the final shape of the sail. 

The maximal deflection (when pointing directly at the sun) of each sail is shown 

in Figure 4.1, Figure 4.2, and Figure 4.3. Additionally, the boom slope for Sail 3 is given 

in Figure 4.4. Results from successive iterations are shown, starting from an un-deformed 

boom. Convergence was determined by a change in tip deflection of less than 1cm from 

the previous iteration. 
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Figure 4.1: Maximal boom deflection – Sail 1 

Tip deflection of Sail 1 is around 1mm which does little to effect the moment 

generated about the center of mass. 

 

Figure 4.2: Maximal boom deflection – Sail 2 
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The tip deflection for Sail 2 of 0.320 meters agrees with the predicted tip 

deflection of between 0.25 meters and 0.35 meters (depending on sail membrane 

thickness) for the multi-point connected sail for which a detailed finite element analysis 

is presented in [1] and which subsequent models in literature have confirmed using 

various methodologies. The close agreement helps to validate the model used in this 

chapter. 

While Sail 1 and Sail 2 converged immediately, it took 7 iterations for the highly 

flexible Sail 3 to converge. The solution oscillates around the correct deflection due to 

the changes in effective solar pressure at different boom slopes. The solution after one 

iteration overshoots the true solution and the decreased effective solar pressure causes the 

next iteration to undershoot the solution and so on until convergence. The final, 

converged, iteration is shown in red for both sail deflection and slope. 

 

Figure 4.3: Maximal boom deflection – Sail 3 
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Figure 4.4: Maximal boom slope – Sail 3 

Both the deflection and the slope are significant in the case of Sail 3 and will have 

an effect on its attitude dynamics. 
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modeled in Equation 4.9. 
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 (4.9) 
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pitch moment of inertia. 
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Using the double integrator model of Equation 4.9, a sail initially at rest with, 

𝛼(𝑡0) = 𝛼0, and a final orientation of 𝛼(𝑡𝑓) = 𝛼𝑓, the classical minimum-time solution 

with a constant allowable applied moment is defined by Equation 4.10 

 𝑀 = {
𝑀𝑀𝑎𝑥,             0 < 𝑡 <

𝑡𝑓

2

−𝑀𝑀𝑎𝑥 ,            
𝑡𝑓

2
< 𝑡 < 𝑡𝑓

 (4.10) 

where the final time can be found to be, 

 𝑡𝑓 = √
4𝐽𝑦𝑦(𝛼𝑓−𝛼0)

𝑀𝑀𝑎𝑥
 (4.11) 

However, in the case studied in this chapter, the control moment is supplied by a 

tip vane and thus is dependent on 𝛼 and the deflection of the boom tip. The desired 

rotation of the boom tip, 𝛾, is also dependent on the slope of the boom tip. The maximal 

available moment can be formulated as an optimization problem. 

 𝑀𝑀𝑎𝑥(𝛼) = max𝛾 𝒓(𝑤(𝐿)) × 𝑭𝑉𝑎𝑛𝑒(𝛾, 𝛼, 𝜃) (4.12) 

Where 𝒓 is a vector pointing from the center of the sail to the boom tip, and 𝑭𝑉𝑎𝑛𝑒 is the 

force generated by the solar radiation pressure on the tip vane. Equation 4.12 is solved 

numerically to arrive at 𝑀𝑀𝑎𝑥(𝛼). The maximal angular acceleration as a function of 

pitch angle, which is simply the maximal moment divided by the pitch moment of inertia 

is shown in Figure 4.5. The optimal vane angle to achieve the maximal moment is shown 

in Figure 4.6 for all three sails. 
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Figure 4.5: Maximal available moment 

 

Figure 4.6: Desired tip-vane angle 
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Due to this varying maximum moment, the maneuver time changes and the switch 

time no longer occurs in the middle of the maneuver. Solving for these is accomplished in 

an iterative gradient method suggested by [62] where an initial guess of the switch time, 

