No. 3819 May 15, 1938 # HEAT TRANSFER AND PRESSURE DROP IN HEAT EXCHANGERS By BYRON E. SHORT Oniversity of Texas Publications Bureau of Engineering Research of the College of Engineering The University of Texas PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH AND ENTERED AS SECOND-CLASS MATTER AT THE POST OFFICE AT AUSTIN, TEXAS, UNDER THE ACT OF AUGUST 24, 1912 # The University of Texas Publication No. 3819 May 15, 1938 # HEAT TRANSFER AND PRESSURE DROP IN HEAT EXCHANGERS By BYRON E. SHORT Bureau of Engineering Research of the College of Engineering The University of Texas The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free government. Sam Houston Cultivated mind is the guardian genius of Democracy, and while guided and controlled by virtue, the noblest attribute of man. It is the only dictator that freemen acknowledge, and the only security which freemen desire. Mirabeau B. Lamar # Table of Contents | <u>Topic</u> | | Page | |---|---|------| | Table of Symbols | | 11 | | Introduction and Acknowledgments | | 111 | | Summary | • | iv | | Object | • | 1 | | Scope | • | 1 | | Apparatus and Experimental Procedure | • | 3 | | Discussion and Correlation of Results, Transfer Coefficient | s | 9 | | Discussion and Correlation of Results, Pressure Drop | • | 18 | | Conclusions | | 21 | | Bibliography | | 21 | | Appendix | | 22 | COPYRIGHT - 1938 THE UNIVERSITY OF TEXAS #### TABLE OF SYMBOLS (Listed in order in which they occur in text) - h, = tube side film coefficient of heat transfer, B.t.u. per hr.sq.ft.-deg.F. - $h_{_{\rm S}}$ = shell side film coefficient of heat transfer, B.t.u. per hr.sq.ft.-deg.F. - = diameter of tube (inside in Eq. 1, outside in Eq. 11), ft. - = thermal conductivity, B.t.u.-ft. per hr.-sq.ft.-deg.F. - N = heated length of tube, ft. - G = weight rate of flow, lb. per hr.-sq.ft. of cross-sectional area μ = absolute viscosity of fluid, lb. per hr.-ft. - = specific heat of the fluid, B.t.u. per lb.-deg.F. - = overall transfer coefficient, B.t.u. per hr.-sq.ft.-deg.F. m.t.d. - r₂ = outside radius of tube, ft. - r_1 = inside radius of tube, ft. - $G_{\mathbf{x}}$ = effective weight rate of flow, lb. per hr.-sq.ft. of effective area - G_{R} = radial flow in disk-and-doughnut type baffles, lb. per hr.- - G_{Λ} = flow in annular area in disk-and-doughnut type baffles, lb. per hr.-sq.ft. - G_{H} = flow through hole in disk-and-doughnut type baffles, lb. per hr.-sq.ft. - G = flow through orifices in orifice type baffles, lb. per hr.sq.ft. - Ga = flow along tubes between baffles in orifice type baffles, lb. per hr.-sq.ft. - G_b = flow beneath baffles in half-moon type baffles, lb. per hr. sq.It. - G_p = flow across tubes in half-moon type baffles, lb. per hr.sq.ft. - S = baffle spacing, ft. - A_R = free area of radial flow in disk-and-doughnut baffles, sq. ft. (See Fig. 6) - A = free area between shell and disk in disk-and-doughnut baffles, sq. ft. - AH = free area in hole of doughnut in disk-and-doughnut baffles, sq. ft. - A = total free area of orifices at each baffle in orifice baffles, sq. ft. - A_a = free área between baffles in orifice type baffles, sq. ft. - $A_{\rm b}^{-}$ = free area beneath baffle in half-moon type baffles, sq. ft. - Ap = free area for cross-flow between baffles in half-moon baffles, sq. ft. - P = tube pitch, ft., p = tube pitch, inches - L = total baffled length of exchanger, ft. - Ap = pressure drop in baffled length of exchanger, inches of mercury - w = specific weight of fluid, lb. per cu. ft. $D_{\rm D}$ = diameter of disk of disk-and-doughnut baffles, ft. - D_{H}^{-} = diameter of hole in disk-and-doughnut baffles. ft. - d_+ = outside diameter of tube, inches - d_0 = diameter of orifice of orifice baffles, inches - N_h = number of baffles on the tube bundle. #### INTRODUCTION AND ACKNOWLEDGMENTS This Bulletin is the result of a series of experimental investigations on the subject of heat transmission in heat exchangers which began with a series of experiments on a shell-and-tube type exchanger with a single horizontal baffle (Bulletin No. 3128. The University of Texas), then followed by a series of experiments to determine the effect of tube spacing and baffle arrangements on the pressure loss in tube bundles (Oil and Gas Journal, May 10, 1934), and was then followed by the present work, part of which was written up by Mr. S.A. Perrone and published in 1935 (Oil and Gas Journal, March 28, 1935). perimental work was done in the Mechanical Laboratory at The University of Texas and the results were computed and correlated while the writer was a gradute student at Cornell University in 1935-36. With some minor changes, this Bulletin is a summary of the thesis presented at Cornell University in June 1936 in partial fulfillment of the requirements for a Master of Mechanical Engineering degree. The writer wishes, therefore, to acknowledge the criticism and suggestions of Professors W.N. Barnard, F.O. Ellenwood, C.O. Mackey, and J.O. Jeffrey of Cornell University on the original phases of this work; the help of the Department of Mechanical Engineering and the Bureau of Engineering Research at The University of Texas in acquiring the materials used in the experimental work; and the able assistance of Mr. Fred Morris, Laboratory Mechanician at The University of Texas, and Mr. S.A. Perrone, former graduate student at The University of Texas, in setting up the apparatus and in the conduct of the tests. And, the writer wishes to thank the Dean of the College of Engineering of the University of Texas in obtaining funds for the publication of these results. #### SUMMARY The material in this Bulletin presents in both a graphical and an analytical manner the results of a series of experiments with water and several grades of oil being cooled in a shelland-tube heat exchanger. The heat exchanger was first used without baffles or turbulence promoters, and then with half-moon type, then orifice type, and finally disk-and-doughnut type baf-Both the heat transfer coefficients for the outside of the tubes in the bundles and the pressure drop on this same side are treated. Steps in the graphical correlation of the results in obtaining the final transfer coefficient plots are presented. An effective velocity that consists of a combination of the weight rates of flow in the restricted regions is used in the correlation, and methods of obtaining this velocity for the different types of construction are given. A graphical comparison of the heat transfer coefficients is made with results from tests of similar heat exchangers by Ross Heater Company and Foster Wheeler Corporation showing that the methods are applicable to units of other length and shell diameter than the one used in this experimental work. A graphical comparison is also made with the results of others on flow along and across single pipes as well as across banks of pipes. Colburn's equation for heat transfer coefficients for flow across banks of staggered pipes using the velocity in the minimum cross-section is also presented for comparison. Pressure drop relations are given using the Darcy or Fanning equation with the friction factor combined with a "roughness" coefficient. Equations for determining the roughness coefficient for the different baffle forms are given along with the friction and roughness factor graphs. The effect of cooling on the pressure drop is considered as a function of Prandtl's number. # HEAT TRANSFER AND PRESSURE DROP IN ## Object This experimental study was made to determine the possibility of establishing a relation that would permit both the film coefficient of heat transfer and the pressure drop to be calculated for a particular heat exchanger irrespective of the type, size and spacing of the baffles used, or of the size and spacing of the tubes in the bundle, or of the fluid used. ## Scope This paper covers the results of experimental work that was done on a shell-and-tube type heat exchanger in which three different forms of baffles (turbulence promoters) were used and, also, in which the spacing of these baffles and the size and spacing of the tubes were varied. The fluid used on the inside of the tubes as the coolant was water, while water and three different grades of oil were used on the shell side. In case of the half-moon baffles, Table I shows the different arrangements (tube sizes, tube spacing, and baffle spacing) that were used: Table I | Tube Diameter | Tube Pitch | Number of Baffles | |---------------|------------|-------------------| | 3/8" o.d. | 1/2" | 19, 15, 11, 7, 3 | | n | 11/16" | 19, 15, 11, 7, 3 | | 1/2" o.d. | 19/32" | 19, 15, 11, 7, 3 | | 11 | 11/16" | 19, 11, 3 | | n | 25/32" | 19, 11, 3 | | п | ĺ | 19, 11, 3 | | Ħ | 1-3/32" | 19, 15, 11, 7, 3 | | 5/8" o.d. | 3/4" | 19, 11, 3 | | 11 | 7/8" | 19, 15, 11, 7, 3 | | Ħ | 1-1/16" | 19. 11. 3 | while in the case of the orifice baffles, Table II shows the different arrangements that were used: Table II | Tube Diameter | Tube Pitch | Orifice Diameter | Number of Baffles | |--|---|---|---| | 3/8" o.d.
1/2" o.d.
"
"
"
5/8" o.d. | 11/16"
25/32"
"
1-3/32"
1-1/16" | 7/16"
17/32"
9/16"
5/8"
9/16"
11/16" | 19, 11, 3
19, 15, 11, 7, 3
19, 11, 3
19, 11, 3
19, 11, 3
19, 11, 3 | while for the disk-and-doughnut baffles Table III shown the variation in construction of the unit; and for the bundles without baffles Table IV shows the arrangements: Table III | Tube | Tube | Diameter | Diameter of Hole | Number of | |-----------------------------|---
---------------------------------------|--------------------------------------|---| | Diameter | Pitch | of Disk | | Baffles | | 3/8" o.d.
1/2" o.d.
" | 11/16"
25/32"
"
1-3/32"
1-1/16" | 4.5"
4.5"
4.95"
5.5"
4.5" | 4.0%
4.0%
3.5%
2.5%
4.0% | 19, 11, 3
19, 11, 7, 3
19, 11, 3
19, 11, 3
19, 11, 3
19, 11, 3 | Table IY | Tube Diameter | Tube Pitch | |----------------|---| | 3/8" o.d. | 1/2" | | 1/2" o.d. | 11/16"
19/32" | | "
5/8" o.d. | 1/2"
11/16"
19/32"
25/32"
1-3/32"
7/8" | For practically all of these investigations the rate of tube fluid was maintained at 2 ft. per sec. While the shell fluid was varied from a minimum of 2000 lb. per hour to 45000 lb. per hour. The total range in Reynolds' number was approximately 10,000 fold and, in Prandtl's number, approximately 3 to 2000. # Apparatus and Experimental Procedure The heat exchanger used in this series of investigations consisted, as shown by Fig. 1, of a 6-inch steel pipe shell with inlet and outlet for the shell fluid placed on the top side near each end. The tube plate on one end was attached to the shell flange and then the "water box" placed over this, while, on the other end, the tube plate was attached to a "floating water box" which had an inlet connection extending through a stuffing box in the shell end-housing to the outside. The tube bundles that were used were made of No. 18 B.W.G. brass tubes, 5 ft. long, attached to 3/8 inch thick brass plates at each end. The holes in the tube plates were drilled 1/64 inch larger in diameter than the outside diameter of the tubes and, in assembling, the tubes extended 1/8 inch beyond the inner (water box side) face of the plates and were soldered to these plates. The baffles were made from 1/16 inch thick brass plate. These baffles were cut from the flat plate to a size slightly in excess of the inside diameter of the exchanger shell and then the tube holes were drilled before the baffles were fitted to the shell. For the half-moon and disk-and-doughnut baffles, the tube holes were drilled 1/64 inch in diameter larger than the tubes with which they were to be used, whereas, the tube holes for the orifice baffles were drilled to a size shown by Table II for each particular tube bundle. After the tube holes had been drilled in the circular plates that were to be used for half-moon baffles, a portion was cut off along a horizontal line 7/8 inch above or below the center line, depending on whether it was desired to have the fluid flow under or over the baffle. In the case of the disk-and-doughnut baffles, the outer portion was cut off so as to leave a disk of the desired size for those plates from which the disks were made, and the inner portion cut out so as to leave an annular shaped plate of the desired size for those plates from which the "doughnuts" were made. Fig. 2 shows the dimensions of all of these baffles as well as showing the tube pattern. After the baffles had been cut to the desired shape, they were assembled as a group (19 for each particular tube size and spacing) and filed so as to allow them to be forced through the shell. Then after a group of tubes had been assembled with 19 baffles and the tubes had been soldered to the end plates, the baffles were fitted into the shell in such a manner, that the assembled bundle could be drawn in or out of the shell with very slight effort. The initial and final baffles were always at the same points relative to the shell inlet and exit connections and the distance between these end