No. 3819

May 15, 1938

HEAT TRANSFER AND PRESSURE DROP IN HEAT EXCHANGERS

By

BYRON E. SHORT

Oniversity of Texas Publications

Bureau of Engineering Research
of the
College of Engineering
The University of Texas

PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH AND ENTERED AS SECOND-CLASS MATTER AT THE POST OFFICE AT AUSTIN, TEXAS, UNDER THE ACT OF AUGUST 24, 1912

The University of Texas Publication

No. 3819

May 15, 1938

HEAT TRANSFER AND PRESSURE DROP IN HEAT EXCHANGERS

By

BYRON E. SHORT

Bureau of Engineering Research
of the
College of Engineering
The University of Texas

The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free government.

Sam Houston

Cultivated mind is the guardian genius of Democracy, and while guided and controlled by virtue, the noblest attribute of man. It is the only dictator that freemen acknowledge, and the only security which freemen desire.

Mirabeau B. Lamar

Table of Contents

<u>Topic</u>		Page
Table of Symbols		11
Introduction and Acknowledgments		111
Summary	•	iv
Object	•	1
Scope	•	1
Apparatus and Experimental Procedure	•	3
Discussion and Correlation of Results, Transfer Coefficient	s	9
Discussion and Correlation of Results, Pressure Drop	•	18
Conclusions		21
Bibliography		21
Appendix		22

COPYRIGHT - 1938 THE UNIVERSITY OF TEXAS

TABLE OF SYMBOLS

(Listed in order in which they occur in text)

- h, = tube side film coefficient of heat transfer, B.t.u. per hr.sq.ft.-deg.F.
- $h_{_{\rm S}}$ = shell side film coefficient of heat transfer, B.t.u. per hr.sq.ft.-deg.F.
- = diameter of tube (inside in Eq. 1, outside in Eq. 11), ft.
- = thermal conductivity, B.t.u.-ft. per hr.-sq.ft.-deg.F.
- N = heated length of tube, ft.
- G = weight rate of flow, lb. per hr.-sq.ft. of cross-sectional area μ = absolute viscosity of fluid, lb. per hr.-ft.
- = specific heat of the fluid, B.t.u. per lb.-deg.F.
- = overall transfer coefficient, B.t.u. per hr.-sq.ft.-deg.F. m.t.d.
- r₂ = outside radius of tube, ft.
- r_1 = inside radius of tube, ft.
- $G_{\mathbf{x}}$ = effective weight rate of flow, lb. per hr.-sq.ft. of effective area
- G_{R} = radial flow in disk-and-doughnut type baffles, lb. per hr.-
- G_{Λ} = flow in annular area in disk-and-doughnut type baffles, lb. per hr.-sq.ft.
- G_{H} = flow through hole in disk-and-doughnut type baffles, lb. per hr.-sq.ft.
- G = flow through orifices in orifice type baffles, lb. per hr.sq.ft.
- Ga = flow along tubes between baffles in orifice type baffles, lb. per hr.-sq.ft.
- G_b = flow beneath baffles in half-moon type baffles, lb. per hr. sq.It.
- G_p = flow across tubes in half-moon type baffles, lb. per hr.sq.ft.
- S = baffle spacing, ft.
- A_R = free area of radial flow in disk-and-doughnut baffles, sq. ft. (See Fig. 6)
- A = free area between shell and disk in disk-and-doughnut baffles, sq. ft.
- AH = free area in hole of doughnut in disk-and-doughnut baffles, sq. ft.
- A = total free area of orifices at each baffle in orifice baffles, sq. ft.
- A_a = free área between baffles in orifice type baffles, sq. ft.
- $A_{\rm b}^{-}$ = free area beneath baffle in half-moon type baffles, sq. ft.
- Ap = free area for cross-flow between baffles in half-moon baffles, sq. ft.
- P = tube pitch, ft., p = tube pitch, inches
- L = total baffled length of exchanger, ft.
- Ap = pressure drop in baffled length of exchanger, inches of mercury
- w = specific weight of fluid, lb. per cu. ft. $D_{\rm D}$ = diameter of disk of disk-and-doughnut baffles, ft.
- D_{H}^{-} = diameter of hole in disk-and-doughnut baffles. ft.
- d_+ = outside diameter of tube, inches
- d_0 = diameter of orifice of orifice baffles, inches
- N_h = number of baffles on the tube bundle.

INTRODUCTION AND ACKNOWLEDGMENTS

This Bulletin is the result of a series of experimental investigations on the subject of heat transmission in heat exchangers which began with a series of experiments on a shell-and-tube type exchanger with a single horizontal baffle (Bulletin No. 3128. The University of Texas), then followed by a series of experiments to determine the effect of tube spacing and baffle arrangements on the pressure loss in tube bundles (Oil and Gas Journal, May 10, 1934), and was then followed by the present work, part of which was written up by Mr. S.A. Perrone and published in 1935 (Oil and Gas Journal, March 28, 1935). perimental work was done in the Mechanical Laboratory at The University of Texas and the results were computed and correlated while the writer was a gradute student at Cornell University in 1935-36. With some minor changes, this Bulletin is a summary of the thesis presented at Cornell University in June 1936 in partial fulfillment of the requirements for a Master of Mechanical Engineering degree.

The writer wishes, therefore, to acknowledge the criticism and suggestions of Professors W.N. Barnard, F.O. Ellenwood, C.O. Mackey, and J.O. Jeffrey of Cornell University on the original phases of this work; the help of the Department of Mechanical Engineering and the Bureau of Engineering Research at The University of Texas in acquiring the materials used in the experimental work; and the able assistance of Mr. Fred Morris, Laboratory Mechanician at The University of Texas, and Mr. S.A. Perrone, former graduate student at The University of Texas, in setting up the apparatus and in the conduct of the tests. And, the writer wishes to thank the Dean of the College of Engineering of the University of Texas in obtaining funds for the publication of these results.

SUMMARY

The material in this Bulletin presents in both a graphical and an analytical manner the results of a series of experiments with water and several grades of oil being cooled in a shelland-tube heat exchanger. The heat exchanger was first used without baffles or turbulence promoters, and then with half-moon type, then orifice type, and finally disk-and-doughnut type baf-Both the heat transfer coefficients for the outside of the tubes in the bundles and the pressure drop on this same side are treated. Steps in the graphical correlation of the results in obtaining the final transfer coefficient plots are presented. An effective velocity that consists of a combination of the weight rates of flow in the restricted regions is used in the correlation, and methods of obtaining this velocity for the different types of construction are given. A graphical comparison of the heat transfer coefficients is made with results from tests of similar heat exchangers by Ross Heater Company and Foster Wheeler Corporation showing that the methods are applicable to units of other length and shell diameter than the one used in this experimental work. A graphical comparison is also made with the results of others on flow along and across single pipes as well as across banks of pipes. Colburn's equation for heat transfer coefficients for flow across banks of staggered pipes using the velocity in the minimum cross-section is also presented for comparison. Pressure drop relations are given using the Darcy or Fanning equation with the friction factor combined with a "roughness" coefficient. Equations for determining the roughness coefficient for the different baffle forms are given along with the friction and roughness factor graphs. The effect of cooling on the pressure drop is considered as a function of Prandtl's number.

HEAT TRANSFER AND PRESSURE DROP IN

Object

This experimental study was made to determine the possibility of establishing a relation that would permit both the film coefficient of heat transfer and the pressure drop to be calculated for a particular heat exchanger irrespective of the type, size and spacing of the baffles used, or of the size and spacing of the tubes in the bundle, or of the fluid used.

Scope

This paper covers the results of experimental work that was done on a shell-and-tube type heat exchanger in which three different forms of baffles (turbulence promoters) were used and, also, in which the spacing of these baffles and the size and spacing of the tubes were varied. The fluid used on the inside of the tubes as the coolant was water, while water and three different grades of oil were used on the shell side.

In case of the half-moon baffles, Table I shows the different arrangements (tube sizes, tube spacing, and baffle spacing) that were used:

Table I

Tube Diameter	Tube Pitch	Number of Baffles
3/8" o.d.	1/2"	19, 15, 11, 7, 3
n	11/16"	19, 15, 11, 7, 3
1/2" o.d.	19/32"	19, 15, 11, 7, 3
11	11/16"	19, 11, 3
n	25/32"	19, 11, 3
п	ĺ	19, 11, 3
Ħ	1-3/32"	19, 15, 11, 7, 3
5/8" o.d.	3/4"	19, 11, 3
11	7/8"	19, 15, 11, 7, 3
Ħ	1-1/16"	19. 11. 3

while in the case of the orifice baffles, Table II shows the different arrangements that were used:

Table II

Tube Diameter	Tube Pitch	Orifice Diameter	Number of Baffles
3/8" o.d. 1/2" o.d. " " " 5/8" o.d.	11/16" 25/32" " 1-3/32" 1-1/16"	7/16" 17/32" 9/16" 5/8" 9/16" 11/16"	19, 11, 3 19, 15, 11, 7, 3 19, 11, 3 19, 11, 3 19, 11, 3 19, 11, 3

while for the disk-and-doughnut baffles Table III shown the variation in construction of the unit; and for the bundles without baffles Table IV shows the arrangements:

Table III

Tube	Tube	Diameter	Diameter of Hole	Number of
Diameter	Pitch	of Disk		Baffles
3/8" o.d. 1/2" o.d. "	11/16" 25/32" " 1-3/32" 1-1/16"	4.5" 4.5" 4.95" 5.5" 4.5"	4.0% 4.0% 3.5% 2.5% 4.0%	19, 11, 3 19, 11, 7, 3 19, 11, 3 19, 11, 3 19, 11, 3 19, 11, 3

Table IY

Tube Diameter	Tube Pitch
3/8" o.d.	1/2"
1/2" o.d.	11/16" 19/32"
" 5/8" o.d.	1/2" 11/16" 19/32" 25/32" 1-3/32" 7/8"

For practically all of these investigations the rate of tube fluid was maintained at 2 ft. per sec. While the shell fluid was varied from a minimum of 2000 lb. per hour to 45000 lb. per hour. The total range in Reynolds' number was approximately 10,000 fold and, in Prandtl's number, approximately 3 to 2000.

Apparatus and Experimental Procedure

The heat exchanger used in this series of investigations consisted, as shown by Fig. 1, of a 6-inch steel pipe shell with inlet and outlet for the shell fluid placed on the top side near each end. The tube plate on one end was attached to the shell flange and then the "water box" placed over this, while, on the other end, the tube plate was attached to a "floating water box" which had an inlet connection extending through a stuffing box in the shell end-housing to the outside.

The tube bundles that were used were made of No. 18 B.W.G. brass tubes, 5 ft. long, attached to 3/8 inch thick brass plates at each end. The holes in the tube plates were drilled 1/64 inch larger in diameter than the outside diameter of the tubes and, in assembling, the tubes extended 1/8 inch beyond the inner (water box side) face of the plates and were soldered to these plates. The baffles were made from 1/16 inch thick brass plate. These baffles were cut from the flat plate to a size slightly in excess of the inside diameter of the exchanger shell and then the tube holes were drilled before the baffles were fitted to the shell. For the half-moon and disk-and-doughnut baffles, the tube holes were drilled 1/64 inch in diameter larger than the tubes with which they were to be used, whereas, the tube holes for the orifice baffles were drilled to a size shown by Table II for each particular tube bundle.

After the tube holes had been drilled in the circular plates that were to be used for half-moon baffles, a portion was cut off along a horizontal line 7/8 inch above or below the center line, depending on whether it was desired to have the fluid flow under or over the baffle. In the case of the disk-and-doughnut baffles, the outer portion was cut off so as to leave a disk of the desired size for those plates from which the disks were made, and the inner portion cut out so as to leave an annular shaped plate of the desired size for those plates from which the "doughnuts" were made. Fig. 2 shows the dimensions of all of these baffles as well as showing the tube pattern.

After the baffles had been cut to the desired shape, they were assembled as a group (19 for each particular tube size and spacing) and filed so as to allow them to be forced through the shell. Then after a group of tubes had been assembled with 19 baffles and the tubes had been soldered to the end plates, the baffles were fitted into the shell in such a manner, that the assembled bundle could be drawn in or out of the shell with very slight effort.

The initial and final baffles were always at the same points relative to the shell inlet and exit connections and the distance

between these end baffles was 43 inches and all intermediate baffles were evenly distributed within this distance. All baffles were held at a particular location on the tube bundle by "tacking" the baffles to the tubes with solder at three or four uniformly distributed points around each baffle.

In changing the arrangement of a bundle so that it would have less than 19 active baffles, the solder holding each baffle to the tubes was removed and the excess baffles moved to the end zones next to the tube plates. The remaining baffles were then distributed within the 43-inch space, with the initial and final baffles being located in the same position with respect to the inlet and exit shell connections as before. The inactive baffles in the end zones were "tacked" to keep them from moving toward the active baffles. Fig. 1 shows a tube bundle with 11 half-moon baffles in place with 8 inactive baffles in the end zones.

Preliminary investigations showed that the overall transfer coefficient varied with time and a weak solution of hydrochloric acid was used as a bath for the tube bundles in order to have the same degree of cleanliness for each series of tests. Fig. 3 shows the effects of the fouling and cleaning.

Weighing tanks and calibrated platform scales were used to determine the rates of flow of the liquids, the procedure being to note the time required for a particular weight of tube or shell fluid to flow through the unit. Mercurial thermometers in mercury-filled, steel wells were used to determine the inlet and exit temperatures in each case, and a mercury-filled U-tube manometer was used for the pressure drop determination. For all tests where the shell fluid was water, direct connection was made from the manometer to the "piezometer manifold"; but for the tests with oil, glass reservoirs were placed between the manometer and the "piezometer manifold" and oil was allowed to extend to the middle of the reservoirs with water occupying the lower half of each reservoir and the copper tubing which connected them to the manometer. The size of the reservoirs was such that the change in elevation of the oil-water separation level with manometer deflection was negligible.

The initial temperature of the shell fluid entering the exchanger was maintained at approximately 140 deg.F and the entering tube fluid temperature remained approximately constant for each series. The tube fluid inlet temperature was around 60 deg. F for the earlier series but had increased to about 80 deg. F before the final tests were made.

The rate of flow of the shell fluid was varied from a minimum of 2000 to 3000 lb. per hour to a maximum of 35000 to 45000 lb.

VARIATION OF THERMAL CONDUCTIVITY
OF WATER AND OIL WITH TEMPERATURE
FIG. 4

VISCOSITY VARIATION WITH TEMPERATURE FOR WATER
AND THE THREE OILS THAT WERE USED
FIG. 5

per hour. The minimum rate was governed by the stability of pumping and heating conditions while the maximum was governed by the range of the pressure drop manometer in some cases (the manometer had a range of 40 inches) and by accurate weighing ranges in other cases. Sufficient intermediate tests were made between these extreme limits to permit definite trends of results to be ascertained. Plots of the overall transfer coefficients against rate of flow and pressure drop were used as a means of control on the experimental procedure. The heat absorbed by the tube fluid was balanced against the heat given up by the shell fluid for each set of data recorded and this was used as a verification of the fluid temperature determinations. As the shell was not insulated, the heat absorbed was usually 1/2 to 3 per cent less than that given up.

The viscosity of each oil that was used was determined at several temperatures by means of a Saybolt Universal Viscosimeter and the viscosity of the water was based on the values given in the International Critical Tables. The thermal conductivities of the water and of the oils were based on the values given by McAdams!* The curves of these data are shown by Fig. 4 and 5.

^{(*} Numbers refer to bibliography at end of text of Bulletin.)