𝑡𝑠0
, and final time, 𝑡𝑓0, is updated as follows: 

 𝑡𝑠(𝑘) = 𝑡𝑠(𝑘 − 1) − 𝛽𝑠(𝑥𝑓 − 𝑥𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)
𝑇
𝜅𝑠(𝑡𝑓) (4.13) 

 𝑡𝑓(𝑘) = 𝑡𝑓(𝑘 − 1) − 𝛽𝑓(𝑥𝑓 − 𝑥𝑓𝑑𝑒𝑠𝑖𝑟𝑒𝑑
)
𝑇
𝜅𝑓(𝑡𝑓) (4.14) 

Where 𝛽𝑠 and 𝛽𝑓 are constants that affect the speed of convergence, 

𝑥𝑓 = [𝛼(𝑡𝑓) 𝛼̇(𝑡𝑓)]
𝑇
, and 𝜅𝑠 and 𝜅𝑓 are the gradients of 𝑥 with respect to the switch 

and final time respectively, evaluated at the final time, as defined in Equations 4.15 and 

4.16: 

 𝜅𝑠(𝑡𝑓) = [
𝜕𝛼

𝜕𝑡𝑠

𝜕𝛼̇

𝜕𝑡𝑠
]
𝑇

|
𝑡=𝑡𝑓

 (4.15) 

 𝜅𝑓(𝑡𝑓) = [
𝜕𝛼

𝜕𝑡𝑓

𝜕𝛼̇

𝜕𝑡𝑓
]
𝑇

|
𝑡=𝑡𝑓

   (4.16) 

Both of which are obtained using a numerical gradient formulation. A typical 

convergence of a naïve initial guess for switch time and final time for a 45° maneuver of 

Sail 2 is shown in Figure 4.7. This guess uses Equation 4.11 and thus underestimates the 

final time and overestimates the switch time since it assumes the maximal moment is 

available throughout. 



 78 

 

Figure 4.7: Convergence to desired switch and final times 

The corresponding pitch angle and rotation rate time histories are given in Figure 

4.8 and Figure 4.9 confirming that the desired rest-to-rest maneuver was accomplished, 

with a final angle error of 0.003° and rate error of 6.5 × 10−5 °/𝑠.  

 

Figure 4.8: Pitch angle time history 
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Figure 4.9: Pitch rate time history 

Switch and final times for the three solar sail examples used in this chapter for the 

same 45-degree maneuver are given in Table 4.3 along with the final attitude and rate 

error along with the number of iterations required to arrive at the solution and the 
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(commercial laptop). 

Table 4.3: Minimum-time results for three example solar sails 
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Switch 

Time [s] 

Final 

Time [s] 

Attitude 

Error [º] 

Rate Error 

[º/s] 

Iterations 

[#] 

Computation 

Time [s] 

1 1226 2621 0.016 7.7×10
-6 60 13.8 

2 1227 2623 0.003 6.4×10
-6 36 8.2 

3 1244 2706 0.013 9.2×10
-6

 60 14.3 
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an estimate of the uncertainty around three key parameters that affect the final attitude of 

the sail: the flexural rigidity of the beam, 𝐸𝐼, the sail effectiveness parameter, 𝜂, and the 

sail’s moment of inertia about the pitch axis, 𝐽𝑦𝑦. The approach is outlined below: 

1. Obtain estimate of key parameters, 𝐸𝐼̂, 𝜂̂, 𝐽𝑦𝑦, along with an assumed 

Gaussian error distribution where each parameter’s distribution is 

independent of the other’s. 

2. Define the initial pitch angle 𝛼0 and a target pitch angle for this iteration 

𝛼𝑓(𝑘) 

3. Obtain switch time and final time, 𝑡𝑠, 𝑡𝑓, for the desired maneuver and 

system model parameters. 