baffles was 43 inches and all intermediate baffles were evenly distributed within this distance. All baffles were held at a particular location on the tube bundle by "tacking" the baffles to the tubes with solder at three or four uniformly distributed points around each baffle. In changing the arrangement of a bundle so that it would have less than 19 active baffles, the solder holding each baffle to the tubes was removed and the excess baffles moved to the end zones next to the tube plates. The remaining baffles were then distributed within the 43-inch space, with the initial and final baffles being located in the same position with respect to the inlet and exit shell connections as before. The inactive baffles in the end zones were "tacked" to keep them from moving toward the active baffles. Fig. 1 shows a tube bundle with 11 half-moon baffles in place with 8 inactive baffles in the end zones. Preliminary investigations showed that the overall transfer coefficient varied with time and a weak solution of hydrochloric acid was used as a bath for the tube bundles in order to have the same degree of cleanliness for each series of tests. Fig. 3 shows the effects of the fouling and cleaning. Weighing tanks and calibrated platform scales were used to determine the rates of flow of the liquids, the procedure being to note the time required for a particular weight of tube or shell fluid to flow through the unit. Mercurial thermometers in mercury-filled, steel wells were used to determine the inlet and exit temperatures in each case, and a mercury-filled U-tube manometer was used for the pressure drop determination. For all tests where the shell fluid was water, direct connection was made from the manometer to the "piezometer manifold"; but for the tests with oil, glass reservoirs were placed between the manometer and the "piezometer manifold" and oil was allowed to extend to the middle of the reservoirs with water occupying the lower half of each reservoir and the copper tubing which connected them to the manometer. The size of the reservoirs was such that the change in elevation of the oil-water separation level with manometer deflection was negligible. The initial temperature of the shell fluid entering the exchanger was maintained at approximately 140 deg.F and the entering tube fluid temperature remained approximately constant for each series. The tube fluid inlet temperature was around 60 deg. F for the earlier series but had increased to about 80 deg. F before the final tests were made. The rate of flow of the shell fluid was varied from a minimum of 2000 to 3000 lb. per hour to a maximum of 35000 to 45000 lb. VARIATION OF THERMAL CONDUCTIVITY OF WATER AND OIL WITH TEMPERATURE FIG. 4 VISCOSITY VARIATION WITH TEMPERATURE FOR WATER AND THE THREE OILS THAT WERE USED FIG. 5 per hour. The minimum rate was governed by the stability of pumping and heating conditions while the maximum was governed by the range of the pressure drop manometer in some cases (the manometer had a range of 40 inches) and by accurate weighing ranges in other cases. Sufficient intermediate tests were made between these extreme limits to permit definite trends of results to be ascertained. Plots of the overall transfer coefficients against rate of flow and pressure drop were used as a means of control on the experimental procedure. The heat absorbed by the tube fluid was balanced against the heat given up by the shell fluid for each set of data recorded and this was used as a verification of the fluid temperature determinations. As the shell was not insulated, the heat absorbed was usually 1/2 to 3 per cent less than that given up. The viscosity of each oil that was used was determined at several temperatures by means of a Saybolt Universal Viscosimeter and the viscosity of the water was based on the values given in the International Critical Tables. The thermal conductivities of the water and of the oils were based on the values given by McAdams!* The curves of these data are shown by Fig. 4 and 5. ^{(*} Numbers refer to bibliography at end of text of Bulletin.) #### DISCUSSION AND CORRELATION OF RESULTS #### TRANSFER COEFFICIENTS Since there are numerous data available relating to film coefficients of heat transfer for liquids flowing inside of circular tubes, it was assumed that these data could be used for the computation, in this case, of the film coefficients for the tube fluid from the test data and thus allow the shell side coefficient to be determined. The equation used for this purpose is as follows: $$\frac{\text{h D}}{k} = 0.0225 \quad \left[1 + \frac{50D}{N}\right] \left[\frac{DG}{\mu}\right]^{0.8} \left[\frac{c\mu}{k}\right]^{0.4}$$ (Note: See first page of Bulletin for symbols) After the tube side coefficients were computed from Eq. 1, with the fluid properties evaluated at the main stream temperature, the shell side coefficients were computed from Eq. 2. $$\frac{1}{h_{s}} = \frac{1}{U} - \frac{r_{2}}{r_{1}} \frac{1}{h_{t}} - \frac{r_{2}}{k} \log_{e} \left(\frac{r_{2}}{r_{1}}\right)$$ (2) In correlating the shell side transfer coefficients and the pressure drop, it was assumed that the effective velocity of the shell fluid was governed by a combination of the velocity through the restricted passages at the baffles with the velocity across or along the tubes between successive baffles. It was assumed that the combination of these velocity components would be governed by the relative proportion of the areas involved in each case as well as by the baffle spacing since the effectiveness of the baffles as turbulence promotors would thus be indicated. Eq. 3, 4, 5, and 6 show how the effective velocity was computed for the disk-and-doughnut baffles, orifice baffles, half-moon baffles, and zero baffles, respectively. $$G_{x} = \frac{\left(A_{R}\right)^{0.88}}{\left(S\right)^{0.33}} \quad G_{R} + \frac{\left(A_{A}\right)^{0.48}}{\left(S\right)^{0.5}} \quad G_{A} + \frac{\left(A_{H}\right)^{0.56}}{\left(S\right)^{0.5}} \quad G_{H}. \quad (3)$$ where $$n = \frac{0.332}{(A_o)^{0.15}}$$ $$G_x = \frac{A_b}{(S)^{0.5}} G_b + (S)^{0.44} G_p \dots (5)$$ $$G_x = 0.53 G \dots (6)$$ In these equations G_R , G_A , G_H , G_o , G_a , G_b , G_p , and G represent the weight rate of flow at the several
restricted sections in the path of flow. For the case of the disk-and-doughnut baffles, G_R represents the rate of flow, W/A_R , lb. per hr.-sq.ft. of cross-sectional area, in a radial direction where AR is determined by obtaining the average free circumferential distance through which the fluid would pass after flowing through the hole of the doughnut and before reaching the edge of the next disk in the path of flow and multiplying this distance by the distance between baffles. Then G, represents the rate of flow, W/A, lb. per hr.-sq.ft. of cross-sectional area, through the free annular space between the edge of the disk and the exchanger shell. The "free" area meaning the total annular area minus the cross-sectional area of the tubes in this annular space. And then G_H is the rate of flow, W/A_H , lb. per hr.-sq.ft. of free cross-sectional area, through the hole in the doughnut. And, in this case, AH is the area of the hole in the doughnut minus the cross-sectional area of the tubes in this region. Similarly G is the rate of flow, W/Ao, through the orifices at each baffle for the orifice type of baffles. In this, Ao is obtained by computing the total area of the holes in the baffle and subtracting the area of all of the tubes from it. Or, in other words, A. is the sum of all of the small annular spaces around the tubes in each baffle. Aa is the free area between the baffles and is the shell cross-sectional area minus the cross-sectional area of all of the tubes. Hence G, is the rate of flow, W/A, along the tubes in the region between the orifice type baffles and is the same as G for the unbaffled bundles. Likewise, in the case of the half-moon type of baffles, Gb is the rate of flow W/Ab, in the region beneath or above each half-moon baffle, and Gp is the average rate of flow, W/An, across the tubes in the region between each baffle. Fig. 6 shows the paths of flow for each type of baffle and the area (A_p) of cross-flow for the half-moon baffles and the area (A_R) for radial flow for the disk-and-doughnut baffles. The effect of these different components of flow is shown graphically by Fig. 7 for the disk-and-doughnut type of baffles. Eq. 3, 4, 5, and 6 were obtained for each baffle type, respectively, from such graphs as Fig. 7 for each type and size of baffle. The effect of the tube spacing (tube pitch) is shown by Fig. 8 for the half-moon baffles and was found to affect the film coefficient of the other baffle types similarly. The result of this is given analytically by $$h_s = B\left(\frac{P-D}{P}\right)^{0.5}$$ PATHS OF THE LIQUIDS AT THE BAFFLES AND FREE AREAS OF FLOW AT THE SAME POINTS - FIG. 6 Fig. 9 and 10 give an indication of the procedure used to determine the effect of Prandtl's number, $\frac{c\mu}{k}$, on the shell side coefficient and this result shown analytically is $$h_{s} = B' \left(\frac{c\mu}{k}\right)^{0.32} \tag{8}$$ The composite relation obtained from the foregoing graphical and analytical analysis is $$\frac{h_B D}{k} = 0.37 \quad \left(\frac{P-D}{P}\right)^{0.5} \left(\frac{c \mu}{k}\right)^{0.32} \quad \left(\frac{DG_X}{\mu}\right)^{0.6} \quad ..(9)$$ or $$n_s = 0.37 \left(\frac{P - D}{P}\right)^{0.5} \frac{c^{0.32}k^{0.68}G_X^{0.68}}{\mu^{0.28}D^{0.4}}$$ (9a) and this relation is shown graphically by Fig. 11 for the disk-and-doughnut type baffles and by Fig. 12 for all types, while Fig. 13 gives a graphical comparison of Eq. 9 with data and results of other experimenters on nearly comparable designs of apparatus. Colburn's equation³ for flow across banks of staggered tubes is quite similar to Eq. 9 except for the term showing the effect of the tube spacing. Its relation to Eq. 9 is shown graphically on Fig. 13. EFFECT OF PRANDTL'S NUMBER ON SHELL SIDE COEFFICIENTS FIG. 10 Fig.11 # Pressure Drop In correlating the pressure drop for these different cases, methods similar to those used in correlating the transfer coefficients were used with the following results. $$\Delta p = 5.46 \times 10^{-10} \frac{(\phi f) L G_x^2}{\phi g D w}$$(11) where the friction and roughness factor, ϕf , is obtained from Fig. 14 for the three baffle types. It will be observed that the friction and roughness factor, for each of these cases, is shown as a function of the product of Reynolds' number and Prandtl's number to some exponential power. In order to account for the cooling effect on the pressure loss this method gave the best correlation. That is, plotting the friction factor as a function of the product of Reynolds' number and Prandtl's number to some power as is done in heat transfer (example Eq. 9) appeared to give the most consistent relations. The roughness effect produced by the baffles and the flow perpendicular to the tubes and the effect of variable areas in the path of flow are accounted for in the function, ϕ , in each case. This function is given for each case as follows: ## Disk-and-Doughnut Baffles $$\phi = \frac{1}{\left(\frac{D_D}{D_H}\right)^{1.25} \quad \left(d_t\right)^{1.61}} \quad \dots \quad \dots \quad (12)$$ ### Orifice Baffles $$\phi = \frac{(N_b - 2.3)^{0.33} (d_o - d_t + 0.031)^{2.0}}{\left(\frac{p - d_t}{p}\right)^{3.3} (d_t)^{2.38}} \dots (13)$$ ### Half-Moon Baffles $$\phi = \frac{1}{\left[0.53 \left(\frac{0.51 - S}{S}\right)^{2.0} + 2.7\right] \left[\frac{p - d_t}{p}\right]^{0.21} \left[d_t\right]^{2.06}}..