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Abstract 

 

Pipe Fractional Flow  

through Branching Conduits 

 

Jeffrey Robert Stewart, M.S.E. 

The University of Texas at Austin, 2015 

 

Supervisor: Mukul M. Sharma 

In the field of multiphase flow, the so-called phase splitting problem is a recurrent 

topic of discussion. In a branching conduit, it is of practical importance to know a priori 

how the phases split. Over the years, a variety of models have been developed to predict 

this and describe the physics involved. Despite this wealth of knowledge, little connection 

has been made between this question and fluid flow in networks. How phases split is 

determined by the system of equations solved, and no physics is incorporated to determine 

the phase split. 

To address this issue, a novel formulation of a multiphase network has been devised 

and validated against data and existing solutions, as well as compared to existing software. 

Additionally, current phase-splitting models have been discussed and compared. A new 

phase-splitting model based on a conservation-of-momentum approach is discussed and 

compared to branched-flow data. In building and validating this new model, a database of 
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branched-flow experiments containing over 5000 data points from multiple laboratories 

has been gathered and systematized. This model has been incorporated into the existing 

network model to serve as additional equations when boundary conditions are unknown, 

and also to validate solutions found by the solver to ensure it is feasible.  

From this study, it was found that some current network solvers commercially 

available can arrive at inaccurate solutions. Moreover, such solvers can use an unorthodox 

approach to solve network problems and does not explicitly solve for Kirchhoff’s laws. 

This issue is compounded by solution non-uniqueness—especially in networks with a high 

degree of looping. It is shown here that convergence is largely dependent on the initial 

guess. The phase splitting equation developed shows the degree of phase splitting at a 

junction varies primarily with branch configuration, pressure, void fraction, and flow rate. 

Current phase-splitting equations tend to exaggerate the phase split at a branch. In order to 

obtain the most exaggerated phase split, a vertical side-branch orientation should be used 

with a high mass takeoff.  
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Chapter 1: Introduction 

1.1 RESEARCH MOTIVATION 

Multiphase flow is a central topic in petroleum engineering. In production 

engineering, wells that produce below the bubble point exhibit complex behavior. A 

functioning model of the vertical lift performance is needed to describe the production 

behavior of a well. Additionally, such models are needed in surface facilities to design new 

installations, as well as monitor existing ones. These models must be robust as input 

parameters can vary widely. High pressures and flow rates can be observed during initial 

production, and low pressures and flow rates can be seen after reservoir decline. Other 

effects such as water cut, GOR, and inclination can combine to create discontinuities that 

are difficult to predict. Such a model has been formulated in previous works, and 

opportunities to expand on this have been explored in this work.  

One pertinent subtopic in the field of multiphase flow is flow in pipe networks. 

While pipe networks are commonly encountered in the oil and gas industry, their 

applications are even more common outside of industry. The chemical process industry, 

nuclear industry, and water treatment industries are just a few that rely on network 

simulators to characterize the flow conditions in a network. For example, recycle streams 

in the process industry are often used, which require an iterative approach to solve as the 

mass balances are implicitly defined.  

This requires a workflow that can solve the system of equations that are manifest 

in the often complex topology of the network. Elements from graph theory are necessary 
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to convert the set of pipes and intersections into a well-defined set of equations. Next, the 

system of equations needs to be solved so that all equations are satisfied. Finally, the 

solution needs to be vetted. It is common knowledge that the solution of a system of 

nonlinear equations is dependent on the initial guess, so an adequate initial guess is 

necessary to arrive at the correct solution. Many methods to solve such non-linear problems 

and to help validate the solution have been explored as well. 

Despite the complexity in multiphase networks, little thought has been put into the 

physics of phase splitting at an intersection in networks. Indeed, as quoted by Dr. Lahey, 

“Experienced engineers have developed the attitude that the only way to analyze the 

division is to avoid it” (Lemonnier & Hervieu, Theoretical modelling and experimental 

investigation of single-phase and two-phase flow division at a tee-junction, 1991). 

Nonetheless, the field of branched flow in multiphase flow has been extensively studied, 

but outside the context of fluid flow in networks. The motivation for these studies is often 

in loss-of-coolant accidents in nuclear reactors, where the phase split needs to be known a 

priori, or in branched pipes that are often used as economical separators. Here, the lighter 

phase is preferentially split into the branch from the main pipe. To address these issues, 

researchers have developed a sundry of models to describe the phase-splitting behavior. 

These range from empirical, mechanistic, phenomenological (flow regime), and 

probabilistic models. In the context of multiphase fluid networks, these models can fall 

short of the rigor necessary, as the input parameters often fall outside of the range 

characterized by the model. Despite the disconnect between the fields of network fluid flow 

and branched flow, the same physics that describes the phase split in loss-of-coolant 
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accidents and in branched pipes is the same physics present at pipe intersection in a 

network. Hence, combining the two fields can be beneficial to network models. If one 

boundary condition is unknown for a given network, one phase splitting equation can be 

added to compensate. Also, a phase-splitting equation can be used to further validate 

solutions to network simulations. Currently, phase splitting in networks is determined 

implicitly via the mathematical satisfaction of system of equations of mass and momentum 

balances and auxiliary equations. If the phase split at an intersection calculated from a 

network simulator differs significantly from the phase split determined by the phase 

splitting equation, this could be a sign of a non-unique solution that is not the true, physical 

solution of the problem at hand. 

1.2 RESEARCH OBJECTIVES 

In light of the issues discussed above, there were three main objectives in this study: 

1. Develop a workflow to describe the network in a mathematical context. 

2. Characterize the system of equations necessary to make the network simulation 

well posed. 

3. Develop a numerical method to satisfy the system of equations posed by the 

network simulation. 

4. Develop a phase splitting model that can be used in network simulations. 

1.3 REVIEW OF CHAPTERS 

Chapter 1 introduces the topics discussed in this study. Chapter 2 gives a review of the 

current state of the art in multiphase fluid networks and in multiphase flow bifurcation. The 
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related models are described in earnest and branched flow experimental data is described 

in this chapter. Chapter 3 develops the formulation in the multiphase network solver 

developed in this work. Chapter 4 presents the validation of the network solver with 

published data and solution sets, as well as comparisons to existing commercial simulators. 

Chapter 5 presents the development and motivation of the phase-splitting model in this 

work and compares it to existing data. Chapter 6 gives the conclusions and suggests for 

future work on this topic. 
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Chapter 2: Literature Review 

This chapter presents all relevant background information that forms the foundation 

of this work, as well as presenting other models that have traditionally been used to solve 

for flow in pipe networks, as well as describing phase splitting at a pipe branch. 

2.1 GRAPH THEORY 

Before looking into the numerical methods used to solve for fluid flow in pipe 

networks, it is important to understand how one can efficiently describe a pipe network in 

a systematic mathematical description. Any network can be described by a graph, which 

is comprised of a combination of branches and nodes. A directed graph is a graph whose 

branches have a directionality associated with them. A directed graph can be 

mathematically described using an adjacency matrix, where each column represents a 

branch in the graph, and each row represents a node in the graph. An entry of −1 indicates 

that the branch is directed away from the node, and an entry of 1 indicates the branch is 

directed towards the node. 
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Figure 2.1: Example of a directed graph and its corresponding incidence matrix 

Figure 2.1 shows the translation from a directed graph to an incidence matrix. From it, 

one can quickly determine where each branch originates and terminates, and which nodes 

are connected to which branches. Each row also conveniently represents each mass 

balance equation in a given network.  

2.2 NETWORK ANALYSIS 

As in electrical circuits, the two main physical laws that govern fluid flow in pipe 

networks are Kirchhoff’s first and second laws; also known as Kirchhoff’s node and loop 

laws, respectively (Nagoo A. S., 2003). Kirchhoff’s first law states that the sum of the flow 

rates at a node is zero (mass is conserved), and Kirchhoff’s second law states that the sum 

of the pressure changes around a loop is zero (each node has only one pressure). For these 

laws, it can be shown that there are 𝑁𝑛 − 1 mass balance equations, and 𝑁𝑏 − 𝑁𝑛 + 1 loop 
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equations. There are only 𝑁𝑛 − 1 linearly independent mass balance equations because an 

overall mass balance can be applied to the entire network (Dolan & Aldous, 1993). There 

are 𝑁𝑏 − 𝑁𝑛 + 1 loop equations as this is the number of independent loops in any given 

graph (Dolan & Aldous, 1993). A simple way to explain this is that in a tree (a graph with 

no loops), there are 𝑁𝑛 − 1 branches (𝑁𝑏 = 𝑁𝑛 − 1 ). With the addition of another branch 

to the graph, there will be one loop formed. Hence, each additional branch over 𝑁𝑛 − 1 

represents one loop (𝑁𝑏 = 𝑁𝑛 − 1 + 𝑁ℓ → 𝑁ℓ = 𝑁𝑏 − 𝑁𝑛 + 1). For a more rigorous 

proof, see Networks and Algorithms by Dolan and Aldous (Dolan & Aldous, 1993). 

Given these two laws, a certain number of input parameters need to be known a 

priori in order to have the problem be well-posed. While other network problems exist, 

especially when designing pipe networks where there are additional variables like pipe 

diameter and length, this work focuses on networks where the only unknowns are 

pressures, and each phase’s flow rate. In this case, 𝑁𝑝𝑁𝑛 + 1 boundary conditions need to 

be specified, where 𝑁𝑝 is the number of phases, 𝑁𝑛 is the number of nodes. This will be 

shown later in the analysis of primary dependent variables and independent equations in 

Chapter 3. 

2.3 MULTIPHASE NETWORK SOLVERS 

2.3.1 Hardy Cross Method 

The oldest and most widely used method for analyzing pipe networks is the Hardy 

Cross method (Jeppson, 1976). In the pre-computer age, the Hardy Cross method offered 
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the advantage that each equation could be solved individually instead of simultaneously 

with all other equations. While this was an advantage in the absence of computers, the 

Hardy Cross method converges much slower than other methods. 

The Hardy Cross method is based on the Newton-Raphson method. For an equation 

F, a Taylor series can be expanded around a point 𝑥 such that: 

 𝟎 = 𝑭(𝒙) = 𝑭(𝒙𝒎) + (𝒙 − 𝒙𝒎)𝑭′(𝒙𝒎) + (𝒙 − 𝐱𝐦)𝟐
𝐅′′(𝛏)

𝟐
+ ⋯ (2.1) 

where 𝑭 is a continuous, differentiable function being satisfied, 𝑚 is the iteration number, 

𝑥 is the variable being solved, and 𝜉 is a value which lies between 𝑥 and 𝑥𝑚. The Newton-

Raphson method truncates equation (2.1) after the linear term. This leads to a numerical 

error that is proportional to the square of the error in the previous iteration. Rearranging 

the remaining terms in (2.1) and solving for x: 

 𝑥𝑚+1 = 𝑥𝑚 − 𝛼
𝐹(𝑥𝑚)

𝐹′(𝑥𝑚)
 (2.2)  

where the step size, 𝛼, has been included and is unity for the traditional Newton-Raphson 

method. The above equation can then be used iteratively such that 𝐹(𝑥𝑚) → 0. The Hardy 

Cross method uses this equation, where 𝐹 = ∑ 𝐾𝑏𝑄𝑏
𝑛

𝑙  , and 𝐾𝑏 is the hydraulic resistance, 

𝑄𝑏 is the volumetric flowrate, 𝑛 is an exponent which depends upon the frictional loss term 

decided (2 for Darcy-Weisbach, and 1.852 for Hazen-Williams), and the summation is for 

all pipes around one loop, and hence is satisfying Kirchhoff’s second law. Also, instead of 

solving for 𝑄, The Hardy Cross method solves for ∆𝑄, which is a correction applied to the 

previous iteration’s flow rate. Hence, ∆𝑄 → 0 as 𝐹 → 0. Consequently, equation (2.2) 

reduces to: 
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∆𝑄 = −

𝐹𝑙
𝑑𝐹𝑙
𝑑∆𝑄

=  − 
∑ 𝐾𝑏𝑄𝑏

𝑛
𝑙

𝑛∑ |𝐾𝑏𝑄𝑏
𝑛−1

𝑙 |
= − 

∑ ℎ𝑓𝑙

𝑛∑ |
ℎ𝑓
𝑄𝑏𝑙 |

  
(2.3) 

Using equation (2.3), one can arrive at the proper flow rates necessary to satisfy 

Kirchhoff’s laws. The following steps are implemented: 

1. An initial guess is chosen for all flow rates in the network, and all hydraulic 

resistances are determined. Note that the initial guesses must satisfy the mass 

balances at each node. 

2. Compute the sum of the head loss in the first loop, and calculate − 
∑ ℎ𝑓𝑙

𝑛𝑖 ∑ |
ℎ𝑓

𝑄𝑖
𝑙 |

. 

3. Repeat step 2 for all loops. 

4. Repeat steps 2 and 3 until all ∆𝑄s are arbitrarily small. 

2.3.2 Linear Theory Method (LTM) 

LTM is a quasi-Newton method that offers many advantages over the Hardy Cross 

method. It takes less iterations to arrive at a solution, and it requires no initialization (Wood 

& Charles, 1972). To do this, LTM linearizes the nonlinear Kirchhoff’s second law 

equations using the following transformation: 

 𝐾𝑏,𝑖
′ = 𝐾𝑏𝑄𝑏,𝑖−1

𝑛−1   (2.4) 

Where 𝐾𝑖 is the hydraulic resistivity, 𝑄 is the volumetric flow rate, 𝑛 is the exponent, 𝑗 is 

the iteration number, and 𝐾𝑗
′ is the modified hydraulic resistivity. From this relationship, 

the pressure drop can be related to the flow rate by: 

 ∆𝑃𝑏,𝑖 = 𝐾𝑏,𝑖
′ 𝑄𝑏,𝑖  (2.5) 
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where ∆𝑃𝑏,𝑖 is the pressure drop in branch 𝑏 for iteration 𝑖. For the first iteration, 𝑄𝑖,𝑗−1
𝑛−1 =

1. Next iterations then depend upon the previous iteration’s flow rate for computation. To 

set up a well-posed system of equations, the ℓ loop equations are combined with 𝑛 − 1 

node equations. This yields the same number of independent equations as unknowns. 

Number of unknowns Unknown Description 

𝑁𝑏 Δ𝑃𝑏 Pressure drop in branch 

𝑁𝑛 𝑃𝑛 Pressure at node 

𝑁𝑏 𝑢𝑏 Velocity in branch 

𝑁𝑏 𝜌𝑏 Density in branch 

𝟑𝑵𝒃 +𝑵𝒏  Total 

Table 2.1: Primary dependent variables in a single-phase network 

Number of equations Equation Description 

𝑁𝑛 − 1 = 𝑁𝑏 − 𝑁ℓ ∑ 𝑑𝑖𝑟𝑏𝜌𝑏𝑢𝑏𝐴𝑏

𝑏𝑎𝑑𝑗 ,𝑛

𝑏=1

= 𝑚̇ 

Mass Balance around node, 

where 𝑏𝑎𝑑𝑗,𝑛 ⊂

𝑏 | 𝑏 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑛  

𝑁𝑏 
Δ𝑃𝑏
Δ𝐿

=  
𝑓𝑑𝜌𝑏𝑢𝑏

2

2𝐷𝐻
+ 𝜌𝑏𝑔𝑠𝑖𝑛(𝜃) Momentum balance 

𝑁ℓ ∑Δ𝑃𝑙𝑜𝑜𝑝 = 0 Kirchhoff’s second law 

𝑁𝑏 𝜌𝑏 = 𝑓(𝑃, 𝑇) EOS density calculation 

𝑁𝑏 − 𝑁ℓ Δ𝑃𝑏 = 𝑃𝑛 − 𝑃(𝑛−1) Definition of pressure drop 

1 𝑃𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
Pressure boundary 

condition 

𝟑𝑵𝒃 +𝑵𝒏  Total 

Table 2.2: Independent equations in a single-phase network 

 

From the formulation given in Table 2.1 and Table 2.2, a 𝑁𝑏 ×𝑁𝑏 matrix can be 

constructed, where the first 𝑁𝑛 − 1 rows comprise the mass balance constraints at each 

node, and the last 𝑁ℓ equations are the loop equations (Kirchhoff’s second law). It should 

be noted that one variable needs to be specified, which in LTM is typically the pressure at 

a node. After this matrix has been constructed, a simple linear system 𝑨𝒙 = 𝒃 can then be 
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solved. 𝑨 is the 𝑏 × 𝑏 matrix described above, 𝒙 is the vector of pressure drops in each 

branch, and 𝒃 is a vector comprised of the constants to satisfy Kirchhoff’s laws (e.g., the 

first 𝑁𝑛 − 1 entries are the external demands at the node, and the last 𝑁𝑏 − 𝑁𝑛 + 1 entries 

are to satisfy the loop equations). To illustrate this, the linear system of equations that 

would characterize the LTM approach to solving the graph in Figure 2.1 would be: 

 

(

 
 

−𝐾1
′ −𝐾2

′ 0 0 0

𝐾1
′ 0 𝐾3

′ −𝐾4
′ 0

0 𝐾2
′ −𝐾3

′ 0 −𝐾5
′

1 −1 −1 0 0
0 0 1 1 −1 )

 
 

(

 
 

∆𝑃1
∆𝑃2
∆𝑃3
∆𝑃4
∆𝑃5)

 
 
=

(

 
 

𝑄𝑛=1
𝑄𝑛=2
𝑄𝑛=3
0
0 )

 
 

 (2.6) 

where the first three rows are the mass balance relationships for nodes 1-3, and the last two 

rows are the loop equations for the two independent loops in the graph (comprised of 

branches 1, 2 and 3, and branches 3, 4 and 5). More information on the formulation of the 

loop equations is presented in Chapter 3. In order to arrive a solution, the following steps 

are followed: 

1. Equation (2.6) is solved for ∆𝑷𝒃,𝒊 (the pressure drops). 

2. Equation (2.5) is solved for 𝑸𝒃,𝒊. 

3. Equation (2.4) is solved for 𝐾𝑏,𝑖
′  using the new values of 𝑸𝒃,𝒊 and 𝑲𝒃. 

4. Equation (2.6) is solved, and the above steps are repeated until 𝑸𝒃,𝒊 and 𝑸𝒃,𝒊−𝟏 reach 

the convergence criteria. 

Adewumi and Mucharam proposed LTM to solve two-phase flow in networks by 

using Beggs- and Brill’s two-phase flow model (Mucharam, Leksono & Adewumi, 1990). 

The authors gave an algorithm and code written in FORTRAN. While the formulation 
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works for Beggs- and Brill’s two-phase model, it works due to the explicit definition of the 

given two-phase friction multiplier and the explicit definition of void fraction. Therefore 

these calculations could be made explicitly in the algorithm rather than solved 

simultaneously in another computation scheme. 

2.3.3 Newton-Raphson Method 

The last numerical method used to solve pipe network problems that will be 

discussed is the Newton-Raphson method. While a succinct explanation of the Newton-

Raphson method is given in equations (2.1) and (2.2), the method needs to be extended to 

systems larger than one-equation, one-unknown. In matrix form, equation (2.2) becomes: 

 𝒙𝑚+1 = 𝒙𝑚 − 𝛼
𝑓(𝒙𝑚)

𝑓′(𝒙𝑚)
=  𝒙𝑚 − 𝛼𝑱𝒇

−1(𝒙𝑚)𝑓(𝒙𝑚) (2.7) 

where 𝒙 is the solution vector, 𝑓(𝒙𝑚) is the function vector (which is zero when all 

equations are satisfied), and 𝑱𝒇
−1(𝒙𝑚) is the inverse of the Jacobian matrix. The Jacobian 

is defined as the matrix of all first-order partial derivatives of the system of equations: 

 𝑱𝒇(𝒙) =
𝑑𝒇

𝑑𝒙
= [

𝜕𝒇

𝜕𝑥1
⋯

𝜕𝒇

𝜕𝑥𝑛
] =

[
 
 
 
 
𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛]

 
 
 
 

 (2.8) 

 While this method is perhaps the most common numerical method that a modeler 

might use, it offers many advantages over the Hardy Cross method and LTM. Firstly, it is 

more extensible to problem sets where the numbers of equations and unknowns are 

different from that of a single-phase, incompressible fluid. Secondly, while its convergence 
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may be slightly slower than LTM (due to the calculation and inversion of the Jacobian), 

both have quadratic convergence. One drawback when compared to LTM is the selection 

of the initial condition, which can heavily influence the solution found. This will be 

discussed in more detail in the following sections. 

 As the Newton-Raphson method forms the basis of the numerical method chosen 

in this work, further review is necessary. 

2.3.3.1 Newton step selection 

A subtopic of particular interest when using Newton’s method is the selection of a 

step size, 𝛼. The traditional Newton-Raphson method uses a value of unity, as that ensures 

quadratic convergence to the solution set. This, however, is true only under certain 

circumstances. These circumstances are due to the selection of the initial point, but if a 

function is not continuous or differentiable in the region of interest, it may lead to additional 

complications. In the particular case of an initial guess being far from the solution, it is 

often not advisable to choose a step size of unity, especially when a function is particularly 

oscillatory and the quadratic convergence is not readily apparent. 

To accomplish this, a line search is used. While an exact value for 𝛼 can be find to 

minimize 𝑓(𝒙𝑚), it is often undesirable to spend further computational resources to arrive 

at an exact value that only serves as the starting point for the next iteration. To account for 

this, a backtracking algorithm is often used. Starting at the Newton step, alpha is 

decremented an arbitrary number of times, and usually decreased by ½ at each evaluation. 
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If the newly calculated functional value is less than a pre-determined fraction of the Newton 

step (usually ½ again), then that value of 𝛼 is chosen. 

 𝑓 (𝒙 − 𝛼𝑱𝒇
−1(𝒙𝑚)𝑓(𝒙𝑚)) ≤ 𝑓(𝒙) − 𝛼𝑐𝑚;𝑚 = (𝑱𝒇

−1(𝒙𝑚)𝑓(𝒙𝑚))
𝑇

∇𝑓 (2.9) 

Equation (2.9) gives the so-called Armijo-Goldstein condition to test whether a value of 

unity for the step size should be chosen or not (Armijo, 1966). 

 Using a line search can drastically reduce the number of iterations in the Newton-

Raphson method. The following example illustrates how important a line search can be for 

rapid convergence: 

 

Figure 2.2: Graphical comparison of Newton-Raphson method with and without a line 

search (Abbeel, 2012) 

 

Figure 2.2 shows how the Newton-Raphson method without the line search oscillates until 

reaching the solution, whereas with the line search the solution is found much quicker.  

𝑓(𝑥, 𝑦) = 𝑒𝑥+3𝑦−0.1 + 𝑒𝑥−3𝑦−0.1 + 𝑒−(𝑥−0.1)
 

Without line search With line search 
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2.3.3.2 Importance of the initial guess 

As stated previously, an accurate initial guess is crucial to the convergence, 

especially when a function has multiple solutions. One simple example to illustrate this is 

found in “Cubics, chaos, and Newton’s Method” by Thomas Dence (Dence, 1997). Dence 

shows that for the function: 

 𝑓(𝑥) = 𝑥3 − 2𝑥2 − 11𝑥 + 12 (2.10) 

𝑥 converges to different roots for small changes in initial guesses. 