DISCUSSION AND CORRELATION OF RESULTS

TRANSFER COEFFICIENTS

Since there are numerous data available relating to film coefficients of heat transfer for liquids flowing inside of circular tubes, it was assumed that these data could be used for the computation, in this case, of the film coefficients for the tube fluid from the test data and thus allow the shell side coefficient to be determined. The equation used for this purpose is as follows:

$$\frac{\text{h D}}{k} = 0.0225 \quad \left[1 + \frac{50D}{N}\right] \left[\frac{DG}{\mu}\right]^{0.8} \left[\frac{c\mu}{k}\right]^{0.4}$$
(Note: See first page of Bulletin for symbols)

After the tube side coefficients were computed from Eq. 1, with the fluid properties evaluated at the main stream temperature, the shell side coefficients were computed from Eq. 2.

$$\frac{1}{h_{s}} = \frac{1}{U} - \frac{r_{2}}{r_{1}} \frac{1}{h_{t}} - \frac{r_{2}}{k} \log_{e} \left(\frac{r_{2}}{r_{1}}\right)$$
(2)

In correlating the shell side transfer coefficients and the pressure drop, it was assumed that the effective velocity of the shell fluid was governed by a combination of the velocity through the restricted passages at the baffles with the velocity across or along the tubes between successive baffles. It was assumed that the combination of these velocity components would be governed by the relative proportion of the areas involved in each case as well as by the baffle spacing since the effectiveness of the baffles as turbulence promotors would thus be indicated. Eq. 3, 4, 5, and 6 show how the effective velocity was computed for the disk-and-doughnut baffles, orifice baffles, half-moon baffles, and zero baffles, respectively.

$$G_{x} = \frac{\left(A_{R}\right)^{0.88}}{\left(S\right)^{0.33}} \quad G_{R} + \frac{\left(A_{A}\right)^{0.48}}{\left(S\right)^{0.5}} \quad G_{A} + \frac{\left(A_{H}\right)^{0.56}}{\left(S\right)^{0.5}} \quad G_{H}. \quad (3)$$

where

$$n = \frac{0.332}{(A_o)^{0.15}}$$

$$G_x = \frac{A_b}{(S)^{0.5}} G_b + (S)^{0.44} G_p \dots (5)$$

$$G_x = 0.53 G \dots (6)$$

In these equations G_R , G_A , G_H , G_o , G_a , G_b , G_p , and G represent the weight rate of flow at the several restricted sections in the path of flow. For the case of the disk-and-doughnut baffles, G_R represents the rate of flow, W/A_R , lb. per hr.-sq.ft. of cross-sectional area, in a radial direction where AR is determined by obtaining the average free circumferential distance through which the fluid would pass after flowing through the hole of the doughnut and before reaching the edge of the next disk in the path of flow and multiplying this distance by the distance between baffles. Then G, represents the rate of flow, W/A, lb. per hr.-sq.ft. of cross-sectional area, through the free annular space between the edge of the disk and the exchanger shell. The "free" area meaning the total annular area minus the cross-sectional area of the tubes in this annular space. And then G_H is the rate of flow, W/A_H , lb. per hr.-sq.ft. of free cross-sectional area, through the hole in the doughnut. And, in this case, AH is the area of the hole in the doughnut minus the cross-sectional area of the tubes in this region. Similarly G is the rate of flow, W/Ao, through the orifices at each baffle for the orifice type of baffles. In this, Ao is obtained by computing the total area of the holes in the baffle and subtracting the area of all of the tubes from it. Or, in other words, A. is the sum of all of the small annular spaces around the tubes in each baffle. Aa is the free area between the baffles and is the shell cross-sectional area minus the cross-sectional area of all of the tubes. Hence G, is the rate of flow, W/A, along the tubes in the region between the orifice type baffles and is the same as G for the unbaffled bundles. Likewise, in the case of the half-moon type of baffles, Gb is the rate of flow W/Ab, in the region beneath or above each half-moon baffle, and Gp is the average rate of flow, W/An, across the tubes in the region between each baffle.

Fig. 6 shows the paths of flow for each type of baffle and the area (A_p) of cross-flow for the half-moon baffles and the area (A_R) for radial flow for the disk-and-doughnut baffles. The effect of these different components of flow is shown graphically by Fig. 7 for the disk-and-doughnut type of baffles. Eq. 3, 4, 5, and 6 were obtained for each baffle type, respectively, from such graphs as Fig. 7 for each type and size of baffle.

The effect of the tube spacing (tube pitch) is shown by Fig. 8 for the half-moon baffles and was found to affect the film coefficient of the other baffle types similarly. The result of this is given analytically by

$$h_s = B\left(\frac{P-D}{P}\right)^{0.5}$$

PATHS OF THE LIQUIDS AT THE BAFFLES AND FREE AREAS OF FLOW AT THE SAME POINTS - FIG. 6

Fig. 9 and 10 give an indication of the procedure used to determine the effect of Prandtl's number, $\frac{c\mu}{k}$, on the shell side coefficient and this result shown analytically is

$$h_{s} = B' \left(\frac{c\mu}{k}\right)^{0.32} \tag{8}$$

The composite relation obtained from the foregoing graphical and analytical analysis is

$$\frac{h_B D}{k} = 0.37 \quad \left(\frac{P-D}{P}\right)^{0.5} \left(\frac{c \mu}{k}\right)^{0.32} \quad \left(\frac{DG_X}{\mu}\right)^{0.6} \quad ..(9)$$

or

$$n_s = 0.37 \left(\frac{P - D}{P}\right)^{0.5} \frac{c^{0.32}k^{0.68}G_X^{0.68}}{\mu^{0.28}D^{0.4}}$$
 (9a)

and this relation is shown graphically by Fig. 11 for the disk-and-doughnut type baffles and by Fig. 12 for all types, while Fig. 13 gives a graphical comparison of Eq. 9 with data and results of other experimenters on nearly comparable designs of apparatus. Colburn's equation³ for flow across banks of staggered tubes

is quite similar to Eq. 9 except for the term showing the effect of the tube spacing. Its relation to Eq. 9 is shown graphically on Fig. 13.

EFFECT OF PRANDTL'S NUMBER ON SHELL SIDE COEFFICIENTS
FIG. 10

Fig.11

Pressure Drop

In correlating the pressure drop for these different cases, methods similar to those used in correlating the transfer coefficients were used with the following results.

$$\Delta p = 5.46 \times 10^{-10} \frac{(\phi f) L G_x^2}{\phi g D w}$$
(11)

where the friction and roughness factor, ϕf , is obtained from Fig. 14 for the three baffle types. It will be observed that the friction and roughness factor, for each of these cases, is shown as a function of the product of Reynolds' number and Prandtl's number to some exponential power. In order to account for the cooling effect on the pressure loss this method gave the best correlation. That is, plotting the friction factor as a function of the product of Reynolds' number and Prandtl's number to some power as is done in heat transfer (example Eq. 9) appeared to give the most consistent relations. The roughness effect produced by the baffles and the flow perpendicular to the tubes and the effect of variable areas in the path of flow are accounted for in the function, ϕ , in each case. This function is given for each case as follows:

Disk-and-Doughnut Baffles

$$\phi = \frac{1}{\left(\frac{D_D}{D_H}\right)^{1.25} \quad \left(d_t\right)^{1.61}} \quad \dots \quad \dots \quad (12)$$

Orifice Baffles

$$\phi = \frac{(N_b - 2.3)^{0.33} (d_o - d_t + 0.031)^{2.0}}{\left(\frac{p - d_t}{p}\right)^{3.3} (d_t)^{2.38}} \dots (13)$$

Half-Moon Baffles

$$\phi = \frac{1}{\left[0.53 \left(\frac{0.51 - S}{S}\right)^{2.0} + 2.7\right] \left[\frac{p - d_t}{p}\right]^{0.21} \left[d_t\right]^{2.06}}..(14)$$

To determine the pressure drop for a particular heat exchanger for a particular weight and kind of fluid flowing through the shell, the effective velocity, $G_{\rm X}$, is computed, and then the Reynolds' number is obtained. Following this the Prandtl number is calculated and then raised to the proper exponential power. Using the product of the Reynolds number and the Prandtl function

(for the disk-and-doughnut baffles the Prandtl number is raised to the 0.78 power, for the half-moon baffles it is raised to the 0.52 power, and for the orifice baffles it is raised to the 0.38 power), reference is made to the friction-roughness factor plot corresponding to the type of baffle in question and the proper factor is obtained. Then using Eq. 12, 13 or 14, depending on the baffle type, and the dimensions of the heat exchanger bundle, the ϕ function is computed. Having determined the ϕ function in this manner, it is used along with the friction-roughness factor, effective velocity, tube diameter, length of exchanger, and speific weight of the fluid in Eq. 11 to obtain the pressure drop for the exchanger.

In other words, the pressure drop is determined by means of the Darcy equation with the friction factor combined with a roughness coefficient, ϕ . With the kind of fluid and its effective rate known, the Reynolds and Prandtl functions are computed and, by reference to Fig. 14, the product, ϕ f, is obtained. Then ϕ is computed from Eq. 12, 13, or 14 for the particular type of baffle and used along with ϕ f in Eq. 11.

Due primarily to the effect of the tube pattern, i.e., tube arrangement over the cross-section of the bundle, on the turbulence set up at entrance and exit and its effect as the fluid passes by or through a baffle, the tube pattern enters into the pressure drop to a greater extent than in the heat transfer coefficients. This results in a wider divergence of the friction factor for the different arrangements than was found for the heat transfer coefficients. And too, in the case of the heat transfer coefficients, it was found that a single relation for all baffle types gave results not greatly different from those given by a relation for each particular type of baffle. This was not true in the case of the pressure drop data and hence, no single relation is presented.

Conclusions

In conclusions, then, it may be said that the shell side coefficient of heat transfer may be computed for shell and tube type exchangers irrespective of the size and spacing of the tubes, or the type, size, and spacing of baffles, or the kind of fluid. This may be done, as shown by Fig. 13, with a reasonable degree of accuracy by the equation.

$$h_s = 0.37 \left(\frac{P-D}{P}\right)^{0.5} \frac{c^{0.32}k^{0.68}G_X^{0.6}}{\mu^{0.28}D^{0.4}}$$

after having obtained the effective rate of flow, G_X , from Eq. 3, 4, 5, or 6, for the particular case.

It may also be concluded that the pressure loss produced by flow along and across the tubes in baffled tube. bundles of heat exchangers may be closely approximated by

$$\Delta p = 5.46 \times 10^{-10} \frac{(\phi f) LG_X^2}{\phi g D w}$$

after having obtained the product, of, from the experimentally determined curves of Fig. 14.

It should be pointed out that a single relation for all types of baffles does not give as close a value of the coefficient as can be obtained by using a separate equation for each particular type of baffle, but the divergence is not more than 15 per cent for the usual case and this is as close as the effective areas, leakage effects, and tube patterns may be determined.

BIBLIOGRAPHY

- 1. McAdams "Heat Transmission" pages 320,322, 339
- 2. " " 169, 181
- 3. Transactions of A.S. Ch.E. (1933)(Chicago Meeting) page 197.

APPENDIX

Additional Symbols

 t_{t_1} = initial temp. of tube fluid, deg. F.

 t_{t_o} = final temp. of tube fluid, deg. F.

 t_{s_1} = initial temp. of shell fluid, deg. F.

 t_{s_o} = final temp. of shell fluid, deg. F.

 Δp = pressure drop across shell, in. of hg.

W_t = weight of tube fluid, lb. per hr.

 W_s = weight of shell fluid, lb. per hr.

Qt = heat absorbed by tube fluid, B.t.u. per hr.

 Q_s = heat given up by shell fluid, B.t.u. per hr.

 θ_{m} = log mean temp. diff., deg. F.

U = overall transfer coefficient, B.t.u. per hr.sq. ft.-deg. F.

DATA

BAFFLES- HALF-MOON SIZE- 3,92" HIGH

TUBE DIA.-3/8"
TUBE PITCH-1/2"

* See first page of Appendix for Symbols.

NO.OF TUBES- 98

TRANSFER AREA- 48.10'
SHELL FLUID- WATER

TUBE FLUID- WATER

	TOF SY	MD012.									
RUN NUMBER	* t _{t1}	t _{t2}	t _{s1}	t _{a2}	ΔР	W _t	W _s	Qt	Qs	θ _m	υ
19	BAFFLES										
51 52 53 54 55 56 57 58 59 60 61 62 63 219 220	58.3 58.2 58.1 58.1 58.1 58.1 57.9 58.0 57.5 60.1 60.1	77.3 85.3 88.8 91.6 95.0 99.2 99.3 101.5 103.1 104.5 104.9 96.4 101.9	140.6 140.7 140.4 139.6 139.5 140.1 141.2 139.2 140.1 140.2 140.6 140.0 139.0 139.6 139.4	74.8 86.0 92.1 97.6 102.7 109.1 110.8 112.6 114.3 117.0 117.3 101.7 102.4 110.5	0.37 0.88 1.39 2.22 3.24 5.19 6.86 7.78 9.63 11.67 13.52 3.33 3.06 5.98	18,540 18,380 18,520 18,730 18,220 18,330 18,370 18,370 18,420 18,540 18,550 18,550 17,950	5,365 9,220 11,900 15,040 18,360 23,630 23,730 29,150 32,430 36,730 36,730 38,530 18,420 18,280 26,090	352.8 498.2 569.0 628.0 673.5 752.5 759.0 778.0 800.0 830.5 862.0 870.0 688.0 673.5 750.5	353.0 503.8 574.8 631.0 676.5 755.0 760.5 781.0 802.5 838.0 867.0 873.0 687.5 680.0 753.5	34.76 40.10 42.14 43.60 44.59 45.34 46.08 45.50 46.18 46.25 44.31 42.73 43.75	211.0 258.3 280.8 299.5 314.1 345.2 342.6 355.4 360.2 375.4 384.4 391.1 322.8 327.8 356.7
15 (BAFFLES									•	
228 229 230 231 232 233 234 235 236 237 238 239	58.89000.24 589.599.55 599.55 599.55 599.55	80.9 78.5 81.0 86.7 86.8 91.2 98.6 101.5 103.4 104.9 106.2	138.8 139.0 138.7 139.8 139.4 140.8 139.9 139.5 139.5 140.2 140.4	80.3 77.9 81.7 89.9 90.0 96.9 102.9 108.4 112.5 117.8 119.7	0.28 0.28 0.37 0.70 0.70 1.20 1.90 3.15 4.91 6.51 7.92 9.63	15,720 18,540 19,130 18,850 18,620 18,150 18,240 18,540 18,370 18,330 18,330	5,900 5,970 7,410 10,420 10,480 13,610 17,320 23,120 23,120 23,120 23,520 37,350 41,460	345.2 365.0 423.5 518.5 581.0 655.0 725.0 725.0 804.0 834.5 856.5	345.0 364.6 423.0 519.0 522.0 579.0 656.0 727.5 774.0 809.0 838.5 860.0	36.70 35.90 37.60 41.06 42.80 44.48 45.00 45.22 45.46 45.80 46.00	195.6 211.4 234.2 265.1 262.7 282.3 306.2 335.0 354.8 367.8 378.8 387.1
11 6	AFFLES	120			2				è		
247 248 249 250 251 252 253 254	59.2 59.5 59.5 59.5 59.5 59.5 59.3 59.0	77.2 86.5 93.1 97.2 99.4 102.4 105.2 105.4	141.5 140.1 129.5 139.7 140.5 141.3 141.8 140.4	76.5 91.4 101.6 108.1 111.3 115.9 119.8 120.9	0.14 0.42 0.88 1.67 2.18 3.33 4.91 6.39	18,380 18,420 18,406 18,210 18,470 18,330 18,390 18,520	5,080 10,390 16,250 21,780 25,360 31,030 38,370 44,090	330.3 501.5 619.0 686.0 737.0 787.0 844.0 859.0	330.2 506.0 616.0 687.0 739.0 788.0 845.0 858.0	35.84 42.00 44.20 45.46 46.15 47.20 47.58 47.17	191.6 248.2 291.2 313.8 332.0 346.8 368.8 378.8
7 BA	FFLES										
285 286 287 288 289 290 291 292 293	61.3 61.5 61.6 61.5 61.5 61.5 61.5	81.0 89.1 92.1 95.9 98.0 99.7 102.1 104.2 105.0	139.3 140.4 140.2 140.4 140.8 140.5 141.0 141.5 140.5	86.7 99.1 104.0 109.4 112.3 115.0 118.4 121.4 122.3	0.14 0.32 0.51 0.74 1.11 1.48 2.04 2.59 3.33	18,120 18,100 18,170 18,230 18,340 18,160 18,100 17,390 17,670	6,850 12,120 15,320 20,030 23,610 27,330 32,550 37,000 42,280	357.5 499.5 554.0 625.0 670.0 694.0 734.0 769.0	360.5 501.0 555.5 620.0 674.0 737.0 745.0 770.5	39.54 44.06 45.18 46.10 46.70 46.90 47.32 47.65 47.06	188.0 235.8 255.0 282.0 298.3 307.7 322.4 323.8 339.8
3 BA	FFLES										
301 302 303 304 305 306 307 308 309 310 311	60.8 61.0 61.1 61.2 61.4 61.2 61.2 61.2 61.2 61.2	77.0 81.8 87.7 92.1 96.0 95.3 96.2 97.2 98.4 97.4	138.5 139.7 139.6 140.0 140.8 141.0 138.9 139.2 138.4 138.2 139.1	93.2 100.4 109.5 114.2 119.2 118.7 118.9 119.6 120.7 122.2 121.4	0.07 0.12 0.20 0.39 0.54 0.76 0.76 1.07 1.34	17,870 17,910 17,290 18,250 16,620 17,360 18,720 17,940 18,410 18,430 18,380	6,450 9,550 15,320 21,800 26,800 26,580 32,230 32,150 37,620 42,800 37,620	289.0 373.0 459.0 563.0 576.0 591.0 641.0 627.0 663.0 685.0 664.5	292.0 375.0 461.0 563.5 578.0 593.0 643.5 628.0 665.0 689.0 666.0	45.40 48.12 50.15 50.40 50.95 51.42 50.35 50.30 49.80 49.70 50.35	132.3 161.1 190.4 232.2 235.0 239.0 264.8 259.2 276.8 286.6 274.5

DATA

BAFFLES- HALF-MOON SIZE- 3.92" HIGH

TUBE DIA.-3/8"
TUBE PITCH-11/16"
NO.OF TUBES- 52

TRANSFER AREA- 25.51, SHELL FLUID- WATER TUBE FLUID- WATER

* See first page of Appendix for Symbols.