(14)$$ To determine the pressure drop for a particular heat exchanger for a particular weight and kind of fluid flowing through the shell, the effective velocity, $G_{\rm X}$, is computed, and then the Reynolds' number is obtained. Following this the Prandtl number is calculated and then raised to the proper exponential power. Using the product of the Reynolds number and the Prandtl function (for the disk-and-doughnut baffles the Prandtl number is raised to the 0.78 power, for the half-moon baffles it is raised to the 0.52 power, and for the orifice baffles it is raised to the 0.38 power), reference is made to the friction-roughness factor plot corresponding to the type of baffle in question and the proper factor is obtained. Then using Eq. 12, 13 or 14, depending on the baffle type, and the dimensions of the heat exchanger bundle, the ϕ function is computed. Having determined the ϕ function in this manner, it is used along with the friction-roughness factor, effective velocity, tube diameter, length of exchanger, and speific weight of the fluid in Eq. 11 to obtain the pressure drop for the exchanger. In other words, the pressure drop is determined by means of the Darcy equation with the friction factor combined with a roughness coefficient, ϕ . With the kind of fluid and its effective rate known, the Reynolds and Prandtl functions are computed and, by reference to Fig. 14, the product, ϕ f, is obtained. Then ϕ is computed from Eq. 12, 13, or 14 for the particular type of baffle and used along with ϕ f in Eq. 11. Due primarily to the effect of the tube pattern, i.e., tube arrangement over the cross-section of the bundle, on the turbulence set up at entrance and exit and its effect as the fluid passes by or through a baffle, the tube pattern enters into the pressure drop to a greater extent than in the heat transfer coefficients. This results in a wider divergence of the friction factor for the different arrangements than was found for the heat transfer coefficients. And too, in the case of the heat transfer coefficients, it was found that a single relation for all baffle types gave results not greatly different from those given by a relation for each particular type of baffle. This was not true in the case of the pressure drop data and hence, no single relation is presented. #### Conclusions In conclusions, then, it may be said that the shell side coefficient of heat transfer may be computed for shell and tube type exchangers irrespective of the size and spacing of the tubes, or the type, size, and spacing of baffles, or the kind of fluid. This may be done, as shown by Fig. 13, with a reasonable degree of accuracy by the equation. $$h_s = 0.37 \left(\frac{P-D}{P}\right)^{0.5} \frac{c^{0.32}k^{0.68}G_X^{0.6}}{\mu^{0.28}D^{0.4}}$$ after having obtained the effective rate of flow, G_X , from Eq. 3, 4, 5, or 6, for the particular case. It may also be concluded that the pressure loss produced by flow along and across the tubes in baffled tube. bundles of heat exchangers may be closely approximated by $$\Delta p = 5.46 \times 10^{-10} \frac{(\phi f) LG_X^2}{\phi g D w}$$ after having obtained the product, of, from the experimentally determined curves of Fig. 14. It should be pointed out that a single relation for all types of baffles does not give as close a value of the coefficient as can be obtained by using a separate equation for each particular type of baffle, but the divergence is not more than 15 per cent for the usual case and this is as close as the effective areas, leakage effects, and tube patterns may be determined. #### BIBLIOGRAPHY - 1. McAdams "Heat Transmission" pages 320,322, 339 - 2. " " 169, 181 - 3. Transactions of A.S. Ch.E. (1933)(Chicago Meeting) page 197. #### APPENDIX ### Additional Symbols t_{t_1} = initial temp. of tube fluid, deg. F. t_{t_o} = final temp. of tube fluid, deg. F. t_{s_1} = initial temp. of shell fluid, deg. F. t_{s_o} = final temp. of shell fluid, deg. F. Δp = pressure drop across shell, in. of hg. W_t = weight of tube fluid, lb. per hr. W_s = weight of shell fluid, lb. per hr. Qt = heat absorbed by tube fluid, B.t.u. per hr. Q_s = heat given up by shell fluid, B.t.u. per hr. θ_{m} = log mean temp. diff., deg. F. U = overall transfer coefficient, B.t.u. per hr.sq. ft.-deg. F. # DATA BAFFLES- HALF-MOON SIZE- 3,92" HIGH TUBE DIA.-3/8" TUBE PITCH-1/2" * See first page of Appendix for Symbols. NO.OF TUBES- 98 TRANSFER AREA- 48.10' SHELL FLUID- WATER TUBE FLUID- WATER | | TOF SY | MD012. | | | | | | | | | |
--|--|---|---|--|--|--|--|---|---|---|---| | RUN
NUMBER | *
t _{t1} | t _{t2} | t _{s1} | t _{a2} | ΔР | W _t | W _s | Qt | Qs | θ _m | υ | | 19 | BAFFLES | | | | | | | | | | | | 51
52
53
54
55
56
57
58
59
60
61
62
63
219
220 | 58.3
58.2
58.1
58.1
58.1
58.1
57.9
58.0
57.5
60.1
60.1 | 77.3
85.3
88.8
91.6
95.0
99.2
99.3
101.5
103.1
104.5
104.9
96.4
101.9 | 140.6
140.7
140.4
139.6
139.5
140.1
141.2
139.2
140.1
140.2
140.6
140.0
139.0
139.6
139.4 | 74.8
86.0
92.1
97.6
102.7
109.1
110.8
112.6
114.3
117.0
117.3
101.7
102.4
110.5 | 0.37
0.88
1.39
2.22
3.24
5.19
6.86
7.78
9.63
11.67
13.52
3.33
3.06
5.98 | 18,540
18,380
18,520
18,730
18,220
18,330
18,370
18,370
18,420
18,540
18,550
18,550
17,950 | 5,365
9,220
11,900
15,040
18,360
23,630
23,730
29,150
32,430
36,730
36,730
38,530
18,420
18,280
26,090 | 352.8
498.2
569.0
628.0
673.5
752.5
759.0
778.0
800.0
830.5
862.0
870.0
688.0
673.5
750.5 | 353.0
503.8
574.8
631.0
676.5
755.0
760.5
781.0
802.5
838.0
867.0
873.0
687.5
680.0
753.5 | 34.76
40.10
42.14
43.60
44.59
45.34
46.08
45.50
46.18
46.25
44.31
42.73
43.75 | 211.0
258.3
280.8
299.5
314.1
345.2
342.6
355.4
360.2
375.4
384.4
391.1
322.8
327.8
356.7 | | 15 (| BAFFLES | | | | | | | | | • | | | 228
229
230
231
232
233
234
235
236
237
238
239 | 58.89000.24
589.599.55
599.55
599.55
599.55 | 80.9
78.5
81.0
86.7
86.8
91.2
98.6
101.5
103.4
104.9
106.2 | 138.8
139.0
138.7
139.8
139.4
140.8
139.9
139.5
139.5
140.2
140.4 | 80.3
77.9
81.7
89.9
90.0
96.9
102.9
108.4
112.5
117.8
119.7 | 0.28
0.28
0.37
0.70
0.70
1.20
1.90
3.15
4.91
6.51
7.92
9.63 | 15,720
18,540
19,130
18,850
18,620
18,150
18,240
18,540
18,370
18,330
18,330 | 5,900
5,970
7,410
10,420
10,480
13,610
17,320
23,120
23,120
23,120
23,520
37,350
41,460 | 345.2
365.0
423.5
518.5
581.0
655.0
725.0
725.0
804.0
834.5
856.5 | 345.0
364.6
423.0
519.0
522.0
579.0
656.0
727.5
774.0
809.0
838.5
860.0 | 36.70
35.90
37.60
41.06
42.80
44.48
45.00
45.22
45.46
45.80
46.00 | 195.6
211.4
234.2
265.1
262.7
282.3
306.2
335.0
354.8
367.8
378.8
387.1 | | 11 6 | AFFLES | 120 | | | 2 | | | | è | | | | 247
248
249
250
251
252
253
254 | 59.2
59.5
59.5
59.5
59.5
59.5
59.3
59.0 | 77.2
86.5
93.1
97.2
99.4
102.4
105.2
105.4 | 141.5
140.1
129.5
139.7
140.5
141.3
141.8
140.4 | 76.5
91.4
101.6
108.1
111.3
115.9
119.8
120.9 | 0.14
0.42
0.88
1.67
2.18
3.33
4.91
6.39 | 18,380
18,420
18,406
18,210
18,470
18,330
18,390
18,520 | 5,080
10,390
16,250
21,780
25,360
31,030
38,370
44,090 | 330.3
501.5
619.0
686.0
737.0
787.0
844.0
859.0 | 330.2
506.0
616.0
687.0
739.0
788.0
845.0
858.0 | 35.84
42.00
44.20
45.46
46.15
47.20
47.58
47.17 | 191.6
248.2
291.2
313.8
332.0
346.8
368.8
378.8 | | 7 BA | FFLES | | | | | | | | | | | | 285
286
287
288
289
290
291
292
293 | 61.3
61.5
61.6
61.5
61.5
61.5
61.5 | 81.0
89.1
92.1
95.9
98.0
99.7
102.1
104.2
105.0 | 139.3
140.4
140.2
140.4
140.8
140.5
141.0
141.5
140.5 | 86.7
99.1
104.0
109.4
112.3
115.0
118.4
121.4
122.3 | 0.14
0.32
0.51
0.74
1.11
1.48
2.04
2.59
3.33 | 18,120
18,100
18,170
18,230
18,340
18,160
18,100
17,390
17,670 | 6,850
12,120
15,320
20,030
23,610
27,330
32,550
37,000
42,280 | 357.5
499.5
554.0
625.0
670.0
694.0
734.0
769.0 | 360.5
501.0
555.5
620.0
674.0
737.0
745.0
770.5 | 39.54
44.06
45.18
46.10
46.70
46.90
47.32
47.65
47.06 | 188.0
235.8
255.0
282.0
298.3
307.7
322.4
323.8
339.8 | | 3 BA | FFLES | | | | | | | | | | | | 301
302
303
304
305
306
307
308
309
310
311 | 60.8
61.0
61.1
61.2
61.4
61.2
61.2
61.2
61.2
61.2 | 77.0
81.8
87.7
92.1
96.0
95.3
96.2
97.2
98.4
97.4 | 138.5
139.7
139.6
140.0
140.8
141.0
138.9
139.2
138.4
138.2
139.1 | 93.2
100.4
109.5
114.2
119.2
118.7
118.9
119.6
120.7
122.2
121.4 | 0.07
0.12
0.20
0.39
0.54
0.76
0.76
1.07
1.34 | 17,870
17,910
17,290
18,250
16,620
17,360
18,720
17,940
18,410
18,430
18,380 | 6,450
9,550
15,320
21,800
26,800
26,580
32,230
32,150
37,620
42,800
37,620 | 289.0
373.0
459.0
563.0
576.0
591.0
641.0
627.0
663.0
685.0
664.5 | 292.0
375.0
461.0
563.5
578.0
593.0
643.5
628.0
665.0
689.0
666.0 | 45.40
48.12
50.15
50.40
50.95
51.42
50.35
50.30
49.80
49.70
50.35 | 132.3
161.1
190.4
232.2
235.0
239.0
264.8
259.2
276.8
286.6
274.5 | # DATA BAFFLES- HALF-MOON SIZE- 3.92" HIGH TUBE DIA.-3/8" TUBE PITCH-11/16" NO.OF TUBES- 52 TRANSFER AREA- 25.51, SHELL FLUID- WATER TUBE FLUID- WATER #### * See first page of Appendix for Symbols. | 4 | for S | ymbols. | | | | 10BE2- 25 | | | IUDE FL | UID- WA | EK | |--|--
---|---|--|--|---|---
---|---|---|---| | RUN
NUMBER | t _{t1} * | t _{t2} | t _{s1} | t _{a2} | ΔΡ | W _t | W _s | Qŧ | Q, | θ _m | U | | 19 6 | BAFFLES | | | | ' | | | l | L | | | | 10
11
12
13
14
15
16
17
18
19
28
27
28
28
28
30
31
32
33
33
35
36
36
37
38
38
38
38
38
38
38
38
38
38
38
38
38 | 61.6
61.2
60.3
58.9
58.5
58.2
60.4
60.1
60.2
60.2
60.3
60.2
60.2
60.2
60.2
60.2
60.2
60.2
60.2 |
88,6
109,8
108,9
107,8
107,8
107,2
107,7
107,9
89,8
89,1
105,8
106,5
107,7
108,9
108,9
107,7
108,9
109,4
100,4
100,4
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,5
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100,7
100 | 139.3
141.8
139.4
140.7
139.9
140.3
140.3
140.3
140.7
139.8
138.5
138.6
138.6
138.6
138.4
138.6
140.5
140.5
140.5
140.5
140.5
140.5
140.5
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
140.6
141.6
141.6 | 96.2
126.4
124.4
124.4
124.7
124.8
119.8
119.8
119.3
123.6
123.6
109.6
112.8
109.6
112.8
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
112.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10 | 0.37
8.85
8.899
7.97
7.97
4.26
4.31
6.16
6.16
6.42
0.42
0.45
1.30
12.55
5.37
7.69
9.72
10.74
11.81
12.56
2.69
1.81
1.81
1.81
1.81
1.81
1.81
1.81
1.8 | 9,960
9,910
9,900
9,830
9,870
9,870
9,870
9,870
9,870
9,870
9,870
10,000
10,050
10,050
10,050
10,050
10,150
10,160
10,160
10,160
10,160
10,200
10,160
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200
10,200 | 6, 135 31,580 32,150 32,150 32,150 32,150 32,150 32,150 32,680 23,680 28,500 7,040 6,920 28,500 7,040 6,920 28,500 12,800 12,800 24,780 24,780 24,780 33,650 33,7260 27,280 |
268.9
481.5
472.2
488.0
488.5
450.0
460.8
453.0
460.8
293.0
287.0
326.3
365.8
385.0
397.0
428.4
454.0
470.5
479.6
489.5
498.0
502.0
410.0
465.2
479.6
489.5
498.6
498.6
498.6
498.6
498.6
498.6
498.6
498.6
498.6
498.6
498.6 | 270.8
485.1
475.0
492.6
489.8
492.0
453.1
467.3
295.2
286.0
326.5
368.0
326.5
469.3
441.0
471.0
478.6
481.2
492.0
494.5
506.0
507.5
420.0
399.5
420.0
478.6
481.2
492.0
494.5
492.0
494.5
492.0
494.5
492.0
494.5
492.0
494.5
492.0
494.5
492.0
494.5
492.0
494.5
492.0
494.5
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
494.6
492.0
492.0
494.6
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0
492.0 | 41.55
46.63
45.80
47.13
47.13
47.42
47.13
46.20
45.33
46.20
45.33
45.20
45.52
45.52
45.52
46.52
46.84
46.84
46.84
46.84
46.86
46.86
48.80
48.80
49.16 | 253.6
404.8
404.1
406.8
403.3
403.2
367.6
377.6
391.0
336.7
391.5
331.0
331.5
331.5
331.5
331.6
333.9
409.0
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6
409.6 | | | AFFLES | I | | | | | | . | | | | | 221
222
223
224
225
226
227 | 60.0
60.0
60.2
59.6
59.8 | 92.3
98.9
102.7
107.2
106.5
107.5
108.5 | 139.6
140.3
139.6
141.1
139.2
139.2
139.2 | 104.5
114.4
119.6
125.5
125.2
126.4
127.7 | 0.46
1.07
2.22
4.86
5.98
7.32
8.89 | 10,020
9,960
10,000
9,870
10,020
10,090
10,070 | 9,350
14,820
21,520
29,760
34,020
38,300
42,260 | 324.0
387.5
426.7
464.0
470.2
481.0
490.5 | 328,2
384.6
430.0
464.3
476.5
490.4
499.8 | 45.90
47.67
47.35
47.92
47.22
47.06
47.08 | 276.7
318.8
353.2
379.6
390.3
400.8
408.5 | | | AFFLES | 07 5 | 120 2 | 07.5 | 0 11 | | 4 900 | 2016 1 | 219.0 | 42.45 | 199.6 | | 294
295
296
297
298
299
300 | 61.4
61.7
61.8
62.1
62.2
62.1 | 83.5
88.4
93.4
99.6
103.1
106.6
108.1 | 138.3
139.7
139.6
139.8
138.8
140.6
140.6 | 93.5
101.3
109.1
117.5
122.0
126.5
128.3 | 0.11
0.18
0.32
0.83
1.78
3.03
4.17 | 9,790
9,830
9,870
9,860
9,900
9,910
9,940 | 4,890
6,900
10,230
16,630
24,230
31,350
36,730 | 216.1
265.0
312.8
372.2
406.0
440.5
457.2 | 264.8
312.5
371.4
407.0
440.0
454.0 | 45.18
46.80
47.53
46.80
47.56
47.42 | 230.0
262.0
307.0
340.1
363.2
378.0 | | 7 BA
255 | FFLES
60.0 | 78-9 | 139.0 | 91.6 | 0.09 | 9,770 | 3,840 | 185.0 | 182.2 | 44.33 | 163.6 | | 256
257
258
259
260
261
262
263 | 60.2
60.3
60.5
60.5
60.5
60.5 | 78.9
89.0
94.4
98.4
100.9
102.6
104.0
105.5
106.8 | 139.2
139.6
140.1
140.6
139.2
139.7
139.7 | 108.2
115.4
120.4
123.6
125.1
126.9
128.3
129.8 | 0.19
0.65
0.86
1.20
1.81
2.47
3.31
3.89 | 9,800
10,270
9,830
10,110
9,950
9,930
10,060
9,970 | 3,840
9,230
14,630
19,120
24,160
30,100
34,100
40,260
44,700 | 282.5
350.5
372.8
408.8
419.2
432.2
452.2
461.5 | 182.2
286.7
353.2
377.2
411.4
422.5
435.5
456.4
465.0 | 44.33
49.12
50.00
50.20
50.45
49.30
49.43
49.10
49.12 | 225.3
275.0
291.1
317.7
333.3
342.8
361.0
368.2 | | 264
265
266
267
268
269
270
271
272
273 | 59.5
59.6
59.7
59.7
59.7
59.7
59.7
59.6
59.6 | 80.2
85.9
90.5
93.8
96.3
98.7
100.2
102.1
102.3
102.5 | 138,6
139,1
139,5
139,7
139,2
139,8
140,2
140,1
140,9
140,2 | 105.5
113.8
119.1
122.5
124.6
126.9
128.3
129.5
129.9
130.1 | 0.06
0.21
0.46
0.56
0.70
0.93
1.28
1.44
1.44 | 10,160
9,815
10,060
10,070
9,980
10,015
10,140
9,740
9,740
9,950
10,270 | 6,440
10,370
15,410
20,150
25,280
30,570
34,760
39,300
39,200
44,300 | 210.0
259.0
310.8
343.7
365.0
390.5
410.5
413.0
425.0
441.0 |
213.2
262.6
314.0
347.2
368.3
395.0
413.6
415.3
428.6
444.8 | 51.95
53.73
54.10
53.15
53.15
53.15
53.23
53.23
53.35
53.35
53.45 | 158 5
189 0
225 2
249 8
269 3
288 2
303 3
309 2
315 1
329 6 | BAFFLES- HALF-MOON \$1ZE- 3.92" HIGH TUBE DIA.-1/2" TUBE PITCH-19/32" NO. OF TUBES- 66 TRANSFER AREA- 43.18 , SHELL FLUID- WATER TUBE FLUID- WATER * See first page of Appendix | | or Symi | 0018. | | | | | | | | | | |--|--|--|--|--|--|--|---|--|--|--|--| | RUN
NUMBER | *
t _{t1} | t _{t2} | t _s | t _{s2} | ΔP | $W_{\mathbf{t}}$ | W _s | Qt | Q _s | θ _m | U | | 19 6 | BAFFLES | | | <u> </u> | | | L | | l | | L | | 75
76
77
78
79
80
81