Initial Guess Root Found 

2.35287527 4 

2.35284172 -3 

2.35283735 4 

2.352836327 -3 

2.352836323 1 

Table 2.3: Sensitivity on initial guess for sample function (Dence, 1997) 

Table 2.3 shows that for changes as small as 0.000000004 in the initial guess, Newton’s 

method can converge to different roots. 

2.4 THE MANIFOLD PROBLEM 

Often times the quality of the external mass influx and outflux in multiphase 

networks is not well known, which causes the number of unknowns to be greater than the 

number of knowns. When this occurs, an additional equation needs to be specified. This 

problem has been extensively studied, and is often called the “manifold problem,” “flow 
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bifurcation problem,” or the “phase-splitting problem.” Review papers have been written 

by Azzopardi (Azzopardi, Two Phase Flow in Junctions, 1986), (Azzopardi & Hervieu, 

Phase Separation at Junctions, 1994), (Azzopardi, Phase Separation at T Junctions, 2000), 

by Lahey (Lahey, Current Understanding of Phase Separation Mechanisms in Branching 

Conduits, 1986), and Muller (Muller & Riemann, 1991).  

2.4.1 Introduction to the Manifold Problem 

The manifold problem exists when multiphase flow occurs at a pipe junction. 

Typically, three pipe junction configurations are seen: the side-arm junction, the symmetric 

impacting junction, and the asymmetric impacting junction. Figure 2.3, below, shows how 

these configurations look. Typically, the three pipes that are in the junction are called the 

inlet, denoted with a subscript 1, the outlet, denoted with a subscript 2, and the branch, 

denoted with a subscript 3.  

 

Figure 2.3: A) Side-arm junctions, B) Symmetric impacting junctions, C) Asymmetric 

impacting junctions. 
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In order to specify fully a pipe junction, five angles must be specified: three inclinations 

with respect to horizontal, and two azimuths from each branch to the inlet, as seen in 

Figure 2.4. Typically, phase splitting is exaggerated as the inclination of the branch, 𝐼𝑛𝑐3, 

is increased towards 90° and as the azimuth of the branch, 𝐴𝑧3, is increased towards 

180°. This is because the lighter phase tends to segregate on top of the heaver phase, and 

the lighter phase has less inertia than the heavier phase, which means the lighter phase 

can be diverted into the branch easier. 

 

Figure 2.4: Figure of the three inclinations (𝐼𝑛𝑐1, 𝐼𝑛𝑐2, 𝐼𝑛𝑐3) and two azimuths (𝐴𝑧1, 𝐴𝑧2) 

needed to specify a pipe junction. 

2.4.2 Practical Applications of the Manifold Problem 

The manifold problem has many applications in industry. In the nuclear industry, 

loss-of-coolant accidents can occur, where water can evaporate and leak out of reactors. 

Other fluids can be used which are composed of multiple phases. Here, the quality is 

unknown and hence another equation is necessary. In addition, pipe junctions can be used 

as in situ separators. The configuration of a pipe junction can exaggerate the phase split, 

splitting the lighter phase preferentially into the branch. Moreover, gas or water injection 

𝐴𝑧3  

𝐴𝑧2  

𝐼𝑛𝑐1 = 𝐼𝑛𝑐2  

𝐼𝑛𝑐3  
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in the oil and gas industry often has pipe junctions that split flow into various different 

wells, which are controlled by adjustable chokes. This also constitutes a practical example 

of the manifold problem in oil and gas. 

2.4.3 Manifold Models 

As the manifold problem has been extensively studied, several models have been 

developed to predict the extent of phase splitting that occurs at a pipe junction. These 

models are based on a variety of approaches: empirical, mechanistic, phenomenological 

(flow-pattern based), probabilistic, and computational fluid dynamics (CFD). The 

difficulties in modeling the phase splitting at pipe junctions has been a continuing source 

of frustration for modelers, and many have proposed a collection of existing models to 

accommodate the entire range of data (Riemann, Brinkmann, & Domanski, 1988) (Lahey, 

Current Understanding of Phase Separation Mechanisms in Branching Conduits, 1986). A 

brief review of these is presented below. 

2.4.3.1 Empirical Approaches 

One of the first and simplest models was developed in 1982 by Zetzmann 

(Zetzmann, 1982). Zetzmann’s approach was to model air-water mixtures in side-arm tees 

and Ys. The diameter ratio (𝑑1/𝑑3) was varied between 1 and 2, and the takeoff (𝑚3/𝑚1) 

was varied between 0 and 1. Zetzmann developed three equations—each for a distinct 

range of takeoff—and fit these equations with two fitting parameters. 

These equations are: 



 19 

For 0 ≤
𝑚3

𝑚1
≤ 0.12, 

 
𝑥2
𝑥1
= 𝑏 ∗ {𝐸𝑥𝑝 (−4 (

𝑚3

𝑚1
)
1.75

) − 0.147 ∗ (
𝑚3

𝑚1
) ∗ (1 −

𝑚3

𝑚1
)} (2.11) 

 
𝑥3
𝑥1
=
𝑎 {1 − (

𝑥2
𝑥1
) ∗ (1 −

𝑚3

𝑚1
)}

𝑚3

𝑚1

 (2.12) 

For 0.12 ≤
𝑚3

𝑚1
≤ 0.5, 

 
𝑥2
𝑥1
= 𝑏 ∗ {𝐸𝑥𝑝 (−4 (

𝑚3

𝑚1
)
1.75

) − 0.147 ∗ (
𝑚3

𝑚1
) ∗ (1 −

𝑚3

𝑚1
)} (2.13) 

 
𝑥3
𝑥1
= 𝑎 ∗ {15.64 (

𝑚3

𝑚1
)
0.75

𝑒
−2.75(

𝑚3
𝑚1

)
− 2(

𝑚3

𝑚1
) (1 −

𝑚3

𝑚1
)} (2.14) 

And for 0.5 ≤
𝑚3

𝑚1
≤ 1, 

 

𝑥2
𝑥1
=

1

1 −
𝑚3

𝑚1

∗ [1 − (
𝑚3

𝑚1
) (
𝑥3
𝑥1
)] 

(2.15) 

 

 
𝑥3
𝑥1
= 𝑎 ∗ {15.64 (

𝑚3

𝑚1
)
0.75

𝑒
−2.75(

𝑚3
𝑚1

)
− 2(

𝑚3

𝑚1
) (1 −

𝑚3

𝑚1
)} (2.16) 

For equations (2.11) through (2.16), 𝑎 and 𝑏 are fitting parameters based on diameter and 

branch azimuth.  
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𝑑2
𝑑3
 (
𝑚𝑚

𝑚𝑚
) 

𝐴𝑧𝑖𝑚𝑢𝑡ℎ, 𝜙3 (deg) 𝑎 𝑏 

100/50 90 0.8 1.0 

50/24 90 1.35 0.75 

50/24 45 1.4 0.8 

50/50 90 1.05 0.9 

24/24 90 1.05 0.9 

24/24 45 0.9 0.98 

50/50 45 0.9 0.98 

Table 2.4: Parameters used in Zetzmann's Empirical Relationships (Lahey, Current 

Understanding of Phase Separation Mechanisms in Branching Conduits, 1986). 

The key insight that Zetzmann relies on for his relationship is that as takeoff increases, the 

phase split goes towards unity, meaning that the outlet quality tends towards the inlet 

quality.  

 Seeger et. al. developed three empirical relationships for branch azimuths of 0 

(horizontal), 90 (upward), and -90 (downward) degrees in the case of low pressure, gas-

water flow (Seeger, Reimann, & Muller, 1985). For upward branches, the authors use the 

relation: 

 
𝑥3
𝑥1
= 𝜂−0.8 (2.17) 
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Where 𝜂 =
𝐺3

𝐺1
 and 𝐺𝑖 =

𝑚𝑖

𝐴𝑖
. (2.17) is valid for 𝜂 > 0.15. It is noted that total phase 

separation results in an exponent of −1, and upward side arms exaggerate the phase split 

when compared to horizontal branches. For horizontal side arms, the authors propose: 

 
𝑥3
𝑥1
= 5𝜂 − 6𝜂2 + 2𝜂3 + 𝑎𝜂(1 − 𝜂)𝑏 

(2.18) 

Where 𝑏 = 4 and 𝑎 is a flow-regime dependent parameter. For downward branches, the 

authors propose: 

 
𝑥3
𝑥1
= 5𝜂 − 6𝜂2 + 2𝜂3 + 𝑎𝜂(1 − 𝜂)𝑏 

(2.19) 

However, the parameter 𝜂 is altered such that: 

 

 𝜂 =

𝐺3
𝐺1
−
𝐺3,𝑚𝑎𝑥
𝐺1

(1 −
𝐺3,𝑚𝑎𝑥
𝐺1

)
; 𝐺3,𝑚𝑎𝑥 = 0.52𝜌𝑙

0.5 (𝜎𝑔(𝜌𝑙 − 𝜌𝑔))
0.25

 
(2.20) 

And 𝑏 = 3 + 2.2 tanh(0.5(𝐺1 − 3000)), and 𝑎 remains the same as in the side-arm case. 

For Seeger’s empirical correlations, all terms are in SI units. 

 It should be noted that these equations are only valid for conditions present in the 

experimental setup. These are for low pressures (𝑃 < 1𝑀𝑃𝑎), inlet mass fluxes between 

500 ≤ 𝐺1 ≤ 7000
𝑘𝑔

𝑚2𝑠
, and equal diameter branches.  

2.4.3.2 Phenomenological Approaches 

One of the most well-known models is from Azzopardi and Whalley, who 

developed an equation to describe the phase splitting of annular and churn flows 
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(Azzopardi & Whalley, The Effect of Flow Patterns on Two-Phase Flow in a 'T' Junction, 

1982). Their model postulates that in annular flow, a “region of influence” exists, whereby 

increasing withdrawal increases the region of influence. This region is characterized by an 

angle, 𝜃∗, where 𝜃∗ = 0 for 
𝑚3

𝑚1
= 0, and 𝜃∗ = 2𝜋 for 

𝑚3

𝑚1
= 1. This angle defines the section 

of pipe from which the heavier phase is removed. 

 

Figure 2.5: Depiction of Region of Influence (shaded) in Azzopardi's annular flow model. 

 

If one assumes that the gas mass flux is uniform over the cross-sectional area, then 

the ratio of gas removed to the total gas flow rate is: 

 
𝑥3
𝑥1

𝑚3

𝑚1
=
1

2𝜋
(𝜃 − sin (𝜃) (2.21) 

where 𝜃 is the zone of influence for the gas. To determine the liquid flow rate, the following 

equation is solved: 

 

 𝑚3(1 − 𝑥3) =
𝜋

180
∫ 𝑟Γ(𝜙′)𝑑𝜙′

𝜙+
𝜃∗

2

𝜙−
𝜃∗

2

 (2.22) 

𝜃 
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where Γ(𝜙′) is the liquid flow rate per unit length around the circumference of the pipe, 

and 𝜃∗ is the liquid zone of influence. Consequently, one must know the axial distribution 

of the liquid flow rate to solve equation (2.22). If one assumes that the flow rate is uniform 

around the pipe’s circumference, as in the case of vertical flow or in high flow rate 

horizontal pipes, equation (2.22) reduces to: 

 𝑚3(1 − 𝑥3) =
2𝜋𝑟Γ𝜃∗

360
=
𝑚1(1 − 𝑥1)(1 − 𝐸1)𝜃

∗

360
 (2.23) 

where 𝐸1 is the entrained liquid fraction. It was found, though, that the liquid is withdrawn 

from a larger region than the gas. Hence the authors introduced a correction to account for 

this (𝜃∗ = 1.2𝜃 (
𝐷3

𝐷1
)
0.4

). The resulting equation from combining equations (2.21) and 

(2.23) is: 

 

𝑥3
𝑥1
=
1

2𝜋

1
𝑚3

𝑚1

∗ {
5

3
𝜋 (
𝑑1
𝑑3
)
0.4

∗ [
𝑚3

𝑚1
∗

1 − 𝑥3
(1 − 𝑥1)(1 − 𝐸1)

]

− sin (
5

3
𝜋 (
𝑑1
𝑑3
)
0.4

∗ [
𝑚3

𝑚1
∗

1 − 𝑥3
(1 − 𝑥1)(1 − 𝐸1)

])} 

(2.24) 

where all degrees are in radians, 𝑥 is the mass fraction for a given branch, and 𝐸1 is the 

liquid entrainment for the inlet.  

While this model works well for low takeoffs, it has been shown to predict poorly 

at high takeoffs (Lahey, Current Understanding of Phase Separation Mechanisms in 

Branching Conduits, 1986). Moreover, this method only works in side-arm configurations, 

meaning that its extensibility is limited. The model also lacks a physical basis. While it 

may seem intuitive that the fluids closest to the outlet are the first to be withdrawn, there 



 24 

are multiple hypotheses that could explain takeoff. It has been shown that in cases of 

obstructed flow, which is the case in the manifold problem, that slip can be exaggerated, 

which alters the radial distribution of fluids in the conduit (Kawahara, Sadatomi, Matsuo, 

& al., 2011). Moreover, one needs to know the radial and azimuthal distributions of the 

liquid film in order to properly use the model. 

Smoglie et. al. developed a phase splitting model to be used for stratified flow 

(Smoglie & Reimann, Flow Through a Small Pipe at the Top of a Large Pipe with Stratified 

Flow., 1983) (Smoglie, Reimann, & Muller, Two-Phase Flow Thorugh Small breaks in a 

Horizontal Pipe with Stratified Flow, 1986). Smoglie investigated horizontal side-arms 

with diameter ratios much less than 1 (
𝑑3

𝑑1
≪ 1). The authors hypothesized that if the gas-

liquid interface is high above or below the branch entrance that only one phase can enter 

the branch. The branch quality is hence described as: 

 𝑥3 =

[
 
 
 
 

1.15

1 + (
𝜌𝑙
𝜌𝑔
)
0.5

]
 
 
 
 
(1+𝐶

ℎ
ℎ𝑏
)

[
 
 
 
 
 

1 −
1

2

ℎ

ℎ𝑏
(1 +

ℎ

ℎ𝑏
)

(

 
 1.15

1 + (
𝜌𝑙
𝜌𝑔
)
0.5

)

 
 

(1−
ℎ
ℎ𝑏
)

]
 
 
 
 
 
0.5

 (2.25) 

where ℎ is the interface level, ℎ𝑏 is the critical interface level where entrainment begins, 

and 𝐶 is a constant depending on liquid or gas entrainment. 𝐶 = 1 for 
ℎ

ℎ𝑏
≤ 0 and 𝐶 = 1.09 

for 
ℎ

ℎ𝑏
> 0. The critical interface level can be determined by: 

 ℎ𝑏 =
𝐾

(𝑔𝜌𝑏(𝜌𝑙 − 𝜌𝑔))
0.2

𝑚3𝑏
−0.4

 (2.26) 
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Where 𝐾 = 0.69 for liquid entrainment and 𝐾 = 0.75 for gas entrainment, and 𝜌𝑏 is the 

continuous phase density. In this formulation, ℎ = 0 corresponds to a liquid level that is at 

the center of the branch’s entrance, and hence is positive for gas entrainment and negative 

for liquid entrainment. While the model shows good agreement with the data presented, it 

should be noted that the validity of the model is restricted to air-water stratified flow where 

ℎ𝑏

𝐷3
> 1 (Smoglie, Reimann, & Muller, Two-Phase Flow Thorugh Small breaks in a 

Horizontal Pipe with Stratified Flow, 1986). 

 Shoham, Brill and Taitel developed a model for horizontal side arms for stratified 

wavy and annular flow patterns (Shoham & Taitel, 1987). The authors model these flow 

patterns by including centripetal, inertial, and gravity forces. In annular flow, the 

centripetal force dominates and in stratified-wavy flow, the inertial and gravity forces 

dominate. The model shows reasonable agreement with the experimental data presented by 

the authors. Shoham later extended this model to branch inclinations other than horizontal, 

collecting data with branch inclinations ranging from −60° to 35° (Shoham, Ashton, & 

Penmatcha, 1996).  

 Arirachakaran developed a model to describe slug flow in side-arm branches that 

idealized a slug as one stratified flow section followed by a fully-liquid body 

(Arirachakaran, 1990). The author used an existing phase-splitting model to describe the 

phase split of the gas-rich stratified flow region, and used a model based on the “dam 

break” concept. Dam break is a field of study in fluid dynamics where one wall of a pool 
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is removed and the resulting flow is described. The total phase split is then described as 

the weighted average of the phase split of each component of the flow. 

 Lemmonier and Hervieu use a two-dimensional approach to describe the bubble 

flow regime (Lemonnier & Hervieu, 1991). The authors argue that such two-phase flows 

can be described by the superposition of two single-phase flows. The model assumes that 

the bubbles are non-interacting and no mass transfer occurs between phases. The models 

described the data from the authors quite well, and the model also predicts the recirculation 

zones at the branch entrance as seen experimentally. Clearly, at higher void fractions this 

model will become more inaccurate as bubbles coalesce and the assumption of non-

interacting bubbles does not apply. 

2.4.3.3 Probabilistic Approach 

Azzopardi and Baker sought to extend the region-of-influence approach to other 

flow regimes by approaching the problem from a probabilistic rather than physical 

standpoint (Azzopardi & Baker, Two-phase flow in a 'T' junction. The effect of flow pattern 

in vertical upflow., 1981). The probability of a phase entering a branch would clearly be a 

function of the takeoff, the momentum of each phase, pressures, etc. A generalized 

expression for this is: 

 𝑚3(1 − 𝑥3) =  ∫ ∫𝑃(𝑟′, 𝜙′)

𝑅

0

𝜙+
𝜃∗

2

𝜙−
𝜃∗

2

𝜌𝑙𝑢𝑙𝑟′ ∗ (1 − 𝛼(𝑟
′))𝑟′𝑑𝑟′𝑑𝜙′ (2.27) 
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where 𝑃(𝑟′, 𝜙′) is the probability function for the heavier phase entering the branch, 𝜌𝑙 is 

the density of the heavier phase, 𝑢𝑙 is the volume flux of the heavier phase, 𝜃∗ is the region 

of influence, and 𝛼 is the void fraction radial profile (Lahey, Current Understanding of 

Phase Separation Mechanisms in Branching Conduits, 1986). It should be noted that 

equation (2.24) can be derived from equation (2.27) by using the correct closure 

relationship for 𝑃(𝑟′, 𝜙′). To illustrate this, the authors used the case of bubbly flow as a 

case study. They hypothesized that the probability function could be described by: 

 𝑃(𝑟′, 𝜙′) = 𝐴
𝜌𝑔𝑢𝑔

2(𝑟)

𝜌𝑙𝑢𝑙
2(𝑟)

 (2.28) 

where 𝑢𝑔
2(𝑟) is the velocity profile of the gas phase and 𝑢𝑙

2(𝑟) is the velocity profile of the 

liquid phase. Furthermore, the authors used the approximation that the gas velocity profile 

was twice the average liquid velocity (𝑢𝑙̅). This reduces equation (2.28) to: 

 𝑃(𝑟′, 𝜙′) = 4𝐴
𝜌𝑔𝑢𝑙̅

2

𝜌𝑙𝑢𝑙
2(𝑟)

 (2.29) 

Combining equations (2.27) and (2.29), and using the identity 𝑟(𝜙′) =
𝑅𝑐𝑜𝑠(

𝜃

2
)

cos(𝜙′)
, and 

assuming power-law relationships (
1

𝑛
 𝑎𝑛𝑑

1

𝑚
) for the liquid velocity profile and the void 

fraction profile: 
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𝑚3(1 − 𝑥3) =
4𝑛2𝐴𝜌𝑔𝑢𝑙̅

𝑚2(𝑛 + 1)(2𝑛 + 1)
 ∫ ∫

[
 
 
 
 

𝑟′

(1 −
𝑟′
𝑅)

1
𝑛

]
 
 
 
 𝑅

𝑟(𝜙′)

𝜙+
𝜃∗

2

𝜙−
𝜃∗

2

× [2𝑚2 − (𝑚 + 1)(2𝑚 + 1)𝛼̅ (1 −
𝑟′

𝑅
)

1
𝑚

] 𝑑𝑟′𝑑𝜙′ 

(2.30) 

While equation (2.30) can be integrated analytically in the radial direction, it should be 

noted that it must be numerically integrated in the 𝜙′ direction. Also, in order to eliminate 

the variable 𝜃∗, equation (2.30) must be solved simultaneously with the equation: 

 
𝑥3𝑚3

𝑥1𝑚1
=
1

2𝜋
(𝜃∗ − sin(𝜃∗)) (2.31) 

which is a continuation of the “region of influence approach. In solving equations (2.30) 

and (2.31), the authors assumed that the liquid velocity profile can be approximated by 𝑛 =

7, and that the average void fraction was negligible. They also used the value 𝐴 = 20 as a 

fitting parameter. 

 A probabilistic approach’s chief advantage is its ability to use some key insights 

into the problem to determine a relationship for the manifold problem. This means that the 

physics can be incorporated into the model without having an exact equation. However, it 

can be readily seen that this comes at the expense of multiple fitting factors and some less-

than-realistic assumptions (for example, gas velocity is twice the liquid velocity). 

Moreover, one needs to know local data on the liquid and void fraction radial profiles in 

order to have a tractable profile. As seen in Nagoo’s thesis, gas profiles can change readily 

from core-peaking to wall-peaking as a function of multiple parameters that may not be 
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taken into account (Nagoo A. , 2013). For instance, low gas volume fluxes tend toward 

wall-peaking profiles and high gas volume fluxes tend toward core-peaking. Conversely, 

high liquid volume fluxes tend towards wall-peaking profiles and low liquid volume fluxes 

tend toward core-peaking. 

2.4.3.4 Computational Fluid Dynamics (CFD) 

Kalcach-Navarro and Lahey similarly proposed a two-fluid CFD approach with 

mass and momentum conservation equations for each phase (Kalcach-Navarro, Lee, 

Lahey, & Drew, 1990). The authors used a 𝑘 − 𝜖 model for turbulence, and interfacial 

momentum transfer is handled using a drag coefficient.  

Issa and Oliveira formulated a three-dimensional CFD approach to the manifold 

problem, using a two-fluid approach for dispersed flow (Issa & Oliveira, 1993). The 

authors used a finite-volume computation and an unstructured mesh. The model 

successfully describes data from Popp and Sallet, but a deviating trend can be seen as the 

void fraction increases and the assumption of dispersed flow becomes increasingly 

inaccurate (Popp & Sallet, 1983).Also, the model predicts the formation of eddies as is 

commonly seen experimentally (Issa & Oliveira, 1993). 