4	for S	ymbols.				10BE2- 25			IUDE FL	UID- WA	EK
RUN NUMBER	t _{t1} *	t _{t2}	t _{s1}	t _{a2}	ΔΡ	W _t	W _s	Qŧ	Q,	θ _m	U
19 6	BAFFLES				'			l	L		
10 11 12 13 14 15 16 17 18 19 28 27 28 28 28 30 31 32 33 33 35 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	61.6 61.2 60.3 58.9 58.5 58.2 60.4 60.1 60.2 60.2 60.3 60.2 60.2 60.2 60.2 60.2 60.2 60.2 60.2	88,6 109,8 108,9 107,8 107,8 107,2 107,7 107,9 89,8 89,1 105,8 106,5 107,7 108,9 108,9 107,7 108,9 109,4 100,4 100,4 100,5 100,7 100,7 100	139.3 141.8 139.4 140.7 139.9 140.3 140.3 140.3 140.7 139.8 138.5 138.6 138.6 138.6 138.4 138.6 140.5 140.5 140.5 140.5 140.5 140.5 140.5 140.6 141.6 141.6	96.2 126.4 124.4 124.4 124.7 124.8 119.8 119.8 119.3 123.6 123.6 109.6 112.8 109.6 112.8 112.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10	0.37 8.85 8.899 7.97 7.97 4.26 4.31 6.16 6.16 6.42 0.42 0.45 1.30 12.55 5.37 7.69 9.72 10.74 11.81 12.56 2.69 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.8	9,960 9,910 9,900 9,830 9,870 9,870 9,870 9,870 9,870 9,870 9,870 10,000 10,050 10,050 10,050 10,050 10,150 10,160 10,160 10,160 10,160 10,200 10,160 10,200	6, 135 31,580 32,150 32,150 32,150 32,150 32,150 32,150 32,680 23,680 28,500 7,040 6,920 28,500 7,040 6,920 28,500 12,800 12,800 24,780 24,780 24,780 33,650 33,7260 27,280	268.9 481.5 472.2 488.0 488.5 450.0 460.8 453.0 460.8 293.0 287.0 326.3 365.8 385.0 397.0 428.4 454.0 470.5 479.6 489.5 498.0 502.0 410.0 465.2 479.6 489.5 498.6 498.6 498.6 498.6 498.6 498.6 498.6 498.6 498.6 498.6 498.6	270.8 485.1 475.0 492.6 489.8 492.0 453.1 467.3 295.2 286.0 326.5 368.0 326.5 469.3 441.0 471.0 478.6 481.2 492.0 494.5 506.0 507.5 420.0 399.5 420.0 478.6 481.2 492.0 494.5 492.0 494.5 492.0 494.5 492.0 494.5 492.0 494.5 492.0 494.5 492.0 494.5 492.0 494.5 492.0 494.5 492.0 494.6 492.0 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 494.6 492.0 492.0 494.6 492.0	41.55 46.63 45.80 47.13 47.13 47.42 47.13 46.20 45.33 46.20 45.33 45.20 45.52 45.52 45.52 46.52 46.84 46.84 46.84 46.84 46.86 46.86 48.80 48.80 49.16	253.6 404.8 404.1 406.8 403.3 403.2 367.6 377.6 391.0 336.7 391.5 331.0 331.5 331.5 331.5 331.6 333.9 409.0 409.6
	AFFLES	I						. 			
221 222 223 224 225 226 227	60.0 60.0 60.2 59.6 59.8	92.3 98.9 102.7 107.2 106.5 107.5 108.5	139.6 140.3 139.6 141.1 139.2 139.2 139.2	104.5 114.4 119.6 125.5 125.2 126.4 127.7	0.46 1.07 2.22 4.86 5.98 7.32 8.89	10,020 9,960 10,000 9,870 10,020 10,090 10,070	9,350 14,820 21,520 29,760 34,020 38,300 42,260	324.0 387.5 426.7 464.0 470.2 481.0 490.5	328,2 384.6 430.0 464.3 476.5 490.4 499.8	45.90 47.67 47.35 47.92 47.22 47.06 47.08	276.7 318.8 353.2 379.6 390.3 400.8 408.5
	AFFLES	07 5	120 2	07.5	0 11		4 900	2016 1	219.0	42.45	199.6
294 295 296 297 298 299 300	61.4 61.7 61.8 62.1 62.2 62.1	83.5 88.4 93.4 99.6 103.1 106.6 108.1	138.3 139.7 139.6 139.8 138.8 140.6 140.6	93.5 101.3 109.1 117.5 122.0 126.5 128.3	0.11 0.18 0.32 0.83 1.78 3.03 4.17	9,790 9,830 9,870 9,860 9,900 9,910 9,940	4,890 6,900 10,230 16,630 24,230 31,350 36,730	216.1 265.0 312.8 372.2 406.0 440.5 457.2	264.8 312.5 371.4 407.0 440.0 454.0	45.18 46.80 47.53 46.80 47.56 47.42	230.0 262.0 307.0 340.1 363.2 378.0
7 BA 255	FFLES 60.0	78-9	139.0	91.6	0.09	9,770	3,840	185.0	182.2	44.33	163.6
256 257 258 259 260 261 262 263	60.2 60.3 60.5 60.5 60.5 60.5	78.9 89.0 94.4 98.4 100.9 102.6 104.0 105.5 106.8	139.2 139.6 140.1 140.6 139.2 139.7 139.7	108.2 115.4 120.4 123.6 125.1 126.9 128.3 129.8	0.19 0.65 0.86 1.20 1.81 2.47 3.31 3.89	9,800 10,270 9,830 10,110 9,950 9,930 10,060 9,970	3,840 9,230 14,630 19,120 24,160 30,100 34,100 40,260 44,700	282.5 350.5 372.8 408.8 419.2 432.2 452.2 461.5	182.2 286.7 353.2 377.2 411.4 422.5 435.5 456.4 465.0	44.33 49.12 50.00 50.20 50.45 49.30 49.43 49.10 49.12	225.3 275.0 291.1 317.7 333.3 342.8 361.0 368.2
264 265 266 267 268 269 270 271 272 273	59.5 59.6 59.7 59.7 59.7 59.7 59.7 59.6 59.6	80.2 85.9 90.5 93.8 96.3 98.7 100.2 102.1 102.3 102.5	138,6 139,1 139,5 139,7 139,2 139,8 140,2 140,1 140,9 140,2	105.5 113.8 119.1 122.5 124.6 126.9 128.3 129.5 129.9 130.1	0.06 0.21 0.46 0.56 0.70 0.93 1.28 1.44 1.44	10,160 9,815 10,060 10,070 9,980 10,015 10,140 9,740 9,740 9,950 10,270	6,440 10,370 15,410 20,150 25,280 30,570 34,760 39,300 39,200 44,300	210.0 259.0 310.8 343.7 365.0 390.5 410.5 413.0 425.0 441.0	213.2 262.6 314.0 347.2 368.3 395.0 413.6 415.3 428.6 444.8	51.95 53.73 54.10 53.15 53.15 53.15 53.23 53.23 53.35 53.35 53.45	158 5 189 0 225 2 249 8 269 3 288 2 303 3 309 2 315 1 329 6

BAFFLES- HALF-MOON \$1ZE- 3.92" HIGH

TUBE DIA.-1/2"
TUBE PITCH-19/32"
NO. OF TUBES- 66

TRANSFER AREA- 43.18 , SHELL FLUID- WATER TUBE FLUID- WATER

* See first page of Appendix

	or Symi	0018.									
RUN NUMBER	* t _{t1}	t _{t2}	t _s	t _{s2}	ΔP	$W_{\mathbf{t}}$	W _s	Qt	Q _s	θ _m	U
19 6	BAFFLES			<u> </u>			L		l		L
75 76 77 78 79 80 81 82 83 84	57.8 58.0 58.0 58.0 57.3 57.3 57.0 56.7 56.6 56.4	65.9 70.9 72.3 75.3 78.6 82.0 84.5 85.9 88.5 79.0	139.7 138.2 138.9 138.2 138.2 138.8 139.8 139.2 140.4 137.6	66.0 75.9 80.0 85.0 91.8 99.9 104.8 108.1 112.5 94.9	0.19 0.56 0.70 1.25 2.36 4.03 6.21 8.80 12.87 2.96	26,320 26,480 25,930 26,060 26,610 25,870 26,210 26,430 26,320 26,240	2,905 5,450 6,340 8,570 12,270 16,520 20,690 24,860 30,100 14,010	212.5 340.5 371.7 450.0 568.0 639.6 722.0 770.0 838.0 592.0	214.0 339.5 373.5 456.0 569.5 643.0 724.0 772.0 840.0 597.5	29.92 37.35 40.28 42.46 45.88 49.43 51.45 52.36 53.85 47.88	164.4 211.2 213.6 245.6 286.9 299.7 325.0 340.9 360.4 286.4
15 E	AFFLES		T					,	,		·····
321 322 323 324 325 326 327 328 329 330	60.8 61.0 61.0 61.1 61.2 61.3 61.3 61.3 61.3	72.4 74.0 75.4 80.6 85.9 89.2 91.1 92.1 93.1 94.1	140.6 140.2 141.4 141.0 140.9 140.8 141.0 140.8 140.7 140.2	77.0 80.1 83.0 92.2 102.8 109.2 112.8 114.8 116.8 118.5	0.28 0.37 0.46 1.02 2.50 4.82 6.58 8.11 10.28 12.97	25,400 24,800 25,840 26,480 26,200 26,870 26,090 26,090 26,090 25,980	4,625 5,456 6,420 10,620 17,020 23,830 27,700 31,030 35,030 39,330	294.8 321.7 372.2 516.0 646.0 749.5 778.0 801.0 831.5 852.5	294.4 328.0 375.5 518.0 649.0 752.0 780.0 805.0 835.0 864.5	36.13 37.94 40.05 44.16 48.10 49.80 50.75 51.10 51.45 51.30	189.0 196.3 215.3 270.6 311.2 348.7 355.2 363.2 374.3 385.0
11 8	AFFLES			-							
341 342 343 344 345 346 347 348	60.8 60.9 60.9 60.9 60.9 60.8	73.9 76.9 81.5 85.5 88.2 89.7 90.8 92.4	139.0 139.0 139.5 139.5 139.8 139.9 139.1 138.9	82.7 88.9 98.3 106.5 111.2 114.2 116.5 119.5	0.20 0.37 0.83 1.81 2.92 4.08 5.65 8.15	25,820 25,740 25,720 25,820 25,620 26,000 25,930 26,010	6,095 8,320 12,840 19,200 24,590 29,230 34,480 41,800	339.0 414.5 530.0 634.5 699.0 748.0 777.0 822.0	343.2 417.0 529.5 633.5 702.0 752.0 781.0 810.0	39.60 42.85 46.95 49.75 51.00 51.80 51.95 52.40	198.2 224.0 261.5 295.5 317.5 334.5 346.5 363.3
	FFLES										
349 350 351 352 353 354 355 356	60.4 60.5 60.5 60.7 60.7 60.7 60.7	72.4 73.6 77.2 83.1 86.5 88.7 91.3 92.3	141.1 140.0 140.9 140.4 141.3 140.3 142.0 141.5	84.8 88.4 94.7 106.3 112.3 116.2 120.2 122.0	0.09 0.19 0.28 0.74 1.39 2.36 3.38 4.54	25,900 25,960 25,860 25,820 26,280 26,170 26,100 26,100	5,570 6,670 9,410 16,900 23,420 30,500 36,720 42,550	310.8 340.8 432.0 577.5 678.0 733.5 798.5 825.5	313.6 344.2 434.7 575.5 680.3 735.0 801.0 830.0	42.80 44.40 47.40 51.22 53.17 53.55 55.00 54.90	168.3 177.8 211.1 261.1 295.6 317.3 336.4 348.3
3 BA	FFLES			·							
365 366 367 368 369 370 371	60.3 60.5 60.8 61.0 61.0 61.0	69.6 72.3 78.8 82.4 84.6 86.0 87.4 88.7	139.2 140.1 140.7 139.9 140.3 140.0 141.1 140.0	94.3 98.4 110.0 114.9 118.1 120.0 122.0 123.5	0.09 0.09 0.28 0.51 0.74 1.02 1.39 1.95	25,800 25,610 26,050 25,900 25,820 25,720 26,230 25,960	5,415 7,300 15,320 22,310 27,700 32,360 36,550 43,680	240.8 302.3 468.0 555.0 610.0 644.0 692.5 719.0	243.2 304.4 470.2 557.0 613.3 647.0 696.0 722.0	49.68 51.45 56.30 55.65 56.40 56.50 57.30 56.65	112.3 136.1 196.2 231.0 250.5 264.0 280.0 294.0

BAFFLES- HALF-MOON \$1ZE- 3.92 H16H * See first page of Appendix for Symbols.

TUBE DIA.-1/2"
TUBE PITCH-11/16"
NO.OF TUBES- 48

TRANSFER AREA- 31.40, SHELL FLUID- WATER TUBE FLUID- WATER

RUN NUMBER	t _{t1} *	t _{t2}	t _s 1	t _{s2}	ΔΡ	$W_{\mathbf{t}}$	Ws	Qt	Q,	θ,	Ū
19 B	AFFLES							L			
155 156 157 158 159 160 161 162 163 164 165	58.9 59.0 59.2 59.2 59.2 59.2 59.2 59.1 59.1 59.0 59.0	73.6 78.9 84.4 86.1 89.9 92.5 92.6 93.2 94.8 95.4	138.4 138.3 140.1 139.4 139.8 140.5 142.4 139.9 140.7 139.9 138.7	79.3 90.5 100.8 105.1 111.2 115.5 116.0 117.6 119.7 121.3 121.6	0.28 0.70 1.48 3.15 4.17 5.74 5.74 8.36 9.81 12.50 15.65	18,990 19,070 19,100 19,130 19,180 18,460 19,160 19,370 18,760 18,680 19,120	4,755 8,000 12,440 15,060 20,660 24,450 24,400 29,750 31,860 36,370 40,850	279.0 380.0 482.0 514.5 587.0 612.0 640.0 660.0 670.0 681.0 696.5	280.8 382.2 488.0 517.0 589.5 612.0 642.8 661.5 670.0 698.5	38.45 44.05 48.35 49.46 50.90 52.00 53.20 53.20 52.45 53.00 52.35	231.1 274.8 317.5 331.3 367.3 374.8 383.2 400.8 402.6 410.8 423.8
470	61.5 61.5	73.0	140.3	80.2	0.05	18,980 18,850	3,620	218.3	217.5	37.85	183.7
472 473 474 475 476 477 478 479	61.6 61.8 62.0 62.1 62.1 62.1	73.0 73.4 78.2 87.5 90.5 92.6 93.7 95.9 96.8	140.3 138.9 140.3 140.3 139.0 139.8 140.2 141.2 140.7	78.0 91.5 101.0 109.3 114.4 118.1 120.1 123.1 124.4	0.05 0.19 0.37 0.83 1.53 2.27 3.10 4.17 5.33	18,760 18,850 18,950 18,390 18,680 19,390 19,020 18,850	3,620 3,610 6,610 10,320 15,670 21,300 26,320 30,690 35,530 40,450	218.3 224.8 312.0 401.0 483.0 570.5 614.0 656.0	217.5 225.0 313.2 405.3 486.0 525.0 572.2 615.5 644.0 659.0	37.85 36.05 43.58 47.60 50.45 51.50 52.15 52.95 52.55	198.6 228.0 268.2 307.7 330.8 353.0 375.5 386.5 397.8
518	62.0	73.4	140.8	94.9		18,720	4,640	212.8	212.8	48.13	140.8
519 520 521 522 523 524 525 526	622.25.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6	73.1 78.0 81.5 84.4 87.3 89.4 90.6 91.5	140.8 140.6 140.6 139.2 139.4 139.7 140.0 140.3 139.1	94.9 94.6 105.3 112.0 116.3 120.5 122.8 124.5 125.2	0.04 0.17 0.32 0.46 0.70 0.89 1.11	18,720 19,020 19,130 18,620 18,940 18,910 18,950 18,910 18,980	4,640 4,700 8,570 13,020 17,940 24,270 29,620 33,630 39,560	212.8 212.2 301.7 353.7 415.0 468.0 507.0 529.0 549.0	212.8 216.2 303.0 353.6 415.2 465.0 510.5 530.5 552.0	48.04 52.25 53.50 54.40 55.10 55.50 54.82	140.8 140.7 183.9 210.6 243.0 270.6 291.1 303.7 318.8
					D	ATA					
	ELS- HAI E- 3.92	HIGH			TUBE I	DIA1/2" PITCH-25/ TUBES- 4	32 " 0	3	MELL PL	AREA- : UID- WAT	IEK
RUN NUMBER	t _{t1}	t _{t2}	t _{s1}	t _{s2}	ΔΡ	W _t	W _s	Q _t	۹,	θ _m	U
	AFFLES			,				,	_		
95 96 97 98 99 100 101 102 103 104	58.1 58.1 58.2 58.2 58.2 58.2 58.0 57.6	78.8 84.4 88.6 92.4 94.3 95.8 96.0 96.2 96.7 86.2	139.6 139.3 139.8 140.7 140.1 140.8 141.6 140.1 141.1 138.2	92.8 104.0 112.2 117.8 121.0 123.3 123.3 124.2 124.7 108.7	0.51 1.30 2.59 4.63 7.41 9.45 9.45 12.22 12.22 2.04	15,800 15,800 15,660 15,430 15,430 15,780 15,760 15,770 15,660	7,075 11,960 17,370 23,180 29,340 32,930 32,930 37,800 37,500 15,280	326.0 417.0 477.0 527.0 558.0 574.0 596.5 601.0 610.0 447.5	331.0 422.2 480.0 530.0 559.5 577.0 602.0 603.0 614.0 450.0	46.58 50.35 52.67 53.95 53.95 54.45 54.25 54.25 54.25 54.55	267.7 316.9 346.3 373.5 395.6 403.0 416.0 423.6 425.0 332.0
	AFFLES							T			272.2
437 438 439 440 441 442 443 444	61.3 61.4 61.5 61.7 61.7 61.8 61.0	83.9 87.0 90.5 92.8 95.0 96.8 75.9	138.6 139.2 139.2 139.4 139.4 139.5 137.0 138.5	104.8 110.4 116.3 119.7 122.8 125.1 90.2 97.1	0.37 0.74 1.35 2.08 3.33 5.10	15,780 15,775 15,780 15,770 15,830 15,820 15,660 15,825	10,610 14,120 20,060 24,880 31,720 38,300 5,030 7,110	356.5 404.0 458.0 491.5 528.0 554.0 233.8 290.8	358.5 407.4 459.0 490.0 528.5 554.0 235.8 294.2	48.90 50.63 51.70 52.10 52.35 52.45 43.20 46.45	278.8 305.2 338.9 360.8 385.8 404.0 206.9 239.3
3 BA	62.2	75.0	139 5	102.1		15.680	5.365	199.7	200.6	51 25	149.0
509 510 511 512 513 514 515 516 517	62.4 62.4 62.6 62.9 63.9 63.8	75.0 77.8 80.7 83.9 87.2 89.8 91.5 92.4 93.6	139.5 139.3 139.8 139.7 138.9 140.4 140.6 139.9 139.0 138.5	101.5 107.0 111.9 116.5 121.2 124.2 125.6 126.2 127.1	0.02 0.09 0.19 0.37 0.53 0.74 0.93 1.30	15,680 15,740 15,730 15,720 15,580 15,560 15,660 15,660 15,560	5,365 5,370 7,470 10,375 14,880 19,890 25,640 31,270 36,370 42,480	201.5 241.8 286.5 332.3 379.8 418.8 444.8 461.4 479.5	203.0 244.6 288.5 334.0 381.2 420.5 446.0 463.0 482.0	51.25 50.72 52.85 54.25 54.45 55.80 55.70 55.15 54.50 54.10	152.0 174.9 201.9 233.4 260.2 287.5 308.4 323.8 339.0

DATA

BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols.