82
83
84 | 57.8
58.0
58.0
58.0
57.3
57.3
57.0
56.7
56.6
56.4 | 65.9
70.9
72.3
75.3
78.6
82.0
84.5
85.9
88.5
79.0 | 139.7
138.2
138.9
138.2
138.2
138.8
139.8
139.2
140.4
137.6 | 66.0
75.9
80.0
85.0
91.8
99.9
104.8
108.1
112.5
94.9 | 0.19
0.56
0.70
1.25
2.36
4.03
6.21
8.80
12.87
2.96 | 26,320
26,480
25,930
26,060
26,610
25,870
26,210
26,430
26,320
26,240 | 2,905
5,450
6,340
8,570
12,270
16,520
20,690
24,860
30,100
14,010 | 212.5
340.5
371.7
450.0
568.0
639.6
722.0
770.0
838.0
592.0 | 214.0
339.5
373.5
456.0
569.5
643.0
724.0
772.0
840.0
597.5 | 29.92
37.35
40.28
42.46
45.88
49.43
51.45
52.36
53.85
47.88 | 164.4
211.2
213.6
245.6
286.9
299.7
325.0
340.9
360.4
286.4 | | 15 E | AFFLES | | T | | | | | , | , | | ····· | | 321
322
323
324
325
326
327
328
329
330 | 60.8
61.0
61.0
61.1
61.2
61.3
61.3
61.3
61.3 | 72.4
74.0
75.4
80.6
85.9
89.2
91.1
92.1
93.1
94.1 | 140.6
140.2
141.4
141.0
140.9
140.8
141.0
140.8
140.7
140.2 | 77.0
80.1
83.0
92.2
102.8
109.2
112.8
114.8
116.8
118.5 | 0.28
0.37
0.46
1.02
2.50
4.82
6.58
8.11
10.28
12.97 | 25,400
24,800
25,840
26,480
26,200
26,870
26,090
26,090
26,090
25,980 | 4,625
5,456
6,420
10,620
17,020
23,830
27,700
31,030
35,030
39,330 | 294.8
321.7
372.2
516.0
646.0
749.5
778.0
801.0
831.5
852.5 | 294.4
328.0
375.5
518.0
649.0
752.0
780.0
805.0
835.0
864.5 | 36.13
37.94
40.05
44.16
48.10
49.80
50.75
51.10
51.45
51.30 | 189.0
196.3
215.3
270.6
311.2
348.7
355.2
363.2
374.3
385.0 | | 11 8 | AFFLES | | | - | | | | | | | | | 341
342
343
344
345
346
347
348 | 60.8
60.9
60.9
60.9
60.9
60.8 | 73.9
76.9
81.5
85.5
88.2
89.7
90.8
92.4 | 139.0
139.0
139.5
139.5
139.8
139.9
139.1
138.9 | 82.7
88.9
98.3
106.5
111.2
114.2
116.5
119.5 | 0.20
0.37
0.83
1.81
2.92
4.08
5.65
8.15 | 25,820
25,740
25,720
25,820
25,620
26,000
25,930
26,010 | 6,095
8,320
12,840
19,200
24,590
29,230
34,480
41,800 | 339.0
414.5
530.0
634.5
699.0
748.0
777.0
822.0 | 343.2
417.0
529.5
633.5
702.0
752.0
781.0
810.0 | 39.60
42.85
46.95
49.75
51.00
51.80
51.95
52.40 | 198.2
224.0
261.5
295.5
317.5
334.5
346.5
363.3 | | | FFLES | | | | | | | | | | | | 349
350
351
352
353
354
355
356 | 60.4
60.5
60.5
60.7
60.7
60.7
60.7 | 72.4
73.6
77.2
83.1
86.5
88.7
91.3
92.3 | 141.1
140.0
140.9
140.4
141.3
140.3
142.0
141.5 | 84.8
88.4
94.7
106.3
112.3
116.2
120.2
122.0 | 0.09
0.19
0.28
0.74
1.39
2.36
3.38
4.54 | 25,900
25,960
25,860
25,820
26,280
26,170
26,100
26,100 | 5,570
6,670
9,410
16,900
23,420
30,500
36,720
42,550 | 310.8
340.8
432.0
577.5
678.0
733.5
798.5
825.5 | 313.6
344.2
434.7
575.5
680.3
735.0
801.0
830.0 | 42.80
44.40
47.40
51.22
53.17
53.55
55.00
54.90 | 168.3
177.8
211.1
261.1
295.6
317.3
336.4
348.3 | | 3 BA | FFLES | | | · | | | | | | | | | 365
366
367
368
369
370
371 | 60.3
60.5
60.8
61.0
61.0
61.0 | 69.6
72.3
78.8
82.4
84.6
86.0
87.4
88.7 | 139.2
140.1
140.7
139.9
140.3
140.0
141.1
140.0 | 94.3
98.4
110.0
114.9
118.1
120.0
122.0
123.5 | 0.09
0.09
0.28
0.51
0.74
1.02
1.39
1.95 | 25,800
25,610
26,050
25,900
25,820
25,720
26,230
25,960 | 5,415
7,300
15,320
22,310
27,700
32,360
36,550
43,680 | 240.8
302.3
468.0
555.0
610.0
644.0
692.5
719.0 | 243.2
304.4
470.2
557.0
613.3
647.0
696.0
722.0 | 49.68
51.45
56.30
55.65
56.40
56.50
57.30
56.65 | 112.3
136.1
196.2
231.0
250.5
264.0
280.0
294.0 | BAFFLES- HALF-MOON \$1ZE- 3.92 H16H * See first page of Appendix for Symbols. TUBE DIA.-1/2" TUBE PITCH-11/16" NO.OF TUBES- 48 TRANSFER AREA- 31.40, SHELL FLUID- WATER TUBE FLUID- WATER | RUN
NUMBER | t _{t1} * | t _{t2} | t _s 1 | t _{s2} | ΔΡ | $W_{\mathbf{t}}$ | Ws | Qt | Q, | θ, | Ū | |---|--|--|---|---|--|--|--|---|--|---|---| | 19 B | AFFLES | | | | | | | L | | | | | 155
156
157
158
159
160
161
162
163
164
165 | 58.9
59.0
59.2
59.2
59.2
59.2
59.2
59.1
59.1
59.0
59.0 | 73.6
78.9
84.4
86.1
89.9
92.5
92.6
93.2
94.8
95.4 | 138.4
138.3
140.1
139.4
139.8
140.5
142.4
139.9
140.7
139.9
138.7 | 79.3
90.5
100.8
105.1
111.2
115.5
116.0
117.6
119.7
121.3
121.6 | 0.28
0.70
1.48
3.15
4.17
5.74
5.74
8.36
9.81
12.50
15.65 | 18,990
19,070
19,100
19,130
19,180
18,460
19,160
19,370
18,760
18,680
19,120 | 4,755
8,000
12,440
15,060
20,660
24,450
24,400
29,750
31,860
36,370
40,850 | 279.0
380.0
482.0
514.5
587.0
612.0
640.0
660.0
670.0
681.0
696.5 | 280.8
382.2
488.0
517.0
589.5
612.0
642.8
661.5
670.0
698.5 | 38.45
44.05
48.35
49.46
50.90
52.00
53.20
53.20
52.45
53.00
52.35 | 231.1
274.8
317.5
331.3
367.3
374.8
383.2
400.8
402.6
410.8
423.8 | | 470 | 61.5
61.5 | 73.0 | 140.3 | 80.2 | 0.05 | 18,980
18,850 | 3,620 | 218.3 | 217.5 | 37.85 | 183.7 | | 472
473
474
475
476
477
478
479 | 61.6
61.8
62.0
62.1
62.1
62.1 | 73.0
73.4
78.2
87.5
90.5
92.6
93.7
95.9
96.8 | 140.3
138.9
140.3
140.3
139.0
139.8
140.2
141.2
140.7 | 78.0
91.5
101.0
109.3
114.4
118.1
120.1
123.1
124.4 | 0.05
0.19
0.37
0.83
1.53
2.27
3.10
4.17
5.33 | 18,760
18,850
18,950
18,390
18,680
19,390
19,020
18,850 | 3,620
3,610
6,610
10,320
15,670
21,300
26,320
30,690
35,530
40,450 | 218.3
224.8
312.0
401.0
483.0
570.5
614.0
656.0 | 217.5
225.0
313.2
405.3
486.0
525.0
572.2
615.5
644.0
659.0 | 37.85
36.05
43.58
47.60
50.45
51.50
52.15
52.95
52.55 | 198.6
228.0
268.2
307.7
330.8
353.0
375.5
386.5
397.8 | | 518 | 62.0 | 73.4 | 140.8 | 94.9 | | 18,720 | 4,640 | 212.8 | 212.8 |
48.13 | 140.8 | | 519
520
521
522
523
524
525
526 | 622.25.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6 | 73.1
78.0
81.5
84.4
87.3
89.4
90.6
91.5 | 140.8
140.6
140.6
139.2
139.4
139.7
140.0
140.3
139.1 | 94.9
94.6
105.3
112.0
116.3
120.5
122.8
124.5
125.2 | 0.04
0.17
0.32
0.46
0.70
0.89
1.11 | 18,720
19,020
19,130
18,620
18,940
18,910
18,950
18,910
18,980 | 4,640
4,700
8,570
13,020
17,940
24,270
29,620
33,630
39,560 | 212.8
212.2
301.7
353.7
415.0
468.0
507.0
529.0
549.0 | 212.8
216.2
303.0
353.6
415.2
465.0
510.5
530.5
552.0 | 48.04
52.25
53.50
54.40
55.10
55.50
54.82 | 140.8
140.7
183.9
210.6
243.0
270.6
291.1
303.7
318.8 | | | | | | | D | ATA | | | | | | | | ELS- HAI
E- 3.92 | HIGH | | | TUBE I | DIA1/2"
PITCH-25/
TUBES- 4 | 32 "
0 | 3 | MELL PL | AREA- :
UID- WAT | IEK | | RUN
NUMBER | t _{t1} | t _{t2} | t _{s1} | t _{s2} | ΔΡ | W _t | W _s | Q _t | ۹, | θ _m | U | | | AFFLES | | | , | | | | , | _ | | | | 95
96
97
98
99
100
101
102
103
104 | 58.1
58.1
58.2
58.2
58.2
58.2
58.0
57.6 | 78.8
84.4
88.6
92.4
94.3
95.8
96.0
96.2
96.7
86.2 | 139.6
139.3
139.8
140.7
140.1
140.8
141.6
140.1
141.1
138.2 | 92.8
104.0
112.2
117.8
121.0
123.3
123.3
124.2
124.7
108.7 | 0.51
1.30
2.59
4.63
7.41
9.45
9.45
12.22
12.22
2.04 | 15,800
15,800
15,660
15,430
15,430
15,780
15,760
15,770
15,660 | 7,075
11,960
17,370
23,180
29,340
32,930
32,930
37,800
37,500
15,280 | 326.0
417.0
477.0
527.0
558.0
574.0
596.5
601.0
610.0
447.5 | 331.0
422.2
480.0
530.0
559.5
577.0
602.0
603.0
614.0
450.0 | 46.58
50.35
52.67
53.95
53.95
54.45
54.25
54.25
54.25
54.55 | 267.7
316.9
346.3
373.5
395.6
403.0
416.0
423.6
425.0
332.0 | | | AFFLES | | | | | | | T | | | 272.2 | | 437
438
439
440
441
442
443
444 | 61.3
61.4
61.5
61.7
61.7
61.8
61.0 | 83.9
87.0
90.5
92.8
95.0
96.8
75.9 | 138.6
139.2
139.2
139.4
139.4
139.5
137.0
138.5 | 104.8
110.4
116.3
119.7
122.8
125.1
90.2
97.1 | 0.37
0.74
1.35
2.08
3.33
5.10 | 15,780
15,775
15,780
15,770
15,830
15,820
15,660
15,825 | 10,610
14,120
20,060
24,880
31,720
38,300
5,030
7,110 | 356.5
404.0
458.0
491.5
528.0
554.0
233.8
290.8 | 358.5
407.4
459.0
490.0
528.5
554.0
235.8
294.2 | 48.90
50.63
51.70
52.10
52.35
52.45
43.20
46.45 | 278.8
305.2
338.9
360.8
385.8
404.0
206.9
239.3 | | 3 BA | 62.2 | 75.0 | 139 5 | 102.1 | | 15.680 | 5.365 | 199.7 | 200.6 | 51 25 | 149.0 | | 509
510
511
512
513
514
515
516
517 | 62.4
62.4
62.6
62.9
63.9
63.8 | 75.0
77.8
80.7
83.9
87.2
89.8
91.5
92.4
93.6 | 139.5
139.3
139.8
139.7
138.9
140.4
140.6
139.9
139.0
138.5 | 101.5
107.0
111.9
116.5
121.2
124.2
125.6
126.2
127.1 | 0.02
0.09
0.19
0.37
0.53
0.74
0.93
1.30 | 15,680
15,740
15,730
15,720
15,580
15,560
15,660
15,660
15,560 | 5,365
5,370
7,470
10,375
14,880
19,890
25,640
31,270
36,370
42,480 | 201.5
241.8
286.5
332.3
379.8
418.8
444.8
461.4
479.5 | 203.0
244.6
288.5
334.0
381.2
420.5
446.0
463.0
482.0 | 51.25
50.72
52.85
54.25
54.45
55.80
55.70
55.15
54.50
54.10 | 152.0
174.9
201.9
233.4
260.2
287.5
308.4
323.8
339.0 | ## DATA BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols. TUBE DIA.-1/2" TUBE PITCH-1" NO.OF TUBES-30 TRANSFER AREA- 19.62 SHELL FLUID- WATER TUBE FLUID- WATER | RUN
NUMBER | t _{t1} * | t _{t2} | t _{s1} | t _{s2} | ΔP | W _t | W _s | Qt | Q, | θ <u>m</u> | บ | |---|--|--|--|--|---|--|---|---|---|---|---| | 19 1 | BAFFLES | | | | · | | | - | | | | | 116
117
118
119
120
121
122
123
124
125
126 | 57.9
58.0
58.0
58.0
58.0
58.0
58.0
58.0
57.5
57.3 | 75.4
81.2
84.3
87.3
90.7
92.8
94.7
96.2
97.2
96.5 | 139.8
139.4
141.1
140.3
140.7
141.1
141.4
141.6
141.4
141.4 | 90.4
103.2
109.2
114.3
119.1
122.5
125.4
127.4
129.0
130.0
128.3 | 0.19
0.46
0.74
1.39
2.45
3.80
5.75
7.97
10.93 | 11,860
11,810
11,940
11,940
11,670
11,865
11,905
11,930
11,670
11,850
12,000 | 4,250
7,615
9,890
13,560
17,850
22,410
27,620
32,220
37,500
42,860
37,400 | 208.0
273.5
314.0
349.5
381.0
412.4
436.6
455.2
462.8
481.6
470.0 | 210.0
275.5
315.7
353.6
384.6
416.0
440.4
456.5
467.0
485.0
468.6 | 46.68
51.52
53.92
54.65
55.42
56.45
56.55
56.63
56.62 | 227.2
270.5
296.8
326.0
350.3
375.4
394.1
410.7
419.3
433.3
423.0 | | 11 | BAFFLES | | | | | | | | 1000 | | | | 419
420
421
422
423
424
425
426 | 61.0
61.1
61.2
61.6
61.7
61.6
61.7 | 77.9
81.7
85.5
91.0
94.1
95.2
96.4
97.6 | 139.9
139.6
139.7
141.3
140.1
140.6
140.4 | 99.5
107.0
113.3
120.9
126.1
127.3
128.6
130.0 | 0.09
0.19
0.42
1.02
1.85
2.69
3.43
5.10 | 12,000
11,775
11,840
11,670
11,865
11,865
11,850
11,905 | 5,115
7,360
11,020
18,380
25,350
30,780
34,730
41,780 | 202.8
242.2
287.2
343.4
385.0
399.0
413.0
428.0 | 206.6
242.2
289.8
346.0
384.5
395.6
417.0
431.2 | 49.35
51.95
53.10
53.85
55.25
54.65
54.78
54.55 | 209.4
237.8
275.8
325.0
355.1
372.0
384.2
400.0 | | | AFFLES | | · | | | | | | | | | | 501
502
503
504
505
506
507 | 62.2
62.5
62.7
62.8
63.0
63.0 | 77.0
79.7
84.6
88.3
91.2
93.6
95.4 | 140.5
139.6
139.9
139.7
141.4
141.9
142.0 | 110.1
114.2
120.8
124.7
128.3
130.8
132.2 | 0.09
0.09
0.19
0.28
0.37
0.56
0.83 | 11,850
11,830
11,875
11,810
11,810
11,840 | 5,875
8,220
13,740
20,460
25,530
32,580
39,400 | 175.3
203.8
260.5
300.8
333.0
362.0
383.6 | 178.6
209.0
262.3
306.2
334.5
363.4
386.0 | 55.30
55.70
56.75
56.55
57.30
57.58
57.20 | 161.6
186.4
234.1
271.2
296.3
320.6
341.8 | | | | | | | | DATA | | | | | | #### DATA BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols. TUBE DIA .- 1/2" TUBE PITCH-1 3/32" NO. OF TUBES-20 TRANSFER AREA- 13.08 SHELL FLUID- WATER TURE FLUID- WATER | | ror Symi | 0015. | | | NO.OF | TUBES-20 | | | IUBE FE | UID- WAT | EK | |---|--|--|--|---|---|---|--|---|---|---|---| | RUN
NUMBER | * * | t _{t2} | t ₈₁ | t. | ΔP | Wt | W _s | Qt | Q _s | θ <u>π</u> | U | | 19 6 | BAFFLES | | | 4 | | | | | | | | | 208
209
210
211
212
213
214
215
216
217
218 | 61.2
61.1
61.1
61.1
61.1
61.1
61.2
61.2 | 81.8
86.1
90.4
92.2
94.4
95.7
97.6
98.8
99.9
101.0
101.5 |
140.0
138.8
140.2
140.3
140.9
139.5
140.1
139.7
140.0
140.7 | 105.6
113.1
119.5
122.1
125.2
126.4
128.9
130.1
131.3
132.5
133.3 | 0.23
0.46
0.88
1.25
1.90
2.87
4.54
6.44
8.43
9.66
11.81 | 7,955
7,895
7,930
7,935
7,865
7,865
7,875
8,000
7,980
7,980
7,925
7,820
8,070 | 4,855
7,890
11,430
13,900
16,900
21,130
26,550
31,650
36,210
38,460
42,850 | 164.1
198.2
232.3
246.7
262.3
272.6
292.0
300.5
306.8
311.5
325.5 | 167.0
203.0
236.6
252.2
264.8
277.5
297.4
303.9
314.0
315.3
334.3 | 51.02
52.35
54.00
54.22
54.97
53.90
54.13
53.78
53.70
53.96
54.25 | 245.7
289.3
328.8
347.6
365.0
386.6
412.5
427.3
436.8
441.3
458.7 | | 15 E | AFFLES | | | | | | | | | | | | 331
332
333
334
335
336
337
338
339
340 | 61.5
61.8
62.0
62.1
62.4
62.5
62.3
62.3
62.3 | 79.7
83.3
87.8
91.4
95.3
97.2
98.7
99.0
100.3
101.4 | 139.1
140.3
140.5
140.7
140.2
140.8
141.3
140.3
141.1 | 104.1
110.6
117.4
122.3
126.9
129.1
130.8
131.0
132.6
133.8 | 0.09
0.13
0.31
0.60
1.58
2.27
3.06
4.08
5.23
6.96 | 7,890
7,965
7,940
7,950
7,965
7,965
7,965
7,965
8,010
8,020 | 4,195
5,825
9,000
12,720
19,540
23,700
27,520
31,800
36,000
41,300 | 143.3
171.2
204.8
232.8
261.2
276.4
289.7
293.3
304.4
314.3 | 146.7
173.0
207.4
234.4
259.9
278.0
290.6
294.7
306.0
316.4 | 50.58
52.78
54.05
54.60
54.03
54.30
54.62
53.95
54.24
54.35 | 216.8
248.0
289.7
325.8
369.4
389.3
405.2
415.7
429.0
442.0 | | 11 B | AFFLES | | | | | | | | | | | | 357
358
359
360
361
362
363
364 | 61.1
61.3
61.6
61.7
61.9
61.7
61.6
61.7 | 81.5
84.5
90.7
93.7
96.4
97.3
98.0
98.9 | 140.6
141.0
139.7
140.3
141.9
141.3
140.9 | 111.4
116.7
124.6
127.9
130.9
132.1
132.6
133.5 | 0.09
0.19
0.56
1.02
1.67
2.32
3.06
4.08 | 7,880
7,870
7,890
7,880
7,940
7,920
7,940
7,975 | 5,650
7,595
15,090
20,560
25,060
30,690
34,700
40,000 | 160.7
183.0
229.3
252.2
273.5
280.0
289.0
287.0 | 165.0
184.8
228.8
255.0
275.0
281.3
290.0
298.3 | 54.62
55.92
55.83
55.80
56.45
56.20
55.85
55.65 | 224.8
250.2
313.9
345.4
370.3
381.0
395.3
407.8 | | 364 | 61.7 | 98.9 | 140,9 | | | 7,975