2.4.3.5 Mechanistic & General Models 

El-Shaboury, Soliman, and Sims conducted air-water experiments in horizontal 

impacting tees for a wide range of flow regimes (El-Shaboury, Soliman, & Sims, 2007). 

The authors proposed wall shear coefficients for their data, and develop a momentum 

balance for impacting tees. The authors assumed that inlet flow was fully-developed, and 

imposed the condition that at equal flow rates of air and water, for 50 percent takeoff, that 

the phase split must be identical. This makes sense for equal-sided impacting tees as the 
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momentum change to enter either branch is equal and opposite. The consequence of this 

model is that it is only applicable for impacting tees.  

A general model was developed by Saba and Lahey based on the gas-phase 

conservation of momentum and assuming homogeneous flow (Saba & Lahey, The 

Analysis of Phase Separation Phenomena in Branching Conduits, 1984) (Saba & Lahey, 

Phase Separation Phenomena in Branching Conduits, 1981). As this model is of similar 

origin to the model proposed in this work, more attention to detail will be given to this 

model. 

The authors described the manifold problem as a system of five equations and five 

unknowns. The variables of interest are: 

Variable Symbol 

Inlet quality 𝑥1 

Pressure change from branch to inlet Δ𝑃1−3 

Pressure change from run to inlet Δ𝑃1−2 

Inlet mass flux 𝐺1 

Run mass flux 𝐺2 

Branch mass flux 𝐺3 

Run quality 𝑥2 

Branch quality 𝑥3 

Table 2.5: Variables of interest in the Saba-Lahey model 

Four of the equations are then well known:  

1. Overall mass balance 
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2. Lighter phase mass balance 

3. Mixture momentum balance for the run 

4. Mixture momentum balance for the branch 

As in the problem’s formulation only three variables are specified, it is therefore necessary 

to derive a fifth equation to have a well-posed problem. The authors proposed a momentum 

balance for the branch of the lighter phase. They justified this by recognizing that the inertia 

of the lighter phase had been hypothesized to be one of the deciding factors that contributes 

to phase splitting. 

 The first two equations are straightforward: 

 𝐺1𝐴1 = 𝐺2𝐴2 + 𝐺3𝐴3 (2.32) 

 𝑥1𝐺1𝐴1 = 𝑥1𝐺2𝐴2 + 𝑥1𝐺3𝐴3 (2.33) 

Equation (2.32) is the overall mass balance at the junction and equation (2.33) is the lighter 

phase mass balance at the junction. The next two equations are the momentum balances 

for the mixture for the run and the branch: 

 Δ𝑃1−2 = 𝑃1 − 𝑃1𝑗 + (Δ𝑃1−2)𝑗 + 𝑃2𝑗 − 𝑃2 (2.34) 

 Δ𝑃1−3 = 𝑃1 − 𝑃1𝑗 + (Δ𝑃1−3)𝑗 + 𝑃3𝑗 − 𝑃3 (2.35) 

where 𝑃1 is the pressure at the beginning of the inlet, 𝑃1𝑗 is the pressure at the inlet just 

before the bifurcation occurs, 𝑃2𝑗 is the pressure just after the bifurcation in the run, 𝑃3𝑗 is 

the pressure just after the bifurcation in the branch, and 𝑃2 and 𝑃3 are the pressures at the 

end of the run and branch respectively. The pressure drop in the closed conduits are found 

using existing two-phase pressure drop correlations (the authors use a homogeneous two-
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phase multiplier to approximate wall shear). The pressure change at the junction for the 

run is described as: 

 (Δ𝑃1−2)𝑗 = 𝑃1𝑗 − 𝑃2𝑗 =
𝐾1,2
2
(
𝐺2
2

𝜌𝐻,2
−
𝐺1
2

𝜌𝐻,1
) (2.36) 

where 𝐾1,2 is an empirical pressure recovery coefficient: 

 
𝐾1,2 = 0.11 +

5

(
𝐺1𝐷1
𝜇𝐿1

)
0.17 

(2.37) 

 

Equation (2.36) suggests that the pressure change in the run is due only to inertial forces 

(convective acceleration/deceleration), and that no wall shear or hydrostatic forces are at 

play. 𝜌𝐻𝑖 is the so-called homogeneous density where: 

 
𝜌𝐻𝑖 =

1

1
𝜌𝑙
+ 𝑥𝑖 (

1
𝜌𝑔
−
1
𝜌𝑙
)
 

(2.38) 

The homogeneous density is the mixture density if no slip exists between the two phases. 

Equation (2.37) suggests that the transport coefficient that determines the pressure change 

in the run is dependent on the inlet, superficial liquid Reynold’s number (
𝐺1𝐷1

𝜇𝐿1
).  

 Next, the authors describe the pressure drop between the branch and the inlet as the 

combination of an irreversible and reversible pressure change: 

 (Δ𝑃1−3)𝑗 = (Δ𝑃1−3)𝑗,𝑟𝑒𝑣 + (Δ𝑃1−3)𝑗,𝑖𝑟𝑟 (2.39) 

 (Δ𝑃1−3)𝑗,𝑟𝑒𝑣 =
𝜌𝐻3
2
(
𝐺3
2

𝜌𝐻3
2 −

𝐺1
2

𝜌𝐻1
2 ) (2.40) 
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 (Δ𝑃1−3)𝑗,𝑖𝑟𝑟 =
𝐾1,3
2

𝐺1
2

𝜌𝑙
(1 − 𝑥1)

2 [1 +
𝐶1,3
𝑋𝑡𝑡

+
1

𝑋𝑡𝑡
2 ] (2.41) 

From equation (2.40), it is readily seen that the reversible pressure change at the junction 

is simply a convective acceleration term. A few terms in equation (2.41) need to be defined. 

𝐾1,3 is the wall-shear transport coefficient (friction factor) in a tee junction, given by: 

 𝐾1,3 = [1.18 + (
𝑚3

𝑚1
)
2

− 0.8 (
𝑚3

𝑚1
)](
𝐴1
𝐴3
) (2.42) 

Note that equation (2.41) describes the momentum lost to wall shear at the junction, and 

hence has a similar form to a closed-conduit wall shear term. 𝐶1,3 is an empirical drift-flux 

term that describes the velocity profile of a two-phase flowing mixture, and 𝐶1,3 = 1 

indicates a uniform velocity profile. As the authors assume homogeneous flow, this term 

can be written as: 

 𝐶1,3 = [(
𝜌𝑙
𝜌𝑔
)

0.5

+ (
𝜌𝑔

𝜌𝑙
)
0.5

] (2.43) 

𝑋𝑡𝑡 is the Martinelli parameter, which is a term defined as: 

 𝑋𝑡𝑡 = [

(
𝜕𝑃
𝜕𝑧
)
𝑓𝑟𝑖𝑐,𝑙

(
𝜕𝑃
𝜕𝑧
)
𝑓𝑟𝑖𝑐,𝑔

]

0.5

≈ (
𝑥𝑖

1 − 𝑥𝑖
) (
𝜌𝑙
𝜌𝑔
)

0.5

 (2.44) 

The Martinelli parameter is the square root of the ratio of the frictional pressure gradient 

of the liquid to the frictional pressure gradient of the gas. The approximation given in 

equation (2.44) is valid for sufficiently high Reynolds number. 

 The gas-phase conservation of momentum for steady state can be written as: 
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−𝑠2
𝑑𝑃

𝑑𝑧

⏞    
𝐵𝑜𝑑𝑦 𝐹𝑜𝑟𝑐𝑒

   −𝑠2𝜌2𝑔𝑠𝑖𝑛(𝜃)⏞        
𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝐹𝑜𝑟𝑐𝑒

  −𝜏𝑖⏞
𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙 𝑆ℎ𝑒𝑎𝑟

   −𝜏𝑤⏞
𝑊𝑎𝑙𝑙 𝑆ℎ𝑒𝑎𝑟

= 𝑠2𝜌2𝑢2
𝑑𝑢2
𝑑𝑧

⏞      
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

 

(2.45) 

These terms can be expanded such that: 

 

𝑃1 − 𝑃3 = 𝑠2𝜌𝑔,1𝑔𝑠𝑖𝑛(𝜃)𝐿𝑗⏞          
𝐻𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝐹𝑜𝑟𝑐𝑒

+
𝜌𝑔,1

2
(⟨⟨𝑢𝑔,3⟩⟩

2

− ⟨⟨𝑢𝑔,1⟩⟩
2

)
⏞                

𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑟𝑚

 

+
𝐾1,3𝜌𝑔,1

2
(⟨⟨𝑢𝑔,1⟩⟩

2

)
⏞          

𝑊𝑎𝑙𝑙 𝑆ℎ𝑒𝑎𝑟

+
3

4
𝜌𝑔,1𝐿𝑗𝑢𝑟2

𝐶𝐷
𝑑

⏞        
𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙 𝑆ℎ𝑒𝑎𝑟

 

(2.46) 

Where 𝐿𝑗 is the characteristic length from the inlet to the branch for the gas, ⟨⟨𝑢𝑔,𝑖⟩⟩ is the 

in situ velocity of the gas phase in the 𝑖th pipe, 𝑢𝑟 is the slip velocity between the two 

phases, and 𝐶𝐷
𝑑

 is the interfacial drag term. 

 𝐿𝑗 = 2.81𝐷3 [𝑒
−0.12 (

1 − 𝑥1
𝑥1

)
0.15

(
𝜌𝑔,1

𝜌𝑙,1
)

0.5

] [(
𝐺3
𝐺1
)

(1−𝑥1)
3

] [(1 − 𝑥3)
3] (2.47) 

𝐿𝑗 can also be described as the average length traveled by the gas phase that splits into the 

branch. The in situ velocity as defined by the authors is: 

 ⟨⟨𝑢𝑔,𝑖⟩⟩ =
𝐺𝑖𝑥𝑖
𝜌𝑔,𝑖𝑆𝑔,𝑖

 (2.48) 

Where 𝑆𝑔,𝑖 is the volume fraction of the gas in the 𝑖th branch, which the authors define 

using the drift-flux relation: 
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𝑆𝑔,𝑖 =

𝑥𝑖

𝐶0 [𝑥𝑖 +
𝜌𝑔,𝑖
𝜌𝑙,𝑖 

(1 − 𝑥𝑖)] +
𝜌𝑔,𝑖𝑉𝐺𝑗𝑖
𝐺𝑖

 
(2.49) 

where 𝐶0 is the concentration parameter, which is an empirical drift-flux term defined as: 

 𝐶0 = 1.4 − 0.4 (
𝜌𝑔,𝑖

𝜌𝑙,𝑖
)

0.5

 (2.50) 

and 𝑉𝐺𝑗𝑖 is the drift-velocity of the gas (⟨⟨𝑢𝑔,𝑖⟩⟩ − 𝑢𝑚,𝑖), which the authors define as: 

 𝑉𝐺𝑗𝑖 = 2.5 [
(𝜌𝑙,𝑖 − 𝜌𝑔,𝑖)𝜎

𝜌1
𝑔]

0.25

sin (𝜃3) (2.51) 

where 𝜎 is the surface tension and 𝜃3 is the inclination from vertical of the branch, and 𝜌1is 

the mixture density at the inlet. The slip velocity is defined as: 

 𝑢𝑟 =
𝑢𝑚,𝑖(𝐶0 − 1) + 𝑉𝐺𝑗𝑖

1 − 𝑆𝑔,𝑖
 (2.52) 

where 𝑢𝑚,𝑖 is the mixture velocity (volumetric flux) being defined as (
𝐺𝑖𝑥𝑖

𝜌𝑔,𝑖
+
𝐺𝑖(1−𝑥𝑖)

𝜌𝑙,𝑖
). The 

interfacial drag term is defined as: 

 
𝐶𝐷
𝑑
= 54.9 [

𝜌𝑔,1

𝜌𝑙,1
𝑆𝑔,1(1 − 𝑆𝑔,1)

2
+ (1 − 𝑆𝑔,1)

3
] , (𝑚−1) (2.53) 

where it should be noted that the constant 54.9 is in units of inverse meters. These five 

equations must be solved simultaneously in order to determine the phase split, as the 

branch’s quality is implicitly defined in these equations. 

 Lahey, Hwang and Soliman expand the approach of Lahey and Saba for junction 

configurations to impacting tees and wyes (Lahey, Soliman, & Hwang, Phase separation 

in impacting wyes and tees, 1989) (Lahey & Hwang, A Study on Phase Separation 
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Phenomena in Branching Conduits, 1986). By examining the mean length of the lighter 

phase in branch configurations other than side-arm configurations, they make the model 

extensible to far more junctions found in industry. The authors then compare this model to 

existing data and see that the model fit 95 percent of the data to within ±25 percent. 

2.4.4 Other Studies on the Manifold Problem 

Outside of model development, many other studies have been carried out to 

determine the experimental characteristics of the manifold problem. These studies have 

been carried out under a variety of circumstances, and often measure only the variables of 

interest in the given study, omitting other desirable parameters. 

Reimann, Brinkman, and Domanski conducted an exhaustive study of side-arm tees 

in upward, horizontal and downward branch orientations (Riemann, Brinkmann, & 

Domanski, 1988). The authors conducted experiments for air-water and steam-water 

systems, varying inlet quality, flow rates, branch diameters, pressures and takeoff. In all, 

over 2000 data points were taken. The experimenters noted several experimental 

difficulties associated with the manifold problem, particularly when 
𝑑3

𝑑1
≪ 1. While the 

experimenters would have liked to conduct experiments from 0 to 100 percent takeoff, they 

noted the difficulty in doing tests with high takeoffs with small side-arm diameters, and 

suggested that a choking mechanism occurred.  

Davis and Fungtamasan investigated void fraction and transient effects in vertical 

tees (Davis & Fungtamasan, 1990). In their investigation, the authors conclude that the 

wall shear in their two-phase, air-water mixture was tantamount to single phase flow, 
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suggesting that single phase friction factors can be used in two-phase flow. Additionally, 

the authors concluded that the length required to re-establish steady state flow after a 

transient effect increases with an increase in Reynolds number, and the length tends to 

decrease with average void fraction. The authors include all flow rates, qualities, pressures 

and volume fractions. 

Abu-Mulaweh, et. al. conducted experiments in two-phase, air-water flow in 

horizontal tee-junctions for slug flow (Abu-Mulaweh, Al-Halhouli, Hammad, & al., 2008). 

The primary purpose of the article was educational, but the authors also proposed wall 

shear coefficients that fit their data. The authors reported flow rates, qualities, and pressures 

but omit volume fraction data. 

Katsaounis conducted experiments for side-arm tees with both horizontal and 

vertical branch orientations (Katsaounis, 1987). Katsaounis observed higher phase splitting 

in the vertical branch configuration, which makes sense as the split is exaggerated by the 

effect of gravity. Katsaounis also compared visually-obtained void fraction estimates to 

existing correlations. The author proposed a vena contracta in order to make pressure drop 

models more accurate. 
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Chapter 3: Multiphase Pipe Network Formulation 

The first step in a robust calculation algorithm for any network solver is to convert 

the graphical representation of the network into a consistent set of mass balance equations, 

which satisfies Kirchhoff’s first law. Next, to satisfy Kirchhoff’s second law, a systematic 

method is needed in order to identify a set of independent loops present in a network. While 

visual inspection might be sufficient in small networks that are not well-connected, this 

task becomes increasingly difficult and error-prone in larger, more connected networks. 

3.1 FUNDAMENTAL LOOP MATRIX 

In any connected graph, the number of linearly independent loops is 𝑁𝑏 − 𝑁𝑛 + 1, 

where 𝑁𝑏 is the number of branches and 𝑁𝑛 is the number of nodes (Dolan & Aldous, 

1993). A set of loops are said to be linearly independent if the resulting hydraulic potential 

equations (∑Δ𝑃 = 0) are independent. One systematic way to identify a set of linearly 

independent loops is to use Kirchhoff’s idea of the spanning tree (Dolan & Aldous, 1993). 

A spanning tree can be defined as a subgraph that contains all nodes in a graph and is also 

a tree. If one knows a spanning tree of a particular network, a simple algebraic manipulation 

of the incidence matrix yields a set of linearly independent loop equations. It is also of note 

to mention that the selection of spanning tree effects which loops are chosen. This means 

that two spanning trees of a particular network will result in two separate sets of equations. 

To illustrate this, consider the network in Figure 2.1. The following two spanning 

trees result in two loop equations: 
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Figure 3.1: Two spanning trees constructed for the graph presented in Figure 2.1. Graph 

A shows a depth-first spanning tree whereas graph B shows a breadth-first spanning tree. 

 

As will be seen later, the spanning tree chosen in graph A will result in the loops {1, 2, 3} 

and {2, 3, 4} and the spanning tree in graph B will result in the loops {1, 2, 3} and {1, 2, 

3, 4}. While the selection of spanning tree, and hence loop equations, may seem trivial, the 

selection has implications in the numerical scheme to solve network problems. Knowing 

this, then which spanning tree is best? 

 There are a myriad of algorithms present to generate a spanning tree in a graph. 

Three popular methods are the depth-first search, breadth-first search, and the minimum-

weighted tree. It should be noted that the directionality of a network is ignored when 

constructing these spanning trees. 

4 

3 

2 

3 

2 

4 1 1 4 

A B 
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3.1.1 Depth-First Search 

The principal idea behind the depth-first search is to penetrate a graph as deeply as 

possible before fanning out to other vertices (Dolan & Aldous, 1993). When a search can 

go no further into a graph, the search must backtrack, and hence it is also called a backtrack 

search. This can be illustrated in a simple graph: 

 

Figure 3.2: Sample graph 

From Figure 3.2, a depth-first search starting at node 1 will first go to node 2, but at node 

2, the search must return to the first as node 2 is not adjacent to any other nodes. The search 

then proceeds to node 3. Next, the search goes to node 5, but as node 5 is not adjacent to 

any other nodes, the search must backtrack again to 3. The search then proceeds to node 6, 

and then the search backtracks to the first node again, where node 4 is discovered and the 

search is over. This approach is also called last-in, first out, as the last node discovered is 

the first node that is left in a search. A more rigorous formulation can be found in Networks 

and Algorithms by Dolan & Aldous (Dolan & Aldous, 1993). 

6 
5 

4 3 2 

1 
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 Returning to the example graph in Figure 2.1, we can similarly construct a depth-

first search in this graph. The resulting spanning tree can be found in graph A in Figure 

3.1. The convention used in this work is to always visit the lowest-number adjacent node 

in all searches. As seen in this example, no backtracking is necessary, and the spanning 

tree {1 → 2, 2 → 3, 3 → 4} is constructed. 

3.1.2 Breadth-First Search 

Another algorithm commonly used is the breadth-first search, where the goal is to 

fan out to as many vertices as possible before penetrating into the graph (Dolan & Aldous, 

1993). In Figure 3.2, a breadth-first search starting at the first node would first find nodes 

2, 3, and 4. Then, the search proceeds to node 2, but as the only adjacent node is node 1, 

and it has already been discovered, the search proceeds to node 3. Next, nodes 5 and 6 are 

discovered and the search is over. Note that when vertices are laid out into levels, as in 

Figure 3.2, the breadth-first search must complete each level before proceeding to the next 

one. 

The breadth-first search for Figure 2.1 can be found in graph B in Figure 3.1. 

Starting at node 1, the algorithm first discovers nodes 2 and 3 ({1 → 2, 1 → 3}), then at 

node 2, only node 4 remains undiscovered, so the final branch is ({2 → 4}). Hence, the 

final spanning tree is {1 → 2, 1 → 3, 2 → 4}. 

3.1.3 Minimum-Weighted Spanning Tree 

A third method to find a spanning tree in a given graph is the use of a minimum-

weighted spanning tree. The principal idea behind this spanning tree is the sum of the 

branch numbers is the lowest of all other spanning trees in a given graph. A simple 

algorithm presented is derived by Kruskal and is used in the work by Nagoo on gas 
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transmission lines (Nagoo A. S., 2003). Instead of a search algorithm, a spanning tree is 

constructed by choosing the lowest-numbered branches in a graph first, and proceeding to 

add branches to the tree that have larger numbers. If a lower-numbered branch would cause 

the tree to contain a loop, then it is omitted and a higher-numbered branch is chosen. The 

minimum-weighted spanning tree for our sample graph in Figure 2.1 would then be: 

 
Figure 3.1: Sample graph (A) and its minimum-weighted spanning tree (B) 

 After examining these three spanning tree algorithms, it should also be noted that 

each spanning tree has a set of branches that are not included in the tree. These branches 

are referred to as chords. When a chord is added to a spanning tree, a loop is formed. 

3.1.4 Transforming a Spanning Tree into Loop Equations 

For a given graph, the fundamental loop matrix (set of linearly independent loops) 

is defined as: 
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 𝑭𝓵 = [−(𝑨𝒕
−1𝑨𝒄)

′|𝑰𝒃−𝒏+𝟏] (3.1) 

Where 𝑭𝓵 is the fundamental loop matrix, 𝑨𝒕
−1 is the submatrix of the tree branches, 𝑨𝒄 is 

the submatrix of chord branches, and 𝑰𝒃−𝒏+𝟏 is the identity matrix of size ℓ (the number of 

loops in the graph) (Nagoo A. S., 2003).  

To find 𝑨𝒕 and 𝑨𝒄, consider the same sample graph as in the previous section. As shown 

in Figure 2.1, the graph can be represented by an incidence matrix. This matrix, however, 

is not full-rank. The rank is one less than the number of nodes. Therefore, a reduced 

incidence matrix is defined to obtain a full-rank matrix. In this case, the reduced incidence 

matrix is: 

 𝐴𝑟 = [
−1 −1 0 0 0
1 0 1 −1 0
0 1 −1 0 −1

] (3.2) 

It should be noted that the omitted row from the incidence matrix can be obtained from 

(3.2) by multiplying the sum of all rows by −1. To obtain 𝑨𝒕 and 𝑨𝒄, 𝐴𝑟 is permuted such 

that the tree branch columns are on the left and the chord columns are on the right. For the 

three algorithms presented in this work, 𝑨𝒕 and 𝑨𝒄 are: 

Algorithm 𝐴𝑡 𝐴𝑐 
Depth-First 

[
−1 0 0
1 −1 0
0 1 −1

] [
−1 0
0 −1
1 0

] 

Breadth-First 
[
−1 −1 0
1 0 −1
0 1 0

] [
0 0
−1 0
1 −1

] 

Minimum-Weighted 
[
−1 −1 0
1 0 −1
0 1 0

] [
0 0
−1 0
1 −1

] 

Table 3.1: Spanning trees and their tree-branch and chord matrices 
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Then, the fundamental loop matrix can be calculated by using (3.1). It should be noted 

that this matrix then needs to be permuted so that the columns are in the original order. 

For example, the result for the depth-first search is: 

 𝑭𝓵 = [
−1 1 0 1 0
0 1 −1 0 1

] (3.3) 

(3.3) must be permuted such that the columns are in the original order as the reduced 

incidence matrix: 

 𝑭′𝓵 = [
−1 1 1 0 0
0 0 −1 1 1

] (3.4) 

(3.4) shows that the two loops identified from the depth-first search are {1 → 2, 2 →

3, 1 → 3} and {2 → 3, 2 → 4, 3 → 4}, where ±1 indicates the directionality.  