TUBE DIA.-1/2" TUBE PITCH-1" NO.OF TUBES-30

TRANSFER AREA- 19.62 SHELL FLUID- WATER TUBE FLUID- WATER

RUN NUMBER	t _{t1} *	t _{t2}	t _{s1}	t _{s2}	ΔP	W _t	W _s	Qt	Q,	θ <u>m</u>	บ
19 1	BAFFLES				·			-			
116 117 118 119 120 121 122 123 124 125 126	57.9 58.0 58.0 58.0 58.0 58.0 58.0 58.0 57.5 57.3	75.4 81.2 84.3 87.3 90.7 92.8 94.7 96.2 97.2 96.5	139.8 139.4 141.1 140.3 140.7 141.1 141.4 141.6 141.4 141.4	90.4 103.2 109.2 114.3 119.1 122.5 125.4 127.4 129.0 130.0 128.3	0.19 0.46 0.74 1.39 2.45 3.80 5.75 7.97 10.93	11,860 11,810 11,940 11,940 11,670 11,865 11,905 11,930 11,670 11,850 12,000	4,250 7,615 9,890 13,560 17,850 22,410 27,620 32,220 37,500 42,860 37,400	208.0 273.5 314.0 349.5 381.0 412.4 436.6 455.2 462.8 481.6 470.0	210.0 275.5 315.7 353.6 384.6 416.0 440.4 456.5 467.0 485.0 468.6	46.68 51.52 53.92 54.65 55.42 56.45 56.55 56.63 56.62	227.2 270.5 296.8 326.0 350.3 375.4 394.1 410.7 419.3 433.3 423.0
11	BAFFLES								1000		
419 420 421 422 423 424 425 426	61.0 61.1 61.2 61.6 61.7 61.6 61.7	77.9 81.7 85.5 91.0 94.1 95.2 96.4 97.6	139.9 139.6 139.7 141.3 140.1 140.6 140.4	99.5 107.0 113.3 120.9 126.1 127.3 128.6 130.0	0.09 0.19 0.42 1.02 1.85 2.69 3.43 5.10	12,000 11,775 11,840 11,670 11,865 11,865 11,850 11,905	5,115 7,360 11,020 18,380 25,350 30,780 34,730 41,780	202.8 242.2 287.2 343.4 385.0 399.0 413.0 428.0	206.6 242.2 289.8 346.0 384.5 395.6 417.0 431.2	49.35 51.95 53.10 53.85 55.25 54.65 54.78 54.55	209.4 237.8 275.8 325.0 355.1 372.0 384.2 400.0
	AFFLES		·								
501 502 503 504 505 506 507	62.2 62.5 62.7 62.8 63.0 63.0	77.0 79.7 84.6 88.3 91.2 93.6 95.4	140.5 139.6 139.9 139.7 141.4 141.9 142.0	110.1 114.2 120.8 124.7 128.3 130.8 132.2	0.09 0.09 0.19 0.28 0.37 0.56 0.83	11,850 11,830 11,875 11,810 11,810 11,840	5,875 8,220 13,740 20,460 25,530 32,580 39,400	175.3 203.8 260.5 300.8 333.0 362.0 383.6	178.6 209.0 262.3 306.2 334.5 363.4 386.0	55.30 55.70 56.75 56.55 57.30 57.58 57.20	161.6 186.4 234.1 271.2 296.3 320.6 341.8
						DATA					

DATA

BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols.

TUBE DIA .- 1/2" TUBE PITCH-1 3/32" NO. OF TUBES-20

TRANSFER AREA- 13.08 SHELL FLUID- WATER TURE FLUID- WATER

	ror Symi	0015.			NO.OF	TUBES-20			IUBE FE	UID- WAT	EK
RUN NUMBER	* *	t _{t2}	t ₈₁	t.	ΔP	Wt	W _s	Qt	Q _s	θ <u>π</u>	U
19 6	BAFFLES			4							
208 209 210 211 212 213 214 215 216 217 218	61.2 61.1 61.1 61.1 61.1 61.1 61.2 61.2	81.8 86.1 90.4 92.2 94.4 95.7 97.6 98.8 99.9 101.0 101.5	140.0 138.8 140.2 140.3 140.9 139.5 140.1 139.7 140.0 140.7	105.6 113.1 119.5 122.1 125.2 126.4 128.9 130.1 131.3 132.5 133.3	0.23 0.46 0.88 1.25 1.90 2.87 4.54 6.44 8.43 9.66 11.81	7,955 7,895 7,930 7,935 7,865 7,865 7,875 8,000 7,980 7,980 7,925 7,820 8,070	4,855 7,890 11,430 13,900 16,900 21,130 26,550 31,650 36,210 38,460 42,850	164.1 198.2 232.3 246.7 262.3 272.6 292.0 300.5 306.8 311.5 325.5	167.0 203.0 236.6 252.2 264.8 277.5 297.4 303.9 314.0 315.3 334.3	51.02 52.35 54.00 54.22 54.97 53.90 54.13 53.78 53.70 53.96 54.25	245.7 289.3 328.8 347.6 365.0 386.6 412.5 427.3 436.8 441.3 458.7
15 E	AFFLES										
331 332 333 334 335 336 337 338 339 340	61.5 61.8 62.0 62.1 62.4 62.5 62.3 62.3 62.3	79.7 83.3 87.8 91.4 95.3 97.2 98.7 99.0 100.3 101.4	139.1 140.3 140.5 140.7 140.2 140.8 141.3 140.3 141.1	104.1 110.6 117.4 122.3 126.9 129.1 130.8 131.0 132.6 133.8	0.09 0.13 0.31 0.60 1.58 2.27 3.06 4.08 5.23 6.96	7,890 7,965 7,940 7,950 7,965 7,965 7,965 7,965 8,010 8,020	4,195 5,825 9,000 12,720 19,540 23,700 27,520 31,800 36,000 41,300	143.3 171.2 204.8 232.8 261.2 276.4 289.7 293.3 304.4 314.3	146.7 173.0 207.4 234.4 259.9 278.0 290.6 294.7 306.0 316.4	50.58 52.78 54.05 54.60 54.03 54.30 54.62 53.95 54.24 54.35	216.8 248.0 289.7 325.8 369.4 389.3 405.2 415.7 429.0 442.0
11 B	AFFLES										
357 358 359 360 361 362 363 364	61.1 61.3 61.6 61.7 61.9 61.7 61.6 61.7	81.5 84.5 90.7 93.7 96.4 97.3 98.0 98.9	140.6 141.0 139.7 140.3 141.9 141.3 140.9	111.4 116.7 124.6 127.9 130.9 132.1 132.6 133.5	0.09 0.19 0.56 1.02 1.67 2.32 3.06 4.08	7,880 7,870 7,890 7,880 7,940 7,920 7,940 7,975	5,650 7,595 15,090 20,560 25,060 30,690 34,700 40,000	160.7 183.0 229.3 252.2 273.5 280.0 289.0 287.0	165.0 184.8 228.8 255.0 275.0 281.3 290.0 298.3	54.62 55.92 55.83 55.80 56.45 56.20 55.85 55.65	224.8 250.2 313.9 345.4 370.3 381.0 395.3 407.8
364	61.7	98.9	140,9			7,975 27	40,000	297.0	298,3		

BAFFLES- HALF-MOON SIZE- 3,92" HIGH *See first page of Appendix for Symbols.

TUBE DIA.-1/2"
TUBE PITCH-1 3/32"
NO.OF TUBES-20

TRANSFER AREA- 13.08

	Mary 1971	United conservati			/,E00000-0000						
RUN NUMBER	t _{t1} *	t _{t2}	t _{s1}	t _{s2}	ΔΡ	$W_{\mathbf{t}}$	W _B	Qt	Q _B	θ _m	υ
7 B	AFFLES			L						L	<u> </u>
382 383 384 385 386 387 388 389 390	61.0 61.1 61.5 61.4 61.7 61.9 61.9 62.0 61.9	78.1 81.5 84.0 87.0 91.1 93.8 95.9 96.9 97.3	138.4 138.3 139.0 139.1 138.9 140.0 140.7 140.3 140.1	109.4 115.1 119.1 122.8 127.0 130.0 132.0 132.8 133.0	0.05 0.14 0.23 0.56 0.93 1.30 1.90 2.22	7,745 7,815 7,795 7,890 7,875 7,890 7,850 7,850 7,830 7,905	4,665 6,830 9,025 12,560 19,480 25,360 30,900 36,320 39,620	132.4 159.2 175.6 201.0 231.2 252.1 266.4 273.3 279.8	135.0 158.7 179.7 204.7 233.0 252.0 267.9 273.6 280.1	54.25 55.40 56.22 56.43 56.10 56.48 56.60 56.05 55.80	186.5 219.6 238.8 272.2 315.0 341.2 360.0 372.8 383.3
391 392 393 394 395 396 397 398 399	61.4 61.8 62.0 62.0 62.1 62.0 62.2 62.3	77.0 81.7 85.8 88.7 91.3 93.1 93.9 95.0 96.3	139.1 138.3 138.9 139.0 140.2 140.2 140.0 139.8 140.6	115.0 121.5 125.7 128.1 130.6 132.2 132.7 133.2 134.2	0.05 0.10 0.22 0.34 0.46 0.57 0.74	7,885 7,895 7,890 7,960 7,855 7,905 7,905 7,990 7,380	5,305 9,450 14,470 19,750 24,800 30,300 34,430 39,240 39,400	122.8 157.5 188.0 212.5 229.8 244.6 252.0 261.7 250.4	128.0 159.0 191.9 214.0 236.6 244.2 252.3 257.4 254.5	57.80 58.20 58.25 57.95 58.30 57.78 57.58 56.93 57.00	162.4 206.9 246.8 280.3 301.2 323.6 334.7 351.6 336.0

DATA

BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix TUBE DIA,-5/8"
TUBE PITCH-3/4"
NO. OF TUBES-40

TRANSFER AREA- 32,72, SHELL FLUID WATER
TUBE FLUID WATER

for Symbols.					NO.OF TUBES-40			TUBE FLUID- WATER			
RUN NUMBER	* t _t	t _{t2}	t _s	t _{s2}	ΔP	W _t	Wg	Qt	Qs	θ _m	Ū
19 BAFFLES											
171 172 173 174 175 176 177 178 179 180	59.0 59.0 59.0 59.0 59.0 59.1 59.2 59.2 59.0 59.0	67.4 70.1 74.0 75.4 77.9 80.6 82.2 83.8 84.6 85.1	139.9 140.8 141.4 140.6 139.5 140.5 140.5 140.2 140.0 140.5	74.2 81.9 92.1 96.6 102.1 108.5 111.7 115.5 117.8 118.9	0.32 0.51 1.02 1.53 2.78 4.73 6.81 9.67 12.08 14.26	26,770 27,070 27,170 27,070 27,280 27,580 27,400 26,670 27,030 27,070	3,465 5,145 8,370 10,140 13,900 18,560 21,950 26,670 31,250 32,730	224.3 301.3 408.4 444.8 515.0 591.0 629.0 657.0 691.0 705.5	227.8 303.0 413.0 446.0 520.0 594.0 632.8 660.0 693.6 708.0	36.70 42.43 48.20 50.20 51.82 54.57 55.36 56.33 57.10 57.65	186.8 217.0 259.0 270.8 303.7 331.2 347.5 356.5 370.0 374.0
11 BAFFLES											
455 456 457 458 459 460 461 462	61.2 61.3 61.4 61.5 61.5 61.6 61.5	71.3 73.9 75.9 78.8 81.8 84.5 86.2 87.3	140.0 140.3 139.4 139.9 139.4 140.5 141.3 141.0	85,2 93,4 98.2 106.2 111.7 117.9 121.4 123.7	0.09 0.28 0.46 0.83 1.95 3.47 5.28 7.69	27,400 27,030 27,200 27,280 27,070 27,160 27,310 27,280	5,130 7,270 9,650 14,120 19,880 27,600 33,980 40,730	276.0 340.0 393.6 472.0 548.5 622.0 674.0 703.5	281.4 341.0 397.6 475.0 550.5 622.5 676.0 706.0	42.50 47.20 49.00 52.40 53.80 56.16 57.55 57.86	198.5 220.2 245.4 276.3 311.7 338.6 358.0 371.6
3 BAFFLES											
491 492 493 494 495 496 497 498 499 500	61.8 61.8 61.9 62.4 62.5 62.5 62.5 62.3 61.8 62.2	69.9 71.4 74.3 76.4 79.8 82.7 84.2 80.7 69.6 77.2	139.9 139.7 140.1 139.4 139.7 140.9 141.4 139.1 139.5 139.3	97.3 102.2 109.4 114.5 120.1 124.8 126.8 121.5 96.1 115.4	0.09 0.09 0.11 0.28 0.65 1.11 1.67 0.83	27,280 27,070 27,160 27,780 27,560 27,520 27,520 27,520 27,500 27,690	5,220 6,990 11,025 15,620 24,430 34,450 41,000 29,000 4,930 17,480	221.9 260.0 336.0 389.0 477.5 552.8 596.5 507.5 212.2 415.3	222.0 262.0 337.8 390.0 479.0 554.5 598.5 510.5 213.8 417.0	50.85 53.18 56.25 57.25 58.78 60.20 60.75 58.79 50.05 57.58	133.4 149.5 182.6 207.7 248.3 280.7 300.2 263.8 129.6 220.5

BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols.