27 | 40,000 | 297.0 | 298,3 | | | BAFFLES- HALF-MOON SIZE- 3,92" HIGH *See first page of Appendix for Symbols. TUBE DIA.-1/2" TUBE PITCH-1 3/32" NO.OF TUBES-20 TRANSFER AREA- 13.08 | | Mary 1971 | United conservati | | | /,E00000-0000 | | | | | | | |---|--|--|---|---|--|--|--|---|---|---|---| | RUN
NUMBER | t _{t1} * | t _{t2} | t _{s1} | t _{s2} | ΔΡ | $W_{\mathbf{t}}$ | W _B | Qt | Q _B | θ _m | υ | | 7 B | AFFLES | | | L | | | | | | L | <u> </u> | | 382
383
384
385
386
387
388
389
390 | 61.0
61.1
61.5
61.4
61.7
61.9
61.9
62.0
61.9 | 78.1
81.5
84.0
87.0
91.1
93.8
95.9
96.9
97.3 | 138.4
138.3
139.0
139.1
138.9
140.0
140.7
140.3
140.1 | 109.4
115.1
119.1
122.8
127.0
130.0
132.0
132.8
133.0 | 0.05
0.14
0.23
0.56
0.93
1.30
1.90
2.22 | 7,745
7,815
7,795
7,890
7,875
7,890
7,850
7,850
7,830
7,905 | 4,665
6,830
9,025
12,560
19,480
25,360
30,900
36,320
39,620 | 132.4
159.2
175.6
201.0
231.2
252.1
266.4
273.3
279.8 | 135.0
158.7
179.7
204.7
233.0
252.0
267.9
273.6
280.1 | 54.25
55.40
56.22
56.43
56.10
56.48
56.60
56.05
55.80 | 186.5
219.6
238.8
272.2
315.0
341.2
360.0
372.8
383.3 | | 391
392
393
394
395
396
397
398
399 | 61.4
61.8
62.0
62.0
62.1
62.0
62.2
62.3 | 77.0
81.7
85.8
88.7
91.3
93.1
93.9
95.0
96.3 | 139.1
138.3
138.9
139.0
140.2
140.2
140.0
139.8
140.6 | 115.0
121.5
125.7
128.1
130.6
132.2
132.7
133.2
134.2 | 0.05
0.10
0.22
0.34
0.46
0.57
0.74 | 7,885
7,895
7,890
7,960
7,855
7,905
7,905
7,990
7,380 | 5,305
9,450
14,470
19,750
24,800
30,300
34,430
39,240
39,400 | 122.8
157.5
188.0
212.5
229.8
244.6
252.0
261.7
250.4 | 128.0
159.0
191.9
214.0
236.6
244.2
252.3
257.4
254.5 | 57.80
58.20
58.25
57.95
58.30
57.78
57.58
56.93
57.00 | 162.4
206.9
246.8
280.3
301.2
323.6
334.7
351.6
336.0 | ## DATA BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix TUBE DIA,-5/8" TUBE PITCH-3/4" NO. OF TUBES-40 TRANSFER AREA- 32,72, SHELL FLUID WATER TUBE FLUID WATER | for Symbols. | | | | | NO.OF TUBES-40 | | | TUBE FLUID- WATER | | | | |--|--|--|--|--|--|--|---|--|--|--|--| | RUN
NUMBER | * t _t | t _{t2} | t _s | t _{s2} | ΔP | W _t | Wg | Qt | Qs | θ _m | Ū | | 19 BAFFLES | | | | | | | | | | | | | 171
172
173
174
175
176
177
178
179
180 | 59.0
59.0
59.0
59.0
59.0
59.1
59.2
59.2
59.0
59.0 | 67.4
70.1
74.0
75.4
77.9
80.6
82.2
83.8
84.6
85.1 | 139.9
140.8
141.4
140.6
139.5
140.5
140.5
140.2
140.0
140.5 | 74.2
81.9
92.1
96.6
102.1
108.5
111.7
115.5
117.8
118.9 | 0.32
0.51
1.02
1.53
2.78
4.73
6.81
9.67
12.08
14.26 | 26,770
27,070
27,170
27,070
27,280
27,580
27,400
26,670
27,030
27,070 | 3,465
5,145
8,370
10,140
13,900
18,560
21,950
26,670
31,250
32,730 | 224.3
301.3
408.4
444.8
515.0
591.0
629.0
657.0
691.0
705.5 | 227.8
303.0
413.0
446.0
520.0
594.0
632.8
660.0
693.6
708.0 | 36.70
42.43
48.20
50.20
51.82
54.57
55.36
56.33
57.10
57.65 | 186.8
217.0
259.0
270.8
303.7
331.2
347.5
356.5
370.0
374.0 | | 11 BAFFLES | | | | | | | | | | | | | 455
456
457
458
459
460
461
462 | 61.2
61.3
61.4
61.5
61.5
61.6
61.5 | 71.3
73.9
75.9
78.8
81.8
84.5
86.2
87.3 | 140.0
140.3
139.4
139.9
139.4
140.5
141.3
141.0 | 85,2
93,4
98.2
106.2
111.7
117.9
121.4
123.7 | 0.09
0.28
0.46
0.83
1.95
3.47
5.28
7.69 | 27,400
27,030
27,200
27,280
27,070
27,160
27,310
27,280 | 5,130
7,270
9,650
14,120
19,880
27,600
33,980
40,730 | 276.0
340.0
393.6
472.0
548.5
622.0
674.0
703.5 | 281.4
341.0
397.6
475.0
550.5
622.5
676.0
706.0 | 42.50
47.20
49.00
52.40
53.80
56.16
57.55
57.86 | 198.5
220.2
245.4
276.3
311.7
338.6
358.0
371.6 | | 3 BAFFLES | | | | | | | | | | | | | 491
492
493
494
495
496
497
498
499
500 | 61.8
61.8
61.9
62.4
62.5
62.5
62.5
62.3
61.8
62.2 | 69.9
71.4
74.3
76.4
79.8
82.7
84.2
80.7
69.6
77.2 | 139.9
139.7
140.1
139.4
139.7
140.9
141.4
139.1
139.5
139.3 | 97.3
102.2
109.4
114.5
120.1
124.8
126.8
121.5
96.1
115.4 | 0.09
0.09
0.11
0.28
0.65
1.11
1.67
0.83 | 27,280
27,070
27,160
27,780
27,560
27,520
27,520
27,520
27,500
27,690 | 5,220
6,990
11,025
15,620
24,430
34,450
41,000
29,000
4,930
17,480 |
221.9
260.0
336.0
389.0
477.5
552.8
596.5
507.5
212.2
415.3 | 222.0
262.0
337.8
390.0
479.0
554.5
598.5
510.5
213.8
417.0 | 50.85
53.18
56.25
57.25
58.78
60.20
60.75
58.79
50.05
57.58 | 133.4
149.5
182.6
207.7
248.3
280.7
300.2
263.8
129.6
220.5 | BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols. TUBE DIA.-5/8" TUBE PITCH-7/8" NO.OF TUBES- 30 TRANSFER AREA- 24.54 | | for Sym | DO15. | | NO.OF TUBES- 30 | | | TUBE FLUID- WATER | | | | | |--|--|--|---|---|--|--|---|---|---|--|---| | RUN
NUMBER | t _{t1} * | t _{t2} | t _{s1} | t
s ₂ | ΔP | W _t | Ws | Qŧ | Q _s | θ _m | υ | | 19 | BAFFLES | | | | | | | | | | | | 188
189
190
191
192
193
194
195
196 | 60.6
60.5
60.6
60.7
60.7
60.7
60.7
60.3 | 70.8
73.7
77.6
80.6
83.2
85.1
87.7
87.3
88.4 | 139.1
140.8
140.8
141.2
140.0
141.0
142.4
139.6
139.4 | 82.2
90.4
99.5
107.3
112.2
116.5
120.8
121.6
123.4 | 0.19
0.37
0.83
1.67
3.24
4.77
7.60
11.21
15.14 | 20,480
20,460
20,340
20,360
20,580
20,320
20,360
20,760
20,700 | 3,790
5,380
8,430
12,000
16,680
20,380
25,480
31,300
36,450 | 210.0
269.4
346.5
405.0
463.0
497.0
549.5
561.0
582.5 | 215.3
271.1
348.0
407.0
463.0
500.0
550.0
564.0
584.0 | 40.56
46.04
50.08
53.32
54.15
55.85
57.37
56.72
56.70 | 211.0
238.4
282.0
309.5
348.2
362.6
390.3
403.1
418.5 | | 15 | BAFFLES | | | | | | | | | | | | 411
412
413
414
415
416
417
418 | 60.8
60.9
61.0
61.2
61.2
61.2
61.1 | 72.0
74.9
77.7
82.5
85.5
87.6
88.4
89.4 | 140.3
139.4
139.1
139.3
140.2
140.1
140.2 | 87.0
94.4
101.5
111.9
117.6
121.2
123.1
124.5 | 0.14
0.28
0.65
1.76
3.38
5.74
7.60
10.56 | 20,420
20,460
20,430
20,460
20,460
20,490
20,540
20,370 | 4,270
6,370
9,210
16,030
22,040
28,730
33,030
38,800 | 229.4
285.7
340.6
435.0
496.3
540.5
561.5
576.5 | 227.8
286.8
346.7
439.0
498.0
544.0
564.0
573.0 | 43.92
47.33
50.23
53.70
55.58
56.18
56.80
56.38 | 212.9
245.9
276.0
330.0
363.9
392.0
402.6
416.7 | | | BAFFLES | | | | | | | | | | | | 427
428
429
430
431
432
433
434
435
436 | 60.8
61.0
61.0
61.1
61.4
61.4
61.5
61.4
61.4 | 72.2
75.9
75.5
77.5
80.2
83.7
85.3
87.0
87.6
88.5 | 138.4
139.1
138.9
139.2
138.8
140.1
139.1
140.5
139.7 | 91.3
102.0
100.8
104.5
110.4
117.7
120.3
123.4
124.6
125.8 | 0.10
0.28
0.28
0.43
0.76
1.69
2.64
3.61
5.00
7.04 | 20,180
19,730
20,800
20,220
20,160
20,080
20,240
20,190
20,100
20,350 | 4,970
7,980
7,965
9,730
13,680
20,140
25,860
29,920
35,100
41,500 | 230.5
294.0
301.6
333.8
384.0
449.0
485.0
514.5
527.0
551.5 | 234.0
296.1
303.6
338.0
388.0
452.5
486.0
515.5
529.0
553.5 | 46.07
51.32
50.70
52.15
53.90
56.35
56.32
57.56
57.56
57.30 | 203.8
233.3
242.2
260.8
290.2
324.8
350.8
364.3
373.0
392.0 | | 552 | | T THER | 138.5 | LOCATIO | O.09 | ED | 3 980 | 204.4 | 206.7 | 143.92 | 189.6 | | 553
554
555
556
557
558
559
560
561
562
563
564
565
565
567
568 | 60.4
60.3
60.4
60.5
60.0
60.9
60.9
59.8
59.5
59.5
59.5
59.5
59.5
59.5
59 | 75.7
79.7
85.9
86.2
87.6
87.6
87.0
71.7
76.3
81.3
84.7
86.1 | 00METER
138.5
141.7
139.5
140.0
141.6
140.6
140.5
140.1
140.2
139.2
139.6
141.4
141.4
141.4 | 86.6
94.2
100.8
110.0
118.3
122.9
125.2
123.4
125.0
124.7
92.8
103.8
114.8
114.8
124.1
126.2 | 0.09
0.19
0.28
0.74
1.95
3.24
5.47
4.08
5.47
5.47 | 20,000
20,480
20,410
20,460
20,460
20,380
19,870
19,870
20,520
20,120
20,120
20,120
20,320
20,410 | 3,980
5,540
8,240
13,210
21,960
28,400
36,400
36,400
5,450
9,760
18,000
25,290
31,620
37,050 | 259.4
313.0
395.0
477.0
529.5
560.0
547.5
544.0
547.5
252.0
341.0
442.0
506.0
545.0
562.5 | 206,7
263.2
319.0
397.0
479.0
5531.0
562.5
550.0
548.5
558.0
252.7
345.5
446.0
566.0 | 43.92
49.15
51.22
54.80
57.00
58.78
58.76
58.75
58.75
58.75
58.75
58.75
58.95
59.85
59.85
59.45 | 215.0
248.8
293.6
341.0
366.3
388.2
379.5
377.3
387.5
210.8
261.0
317.0
348.2
371.0
385.5 | | 573
574
575
576
577
578
579
580
581 | 59.6
59.7
59.7
59.7
59.6
59.5
59.4
59.4 | 77.8
81.8
84.3
84.4
86.0
86.0
86.8
87.1 | 140.2
139.9
140.9
141.6
140.3
140.5
139.7
140.4 | 106.5
114.9
119.9
120.2
123.4
123.5
124.8
125.4 | 0.46 | 20,300
20,390
20,230
19,970
20,110
20,580
20,300
20,430
20,250 | 11,130
18,090
23,450
23,500
32,230
32,040
37,260
37,320 | 368.4
445.0
490.8
498.6
545.0
539.5
559.0
560.0 | 375.0
451.2
492.5
503.0
545.5
543.6
555.0
562.5 | 50.05
54.30
56.65
58.40
59.00
58.90
59.05
59.10
59.40 | 231.8
276.3
320.0
342.3
344.3
377.0
372.2
385.4
384.0 | | 7 BA | FFLES | | | | | | | | | | | | 445
446
447
448
449
450
451
452
453
454 | 61.5
61.5
61.6
61.9
61.9
61.9
61.9
61.2
61.4 | 76.6
78.6
81.5
84.2
86.2
87.5
88.3
88.6
71.2
75.6 | 139.9
138.7
139.4
139.6
140.4
140.2
140.1
140.8
137.5
139.7 | 107.2
110.3
115.7
120.4
123.8
125.6
126.9
127.6
92.8
104.6 | 0.19
0.37
0.67
1.25
1.95
2.69
3.71
3.71
0.04
0.14 | 20,520
20,300
20,260
20,120
20,070
19,770
20,260
20,280
20,060
19,880 | 9,540
12,140
16,960
23,380
29,220
34,840
40,650
40,980
4,600
8,140 | 310.5
345.6
402.5
448.8
487.5
505.5
535.0
541.5
201.0
283.5 | 312.0
345.0
401.5
449.5
487.0
506.5
537.0
542.0
205.5
285.4 | 53.95
54.43
56.03
56.90
57.96
58.17
58.05
58.70
46.88
52.90 | 234.4
258.6
292.5
321.2
342.7
354.2
376.0
174.6
218.3 | BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols. TUBE DIA.-5/8" TUBE PITCH-7/8" NO.OF TUBE\$-30 TRANSFER AREA- 24.54 SHELL FLUID- WATER TUBE FLUID- WATER | RUN
NUMBER | t _{t1} * | t _{t2} | t _{s1} | t ₈₂ | ΔP | W _t | Ws | Qt | Q, | θ _m | ŭ | | | | |---|--|--|---|---|--|--|--|---|---|---|---|--|--|--| | 3 B | | | | | | | | | | | | | | | | 463
464
465
466
467
468
469 | 61.2
61.3
61.7
61.8
61.8
61.8 | 71.0
73.0
77.2
80.6
83.7
85.5
86.8 | 139.1
139.5
139.8
139.6
141.0
141.1
141.2 | 103.4
107.8
115.7
120.8
125.2
127.3
129.1 | 0.09
0.09
0.19
0.37
0.60
1.02
1.57 | 20,360
20,220
20,220
20,220
20,110
20,180
20,290 | 5,620
7,515
13,050
20,380
28,120
34,870
42,280 |
198.9
236.6
313.5
381.0
441.2
478.0
506.5 | 201.0
238.0
315.0
383.0
443.7
481.0
509.0 | 54.15
56.08
58.20
59.01
60.22
60.56
60.70 | 149.6
171.8
219.4
263.0
298.3
321.7
340.0 | | | | # DATA BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols. TUBE DIA.-5/8" TUBE PITCH-1 1/16" NO.OF TUBES-20 TRANSFER AREA- 16.36 | for Symbols. | | | | | NO.OF TUBES-20 | | | | TUBE FLUID- WATER | | | | |--|---|--|--|---|--|--|---|--|--|--|--|--| | RUN
NUMBER | t _{t1} * | t _{t2} | t _{s1} | t _s 2 | ΔP | W _t | Ws | Q _t | Q, | θ,,, | υ | | | 19 6 | AFFLES | | | | 12 | | | | | | | | | 127
128
129
130
131
132
133
134
135
136
137
138
139
140 | 55.6
55.6
55.5
56.1
57.1
57.0
57.0
57.2
57.2
57.2
57.5
57.5
57.5
57.5
57.5 | 77.1
77.3
82.9
86.0
87.0
70.7
75.1
82.6
84.8
87.7
89.3
89.3
89.3 | 140.7
141.4
140.2
140.6
141.0
143.8
139.1
140.1
139.5
139.4
139.8
139.1
140.3
140.3 | 110.4
110.5
120.8
125.5
127.8
130.1
93.3
104.6
113.0
119.4
122.9
126.1
127.4
129.8
115.5 | 0.74
0.74
2.82
5.82
6.80
0.14
0.37
1.02
2.27
4.053
10.09
13.512
4ND 00 | 14,030
14,170
14,060
14,160
14,280
13,720
13,720
13,620
13,620
13,950
13,850
13,810
13,810
13,810
13,810 | 10,040
10,020
19,620
27,640
34,530
34,600
4,095
7,050
11,7640
23,500
30,000
36,720
42,250
23,560 | 301.6
308.0
379.0
423.0
469.0
184.3
248.3
305.0
349.6
387.0
409.0
426.0
443.4
378.0 | 304.0
309.5
382.0
419.0
445.2
471.5
187.0
307.0
352.5
389.7
412.7
445.8
381.6 | 59 12
59 20
61 09
62 02
63 845
55 85
59 65
60 65
60 65
61 16
58 95 | 311.9
318.0
379.8
417.4
445.2
449.0
223.2
271.7
358.2
358.2
358.2
412.2
443.5
392.0 | | | 595 | 62.5 | 77.3 | 138.5 | 1100.6 | 0.23 | | 5,480 | 1200.5 | 1208.0 | 148.70 | 251.6 | | | 596
597
599
6001
6003
6005
6007
6008
6008
6000 | 62.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
622.5
6 | 77.3
77.6
83.9
88.6
75.5
81.7
85.0
89.6
90.1
90.6
91.3
83.7 | 138.5
139.8
139.8
141.2
139.0
140.5
139.0
140.4
139.9
138.0
139.3
139.5
139.5 |
100.6
101.1
114.0
123.1
123.5
96.5
109.4
110.4
1122.8
126.0
125.5
126.0
127.0
115.6
114.8 | 0 23
0 23
0 23
0 88
2 87
2 87
0 14
0 56
1 25
2 92
4 63
4 63
6 81
1 07 | 13,676
13,660
13,040
13,050
13,925
13,500
13,190
13,530
13,540
13,540
13,600
13,605
13,555
13,555
13,550 | 5,480
5,385
11,070
20,360
20,130
4,260
8,470
8,520
13,280
20,140
25,460
25,460
30,880
30,920
12,390 | 200.5
206.3
284.7
284.7
2358.5
175.0
246.0
2257.5
299.0
345.8
376.4
381.5
290.4
292.7 | 208.0
208.4
285.0
340.0
357.6
181.2
250.0
256.3
299.8
343.3
368.2
370.5
368.2
370.5
382.3
293.3 | 48.70
49.44
53.50
55.47
56.55
47.20
53.17
53.79
56.10
56.00
54.83
55.76
54.18
53.65 | 251.6
255.1
325.2
387.5
226.7
289.2
296.0
340.0
381.0
402.8
419.7
418.2
327.9
333.4 | | | 11 B | AFFLES | | | | | | | | | , | | | | 527
528
529
530
531
532
533
534
535
536 | 62.6
62.6
62.8
63.0
63.2
63.2
63.2
63.2 | 74.7
74.7
78.0
81.6
85.3
87.7
88.8
89.7
90.4
90.7 | 138.3
138.3
139.5
140.4
141.0
140.2
139.9
140.0
138.7
139.9 | 101.1
101.4
109.0
116.3
122.3
125.9
127.8
129.1
129.5
130.5 | 0.05
0.05
0.19
0.32
0.74
1.39
2.13
2.87
4.26
4.26 | 13,490
13,650
13,700
13,750
13,275
13,390
13,440
13,600
13,420
13,800 | 4,455
4,500
6,970
10,620
15,840
23,190
28,720
33,330
39,900
40,000 | 163.2
165.2
208.6
255.2
293.8
328.4
344.6
361.4
364.5
379.5 | 165.6
165.8
212.8
256.5
296.7
331.0
346.8
363.3
368.0
378.5 | 50.00
50.22
53.40
56.08
57.35
57.55
57.50
57.70
56.85
57.75 | 199.5
201.0
238.7
278.4
313.2
348.8
366.3
383.0
392.0
401.7 | | | 3 BA | FFLES | | | | | | | | | r | | | | 537