3.1.5 Selection of loops 

The selection of loops in a graph can be critical when solving the system of 

equations in a multiphase flow solver. As will be explained later, selecting the smallest 

loops in a graph helps to reduce the number of nonzero entries in the Jacobian matrix, 

which increases the stability of the solver. Graphically speaking, this occurs when two 

chords are adjacent to a common node. When this occurs, one loop will then be a subgraph 

of the other loop, which results in one loop that is larger than necessary. This can be 

accounted for in a depth-first search by including a check at the end of the algorithm 

ensuring that no two chords have a common node. 
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3.2 ANALYSIS OF EQUATIONS VS. UNKNOWNS 

Now that the equations for both Kirchhoff’s first and second laws have been 

identified, it is necessary to compare the number linearly independent equations with the 

primary dependent variables. In single-phase flow, this is rather trivial, and the list can be 

seen in Table 2.1.In multiphase flow, additional variables need to be taken into account. In 

a multiphase network, the following primary dependent variables are present when no 

interphase transport of components is considered: 

Number of unknowns Unknown Description 

𝑁𝐵 Δ𝑃𝑏,𝑚 
Mixture pressure drop in 

branch 

𝑁𝑛 𝑃𝑛,𝑚 Mixture pressure at node 

𝑁𝑏 𝑢𝑏,𝑚 
Mixture volume flux 

(velocity) in branch 

𝑁𝑝𝑁𝑏 𝑠𝑏,𝑖 Phase saturation in branch 

𝑁𝑝𝑁𝑏 𝑓𝑏,𝑖 
Phase fractional flow in 

branch 

𝑁𝑝𝑁𝑏 𝜌𝑏,𝑖 Phase density in branch 

𝟐𝑵𝒃 + 𝟑𝑵𝒑𝑵𝒃 +𝑵𝒏  Total 

Table 3.2: Primary dependent variables in a multiphase network 

Note that in the multiphase network, there are 3𝑁𝑃𝑁𝑏 − 𝑁𝑏 extra variables than in the 

single-phase system. While the first three variables are the same as in the single-phase 

system, the last three should be defined. The phase saturation (𝑠𝑏,𝑖), which is also referred 

to as void fraction in a wide array of publications, can be defined as: 

 𝑠𝑏,𝑖 =
𝐿3 𝑜𝑓 𝑖

𝐿3𝑜𝑓 𝑉𝑙𝑜𝑐𝑎𝑙
 (3.5) 

Note that this is the same definition given in Nagoo’s thesis (Nagoo A. , 2013). Put 

qualitatively, 𝑠𝑏,𝑖 is the fraction of a control volume in a branch that is occupied by phase 
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𝑖 at a given instant. In this work, and in the field of averaged-flow, the saturation that is of 

primary interest is the time- and area-averaged value, that is: 

 〈〈𝑠𝑏,𝑖〉〉 =
∫∫ 𝑠𝑏,𝑖𝑑𝐴𝑑𝑡

∫𝑑𝐴∫𝑑𝑡
=

𝐿3 𝑜𝑓 𝑖

𝐿3𝑜𝑓 𝑉𝑏𝑟𝑎𝑛𝑐ℎ
 (3.6) 

However, the brackets are often omitted for brevity and to eliminate clutter. 

 The second variable, phase fractional flow (𝑓𝑏,𝑖), can be defined as: 

 𝑓𝑏,𝑖 =
〈𝑢𝑏,𝑖〉

〈𝑢𝑏,𝑚〉
 (3.7) 

Where 〈𝑢𝑏,𝑖〉 is the area-averaged phase velocity and 〈𝑢𝑏,𝑚〉 is the area-averaged mixture 

velocity. This is also known as no-slip holdup or input concentration or delivered 

concentration, but is referred to as fractional flow in this work. The final variable is the 

component’s density, which is the same as in single-phase networks but allows for 

additional components. 

The same number of equations need to be included to have a well-conditioned 

problem.  
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Number of equations Equation Description 

𝑁𝑏 ∑ 𝑓𝑏,𝑖

𝑁𝑝ℎ𝑎𝑠𝑒𝑠

𝑖=1

= 1 
Fractional flow unity 

equation 

𝑁𝑏 ∑ 𝑠𝑏,𝑖

𝑁𝑝ℎ𝑎𝑠𝑒𝑠

𝑖=1

= 1 Saturation unity equation 

(𝑁𝑝 − 1)𝑁𝑏  𝑠𝑏,𝑖 = 𝑓(𝑓𝑏,𝑖) 
Saturation – fractional flow 

relationship 

𝑁𝑝(𝑁𝑛 − 1) 
 

= 𝑁𝑝(𝑁𝑏 − 𝑁ℓ) 

∑ 𝑑𝑖𝑟𝑏𝜌𝑏,𝑖𝑓𝑏,𝑖𝑢𝑏,𝑚𝐴𝑏

𝑏𝑎𝑑𝑗 ,𝑛

𝑏=1

= 𝑥𝑛,𝑖𝑚𝑖 

Mass Balance relationship 

around node, where 

𝑏𝑎𝑑𝑗,𝑛 ⊂

𝑏 | 𝑏 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑛  

𝑁𝑏 

Δ𝑃𝑏,𝑚
Δ𝐿
= 𝜏𝑤 + 𝜌𝑏,𝑚𝑔𝑠𝑖𝑛(𝜃)

−
∑𝐺𝑖Δ (

𝐺𝑖
𝜌𝑖𝑠𝑖

)

Δ𝐿
 

Mixture momentum 

balance 

𝑁𝑝𝑁ℓ  ∑𝑠𝑏,𝑖Δ𝑃𝑏

𝑏ℓ

𝑏=1

= 0 Kirchhoff’s second law 

𝑁𝑏 𝜌𝑏,𝑚 = ∑ 𝑠𝑏,𝑖 ∗ 𝜌𝑏,𝑖

𝑁𝑝ℎ𝑎𝑠𝑒𝑠

𝑖=1

 
Definition of mixture 

density 

𝑁𝑝𝑁𝑏 𝜌𝑏,𝑖 = 𝑓(𝑃, 𝑇) EOS density calculation 

𝑁𝑏 − 𝑁ℓ 
 

= 𝑁𝑛 − 1 

Δ𝑃𝑏,𝑚 = 𝑃𝑛,𝑚 − 𝑃(𝑛−1),𝑚 Definition of pressure drop 

𝟐𝑵𝒃 + 𝟑𝑵𝒑𝑵𝒃 +𝑵𝒏 − 𝟏  Total 

Table 3.3: Independent equations to solve the multiphase network problem 

While the first two equations are straightforward, the third deserves a bit more explanation. 

As shown in Nagoo’s thesis, the basic tenant of the work is that the saturation of a phase 

can be described as a function of the phase’s fractional flow. The function used to express 
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this depends on the flow characteristics. For example, the simplest one is the no-slip 

relationship, which states: 

 𝑠𝑏,𝑖 = 𝑓𝑏,𝑖 (3.8) 

Simply put, this relationship states that the in situ phase velocities are equal to their phase 

volume fractions, implying there is no slip between phases. Of course, this type of flow 

occurs only under limited circumstances, and hence is not applicable in most situations. A 

review of existing volume fraction/fractional-flow relationships can be found in 

Woldesemayat and Ghajar (Woldesemayat & Ghajar, 2007). This work incorporates the 

same relationships present in Nagoo (Nagoo A. , 2013). 

 The next two equations are the conservation of mass and momentum equations, 

respectively. The conservation of mass equation is quite straightforward: there are 𝑁𝑃 mass 

balances per node less the one overall mass balance (assuming single-component phases 

with no mass transfer). The conservation of momentum equation becomes increasingly 

more complicated with the addition of another phase. While there are several multiphase 

flow closure relationships for conservation of momentum, this work uses those employed 

by Nagoo, and assumes a mixture model for the wall shear term (Nagoo A. , 2013). The 

final term, the inertial or convective acceleration term, deserves additional discussion. 

 To account for changes in density, two density models are used. For incompressible 

fluids, density is assumed to be constant or changing by a set compressibility factor. The 

form of this equation is: 

 𝜌𝑏,𝑖 = 𝜌𝑏,𝑖𝑜𝑒
(𝑃𝑏−𝑃𝑖𝑜)𝐾 (3.9) 
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Where 𝜌𝑏,𝑖𝑜 is the reference density for the given phase, 𝑃𝑏 is the branch’s pressure, 𝑃𝑖𝑜 is 

the reference pressure (usually atmospheric), and 𝐾 is the compressibility factor, in units 

of inverse pressure. Equation (3.9) is especially important in oils where the compressibility 

can change the density appreciably. For gases, the ideal gas law can be used alone or with 

the gas deviation factor, 𝑍. This equation is: 

 𝜌𝑏,𝑖 =
𝑃𝑏𝑀𝑤
𝑍𝑅𝑇

 (3.10) 

Where 𝑀𝑤 is the average molecular weight, 𝑍 is the gas deviation factor, 𝑅 is the gas 

constant, and 𝑇 is the temperature. To calculate 𝑍, the Dranchuk-Kassem equation is used 

(Dranchuk & Abu-Kassem, 1975). This equation takes the form: 

 

𝑍 = 1 + (0.3265 −
1.07

𝑇𝑟
−
0.5339

𝑇𝑟
3 +

0.01569

𝑇𝑟4
−
0.05165

𝑇𝑟
5 )𝜌𝑟

+ (0.5475 −
0.7361

𝑇𝑟
+
0.1844

𝑇𝑟
2
) 𝜌𝑟

2

+ 0.1056 (−
0.7361

𝑇𝑟
+
0.1844

𝑇𝑟2
) 𝜌𝑟

5

+ 0.6134(1 + 0.721𝜌𝑟
2) (

𝜌𝑟
2

𝑇𝑟
3) 𝑒

−0.721𝜌𝑟
2
 

(3.11) 

where 𝜌𝑟 = 0.27 (
𝑃𝑟

𝑍𝑇𝑟
), 𝑇𝑟 is the reduced temperature (𝑇𝑟 = 𝑇/𝑇𝑝𝑐), 𝑃𝑟 is the reduced 

pressure (𝑃𝑟 = 𝑃/𝑃𝑝𝑐). The pseudo-critical values for pressure and temperature are defined 

here as: 

 𝑇𝑝𝑐 = {
157.5 + 336.1𝑆𝐺

170.491 + 307.344𝑆𝐺

|𝑆𝐺 < 0.55

            |0.55 ≤ 𝑆𝐺 ≤ 1.7
 (3.12) 
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 𝑃𝑝𝑐 = {
690.0 − 31.0𝑆𝐺

709.64 − 58.718𝑆𝐺

|𝑆𝐺 < 0.55

            |0.55 ≤ 𝑆𝐺 ≤ 1.7
 (3.13) 

where 𝑆𝐺 is the specific gravity of the gas. These equations come from the American Gas 

Association and work done by Hankinson et. al. (Saleh, 2002) (Hankinson, Thomas, & 

Phillips, 1969). 

 As this work takes the averaged-flow approach, there remains only one momentum 

balance for the entire mixture. The consequence of this is that another equation set must be 

specified in order to have a well-conditioned system. Two-fluid systems have the benefit 

of having an additional momentum equation for each phase, which leads to a formulation 

not unlike the single-phase formulation, albeit with the need for two boundary conditions 

instead the one needed in single-phase flow. The extra set of equations in this work comes 

from Kirchhoff’s second. This equation can be written as: 

 ∑𝑠𝑏,𝑖Δ𝑃𝑏

𝑏ℓ

𝑏=1

= 0 (3.14) 

Equation (3.14) expands upon Kirchhoff’s second law by stating that sum of pressure 

changes for each phase is zero around a loop. As shown in Nagoo’s work, a phase’s 

pressure can be defined as: 

 𝑃𝑖 = 𝑠𝑖𝑃𝑚 (3.15) 

where 𝑃𝑖 is the phase’s pressure and 𝑃𝑚 is the mixture pressure (Nagoo A. , 2013). A 

phase’s individual pressure is often moot in averaged-flow formulations, and indeed is 

relevant only in decoupled (segregated) flows (Nagoo A. , 2013). However, equation (3.14) 
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is still a logical stipulation and extension of Kirchhoff’s second law as only one mixture 

pressure can be present in one location, and likewise a phase can have only one individual 

pressure in one location. With this stipulation, the variables are balanced by the equations 

and the system is well conditioned. 

 One last point in this formulation is the complexity that loops cause. While here we 

see that loops complicate the degrees-of-freedom analysis, we will also see how loops 

complicate the numerical stability and solution space of the multiphase network problem. 

Indeed, conventional flow simulation software and even an eager engineer can evaluate a 

network without loops, as the mass balances solve the direction of flow in each branch a 

priori.  

3.3 PROGRAM DESIGN 

 In order to systematize the workflow of solving multiphase flow in networks, an 

executable program has been written in C++. This program can be broken into three main 

components: input, computation, and output. A more in-depth explanation of the input and 

output can be found in Appendix B. The computational portion will be explained more 

here. 

 After reading all data from the input file, first the loops in the network are identified, 

taking care to select the small loops. This work uses Intel’s MKL linear algebra library to 

invert the reduced tree incidence matrix using an armadillo shell. With all necessary 

information, the program then sets up all the equations in the Newton-Raphson solver. This 

work uses the globally-converging Newton-Raphson method presented in Numerical 

Recipes in C++, second edition (Press, 2002). This solver uses preconditioning and partial 
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pivoting to increase both stability and computation time. Figure 3.3, below, shows a 

flowchart for the program. 
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Figure 3.3: Flowchart of multiphase network solver 
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 As the initial guesses are crucial in Newton-Raphson methods, it is important to 

have a systematic approach to having accurate initial guesses. For pressure, one simple 

method is to initialize all node pressures to the pressure given as a boundary condition. 

While this is a viable strategy in simpler networks, it is untenable in larger and more 

complicated ones. To address this, the program asks the user for an additional pressure 

guess at another node. With the length of each branch known, this gives an implied pressure 

gradient that can be applied to the network at large, via the spanning tree. 

 For example, given the network in Figure 3.1A, if we assume the given pressure at 

node 1 is 350 psia, and the pressure guess at node 4 is 300 psia, the spanning tree can give 

an estimate for the other two nodes. Assuming each branch is 4000 ft, this results in a 

pressure gradient of 0.004
𝑝𝑠𝑖𝑎

𝑓𝑡
. This can then be used to calculate the pressures at nodes 2 

and 3.Figure 3.1: Sample graph (A) and its minimum-weighted spanning tree (B) 

 Initial guesses for the velocities in the branches is set as the average of the two 

external flow rates at the nodes connecting the branch. If both are zero, then the average of 

all external flow rates for the entire network. The direction of flow is determine by the 

adjoining node’s flow rates, and when both are zero, the direction given by the incidence 

matrix is assumed. 

 In highly looped networks, it is also possible that these initial guesses are not 

adequate. For this case, the proposed method is to solve the spanning tree of the given 

network. While the additional branches in the looped network will, of course, cause 
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changes when compared to the analogous unlooped network, the solution found in the 

unlooped case results in a far better initial guess in the looped case. 
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Chapter 4: Multiphase Network Solver Validation and Benchmarking 

 In order to validate the formulation presented in Chapter 3, it is important to 

compare the results obtained from the model with published data sets and solution sets. 

While there are numerous examples of fluid flow in single conduits, experiments on 

networks is scarce. Despite this lack of network data, other published solutions exist to 

verify existing models, especially in single-phase flow. To validate multiphase, looped 

network cases, comparisons are made to existing software. For additional instructions on 

how to execute the program, see Appendix B. Instructions on how to properly create an 

input file are found in B.1, and an explanation of the output file can be found in B.2. 

4.1 INCOMPRESSIBLE SINGLE-PHASE PIPE 

 As any modeler is aware, model validation works best when testing a model against 

the most simplistic cases first. After the model has been properly validated against simple 

cases, additional complications can be considered with the confidence that the foundation 

is validated.  

 With this in mind, the multiphase network solver presented in this work is first 

tested in the simplest case: incompressible single-phase flow in a single conduit. While this 

may seem trivial, it serves as the basis for more complicated cases. 

 An exhaustive set of experiments on multiphase flow are performed in Sunil 

Kokal’s PhD thesis from the University of Calgary in 1989 (Kokal, 1989). As it is common 

in multiphase flow literature, the experimenters calibrated and validated their experimental 

rig using single-phase flow at first. This allows the experimenters to match their 
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experimental values against published data and existing correlations. 

 

Figure 4.1: Incompressible, single-phase pipe calculated (lines) versus experimental 

(points) at different distances for increasing fluid velocity. Data from An Experimental 

Study of Two-Phase Flow in Inclined Pipes (Kokal, 1989). 

 Figure 4.1 presents data from Kokal’s thesis against results obtained from the 

multiphase network solver. These data are obtained from oil (𝜌𝑜 = 858
𝑘𝑔

𝑚3 , 𝜇𝑜 = 7𝑚𝑃𝑎 ∙

𝑠) flowing through a circular pipe of 1” diameter and 25m length and no inclination. The 

average temperature is 23°𝐶 and the pressure ranges from 230-270kPa. In this scenario, 

only the wall shear transfer coefficient is being tested against the data as the hydrostatic 

term is nil. 

 As seen in Figure 4.1, the solver correctly explains the pressure decline due to wall 

shear along the length of the pipe (as displayed by the x-axis). Furthermore, it can be seen 

as the oil velocity is increased, that there is a marked change in the pressure gradient as the 
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fluid flow transitions from laminar to turbulent, which occurs from 0.305 𝑚/𝑠 to 

2.319 𝑚/𝑠.  

4.2 INCOMPRESSIBLE SINGLE-PHASE FLUID FLOW IN A NETWORK 

 Next, the multiphase network solver is tested against a base case for incompressible 

fluid flow in a network. While the first test validates the pressure drop equation in single-

phase cases, this test is intended to test the model against Kirchhoff’s first and second laws. 

A case is presented in Jeppson’s 1976 textbook on pipe networks (Jeppson, 1976). This 

network can be seen below: 

 

Figure 4.2: Single-phase pipe network used in Jeppson (Jeppson, 1976). 

Additionally, the following boundary conditions are specified: 
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Junction Demand (𝑔𝑎𝑙/𝑚𝑖𝑛) 

1 2000 

2 -300 

3 -900 

4 -500 

5 1500 

6 -800 

7 1000 

Table 4.1: Junction demands 

Branch Length (ft.) 

Diameter 

(in.) 

Hydraulic 

Roughness  

(in.) 

1 1600 18 0.0102 

2 2000 15 0.0102 

3 2400 18 0.0102 

4 1800 12 0.0102 

5 1900 12 0.0102 

6 1300 10 0.009 

7 1700 15 0.0102 

8 2000 18 0.009 

9 1200 24 0.0102 

10 1800 15 0.0102 

Table 4.2: Branch parameters 
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 Table 4.1 and Table 4.2 give the parameters necessary to specify the system. The 

simulation also assumes that the fluid is water at 68°𝐹 and that there is no inclination in 

the system. 

 
Figure 4.3: Calculated vs. reference (from Jeppson) flow rates in branches of the network 

in Jeppson (Jeppson, 1976). 
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Figure 4.4: Calculated vs. reference (from Jeppson) pressure drops in branches of the 

network in Jeppson (Jeppson, 1976). 

 Figure 4.3 and Figure 4.4 show the calculated results against the reported results in 

Jeppson’s textbook. It is evident that the results from our simulations do not appreciably 

differ from the published values, and indeed, the average error is 0.2 percent in the branch 

flow rates, and 6 percent in the head losses. While 6 percent may seem quite large, the 

magnitude of the actual pressure drops are low—on the order of thousandths of a psi, which 

is well within engineering precision. Additionally, the results obtained in Jeppson’s 

example were obtained using LTM, whereas the model presented here is solved using a 

Newton-Raphson technique. As stated earlier, these results can only be compared to 

themselves—there are no ground truth measurements—as experimental results for network 

flow are uncommon. 
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4.3 COMPRESSIBLE SINGLE-PHASE PIPE 

 Continuing with model validation, the next step taken is compressible single-phase 

flow in single conduits. When compared to incompressible fluids, compressible fluids have 

the added complication of having the density be a function of pressure. This validation will, 

of course, test the actual density calculations in the solver and also the solving scheme. In 

the case of incompressible flow, branch values, such as flow rates and pressure drops, can 

be solved without considering node values, namely pressure. As the absolute pressure is 

inconsequential in incompressible calculations, it is paramount in compressible flow. Two 

cases were considered here: hydrostatically-dominated flows and friction-dominated 

flows. A hydrostatically-dominated flow was first considered as the hydrostatic term aids 

in the solver stability (Nagoo A. , 2013).  

4.3.1 HYDROSTATICALLY DOMINATED 

 A gas well belonging to Marathon Oil Co. in the Camacho field is reported in a 

1970 paper (Camacho). In the paper, the authors present data on how the bottom-hole 

pressure and wellhead pressure change with an increasing gas flow rate. The internal 

diameter is 2 inches, the depth, or in solver terms branch length, is 5790 feet, the specific 

gravity is 0.604, and the hydraulic roughness is 0.000 045 inches.  
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Figure 4.5: Calculated vs. experimental (from Camacho) bottom-hole pressures (BHP) at 

different flow rates (Camacho). 

Figure 4.5 shows calculated pressures with measured pressures, and the average error 

found is 0.3 percent. As the data presented in the article is field data, it should also be noted 

that the data are not as well controlled as in a laboratory experiment.  

 This test also validates how the solver handles boundary conditions. It is 

commonplace in many commercial solvers to specify where a given boundary condition 

must be given, such as at a flow entrance. However, this is often not known a priori. This 

is the case in many oil & gas applications, where wellhead pressure is known and bottom-

hole pressure is desired. Instead of using a solver iteratively to solve for BHP, the solver 

presented in this work can solve for it implicitly, which is simpler and more efficient. 

4.3.2 FRICTION DOMINATED 

 Another work presented in 1964 gives a large diameter, cross-country pipeline 
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density—and the z-factor calculation—and its effects on the convergence are tested. While 

this case has minor elevation changes, it is readily seen that the frictional pressure gradient 

is much greater than the hydrostatic pressure gradient. 

 
Figure 4.6: Calculated versus reference pressure profile in Hannah's paper on the NX-37 

pipeline  at varying distances from the outlet (Hannah, 1964). 
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Figure 4.7: Calculated vs. reference frictional pressure gradient (FPG) and hydrostatic 

pressure gradient (HPG) in Hannah's paper on the NX-37 pipeline at varying distances 

from outlet (Hannah, 1964). 
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percent.  
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below. The authors arrived at their solution by using a CFD approach to solve the Navier-

Stokes equations. The authors assumed the ideal gas law, and a constant temperature of 

15°𝐶. A pressure of 6 bars is assumed at junction 1, and hydraulic roughness is assumed 

to be 0 for all branches. 