4. Simulate the maneuver 𝑝 times using different admissible values from 

each parameter’s error distribution and using a nominal switch time and 

final time. 

𝜶𝑖(𝑡) = 𝑓(𝛼0, 𝛼𝑓(𝑘), 𝐸𝐼∗, 𝜂∗, 𝐽𝑦𝑦
∗ , 𝑡𝑠, 𝑡𝑓),           𝑖 = 1…𝑝 

𝐸𝐼~𝒩(𝐸𝐼̂, 𝜎𝐸𝐼) 

𝜂~𝒩(𝜂̂, 𝜎𝜂) 

𝐽𝑦𝑦~𝒩(𝐽, 𝜎𝐽) 

  Where the “*” notation indicates a specific parameter chosen from the  

  random distribution. 

5. Calculate the upper limit of confidence interval of the final pitch angle 

𝛼𝑢 = 𝛼𝑓̅̅ ̅ + 𝑧∗𝜎𝛼𝑓
 

where 𝛼𝑓̅̅ ̅ and 𝜎𝛼𝑓
 are the mean and standard deviation of the final angle 

obtained in the p simulations and 𝑧∗ is determined by the user’s desired 

measure of safety 

6. Adjust target pitch angle 𝛼𝑓 for the next iteration according to this limit 
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𝛼𝑓(𝑘 + 1) = 𝛼𝑓(𝑘) + 𝛽(𝛼𝑓(𝑘)–𝛼𝑢) 

where 𝛽 affects the convergence speed. 

7. If not converged, increment 𝑘 and return to step 1. 

Convergence to the desired buffer angle can be seen with the trajectories shown in 

Figures 4.10 and 4.11 for the case of maneuvering Sail 1 from a pitch angle of 0° to 45°  

with 𝜎𝐽 = 0.03𝐽𝑦𝑦, 𝜎𝐸𝐼 = 0.1𝐸𝐼, and 𝜎𝜂 = 0.05𝜂 using 400 simulations.  

 

Figure 4.10: Convergence on buffer angle –Iteration 0, Buffer = 0° 
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Figure 4.11: Convergence on buffer angle –Iteration 1, Buffer = 3.1° 
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Figure 4.12: Effect of uncertainty on required buffer angle – Sail 1 

 

Figure 4.13: Effect of uncertainty on required buffer angle – Sail 2 
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Figure 4.14: Effect of uncertainty on required buffer angle – Sail 3 

Even with a 35% uncertainty in the flexural rigidity of Sail 1 and Sail 2, the 

flexible effect is so small that it is of little consequence with regard to the distribution of 

final pitch angle as indicated by the red line in Figure 4.12 and 4.13 remaining at 0. The 

uncertainty in moment of inertia and sail reflectivity effectiveness have a similar effect 

on the required buffer angle since they both directly affect that angular acceleration of the 

sail. Due to the high flexibility of Sail 3, uncertainty in its flexibility does indeed play a 

significant role in the final attitude of the sail. 

4.5 MACHINE LEARNING FOR UNCERTAINTY MANAGEMENT 

Machine learning was used in two different ways in this analysis. The first was 

for the purpose of system identification in order to reduce the uncertainty in the key 

system parameters. In addition, machine learning was used to find an easily accessed 

relation between the levels of uncertainty in these parameters along with the desired 

change in pitch angle to the required buffer angle to be taken. 
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As in Chapter 3, machine learning is accomplished using MATLAB’s neural 

network toolbox. The toolbox uses an algorithm based on minimization of a nonlinear 

function developed by Levenberg and Marquardt to update the weights applied in the 

neural network with the performance of the network calculated using mean squared error. 

The input data was split such that 70% was used for updating the network nodes’ weight 

and 30% was used for testing and validation.  

The effects of model uncertainty on the required buffer angle motivate an effort to 

reduce this uncertainty. An approach taken here is system identification through machine 

learning where the number of nodes in the hidden neural network was 20. This number 

was found to give the best results using a trial and error approach. A baseline maneuver 

where the vane angle is held constant for a fixed period of time is used to identify the key 

model parameters discussed in this chapter. 