538
539
540
541
542
543
544
545 | 62.4
62.6
62.8
63.0
63.2
63.2
63.1
62.8 | 73.0
75.4
78.1
80.4
83.0
85.7
87.2
87.5
81.1 | 139.5
138.8
139.8
139.0
139.4
140.0
140.9
139.0 | 110.9
115.0
119.6
122.4
125.6
128.7
130.7
130.2
123.7 | 0.02
0.05
0.14
0.23
0.45
0.58
0.79
0.16 | 13,500
13,410
13,500
13,450
13,580
13,625
13,650
13,730
13,540 | 5,005
7,370
10,280
14,170
19,840
27,430
32,400
38,500
15,770 | 143.1
172.5
206.2
234.5
271.6
306.2
327.0
335.5
248.6 | 143.2
175.0
207.1
234.8
273.8
308.4
330.4
340.0
248.3 | 57.00
57.85
59.20
59.00
59.45
59.75
60.20
58.97
59.65 | 153.4
182.3
213.0
243.0
279.2
313.2
332.0
347.8
254.7 | | BAFFLES- ORIFICE SIZE-17/32" DIA.HOLE * See first page of Appendix for Symbols. TUBE DIA.-3/8" TUBE PITCH-11/16" NO.OF TUBES-52 TRANSFER AREA- 25.51 ... SHELL FLUID- WATER TUBE FLUID- WATER | RUN
NUMBER | *
t _{t1} | t _{t2} | t _{s1} | t _{s2} | ΔP | W _t | W _s | Q _t | Q _s | θ _m | U | |--|--|--|--|---|--|--|--|--|--|--|--| | 19 | BAFFLES | | | | | | | | 9 | | | | 750
751
752
753
754
755
756
757 | 73.3
73.7
74.0
74.3
74.3
74.4
74.4 | 84.8
96.5
104.2
107.6
110.1
112.1
113.2
114.4 | 138.1
137.6
139.0
138.6
139.3
139.6
139.1
139.9 | 82.4
100.8
112.7
118.1
121.4
124.3
125.9
127.5 | 0.20
1.37
4.12
8.06
12.13
18.06
25.75
31.22 | 9,590
9,780
9,760
9,800
9,845
9,780
9,740
9,735 | 1,985
6,080
11,250
15,960
19,730
24,130
28,760
31,480 | 109.7
223.2
295.0
326.2
352.4
368.7
378.2
388.3 | 110.7
223.8
296.3
327.2
353.7
370.0
379.7
390.3 | 24.97
33.58
36.68
37.04
37.50
37.60
37.27
37.60 | 172.2
260.6
315.3
345.0
368.3
384.4
397.8
404.8 | | 11 | BAFFLES | | | | j | | | | | | | | 758
759
760
761
762
763 | 73.6
74.0
74.4
74.8
74.9
75.0 | 86.0
93.2
101.9
106.5
109.7
112.1 | 139.0
139.0
139.6
139.8
139.3
139.7 | 87.1
98.7
111.9
118.8
122.8
126.4 | 0.14
0.51
1.83
4.03
7.97
13.89 | 9,760
9,620
9,665
9,800
9,715
9,700 | 2,310
4,710
9,590
14,760
20,700
27,060 | 120.4
185.2
266.0
310.0
338.3
360.2 | 119.9
189.7
265.6
310.0
340.3
360.0 | 28.87
34.18
37.61
38.43
38.04
38.28 | 163.5
212.3
277.1
316.2
348.5
368.8 | | 3 B/ | AFFLES | 200 | | | | | | | | | | | 764
765
766
767
768
769 | 73.9
73.9
74.2
74.2
74.3
74.3 | 84.7
92.3
99.3
103.8
105.6
107.6 | 138.0
137.6
138.7
140.4
138.8
138.1 | 96.3
110.3
120.6
125.6
127.0
128.5 | 0.11
0.32
1.02
2.08
3.66
6.30 | 9,840
9,980
9,810
9,875
9,830
9,805 | 2,565
6,735
13,720
19,740
26,280
34,480 | 106.3
183.0
246.6
292.2
308.0
327.0 | 106.8
184.0
248.8
293.2
310.0
329.0 | 35.70
40.67
42.80
43.65
42.20
41.22 | 116.7
176.4
225.8
262.4
286.0
311.0 | | | | | | | | 1 - | | Deller Deller | | | | # DATA BAFFLES- ORIFICE SIZE-17/32" DIA. HOLE TUBE DIA.-1/2" TUBE PITCH-25/32" NO.OF TUBES-40 TRANSFER AREA- 26.16 SHELL FLUID- WATER TUBE FLUID- WATER | 512 | SIZE-17/32 DIA.HOLE | | | | NO.OF TUBES-40 | | | TUBE FLUID- WATER | | | | |--|--|--|--|---|--|--|---|--|---|--|--| | RUN
NUMBER | t _{t1} | t _{t2} | t _e | t _{s2} | ΔP | W _t | W _s | Q _t | Q _s | θ _m | υ | | 19 (| BAFFLES | | | | | | | | | | | | 587
588
589
590
591
592
593
594 | 62.0
62.2
62.2
62.5
62.6
62.7
62.8
62.8 | 73.6
80.9
83.6
87.1
89.2
91.5
93.2
94.0 | 138.9
139.6
139.6
139.9
139.4
139.5
140.3
139.5 | 77.1
91.5
97.0
103.8
108.1
112.3
115.2
116.9 | 0.83
3.15
5.00
8.62
13.33
20.47
26.58
34.45 | 15,720
15,739
15,800
15,600
15,770
15,720
15,750 | 2,960
6,130
7,950
10,775
13,480
16,690
19,120
21,750 | 182.8
294.2
337.6
384.0
420.0
452.6
479.4
492.0 | 183.0
294.5
338.6
389.6
422.0
454.5
480.0
491.5 | 34.33
42.36
44.55
46.70
47.80
48.75
49.70 | 203.6
265.8
289.7
314.3
336.0
354.8
368.9
378.4 | | | BAFFLES | - ma - m | 170 6 | 774 E | 0.46 | 15,650 | 2,290 | 146.3 | 149.0 | 32.50 | 172.2 | | 621
622
623
624
625 | 62.3
62.5
63.7
63.0
63.0
63.2
63.2
63.5
63.6
63.9
64.2 | 71.7
77.8
83.6
86.6
88.7
90.4
91.9
94.2
76.9
81.5
88.3
91.3 | 139.6
139.1
140.4
139.7
140.5
139.2
139.0
139.0
139.0
139.0
139.0
139.0 | 74.5
87.1
98.2
104.3
108.4
111.7
114.0
116.2
118.4
87.1
97.1
104.4
109.6
115.0 | 0.83
2.13
4.17
7.23
12.32
17.41 | 15,820
15,840
15,920
15,750
15,910
15,770
15,880
15,780
15,850
15,850
15,860
15,850
15,860
15,840 | 4,720
7,850
10,600
12,730
15,770
20,720
23,600
4,070
6,790
9,960
13,140
17,220
20,520 | 242.5
329.5
375.8
405.0
435.3
450.4
471.2
487.5
209.6
289.7
342.0
333.5
429.3
457.5 | 245.6
331.2
374.6
408.0
4433.6
449.0
471.5
486.0
212.0
292.3
347.3
386.0
428.6
456.4 |
40.18
45.36
47.00
48.53
48.76
49.12
49.46
49.76
39.95
44.72
46.80
48.07
49.72
50.04 | 230.9
277.8
305.7
319.0
341.3
350.5
364.3
374.7
200.5
247.6
279.3
305.2
330.2
349.5 | | 626
627
628 | 64.3
64.3
63.7 | 93.1
94.7
81.8 | 139.9
140.5
138.2 | 117.7
120.4
97.4 | 23.80 | 15,930
15,780 | 24,000
7,100 | 483.6
285.6 | 481.6
289.6 | 50.96
44.10 | 362.8
247.7 | | | AFFLES | | | | | | | | | | | | 636
637
638
639
640
641
642 | 63.6
64.0
64.4
64.5
64.5
64.6
64.5 | 75.3
83.0
88.6
91.1
92.7
94.7
95.2 | 138.9
139.2
138.5
139.7
139.3
139.6
141.1 | 88.8
103.6
113.5
117.7
120.2
123.1
123.8 | 0.46
2.04
6.21
9.54
14.07
20.66
20.38 | 15,820
15,880
15,780
15,860
15,840
15,590
15,680 | 3,735
8,530
15,430
19,120
23,320
28,200
27,940 | 185.1
301.3
382.7
422.8
447.0
469.4
481.5 | 187.3
303.2
385.2
421.2
445.4
465.4
483.4 | 41.53
47.43
49.48
50.88
50.88
51.48
52.40 | 170.4
242.9
295.7
317.7
335.7
348.6
351.2 | BAFFLES- ORIFICE SIZE-17/32" DIA.HOLE TUBE DIA.-1/2" TUBE PITCH-25/32" NO.OF TUBES-40 TRANSFER AREA- 26.16 , SHELL FLUID- WATER TUBE FLUID- WATER | RUN
NUMBER
3 B | t _{t1} | t _{t2} | t
a ₁ | t
a ₂ | ΔP | W _t | W _s | Qt | Q, | θ_m | ŭ. | |---|--|--|---|--|---|--|--|---|---|---|---| | 629
630
631
632
633
634
635 | 63.8
64.0
64.3
64.3
64.4
64.4 | 74.1
81.4
85.4
87.3
89.5
90.8
92.0 | 138.9
139.2
138.7
139.3
139.2
139.2
139.6 | 96.0
111.6
117.1
120.3
122.5
124.6
125.9 | 0.28
1.20
2.87
4.26
6.48
9.17
12.13 | 15,960
15,890
15,640
15,770
15,430
15,630
15,750 | 3,895
9,930
15,520
19,050
23,380
28,120
31,900 | 164.3
276.5
330.9
362.2
387.4
412.0
434.0 | 167.0
274.3
334.3
361.4
389.7
410.5
436.0 | 46.68
52.57
53.05
53.98
53.83
54.12
54.23 | 134.6
201.2
238.3
256.4
275.1
291.1
306.0 | #### DATA BAFFLES— ORIFICE SIZE-9/16" DIA.HOLE * See first page of Appendix for Symbols. TUBE DIA.-1/2" TUBE PITCH-25/32" NO.OF TUBES-40 TRANSFER AREA- 26.16 , SHELL FLUID- WATER TUBE FLUID- WATER | | | | | 10.0 10023-40 | | | TODE TEOTO - MATER | | | | | |--|--|--|---|--|--|--|---|--|--|--|--| | RUN
NUMBER | * t _{t1} | t _{t2} | t _{el} | t _{s2} | ΔР | ų | W _s | $Q_{\mathbf{t}}$ | Q _s | θ_m | U | | 19 | BAFFLES | | | | | | | | | | | | 648
649
650
651
652
653
654
655 | 65.4
65.4
65.7
65.9
66.0
66.1
66.2
66.3 | 77.4
78.0
85.4
88.0
88.8
92.4
93.6
94.8 | 139.6
139.2
139.6
138.6
139.2
139.9
139.4
138.7
139.3 | 83.4
84.2
99.5
104.8
106.2
113.2
115.1
117.5
119.9 | 0.42
0.42
1.76
3.06
3.06
6.30
8.71
11.76
16.48 | 16,670
15,590
15,800
16,220
15,530
15,580
15,950
15,810
16,160
16,000 | 3,560
3,640
7,750
10,600
10,825
15,360
18,070
21,240
24,900
24,930 | 201.0
196.5
311.0
358.0
353.6
411.8
438.5
452.0
484.0
493.0 | 200.0
200.4
310.8
358.6
357.0
410.0
438.0
451.5
482.0
492.0 | 35.70
35.97
43.26
44.44
45.23
47.30
47.40
47.48
48.07
49.10 | 215.2
208.9
275.0
308.0
299.0
332.8
353.7
364.0
385.0
384.0 | | 657
658 | 66.4
66.4 | 97.2
98.2 | 141.0
140.0 | 121.3
122.9 | 16.40
23.15 | 15,750 | 29,500 | 501.0 | 502.5 | 48.82 | 392.3 | | 11 | BAFFLES | | | | | | | | | | | | 659
660
661
662
663
664
665
666 | 66.0
66.3
66.5
66.5
66.7
66.7
66.7 | 75.6
85.5
89.8
91.8
94.2
95.8
97.0
97.9 | 139.6
138.3
138.6
138.5
139.1
139.5
139.6
139.8 | 83.4
103.4
111.1
114.8
118.7
121.2
123.0
124.3 | 0.23
1.25
2.87
4.40
7.13
10.00
13.33
16.48 | 15,650
15,650
15,630
15,620
15,700
15,700
15,710
15,690 | 2,675
8,680
13,450
16,650
21,280
25,030
28,750
31,820 | 149.9
301.0
364.3
395.2
431.7
456.0
475.5
490.0 | 150.5
303.0
369.5
395.0
432.6
457.5
478.0
492.5 | 35.74
44.50
46.66
47.48
48.35
48.82
49.15
49.26 | 160.4
258.7
298.6
318.4
341.3
357.0
370.0
380.3 | | 3 B | AFFLES | | | | | | | | | | | | 667
668
669
670
671
672
673
674 | 66.2
66.5
66.7
66.8
66.8
66.8
66.8 | 75.2
82.1
86.9
89.7
91.1
93.2
94.5
95.5 | 137.5
137.7
138.6
139.7
138.9
139.7
139.6
139.7 | 95.4
110.4
118.3
122.5
124.0
126.1
127.6
128.6 | 0.09
0.46
1.20
2.13
3.15
4.54
6.67
8.52 | 15,690
15,695
15,700
15,710
15,650
15,675
15,690
15,710 | 3,370
9,000
15,600
21,000
25,390
30,420
36,360
41,100 | 141.2
244.8
316.5
360.3
380.6
413.8
434.6
451.0 | 141.7
246.2
316.0
360.0
379.0
413.6
436.4
453.7 | 43.72
49.62
51.63
52.78
52.40
52.70
52.58
52.50 | 123.4
188.6
234.3
261.0
277.7
300.2
316.0
328.4 | | | | | | | | | | | | | | ## DATA BAFFLES- ORIFICE SIZE-5/8" DIA.HOLE TUBE DIA.-1/2" TUBE PITCH-25/32" NO.OF TUBES-40 TRANSFER AREA- 26.16 IN SHELL FLUID- WATER TUBE FLUID- WATER | RUN
NUMBER | t _{t1} | t _{t2} | t _s 1 | t
a ₂ | ΔP | W _t | W _s | Qŧ | Q _s | e
m | υ | |--|--|---|--|---|---|--|---|--|--|--|--| | 19 [| SAFFLES | | | | | | | , | | | | | 686
687
688
689
690
691
692
693
694
695 | 69.0
69.5
69.5
69.7
69.9
70.2
70.2
70.3
70.4 | 81.3
87.4
87.7
90.8
93.9
97.4
98.0
99.1
99.6
101.1 | 138.2
140.8
140.1
138.0
138.0
141.3
138.4
137.9
138.5
138.2 | 90.8
102.3
102.7
108.5
114.0
119.5
120.9
122.7
123.4
125.4 | 0.17
0.46
0.46
1.02
1.85
2.87
4.54
6.76
6.76
10.32 | 15,605
16,180
15,520
15,640
15,740
15,910
15,800
16,280
15,800
15,780 | 4,165
7,500
7,845
11,170
15,770
19,890
25,070
30,730
30,730
37,950 | 192.0
290.0
283.0
330.0
377.6
433.5
440.0
470.5
463.4
484.5 | 197.4
289.0
293.3
329.5
378.5
434.3
438.6
466.6
464.0
485.6 | 36.53
42.30
42.08
42.88
44.07
46.53
45.34
45.33
45.60
45.52 | 201.0
257.1
294.2
327.8
356.2
371.1
388.7
407.0 | BAFFLES- ORIFICE SIZE-5/8" DIA. HOLE TUBE DIA.-1/2" TRANSFER AREA- 26.16 SHELL FLUID- WATER NO.OF TUBES-40 TUBE FLUID- WATER | | | | | | 110.01 | 10003 4 | | | TOOL IL | אה -טוט. | | |--|--|--|---|--
--|--|--|--|--|--|--| | RUN
NUMBER | t _{t1} | t _{t2} | t
1 | t | ΔΡ | W _t | Ws | Q | Qg | θ _m | υ | | 11 | BAFFLES | | | | | • | | | | A | L | | 696
697
698
699
700
701
702 | 70.1
70.4
70.6
70.7
70.8
70.8
71.0 | 80.9
88.1
92.5
95.3
97.8
99.2
100.8 | 138.0
138.0
140.6
139.2
139.6
138.7
139.3 | 92.0
106.3
113.8
118.0
122.1
124.2
126.7 | 0.14
0.42
0.79
1.58
2.59
4.17
6.11 | 15,495
15,720
15,750
15,690
15,650
15,650
15,560 | 3,775
8,950
13,020
18,300
24,130
30,410
36,840 | 167.8
278.3
345.4
386.0
423.0
444.0
464.6 | 173.7
283.4
348.0
388.0
421.6
442.7
463.0 | 36.80
42.60
45.62
45.62
46.56
46.15
46.60 | 174.4
250.0
289.6
323.4
347.4
368.0
381.0 | | 3 B | AFFLES | | | | | | | | | | | | 703
704
705
706
707
708
709
710 | 70.1
70.5
70.8
71.0
71.1
71.2
71.3
71.3 | 80.9
84.8
88.4
91.6
93.8
95.9
97.5
99.0 | 137.7
137.8
139.3
138.5
137.9
138.1
138.9 | 102.8
111.0
117.4
121.6
123.7
126.0
128.3
130.0 | 0.05
0.10
0.28
0.48
0.79
1.34
1.95
2.64 | 15,840
15,940
15,910
15,650
15,590
15,710
15,810
15,710 | 4,985
8,615
12,760
19,200
24,980
32,430
38,830
45,150 | 171.1
228.0
279.6
322.0
353.8
388.0
413.8
435.3 | 173.8
230.8
280.0
324.0
355.2
390.5
414.0
438.0 | 43.65
46.57
48.75
48.73
48.25
48.26
48.82
49.10 | 149.8
187.3
219.2
252.7
280.3
307.4
324.0
339.0 | # DATA BAFFLES- ORIFICE SIZE-9/16" DIA HOLE * See first page of Appendix TUBE DIA .- 1/2" TUBE PITCH-1 3/32" TRANSFER AREA- 13.08 SHELL FLUID- WATER | | for Symbols. | | | | | NO.OF TUBES-20 | | | | TUBE FLUID- WATER | | | | | |---|--|--|---|---|--|---|---|---|---|---|---|--|--|--| | RUN
NUMB E R | t., * | t _{t2} | t ₈₁ | t _{a2} | ΔP | W _t | W _s | Qt | Q _s | θ ₂₀ | u | | | | | 19 (| BAFFLES | | | 1 | | | L | | | I | - | | | | | 711
712
713
714
715
716
717 | 73.3
78.4
73.7
73.8
73.9
73.9
73.9 | 88.6
92.4
97.9
100.5
102.3
103.6
104.3 | 138.2
137.9
138.8
138.3
139.6
140.1
139.4 | 98.2
105.9
116.1
120.9
123.9
126.0
126.9 | 1,02
2,22
6,58
13,38
18,06
23,98
33,07 | 7,870
7,905
7,810
7,890
7,940
7,890
7,925 | 3,055
4,755
8,410
12,075
14,390
16,510
19,350 | 120.4
150.2
188.6
210.6
225.4
234.3
241.0 | 122.3
152.4
190.8
210.8
225.8
233.3
241.3 | 35.80
38.66
41.62
42.32
43.30
43.75
43.46 | 257.2
297.0
346.2
380.3
398.0
409.4
424.0 | | | | | 11 1 | BAFFLES | | | | | | | | | | | | | | | 725
726
727
728
729
730 | 72.5
72.8
72.9
73.0
73.1
73.0 | 85.1
92.4
96.2
99.1
101.9
103.4 | 137.4
138.5
138.5
138.1
138.7
138.8 | 97.1
111.2
118.0
122.7
126.7
128.7 | 0.42
1.95
4.54
9.82
19.36
31.90 | 7,920
7,890
7,905
7,970
7,910
7,950 | 2,535
5,850
9,040
13,530
19,080
24,250 | 99.8
154.6
184.7
208.0
227.5
241.4 | 102.1
159.8
185.3
207.5
227.4
243.3 | 36.75
42.15
43.70
44.15
44.70
44.83 | 207.8
280.4
323.2
360.0
389.0
411.8 | | | | | 3 8/ | AFFLES | | | | | | | | | | | | | | | 737
738
739
740
741
742
743 | 72.5
72.6
72.7
72.9
72.9
72.8
73.0 | 89.0
92.5
94.6
97.2
98.7
100.0
102.4 | 139.6
139.8
138.6
139.0
139.2
138.9
141.1 | 120.3
124.9
127.1
129.4
131.2
131.9
134.0 | 0.70
1.71
3.15
5.93
9.17
14.54
13.15 | 7,785
8,000
7,860
7,850
7,815
8,100
7,640 | 6,870
10,730
14,975
20,000
25,180
31,650
31,860 | 128.5
158.9
171.7
190.5
201.5
220.2
224.8 | 132.3
159.9
172.7
191.4
202.2
221.5
227.2 | 49.21
49.80
49.04
48.75
48.94
48.32
48.97 | 199.5
243.9
267.6
298.8
314.8
348.6