 
Figure 4.8: Network for compressible network validation (Greyvenstein & Laurie, 1994) 
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Junction Demand 

(kg/s) 

1 0.016461 

2 -0.00444 

3 -0.00382 

4 -0.00178 

5 -0.00159 

6 -0.00444 

7 0.016461 

8 -0.00414 

9 0 

10 -0.0028 

11 -0.00299 

12 0 

13 -0.00414 

14 -0.0028 

Table 4.3: External demands specified in Greyvenstein and Laurie 

Additionally the following lengths and diameters are assumed: 
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Branch Diameter (m) Length (m) 

1 0.01588 400 

2 0.01588 400 

3 0.01 100 

4 0.01 100 

5 0.01588 400 

6 0.01588 400 

7 0.01588 400 

8 0.01588 400 

9 0.01 100 

10 0.01588 400 

11 0.01588 400 

12 0.01588 400 

13 0.01588 400 

14 0.01 100 

Table 4.4: Branch diameters and lengths used in CFD simulation 

The authors compared their results to results obtained using the Hardy Cross method and 

LTM, which all converged to the same solution, albeit at a different number of iterations. 

The results obtained from our multiphase network solver can be compared to the reported 

values in Figure 4.9 and Figure 4.10. 
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Figure 4.9: Calculated vs. reference mass flow rates (from Greyvenstein and Laurie) in 

different pipes from network in Figure 4.8 (Greyvenstein & Laurie, 1994). 

 

Figure 4.10: Calculated vs. reference pressures (from Greyvenstein and Laurie) in 

different nodes from network in Figure 4.8 (Greyvenstein & Laurie, 1994). 
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4.5 MULTIPHASE FLOW IN PIPES 

 The addition of a second phase poses a challenge both in terms of physics and 

convergence. Additional equations need to be taken into account in order to fully describe 

the system at hand, and additional parameters need to be specified by the user. In order to 

properly validate these equations, first a single conduit is considered. This tests the 

additional physics—void fraction relationships in this formulation—and the nonlinearities 

present from density calculations in compressible phases. Of course, this phase of 

validation could be exhaustibly long. A large discipline of multiphase flow is to capture 

the physics present in one dimensional flow. Instead, the goal of this phase is to properly 

calculate existing relationships in the context of the large system of equations. 

 

Figure 4.11: Calculated (lines) and experimental (points) gas saturation versus distance at 

different gas volume fluxes.  Lines result from Woldesmayat and Ghajar void fraction 

relationship (Woldesemayat & Ghajar, 2007) coupled with the multiphase network 

solver, and points are data from Sunil Kokal's work in multiphase flow in inclined pipes 

(Kokal, 1989). 
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 As can be seen in Figure 4.11, the void fraction relationship used accurately scales 

with the increase of gas volume flux. As the fractional flow of gas increases, an increase 

in the gas saturation is observed. 

4.6 MULTIPHASE FLOW IN PIPE NETWORKS 

 The final validation is to look at multiphase flow in looped networks. The other 

validation steps are routinely handled by commercial solvers on the market. Incompressible 

flows in networks are often evaluated for municipal water distribution systems using 

EPANET, which is a public-domain solver developed by the Environmental Protection 

Agency. Compressible flow in networks is commonly evaluated in gas distribution 

systems. Systems like GASWorkS and Synergi are two commercial packages intended to 

handle gas distribution systems. To evaluate multiphase networks, more sophisticated 

software is necessary. Currently, Schlumberger’s PIPESIM and LedaFlow have modules 

to solve for multiphase flow in looped networks. Petroleum Experts has a module called 

GAP intended for networks, but its solver does not work for looped systems. 

4.6.1 SOLUTION VALIDITY AND UNIQUENESS 

 Due to the scant data on reported solutions to multiphase flow in networks, results 

obtained from the multiphase network solver are compared to commercial solvers and a 

more rigorous inspection of the solution is required. One common measure of the validity 

of the solution obtained is the latest iteration’s variable value compared to the previous 

iteration’s value. A large discrepancy indicates that the solution is unstable, but not 

necessarily indicative of an inaccurate solution. This can occur when the chosen step size 
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is too large, and while the search direction (gradient) is correct, the distance travelled to 

the next iteration is not.  

 Another measure of a solution’s validity is the residuals of the equations. It may 

seem trivial to say that the solution, or more precisely a solution, to a given system occurs 

when the variables satisfy the equations to within a certain tolerance. It is true that a 

solution exists when all equations are satisfied, but a mathematical solution is not always 

a physical one. An example would be the van der Waals equation.  

 𝑃𝑣3 − (𝑅𝑇 + 𝑃𝑏)𝑣2 + 𝑎𝑣 − 𝑎𝑏 = 0 (4.1) 

Equation (4.1) has three roots. When 𝑇 > 𝑇𝑐, there is one real root, and two roots containing 

negative or imaginary numbers (Koretsky, 2004). These other two roots are mathematical 

artifacts with no physical basis. 

 Moreover, a solution can be an artifact of the function itself used to describe the 

phenomena at hand. Looking at the van der Waals example again, this occurs when 𝑇 <

𝑇𝑐. Here, three real, positive roots exist (Koretsky, 2004). The lowest root is assumed to be 

the molar volume of the liquid phase, the highest root is assumed to be the gas phase. The 

middle root is excluded when 
𝑑𝑃

𝑑𝑣
> 0 (Koretsky, 2004). Such a root violates Boyle’s law, 

which states that pressure and volume are inversely proportional. When this is the case, the 

discontinuity eludes description by the van der Waals equation (Koretsky, 2004). 

 Other times a solution could be physically possible but not the steady state solution. 

In production engineering, a vertical lift performance curve can intersect the inflow 

performance curve twice—once at a higher pressure and once at a lower pressure. The 
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higher pressure solution is often said to be the solution during a transient period. As a well 

is being drawn down, the bottom-hole pressure decreases until the lower, constant pressure 

is seen.  

 Given these limitations, it is important to be mindful of any solution given for 

multiphase flow in looped networks. Indeed, more work needs to be done in this problem, 

especially research into the problem’s solution space. While the author has not done work 

into this directly, it is suspected that looped networks add a degree of non-uniqueness to 

the solutions that is unseen in networks without loops. This insight also adds value to the 

manifold problem. If non-unique solutions are present in loops networks due to 

mathematical or functional artifacts, having a physically-based solution adds confidence to 

a solution found by the solver. 

4.6.2 EXAMPLE 

 To illustrate the issues present in multiphase flow in looped networks, consider the 

familiar network in Figure 2.1. The elevation of each node is assumed to be equal, which 

results in a friction-dominated system. Often in multiphase flow, horizontal orientation can 

cause discontinuities in the void fraction profile and create numerical instabilities (Nagoo 

A. S., 2003). This is used to illustrate issues in solutions found from the multiphase network 

solver. For this example, all branch lengths are assumed to be 100ft., and all branch 

diameters are assumed to be 12 inches. Hydraulic roughness is assumed to be 0.000 045 

inches. The gas specific gravity is 0.604 (natural gas), and the inlet mass fraction is 23 

percent gas. The Woldesmayat and Ghajar void fraction relationship is assumed, the inlet 

pressure is 350 psia and the system temperature is 323 K. 
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 The nodal demands are:  

Junction 

Demand 

(kg/s) 

1 8.0 

2 -2.0 

3 -4.0 

4 -2.0 

Table 4.5: Nodal demands for multiphase network example 

From this example, various solutions were obtained by varying the initial guesses. 

 

Figure 4.12: Mixture flow rates at branches for different initial guesses 
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3.3, and the best solution is found by manually adjusting the initial guess based on the 

results found in the original solution to find the lowest average equation residual (show 

below in Figure 4.13). The high guess and the low guess solutions were obtained by 

multiplying and dividing the initial guesses in the original algorithm by 10, respectively. 

The “mixed” solution was found by multiplying the initial guess of the water phase’s 

velocity by 10 and dividing the initial guess of the gas phase’s velocity by 10. To see the 

full output files, see Appendix C. The solutions found with the largest residuals are also 

overstated from an engineering perspective, as the only function residuals larger than 0.1 

are pressure equations, and as all residuals are reported in SI units, a 1 Pa discrepancy is 

trivial in most engineering applications. 

 

Figure 4.13: Function residuals and convergence criteria for solutions presented in Figure 

4.12. 
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 Figure 4.13 reports the functional residuals and convergence criteria for the 

solutions presented above. An important distinction should be made between the functional 

residuals and the convergence criteria. While the residuals quantify the accuracy of a 

solution, the convergence criteria, which is the average difference between the past 

iteration’s solution and the current iteration’s solution, can be said to describe the stability 

of the solution. A helpful analogy would be to consider a sewing pin standing vertically. 

While there exists an equilibrium for this state, the slightest perturbation can disrupt it. 

Similarly here, a stationary point may be found in a multiphase network that is a solution, 

but it may not be physically realizable because it is too unstable.  

 From this simple example it should be apparent that there does not exist a simple, 

cut-and-dry answer to looped multiphase networks. Inspection of a given solution is 

necessary in order to have the confidence necessary to rely upon it for engineering 

decisions. For example, one reason to discount the “mixed” solution is to consider the 

largest mixture flow rate found in the solution. While the solution has a mixture flow rate 

of almost 12
𝑘𝑔

𝑠
 in the 3rd branch, the only input into the network from the first node is 8

𝑘𝑔

𝑠
. 

It is suspect that one branch is flowing at a rate higher than the total supply into the network. 

This could be the result of transients from a higher supply into the network, but then that 

is the answer to a different question. In addition to the functional residuals, the suspicious 

flow rate in the third branch raises doubt about the physicality of the solution.  
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4.6.3 BENCHMARKING 

 Due to the scarcity of published results in multiphase fluid flow in networks, it is 

also important to consider the validity of the solutions obtained from the solver presented 

here with the results of other solvers. For single phase networks, EPANET and PIPESIM 

are used, and for multiphase networks, PIPESIM is used. 

4.6.3.1 Single Phase Network 

 The network discussed in Section 4.2 is modeled using PIPESIM and EPANET. As 

EPANET can only model incompressible flows, water is assumed to be the fluid. Figure 

4.14 and Figure 4.15 present the flow rates and pressure drops found by the various solvers, 

and Figure 4.16 presents the average equation residuals (mass balance and Kirchhoff’s 

second law equations). 
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Figure 4.14: Simulated vs. reference (from Jeppson) flow rates in branches of the 

network in Jeppson (Jeppson, 1976). 

 

Figure 4.15: Simulated vs. reference (from Jeppson) head losses in branches of the 

network in Jeppson (Jeppson, 1976). 
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Figure 4.16: Average function residuals in simulations of Jeppson’s network. 

 The first observation that is readily apparent is that the solution from PIPESIM is 

notably different from the reported values and the other solvers’ solutions, and the residuals 

are orders of magnitude larger.  

 One reason this could occur is that the convergence criteria can differ from solver 

to solver. For example, the solution criteria for the pressures and flow rates in PIPESIM 

are: 

 𝑃𝑡𝑜𝑙,𝑖 =∑
𝑃𝑖,𝑏𝑖 − 𝑃𝑖,𝑎𝑣𝑔

𝑃𝑖,𝑎𝑣𝑔

𝑏

𝑏𝑖

 (4.2) 

 

 𝑚𝑡𝑜𝑙,𝑖 =

1
𝑏
∑ 𝑚𝑖,𝑏𝑖𝑛
𝑏
𝑏𝑖𝑛

−𝑚𝑖,𝑎𝑣𝑔

𝑚𝑖,𝑎𝑣𝑔
 (4.3) 

where 𝑃𝑡𝑜𝑙,𝑖 is the pressure tolerance at node 𝑖, 𝑃𝑖,𝑏𝑖 is the pressure at the end of branch 𝑏𝑖 

connected to node 𝑖, 𝑃𝑖,𝑎𝑣𝑔 is the average pressure at the node. 𝑚𝑡𝑜𝑙,𝑖 is the mass flow rate 
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tolerance at node 𝑖, 𝑚𝑖,𝑎𝑣𝑔 is the average flow rate at node 𝑖, and 𝑚𝑖,𝑏𝑖𝑛
 is the mass flow 

rate into node 𝑖 from branch 𝑏.  

 A result of using equations (4.2) and (4.3) is that Kirchhoff’s laws are not explicitly 

being conserved, and the residuals from PIPESIM are higher than if they were conserved. 

While the criteria used in PIPESIM may result in a correct solution, the solution needs to 

be further vetted.  

4.6.3.2 Multiphase Network 

 Figure 4.17 and Figure 4.18 compare the results from our multiphase solver and 

PIPESIM assuming no slip occurs between phases. This allows one to compare the results 

directly, as both options are available in both programs. Figure 4.19 gives the equation 

residuals for both. While the average residual for PIPESIM is orders of magnitude higher 

than in this work, it is still relatively small. While the mass balances are satisfied in this 

case for PIPESIM, Kirchhoff’s second law is not fully satisfied. The pressure drops are 

small, but it can be seen that the error in Kirchhoff’s second law propagates into flow rates 

that are appreciably different.  
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Figure 4.17: Calculated vs. PIPESIM flow rates at pipes in the network presented in 

Figure 2.1 using no slip assumption. 

 

Figure 4.18: Calculated vs. PIPESIM pressure drops at pipes in the network presented in 

Figure 2.1 using no slip assumption. 
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Figure 4.19: Our model versus PIPESIM average equation residual using no slip 

assumption 

 Next, it is worth comparing the results, but with slip considered between the phases. 

The results obtained from our multiphase solver and PIPESIM are much more in agreement 

here. Although the residual is lower in the calculations done in this work, the flow rates 

and pressure drops are within practical engineering tolerances.  
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Figure 4.20: Calculated versus PIPESIM flow rates using Woldesmayat & Ghajar 

fractional flow relationship (for calculated values), and Beggs and Brill correlations for 

PIPESIM in Jeppson’s network (Jeppson, 1976). 

 

Figure 4.21: Calculated versus PIPESIM pressure drops at branches using Woldesmayat 

& Ghajar fractional flow relationship (for calculated values), and Beggs and Brill 

correlations for PIPESIM in Jeppson’s network (Jeppson, 1976). 
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Figure 4.22: Our model versus PIPESIM average equation residuals using Woldesmayat 

& Ghajar fractional flow relationship (for calculated values), and Beggs and Brill 

correlations for PIPESIM. 
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Chapter 5: Phase Splitting Model Formulation and Validation 

 Before discussing the phase splitting problem in more detail, it is important to 

understand the data analysis used in literature to better understand the phenomena at play 

in the manifold problem. 

5.1 DATA VISUALIZATION 

 In branched flow literature, there are typically two ways to present phase-splitting 

data. Figure 5.1 plots an individual phase’s takeoff against the other phase. In this case, the 

line bisecting the xy-axes is the equal split line, and total phase separation occurs along the 

x- and y-axis. All data points above the equal split line represent preferential splitting of 

that phase at the junction. 

 

Figure 5.1: Phase 1 mass takeoff vs. phase 2 mass takeoff. Data points shown were 

artificially generated for illustrative purposes. 

The other common method to present branched flow data is seen in Figure 5.2. Here, the 

total mass takeoff is plotted against the ratio of the mass fractions at the branch and inlet. 
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The equal split line is represented as the horizontal line at 
𝑥3

𝑥1
= 1, and the total separation 

line is represented as the curve 
𝑥3

𝑥1
= (

𝑚3

𝑚1
)
−1

. The total separation line can be derived from 

the lighter phase mass balance with 𝑚2 = 0.  

 

Figure 5.2: Total mass takeoff vs. branch-inlet quality ratio. Data points shown were 

artificially generated for illustrative purposes. 

 While these representation capture the relevant variables, it is often of practical 

concern to know what the branch quality or fractional flow is for a given inlet quality. This 

is the data representation that we have used in this work. 
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Figure 5.3: Fractional flow at inlet versus branch, with example data taken from vertical 

inlet, horizontal side-branch junctions. Experimental data collected from published 

articles (Conte, 2001) (Mak, Omebere-Iyari, & Azzopardi, 2006) (Azzopardi, The Split 

of Vertical Annualar Flow at a Large Diameter T Junction, 1994) (Davis & Fungtamasan, 

1990). Columns of data represent data at different mass takeoffs. 

Figure 5.3 shows data for vertical branches, with the fractional flow at the inlet plotted 

against the fractional flow at the branch. The unit slope line represents the equal phase split 

line. Different takeoffs are visualized by distinct curves from the origin to 𝑓3,2 = 𝑓1,2 = 1. 

5.2 POPULAR MODELS 

 An Achilles’ heel of current phase splitting models is the tradeoff between 

applicability and accuracy. While models such as Azzopardi’s region-of-influence model 

can predict the phase split well for annular flow with vertical inlets and side-branch 

configuration, it is not extensible to other flow regimes or branch configurations. Similarly, 
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empirical models like Zetzmann’s might be able to handle a variety of side-branch 

configurations, yet the results can be inaccurate. Figure 5.5 shows the measured fractional 

flows versus calculated values for Azzopardi’s model. While there is little scatter in the 

data, it is also only applicable to annular flow, and consequently it is restricted to high-gas 

flow rates. Conversely, Figure 5.7 shows the measured fractional flow values versus 

calculated values for Zetzmann’s correlation. While it is applicable for the range of inlet 

fractional flows, the calculated values are often inaccurate. 

 

Figure 5.4: Type-curves at different takeoffs for Azzopardi's "region of influence” model 
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Figure 5.5: Measured versus calculated branch fractional flows for Azzopardi's "zone of 

influence" model 

 

Figure 5.6: Type-curves at different takeoffs for Zetzmann's correlation 
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Figure 5.7: Measured versus calculated branch fractional flows for Zetzmann’s 

correlation. 

 For any model to be extensible to a variety branch configuration, phases, takeoff, 

and flow conditions, there needs to be a physical basis for the model. Extrapolating 

empirical models is not the ideal case. Much like Saba and Lahey surmised, only another 

conservation equation can provide such a physical basis. With this in mind, and knowing 

that the conservation-of-mass equations and mixture conservation-of-momentum 

equations have already been specified, there are few choices on the remaining quantities to 

be conserved. 

 In line with the averaged-flow approach, the next logical equation to explore would 

be the mixture conservation-of-energy equation: 

 
𝛿𝑄

𝑑𝑡
−
𝛿𝑊𝑠
𝑑𝑡

= ∬ (𝑒 +
𝑃

𝜌
)𝜌(𝑣 ⋅ 𝑛)𝑑𝐴

𝑐.𝑠.

+
𝜕

𝜕𝑡
∭ 𝑒𝜌𝑑𝑉

𝑐.𝑣.

+
𝛿𝑊𝜇

𝑑𝑡
 (5.1) 

Assuming steady state and no shaft work, equation (5.1) becomes: 

 ∬ (𝑒 +
𝑃

𝜌
)𝜌(𝑣 ⋅ 𝑛)𝑑𝐴

𝑐.𝑠.

=
𝛿𝑄

𝑑𝑡
−
𝛿𝑊𝜇

𝑑𝑡
 (5.2) 
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While this may seem like an attractive option, a closure relationship must be assumed for 

𝛿𝑊𝜇

𝑑𝑡
, which is the work rate in overcoming viscous effects at the control surface (in this 

case, the pipe wall). While some work has been done to propose such a relationship, 

especially in the University of Tulsa’s fluid flow project, their derivation relies on 

thermodynamic relationships determined with bodies at rest, which extrapolates poorly to 

moving bodies (Nagoo A. , 2013). Moreover, internal energy needs to be quantified for the 

mixture at the inlet and outlets, which can be troublesome. Heat transfer also needs to be 

quantified. With these reasons in mind, the conservation-of-energy approach is not ideal. 

 One of the governing properties in the manifold problem is often cited as the lighter 

phase’s inertia (Lahey, Current Understanding of Phase Separation Mechanisms in 

Branching Conduits, 1986). This makes sense as the lighter phase’s inertia will be lower 

than the heavier phase, which should allow it to decelerate at the branch and accelerate past 

it. Since the mixture conservation-of-momentum equation has already been specified in the 

pressure drop equation, therefore a single phase’s momentum equation should be 

considered. 

5.3 BRANCHED FLOW DATABASE 

 In developing such an equation, data sets on branched flow have been gathered, 

standardized and collated. The database has over 5000 data points from over a dozen 

laboratories.   
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Parameter Values 

Branch Inclination −90, 0, 90° 

Branch Azimuth 0, 45, 90, 135° 

Inlet Pressure 0 − 10 𝑏𝑎𝑟 

Inlet Fractional Flow 0.03 − 0.99995 

Branch Takeoff 0 − 100% 

Diameter 0 − 5 𝑖𝑛. 

Mixtures Air-Water, 

Air-Kerosene 

Kerosene-Water, 

Water-Silica 

Table 5.1: Parameters of interest in the branched flow database 

Table 5.1 gives the main parameters of interest in the database. In addition to being used 

to calibrate the proposed model, below, the branched flow data gathered was also used to 

test the model. More explanation is given in Section 5.5. Raw data has been graphed in 

Appendix E. 

5.4 MODEL DEVELOPMENT 

 Similar to the Saba-Lahey model, a phase-i momentum balance is considered. The 

control volume is considered to be the pipe junction. 
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Figure 5.8: Control Volume (shaded) of the phase conservation-of-momentum equation 

In the phase conservation equation, the conductive viscous momentum flux is neglected in 

favor of more dominant conductive (pressure) and convective (inertial) momentum fluxes 

(Nagoo A. S., 2003): 

 𝑠𝑖 (
𝐷𝑣𝑖⃗⃗⃗  

𝐷𝑡
) =

∇⃗⃗ (𝑠𝑖𝑃)

𝜌𝑖
+ 𝑠𝑖𝑔 +∑

Γ𝑡𝑜𝑡𝑓→𝑖

𝜌𝑖

𝑁𝑓

𝑓=1

 (5.3) 

In equation (5.3), 𝑠𝑖 is the saturation of phase i, 𝑣𝑖⃗⃗⃗   is the local in-situ velocity of phase i, P 

is the Pressure, 𝜌𝑖 is the phase’s density, and ∑
Γ𝑡𝑜𝑡𝑓→𝑖

𝜌𝑖

𝑁𝑓
𝑓=1

 is the sum of the interfacial forces 

between phase i and the other phases. This equation is an extension of the single-phase 

Euler equation. 

 Next, as shown in Nagoo’s work, the Gauss-Ostrogradskii Divergence theorem can 

be applied to equation (5.3) to arrive at a macroscopic balance equation: 
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∫ 𝜌𝑖𝑠𝑖 (
𝐷𝑣𝑖⃗⃗⃗  

𝐷𝑡
) 𝑑𝑉

𝑉

⏞          

𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑎𝑛𝑑 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚

= − ∫ 𝑛⃗ ⋅ (𝑠𝑖𝑃)𝑑𝐴
𝐴

⏞          
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑓𝑎𝑐𝑒𝑠

+ ∫ (𝑠𝑖𝑔 )𝑑𝑉
𝑉

⏞      

𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

+ ∫ (∑Γ𝑡𝑜𝑡𝑓→𝑖

𝑁𝑓

𝑓=1

)𝑑𝑉
𝑉

⏞            

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑡ℎ𝑟𝑜𝑢𝑔ℎ
 𝑜𝑡ℎ𝑒𝑟 𝑝ℎ𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

+ 𝐹 𝑤−𝑖
⏞

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 
𝑤𝑖𝑡ℎ 𝑤𝑎𝑙𝑙 (𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛)

 

(5.4) 

Where V is the control volume being inspected (the junction), A is the face’s area (typically 

the conduit’s cross-sectional area), and 𝑛⃗  is the unit vector normal to the face A. 