TUBE DIA.-5/8"
TUBE PITCH-7/8"
NO.OF TUBES- 30

TRANSFER AREA- 24.54

	for Sym	DO15.		NO.OF TUBES- 30			TUBE FLUID- WATER				
RUN NUMBER	t _{t1} *	t _{t2}	t _{s1}	t s ₂	ΔP	W _t	Ws	Qŧ	Q _s	θ _m	υ
19	BAFFLES										
188 189 190 191 192 193 194 195 196	60.6 60.5 60.6 60.7 60.7 60.7 60.7 60.3	70.8 73.7 77.6 80.6 83.2 85.1 87.7 87.3 88.4	139.1 140.8 140.8 141.2 140.0 141.0 142.4 139.6 139.4	82.2 90.4 99.5 107.3 112.2 116.5 120.8 121.6 123.4	0.19 0.37 0.83 1.67 3.24 4.77 7.60 11.21 15.14	20,480 20,460 20,340 20,360 20,580 20,320 20,360 20,760 20,700	3,790 5,380 8,430 12,000 16,680 20,380 25,480 31,300 36,450	210.0 269.4 346.5 405.0 463.0 497.0 549.5 561.0 582.5	215.3 271.1 348.0 407.0 463.0 500.0 550.0 564.0 584.0	40.56 46.04 50.08 53.32 54.15 55.85 57.37 56.72 56.70	211.0 238.4 282.0 309.5 348.2 362.6 390.3 403.1 418.5
15	BAFFLES										
411 412 413 414 415 416 417 418	60.8 60.9 61.0 61.2 61.2 61.2 61.1	72.0 74.9 77.7 82.5 85.5 87.6 88.4 89.4	140.3 139.4 139.1 139.3 140.2 140.1 140.2	87.0 94.4 101.5 111.9 117.6 121.2 123.1 124.5	0.14 0.28 0.65 1.76 3.38 5.74 7.60 10.56	20,420 20,460 20,430 20,460 20,460 20,490 20,540 20,370	4,270 6,370 9,210 16,030 22,040 28,730 33,030 38,800	229.4 285.7 340.6 435.0 496.3 540.5 561.5 576.5	227.8 286.8 346.7 439.0 498.0 544.0 564.0 573.0	43.92 47.33 50.23 53.70 55.58 56.18 56.80 56.38	212.9 245.9 276.0 330.0 363.9 392.0 402.6 416.7
	BAFFLES										
427 428 429 430 431 432 433 434 435 436	60.8 61.0 61.0 61.1 61.4 61.4 61.5 61.4 61.4	72.2 75.9 75.5 77.5 80.2 83.7 85.3 87.0 87.6 88.5	138.4 139.1 138.9 139.2 138.8 140.1 139.1 140.5 139.7	91.3 102.0 100.8 104.5 110.4 117.7 120.3 123.4 124.6 125.8	0.10 0.28 0.28 0.43 0.76 1.69 2.64 3.61 5.00 7.04	20,180 19,730 20,800 20,220 20,160 20,080 20,240 20,190 20,100 20,350	4,970 7,980 7,965 9,730 13,680 20,140 25,860 29,920 35,100 41,500	230.5 294.0 301.6 333.8 384.0 449.0 485.0 514.5 527.0 551.5	234.0 296.1 303.6 338.0 388.0 452.5 486.0 515.5 529.0 553.5	46.07 51.32 50.70 52.15 53.90 56.35 56.32 57.56 57.56 57.30	203.8 233.3 242.2 260.8 290.2 324.8 350.8 364.3 373.0 392.0
552		T THER	138.5	LOCATIO	O.09	ED	3 980	204.4	206.7	143.92	189.6
553 554 555 556 557 558 559 560 561 562 563 564 565 565 567 568	60.4 60.3 60.4 60.5 60.0 60.9 60.9 59.8 59.5 59.5 59.5 59.5 59.5 59.5 59	75.7 79.7 85.9 86.2 87.6 87.6 87.0 71.7 76.3 81.3 84.7 86.1	00METER 138.5 141.7 139.5 140.0 141.6 140.6 140.5 140.1 140.2 139.2 139.6 141.4 141.4 141.4	86.6 94.2 100.8 110.0 118.3 122.9 125.2 123.4 125.0 124.7 92.8 103.8 114.8 114.8 124.1 126.2	0.09 0.19 0.28 0.74 1.95 3.24 5.47 4.08 5.47 5.47	20,000 20,480 20,410 20,460 20,460 20,380 19,870 19,870 20,520 20,120 20,120 20,120 20,320 20,410	3,980 5,540 8,240 13,210 21,960 28,400 36,400 36,400 5,450 9,760 18,000 25,290 31,620 37,050	259.4 313.0 395.0 477.0 529.5 560.0 547.5 544.0 547.5 252.0 341.0 442.0 506.0 545.0 562.5	206,7 263.2 319.0 397.0 479.0 5531.0 562.5 550.0 548.5 558.0 252.7 345.5 446.0 566.0	43.92 49.15 51.22 54.80 57.00 58.78 58.76 58.75 58.75 58.75 58.75 58.75 58.95 59.85 59.85 59.45	215.0 248.8 293.6 341.0 366.3 388.2 379.5 377.3 387.5 210.8 261.0 317.0 348.2 371.0 385.5
573 574 575 576 577 578 579 580 581	59.6 59.7 59.7 59.7 59.6 59.5 59.4 59.4	77.8 81.8 84.3 84.4 86.0 86.0 86.8 87.1	140.2 139.9 140.9 141.6 140.3 140.5 139.7 140.4	106.5 114.9 119.9 120.2 123.4 123.5 124.8 125.4	0.46	20,300 20,390 20,230 19,970 20,110 20,580 20,300 20,430 20,250	11,130 18,090 23,450 23,500 32,230 32,040 37,260 37,320	368.4 445.0 490.8 498.6 545.0 539.5 559.0 560.0	375.0 451.2 492.5 503.0 545.5 543.6 555.0 562.5	50.05 54.30 56.65 58.40 59.00 58.90 59.05 59.10 59.40	231.8 276.3 320.0 342.3 344.3 377.0 372.2 385.4 384.0
7 BA	FFLES										
445 446 447 448 449 450 451 452 453 454	61.5 61.5 61.6 61.9 61.9 61.9 61.9 61.2 61.4	76.6 78.6 81.5 84.2 86.2 87.5 88.3 88.6 71.2 75.6	139.9 138.7 139.4 139.6 140.4 140.2 140.1 140.8 137.5 139.7	107.2 110.3 115.7 120.4 123.8 125.6 126.9 127.6 92.8 104.6	0.19 0.37 0.67 1.25 1.95 2.69 3.71 3.71 0.04 0.14	20,520 20,300 20,260 20,120 20,070 19,770 20,260 20,280 20,060 19,880	9,540 12,140 16,960 23,380 29,220 34,840 40,650 40,980 4,600 8,140	310.5 345.6 402.5 448.8 487.5 505.5 535.0 541.5 201.0 283.5	312.0 345.0 401.5 449.5 487.0 506.5 537.0 542.0 205.5 285.4	53.95 54.43 56.03 56.90 57.96 58.17 58.05 58.70 46.88 52.90	234.4 258.6 292.5 321.2 342.7 354.2 376.0 174.6 218.3

BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols.

TUBE DIA.-5/8"
TUBE PITCH-7/8"
NO.OF TUBE\$-30

TRANSFER AREA- 24.54 SHELL FLUID- WATER
TUBE FLUID- WATER

RUN NUMBER	t _{t1} *	t _{t2}	t _{s1}	t ₈₂	ΔP	W _t	Ws	Qt	Q,	θ _m	ŭ			
3 B														
463 464 465 466 467 468 469	61.2 61.3 61.7 61.8 61.8 61.8	71.0 73.0 77.2 80.6 83.7 85.5 86.8	139.1 139.5 139.8 139.6 141.0 141.1 141.2	103.4 107.8 115.7 120.8 125.2 127.3 129.1	0.09 0.09 0.19 0.37 0.60 1.02 1.57	20,360 20,220 20,220 20,220 20,110 20,180 20,290	5,620 7,515 13,050 20,380 28,120 34,870 42,280	198.9 236.6 313.5 381.0 441.2 478.0 506.5	201.0 238.0 315.0 383.0 443.7 481.0 509.0	54.15 56.08 58.20 59.01 60.22 60.56 60.70	149.6 171.8 219.4 263.0 298.3 321.7 340.0			

DATA

BAFFLES- HALF-MOON SIZE- 3.92" HIGH * See first page of Appendix for Symbols.

TUBE DIA.-5/8"
TUBE PITCH-1 1/16"
NO.OF TUBES-20

TRANSFER AREA- 16.36

for Symbols.					NO.OF TUBES-20				TUBE FLUID- WATER			
RUN NUMBER	t _{t1} *	t _{t2}	t _{s1}	t _s 2	ΔP	W _t	Ws	Q _t	Q,	θ,,,	υ	
19 6	AFFLES				12							
127 128 129 130 131 132 133 134 135 136 137 138 139 140	55.6 55.6 55.5 56.1 57.1 57.0 57.0 57.2 57.2 57.2 57.5 57.5 57.5 57.5 57.5	77.1 77.3 82.9 86.0 87.0 70.7 75.1 82.6 84.8 87.7 89.3 89.3 89.3	140.7 141.4 140.2 140.6 141.0 143.8 139.1 140.1 139.5 139.4 139.8 139.1 140.3 140.3	110.4 110.5 120.8 125.5 127.8 130.1 93.3 104.6 113.0 119.4 122.9 126.1 127.4 129.8 115.5	0.74 0.74 2.82 5.82 6.80 0.14 0.37 1.02 2.27 4.053 10.09 13.512 4ND 00	14,030 14,170 14,060 14,160 14,280 13,720 13,720 13,620 13,620 13,950 13,850 13,810 13,810 13,810 13,810	10,040 10,020 19,620 27,640 34,530 34,600 4,095 7,050 11,7640 23,500 30,000 36,720 42,250 23,560	301.6 308.0 379.0 423.0 469.0 184.3 248.3 305.0 349.6 387.0 409.0 426.0 443.4 378.0	304.0 309.5 382.0 419.0 445.2 471.5 187.0 307.0 352.5 389.7 412.7 445.8 381.6	59 12 59 20 61 09 62 02 63 845 55 85 59 65 60 65 60 65 61 16 58 95	311.9 318.0 379.8 417.4 445.2 449.0 223.2 271.7 358.2 358.2 358.2 412.2 443.5 392.0	
595	62.5	77.3	138.5	1100.6	0.23		5,480	1200.5	1208.0	148.70	251.6	
596 597 599 6001 6003 6005 6007 6008 6008 6000	62.5 622.5 6	77.3 77.6 83.9 88.6 75.5 81.7 85.0 89.6 90.1 90.6 91.3 83.7	138.5 139.8 139.8 141.2 139.0 140.5 139.0 140.4 139.9 138.0 139.3 139.5 139.5	100.6 101.1 114.0 123.1 123.5 96.5 109.4 110.4 1122.8 126.0 125.5 126.0 127.0 115.6 114.8	0 23 0 23 0 23 0 88 2 87 2 87 0 14 0 56 1 25 2 92 4 63 4 63 6 81 1 07	13,676 13,660 13,040 13,050 13,925 13,500 13,190 13,530 13,540 13,540 13,600 13,605 13,555 13,555 13,550	5,480 5,385 11,070 20,360 20,130 4,260 8,470 8,520 13,280 20,140 25,460 25,460 30,880 30,920 12,390	200.5 206.3 284.7 284.7 2358.5 175.0 246.0 2257.5 299.0 345.8 376.4 381.5 290.4 292.7	208.0 208.4 285.0 340.0 357.6 181.2 250.0 256.3 299.8 343.3 368.2 370.5 368.2 370.5 382.3 293.3	48.70 49.44 53.50 55.47 56.55 47.20 53.17 53.79 56.10 56.00 54.83 55.76 54.18 53.65	251.6 255.1 325.2 387.5 226.7 289.2 296.0 340.0 381.0 402.8 419.7 418.2 327.9 333.4	
11 B	AFFLES									,		
527 528 529 530 531 532 533 534 535 536	62.6 62.6 62.8 63.0 63.2 63.2 63.2 63.2	74.7 74.7 78.0 81.6 85.3 87.7 88.8 89.7 90.4 90.7	138.3 138.3 139.5 140.4 141.0 140.2 139.9 140.0 138.7 139.9	101.1 101.4 109.0 116.3 122.3 125.9 127.8 129.1 129.5 130.5	0.05 0.05 0.19 0.32 0.74 1.39 2.13 2.87 4.26 4.26	13,490 13,650 13,700 13,750 13,275 13,390 13,440 13,600 13,420 13,800	4,455 4,500 6,970 10,620 15,840 23,190 28,720 33,330 39,900 40,000	163.2 165.2 208.6 255.2 293.8 328.4 344.6 361.4 364.5 379.5	165.6 165.8 212.8 256.5 296.7 331.0 346.8 363.3 368.0 378.5	50.00 50.22 53.40 56.08 57.35 57.55 57.50 57.70 56.85 57.75	199.5 201.0 238.7 278.4 313.2 348.8 366.3 383.0 392.0 401.7	
3 BA	FFLES									r		
537 538 539 540 541 542 543 544 545	62.4 62.6 62.8 63.0 63.2 63.2 63.1 62.8	73.0 75.4 78.1 80.4 83.0 85.7 87.2 87.5 81.1	139.5 138.8 139.8 139.0 139.4 140.0 140.9 139.0	110.9 115.0 119.6 122.4 125.6 128.7 130.7 130.2 123.7	0.02 0.05 0.14 0.23 0.45 0.58 0.79 0.16	13,500 13,410 13,500 13,450 13,580 13,625 13,650 13,730 13,540	5,005 7,370 10,280 14,170 19,840 27,430 32,400 38,500 15,770	143.1 172.5 206.2 234.5 271.6 306.2 327.0 335.5 248.6	143.2 175.0 207.1 234.8 273.8 308.4 330.4 340.0 248.3	57.00 57.85 59.20 59.00 59.45 59.75 60.20 58.97 59.65	153.4 182.3 213.0 243.0 279.2 313.2 332.0 347.8 254.7	

BAFFLES- ORIFICE
SIZE-17/32" DIA.HOLE
* See first page of Appendix
for Symbols.

TUBE DIA.-3/8"
TUBE PITCH-11/16"
NO.OF TUBES-52

TRANSFER AREA- 25.51 ... SHELL FLUID- WATER
TUBE FLUID- WATER

RUN NUMBER	* t _{t1}	t _{t2}	t _{s1}	t _{s2}	ΔP	W _t	W _s	Q _t	Q _s	θ _m	U
19	BAFFLES								9		
750 751 752 753 754 755 756 757	73.3 73.7 74.0 74.3 74.3 74.4 74.4	84.8 96.5 104.2 107.6 110.1 112.1 113.2 114.4	138.1 137.6 139.0 138.6 139.3 139.6 139.1 139.9	82.4 100.8 112.7 118.1 121.4 124.3 125.9 127.5	0.20 1.37 4.12 8.06 12.13 18.06 25.75 31.22	9,590 9,780 9,760 9,800 9,845 9,780 9,740 9,735	1,985 6,080 11,250 15,960 19,730 24,130 28,760 31,480	109.7 223.2 295.0 326.2 352.4 368.7 378.2 388.3	110.7 223.8 296.3 327.2 353.7 370.0 379.7 390.3	24.97 33.58 36.68 37.04 37.50 37.60 37.27 37.60	172.2 260.6 315.3 345.0 368.3 384.4 397.8 404.8
11	BAFFLES				j						
758 759 760 761 762 763	73.6 74.0 74.4 74.8 74.9 75.0	86.0 93.2 101.9 106.5 109.7 112.1	139.0 139.0 139.6 139.8 139.3 139.7	87.1 98.7 111.9 118.8 122.8 126.4	0.14 0.51 1.83 4.03 7.97 13.89	9,760 9,620 9,665 9,800 9,715 9,700	2,310 4,710 9,590 14,760 20,700 27,060	120.4 185.2 266.0 310.0 338.3 360.2	119.9 189.7 265.6 310.0 340.3 360.0	28.87 34.18 37.61 38.43 38.04 38.28	163.5 212.3 277.1 316.2 348.5 368.8
3 B/	AFFLES	200									
764 765 766 767 768 769	73.9 73.9 74.2 74.2 74.3 74.3	84.7 92.3 99.3 103.8 105.6 107.6	138.0 137.6 138.7 140.4 138.8 138.1	96.3 110.3 120.6 125.6 127.0 128.5	0.11 0.32 1.02 2.08 3.66 6.30	9,840 9,980 9,810 9,875 9,830 9,805	2,565 6,735 13,720 19,740 26,280 34,480	106.3 183.0 246.6 292.2 308.0 327.0	106.8 184.0 248.8 293.2 310.0 329.0	35.70 40.67 42.80 43.65 42.20 41.22	116.7 176.4 225.8 262.4 286.0 311.0
						1 -		Deller Deller			

DATA

BAFFLES- ORIFICE SIZE-17/32" DIA. HOLE TUBE DIA.-1/2"
TUBE PITCH-25/32"
NO.OF TUBES-40

TRANSFER AREA- 26.16 SHELL FLUID- WATER
TUBE FLUID- WATER

512	SIZE-17/32 DIA.HOLE				NO.OF TUBES-40			TUBE FLUID- WATER			
RUN NUMBER	t _{t1}	t _{t2}	t _e	t _{s2}	ΔP	W _t	W _s	Q _t	Q _s	θ _m	υ
19 (BAFFLES										
587 588 589 590 591 592 593 594	62.0 62.2 62.2 62.5 62.6 62.7 62.8 62.8	73.6 80.9 83.6 87.1 89.2 91.5 93.2 94.0	138.9 139.6 139.6 139.9 139.4 139.5 140.3 139.5	77.1 91.5 97.0 103.8 108.1 112.3 115.2 116.9	0.83 3.15 5.00 8.62 13.33 20.47 26.58 34.45	15,720 15,739 15,800 15,600 15,770 15,720 15,750	2,960 6,130 7,950 10,775 13,480 16,690 19,120 21,750	182.8 294.2 337.6 384.0 420.0 452.6 479.4 492.0	183.0 294.5 338.6 389.6 422.0 454.5 480.0 491.5	34.33 42.36 44.55 46.70 47.80 48.75 49.70	203.6 265.8 289.7 314.3 336.0 354.8 368.9 378.4
	BAFFLES	- ma - m	170 6	774 E	0.46	15,650	2,290	146.3	149.0	32.50	172.2
621 622 623 624 625	62.3 62.5 63.7 63.0 63.0 63.2 63.2 63.5 63.6 63.9 64.2	71.7 77.8 83.6 86.6 88.7 90.4 91.9 94.2 76.9 81.5 88.3 91.3	139.6 139.1 140.4 139.7 140.5 139.2 139.0 139.0 139.0 139.0 139.0 139.0	74.5 87.1 98.2 104.3 108.4 111.7 114.0 116.2 118.4 87.1 97.1 104.4 109.6 115.0	0.83 2.13 4.17 7.23 12.32 17.41	15,820 15,840 15,920 15,750 15,910 15,770 15,880 15,780 15,850 15,850 15,860 15,850 15,860 15,840	4,720 7,850 10,600 12,730 15,770 20,720 23,600 4,070 6,790 9,960 13,140 17,220 20,520	242.5 329.5 375.8 405.0 435.3 450.4 471.2 487.5 209.6 289.7 342.0 333.5 429.3 457.5	245.6 331.2 374.6 408.0 4433.6 449.0 471.5 486.0 212.0 292.3 347.3 386.0 428.6 456.4	40.18 45.36 47.00 48.53 48.76 49.12 49.46 49.76 39.95 44.72 46.80 48.07 49.72 50.04	230.9 277.8 305.7 319.0 341.3 350.5 364.3 374.7 200.5 247.6 279.3 305.2 330.2 349.5
626 627 628	64.3 64.3 63.7	93.1 94.7 81.8	139.9 140.5 138.2	117.7 120.4 97.4	23.80	15,930 15,780	24,000 7,100	483.6 285.6	481.6 289.6	50.96 44.10	362.8 247.7
	AFFLES										
636 637 638 639 640 641 642	63.6 64.0 64.4 64.5 64.5 64.6 64.5	75.3 83.0 88.6 91.1 92.7 94.7 95.2	138.9 139.2 138.5 139.7 139.3 139.6 141.1	88.8 103.6 113.5 117.7 120.2 123.1 123.8	0.46 2.04 6.21 9.54 14.07 20.66 20.38	15,820 15,880 15,780 15,860 15,840 15,590 15,680	3,735 8,530 15,430 19,120 23,320 28,200 27,940	185.1 301.3 382.7 422.8 447.0 469.4 481.5	187.3 303.2 385.2 421.2 445.4 465.4 483.4	41.53 47.43 49.48 50.88 50.88 51.48 52.40	170.4 242.9 295.7 317.7 335.7 348.6 351.2