𝐸𝐼̂ = 𝑓(𝜶(𝑡), 𝜶̇(𝑡)) 

𝜂̂ = 𝑓(𝜶(𝑡), 𝜶̇(𝑡)) 

𝐽𝑦𝑦 = 𝑓(𝜶(𝑡), 𝜶̇(𝑡)) 

The relation is learned by executing multiple simulations of the baseline 

maneuver while varying values of each of the key parameters by an assumed initial 

uncertainty and reporting the true value of each parameter along with the pitch time 

history to the learning algorithm. The standard deviation of the variation of the flexural 

rigidity, sail effectiveness, and moment inertia was 25%, 10%, and 2% of their baseline 

values. This choice of variation reflects little knowledge of the effective flexural rigidity 

of the sail, a moderate knowledge of the sail reflectivity effectiveness, and accurate 

knowledge of the sail’s moment of inertia which are easier to model prior to launch. 
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Using these ranges of parameter variation, the resulting standard deviations of the 

errors between the learned parameters and the true parameters for an independent set of 

250 simulation runs are given in Table 4.4.  

Table 4.4: System identification results 

Sail 𝜎(𝐸𝐼̂ − 𝐸𝐼𝑡𝑟𝑢𝑒) 𝜎(𝐽𝑦𝑦̂ − 𝐽𝑡𝑟𝑢𝑒) 𝜎(𝜂̂ − 𝜂𝑡𝑟𝑢𝑒) 

Sail 1 1.98% 24.31% 2.00% 

Sail 2 2.04% 23.95% 2.01% 

Sail 3 1.64% 1.94% 1.94% 

The flexural rigidity of the third sail was much more easily learned by this process 

compared to the other two sails. This is a direct result of the much greater impact of a 

highly flexible sail on the dynamics of the system as discussed in the previous section. 

Therefore, while the system’s flexural rigidity of Sail 1 and Sail 2 cannot be easily 

learned, it will have little impact on the required buffer angle and can thus be eliminated 

as a variable in these cases. These reduced levels of uncertainty can now be used to 

reduce the buffer angle required to avoid overshoot as discussed in the previous section. 

Figure 4.15 shows the true and learned scaled flexural rigidity using the above process 

for Sail 3. 
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Figure 4.15: Learned flexural rigidity for Sail 3 

The good agreement between the truth and learned flexural rigidity over a wide 

range of values shows the value to this method of system identification using a fairly 

short process that can be performed in under an hour on-orbit as other checkout 

procedures are being done. 

The lowest initial uncertainty between the moment of inertia and sail reflectivity 

effectiveness serves as a lower bound to identifying both of these parameters. They both 

act to affect the attitude dynamics in the same way as they both are directly involved in 

determining the angular acceleration. Therefore, only using the observations of attitude 

time history makes it difficult to discern between the two in the machine learning 

process. One way to isolate the effect of sail reflectivity effectiveness is to add 

observations of sail position at different points in time since position is directly affected 
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by the sail effectiveness and not by the sail’s moment of inertia. These observations may 

require a longer time history for calibration depending on the accuracy of position 

estimation of the sail (be it on-board, or using ground-based ranging techniques).  

Machine learning is also used to assist in finding the desired buffer angle given 

model uncertainties and initial and final pitch angles.  

𝜃𝑏𝑢𝑓𝑓𝑒𝑟 = 𝑓(𝜎𝐸𝐼 , 𝜎𝜂 , 𝜎𝐽, 𝛼0, 𝛼𝑓) 

The process of learning the buffer angle is identical to that described above for the 

purpose of system identification, only that in this case, the number of nodes in the hidden 

neural network layer is four. The standard deviations of the uncertainties were taken to be 

those learned using the system identification process, the initial pitch angle was taken to 

be 0 and the final pitch angle was taken to vary between 35° and 65°. The root-mean-

square of the difference between the true calculated buffer angle described in the 

previous section to that learned by the relation above are 0.61°, 0.53°, and 1.25° for Sail 

1, 2, and 3 respectively. The small magnitude of these errors compared to the large angle 

maneuvers shows the viability of this approach.  