350.8 | | | | BAFFLES- ORIFICE SIZE-11/16" DIA.HOLE TUBE DIA.-5/8" TUBE PITCH-1 1/16" NO.OF TUBES-20 TUBE FLUID- WATER TUBE FLUID- WATER | | | | | | 100000-100 | (0.00,00,00,00,00,000,000,000,000,000,00 | | | ODE LEG | 10 10011 | | |---|--|--|---|--|---|--|---|---|---|---|---| | RUN
NUMBER | t _{t1} | t _{t2} | t _s 1 | t _{s2} | ΔP | W _t | Ws | Qt | ٥ª | θ _m | ប | | 19 (| BAFFLES | | | | | | | | | | | | 718
719
720
721
722
723
724 | 72.8
72.8
72.8
72.8
72.8
72.8
72.9 | 80.6
86.7
89.7
92.0
94.2
95.3
96.0 | 138.1
138.3
138.1
138.1
138.5
138.2
137.6 | 86.7
102.3
109.8
114.9
119.5
121.4
122.6 | 0.42
2.18
4.82
8.85
15.28
21.83
30.57 | 13,350
13,630
13,760
13,540
13,360
13,470
13,620 | 2,130
5,380
8,380
11,260
15,040
18,020
21,150 | 104.2
189.2
232.5
260.3
285.8
302.3
315.2 | 109.4
193.7
236.7
261.0
285.8
304.0
316.0 | 30.77
39.56
42.52
44.06
45.47
45.70
45.53 | 207.0
292.3
334.3
361.1
384.0
404.5
423.2 | | 11 8 | SAFFLES | | | | | | | | | | | | 731
732
733
734
735
736 | 72.0
72.0
72.0
72.1
72.1
72.1 | 78.9
86.6
90.6
92.7
94.5
95.7 | 137.8
137.2
138.4
139.2
138.4
139.2 | 88.9
109.1
117.7
122.0
124.9
127.0 | 0.19
2.04
5.70
10.28
18.46
27.04 | 13,350
13,300
13,440
13,525
13,195
13,575 | 1,950
7,110
12,040
16,210
21,900
26,240 | 91.7
194.2
249.8
279.5
295.2
319.5 | 95.4
199.8
249.2
278.9
295.7
318.6 | 33.62
43.60
46.72
48.20
48.23
49.00 | 166.8
272.2
326.8
354.4
374.0
398.6 | | 3 8/ | AFFLES | | | ê | | | | | | | | | 744
745
746
747
748
749 | 72.0
72.0
72.2
72.3
72.5
72.6 | 80.9
81.0
83.8
86.7
90.4
92.5 | 139.6
137.9
137.9
138.5
138.7
139.4 | 110.8
110.2
116.9
122.3
127.3
130.1 | 0.27
0.27
0.65
1.76
4.91
9.54 | 13,980
13,685
13,680
13,860
13,685
13,760 | 4,475
4,490
7,680
12,460
21,550
29,380 | 125.3
123.0
157.8
200.0
245.0
273.3 | 129.0
124.2
161.3
201.8
245.8
274.0 | 48.07
47.00
49.30
50.88
51.53
52.00 | 159.3
160.0
195.6
240.3
290.8
321.7 | # DATA BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK.4.0" HOLE * See first page of Appendix TUBE DIA.- 3/8" TUBE PITCH-11/16" NO. OF TUBES-52 TUBE FLUID- WATER TUBE FLUID- WATER | 1 | for Symbols. | | | | | | | N., | | | | | | |--|--|--|--|--|--|--|---|--|--|--|--|--|--| | RUN
NUMBER | *
t _{t1} | t _{t2} | t
s ₁ | t _a 2 | ΔΡ | W _t | W _s | Q | Q. | θ
m | υ | | | | 19 B | AFFLES | | | | | | | | | | | | | | 781
782
783
784
785
786
787
788 | 75.4
75.2
75.8
76.0
76.3
76.4
76.6 | 89.6
91.2
100.3
105.2
108.9
112.6
114.5
114.9 |
138.8
139.5
140.1
139.3
138.8
140.0
140.1
138.4 | 93.2
97.3
109.7
116.7
121.7
126.4
128.5
129.0 | 0.06
0.06
0.16
0.35
0.79
1.53
2.41
3.72 | 10,105
10,000
9,615
9,750
9,780
9,640
9,780
9,750 | 3,200
3,865
7,820
12,600
18,630
25,620
32,150
39,900 | 143.5
159.5
235.6
284.3
318.8
349.2
371.0
373.8 | 145.9
163.0
237.6
284.4
318.5
349.2
372.0
375.0 | 30.92
33.56
36.80
37.28
37.18
37.58
37.22
36.07 | 181.8
186.3
251.0
299.1
336.0
364.3
390.7
406.3 | | | | 11 B | 11 BAFFLES | | | | | | | | | | | | | | 807
808
809
810
811
812 | 75.9
76.1
76.4
76.7
76.8
76.9 | 89.3
97.8
102.8
107.0
110.6
112.4 | 140.7
139.5
139.1
138.1
139.1
138.5 | 96.3
110.2
117.6
123.0
127.2
129.2 | 0.05
0.10
0.23
0.43
0.80
1.50 | 9,860
9,920
9,870
9,785
9,800
9,780 | 3,065
7,300
12,060
19,670
27,940
37,360 | 132.1
214.6
260.4
296.7
331.5
347.6 | 136.0
213.9
260.0
297.0
331.8
347.3 | 33.60
37.80
38.70
38.22
38.44
37.73 | 154.1
222.5
263.8
304.3
338.0
361.0 | | | | 3 BA | FFLES | | | | | | | | | | | | | | 842
843
844
845
846
847 | 76.3
76.4
76.7
76.9
77.2
77.0 | 86.8
95.4
99.8
104.1
106.9
108.5 | 137.9
138.8
138.8
138.2
138.8
137.9 | 104.1
115.7
121.7
126.1
128.7
129.6 | 0.03
0.04
0.07
0.15
0.25
0.41 | 9,780
9,785
9,850
9,740
9,810
9,725 | 3,110
8,100
13,350
21,930
29,000
37,350 | 103.3
186.0
227.5
265.0
291.3
306.3 | 105.2
187.5
229.2
265.3
293.0
307.7 | 38.31
41.33
41.97
41.27
41.07
39.90 | 105.7
176.4
212.5
251.7
278.0
301.0 | | | BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK.4.0" HOLE TUBE DIA - 1/2" TUBE PITCH-25/32" NO, OF TUBES-40 TRANSFER AREA- 26.160's SHELL FLUID- WATER TUBE FLUID- WATER | | | | | | NO, U | - 100E3-4 | <u> </u> | | 1000 | LUIU- M | | |--|--|---|--|---|--|--|--|---|---|---|---| | RUN
NUMBER | t _{t1} | t _{tg} | t _{e1} | t _{sg} | ΔP | W _t | W _s | Qt | Q, | θ _m | υ | | 19 BAFFLES | | | | | | | | | | | | | 770
771
772
773
774
776
776
777 | 74.6
74.7
75.0
75.0
75.0
75.0
76.0
74.5
74.9 | 82.7
88.7
94.8
99.7
102.3
103.2
104.0
89.7
90.1 | 139.2
137.3
139.9
139.4
140.7
139.2
138.3
139.8 | 87.2
99,6
111.1
119.3
123.9
125.1
126.1
102.1
102.7 | 0.04
0.11
0.34
1.06
1.90
3.02
4.26
0.14
0.13 | 15,660
15,470
16,610
15,075
15,650
15,630
15,675
15,300
15,300 | 2,470
5,825
10,860
18,700
25,430
31,450
37,430
6,295
6,590 | 126.8
216.2
309.6
372.2
426.0
441.3
454.5
232.0
231.6 | 128.3
219.6
312.8
375.0
426.0
441.6
456.0
236.8
234.0 | 29.30
35.48
40.50
41.94
43.47
42.73
42.04
37.73
37.05 | 165.6
233.0
292.3
339.4
374.8
395.0
413.5
235.0
239.0 | | 779
780 | 75.9
75.9 | 102.4 | 138.2
139.3 | 102.4 | 0,13
2,26 | 15,700
15,760 | 6,560
27,360 | 232.0
416.5 | 234.7
416.2 | 36.83
42.33 | 240.8
376.2 | | 11 [| 11 BAFFLES | | | | | | | | | | | | 801
803
805
804
805
806 | 76.5
75.8
76.1
76.3
76.4
76.3 | 86.0
90.7
94.2
98.4
101.4
102.9 | 139.0
140.5
138.9
138.9
139.0
138.3 | 98.2
107.7
113.9
120.9
125.1
127.0 | 0.05
0.10
0.19
0.51
1.11
1.89 | 15,600
15,610
15,650
15,800
15,780
15,815 | 4,140
7,120
11,480
19,530
28,520
37,050 | 163.7
232.2
283.7
349.3
395.0
420.8 | 169.0
233.6
287.0
352.2
395.6
421.0 | 35.77
40.23
41.18
42.48
42.92
42.63 | 175.1
220.8
263.5
314.5
352.0
377.4 | | 7 B | AFFLES | | | | | | | • | | | | | 851
852
853
854
835 | 76.2
76.4
76.5
76.8
76.8 | 84.0
91.9
95.1
100.1
102.4 | 140.4
140.4
139.6
139.5
138.9 | 96.5
113.2
118.6
125.5
128.3 | 0.03
0.13
0.21
0.56
1.20 | 15,680
15,800
15,980
15,675
15,640 | 2,880
9,070
14,220
26,130
37,500 | 121.8
245.3
296.8
365.8
401.0 | 126.4
246.5
298.2
365.2
399.7 | 35.33
42.42
43.27
43.83
43.58 | 131.8
221.1
262.2
319.0
351.9 | | 3 8/ | FFLES | | | | | | | | | | | | 848
849
850
851
852
853 | 76.2
76.3
76.6
76.8
76.9
76.0 | 83.1
88.5
92.5
95.6
98,7
99.7 | 138.9
139.9
139.9
139.0
140.0
138.2 | 101.7
113.0
120.7
124.6
128.5
129.0 | 0.03
0.05
0.09
0.20
0.37
0.58 | 15,710
15,875
15,815
15,740
15,915
15,680 | 2,980
7,230
13,160
20,720
29,900
87,800 | 108.0
193.2
252.5
296.4
346.4
356.0 | 111.0
194.5
252.7
298.0
343.8
350.0 | 38.68
43.63
45.78
45.62
46.36
45.02 | 106.8
169.3
210.9
248.4
285.8
302.2 | ## DATA BAFFLES- DISK-AND-DOUGHNUT SIZE-4.95" DISK-3.5" HOLE * See first page of Appendix for Symbols. TUBE DIA.-1/2" TUBE PITCH-25/32" NO.OF TUBES-40 TRANSFER AREA- 26.16 , SHELL FLUID- WATER TUBE FLUID- WATER | | TOP SYMBOLS. | | | | NO.OF | 10053-4 | | | Q 8 0 U 105.3 24.97 159.8 244.3 35.87 258.0 319.0 38.88 313.4 380.5 39.42 367.6 435.4 41.12 405.0 4450.0 40.24 427.0 192.3 32.26 226.2 | | | |---|--|---|---|---|--|--|---|---|---|--|--| | RUN
NUMBER | t _{t1} * | t _{t2} | t _{e1} | t ₈₂ | ΔP | W _t | W | Qt | Q. | | บ | | 19 | BAFFLES | | | | | | | | | | | | 864
866
866
857
868
869
860 | 77.0
77.7
77.8
78.0
78.2
78.2
77.6 | 83.7
93.3
98.3
102.3
106.2
107.4
89.8 | 139.8
141.7
141.5
139.3
141.3
139.9
139.4 | 85.3
103.4
112.6
119.9
125.8
127.6
97.1 | 0.04
0.20
0.57
1.85
3.82
6.34
0.13 | 15,560
15,450
15,525
15,620
15,525
15,400
15,560 | 1,930
6,390
11,060
19,650
28,010
36,000
4,540 | 104.3
242.0
318.8
379.0
435.5
449.4
190.8 | 244.3
319.0
380.5
435.4
450.0 | 35.87
38.88
39.42
41.12
40.24 | 258.0
313.4
367.6
405.0
427.0 | | 11 | BAFFLES | | | | | | | | | | #8 /~~E31 | | 861
862
863
864
865
866 | 77.5
77.8
78.0
78.1
78.3
78.3 | 87.2
91.4
95.9
99.5
103.1
104.6 | 140.3
139.9
139.4
138.8
139.2
139.5 | 97.1
106.1
114.5
120.8
125.9
128.1 | 0.05
0.13
0.33
1.02
2.07
3.24 | 15,520
15,600
15,805
16,040
15,605
15,625 | 3,580
6,425
11,500
19,330
29,120
36,370 | 150.2
212.2
284.0
344.0
387.0
411.5 | 154.7
217.2
285.6
348.0
388.3
412.4 | 33.50
37.50
39.90
40.97
41.68
41.92 | 171.4
216.3
272.1
321.1
355.0
376.2 | | 3 B | AFFLES | | | | er. | | | | | | | | 867
868
869
870
871
872 | 77.6
77.8
78.0
78.2
78.3
78.3 | 85.7
89.6
93.8
97.1
99.7
101.8 | 137.9
141.5
140.4
139.8
138.4
139.1 | 104.0
111.8
119.7
124.5
127.2
129.6 | 0.08
0.06
0.12
0.24
0.56
1.07 | 15,510
15,600
15,660
15,830
15,440
15,400 | 3,805
6,280
11,960
19,520
29,350
38,100 | 125.9
184.1
247.5
298.7
330.0
361.0 | 129.2
186.2
248.0
299.2
330.5
362.0 | 37.84
42.35
44.08
44.45
43.62
43.98 | 127.2
166.2
214.8
257.0
289.2
313.8 | BAFFLES- DISK-AND-DOUGHNUT SIZE-5.5" DISK,2.5" HOLE TUBE DIA.-1/2" TRANSFER AREA- 26.16 SHELL FLUID- WATER NO.OF TUBES-40 TUBE FLUID- WATER | | | | | | NO. OF | 10053-4 | | | 1404 14 | OID- MA | 1 1617 | |--|--|---|--|--
---|--|--|--|--|--|--| | RUN
NUMBER | t _{t1} | t _{t2} | t _{s1} | t _{a2} | ΔΡ | W _t | W _s | Q _t | Q. | θ <u>m</u> | υ | | 19 | 19 BAFFLES | | | | | | | | | | | | 873
874
875
876
877
878 | 77.5
77.9
78.1
78.4
78.4
78.5 | 85.3
90.9
97.3
102.4
104.4
106.1 | 140.0
137.9
139.1
139.8
138.3
138.9 | 85.7
96.6
107.9
116.5
120.8
123.6 | 0.11
0.39
1.32
3.69
7.60
11.14 | 15,830
15,820
15,690
15,820
15,780
15,840 | 2,290
5,085
9,730
16,360
23,450
28,530 | 123.5
206.1
300.2
380.5
411.0
437.0 | 124.6
210.0
303.8
380.8
412.0
436.0 | 24.50
30.80
35.50
37.76
37.95
38.62 | 192.8
255.8
323.4
385.2
414.0
432.8 | | 11 | BAFFLES | | | | • | | | | | | | | 879
880
881
882
883
884 | 77.6
78.0
78.4
78.5
78.6
78.7 | 87.8
92.6
97.8
100.7
104.1
105.8 | 139.3
138.5
139.6
138.2
139.3
139.4 | 93.5
104.5
113.5
119.0
124.4
127.1 | 0.15
0.40
1.08
2.54
5.51
8.99 | 15,775
15,850
15,720
15,660
15,800
15,550 | 3,520
6,910
11,820
18,280
27,100
34,500 | 161.3
231.4
304.5
347.6
403.0
421.2 | 161.2
234.9
308.5
351.4
403.0
424.5 | 30.32
35.32
38.35
38.98
40.32
40.60 | 203.4
250.5
303.7
341.0
382.0
396.8 | | 3 B | AFFLES | | | | | | | | | | | | 885
886
887
888
889
890 | 77.8
78.1
78.4
78.5
78.6
78.8 | 86.4
90.9
95.0
98.1
100.7
103.5 | 138.0
138.6
139.0
138.8
138.0
140.0 | 100.5
109.9
117.4
122.0
125.3
129.2 | 0.07
0.15
0.32
0.72
1.47
2.54 | 15,820
15,810
15,470
15,710
15,530
15,580 | 3,740
7,140
12,080
18,480
27,070
35,520 | 135.7
201.5
257.2
307.4
343.3
384.5 | 140.4
205.0
260.6
310.0
342.0
384.8 | 35.20
39.23
41.43
42.13
41.95
43.20 | 147.4
196.4
237.3
279.0
313.0
340.3 | #### DATA BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK, 4.0" HOLE * See first page of Appendix for Symbols. TUBE DIA .- 1/2" TRANSFER AREA- 13.08 TUBE DIA.-1/2" TRANSFER AREA- 13.0 TUBE PITCH-1 3/32" SHELL FLUID- WATER NO.OF TUBES-20 TUBE FLUID- WATER | | TOL SAM | DO 1 2 . | | | NU.UF | 10852-50 | , | | INRE LE | BID- MAI | EK | |--|--|---|--|--|--|--|--|--|--|--|--| | RUN
NUMBER | t _{t1} * | t _{t2} | t _a | t _{s2} | ΔP | W _t | Wg | Q _t | Q. | θ, | υ | | 19 | BAFFLES | | | | | | | | | | | | 789
790
791
792
793
794 | 75.8
76.1
76.4
76.6
76.8
76.8 | 88.8
94.5
99.5
103.9
106.4
107.7 | 138.6
137.1
139.2
138.8
139.2
139.0 | 106.7
116.5
123.8
128.8
131.6
132.9 | 0.06
0.15
0.35
1.25
2.41
4.03 | 7,950
8,000
7,920
8,140
7,940
7,915 | 3,325
7,160
12,000
22,600
31,040
39,820 | 102.7
147.2
183.3
221.7
235.4
245.0 | 105.8
147.2
184.8
224.6
236.0
245.3 | 39.55
41.50
43.40
49.97
42.88
42.53 | 198.4
271.2
323.0
394.5
419.7
440.3 | | 11 | BAFFLES | | | | | | | | | | | | 819
820
821
822
823
824 | 76.4
76.7
77.0
77.1
77.3
77.3 | 87.9
94.1
97.6
101.6
104.0
105.6 | 138.7
138.6
138.7
138.5
138.7
138.7 | 109.3
119.8
124.7
129.2
131.6
132.9 | 0.03
0.07
0.15
0.43
0.90
1.60 | 7,895
7,825
7,855
7,845
7,850
7,890 | 3,195
7,350
11,725
20,810
29,300
38,700 | 90.8
136.0
162.2
192.2
209.6
223.7 | 94.0
137.7
164.2
193.6
208.8
223.2 | 41.15
43.78
44.32
44.00
43.83
43.40 | 168.8
237.3
279.7
333.8
365.5
394.1 | | 3 B | AFFLES | | | | | | | | | | | | 836
837
838
839
840
841 | 76.5
76.7
76.9
77.0
77.1
77.1 | 84.6
91.3
95.1
98.0
100.9
102.0 | 138.7
139.8
138.3
138.8
140.0
139.4 | 113.8
123.7
128.1
130.9
133.6
134.2 | 0.02
0.04
0.12
0.17
0.28
0.41 | 7,845
7,940
7,940
7,900
7,880
7,975 | 2,720
7,440
14,370
21,000
29,600
38,020 | 63.3
115.8
144.9
165.8
187.5
198.1 | 67.6
119.6
146.1
165.9
187.6
198.9 | 45.26
47.80
47.12
46.95
47.33
46.55 | 107.1
185.3
285.0
270.0
302.8
325.2 | BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK,4.0" HOLE TUBE DIA.-5/8" TUBE PITCH-1 1/16" NO.OF TUBES-20 TRANSFER AREA- 16.36 HELL FLUID- WATER TUBE FLUID- WATER | | | | | | | | | | | LEGID- | NA I EV | |--|--|--|--|--|--|--|--|--|--|--|--| | RUN
NUMBER | t _{t1} | t _{t2} | t
*1 | t
a ₂ | ΔΡ | W _t | W _s | Qt | Q _s | θ _m | U | | 19 BAFFLES | | | | | | | | | | | | | 795
796
797
798
799
800 | 75.5
75.7
75.9
76.0
76.1
76.0 | 83.2
88.5
92.1
95.8
98.2
99.7 | 138.4
137.9
138.0
138.6
138.5
138.4 | 98.3
110.9
117.9
124.0
127.4
129.6 | 0.05
0.13
0.35
0.93
2.13
3.75 | 13,550
13,495
13,405
13,615
13,710
13,580 | 2,760
6,440
10,925
18,400
27,340
36,650 | 105.2
172.7
217.6
269.3
303.0
321.4 | 110.5
173.8
219.2
268.6
304.4
322.5 | 36.68
41.93
43.94
45.36
45.62
45.77 | 175.3
251.7
302.7
363.0
406.0
429.4 | | 11 BAFFLES | | | | | | | | | | | | | 813
814
815
816
817
818 | 75.2
76.0
76.4
76.7
76.9
76.9 | 81.3
87.5
91.1
94.3
96.9
98.5 | 137.0
140.6
139.7
138.4
138.3
139.2 | 98.1