 Equation (5.4) deserves further inspection because the control volume in this case 

is the junction, and instead of two faces where momentum flux can occur (the inlet and the 

outlet of the conduit), there are three (the inlet, branch, and outlet). This can cause 

confusion, especially as the Saba-Lahey model only considers the inlet and branch. 

 As explained in Transport Phenomena by Bird, Stewart, and Lightfoot, inertial and 

pressure forces must be considered at all planes adjacent to the control volume (Bird, 

Stewart, & Lightfoot, 2007). Evaluating equation (5.4): 
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𝑀𝑖〈𝑠𝑖〉 (
Δt(〈〈𝑣1,𝑖〉〉 𝑒 )

Δ𝑡
)

⏞              

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚
 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

= −(𝑠3,𝑖𝑃3𝐴3𝑒 + 𝑠2,𝑖𝑃2𝐴2𝑒 − 𝑠1,𝑖𝑃1𝐴1𝑒 )
⏞                      

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑓𝑎𝑐𝑒𝑠

+ 𝑀𝑖𝑠𝑖𝑔 
⏞  

𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

−𝑀𝑖〈𝑠𝑖𝑣𝑖〉 (
(〈〈𝑣3,𝑖〉〉 𝑒 + 〈〈𝑣2,𝑖〉〉 𝑒 − 〈〈𝑣1,𝑖〉〉 𝑒 )

L
)

⏞                            
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝐹 𝑡𝑜𝑡𝑓−𝑖

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 
𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑜𝑡ℎ𝑒𝑟 𝑝ℎ𝑎𝑠𝑒𝑠
 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

+ 𝐹 𝑤−𝑖
⏞

𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 
𝑤𝑖𝑡ℎ 𝑤𝑎𝑙𝑙 (𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛)

 

(5.5) 

In equation (5.5), the acceleration term has been broken into a spatial and temporal 

acceleration terms. This presents a complication as the control volume being considered, 

and the faces at which momentum transfer is occurring, is neither truly one-dimensional 

nor two-dimensional. The manifold being considered is most accurately described as 1.5-

dimensional as three faces are present for momentum transfer. 

 

(𝑠3,𝑖𝑃3𝐴3 + 𝑠2,𝑖𝑃2𝐴2 − 𝑠1,𝑖𝑃1𝐴1)
1

𝑉𝑐𝑡𝑟𝑙

= 𝜌𝑖𝑠𝑖𝑔𝑠𝑖𝑛(𝜃) −
𝐺1,𝑖
𝐿
(
𝐺3,𝑖
𝜌3,𝑖𝑠3,𝑖

+
𝐺2,𝑖
𝜌2,𝑖𝑠2,𝑖

−
𝐺1,𝑖
𝜌1,𝑖𝑠1,𝑖

)

− 𝜌𝑖𝑠1,𝑖 (
Δt (

𝐺1,𝑖
𝜌1,𝑖𝑠1,𝑖

)

Δ𝑡
) +

1

𝑉𝑐𝑡𝑟𝑙
𝐹 𝑡𝑜𝑡𝑓−𝑖 +

1

𝑉𝑐𝑡𝑟𝑙
𝐹 𝑤−𝑖 

(5.6) 

Here, G represents the phase’s mass flux at a face. Moreover, since steady-state is assumed, 

equation (5.6) becomes: 
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(𝑠3,𝑖𝑃3𝐴3 + 𝑠2,𝑖𝑃2𝐴2 − 𝑠1,𝑖𝑃1𝐴1)
1

𝑉𝑐𝑡𝑟𝑙

= 𝜌𝑖𝑠𝑖𝑔𝑠𝑖𝑛(𝜃) −
𝐺1,𝑖
𝐿
(
𝐺3,𝑖
𝜌3,𝑖𝑠3,𝑖

+
𝐺2,𝑖
𝜌2,𝑖𝑠2,𝑖

−
𝐺1,𝑖
𝜌1,𝑖𝑠1,𝑖

)

+
1

𝑉𝑐𝑡𝑟𝑙
𝐹 𝑡𝑜𝑡𝑓−𝑖 +

1

𝑉𝑐𝑡𝑟𝑙
𝐹 𝑤−𝑖 

(5.7) 

Equation (5.7) represents the functional form of the phase-splitting equation used in this 

work. A few terms need to be explained. Firstly, a volume needs to be assumed for the 

control volume as it does not have a constant cross-sectional area. Additionally, a length 

scale needs to be assumed. As used in the Saba-Lahey model, the mean phase streamline 

is assumed. See equation (2.47), and a derivation can be found in Saba’s dissertation (Saba 

& Lahey, Phase Separation Phenomena in Branching Conduits, 1981). This can be 

described as the average length travelled by the phase in the control volume. The volume 

of the control volume can then be assumed to be the average of the conduits meeting at the 

junction of interest (where the length scale is the diameter of the branch). Finally, an angle 

𝜃 is also needed. This is the angle the mean phase streamline makes with the direction of 

gravity. As the streamline is always a dividing streamline, it will always bisect the angle 

formed by the branch and the outlet in side-branch configurations. Hence it is assumed to 

be the average of the inclinations of the branch and main outlet.  

 Next, the two non-fundamental terms in equation (5.7) need to be specified. As 

explained in Nagoo’s work, the wall-shear term is assumed to be of the form (Nagoo A. , 

2013): 
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 𝜏𝑤 =
𝐹 𝑤−𝑖
𝐴1

= (
𝐾〈𝑣𝑖〉

2
)𝜌𝑖〈𝑣𝑖〉 =

1

2
𝐾𝜌𝑖 (

𝐺1,𝑖
𝜌1,𝑖𝑠1,𝑖

)

2

 (5.8) 

where (
𝐾〈𝑣𝑖〉

2
) is the momentum flux transfer coefficient, and 𝐾 is an empirical coefficient. 

The empirical coefficient used in the Saba-Lahey model is used here with the empirical 

constants modified for the database assembled here: 

 𝐾1,3 = [2.09 + (
𝑚3

𝑚1
)
7.64

+ 1.67 (
𝑚3

𝑚1
)](
𝐴1
𝐴3
) (5.9) 

 For the interfacial shear term, the following model is used: 

 𝜏𝑖 =
𝐹 𝑡𝑜𝑡𝑓−𝑖

𝐴1
=
3

4
𝜌1,𝑖𝑢𝑟1,1−2

2 𝐿 (
𝐶𝐷
𝑑
) (5.10) 

This form is borrowed from the Saba-Lahey model for interfacial shear (Saba & Lahey, 

Phase Separation Phenomena in Branching Conduits, 1981). 𝑢𝑟1,1−2 is the slip velocity 

(〈〈𝑢1,2〉〉 − 〈〈𝑢1,1〉〉), L is the length of the mean phase streamline, and 
𝐶𝐷

𝑑
 is the drag 

coefficient over a length scale. In practical purposes, the length scale manifests for 

dimensional similitude. 

 A variety of models for interfacial shear exists. One common form is: 

 𝜏𝑖 = 𝑠2𝜏 +
1

2
𝜌2|⟨⟨𝑢2⟩⟩|⟨⟨𝑢2⟩⟩𝐶𝐷 (5.11) 

Here, there are two components: a shear term, which is dominant in separated flows (high 

slip), and a drag term, which is dominant in dispersed flows (low slip) (Brooks, Hibiki, & 

Ishii, 2012). Due to the difficulty in quantifying each term in equation (5.11), the shear 

term is often neglected and the modeling is attempted via the drag-coefficient approach. 
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Another form for interfacial shear is to assume a friction factor and treat interfacial 

momentum transfer as in equation (5.8): 

 𝜏𝑖 =
𝐹 𝑡𝑜𝑡𝑓−𝑖

𝐴𝑖𝑛𝑓,1−2
= 𝑓𝜌2〈𝑣2〉

2; 𝑓 = 0.005(1 + 300
𝛿

𝐷
) (5.12) 

This is the form used often in annular flow due to the well-defined interface (Pan, He, Ju, 

Hibiki, & Ishii, 2015). In order to keep the phase-splitting model applicable to all flow 

conditions, such an approach proves difficult, especially as the phase interface becomes 

difficult to quantify. 

 For these reasons, a drag model is used in this phase-splitting model. According to 

Ishii, the interfacial drag term is heavily dependent on slip ratio, Reynold’s number, and 

volume fraction (Brooks, Hibiki, & Ishii, 2012). The following are a few of the models 

proposed in literature: 

Model 𝑪𝑫 𝓵⁄  (𝒎−𝟏) 

Lahey (Churn-turbulent) 

(presented in Saba-Lahey 

model) 

54.9(
𝜌2
𝜌1
𝑠2(1 − 𝑠2)

2 + (1 − 𝑠2)
3) 

Slug 21.8
𝑟𝐷
𝐷
(1 − 𝑠2)

3 

Bubble 24

𝑁𝑅𝑒,𝑏
(1 + 0.1𝑁𝑅𝑒,𝑏

0.75) 

Table 5.2: Common interfacial drag terms (Brooks, Hibiki, & Ishii, 2012) 

 Based on these observations, the follow drag coefficient model is proposed: 

 
𝐶𝐷
𝑑
(𝑚−1) = 3999𝑁𝑅𝑒,1

2.238𝑁𝑅𝑒,2
−2.507𝑁𝐹𝑟,2

0.823(1 − 𝑠2)
−3.121 (5.13) 
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Where 𝑁𝑅𝑒,1 and 𝑁𝑅𝑒,1 are the Reynolds number for the two phases, and 𝑁𝐹𝑟,2 is the Froude 

number for the second phase. The phase Reynolds number can be defined as: 

 𝑁𝑅𝑒,𝑖 = (
𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒
)

1
2
=
𝜌𝑖〈〈𝑣𝑖〉〉𝐷𝐻

𝜇𝑖
 (5.14) 

And the phase Froude number can be defined as: 

 𝑁𝐹𝑟,𝑖 = (
𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝐵𝑢𝑜𝑦𝑎𝑛𝑡 𝑓𝑜𝑟𝑐𝑒
)

1
2
=

〈〈𝑣𝑖〉〉

√𝐷𝐻 (
Δ𝜌
𝜌𝑖
) 𝑔

 (5.15) 

As described in Ishii’s work, it is clear that the Reynolds number plays an important role—

both in terms of drag and in the overall phase-splitting problem. A low Reynolds number 

would lead to more of the carrier phase entering the branch as it is more viscously coupled 

to the lighter phase. Moreover, the Froude number can play a large role in the phase-

splitting problem. In a situation with a vertical branch, the Froude number can quantify 

how buoyancy effects the phase splitting. A low Froude number for the lighter phase would 

mean a more exaggerated phase split in a vertical branch as the buoyant force dominates.  

5.5 MODEL CALIBRATION AND RESULTS 

 To calibrate the phase-splitting model, 30 data points were selected from the 

database that represented the widest array of parameters possible. This included vertical 

tees, horizontal side-arms, vertical side-arms, and impacting tees. Moreover, air-water, air-

kerosene, and kerosene-water mixtures were included, as well as small and large diameter 

datasets, high pressure data, and varying degrees of inlet conditions and takeoffs. While 

the model is theoretically based, the fitting parameters are found empirically by curve 
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fitting. This is one of the major drawbacks of the model. A better fit can always be found 

by adding additional fitting factors and more training data, yet overfitting is an opposing 

threat. Further improvements in this area are possible. The following graph shows the 

measured versus calculated values for fractional flow as the result of the model: 

 

Figure 5.9: Measured versus calculated values of fractional flow at the branch of the 

lighter phase. Points closer to the unit-slope line represent better accuracy. 

For a more thorough explanation of the data used to calibrate the model, see Appendix D. 

Also, Appendix E contains graphs of more raw data for different configurations. 

 Figure 5.10, Figure 5.11, and Figure 5.12 show the effect of mass takeoff with 

increasing inlet fractional flow. These were generated using an inlet mixture velocity of 

2 𝑚/𝑠 and an inlet pressure of 1 𝑎𝑡𝑚. The mixture is assumed to be air-water, and all 

branches were set to be 1 𝑖𝑛. in diameter. A horizontal side-branch configuration is 

assumed. It should be noted that the model predicts a lower phase split of the lighter phase 

at the branch when the takeoff is low. This is seen for values 
𝑚3

𝑚1
< 0.6. This can be seen as 
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a positive sign as overestimation of branch quality and fractional flow is commonplace in 

current models (see Figure 5.7). Moreover, the difference between the no-slip type curves 

and the slip type curves is striking. This reinforces the notion that slip and volume fraction 

are instrumental in determining phase split. 

 

Figure 5.10: Fractional flow at inlet versus fractional flow at outlet using the Nicklin 

fractional flow relationship at different takeoffs. 

 Figure 5.13, below, shows the type curve of the proposed phase-splitting model 

with a vertical side branch with the Woldesmayat & Ghajar fractional flow relationship. 

Here it is readily seen that the branch fractional flow tends to be equal to and larger than 

the inlet fractional flow. This is again expected as data shows an increase phase split with 
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vertical side branches. Moreover, the difference between the type curves in Figure 5.11 

and Figure 5.13 shows how inclination exaggerates phase split.  

 

 

Figure 5.11: Fractional flow at inlet versus fractional flow at outlet using the 

Woldesmayat & Ghajar fractional flow relationship at different takeoffs 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

f 3
,2

f1,2

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.9

0.8



 103 

 

Figure 5.12: Fractional flow at inlet versus fractional flow at outlet assuming no-slip 

fractional flow relationship at different takeoffs. 

 

Figure 5.13: Fractional flow at inlet versus fractional flow at outlet using the 

Woldesmayat & Ghajar fractional flow relationship at different takeoffs with a vertical 

side branch. 
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 Figure 5.14, Figure 5.15, Figure 5.16, and Figure 5.17 show model results (curves) 

against published experimental data. These examples illustrate that despite the generally-

held understanding that the lighter phase is preferentially withdrawn into the branch, the 

data shows that this is often not the case. Figure 5.14 shows the case of a vertical inlet tee 

with a horizontal outlet. One data point stands out in that it is below the equal split line 

whereas the rest are about. This shows that while conventional wisdom is that inertial 

forces are the primary forces, the entire momentum balance needs to be considered. 

 Figure 5.15 and Figure 5.17 give two cases of a side-branch configuration with 

Figure 5.15 having a horizontal side branch and Figure 5.17 having a vertical side branch. 

These data show the branch fractional flow being greater than the inlet fractional flow, and 

the vertical case having an exaggerated branch fractional flow due to the effect of gravity. 

Figure 5.16 shows an impacting tee at two different mass take offs. These data show higher 

takeoffs corresponding to more equal splitting. 
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Figure 5.14: Fractional flow at inlet versus fractional flow at outlet using the 

Woldesmayat & Ghajar fractional flow relationship. 
𝑚3

𝑚1
= 0.3. Points are experimental 

data taken from Davis & Fungtamasan (Davis & Fungtamasan, 1990). Branch 

configuration is a vertical inlet, horizontal side-branch. Unit slope line represents line of 

equal splitting. 

 

Figure 5.15: Fractional flow at inlet versus fractional flow at outlet using the 

Woldesmayat & Ghajar fractional flow relationship at varying takeoffs. Points are 

experimental data taken from Saba (Saba & Lahey, Phase Separation Phenomena in 
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Branching Conduits, 1981). Branch configuration is a horizontal inlet, horizontal side- 

branch. Unit slope line represents line of equal splitting. 

 

Figure 5.16: Fractional flow at inlet versus fractional flow at outlet using the 

Woldesmayat & Ghajar fractional flow relationship at different mass takeoffs. Points are 

experimental data taken from Abu-Mulaweh (Abu-Mulaweh, Al-Halhouli, Hammad, & 

al., 2008). Branch configuration is a horizontal impacting tee. Unit slope line represents 

line of equal splitting. 

 

Figure 5.17: Fractional flow at inlet versus fractional flow at outlet using the 

Woldesmayat & Ghajar fractional flow relationship. 
𝑚3

𝑚1
= 0.2. Points are experimental 
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data taken from Wren (Wren, 2001). Branch configuration is a horizontal inlet, vertical 

side branch. Unit slope line represents line of equal splitting. 

5.6 MODEL LIMITATIONS AND CONCLUSIONS 

 Despite the general applicability of the model, one of the main limitations is 

downward side branches. This is due to limitations in single pipes to model such flows, 

and these fractional flow relationships are used in the model here. Also, as these 

relationships are designed for fully-developed flow in pipes, the issue of entry and exit 

effects further complicate the model. Finally, branch azimuth is not explicitly accounted 

for in the model. Future work should examine how to incorporate this. 

 The type curves presented here suggest that the best way to see an exaggerated 

phase split at the branch is to use the segregating effects of gravity in conjunction with 

higher (
𝑚3

𝑚1
> 0.5) takeoff. During operation, it may not always be possible to specify a 

mass takeoff at such levels, so ensuring the best branch configuration can be instrumental. 

 If the most even phase split is desired, in situations such as having two pumps or 

separators in parallel, using a simple tee or wye junction may not be the most effective way 

to evenly split flow. For instance, in impacting tees, upstream flow conditions can cause 

the mixture velocity profile to be asymmetric, which can lead to an uneven phase split. One 

way to avoid this is to place baffles in the upstream pipe to homogenize the flow (United 

States of America Patent No. US5709468 A, 1998). Another method is to only allow flow 

into one branch at any given time, and change the time a given branch is open. This would 

have an equal phase split, but could cause issues with surging.  

  



 108 

Chapter 6: Summary, Conclusions and Recommendations 

6.1 SUMMARY AND CONCLUSIONS 

This study has investigated solving steady-state, multiphase flow in pipe networks, 

and has formulated a novel approach to the system of equations being solved, based on the 

averaged-flow approach. This approach satisfies both Kirchhoff’s laws and honors the 

averaged-flow framework from which it was developed. The model has been validated 

against existing published data sets as well as published solutions to network problems, 

and the model has been compared to existing network solvers that are commercially 

available. 

An examination of past experimental data on flow splitting indicate the following: 

1. The extent of phase splitting at a junction is not just dependent on the inertial 

forces present. One must consider the entire momentum balance. 

2. The highest degree of phase splitting occurs in vertical side branches. 

Downward branches work exaggerate phase splitting well but present modeling 

challenges. 

3. Phase splitting tends to be exaggerated with increasing slip and increasing 

difference in the two phase’s inertias.  

These important trends have been incorporated into a quantitative relationship that 

includes flow rates, pressures, volume fractions, branch inclination, and inertias. This 

relationship acts as a closure relation for the general mass and momentum balance 

equations for pipe flow networks.  



 109 

A phase splitting model has been developed based on a macroscopic momentum 

balance of the second phase, which is based on Nagoo’s area-averaged approach, and 

borrows elements from Saba- and Lahey’s mechanistic model, which is based on a 

momentum balance of the lighter phase (Saba & Lahey, Phase Separation Phenomena in 

Branching Conduits, 1981). While Saba and Lahey assume homogeneous flow, it has been 

shown in previous work that this is insufficient for a wide variety of circumstances, and 

which is a constant source of error noted in many other works (Nagoo A. , 2013). 

Additionally, this model is extensible to a wide variety of relevant pipe-junction 

configurations seen in industry, which is often a limitation of such models. The developed 

phase-splitting model can be used in network solvers as either additional information in 

place of unknown boundary conditions, or can be used as a tool to check the results of 

existing network solvers. 

6.2 RECOMMENDATIONS 

 As the manifold problem is a subtopic within multiphase flow, the same limitations 

for non-branching systems apply to branching systems. As shown in Nagoo’s work, one of 

the chief necessities is for better saturation-fractional flow closure relationships (Nagoo A. 

, 2013). This is especially relevant in the field of downward flow and in solids flow, where 

few relationships are able to accurately predict saturation. 

 The most important understanding that remains to be seen is the interplay been flow 

development and the manifold problem. The averaged-flow approach used in this work is 

robust, but the closure relationships used have the assumption of fully developed flow. The 

understanding of flow development, even in single-phase flow, is tenuous. Indeed, as 
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Geoffrey Hewitt states, “There will always be a pressure gradient, and under its influence 

the gas velocity will be constantly increasing.” (Nagoo A. , 2013). Indeed, in compressible 

flow there exists a time-independent acceleration, which suggests that the idea of a fully-

developed flow may be looking at the issue from the wrong perspective. The right question 

to ask is under what conditions do entry and outlet effects become insignificant. 

Unfortunately, this is also a poorly understood topic. While Persen suggests that in single-

phase flow a transition length of 60-80 diameters is present, estimates for multiphase flow 

are as high as 800 diameters (Nagoo A. , 2013). 

 Due to the lack of understanding of entry and exit effects on multiphase flow, it is 

difficult to separate those effects from phase-splitting effects at a junction, which acts as a 

de facto exit. Therefore it is of utmost important to have reliable measurements of flow 

conditions at many distances with respect to the junction. The work of Fungtamasan and 

Davis does a good job of this, but the six flow conditions tested are inadequate to draw 

conclusions. Of particular interest is having three branches with at least 800 diameters in 

length connected at a junction. Having reliable volume fraction, pressure, and flow rate 

data along these pipes would help to answer how flow development occurs before and after 

the junction, and how effects downstream affect upstream conditions. Hence, more 

fundamental research into entry and exit effects is important to separate those effects from 

junction effects. 