BAFFLES- ORIFICE SIZE-17/32" DIA.HOLE TUBE DIA.-1/2"
TUBE PITCH-25/32"
NO.OF TUBES-40

TRANSFER AREA- 26.16 , SHELL FLUID- WATER TUBE FLUID- WATER

RUN NUMBER 3 B	t _{t1}	t _{t2}	t a ₁	t a ₂	ΔP	W _t	W _s	Qt	Q,	θ_m	ŭ.
629 630 631 632 633 634 635	63.8 64.0 64.3 64.3 64.4 64.4	74.1 81.4 85.4 87.3 89.5 90.8 92.0	138.9 139.2 138.7 139.3 139.2 139.2 139.6	96.0 111.6 117.1 120.3 122.5 124.6 125.9	0.28 1.20 2.87 4.26 6.48 9.17 12.13	15,960 15,890 15,640 15,770 15,430 15,630 15,750	3,895 9,930 15,520 19,050 23,380 28,120 31,900	164.3 276.5 330.9 362.2 387.4 412.0 434.0	167.0 274.3 334.3 361.4 389.7 410.5 436.0	46.68 52.57 53.05 53.98 53.83 54.12 54.23	134.6 201.2 238.3 256.4 275.1 291.1 306.0

DATA

BAFFLES— ORIFICE SIZE-9/16" DIA.HOLE * See first page of Appendix for Symbols. TUBE DIA.-1/2"
TUBE PITCH-25/32"
NO.OF TUBES-40

TRANSFER AREA- 26.16 , SHELL FLUID- WATER TUBE FLUID- WATER

				10.0 10023-40			TODE TEOTO - MATER				
RUN NUMBER	* t _{t1}	t _{t2}	t _{el}	t _{s2}	ΔР	ų	W _s	$Q_{\mathbf{t}}$	Q _s	θ_m	U
19	BAFFLES										
648 649 650 651 652 653 654 655	65.4 65.4 65.7 65.9 66.0 66.1 66.2 66.3	77.4 78.0 85.4 88.0 88.8 92.4 93.6 94.8	139.6 139.2 139.6 138.6 139.2 139.9 139.4 138.7 139.3	83.4 84.2 99.5 104.8 106.2 113.2 115.1 117.5 119.9	0.42 0.42 1.76 3.06 3.06 6.30 8.71 11.76 16.48	16,670 15,590 15,800 16,220 15,530 15,580 15,950 15,810 16,160 16,000	3,560 3,640 7,750 10,600 10,825 15,360 18,070 21,240 24,900 24,930	201.0 196.5 311.0 358.0 353.6 411.8 438.5 452.0 484.0 493.0	200.0 200.4 310.8 358.6 357.0 410.0 438.0 451.5 482.0 492.0	35.70 35.97 43.26 44.44 45.23 47.30 47.40 47.48 48.07 49.10	215.2 208.9 275.0 308.0 299.0 332.8 353.7 364.0 385.0 384.0
657 658	66.4 66.4	97.2 98.2	141.0 140.0	121.3 122.9	16.40 23.15	15,750	29,500	501.0	502.5	48.82	392.3
11	BAFFLES										
659 660 661 662 663 664 665 666	66.0 66.3 66.5 66.5 66.7 66.7 66.7	75.6 85.5 89.8 91.8 94.2 95.8 97.0 97.9	139.6 138.3 138.6 138.5 139.1 139.5 139.6 139.8	83.4 103.4 111.1 114.8 118.7 121.2 123.0 124.3	0.23 1.25 2.87 4.40 7.13 10.00 13.33 16.48	15,650 15,650 15,630 15,620 15,700 15,700 15,710 15,690	2,675 8,680 13,450 16,650 21,280 25,030 28,750 31,820	149.9 301.0 364.3 395.2 431.7 456.0 475.5 490.0	150.5 303.0 369.5 395.0 432.6 457.5 478.0 492.5	35.74 44.50 46.66 47.48 48.35 48.82 49.15 49.26	160.4 258.7 298.6 318.4 341.3 357.0 370.0 380.3
3 B	AFFLES										
667 668 669 670 671 672 673 674	66.2 66.5 66.7 66.8 66.8 66.8 66.8	75.2 82.1 86.9 89.7 91.1 93.2 94.5 95.5	137.5 137.7 138.6 139.7 138.9 139.7 139.6 139.7	95.4 110.4 118.3 122.5 124.0 126.1 127.6 128.6	0.09 0.46 1.20 2.13 3.15 4.54 6.67 8.52	15,690 15,695 15,700 15,710 15,650 15,675 15,690 15,710	3,370 9,000 15,600 21,000 25,390 30,420 36,360 41,100	141.2 244.8 316.5 360.3 380.6 413.8 434.6 451.0	141.7 246.2 316.0 360.0 379.0 413.6 436.4 453.7	43.72 49.62 51.63 52.78 52.40 52.70 52.58 52.50	123.4 188.6 234.3 261.0 277.7 300.2 316.0 328.4

DATA

BAFFLES- ORIFICE SIZE-5/8" DIA.HOLE TUBE DIA.-1/2"
TUBE PITCH-25/32"
NO.OF TUBES-40

TRANSFER AREA- 26.16 IN SHELL FLUID- WATER TUBE FLUID- WATER

RUN NUMBER	t _{t1}	t _{t2}	t _s 1	t a ₂	ΔP	W _t	W _s	Qŧ	Q _s	e m	υ
19 [SAFFLES							,			
686 687 688 689 690 691 692 693 694 695	69.0 69.5 69.5 69.7 69.9 70.2 70.2 70.3 70.4	81.3 87.4 87.7 90.8 93.9 97.4 98.0 99.1 99.6 101.1	138.2 140.8 140.1 138.0 138.0 141.3 138.4 137.9 138.5 138.2	90.8 102.3 102.7 108.5 114.0 119.5 120.9 122.7 123.4 125.4	0.17 0.46 0.46 1.02 1.85 2.87 4.54 6.76 6.76 10.32	15,605 16,180 15,520 15,640 15,740 15,910 15,800 16,280 15,800 15,780	4,165 7,500 7,845 11,170 15,770 19,890 25,070 30,730 30,730 37,950	192.0 290.0 283.0 330.0 377.6 433.5 440.0 470.5 463.4 484.5	197.4 289.0 293.3 329.5 378.5 434.3 438.6 466.6 464.0 485.6	36.53 42.30 42.08 42.88 44.07 46.53 45.34 45.33 45.60 45.52	201.0 257.1 294.2 327.8 356.2 371.1 388.7 407.0

BAFFLES- ORIFICE SIZE-5/8" DIA. HOLE

TUBE DIA.-1/2" TRANSFER AREA- 26.16 SHELL FLUID- WATER NO.OF TUBES-40 TUBE FLUID- WATER

					110.01	10003 4			TOOL IL	אה -טוט.	
RUN NUMBER	t _{t1}	t _{t2}	t 1	t	ΔΡ	W _t	Ws	Q	Qg	θ _m	υ
11	BAFFLES					•				A	L
696 697 698 699 700 701 702	70.1 70.4 70.6 70.7 70.8 70.8 71.0	80.9 88.1 92.5 95.3 97.8 99.2 100.8	138.0 138.0 140.6 139.2 139.6 138.7 139.3	92.0 106.3 113.8 118.0 122.1 124.2 126.7	0.14 0.42 0.79 1.58 2.59 4.17 6.11	15,495 15,720 15,750 15,690 15,650 15,650 15,560	3,775 8,950 13,020 18,300 24,130 30,410 36,840	167.8 278.3 345.4 386.0 423.0 444.0 464.6	173.7 283.4 348.0 388.0 421.6 442.7 463.0	36.80 42.60 45.62 45.62 46.56 46.15 46.60	174.4 250.0 289.6 323.4 347.4 368.0 381.0
3 B	AFFLES										
703 704 705 706 707 708 709 710	70.1 70.5 70.8 71.0 71.1 71.2 71.3 71.3	80.9 84.8 88.4 91.6 93.8 95.9 97.5 99.0	137.7 137.8 139.3 138.5 137.9 138.1 138.9	102.8 111.0 117.4 121.6 123.7 126.0 128.3 130.0	0.05 0.10 0.28 0.48 0.79 1.34 1.95 2.64	15,840 15,940 15,910 15,650 15,590 15,710 15,810 15,710	4,985 8,615 12,760 19,200 24,980 32,430 38,830 45,150	171.1 228.0 279.6 322.0 353.8 388.0 413.8 435.3	173.8 230.8 280.0 324.0 355.2 390.5 414.0 438.0	43.65 46.57 48.75 48.73 48.25 48.26 48.82 49.10	149.8 187.3 219.2 252.7 280.3 307.4 324.0 339.0

DATA

BAFFLES- ORIFICE SIZE-9/16" DIA HOLE * See first page of Appendix

TUBE DIA .- 1/2" TUBE PITCH-1 3/32" TRANSFER AREA- 13.08 SHELL FLUID- WATER

	for Symbols.					NO.OF TUBES-20				TUBE FLUID- WATER				
RUN NUMB E R	t., *	t _{t2}	t ₈₁	t _{a2}	ΔP	W _t	W _s	Qt	Q _s	θ ₂₀	u			
19 (BAFFLES			1			L			I	-			
711 712 713 714 715 716 717	73.3 78.4 73.7 73.8 73.9 73.9 73.9	88.6 92.4 97.9 100.5 102.3 103.6 104.3	138.2 137.9 138.8 138.3 139.6 140.1 139.4	98.2 105.9 116.1 120.9 123.9 126.0 126.9	1,02 2,22 6,58 13,38 18,06 23,98 33,07	7,870 7,905 7,810 7,890 7,940 7,890 7,925	3,055 4,755 8,410 12,075 14,390 16,510 19,350	120.4 150.2 188.6 210.6 225.4 234.3 241.0	122.3 152.4 190.8 210.8 225.8 233.3 241.3	35.80 38.66 41.62 42.32 43.30 43.75 43.46	257.2 297.0 346.2 380.3 398.0 409.4 424.0			
11 1	BAFFLES													
725 726 727 728 729 730	72.5 72.8 72.9 73.0 73.1 73.0	85.1 92.4 96.2 99.1 101.9 103.4	137.4 138.5 138.5 138.1 138.7 138.8	97.1 111.2 118.0 122.7 126.7 128.7	0.42 1.95 4.54 9.82 19.36 31.90	7,920 7,890 7,905 7,970 7,910 7,950	2,535 5,850 9,040 13,530 19,080 24,250	99.8 154.6 184.7 208.0 227.5 241.4	102.1 159.8 185.3 207.5 227.4 243.3	36.75 42.15 43.70 44.15 44.70 44.83	207.8 280.4 323.2 360.0 389.0 411.8			
3 8/	AFFLES													
737 738 739 740 741 742 743	72.5 72.6 72.7 72.9 72.9 72.8 73.0	89.0 92.5 94.6 97.2 98.7 100.0 102.4	139.6 139.8 138.6 139.0 139.2 138.9 141.1	120.3 124.9 127.1 129.4 131.2 131.9 134.0	0.70 1.71 3.15 5.93 9.17 14.54 13.15	7,785 8,000 7,860 7,850 7,815 8,100 7,640	6,870 10,730 14,975 20,000 25,180 31,650 31,860	128.5 158.9 171.7 190.5 201.5 220.2 224.8	132.3 159.9 172.7 191.4 202.2 221.5 227.2	49.21 49.80 49.04 48.75 48.94 48.32 48.97	199.5 243.9 267.6 298.8 314.8 348.6 350.8			

BAFFLES- ORIFICE SIZE-11/16" DIA.HOLE

TUBE DIA.-5/8"
TUBE PITCH-1 1/16"
NO.OF TUBES-20
TUBE FLUID- WATER
TUBE FLUID- WATER

					100000-100	(0.00,00,00,00,00,000,000,000,000,000,00			ODE LEG	10 10011	
RUN NUMBER	t _{t1}	t _{t2}	t _s 1	t _{s2}	ΔP	W _t	Ws	Qt	٥ª	θ _m	ប
19 (BAFFLES										
718 719 720 721 722 723 724	72.8 72.8 72.8 72.8 72.8 72.8 72.9	80.6 86.7 89.7 92.0 94.2 95.3 96.0	138.1 138.3 138.1 138.1 138.5 138.2 137.6	86.7 102.3 109.8 114.9 119.5 121.4 122.6	0.42 2.18 4.82 8.85 15.28 21.83 30.57	13,350 13,630 13,760 13,540 13,360 13,470 13,620	2,130 5,380 8,380 11,260 15,040 18,020 21,150	104.2 189.2 232.5 260.3 285.8 302.3 315.2	109.4 193.7 236.7 261.0 285.8 304.0 316.0	30.77 39.56 42.52 44.06 45.47 45.70 45.53	207.0 292.3 334.3 361.1 384.0 404.5 423.2
11 8	SAFFLES										
731 732 733 734 735 736	72.0 72.0 72.0 72.1 72.1 72.1	78.9 86.6 90.6 92.7 94.5 95.7	137.8 137.2 138.4 139.2 138.4 139.2	88.9 109.1 117.7 122.0 124.9 127.0	0.19 2.04 5.70 10.28 18.46 27.04	13,350 13,300 13,440 13,525 13,195 13,575	1,950 7,110 12,040 16,210 21,900 26,240	91.7 194.2 249.8 279.5 295.2 319.5	95.4 199.8 249.2 278.9 295.7 318.6	33.62 43.60 46.72 48.20 48.23 49.00	166.8 272.2 326.8 354.4 374.0 398.6
3 8/	AFFLES			ê							
744 745 746 747 748 749	72.0 72.0 72.2 72.3 72.5 72.6	80.9 81.0 83.8 86.7 90.4 92.5	139.6 137.9 137.9 138.5 138.7 139.4	110.8 110.2 116.9 122.3 127.3 130.1	0.27 0.27 0.65 1.76 4.91 9.54	13,980 13,685 13,680 13,860 13,685 13,760	4,475 4,490 7,680 12,460 21,550 29,380	125.3 123.0 157.8 200.0 245.0 273.3	129.0 124.2 161.3 201.8 245.8 274.0	48.07 47.00 49.30 50.88 51.53 52.00	159.3 160.0 195.6 240.3 290.8 321.7

DATA

BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK.4.0" HOLE * See first page of Appendix

TUBE DIA.- 3/8"
TUBE PITCH-11/16"
NO. OF TUBES-52
TUBE FLUID- WATER
TUBE FLUID- WATER

1	for Symbols.							N.,					
RUN NUMBER	* t _{t1}	t _{t2}	t s ₁	t _a 2	ΔΡ	W _t	W _s	Q	Q.	θ m	υ		
19 B	AFFLES												
781 782 783 784 785 786 787 788	75.4 75.2 75.8 76.0 76.3 76.4 76.6	89.6 91.2 100.3 105.2 108.9 112.6 114.5 114.9	138.8 139.5 140.1 139.3 138.8 140.0 140.1 138.4	93.2 97.3 109.7 116.7 121.7 126.4 128.5 129.0	0.06 0.06 0.16 0.35 0.79 1.53 2.41 3.72	10,105 10,000 9,615 9,750 9,780 9,640 9,780 9,750	3,200 3,865 7,820 12,600 18,630 25,620 32,150 39,900	143.5 159.5 235.6 284.3 318.8 349.2 371.0 373.8	145.9 163.0 237.6 284.4 318.5 349.2 372.0 375.0	30.92 33.56 36.80 37.28 37.18 37.58 37.22 36.07	181.8 186.3 251.0 299.1 336.0 364.3 390.7 406.3		
11 B	11 BAFFLES												
807 808 809 810 811 812	75.9 76.1 76.4 76.7 76.8 76.9	89.3 97.8 102.8 107.0 110.6 112.4	140.7 139.5 139.1 138.1 139.1 138.5	96.3 110.2 117.6 123.0 127.2 129.2	0.05 0.10 0.23 0.43 0.80 1.50	9,860 9,920 9,870 9,785 9,800 9,780	3,065 7,300 12,060 19,670 27,940 37,360	132.1 214.6 260.4 296.7 331.5 347.6	136.0 213.9 260.0 297.0 331.8 347.3	33.60 37.80 38.70 38.22 38.44 37.73	154.1 222.5 263.8 304.3 338.0 361.0		
3 BA	FFLES												
842 843 844 845 846 847	76.3 76.4 76.7 76.9 77.2 77.0	86.8 95.4 99.8 104.1 106.9 108.5	137.9 138.8 138.8 138.2 138.8 137.9	104.1 115.7 121.7 126.1 128.7 129.6	0.03 0.04 0.07 0.15 0.25 0.41	9,780 9,785 9,850 9,740 9,810 9,725	3,110 8,100 13,350 21,930 29,000 37,350	103.3 186.0 227.5 265.0 291.3 306.3	105.2 187.5 229.2 265.3 293.0 307.7	38.31 41.33 41.97 41.27 41.07 39.90	105.7 176.4 212.5 251.7 278.0 301.0		

BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK.4.0" HOLE TUBE DIA - 1/2"
TUBE PITCH-25/32"
NO, OF TUBES-40

TRANSFER AREA- 26.160's SHELL FLUID- WATER TUBE FLUID- WATER

					NO, U	- 100E3-4	<u> </u>		1000	LUIU- M	
RUN NUMBER	t _{t1}	t _{tg}	t _{e1}	t _{sg}	ΔP	W _t	W _s	Qt	Q,	θ _m	υ
19 BAFFLES											
770 771 772 773 774 776 776 777	74.6 74.7 75.0 75.0 75.0 75.0 76.0 74.5 74.9	82.7 88.7 94.8 99.7 102.3 103.2 104.0 89.7 90.1	139.2 137.3 139.9 139.4 140.7 139.2 138.3 139.8	87.2 99,6 111.1 119.3 123.9 125.1 126.1 102.1 102.7	0.04 0.11 0.34 1.06 1.90 3.02 4.26 0.14 0.13	15,660 15,470 16,610 15,075 15,650 15,630 15,675 15,300 15,300	2,470 5,825 10,860 18,700 25,430 31,450 37,430 6,295 6,590	126.8 216.2 309.6 372.2 426.0 441.3 454.5 232.0 231.6	128.3 219.6 312.8 375.0 426.0 441.6 456.0 236.8 234.0	29.30 35.48 40.50 41.94 43.47 42.73 42.04 37.73 37.05	165.6 233.0 292.3 339.4 374.8 395.0 413.5 235.0 239.0
779 780	75.9 75.9	102.4	138.2 139.3	102.4	0,13 2,26	15,700 15,760	6,560 27,360	232.0 416.5	234.7 416.2	36.83 42.33	240.8 376.2
11 [11 BAFFLES										
801 803 805 804 805 806	76.5 75.8 76.1 76.3 76.4 76.3	86.0 90.7 94.2 98.4 101.4 102.9	139.0 140.5 138.9 138.9 139.0 138.3	98.2 107.7 113.9 120.9 125.1 127.0	0.05 0.10 0.19 0.51 1.11 1.89	15,600 15,610 15,650 15,800 15,780 15,815	4,140 7,120 11,480 19,530 28,520 37,050	163.7 232.2 283.7 349.3 395.0 420.8	169.0 233.6 287.0 352.2 395.6 421.0	35.77 40.23 41.18 42.48 42.92 42.63	175.1 220.8 263.5 314.5 352.0 377.4
7 B	AFFLES							•			
851 852 853 854 835	76.2 76.4 76.5 76.8 76.8	84.0 91.9 95.1 100.1 102.4	140.4 140.4 139.6 139.5 138.9	96.5 113.2 118.6 125.5 128.3	0.03 0.13 0.21 0.56 1.20	15,680 15,800 15,980 15,675 15,640	2,880 9,070 14,220 26,130 37,500	121.8 245.3 296.8 365.8 401.0	126.4 246.5 298.2 365.2 399.7	35.33 42.42 43.27 43.83 43.58	131.8 221.1 262.2 319.0 351.9
3 8/	FFLES										
848 849 850 851 852 853	76.2 76.3 76.6 76.8 76.9 76.0	83.1 88.5 92.5 95.6 98,7 99.7	138.9 139.9 139.9 139.0 140.0 138.2	101.7 113.0 120.7 124.6 128.5 129.0	0.03 0.05 0.09 0.20 0.37 0.58	15,710 15,875 15,815 15,740 15,915 15,680	2,980 7,230 13,160 20,720 29,900 87,800	108.0 193.2 252.5 296.4 346.4 356.0	111.0 194.5 252.7 298.0 343.8 350.0	38.68 43.63 45.78 45.62 46.36 45.02	106.8 169.3 210.9 248.4 285.8 302.2

DATA

BAFFLES- DISK-AND-DOUGHNUT SIZE-4.95" DISK-3.5" HOLE * See first page of Appendix for Symbols.

TUBE DIA.-1/2"
TUBE PITCH-25/32"
NO.OF TUBES-40

TRANSFER AREA- 26.16 , SHELL FLUID- WATER TUBE FLUID- WATER

	TOP SYMBOLS.				NO.OF	10053-4			Q 8 0 U 105.3 24.97 159.8 244.3 35.87 258.0 319.0 38.88 313.4 380.5 39.42 367.6 435.4 41.12 405.0 4450.0 40.24 427.0 192.3 32.26 226.2		
RUN NUMBER	t _{t1} *	t _{t2}	t _{e1}	t ₈₂	ΔP	W _t	W	Qt	Q.		บ
19	BAFFLES										
864 866 866 857 868 869 860	77.0 77.7 77.8 78.0 78.2 78.2 77.6	83.7 93.3 98.3 102.3 106.2 107.4 89.8	139.8 141.7 141.5 139.3 141.3 139.9 139.4	85.3 103.4 112.6 119.9 125.8 127.6 97.1	0.04 0.20 0.57 1.85 3.82 6.34 0.13	15,560 15,450 15,525 15,620 15,525 15,400 15,560	1,930 6,390 11,060 19,650 28,010 36,000 4,540	104.3 242.0 318.8 379.0 435.5 449.4 190.8	244.3 319.0 380.5 435.4 450.0	35.87 38.88 39.42 41.12 40.24	258.0 313.4 367.6 405.0 427.0
11	BAFFLES										#8 /~~E31
861 862 863 864 865 866	77.5 77.8 78.0 78.1 78.3 78.3	87.2 91.4 95.9 99.5 103.1 104.6	140.3 139.9 139.4 138.8 139.2 139.5	97.1 106.1 114.5 120.8 125.9 128.1	0.05 0.13 0.33 1.02 2.07 3.24	15,520 15,600 15,805 16,040 15,605 15,625	3,580 6,425 11,500 19,330 29,120 36,370	150.2 212.2 284.0 344.0 387.0 411.5	154.7 217.2 285.6 348.0 388.3 412.4	33.50 37.50 39.90 40.97 41.68 41.92	171.4 216.3 272.1 321.1 355.0 376.2
3 B	AFFLES				er.						
867 868 869 870 871 872	77.6 77.8 78.0 78.2 78.3 78.3	85.7 89.6 93.8 97.1 99.7 101.8	137.9 141.5 140.4 139.8 138.4 139.1	104.0 111.8 119.7 124.5 127.2 129.6	0.08 0.06 0.12 0.24 0.56 1.07	15,510 15,600 15,660 15,830 15,440 15,400	3,805 6,280 11,960 19,520 29,350 38,100	125.9 184.1 247.5 298.7 330.0 361.0	129.2 186.2 248.0 299.2 330.5 362.0	37.84 42.35 44.08 44.45 43.62 43.98	127.2 166.2 214.8 257.0 289.2 313.8

BAFFLES- DISK-AND-DOUGHNUT SIZE-5.5" DISK,2.5" HOLE

TUBE DIA.-1/2" TRANSFER AREA- 26.16 SHELL FLUID- WATER NO.OF TUBES-40 TUBE FLUID- WATER

					NO. OF	10053-4			1404 14	OID- MA	1 1617
RUN NUMBER	t _{t1}	t _{t2}	t _{s1}	t _{a2}	ΔΡ	W _t	W _s	Q _t	Q.	θ <u>m</u>	υ
19	19 BAFFLES										
873 874 875 876 877 878	77.5 77.9 78.1 78.4 78.4 78.5	85.3 90.9 97.3 102.4 104.4 106.1	140.0 137.9 139.1 139.8 138.3 138.9	85.7 96.6 107.9 116.5 120.8 123.6	0.11 0.39 1.32 3.69 7.60 11.14	15,830 15,820 15,690 15,820 15,780 15,840	2,290 5,085 9,730 16,360 23,450 28,530	123.5 206.1 300.2 380.5 411.0 437.0	124.6 210.0 303.8 380.8 412.0 436.0	24.50 30.80 35.50 37.76 37.95 38.62	192.8 255.8 323.4 385.2 414.0 432.8
11	BAFFLES				•						
879 880 881 882 883 884	77.6 78.0 78.4 78.5 78.6 78.7	87.8 92.6 97.8 100.7 104.1 105.8	139.3 138.5 139.6 138.2 139.3 139.4	93.5 104.5 113.5 119.0 124.4 127.1	0.15 0.40 1.08 2.54 5.51 8.99	15,775 15,850 15,720 15,660 15,800 15,550	3,520 6,910 11,820 18,280 27,100 34,500	161.3 231.4 304.5 347.6 403.0 421.2	161.2 234.9 308.5 351.4 403.0 424.5	30.32 35.32 38.35 38.98 40.32 40.60	203.4 250.5 303.7 341.0 382.0 396.8
3 B	AFFLES										
885 886 887 888 889 890	77.8 78.1 78.4 78.5 78.6 78.8	86.4 90.9 95.0 98.1 100.7 103.5	138.0 138.6 139.0 138.8 138.0 140.0	100.5 109.9 117.4 122.0 125.3 129.2	0.07 0.15 0.32 0.72 1.47 2.54	15,820 15,810 15,470 15,710 15,530 15,580	3,740 7,140 12,080 18,480 27,070 35,520	135.7 201.5 257.2 307.4 343.3 384.5	140.4 205.0 260.6 310.0 342.0 384.8	35.20 39.23 41.43 42.13 41.95 43.20	147.4 196.4 237.3 279.0 313.0 340.3

DATA

BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK, 4.0" HOLE * See first page of Appendix for Symbols.

TUBE DIA .- 1/2"

TRANSFER AREA- 13.08 TUBE DIA.-1/2" TRANSFER AREA- 13.0
TUBE PITCH-1 3/32" SHELL FLUID- WATER
NO.OF TUBES-20 TUBE FLUID- WATER

	TOL SAM	DO 1 2 .			NU.UF	10852-50	,		INRE LE	BID- MAI	EK
RUN NUMBER	t _{t1} *	t _{t2}	t _a	t _{s2}	ΔP	W _t	Wg	Q _t	Q.	θ,	υ
19	BAFFLES										
789 790 791 792 793 794	75.8 76.1 76.4 76.6 76.8 76.8	88.8 94.5 99.5 103.9 106.4 107.7	138.6 137.1 139.2 138.8 139.2 139.0	106.7 116.5 123.8 128.8 131.6 132.9	0.06 0.15 0.35 1.25 2.41 4.03	7,950 8,000 7,920 8,140 7,940 7,915	3,325 7,160 12,000 22,600 31,040 39,820	102.7 147.2 183.3 221.7 235.4 245.0	105.8 147.2 184.8 224.6 236.0 245.3	39.55 41.50 43.40 49.97 42.88 42.53	198.4 271.2 323.0 394.5 419.7 440.3
11	BAFFLES										
819 820 821 822 823 824	76.4 76.7 77.0 77.1 77.3 77.3	87.9 94.1 97.6 101.6 104.0 105.6	138.7 138.6 138.7 138.5 138.7 138.7	109.3 119.8 124.7 129.2 131.6 132.9	0.03 0.07 0.15 0.43 0.90 1.60	7,895 7,825 7,855 7,845 7,850 7,890	3,195 7,350 11,725 20,810 29,300 38,700	90.8 136.0 162.2 192.2 209.6 223.7	94.0 137.7 164.2 193.6 208.8 223.2	41.15 43.78 44.32 44.00 43.83 43.40	168.8 237.3 279.7 333.8 365.5 394.1
3 B	AFFLES										
836 837 838 839 840 841	76.5 76.7 76.9 77.0 77.1 77.1	84.6 91.3 95.1 98.0 100.9 102.0	138.7 139.8 138.3 138.8 140.0 139.4	113.8 123.7 128.1 130.9 133.6 134.2	0.02 0.04 0.12 0.17 0.28 0.41	7,845 7,940 7,940 7,900 7,880 7,975	2,720 7,440 14,370 21,000 29,600 38,020	63.3 115.8 144.9 165.8 187.5 198.1	67.6 119.6 146.1 165.9 187.6 198.9	45.26 47.80 47.12 46.95 47.33 46.55	107.1 185.3 285.0 270.0 302.8 325.2

BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK,4.0" HOLE TUBE DIA.-5/8"
TUBE PITCH-1 1/16"
NO.OF TUBES-20

TRANSFER AREA- 16.36 HELL FLUID- WATER TUBE FLUID- WATER

										LEGID-	NA I EV
RUN NUMBER	t _{t1}	t _{t2}	t *1	t a ₂	ΔΡ	W _t	W _s	Qt	Q _s	θ _m	U
19 BAFFLES											
795 796 797 798 799 800	75.5 75.7 75.9 76.0 76.1 76.0	83.2 88.5 92.1 95.8 98.2 99.7	138.4 137.9 138.0 138.6 138.5 138.4	98.3 110.9 117.9 124.0 127.4 129.6	0.05 0.13 0.35 0.93 2.13 3.75	13,550 13,495 13,405 13,615 13,710 13,580	2,760 6,440 10,925 18,400 27,340 36,650	105.2 172.7 217.6 269.3 303.0 321.4	110.5 173.8 219.2 268.6 304.4 322.5	36.68 41.93 43.94 45.36 45.62 45.77	175.3 251.7 302.7 363.0 406.0 429.4
11 BAFFLES											
813 814 815 816 817 818	75.2 76.0 76.4 76.7 76.9 76.9	81.3 87.5 91.1 94.3 96.9 98.5	137.0 140.6 139.7 138.4 138.3 139.2	98.1 114.2 120.9 125.6 129.0 131.5	0.03 0.05 0.16 0.44 1.09 1.71	13,460 13,650 13,740 13,440 13,460 13,440	2,195 6,030 10,820 18,700 28,900 37,350	82.1 157.0 201.0 236.6 269.9 290.4	85.5 158.8 203.0 239.3 269.6 288.7	36.88 45.28 46.56 46.52 46.47 47.28	136.2 212.0 263.9 311.0 355.0 375.6
3 B/	FFLES										•
825 826 827 828 829 830	76.2 76.2 76.5 76.6 76.8 76.9	80.8 86.1 89.0 91.9 93.6 95.0	137.7 139.8 138.6 139.2 138.9	107.6 120.5 124.9 129.1 130.9 131.9	0.02 0.04 0.07 0.17 0.28 0.49	13,605 13,790 13,495 13,595 13,570 13,595	2,195 7,250 12,475 20,500 28,450 37,720	62.3 136.5 168.2 207.1 227.6 246.9	66.1 140.4 170.9 207.1 228.4 246.4	42.97 48.90 49.03 49.80 49.58 49.00	88.7 170.6 209.6 254.3 280.6 307.9

DATA

BAFFLES- HALF-MOON, AND ORIFICE NO. OF BAFFLES- 19 * See first page of Appendix for Symbols.