The advantage of using a machine-learned relation to obtain the required buffer 

angle for every maneuver is on-board computational time with no significant requirement 

on additional data storage for the learned relations. The time to learn the required buffer 

angle using the machine-learned function is more than five orders of magnitude quicker 

than that of directly calculating the buffer angle. The machine-learned function can be 

evaluated in approximately 1 millisecond, while the direct calculation of each required 

buffer angle takes an average of 500 seconds on the same commercial laptop described 

above. In addition, this process allows for separation between learning this relation and 

on-board operations. Therefore, the relation that produces the required buffer angle may 

be learned a-priori on ground-based computers and then only the function needs to be 
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evaluated in the solar sail’s on-board computer. Utilizing systems that are disconnected 

from the on-board hardware allows for increasing the accuracy of each algorithm used in 

the process including sail deflection, minimum-time, and the overall trajectory-based 

reachability algorithm. 

4.6 CONCLUSIONS 

This chapter describes an algorithm for uncertainty management for three key 

parameters that are not easily modeled or tested that have significant impact on solar sail 

attitude control. A minimum time control law using boom-tip vanes was shown to 

significantly improve performance over the proposed solution in Chapter 2. In this 

chapter, Sail 1, which is similar to the sail model used in Chapter 2, was able to perform a 

45° maneuver in approximately 45 minutes. In comparison, in Chapter 2 a 35° maneuver 

was shown to take approximately 5 hours. The desire to not overshoot the target attitude 

given an unavoidable model uncertainty motivated development of a trajectory-based 

reachability algorithm that calculates a safe buffer for the minimum-time controller. An 

arbitrary large-angle maneuver can thus be planned and performed and the sail can reach 

arrive within a small buffer of its intended attitude. This maneuver can be iterated upon 

more than once to get arbitrarily close to the desired attitude. 

An added benefit of the ability to learn the model parameters with a simple on-

orbit maneuver is that the time-varying optical properties of the sail due to material 

degradation can be taken into account without any algorithmic changes or controller 

tuning. When the optical properties of the sail degrade, the learned sail effectiveness will 

be estimated and updated accordingly. In addition, re-learning the sail effectiveness can 

take into account changes in the distance between the sail and the sun that change the 

solar radiation pressure. This re-learning can be done using the same on-orbit maneuver 



 90 

used initially and should not represent a burden on the mission due to its simplicity. 

Long-duration interplanetary missions for which the solar sail is a viable and sometimes 

only option will require handling these changes. 
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Chapter 5 

Conclusions 

5.1 SUMMARY OF WORK 

This dissertation discussed different approaches to handle the unique challenges 

posed by solar sail attitude control today with a look towards future challenges of solar 

sail technology and the barriers to its progress that the technology faces. The algorithms 

that were developed can be classified into two categories, backward and forward looking.  

In the first category developed in Chapter 2, the main focus was to observe the 

time history of the control action as it worked to actively counteract and reject 

disturbances that arose due to various sources of uncertainties. Instead of direct handling 

of these uncertainties, this approach focused on the action that could be taken to ensure 

that the sail operated about an equilibrium position regardless of the disturbance moment 

imposed on it. The control system worked to reduce motion in the control vanes and 

showed the benefit of incorporating passive stability as part of the controller. The 

controller was shown to obtain a pointing error of less than 2° and low system actuation 

once an equilibrium position was estimated and used. 