 Additionally, the development of a comprehensive phase-splitting model has been 

limited. Most attempts at a fully-applicable model start with a conservation equation, and 

in the instance of the Saba-Lahey model, a phase-momentum balance. Accurately modeling 
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interfacial shear is difficult due to constantly changing flow patterns, which can cause 

modeling difficulties. Moreover, the wall shear term can be a modeling challenge due to 

changing flow conditions. While in bubble flow the momentum transfer with the wall may 

occur primarily through the carrier phase, in slug flow, for instance, the lighter phase’s 

contribution to wall shear may not be negligible. This can create a system of compensating 

deficiencies in the phase splitting model. Nevertheless, today’s phase splitting models are 

useful as long as their limitations are kept in mind.
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APPENDICES 

Appendix A: Nomenclature 

A.1  SUBSCRIPTS 

Subscript Meaning 

𝑏 Branch 

𝑖 Phase 

1 Junction Inlet 

2 Junction main outlet 

3 Junction branch 

𝑛 Node 

𝑗 Junction 

𝑙 Liquid 

𝑔 Gas 

𝑚 Mixture 

𝑤 wall 

A.2  SYMBOLS 

Symbol Meaning 

𝑁𝑏 Number of branches in network 

𝑁𝑛 Number of nodes in a network 

𝑁ℓ Number of independent lo 

𝑁𝑝 Number of phases 

𝐾𝑏 Hydraulic resistance 

𝑄 Volumetric flow rate 
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𝑑 Diameter 

𝑚 Mass flow rate 

𝑥 Quality (mass fraction) 

𝐺 Mass flux 

𝐴 Area 

Δ𝑃 Pressure change 

ℎ𝑓 Hydraulic Head 

𝑢 Volume flux (superficial velocity) 

𝑣 In situ velocity 

𝑋𝑡𝑡 Martinelli parameter 

𝐾1,2 Friction coefficient for main run 

momentum balance in Saba and Lahey 

model 

𝐾1,3 Friction coefficient for branch momentum 

balance in Saba and Lahey model 

𝐶𝐷 Drag coefficient 

𝑢𝑟 Slip velocity 

𝑠 Saturation (volume fraction) 

𝑓 Fractional flow 

𝑆𝐺 Specific gravity 

𝐿 Length 

𝐿𝑗 Streamline line in Saba and Lahey model 

𝑍 Gas deviation factor 

𝑇 Temperature 
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𝑅 Universal gas constant 

𝑀𝑤 Molecular weight 

𝐷𝐻 Hydraulic diameter 

A.3  GREEK SYMBOLS 

Symbol Meaning 

𝜌 Density 

𝜇 Viscosity 

𝜎 Interfacial tension 

𝜃 Inclination with respect to horizontal 

𝜙 Azimuth with respect to inlet branch 

𝜏 Shear (𝜏𝑤 is wall shear, 𝜏𝑖 is interfacial 

shear) 
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Appendix B: Solver User Manual 

Appendix B provides a sample input file as well as instructions on how to create a 

new file if necessary. The input file is divided into six sections: junctions, pipes, phases, 

parameters, report, and options. It should be noted that all titles are written in brackets ([]) 

and the semicolon character (;) denotes commenting, so anything on a line written after a 

semicolon is considered to be a comment. The length of spaces between entries is 

irrelevant. The program allows for entering multiple unit types and boundary conditions. 

B.1  INPUT FILE 

B.1.1 Junctions 

 

Figure B.1: Junction section 

 Figure B.1 shows the section of a sample input file for inputting junction 

information.  
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 The first column is for the junction’s ID. This is used in the program to identify the 

node and to identify it in the graph. It is also the location of the node in the incidence 

matrix.  

 The second column is elevation. This is used to calculate the inclination of the pipe 

connecting two nodes.  

 The third column is the demand. This is the flow external to the junction, either 

entering or leaving the network. For multiphase flow, this is a mixture quantity, and can be 

entered by specifying a mass flow rate, a reference-condition volumetric flow rate, or a 

standard-conditions volumetric flow rate. The type of demand specified to be specified is 

denoted in the options section.  

 The fourth column is the pressure boundary condition. One pressure at one node 

should be specified. This may be a separator pressure, or it could be at the location of a 

meter where the pressure is known. Generally speaking, the most downstream pressure, if 

applicable, should be specified.  

 The fifth column is the mass fraction or fractional flow of the external flow. Either 

the mass fraction or the fractional flow may be entered here. It should be noted that the 

fractional value entered here is for the lighter phase.  

 The sixth column is the pressure guess. Only one pressure guess is needed to 

populate the network’s initial values, but the user may enter pressures at every node if they 

choose. This override’s the program’s pressure initialization via the spanning tree. 

 The following columns are optional and are intended to be used for when the phase-

splitting equations are being specified in cases where external boundary conditions are 
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unknown. If no columns are present after the sixth column, the program assumes that the 

problem is well-conditioned, and the equations balance the unknowns. The seventh and 

eighth column (not shown) specifies the azimuth of the branches adjacent to the node. Two 

azimuths are supplied: the azimuth of the branch and run. These are specified as the 

azimuth of the 2nd highest and highest link IDs with respect to the link with the lowest ID. 

For instance, if the branches that are adjacent to a given node are 2, 3, and 5, the azimuths 

specified are between branches 2-3 and 2-5. 

B.1.2  Pipes 

 
Figure B.2: Pipes section of input file 

 Figure B.2 shows the pipes section of a sample input file. Here, all relevant pipe 

parameters are input.  

 The first column is the pipe’s ID. This is used to identify the pipe in the network 

and to properly place the branch in the incidence matrix. 

 The second column is the originating node for the branch. As the incidence matrix 

used in the program is directed, the “Node1” column is the originating node for the pipe. 
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 The third column is the terminating node for the branch. “Node2” is the other node 

that is connected to the pipe. The first three columns are used to set up the entire incidence 

matrix and identify the loops in the network.  

 The fourth column is the length of the pipe. 

 The fifth column is the pipe’s hydraulic diameter. 

 The sixth column is the pipe’s hydraulic roughness. This is used to determine the 

wall shear coefficient (friction factor). 

 The last three columns are optional, and are used to specify the initial guess when 

the user wants to explicitly specify the initial guess for certain parameters. 

 The seventh column is the initial guess for heavier phase’s volume flux (superficial 

velocity).  

 The eighth column is the initial guess for lighter phase’s volume flux (superficial 

velocity). 

 The ninth column is the initial guess for the lighter phase’s volume fraction. 

 The tenth column (not pictured) gives the inclination of the branch. This term is 

optional and the default value of the branch’s inclination is determined from each node’s 

elevation. 

B.1.3  Phases 

 
Figure B.3: Phase section of input file 

 Figure B.3 gives the phase section of the input file.  
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 The first column identifies the phase. The standard notation is for the first phase to 

be the heavier one and the second phase to be the lighter. 

 The second column specifies what kind of phase is identified. Tags can be water, 

air, oil, gas, and solid. 

 The third column is the reference density of the phase. For slightly compressible 

fluids (oil), this is the density at standard conditions. For compressible fluids where an 

equation of state is used to calculate density. This is the initialized value of density for that 

phase in the model. 

 The fourth column specifies the gravity of the phase. For liquids and solids, the 

reference is water, and for gas, the reference is air. This is mainly used in calculating the 

gas deviation factor. 

 The fifth column specifies the compressibility for slightly compressible fluids. Note 

that this term is only active when the compressibility flag is activated. 

 The sixth column is the viscosity. 

B.1.4  Parameters 

 
Figure B.4: Parameters section of input file 

 Figure B.4 gives system parameters of the network. The first line gives the 

temperature to be used in the gas density calculation. The next three lines give mole 

fractions of impurities in the gas. These are used in the gas deviation factor calculations. 
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B.1.5  Report 

 
Figure B.5: Report section of input file 

 Figure B.5 gives a sample report section of the input file. The options that can be 

specified in the report section are: 

Report Tag Options Explanation 

Page 1-255 Optional. Lines per page in 

output file 

Status No/Yes Optional. Status updates 

printed to output file 

Summary No/Yes Summary of network and 

parameters printed to 

output file 

Messages No/Yes Solver messages printed to 

output file 

Nodes None/All/<Node#> Outputs node data to output 

file. Individual nodes can 

be output by specifying 

with numbers separated by 

commas. 

Links None/All/<Link#> Outputs branch data to 

output file. Individual 

branches can be output by 

specifying with numbers 

separated by commas. 

File <filename> Specifies the output file 

name. 

<Variable> Below/above/precision 

<number> 

Variable is output to 

specified to given decimal 

places. Eg: 

Pressure above 4 

Pressure is output to a 

minimum 4 decimal points. 

Table B.1: Report options in input file 
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B.1.6  Options 

 
Figure B.6: Options section of input file 

 Figure B.6 gives a sample options section of the input file. 

Report Tag Options Explanation 

Headloss D-W Darcy-Weisbach friction 

factor used. 

Trials >1 Maximum number of NR 

iterations 

Accuracy 1E-16 - 1E16 Convergence criteria to use. 

CHECKFREQ 1-Trials How often to check for 

convergence. 

MaxCheck Deprecated  

DampLimit Deprecated  

Unbalanced Stop 

Continue <number> 

If maximum trials are 

exceeded, specifies whether 

to stop or continue if the 

convergence criteria is too 

large. Eg: 
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Continue 15 

Table B.2: Numerical options 

Report Tag Options Explanation 

FFmodel Noslip/Wolgha/Butter 

/Nicklin/SLIPRATIO 

Volume fraction – 

fractional flow 

relationship to be used. 

See (Nagoo A. , 2013). 

Compmodel Incompressible/Compressible Liquid density model to 

use 

Gasmodel Ideal/Real Gas model to use 

BCreference Mass/Standard/Reference External flow rate type. 

Mass flow rate, standard 

conditions volumetric 

flow, reference conditions 

volumetric flow 

Table B.3: Network flow and thermodynamic Options 

Report Tag Options Explanation 

IUVolflow CMS Cubic meters per second, 

𝑚3/𝑠 
CFS Cubic feet per second, 

𝑓𝑡3/𝑠 
GPM Gallons per minute, 𝑔𝑎𝑙/𝑚 

AFD Acre-feet per day, 𝑎𝑐𝑟𝑒 −
𝑓𝑡/𝑑 

MGD Million US gallons per 

day, 𝑀𝑀𝑈𝑆𝑔𝑎𝑙/𝑑 

IMGD Million imperial gallons 

per day, 𝑀𝑀𝐼𝑔𝑎𝑙/𝑑 

LPS Liters per second, ℓ/𝑠 
LPM Liters per minute, ℓ/𝑚 

CMH Cubic meters per hour, 

𝑚3/ℎ 

CMD Cubic meters per day, 𝑚3/
𝑑 

MLD Megaliters per day, 𝑀ℓ/𝑑 

IUMassflow KGS Kilograms per second, 

𝑘𝑔/𝑠 
KGM Kilograms per minute, 

𝑘𝑔/𝑚 

KGD Kilograms per day, 𝑘𝑔/𝑑 
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LBS Pounds per second, 𝑙𝑏/𝑠 
LBM Pounds per minute, 𝑙𝑏/𝑚 

LBD Pounds per day, 𝑙𝑏/𝑑 

IUPres PSI Psi 

KPA KiloPascals 

PAS Pascals 

METERS m 

BAR bar 

IUVFlux MPS Meters per second, 𝑚/𝑠 
MPM Meters per minute, 𝑚/𝑚 

MPD Meters per day, 𝑚/𝑑 

FPS Feet per second, 𝑓𝑡/𝑠 
FPM Feet per minute, 𝑓𝑡/𝑚 

FPD Feet per day, 𝑓𝑡/𝑑 

IUElev FEET Feet 

METERS Meters 

MILES Miles 

KMS Kilometers 

INCH Inches 

CM centimeters 

IUViscos PAS Pascal-seconds, 𝑃𝑎 − 𝑠 
CP Centipoise, 𝑐𝑃 

IUDensity KGCM Kilograms per cubic meter, 

𝑘𝑔/𝑚3 

LBCF Pounds per cubic foot, 𝑙𝑏/
𝑓𝑡3 

OUPGradient PSI/FT Psi per ft, 𝑝𝑠𝑖/𝑓𝑡 
PA/M Pascals per meter, 𝑃𝑎/𝑚 

KPA/M Kilopascals per meter, 

𝑘𝑃𝑎/𝑚 

IULength Same as IUElev  

IUDiameter Same as IUElev  

IURough Same as IUElev  

OUMassFlow Same as IUMassFlow  

OUPres Same as IUPres  

OUVolflow Same as IUVolflow  

OUVFlux Same as IUVFlux  

Table B.4: Units options 

Report Tag Options Explanation 
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ConvAccel No/Yes Should convective 

acceleration be considered? 

DontInclude <LinkID> Troubleshooting term; only 

used when loops are 

present. If solver doesn’t 

converge with default 

values, enter the branches 

that you would like to use to 

select the loops. These 

branches will be considered 

the chords in the spanning 

tree.EG: 

1,2,5  

Phasespliteqn No/Yes Should the phase splitting 

equation be solve with the 

other equations present? 

MakeInitialGuess No/Yes Should solver generate 

initial guesses (yes) or are 

initial guesses supplied by 

the user (no)? 

Inclination Elevation/Inclination Specifies if branch 

inclination should be 

specified from the elevation 

or inclination. 

Nodespliteqn <NodeID> Specifies which nodes 

should have the phase 

splitting equation specified. 

Exceptions are thrown 

when more than three 

branches are adjacent to a 

node. EG: 

1,2,3 

Table B.5: Troubleshooting/Misc. options 



 125 

B.2  OUTPUT FILE 

B.2.1 Output Parameters 

 
Figure B.7: Output file parameters 

 Figure B.7 shows a summary of the output parameters in a given simulation run.  

 The Headloss option specifies how wall shear to determined (Darcy-Weisbach vs. 

Hazen Williams). The convective acceleration term says whether or not convective 

acceleration is included in the simulation. 

 The maximum trials row tells how many iterations the Newton-Raphson method 

used in order to solve the system of equations. The convergence error tells the magnitude 

of the convergence error in the solver. The convergence error is the sum of the differences 

between the latest iteration and past iteration variable values. 
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B.2.2 Node Results 

 
Figure B.8: Node Results 

 Figure B.8 shows the results for the nodes in the network simulation. This gives the 

demand and pressure at each node, as wells as the quality, saturation and fractional flow if 

there is a demand at a given node. 

B.2.3 Link Results 

 

Figure B.9: Link Results 

 Figure B.9 shows the simulation results for all links in the network. 
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B.2.4 Equation Residuals 

 

Figure B.10: Equation Residual Results 

 Figure B.10 gives the equation residuals. Values further away from 0 have more 

error than values closer to 0. Each equation is in sequential order according to the link and 

node indices. For example, the fourth pressure drop equation represents the fourth link’s 

pressure drop equation, and the second mass balance equation represents the second node’s 

mass balance equation.  
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Appendix C: Output Files 

C.1 MULTIPHASE NETWORK EXAMPLE 

C.1.1 Original Guess 

****************************************************************** 

  *                    Branched Fractional Flow                    * 

  *                      Hydrodynamic Analysis                     * 

  *                                                                                  * 

  *                         Version 1.1                                      * 

****************************************************************** 

   

    

      Input Data File ................... C:\Users\Jeff Stewart\BFF\n4b5-

2ph_original_guess.inp 

      Number of Junctions................ 4 

      Number of Pipes ................... 5 

      Headloss Formula .................. Darcy-Weisbach 

      Fractional Flow Model.............. Wolgha 

      Liquid Density..................... Incomp 

      Gas Density Model.................. Real 

      Convective Acceleration............ Not included 

      Reporting Criteria: 

         All Nodes 

         All Links 

 

 

      Maximum Trials .................... 15 

      Convergence Error.................. 4.657e-010 

    

  Node Results: 

  ------------------------------------------------------------------------------------------- 

                          Demand       Pressure       MassFrac     Saturation       FracFlow 

  Node                      kg/s            psi                                              

  ------------------------------------------------------------------------------------------- 

  1                       8.0000       350.0000         0.2300         0.7000         0.8817 

  2                      -2.0000       349.9800         0.2300         0.8000         0.8817 

  3                      -4.0000       349.9787         0.2300         0.8000         0.8817 

  4                      -2.0000       349.9773         0.2300         0.7000         0.8817 

Link Results: 

 

 Mass FR 
Pres 
Loss 

FricP 
Loss 

HydroP 
Loss 

ConvP 
Loss 

TotalP 
Grad 

FricP 
Grad 
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Link kg/s psi psi psi psi psi/ft psi/ft 

1 3.8424 0.02 0.02 0 0 0.0061 0.0061 

2 4.1576 0.0213 0.0213 0 0 0.0065 0.0065 

3 0.4797 0.0013 0.0013 0 0 0.0004 0.0004 

4 1.3628 0.0027 0.0027 0 0 0.0008 0.0008 

5 0.6372 0.0014 0.0014 0 0 0.0004 0.0004 

 
HydroP 
Grad 

ConvP 
Grad 

Reynolds 
# 

Ph1 
VolFlux Ph1 Vel 

Ph1 
Dens 

Ph2 
VolFlux 

psi/ft psi/ft  m/s m/s kg/m3 m/s 

0 0 9.31E+11 0.2594 1.5777 998 4.9187 

0 0 9.49E+11 0.2864 1.6853 998 4.9717 

0 0 2.06E+11 0.0256 0.099 998 1.0269 

0 0 2.99E+11 0.0973 0.3687 998 1.4193 

0 0 2.16E+11 0.0391 0.1453 998 1.0534 

 

Ph2 Vel 
Ph2 
Dens Mix Dens 

Slip 
ratio Ph2 Sat 

Ph2 
FracFlow F-Factor 

m/s kg/m3 kg/m3     

5.8863 16.4495 177.8038 3.731 0.8356 0.9499 0.007 

5.9895 16.4494 183.2509 3.5539 0.8301 0.9455 0.007 

1.3846 16.4489 270.0634 13.9898 0.7416 0.9757 0.007 

1.9284 16.4489 275.5629 5.2296 0.736 0.9358 0.007 

1.441 16.4489 280.4773 9.9142 0.731 0.9642 0.007 

 

  Residuals: 

  ---------------------------------------------- 

            Equation                   Residual 

  Equation  Type                          Value 

  ---------------------------------------------- 

  1         "Pressure drop"           4.83e-013 

  2         "Pressure drop"           9.95e-013 

  3         "Pressure drop"           1.04e-012 

  4         "Pressure drop"           7.11e-015 

  5         "Phase 1 Density"        -8.88e-015 

  6         "Phase 1 Density"         0.00e+000 

  7         "Phase 1 Density"         0.00e+000 

  8         "Phase 1 Density"         0.00e+000 

  9         "Phase 1 Density"         0.00e+000 

  10        "Friction factor"         0.00e+000 

  11        "Friction factor"        -6.07e-018 

  12        "Friction factor"         4.16e-017 
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  13        "Friction factor"        -1.10e-016 

  14        "Friction factor"         1.39e-017 

  15        "Phase 1 MB"             -4.77e-017 

  16        "Phase 1 MB"              1.78e-015 

  17        "Phase 1 MB"             -1.62e-014 

  18        "delP definition"         1.73e-014 

  19        "delP definition"         0.00e+000 

  20        "delP definition"         4.66e-010 

  21        "Given Pressure"          4.66e-010 

  22        "Loop"                    0.00e+000 

  23        "Loop"                    1.78e-014 

  24        "Phase 2 Loop"           -1.60e-014 

  25        "Phase 2 Loop"            5.33e-014 

  26        "Phase 2 Density"        -2.84e-014 

  27        "Phase 2 Density"         7.11e-015 

  28        "Phase 2 Density"         0.00e+000 

  29        "Phase 2 Density"        -7.11e-015 

  30        "Phase 2 Density"        -3.55e-015 

  31        "Phase 2 MB"              3.55e-015 

  32        "Phase 2 MB"              1.33e-015 

  33        "Phase 2 MB"              2.78e-016 

  34        "Saturation"             -1.11e-015 

  35        "Saturation"             -7.77e-016 

  36        "Saturation"              0.00e+000 

  37        "Saturation"             -2.63e-014 

  38        "Saturation"              2.22e-016 

  39        "Saturation"             -2.55e-015    

 

C.1.2 Low Guess 

****************************************************************** 

  *                    Branched Fractional Flow                    * 

  *                      Hydrodynamic Analysis                     * 

  *                                                                * 

  *                         Version 1.1                            * 

  

****************************************************************** 

   

    

      Input Data File ................... C:\Users\Jeff Stewart\BFF\n4b5-

2ph_low_guess.inp 

      Number of Junctions................ 4 

      Number of Pipes ................... 5 
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      Headloss Formula .................. Darcy-Weisbach 

      Fractional Flow Model.............. Wolgha 

      Liquid Density..................... Incomp 

      Gas Density Model.................. Real 

      Convective Acceleration............ Not included 

      Reporting Criteria: 

         All Nodes 

         All Links 

 

      Maximum Trials .................... 141 

      Convergence Error.................. 1.691e+004 

    

  Node Results: 

  ------------------------------------------------------------------------------------------- 

                          Demand       Pressure       MassFrac     Saturation       FracFlow 

  Node                      kg/s            psi                                              

  ------------------------------------------------------------------------------------------- 

  1                       8.0000       350.0000         0.2300         0.9000         0.8817 

  2                      -2.0000       349.9843         0.2300         0.9333         0.8817 

  3                      -4.0000       349.9924         0.2300         0.9333         0.8817 

  4                      -2.0000       350.0004         0.2300         0.9000         0.8817 

 

 Mass FR 
Pres 
Loss 

FricP 
Loss 

HydroP 
Loss 

ConvP 
Loss 

TotalP 
Grad 

FricP 
Grad 

Link kg/s psi psi psi psi psi/ft psi/ft 

1 7.1358 0.0157 0.0165 0 -0.0008 0.0002 0.0002 

2 0.8843 0.0076 0.0079 0 -0.0002 0.0001 0.0001 

3 3.2884 -0.0081 0.002 0 -0.01 -0.0001 0 

4 1.8583 -0.016 0.0026 0 -0.0186 -0.0002 0 

5 0.1627 -0.008 0.0005 0 -0.0085 -0.0001 0 

 
HydroP 
Grad 

ConvP 
Grad 

Reynolds 
# 

Ph1 
VolFlux Ph1 Vel 

Ph1 
Dens 

Ph2 
VolFlux 

psi/ft psi/ft  m/s m/s kg/m3 m/s 

0 0 5.32E+11 0.0838 0.2363 998 0.8625 

0 0 3.68E+11 0.0008 0.0026 998 0.6872 

0 -0.0001 2.09E+11 0.0415 0.0756 998 0.2232 

0 -0.0002 2.69E+11 0.0211 0.0341 998 0.2652 

0 -0.0001 1.12E+11 0 0 998 0.1356 

 

Ph2 Vel 
Ph2 
Dens Mix Dens Slip ratio Ph2 Sat 

Ph2 
FracFlow F-Factor 
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m/s kg/m3 kg/m3     

1.3364 16.4496 364.4949 5.6563 0.6454 0.9115 0.007 

1.0091 16.4498 329.4861 394.1765 0.6811 0.9988 0.007 

0.4947 16.4494 555.201 6.5467 0.4511 0.8433 0.007 

0.6998 16.4496 625.9956 20.5491 0.379 0.9262 0.007 

0.3135 16.4498 573.506 5.04E+15 0.4325 1 0.007 

 

  Residuals: 