TUBE DIA.-5/8"
TUBE PITCH- (SEE BELOW)
NO. OF TUBES- (SEE BELOW)

TRANSFER AREA-(SEE BELOW)
SHELL FLUID-(SEE BELOW)
TUBE FLUID- WATER

	TOT SYMDOIS.					1053- (351				D- MVIEL	•
RUN NUMBER	* t _{t1}	t _{t2}	t _{s1}	t,	ΔP	W _t	Wg	Qt	Qs	θ _m	U
5/8" TUBE-	-7/8" P	ITCH-HA	LF-MOON	BAFFLE	\$,3.92"	H16H-30	TUBES-24.	54 SQ.	FTOIL	"B", SHE	LL FLUID
902 903 904 905 906 907 908 909 910	78.9 78.9 79.0 79.0 79.0 79.0 79.0 79.0 78.8	81.3 81.8 82.2 82.9 83.3 84.0 84.4 84.6 80.6	139.5 140.6 139.0 139.8 138.5 139.5 139.0 139.1	118.8 121.5 122.4 124.7 125.4 127.5 128.2 128.8 113.9	0.93 1.28 1.99 2.97 4.31 6.07 8.48 10.16 0.46	20,580 20,320 20,520 20,270 20,270 19,730 20,270 20,670 20,300	5,310 6,580 8,590 11,180 14,280 17,730 21,650 24,050 3,070	49.4 59.0 65.7 78.8 87.2 98.9 108.9 116.2 35.5	51.9 59.8 67.5 80.0 88.6 101.1 111.6 117.6 37.2	48.50 50.35 49.90 51.10 50.65 51.90 51.82 52.05 46.00	41.5 47.7 53.6 62.8 70.1 77.6 85.6 91.0 31.5
5/8" TUBI	-1-1/16	5" PITC	H-HALF-	MOON BA	FFLES,3	92" HIGH-	-20 TUBES-	-16.36	SQ.FT	OIL "B",	SHELL FLUID
938 939 940 941 942 943 944 945	79.5 79.6 79.7 79.7 79.8 79.8 79.9 79.7	81.3 82.2 83.0 83.9 84.8 85.2 86.7 82.2	139.5 139.4 140.0 138.4 138.2 139.5 138.9	121.4 125.2 128.6 129.5 131.0 131.4 131.3 130.3	0.23 0.47 0.97 2.06 3.65 5.14 2.22 2.22	13,570 13,540 13,670 13,485 13,385 13,380 8,300 22,880	3,155 5,610 8,900 14,170 19,250 23,380 14,700 14,550	24.4 34.9 44.7 56.0 66.3 72.3 55.8 56.5	26.9 37.8 48.3 60.0 68.3 74.8 57.5 59.6	49.63 51.15 52.85 52.10 52.40 52.20 52.10 53.65	30.1 41.8 51.7 65.7 77.4 84.6 65.4 64.4
								E\$-16.36			ELL FLUID
946 947 948 949 950 951 952 953	78.8 79.5 79.6 79.6 79.7 79.7 79.7	79.7 80.9 82.1 82.9 83.6 84.2 84.6 82.3	139.3 139.9 141.1 139.8 140.3 138.9 140.5	110.8 124.0 127.3 129.0 130.4 131.3 130.6 127.3	1.20 2.46 6.28 11.83 18.81 24.25 32.28 6.85	13,470 13,455 13,520 13,625 13,640 13,560 13,555	1,290 2,690 5,790 8,940 12,310 14,560 17,160 6,060	12.1 18.6 33.8 45.4 53.3 61.0 64.5 35.7	17.3 20.2 37.9 46.0 562.9 67.6 38.1	44.38 51.40 53.05 53.00 53.45 53.80 52.55 52.70	16.7 22.1 38.9 52.3 61.0 69.3 75.0 41.4
5/8" TUBE	-1-1/16"	PITCH-	ORIFICE	BAFFLE	5,11/16"	DIA.HOLE-2	O TUBES-16	.36 \$0			ELL FLUID
954 955 956 957 958 959	78.9 79.4 79.5 79.6 79.8 79.9	98 98 98 99 99 99 99 99 99 99 99 99 99 9	137.8 140.5 141.5 138.4 138.9 138.3	113.2 120.3 124.5 125.2 126.8 127.5	0.97 2.37 5.65 13.62 21.68 32.93	13,670 13,740 13,660 13,540 13,480 13,600	2,060 3,890 6,770 11,465 14,910 18,820	19.4 34.4 54.4 71.8 82.9 95.2	24.2 37.8 55.2 73.2 86.8 97.2	44.86 49.30 51.30 49.40 50.00 49.50	26.5 42.6 64.8 88.8 101.4 117.6

BAFFLES- DISK-AND-DOUGHNUT SIZE-4.5" DISK,4.0" HOLE * See first page of Appendix for Symbols.

TUBE DIA. (SEE BELOW)
TUBE PITCH- (SEE BELOW)
NO.OF TUBES-20

TRANSFER AREA- (SEE BELOW)
SHELL FLUID- (SEE BELOW)
TUBE FLUID- WATER

TUBE FLUID- WATER											
RUN NUMBER	* t _{t1}	t _{t2}	t _{s1}	t _{s2}	ΔΡ	W _t	W _s	Q _t	Q,	Đ _m	บ
5/8" TUB	5/8" TUBE-1-1/16" PITCH-16.36 SQ.FTOIL "B", SHELL FLUID-19 BAFFLES										
925 926 927 928 929 930 931	78.8 78.9 79.0 79.1 79.1 79.2 79.2	79.6 81.0 82.0 82.6 83.5 83.8 81.0	139.4 141.5 140.6 138.6 139.4 139.3 139.8	114.2 129.5 131.5 131.3 133.0 133.5 127.6	0.06 0.17 0.38 0.74 1.28 1.88 0.16	13,690 13,600 13,580 13,540 13,450 13,840 13,620	1,680 5,825 9,660 14,340 19,500 23,950 4,850	11.6 28.6 39.7 47.4 58.1 64.4 23.4	19.9 33.3 41.8 50.2 59.3 66.3 28.1	46.50 55.20 55.45 54.05 54.85 54.90 53.45	15.3 31.6 43.7 53.6 64.8 71.7 26.8
	AFFLES										
918 919 920 921 922 923 924	78.5 78.7 78.9 78.9 78.9 78.9 78.9	79.5 80.4 81.1 81.7 82.1 82.5 82.8	139.4 140.0 140.5 140.7 138.8 140.1 139.2	122.6 131.0 133.2 134.4 133.4 135.0 134.5	0.07 0.10 0.20 0.34 0.51 0.73 0.95	13,480 13,280 13,490 13,560 13,500 13,590 13,710	2,420 5,920 9,590 13,810 17,560 21,520 25,170	12.5 21.9 30.3 38.7 43.2 49.3 53.1	19.3 25.4 33.0 41.4 45.9 52.7 55.4	51.60 55.80 56.85 57.25 55.60 56.77 55.95	14.9 24.0 32.6 41.3 47.5 53.2 58.0
3 B	AFFLES			1.00							
911 912 913 914 915 916 917	78.1 78.5 78.5 78.5 78.6 78.6 78.6	79.0 79.7 79.9 80.3 80.5 80.8 81.0	139.2 142.8 141.4 139.5 138.3 138.8 138.7	128.5 136.2 136.4 135.8 135.1 135.9 136.0	0.05 0.07 0.10 0.16 0.23 0.33 0.42	13,650 13,610 13,600 13,570 13,300 13,615 13,620	3,395 6,315 9,045 14,570 19,170 23,060 26,090	11.6 16.3 19.0 23.3 25.9 29.6 32.3	17.3 19.9 21.5 25.9 28.8 31.4 34.2	54.95 60.45 59.62 58.25 57.10 57.61 57.51	12.9 16.5 19.5 24.5 27.8 31.4 34.3
1/2" TUB	E-1-3/32	PITC	H-13.08	SQ.FT	-19 BAFF	LES-OIL	B", SHELL	FLUID			
932 933 934 935 936 937	78.9 79.1 79.3 79.5 79.5 79.6	80.5 82.3 83.9 85.1 85.7 86.5	138.3 139.1 140.7 140.2 138.9 138.8	125.5 129.7 133.4 134.3 133.8 134.2	0.06 0.15 0.38 0.75 1.20 1.73	8,070 7,750 7,840 7,885 7,970 7,920	2,415 5,730 10,580 16,380 21,170 25,220	13.2 24.2 35.8 44.4 49.8 54.7	14.7 25.8 37.1 45.8 51.2 55.6	52.00 53.62 55.40 54.96 53.75 53.40	19.3 34.5 49.5 61.8 70.8 78.2
960	79.3	81.5	138.8	121.4	0.09	8,015	2.210	17.0	18.5	49.40	26.3
961 962 963 964 965 966 967	79.3 79.6 79.8 79.9 79.9 80.0 79.8 80.0	81.5 84.0 85.5 86.5 87.8 88.7 83.9 89.4	138.8 139.0 139.2 138.0 138.4 139.1 137.9 138.8	128.0 130.2 130.7 132.1 133.2 130.4 132.1	0.09 0.13 0.28 0.63 1.19 1.59 0.82 0.82	8,015 7,915 7,920 7,895 7,890 7,915 14,110 5,715	2,210 6,790 10,840 15,320 20,680 24,770 16,950 16,930	17.0 34.2 44.8 52.5 62.0 68.6 57.9 53.3	18.5 35.8 46.7 54.4 63.3 70.5 61.3 54.5	51.60 52.05 51.18 51.38 51.80 52.20 50.78	26.3 50.7 65.7 78.4 92.3- 101.3 84.7 80.2
OIL "C",	SHELL F	LUID							15		
968 969 970 971 972 973 974 975	79.0 79.2 79.5 79.6 79.5 79.6 79.7 79.8 79.9	80.4 80.9 81.5 82.0 82.5 83.2 83.7 84.3 81.0	141.5 139.4 140.6 140.2 138.8 139.9 140.4 140.1 137.0	125.9 129.4 133.6 135.0 133.6 135.8 136.4 136.5 126.2	0.15 0.17 0.20 0.28 0.43 0.73 1.02 1.50 0.12	7,900 7,950 7,785 7,870 7,870 7,875 8,135 7,905 7,990	1,780 3,410 5,240 7,660 10,650 14,130 17,770 21,100 1,805	10.9 13.5 16.2 19.1 23.4 28.4 32.5 35.8 9.27	13.1 16.1 17.4 18.7 26.5 28.0 34.2 36.0 9.19	53.75 54.20 56.60 56.78 55.18 56.44 56.39 56.23 51.10	15.5 19.1 21.9 25.7 32.4 38.4 44.1 48.6 13.9
OIL "C",	SHELL F	LUID-TI	NO-PASS	TUBE FL	UID			100			
977 978 979 980 981 982 983 984 985	79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.8 80.0 79.2	82.2 83.2 84.9 86.5 88.0 89.9 92.5 82.3	141.7 139.8 138.4 137.9 139.3 140.0 139.6 139.3 138.6	129.8 132.3 132.8 133.4 135.2 136.4 135.7 135.5 134.2	0.09 0.17 0.27 0.40 0.82 1.45 0.83 0.83 0.83	4,140 3,885 3,870 3,890 3,868 3,940 2,855 2,207 10,025	2,035 3,965 6,900 9,665 15,380 20,680 15,090 15,180 14,875	11.1 14.1 17.6 20.9 27.1 33.3 28.9 27.6 30.6	11.4 13.9 18.1 20.8 29.6 34.8 28.4 27.4 31.3	54.75 54.70 53.74 53.45 54.18 54.40 52.75 51.06 55.65	15.5 19.7 25.1 29.9 38.2 46.8 41.8 41.4 42.0

ZERO BAFFLES

* See first page of Appendix
for Symbols.

TUBE DIA.- (SEE BELOW)
TUBE PITCH-(SEE BELOW)
NO.OF TUBES-(SEE BELOW)
TUBE FILUID-WATER
TUBE FILUID-WATER

for Symbols.				NO.OF TU	BES-(SEE	BELOW)	TUBE	FLUID-	WATER		
RUN NUMBER	* t _{t1}	t _{t2}	t _{s1}	t ag	ΔP	W _t	W _s	Q	Q	6	Ū
3/8" TUBE	-1/2" I	PITCH-9	8 TUBES	- 48.1	SQ.FT.	TRANSFER	AREA				
31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 32.0 56.9 57.0 57.1 57.2	60.7 60.7 60.8 61.1 61.2 61.1 61.1 61.2 60.4 60.3	75.6 78.3 83.0 88.5 90.9 92.5 94.2 84.2 87.9 91.0 93.0	139.8 139.5 139.0 140.5 140.1 139.5 139.2 138.8 139.5 140.8 140.1 140.4 139.8	100.7 105.4 111.7 117.8 119.8 121.5 122.1 123.0 124.8 113.8 117.6 120.5 122.3	0.07 0.09 0.11 0.12	18,020 18,050 18,050 18,320 18,430 18,220 18,330 18,230 18,160 18,350 18,360 18,360 18,360 18,340	6,905 9,380 14,780 22,150 27,200 31,750 34,860 38,700 43,370 16,080 22,300 28,170 33,970	501.0 547.5 571.0 594.0 609.5	319.5 403.5 503.0 550.5 572.5 597.0 613.0 637.0 433.5 501.0 559.5	51.15 52.55 53.40 54.35 53.68 53.37 53.00 52.55 52.85 55.85 55.55 54.50 54.20	108.9 125.6 156.0 191.7 212.0 222.6 233.1 241.2 250.0 164.7 192.0 214.0 228.2
3/8" TUBE	-11/16	PITCH	-52 TUB	ES-25,5	1 SQ.FT.	TRANSFER	AREA				
274 275 276 277 277 278 279 280 281 282 283 284	59.0 58.9 59.0 59.1 59.1 59.0 59.0 59.0 59.0	77.2 77.0 80.8 83.7 86.9 90.0 91.7 93.8 93.7 94.9 81.2	139.9 139.5 139.3 139.3 138.9 139.7 139.5 140.8 139.9 138.1	110.4 111.0 117.4 121.9 124.7 127.6 128.9 129.9 130.7 130.8 117.9	0.04 0.07 0.09 0.11 0.14 0.16 0.16 0.16	9,790 9,800 9,845 9,960 10,040 10,020 9,505 10,010 9,920 9,935	6,170 6,350 10,000 14,320 20,300 26,750 30,520 34,670 34,620 39,650 11,250	216.0 245.5 278.0 310.0 326.5 330.8	287.0 313.8 330.6 335.0	57.15 57.15 58.45 59.15 58.55 58.52 58.40 57.40 58.65 57.30 58.00	122.3 121.9 144.8 162.8 186.2 207.7 219.2 225.8 231.9 243.8 151.1
1/2" TUBE			-66 TUB								
373 374 375 376 377 378 379 380 381	60.4 60.5 60.8 60.8 60.8 60.8 60.8	68.7 69.8 74.7 76.7 79.8 81.8 82.9 77.1 72.1	140.1 139.6 140.8 140.0 140.9 140.7 139.1 139.1	100.1 103.5 115.1 118.3 121.4 123.4 124.3 118.3 110.1	0.09 0.10 0.11 0.09	26,100 26,010 25,980 25,980 26,100 26,010 26,010 25,860 25,860	5,470 6,820 14,120 19,100 25,600 31,800 38,890 20,560 10,170	361.0 413.0 495.0 547.0 576.0 426.0	246.2 363.2 415.4 498.5 549.0	54.05 55.35 60.10 60.40 60.88 60.70 59.80 59.85 58.20	92.8 101.3 139.1 158.3 188.3 208.8 223.2 164.8 120.1
1/2" TUBE		PITCH	-40 TUB	E\$-26.1	6 SQ.FT.	TRANSFER	AREA				
675 676 677 678 679 680 681	66.1 66.3 66.4 66.5 66.5	73.4 79.4 82.0 84.6 86.9 89.0 91.3	136.0 139.3 138.3 139.1 138.5 138.6 138.7	105.6 116.4 120.9 124.2 125.9 127.7 129.4	0.07 0.09 0.11 0.14	15,900 15,840 15,750 15,750 15,770 15,820 15,690	3,990 9,230 14,250 19,120 25,600 32,880 41,700	116.1 207.4 246.8 286.2 321.1 356.0 387.5	211.0 248.0 285.4 321.0 358.3	50.25 54.85 55.45 56.10 55.40 55.35 54.75	88.3 144.6 170.1 195.1 221.6 246.0 270.7
1/2" TUBE	-1-3/32	" PITC	H-20 TU	BES-13.	08 SQ.FT	. TRANSFE	R AREA				
400 401 402 403 404 405 406 407 408 409 410	61.4 61.7 62.2 62.3 62.2 62.3 62.3 62.3 62.3 62.3	72.5 76.0 79.3 81.6 81.8 85.5 85.2 87.0 87.1 87.9 88.9	139.5 139.6 140.0 138.9 140.4 140.5 139.6 139.9 140.8 139.8 139.3	120.8 124.3 127.7 129.4 130.5 131.8 132.4 133.5 134.4 134.0 134.1	0.02 0.03 0.06 0.07	7,945 7,925 7,755 7,760 7,855 7,890 7,825 7,810 7,880 7,870 7,915	4,705 7,415 10,890 15,790 15,650 19,560 25,130 30,560 30,600 35,500 41,320	88.0 112.8 132.3 149.5 153.9 167.8 179.4 192.9 195.2 202.4 212.6	134.0 150.9 155.8 169.0 181.0 193.7	63.06 63.08 63.10 62.08 63.30 63.02 62.00 61.65 62.45 61.30 60.60	106.6 136.7 160.3 184.0 185.8 203.6 221.2 239.2 238.8 252.5 268.2
	-7 /8" F		O TUBES-	-24.54	SQ.FT. T	RANSFER A	REA		1918 6	. FO 50	1300 0
480 481 482 483 484 485 486 487 488 489 490	61.5 61.5 61.5 61.7 61.9 62.0 62.0 62.0	68.5 70.0 70.0 70.3 72.5 73.9 76.5 78.3 79.8 80.7 74.2	139.5 139.1 138.9 139.2 141.9 138.4 138.9 139.7 140.5 140.3	108.2 112.3 112.2 112.0 119.4 121.4 125.6 127.8 129.7 130.9 122.5	0.09	20,720 21,450 21,540 20,340 20,340 20,430 20,430 20,430 20,430 20,430 20,810	4,735 6,820 6,835 6,615 9,825 14,600 22,250 28,120 33,890 40,460 15,830	183.2 178.8 219.7 244.8 295.7 333.3 363.0 382.2	180.2 221.0 247.3 296.6 334.8	58.10 59.43 59.40 59.25 63.30 62.00 63.03 63.60 64.15 64.13 62.84	102.8 124.9 125.7 122.8 141.4 160.8 191.0 213.4 230.6 242.8 168.2