The second approach, inspired by reachability analysis, focused on predicted 

possible future states and modifying the control scheme accordingly. In the case of the 

UAV testbed, this was done by supervising the low-level controller, be it PID auto-pilot 

or human operator, and projecting the commanded control signal inside a safety ellipsoid 

that approximates the safe set of inputs at that point in time. The safe set of inputs is a 

sequence of control inputs for which the UAV will not violate a set of state constraints 

that are deemed unsafe.  

In the case of the solar sail, predictions were made about the required size of the 

buffer angle from the target attitude to ensure that the unsafe state of overshoot is not 



 92 

encountered. This was accomplished within the framework of a flexible sail with 

significant uncertainties as well as substantial uncertainties in the sail’s reflectivity 

effectiveness which can be used to account for non-flat-plate effects such as sail 

wrinkling and billowing and optical property degradation over time.  

Machine learning was shown to provide substantial benefits both in system 

identification to reduce uncertainties and to allow for separation between computationally 

expensive reachability analysis and the need for feasible real time controllers in 

embedded systems. This allows utilization of arbitrarily accurate models and simulations 

to be performed offline and creates a very flexible architecture that does not make 

significant demands of on-board computing capabilities. The learned set of safe inputs 

could be accessed and modified on the order of milliseconds and is thus easily 

incorporated as part of the control system. The easily accessible learned relationship 

between model uncertainties and required buffer angle is similarly beneficial and 

additionally can be used by mission planners to assess their design effort and allows them 

to “buy-down” uncertainties in the areas which would be most cost-effective in terms of 

improving system performance. 

The main innovations in this work that can thus be summarized as an algorithm 

for the autonomous adjustment of trim angles that allows the controller to operate around 

an equilibrium point that is determined by observing the control history, a way to 

constrain future inputs in real time in order to provide a statistical measure of safety 

against a set of arbitrary constraints, and a method that allows for optimal time 

reorientation while not sacrificing safe operations in the light of the unique uncertainties 

that exist in solar sail design. 
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5.2 FUTURE WORK 

The approach taken in Chapter 4 for large-angle maneuvers can be repeated 

numerous times for smaller and smaller angles decreasing the buffer between the planned 

target and the ultimate desired orientation. However, the benefit of using a minimum-

time maneuver diminishes for smaller-angle maneuvers. It is likely that a combination of 

the algorithm proposed in Chapter 2 will be more suitable for the final part of the 

maneuver. Taking advantage of the passive stability inherent in the square solar sail 

design and safe maneuvering employed by the first algorithm will assist in minimizing 

control effort and facilitate accurate pointing. The algorithms used in Chapter 2 will 

benefit from the reduced system uncertainty due to the learned parameter estimation of 

Chapter 4. 

The adaptable nature of the overall algorithm presented in Chapter 4 allows for 

various extensions within the same framework. Since the machine learning of the buffer 

angle is accomplished offline, other, more sophisticated sail models can be used. This 

includes the possibility of using finite element analysis offline and incorporating its 

results in real time control through machine learning.  Other extensions can include a 

more sophisticated model of the solar radiation force on the sail. Possible future 

adaptation of the algorithm may include fault handling such as a tear in one of the sail’s 

quadrants. Instead of incorporating just one sail reflectivity effectiveness parameter, one 

can extend the concept to allow for an effectiveness parameter for subsections of the sail. 

This may allow for fault detection if one of the effectiveness parameters is deemed to be 

significantly different than the others. 

A natural extension of this work is to utilize the algorithms presented in Chapter 4 

for 3-axis attitude control. Extension is trivial for independent control about each axis, 

and so successive reorientations are possible without any change to the algorithm. 
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However, simultaneous rotation about a transverse axis and the axis normal to the sail 

may require some adaptation to account for the effect of rotating the vanes for the 

purpose of transverse control on the availability of moment to be applied about the axis 

normal to the sail. It is worth noting that using minimum-time control for rotation about 

the axis normal to the sail may be of limited interest in the context of ensuring no 

overshoot since this may be of little consequence in terms of mission safety. 