114.2
120.9
125.6
129.0
131.5 | 0.03
0.05
0.16
0.44
1.09
1.71 | 13,460
13,650
13,740
13,440
13,460
13,440 | 2,195
6,030
10,820
18,700
28,900
37,350 | 82.1
157.0
201.0
236.6
269.9
290.4 | 85.5
158.8
203.0
239.3
269.6
288.7 | 36.88
45.28
46.56
46.52
46.47
47.28 | 136.2
212.0
263.9
311.0
355.0
375.6 | | 3 B/ | FFLES | | | | | | | | | | • | | 825
826
827
828
829
830 | 76.2
76.2
76.5
76.6
76.8
76.9 | 80.8
86.1
89.0
91.9
93.6
95.0 | 137.7
139.8
138.6
139.2
138.9 | 107.6
120.5
124.9
129.1
130.9
131.9 | 0.02
0.04
0.07
0.17
0.28
0.49 | 13,605
13,790
13,495
13,595
13,570
13,595 | 2,195
7,250
12,475
20,500
28,450
37,720 | 62.3
136.5
168.2
207.1
227.6
246.9 | 66.1
140.4
170.9
207.1
228.4
246.4 | 42.97
48.90
49.03
49.80
49.58
49.00 | 88.7
170.6
209.6
254.3
280.6
307.9 | ### DATA BAFFLES- HALF-MOON, AND ORIFICE NO. OF BAFFLES- 19 * See first page of Appendix for Symbols. TUBE DIA.-5/8" TUBE PITCH- (SEE BELOW) NO. OF TUBES- (SEE BELOW) TRANSFER AREA-(SEE BELOW) SHELL FLUID-(SEE BELOW) TUBE FLUID- WATER | | TOT SYMDOIS. | | | | | 1053- (351 | | | | D- MVIEL | • | |---|--|---|--|---|---|--|--|--|---|---|--| | RUN
NUMBER | * t _{t1} | t _{t2} | t _{s1} | t, | ΔP | W _t | Wg | Qt | Qs | θ _m | U | | 5/8" TUBE- | -7/8" P | ITCH-HA | LF-MOON | BAFFLE | \$,3.92" | H16H-30 | TUBES-24. | 54 SQ. | FTOIL | "B", SHE | LL FLUID | | 902
903
904
905
906
907
908
909
910 | 78.9
78.9
79.0
79.0
79.0
79.0
79.0
79.0
78.8 | 81.3
81.8
82.2
82.9
83.3
84.0
84.4
84.6
80.6 |
139.5
140.6
139.0
139.8
138.5
139.5
139.0
139.1 | 118.8
121.5
122.4
124.7
125.4
127.5
128.2
128.8
113.9 | 0.93
1.28
1.99
2.97
4.31
6.07
8.48
10.16
0.46 | 20,580
20,320
20,520
20,270
20,270
19,730
20,270
20,670
20,300 | 5,310
6,580
8,590
11,180
14,280
17,730
21,650
24,050
3,070 | 49.4
59.0
65.7
78.8
87.2
98.9
108.9
116.2
35.5 | 51.9
59.8
67.5
80.0
88.6
101.1
111.6
117.6
37.2 | 48.50
50.35
49.90
51.10
50.65
51.90
51.82
52.05
46.00 | 41.5
47.7
53.6
62.8
70.1
77.6
85.6
91.0
31.5 | | 5/8" TUBI | -1-1/16 | 5" PITC | H-HALF- | MOON BA | FFLES,3 | 92" HIGH- | -20 TUBES- | -16.36 | SQ.FT | OIL "B", | SHELL FLUID | | 938
939
940
941
942
943
944
945 | 79.5
79.6
79.7
79.7
79.8
79.8
79.9
79.7 | 81.3
82.2
83.0
83.9
84.8
85.2
86.7
82.2 | 139.5
139.4
140.0
138.4
138.2
139.5
138.9 | 121.4
125.2
128.6
129.5
131.0
131.4
131.3
130.3 | 0.23
0.47
0.97
2.06
3.65
5.14
2.22
2.22 | 13,570
13,540
13,670
13,485
13,385
13,380
8,300
22,880 | 3,155
5,610
8,900
14,170
19,250
23,380
14,700
14,550 | 24.4
34.9
44.7
56.0
66.3
72.3
55.8
56.5 | 26.9
37.8
48.3
60.0
68.3
74.8
57.5
59.6 | 49.63
51.15
52.85
52.10
52.40
52.20
52.10
53.65 | 30.1
41.8
51.7
65.7
77.4
84.6
65.4
64.4 | | | | | | | | | | E\$-16.36 | | | ELL FLUID | | 946
947
948
949
950
951
952
953 | 78.8
79.5
79.6
79.6
79.7
79.7
79.7 | 79.7
80.9
82.1
82.9
83.6
84.2
84.6
82.3 | 139.3
139.9
141.1
139.8
140.3
138.9
140.5 | 110.8
124.0
127.3
129.0
130.4
131.3
130.6
127.3 | 1.20
2.46
6.28
11.83
18.81
24.25
32.28
6.85 | 13,470
13,455
13,520
13,625
13,640
13,560
13,555 | 1,290
2,690
5,790
8,940
12,310
14,560
17,160
6,060 | 12.1
18.6
33.8
45.4
53.3
61.0
64.5
35.7 | 17.3
20.2
37.9
46.0
562.9
67.6
38.1 | 44.38
51.40
53.05
53.00
53.45
53.80
52.55
52.70 | 16.7
22.1
38.9
52.3
61.0
69.3
75.0
41.4 | | 5/8" TUBE | -1-1/16" | PITCH- | ORIFICE | BAFFLE | 5,11/16" | DIA.HOLE-2 | O TUBES-16 | .36 \$0 | | | ELL FLUID | | 954
955
956
957
958
959 | 78.9
79.4
79.5
79.6
79.8
79.9 | 98
98
98
99
99
99
99
99
99
99
99
99
99
9 | 137.8
140.5
141.5
138.4
138.9
138.3 | 113.2
120.3
124.5
125.2
126.8
127.5 | 0.97
2.37
5.65
13.62
21.68
32.93 | 13,670
13,740
13,660
13,540
13,480
13,600 | 2,060
3,890
6,770
11,465
14,910
18,820 | 19.4
34.4
54.4
71.8
82.9
95.2 | 24.2
37.8
55.2
73.2
86.8
97.2 | 44.86
49.30
51.30
49.40
50.00
49.50 | 26.5
42.6
64.8
88.8
101.4
117.6 | BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK,4.0" HOLE * See first page of Appendix for Symbols. TUBE DIA. (SEE BELOW) TUBE PITCH- (SEE BELOW) NO.OF TUBES-20 TRANSFER AREA- (SEE BELOW) SHELL FLUID- (SEE BELOW) TUBE FLUID- WATER | TUBE FLUID- WATER | | | | | | | | | | | | |---|--|--|---|---|--|--|--|--|--|---|--| | RUN
NUMBER | * t _{t1} | t _{t2} | t _{s1} | t _{s2} | ΔΡ | W _t | W _s | Q _t | Q, | Đ _m | บ | | 5/8" TUB | 5/8" TUBE-1-1/16" PITCH-16.36 SQ.FTOIL "B", SHELL FLUID-19 BAFFLES | | | | | | | | | | | | 925
926
927
928
929
930
931 | 78.8
78.9
79.0
79.1
79.1
79.2
79.2 | 79.6
81.0
82.0
82.6
83.5
83.8
81.0 | 139.4
141.5
140.6
138.6
139.4
139.3
139.8 | 114.2
129.5
131.5
131.3
133.0
133.5
127.6 | 0.06
0.17
0.38
0.74
1.28
1.88
0.16 | 13,690
13,600
13,580
13,540
13,450
13,840
13,620 | 1,680
5,825
9,660
14,340
19,500
23,950
4,850 | 11.6
28.6
39.7
47.4
58.1
64.4
23.4 | 19.9
33.3
41.8
50.2
59.3
66.3
28.1 | 46.50
55.20
55.45
54.05
54.85
54.90
53.45 | 15.3
31.6
43.7
53.6
64.8
71.7
26.8 | | | AFFLES | | | | | | | | | | | | 918
919
920
921
922
923
924 | 78.5
78.7
78.9
78.9
78.9
78.9
78.9 | 79.5
80.4
81.1
81.7
82.1
82.5
82.8 | 139.4
140.0
140.5
140.7
138.8
140.1
139.2 | 122.6
131.0
133.2
134.4
133.4
135.0
134.5 | 0.07
0.10
0.20
0.34
0.51
0.73
0.95 | 13,480
13,280
13,490
13,560
13,500
13,590
13,710 | 2,420
5,920
9,590
13,810
17,560
21,520
25,170 | 12.5
21.9
30.3
38.7
43.2
49.3
53.1 | 19.3
25.4
33.0
41.4
45.9
52.7
55.4 | 51.60
55.80
56.85
57.25
55.60
56.77
55.95 | 14.9
24.0
32.6
41.3
47.5
53.2
58.0 | | 3 B | AFFLES | | | 1.00 | | | | | | | | | 911
912
913
914
915
916
917 | 78.1
78.5
78.5
78.5
78.6
78.6
78.6 | 79.0
79.7
79.9
80.3
80.5
80.8
81.0 | 139.2
142.8
141.4
139.5
138.3
138.8
138.7 | 128.5
136.2
136.4
135.8
135.1
135.9
136.0 | 0.05
0.07
0.10
0.16
0.23
0.33
0.42 | 13,650
13,610
13,600
13,570
13,300
13,615
13,620 | 3,395
6,315
9,045
14,570
19,170
23,060
26,090 | 11.6
16.3
19.0
23.3
25.9
29.6
32.3 | 17.3
19.9
21.5
25.9
28.8
31.4
34.2 | 54.95
60.45
59.62
58.25
57.10
57.61
57.51 | 12.9
16.5
19.5
24.5
27.8
31.4
34.3 | | 1/2" TUB | E-1-3/32 | PITC | H-13.08 | SQ.FT | -19 BAFF | LES-OIL | B", SHELL | FLUID | | | | | 932
933
934
935
936
937 | 78.9
79.1
79.3
79.5
79.5
79.6 | 80.5
82.3
83.9
85.1
85.7
86.5 | 138.3
139.1
140.7
140.2
138.9
138.8 | 125.5
129.7
133.4
134.3
133.8
134.2 | 0.06
0.15
0.38
0.75
1.20
1.73 | 8,070
7,750
7,840
7,885
7,970
7,920 | 2,415
5,730
10,580
16,380
21,170
25,220 | 13.2
24.2
35.8
44.4
49.8
54.7 | 14.7
25.8
37.1
45.8
51.2
55.6 | 52.00
53.62
55.40
54.96
53.75
53.40 | 19.3
34.5
49.5
61.8
70.8
78.2 | | 960 | 79.3 | 81.5 | 138.8 | 121.4 | 0.09 | 8,015 | 2.210 | 17.0 | 18.5 | 49.40 | 26.3 | | 961
962
963
964
965
966
967 | 79.3
79.6
79.8
79.9
79.9
80.0
79.8
80.0 | 81.5
84.0
85.5
86.5
87.8
88.7
83.9
89.4 | 138.8
139.0
139.2
138.0
138.4
139.1
137.9
138.8 | 128.0
130.2
130.7
132.1
133.2
130.4
132.1 | 0.09
0.13
0.28
0.63
1.19
1.59
0.82
0.82 | 8,015
7,915
7,920
7,895
7,890
7,915
14,110
5,715 | 2,210
6,790
10,840
15,320
20,680
24,770
16,950
16,930 | 17.0
34.2
44.8
52.5
62.0
68.6
57.9
53.3 | 18.5
35.8
46.7
54.4
63.3
70.5
61.3
54.5 | 51.60
52.05
51.18
51.38
51.80
52.20
50.78 | 26.3
50.7
65.7
78.4
92.3-
101.3
84.7
80.2 | | OIL "C", | SHELL F | LUID | | | | | | | 15 | | | | 968
969
970
971
972
973
974
975 | 79.0
79.2
79.5
79.6
79.5
79.6
79.7
79.8
79.9 | 80.4
80.9
81.5
82.0
82.5
83.2
83.7
84.3
81.0 | 141.5
139.4
140.6
140.2
138.8
139.9
140.4
140.1
137.0 | 125.9
129.4
133.6
135.0
133.6
135.8
136.4
136.5
126.2 | 0.15
0.17
0.20
0.28
0.43
0.73
1.02
1.50
0.12 | 7,900
7,950
7,785
7,870
7,870
7,875
8,135
7,905
7,990 | 1,780
3,410
5,240
7,660
10,650
14,130
17,770
21,100
1,805 | 10.9
13.5
16.2
19.1
23.4
28.4
32.5
35.8
9.27 | 13.1
16.1
17.4
18.7
26.5
28.0
34.2
36.0
9.19 | 53.75
54.20
56.60
56.78
55.18
56.44
56.39
56.23
51.10 | 15.5
19.1
21.9
25.7
32.4
38.4
44.1
48.6
13.9 | | OIL "C", | SHELL F | LUID-TI | NO-PASS | TUBE FL | UID | | | 100 | | | | | 977
978
979
980
981
982
983
984
985 | 79.5
79.5
79.5
79.5
79.5
79.5
79.5
79.8
80.0
79.2 | 82.2
83.2
84.9
86.5
88.0
89.9
92.5
82.3 | 141.7
139.8
138.4
137.9
139.3
140.0
139.6
139.3
138.6 | 129.8
132.3
132.8
133.4
135.2
136.4
135.7
135.5
134.2 | 0.09
0.17
0.27
0.40
0.82
1.45
0.83
0.83
0.83 | 4,140
3,885
3,870
3,890
3,868
3,940
2,855
2,207
10,025 | 2,035
3,965
6,900
9,665
15,380
20,680
15,090
15,180
14,875 | 11.1
14.1
17.6
20.9
27.1
33.3
28.9
27.6
30.6 |
11.4
13.9
18.1
20.8
29.6
34.8
28.4
27.4
31.3 | 54.75
54.70
53.74
53.45
54.18
54.40
52.75
51.06
55.65 | 15.5
19.7
25.1
29.9
38.2
46.8
41.8
41.4
42.0 | ZERO BAFFLES * See first page of Appendix for Symbols. TUBE DIA.- (SEE BELOW) TUBE PITCH-(SEE BELOW) NO.OF TUBES-(SEE BELOW) TUBE FILUID-WATER TUBE FILUID-WATER | for Symbols. | | | | NO.OF TU | BES-(SEE | BELOW) | TUBE | FLUID- | WATER | | | |--|--|--|---|---|--|--|--|--|---|---|---| | RUN
NUMBER | * t _{t1} | t _{t2} | t _{s1} | t
ag | ΔP | W _t | W _s | Q | Q | 6 | Ū | | 3/8" TUBE | -1/2" I | PITCH-9 | 8 TUBES | - 48.1 | SQ.FT. | TRANSFER | AREA | | | | | | 31.2
31.3
31.4
31.5
31.6
31.7
31.8
31.9
32.0
56.9
57.0
57.1
57.2 | 60.7
60.7
60.8
61.1
61.2
61.1
61.1
61.2
60.4
60.3 | 75.6
78.3
83.0
88.5
90.9
92.5
94.2
84.2
87.9
91.0
93.0 | 139.8
139.5
139.0
140.5
140.1
139.5
139.2
138.8
139.5
140.8
140.1
140.4
139.8 | 100.7
105.4
111.7
117.8
119.8
121.5
122.1
123.0
124.8
113.8
117.6
120.5
122.3 | 0.07
0.09
0.11
0.12 | 18,020
18,050
18,050
18,320
18,430
18,220
18,330
18,230
18,160
18,350
18,360
18,360
18,360
18,340 | 6,905
9,380
14,780
22,150
27,200
31,750
34,860
38,700
43,370
16,080
22,300
28,170
33,970 | 501.0
547.5
571.0
594.0
609.5 | 319.5
403.5
503.0
550.5
572.5
597.0
613.0
637.0
433.5
501.0
559.5 | 51.15
52.55
53.40
54.35
53.68
53.37
53.00
52.55
52.85
55.85
55.55
54.50
54.20 | 108.9
125.6
156.0
191.7
212.0
222.6
233.1
241.2
250.0
164.7
192.0
214.0
228.2 | | 3/8" TUBE | -11/16 | PITCH | -52 TUB | ES-25,5 | 1 SQ.FT. | TRANSFER | AREA | | | | | | 274
275
276
277
277
278
279
280
281
282
283
284 | 59.0
58.9
59.0
59.1
59.1
59.0
59.0
59.0
59.0 | 77.2
77.0
80.8
83.7
86.9
90.0
91.7
93.8
93.7
94.9
81.2 | 139.9
139.5
139.3
139.3
138.9
139.7
139.5
140.8
139.9
138.1 | 110.4
111.0
117.4
121.9
124.7
127.6
128.9
129.9
130.7
130.8
117.9 | 0.04
0.07
0.09
0.11
0.14
0.16
0.16
0.16 | 9,790
9,800
9,845
9,960
10,040
10,020
9,505
10,010
9,920
9,935 | 6,170
6,350
10,000
14,320
20,300
26,750
30,520
34,670
34,620
39,650
11,250 | 216.0
245.5
278.0
310.0
326.5
330.8 | 287.0
313.8
330.6
335.0 | 57.15
57.15
58.45
59.15
58.55
58.52
58.40
57.40
58.65
57.30
58.00 | 122.3
121.9
144.8
162.8
186.2
207.7
219.2
225.8
231.9
243.8
151.1 | | 1/2" TUBE | | | -66 TUB | | | | | | | | | | 373
374
375
376
377
378
379
380
381 | 60.4
60.5
60.8
60.8
60.8
60.8
60.8 | 68.7
69.8
74.7
76.7
79.8
81.8
82.9
77.1
72.1 | 140.1
139.6
140.8
140.0
140.9
140.7
139.1
139.1 | 100.1
103.5
115.1
118.3
121.4
123.4
124.3
118.3
110.1 | 0.09
0.10
0.11
0.09 | 26,100
26,010
25,980
25,980
26,100
26,010
26,010
25,860
25,860 | 5,470
6,820
14,120
19,100
25,600
31,800
38,890
20,560
10,170 | 361.0
413.0
495.0
547.0
576.0
426.0 | 246.2
363.2
415.4
498.5
549.0 | 54.05
55.35
60.10
60.40
60.88
60.70
59.80
59.85
58.20 | 92.8
101.3
139.1
158.3
188.3
208.8
223.2
164.8
120.1 | | 1/2" TUBE | | PITCH | -40 TUB | E\$-26.1 | 6 SQ.FT. | TRANSFER | AREA | | | | | | 675
676
677
678
679
680
681 | 66.1
66.3
66.4
66.5
66.5 | 73.4
79.4
82.0
84.6
86.9
89.0
91.3 | 136.0
139.3
138.3
139.1
138.5
138.6
138.7 | 105.6
116.4
120.9
124.2
125.9
127.7
129.4 | 0.07
0.09
0.11
0.14 | 15,900
15,840
15,750
15,750
15,770
15,820
15,690 | 3,990
9,230
14,250
19,120
25,600
32,880
41,700 | 116.1
207.4
246.8
286.2
321.1
356.0
387.5 | 211.0
248.0
285.4
321.0
358.3 | 50.25
54.85
55.45
56.10
55.40
55.35
54.75 | 88.3
144.6
170.1
195.1
221.6
246.0
270.7 | | 1/2" TUBE | -1-3/32 | " PITC | H-20 TU | BES-13. | 08 SQ.FT | . TRANSFE | R AREA | | | | | | 400
401
402
403
404
405
406
407
408
409
410 | 61.4
61.7
62.2
62.3
62.2
62.3
62.3
62.3
62.3
62.3 | 72.5
76.0
79.3
81.6
81.8
85.5
85.2
87.0
87.1
87.9
88.9 | 139.5
139.6
140.0
138.9
140.4
140.5
139.6
139.9
140.8
139.8
139.3 | 120.8
124.3
127.7
129.4
130.5
131.8
132.4
133.5
134.4
134.0
134.1 | 0.02
0.03
0.06
0.07 | 7,945
7,925
7,755
7,760
7,855
7,890
7,825
7,810
7,880
7,870
7,915 | 4,705
7,415
10,890
15,790
15,650
19,560
25,130
30,560
30,600
35,500
41,320 | 88.0
112.8
132.3
149.5
153.9
167.8
179.4
192.9
195.2
202.4
212.6 | 134.0
150.9
155.8
169.0
181.0
193.7 | 63.06
63.08
63.10
62.08
63.30
63.02
62.00
61.65
62.45
61.30
60.60 | 106.6
136.7
160.3
184.0
185.8
203.6
221.2
239.2
238.8
252.5
268.2 | | | -7 /8" F | | O TUBES- | -24.54 | SQ.FT. T | RANSFER A | REA | | 1918 6 | . FO 50 | 1300 0 | | 480
481
482
483
484
485
486
487
488
489
490 | 61.5
61.5
61.5
61.7
61.9
62.0
62.0
62.0 | 68.5
70.0
70.0
70.3
72.5
73.9
76.5
78.3
79.8
80.7
74.2 | 139.5
139.1
138.9
139.2
141.9
138.4
138.9
139.7
140.5
140.3 | 108.2
112.3
112.2
112.0
119.4
121.4
125.6
127.8
129.7
130.9
122.5 | 0.09 | 20,720
21,450
21,540
20,340
20,340
20,430
20,430
20,430
20,430
20,430
20,810 | 4,735
6,820
6,835
6,615
9,825
14,600
22,250
28,120
33,890
40,460
15,830 | 183.2
178.8
219.7
244.8
295.7
333.3
363.0
382.2 | 180.2
221.0
247.3
296.6
334.8 | 58.10
59.43
59.40
59.25
63.30
62.00
63.03
63.60
64.15
64.13
62.84 | 102.8
124.9
125.7
122.8
141.4
160.8
191.0
213.4
230.6
242.8
168.2 |