Though the focus of this dissertation has been on solar sail attitude control and to 

some degree UAV control, it can be further generalized. The framework developed, 

particularly in chapter 3 and chapter 4, can easily be adapted to control of any dynamic 

system. The dynamic model would need reformulation and the parameters of interest 

would change, however, the basic premise would hold. The trajectory-based reachability 

analysis can be used with any system where some states are undesirable or considered 

unsafe. Any such analysis would benefit from the decoupling methodology suggested 

here in order to apply it to a system in real time. 
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Appendix A: Chapter 2 Coordinate Systems 

This section gives details of the coordinate systems used in Chapter 2. The main 

sail coordinate system and the vanes’ coordinate system are shown in Figure A.1. 

 

Figure A.1 Vane frames (in red) and sail frame (in black) when 0° cant and twirl angles   

The vane coordinate system is fixed on each of the vanes and changes with 

respect to the sail frame as each vane is canted and twirled as commanded by control 

system. The origin of the frame is at the point connecting the vane to the boom. When all 

cant and twirl angles are zero, vane 1’s frame is aligned with the main sail frame. The z-

axis is normal to the vane and sail, the x-axis extends in the direction of the boom 

through the center of the vane, and the y-axis completes the right-handed system. Vane 

2’s frame is rotated by 90 degrees about the vane/sail z-axis as shown in Figure A.2.  
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The sun-pointing frame is a frame that is centered at the sail-frame origin, with 

the z-axis pointed in the direction of the sun, the x-axis parallel to the ecliptic plane, and 

the y-axis completing the right-handed coordinate system. This frame is called the Sun 

frame (in yellow) in the following figure by Derbes [1]. 

 

Figure A.2: Sun pointing frame [12] 

This frame is used in order to describe the orientation of the sail-frame in terms of 

sun-angles (top angle, sun-incidence angle, and flat-spin angle) which are a set of Euler 

angles that describe a 3-2-3 rotation.   
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Appendix B: Chapter 3 Nomenclature and Coordinate Systems 

This section gives details of the coordinate systems used in Chapter 3 along with 

nomenclature not defined as part of the main chapter for brevity.  

In order to arrive at the UAV body frame from an inertial frame three successive 

rotations are performed. First, the inertial reference frame is rotated about the inertial 

frame’s 3-axis by an angle 𝜓 into the first intermediate frame. The first intermediate 

frame is then rotated about its 2-axis by an angle 𝜃 to arrive at the second intermediate 

frame. Finally, the second intermediate frame is rotated about its 1-axis by an angle 𝜙 to 

arrive at the body frame. This sequence amounts to a 3-2-1 rotation sequence. The 

transformation between the inertial frame to the body frame thus becomes: 

 

𝑅𝑖
𝑏 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

]

 (B.1) 

The instantaneous rotation rates, p,q, and r, are in the UAV’s body frame and 

since the Euler angles are given in intermediate frames, they must be rotated into the 

same frame in order to be related to each other. This process of appropriate rotations is 

shown in Equation B.2 

[
𝑝
𝑞
𝑟
] = [

𝜙̇
0
0

] + [
1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] [
0
𝜃̇
0
] + [

1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] [
0
0
𝜓̇

] 

[
𝑝
𝑞
𝑟
] = [

1 0 −𝑠𝑖𝑛𝜃
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
0 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

] [

𝜙̇

𝜃̇
𝜓̇

] (B.2) 

The rotation matrix can then be inverted to arrive at the relation between the Euler 

angle derivatives and the instantaneous rotations as shown in the equations of motion in 

Chapter 3. 
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Nomenclature for undefined constants and variables in Chapter 3 is given below. 

Table B.1: Undefined constants used in Chapter 3 

Constant Definition Units 

𝑆𝑝𝑟𝑜𝑝 Propeller surface area 𝑚2 

𝑐𝑝𝑟𝑜𝑝 Propeller mean chord 𝑚 

𝑘𝑚𝑜𝑡𝑜𝑟 Motor effectiveness − 

𝑚 Aircraft mass 𝑘𝑔 

𝑏 Wing span 𝑚 

𝑐 Wing mean chord 𝑚 

𝑆 Wing area 𝑚2 

𝐶𝑌0
 Zero side force coefficient − 

𝐶𝑌𝛽
 

Side force coefficient due to angle 

of sideslip 
− 

𝐶𝑌𝑝
 

Side force coefficient due to roll 

rate 
− 

𝐶𝑌𝑟
 

Side force coefficient due to yaw 

rate 
− 

𝐶𝑌𝛿𝑎
 

Side force coefficient due to 

aileron deflection 
− 

𝐶𝑌𝛿𝑟
 

Side force coefficient due to rudder 

deflection 
− 

𝐶𝑝0
 Zero roll moment coefficient − 

𝐶𝑝𝛽
 

Roll moment coefficient due to 

angle of sideslip 
− 

𝐶𝑝𝑝
 

Roll moment coefficient due to roll 

rate 
− 

𝐶𝑝𝑟
 

Roll moment coefficient due to 

yaw rate 
− 

𝐶𝑝𝛿𝑎
 

Roll moment coefficient due to 

aileron deflection 
− 

𝐶𝑝𝛿𝑟
 

Roll moment coefficient due to 

rudder deflection 
− 

𝐶𝑚0
 Zero Pitch moment coefficient − 

𝐶𝑚𝛼
 

Pitch moment coefficient due to 

angle of attack 
− 

𝐶𝑚𝑞
 

Pitch moment coefficient due to 

pitch rate 
− 

𝐶𝑚𝛿𝑒
 

Pitch moment coefficient due to 

elevator deflection 
− 
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Table B.2: Undefined functions of angle of attack used in Chapter 3 (dimensionless) 

Variables Definition 

𝐶𝑋(𝛼) Axial force coefficient  

𝐶𝑋𝑞
(𝛼) Axial force coefficient due to pitch 

rate 

𝐶𝑋𝛿𝑒
(𝛼) 

Axial force coefficient due to 

elevator deflection 

𝐶𝑍(𝛼) Normal force coefficient 

𝐶𝑍𝑞
(𝛼) 

Normal force coefficient due to 

pitch rate 

𝐶𝑍𝛿𝑒
(𝛼) 

Normal force coefficient due to 

elevator deflection 

 

  

𝐶𝑟0 Zero yaw moment coefficient − 

𝐶𝑟𝛽
 

Yaw moment coefficient due to 

angle of sideslip 
− 

𝐶𝑟𝑝 
Yaw moment coefficient due to 

roll rate 
− 

𝐶𝑟𝑟 
Yaw moment coefficient due to 

yaw rate 
− 

𝐶𝑟𝛿𝑟
 

Yaw moment coefficient due to 

rudder deflection 
− 

𝐽𝑖 Moment of inertia about the i axis 𝑘𝑔 − 𝑚2 

𝐽𝑖𝑗 The i-j product of inertia 𝑘𝑔 − 𝑚2 

Γ 𝐽𝑥𝐽𝑧 − 𝐽𝑥𝑧
2  𝑘𝑔2 − 𝑚4 

Γ1 
𝐽𝑥𝑧(𝐽𝑥 − 𝐽𝑦 + 𝐽𝑧)

Γ
 − 

Γ2 
𝐽𝑧(𝐽𝑧 − 𝐽𝑦) + 𝐽𝑥𝑧

2

Γ
 − 

Γ5 
𝐽𝑧 − 𝐽𝑥

𝐽𝑦
 − 

Γ6 
𝐽𝑥𝑧

𝐽𝑦
 − 

Γ7 
𝐽𝑥(𝐽𝑥 − 𝐽𝑦) + 𝐽𝑥𝑧

2

Γ
 − 
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