  ---------------------------------------------- 

            Equation                   Residual 

  Equation  Type                          Value 

  ---------------------------------------------- 

  1         "Pressure drop"             -5.3317 

  2         "Pressure drop"             -1.6274 

  3         "Pressure drop"            -69.1099 

  4         "Pressure drop"           -128.4517 

  5         "Pressure drop"            -58.6803 

  6         "Phase 1 Density"         0.00e+000 

  7         "Phase 1 Density"         0.00e+000 

  8         "Phase 1 Density"         0.00e+000 

  9         "Phase 1 Density"         0.00e+000 

  10        "Phase 1 Density"         0.00e+000 

  11        "Friction factor"        -5.92e-009 

  12        "Friction factor"        -8.46e-009 

  13        "Friction factor"        -5.98e-008 

  14        "Friction factor"        -5.20e-008 

  15        "Friction factor"        -1.70e-007 

  16        "Phase 1 MB"              1.22e-007 

  17        "Phase 1 MB"             -5.99e-007 

  18        "Phase 1 MB"             -1.63e-007 

  19        "delP definition"            0.0371 

  20        "delP definition"            0.0099 

  21        "delP definition"            0.0152 

  22        "Given Pressure"          0.00e+000 

  23        "Loop"                    4.46e-008 

  24        "Loop"                   -4.46e-008 

  25        "Phase 2 Loop"               8.9209 

  26        "Phase 2 Loop"             -15.8714 

  27        "Phase 2 Density"        -5.01e-006 

  28        "Phase 2 Density"        -4.79e-006 

  29        "Phase 2 Density"        -2.48e-006 

  30        "Phase 2 Density"        -3.01e-006 

  31        "Phase 2 Density"        -2.98e-006 
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  32        "Phase 2 MB"                -0.0201 

  33        "Phase 2 MB"                -0.0110 

  34        "Phase 2 MB"                 0.0100 

  35        "Saturation"                 0.0231 

  36        "Saturation"                 0.0170 

  37        "Saturation"                 0.1002 

  38        "Saturation"                -0.0262 

  39        "Saturation"                 0.1472 

 

C.1.3 High Guess 

****************************************************************** 

  *                    Branched Fractional Flow                    * 

  *                      Hydrodynamic Analysis                     * 

  *                                                                * 

  *                         Version 1.1                            * 

  

****************************************************************** 

   

    

      Input Data File ................... C:\Users\Jeff Stewart\BFF\n4b5-

2ph_high_guess.inp 

      Number of Junctions................ 4 

      Number of Pipes ................... 5 

      Headloss Formula .................. Darcy-Weisbach 

      Fractional Flow Model.............. Wolgha 

      Liquid Density..................... Incomp 

      Gas Density Model.................. Real 

      Convective Acceleration............ Not included 

      Reporting Criteria: 

         All Nodes 

         All Links 

 

      Maximum Trials .................... 162 

      Convergence Error.................. 4.361e+002 

    

  Node Results: 

  ------------------------------------------------------------------------------------------- 

                          Demand       Pressure       MassFrac     Saturation       FracFlow 

  Node                      kg/s            psi                                              

  ------------------------------------------------------------------------------------------- 

  1                       8.0000       350.0000         0.2300         0.9000         0.8817 

  2                      -2.0000       349.9876         0.2300         0.9333         0.8817 
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  3                      -4.0000       349.9881         0.2300         0.9333         0.8817 

  4                      -2.0000       349.9876         0.2300         0.9000         0.8817 

 

 Mass FR 
Pres 
Loss 

FricP 
Loss 

HydroP 
Loss 

ConvP 
Loss 

TotalP 
Grad 

FricP 
Grad 

Link kg/s psi psi psi psi psi/ft psi/ft 

1 4.7338 0.0124 0.0132 0 -0.0008 0.0001 0.0001 

2 3.2668 0.0119 0.0119 0 0 0.0001 0.0001 

3 2.4523 -0.0005 0.0011 0 -0.0017 0 0 

4 0.2817 0 0.0018 0 -0.0018 0 0 

5 1.7189 0.0005 0.0011 0 -0.0006 0 0 

 
HydroP 
Grad 

ConvP 
Grad 

Reynolds 
# 

Ph1 
VolFlux Ph1 Vel 

Ph1 
Dens 

Ph2 
VolFlux 

psi/ft psi/ft  m/s m/s kg/m3 m/s 

0 0 4.79E+11 0.0524 0.1373 998 0.7671 

0 0 4.53E+11 0.0322 0.0892 998 0.7663 

0 0 2.09E+11 0.0312 0.045 998 0.1494 

0 0 2.24E+11 0 0 998 0.2347 

0 0 2.29E+11 0.0211 0.0287 998 0.149 

 

Ph2 Vel 
Ph2 
Dens Mix Dens Slip ratio Ph2 Sat 

Ph2 
FracFlow F-Factor 

m/s kg/m3 kg/m3     

1.2402 16.4497 390.8635 9.035 0.6185 0.9361 0.007 

1.1996 16.4497 371.0006 13.4447 0.6388 0.9596 0.007 

0.4873 16.4494 696.9969 10.8245 0.3067 0.8272 0.007 

0.6294 16.4494 631.9303 6.63E+14 0.373 1 0.007 

0.5673 16.4494 740.1413 19.7771 0.2627 0.8757 0.007 

 

Residuals: 

  ---------------------------------------------- 

            Equation                   Residual 

  Equation  Type                          Value 

  ---------------------------------------------- 

  1         "Pressure drop"             -5.5727 

  2         "Pressure drop"             -0.0879 

  3         "Pressure drop"            -11.4482 

  4         "Pressure drop"            -12.4385 

  5         "Pressure drop"             -4.2485 

  6         "Phase 1 Density"         0.00e+000 

  7         "Phase 1 Density"         0.00e+000 
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  8         "Phase 1 Density"         0.00e+000 

  9         "Phase 1 Density"         0.00e+000 

  10        "Phase 1 Density"         0.00e+000 

  11        "Friction factor"        -2.20e-009 

  12        "Friction factor"        -1.14e-010 

  13        "Friction factor"        -4.58e-008 

  14        "Friction factor"        -2.81e-008 

  15        "Friction factor"        -2.59e-008 

  16        "Phase 1 MB"             -7.24e-008 

  17        "Phase 1 MB"              7.18e-007 

  18        "Phase 1 MB"              2.02e-007 

  19        "delP definition"            0.0037 

  20        "delP definition"            0.0015 

  21        "delP definition"            0.0156 

  22        "Given Pressure"          0.00e+000 

  23        "Loop"                    1.49e-013 

  24        "Loop"                    5.41e-009 

  25        "Phase 2 Loop"              -0.5615 

  26        "Phase 2 Loop"               0.4421 

  27        "Phase 2 Density"        -1.99e-007 

  28        "Phase 2 Density"        -1.70e-007 

  29        "Phase 2 Density"        -9.39e-008 

  30        "Phase 2 Density"        -1.04e-007 

  31        "Phase 2 Density"        -9.80e-008 

  32        "Phase 2 MB"                -0.0005 

  33        "Phase 2 MB"                -0.0003 

  34        "Phase 2 MB"                 0.0003 

  35        "Saturation"                -0.0020 

  36        "Saturation"              3.00e-005 

  37        "Saturation"                 0.0310 

  38        "Saturation"                -0.0357 

  39        "Saturation"                -0.0187 

 

C.1.4 Mixed Guess 

****************************************************************** 

  *                    Branched Fractional Flow                    * 

  *                      Hydrodynamic Analysis                     * 

  *                                                                * 

  *                         Version 1.1                            * 

  

****************************************************************** 
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      Input Data File ................... C:\Users\Jeff Stewart\BFF\n4b5-

2ph_mixed_guess.inp 

      Number of Junctions................ 4 

      Number of Pipes ................... 5 

      Headloss Formula .................. Darcy-Weisbach 

      Fractional Flow Model.............. Wolgha 

      Liquid Density..................... Incomp 

      Gas Density Model.................. Real 

      Convective Acceleration............ Not included 

      Reporting Criteria: 

         All Nodes 

         All Links 

 

      Maximum Trials .................... 33 

      Convergence Error.................. 2.132e+001 

    

  Node Results: 

  ------------------------------------------------------------------------------------------- 

                          Demand       Pressure       MassFrac     Saturation       FracFlow 

  Node                      kg/s            psi                                              

  ------------------------------------------------------------------------------------------- 

  1                       8.0000       350.0000         0.2300         0.9000         0.8817 

  2                      -2.0000       350.1979         0.2300         0.9333         0.8817 

  3                      -4.0000       350.3270         0.2300         0.9333         0.8817 

  4                      -2.0000       350.5763         0.2300         0.9000         0.8817 

 

 Mass FR 
Pres 
Loss 

FricP 
Loss 

HydroP 
Loss 

ConvP 
Loss 

TotalP 
Grad 

FricP 
Grad 

Link kg/s psi psi psi psi psi/ft psi/ft 

1 9.5014 -0.1979 0.0505 0 -0.2484 -0.002 0.0005 

2 -1.4526 -0.327 -0.0089 0 -0.3181 -0.0033 -0.0001 

3 11.4814 -0.1291 0.1259 0 -0.2551 -0.0013 0.0013 

4 -3.8777 -0.3784 -0.0331 0 -0.3453 -0.0038 -0.0003 

5 6.0282 -0.2492 0.0438 0 -0.2931 -0.0025 0.0004 

 
HydroP 
Grad 

ConvP 
Grad 

Reynolds 
# 

Ph1 
VolFlux Ph1 Vel 

Ph1 
Dens 

Ph2 
VolFlux 

psi/ft psi/ft  m/s m/s kg/m3 m/s 

0 -0.0025 1.29E+12 0.0846 0.7893 998 2.783 

0 -0.0032 5.43E+11 0 0 998 -1.2096 

0 -0.0026 2.27E+12 0.0764 0.9011 998 4.928 
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0 -0.0035 1.11E+12 -0.0129 -0.1374 998 -2.4433 

0 -0.0029 1.36E+12 0.0341 0.4127 998 2.9508 

 

Ph2 Vel 
Ph2 
Dens Mix Dens Slip ratio Ph2 Sat 

Ph2 
FracFlow F-Factor 

m/s kg/m3 kg/m3     

3.1171 16.4548 121.6544 3.9494 0.8928 0.9705 0.007 

-1.3541 16.458 121.2157 1.87E+10 0.8933 1 0.007 

5.3844 16.4629 99.6596 5.9756 0.9152 0.9847 0.007 

-2.6971 16.4689 108.8299 19.6256 0.9059 0.9947 0.007 

3.2164 16.4721 97.524 7.7934 0.9174 0.9886 0.007 

 

Residuals: 

  ---------------------------------------------- 

            Equation                   Residual 

  Equation  Type                          Value 

  ---------------------------------------------- 

  1         "Pressure drop"          -1712.4343 

  2         "Pressure drop"          -2193.0831 

  3         "Pressure drop"          -1758.7259 

  4         "Pressure drop"          -2380.4285 

  5         "Pressure drop"          -2020.7457 

  6         "Phase 1 Density"         0.00e+000 

  7         "Phase 1 Density"         0.00e+000 

  8         "Phase 1 Density"         0.00e+000 

  9         "Phase 1 Density"         0.00e+000 

  10        "Phase 1 Density"         0.00e+000 

  11        "Friction factor"        -1.15e-008 

  12        "Friction factor"        -3.12e-008 

  13        "Friction factor"        -4.42e-009 

  14        "Friction factor"         6.87e-012 

  15        "Friction factor"        -1.04e-008 

  16        "Phase 1 MB"              1.78e-007 

  17        "Phase 1 MB"              4.58e-007 

  18        "Phase 1 MB"             -1.68e-007 

  19        "delP definition"            0.0117 

  20        "delP definition"            0.0019 

  21        "delP definition"           -0.0295 

  22        "Given Pressure"          0.00e+000 

  23        "Loop"                    9.09e-013 

  24        "Loop"                   -6.82e-013 

  25        "Phase 2 Loop"             -18.9446 
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  26        "Phase 2 Loop"              -9.1688 

  27        "Phase 2 Density"        -2.28e-005 

  28        "Phase 2 Density"        -6.76e-005 

  29        "Phase 2 Density"        -3.18e-005 

  30        "Phase 2 Density"           -0.0001 

  31        "Phase 2 Density"        -8.19e-005 

  32        "Phase 2 MB"                -0.0489 

  33        "Phase 2 MB"                -0.1022 

  34        "Phase 2 MB"                 0.0006 

  35        "Saturation"                 0.0736 

  36        "Saturation"                -0.1067 

  37        "Saturation"                 0.0318 

  38        "Saturation"                -0.0941 

  39        "Saturation"                 0.0605
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Appendix D: Model Training Set 

 

Inlet Branch Outlet

Case File Name (25 characters or less)Phase1Phase2rho1 rho2 u1 u2 sat2 diam incl pres flow regime u1 u2 sat2 diam incl az pres_revu1 u2 sat2 diam incl az pres_rev

Abu.Exp.8 Liquid Gas 995.9245 1.177892 0.602 1.998 NA 0.0254 0 202650 SLUG 0.3507 0.367986 NA 0.0254 0 90 202210 0.251303 1.627443 NA 0.0254 0 -90 201410

Abu.Exp.9 Liquid Gas 995.6817 1.177401 0.657 1.985 NA 0.0254 0 202650 SLUG 0.361746 0.199427 NA 0.0254 0 90 202417 0.295256 1.784203 NA 0.0254 0 -90 202155

Abu.Exp.10 Liquid Gas 995.4601 1.178579 0.712 1.979 NA 0.0254 0 202650 SLUG 0.394804 0.192612 NA 0.0254 0 90 202537 0.317199 1.784264 NA 0.0254 0 -90 202175

Bak.Sep.E1.5 Liquid Gas 797 1.4 0.07 5.1 NA 0.0381 0 120000 Stratified 0.001321 0.877122 NA 0.0381 90 90 120000 0.065151 3.94705 NA 0.0381 90 90 120000

Bak.Sep.E1.6 Liquid Gas 797 1.4 0.07 5.1 NA 0.0381 0 120000 Stratified 0.00055 4.448263 NA 0.0381 90 90 120000 0.066802 0.501213 NA 0.0381 90 90 120000

Bak.Sep.E2.20 Liquid Gas 797 1.4 0.18 3.3 NA 0.0381 0 120000 Slug 0.134595 2.819322 NA 0.0381 90 90 120000 0.053046 0.563864 NA 0.0381 90 90 120000

Els.Two.S4-1 Liquid Gas 998 1.787 0.0403 0.5 NA 0.0378 0 252325 Stratified 0.0403 0.5 NA 0.0378 -90 90 252325 0 0 NA 0.0378 0 90 252325

Els.Two.S4-2 Liquid Gas 998 1.787 0.0404 0.5 NA 0.0378 0 252325 Stratified 0.021156 0.5 NA 0.0378 -90 90 252325 0.019244 0 NA 0.0378 0 90 252325

Els.Two.W2-7 Liquid Gas 998 1.787 0.0403 10.04 NA 0.0378 0 252325 Wavy 0.014481 8.087272 NA 0.0378 -90 90 251352.7 0.014656 8.184929 NA 0.0378 0 90 251352.1

Els.Two.A1-1 Liquid Gas 998 1.787 0.0027 40.01 NA 0.0378 0 252325 Annular 0.0027 40.01 NA 0.0378 -90 90 249742 0 0 NA 0.0378 0 90 251929.2

Wre.Geo.B1-44 Liquid Gas 998 1.17 0.31 4 NA 0.127 0 206325 Stratified 0.017222 1.2 NA 0.0762 0 90 206325 0.3038 3.568 NA 0.127 0 0 206325

Sim.Two.5-5 Liquid Gas 998 1.787 0.0095 4.4 NA 0.0381 0 252325 Stratified-wavy 0.027182 17.58513 NA 0.01905 0 90 251945 0.002704 0.003717 NA 0.0381 0 0 252325

Sim.Two.23-4 Liquid Gas 998 1.787 0.0095 18.3 NA 0.0381 0 251325 Semi-annular 0.018183 92.75348 NA 0.00785 0 90 241261 0.008728 14.36391 NA 0.0381 0 0 251451

Sim.Two.24-1 Liquid Gas 998 1.787 0.002 40.2 NA 0.0381 0 251325 Annular 0.003721 22.26253 NA 0.00785 0 90 250705 0.001842 39.25527 NA 0.0381 0 0 251425

Sab.Pha.D1-45 Liquid Gas 998 2.001844 2.717621 13.68529 NA 0.0381 0 170762.5 Slug 0.802192 7.832788 NA 0.0381 0 90 170762.5 1.916746 2.531013 NA 0.0381 0 0 170762.5

Hwa.Stu.E1-46 Liquid Gas 998 1.650253 1.326494 1.966198 0.54233 0.0381 0 141000 Stratified 0.250321 1.65319 NA 0.0381 0 90 140800 1.076174 0.312689 NA 0.0381 0 0 141000

Azz.Spl.A2-1 Liquid Gas 998 1.198343 0.02 21 NA 0.125 90 253312.5 Annular 0.004 8.4 NA 0.125 0 90 253312.5 0.016 12.6 0 0.125 90 0 253312.5

Azz.Spl.A2-2 Liquid Gas 998 1.198343 0.02 21 NA 0.125 90 253312.5 Annular 0.0062 9.45 NA 0.125 0 90 253312.5 0.0138 11.55 0 0.125 90 0 253312.5

Mak.Spl.R1-1 Liquid Gas 998 1.692937 0.11 10.8 NA 0.005 90 140000 Annular-Churn 0.045316 3.820613 NA 0.005 0 90 140000 0.07022 6.798886 0 0.005 90 0 140000

Mak.Spl.R6-8 Liquid Gas 998 1.692738 0.02 17.27 NA 0.005 90 140000 Annular-Churn 0.019596 9.327003 NA 0.005 0 90 140000 0 7.912909 0 0.005 90 0 140000

Mak.Spl.R7-1 Liquid Gas 998 1.685945 0.25 2.9 NA 0.005 90 140000 Slug 0.257965 2.9 NA 0.005 0 90 140000 0 0 0 0.005 90 0 140000

Pand.Liq.Std.2-9 Liquid Liquid 1000 787 0.17 0.05 NA 0.0254 0 115100 Stratified 0.169573 0.05 NA 0.0254 0 90 115100 0.000427 0 0 0.0254 0 0 115100

Pand.Liq.Std.5-13 Liquid Liquid 1000 787 0.56 0.71 NA 0.0254 0 115100 Stratified-Wavy 0.486797 0.529696 NA 0.0254 0 90 115100 0.073203 0.180304 0 0.0254 0 0 115100

Pand.Liq.Std.8-7 Liquid Liquid 1000 787 0.9 0.05 NA 0.0254 0 115100 Plug 0.840001 0.049938 NA 0.0254 0 90 115100 0.059999 6.21E-05 0 0.0254 0 0 115100

Pand.Liq.Pres.1-15 Liquid Liquid 1000 787 0.07 0.05 NA 0.0254 0 115100 Stratified 0.066048 0.046174 NA 0.0254 0 90 115100 0.003952 0.003826 0 0.0254 0 0 115100

Pand.Liq.Pres.1-16 Liquid Liquid 1000 787 0.07 0.05 NA 0.0254 0 135800 Stratified 0.069088 0.046239 NA 0.0254 0 90 135800 0.000912 0.003761 0 0.0254 0 0 135800

Pand.Liq.Pres.2-27 Liquid Liquid 1000 787 0.28 0.05 NA 0.0254 0 135800 Stratified-Wavy 0.27851 0.04928 NA 0.0254 0 90 135800 0.00149 0.00072 0 0.0254 0 0 135800

Fun.Two.Slip-1 Liquid Gas 998 1.697653 6.836 1.308 0.153 0.05 90 264779.6 0 2.047 0.59 0.218 0.05 0 90 264779.6 4.79 0.745 0.13 0.05 90 0 264779.6

Fun.Two.Slip-2 Liquid Gas 998 1.697653 3.445 1.382 0.276 0.05 90 264779.6 0 1.053 0.689 0.386 0.05 0 90 264779.6 2.414 0.636 0.213 0.05 90 0 264779.6

Fun.Two.Slip-3 Liquid Gas 998 1.697653 3.057 1.774 0.347 0.05 90 264779.6 0 0.95 0.1296 0.537 0.05 0 90 264779.6 2.107 0.516 0.196 0.05 90 0 264779.6

Fun.Two.Slip-4 Liquid Gas 998 1.697653 2.569 2.437 0.442 0.05 90 264779.6 0 0.875 1.895 0.65 0.05 0 90 264779.6 1.681 0.503 0.211 0.05 90 0 264779.6

Fun.Two.Slip-5 Liquid Gas 998 1.697653 1.926 2.862 0.548 0.05 90 264779.6 0 0.588 2.112 0.737 0.05 0 90 264779.6 1.338 0.837 0.354 0.05 90 0 264779.6

Fun.Two.Slip-6 Liquid Gas 998 1.697653 6.836 1.308 0.153 0.05 90 264779.6 0 4.149 1.325 0.23 0.025 0 90 264779.6 5.799 1.047 0.154 0.05 90 0 264779.6

Fun.Two.Slip-7 Liquid Gas 998 1.697653 3.445 1.382 0.276 0.05 90 264779.6 0 1.821 2.044 0.498 0.025 0 90 264779.6 2.989 0.855 0.23 0.05 90 0 264779.6

Fun.Two.Slip-8 Liquid Gas 998 1.697653 3.057 1.774 0.347 0.05 90 264779.6 0 1.837 3.075 0.582 0.025 0 90 264779.6 2.598 1.086 0.281 0.05 90 0 264779.6

Fun.Two.Slip-9 Liquid Gas 998 1.697653 2.569 2.437 0.442 0.05 90 264779.6 0 1.705 4.777 0.685 0.025 0 90 264779.6 2.129 1.256 0.348 0.05 90 0 264779.6

Fun.Two.Slip-10 Liquid Gas 998 1.697653 1.926 2.862 0.548 0.05 90 264779.6 0 1.13 5.777 0.764 0.025 0 90 264779.6 1.643 1.611 0.468 0.05 90 0 264779.6

Rie.Two.Run-186-85 Liquid Gas 996.3772 12.06427 1.03 14.73 NA 0.05 0 1000000 0 0.188109 4.474238 NA 0.05 0 90 1000000 0.841832 10.26057 0 0.05 0 0 1000000

Rie.Two.Run-187-86 Liquid Gas 998.6272 11.86622 1.1 15.07 NA 0.05 0 990000 0 0.228983 5.537066 NA 0.05 0 90 990000 0.871099 9.526049 0 0.05 0 0 990000

Rie.Two.Run-37-129 Liquid Gas 996.0458 9.971322 4.22 10.41 NA 0.05 0 826000 0 1.017179 8.15535 NA 0.05 0 90 826000 3.202306 2.254957 0 0.05 0 0 826000



 140 

Inlet Branch Outlet

Case File Name (25 characters or less)Phase1Phase2rho1 rho2 u1 u2 sat2 diam incl pres flow regime u1 u2 sat2 diam incl az pres_revu1 u2 sat2 diam incl az pres_rev

Abu.Exp.8 Liquid Gas 995.9245 1.177892 0.602 1.998 NA 0.0254 0 202650 SLUG 0.3507 0.367986 NA 0.0254 0 90 202210 0.251303 1.627443 NA 0.0254 0 -90 201410

Abu.Exp.9 Liquid Gas 995.6817 1.177401 0.657 1.985 NA 0.0254 0 202650 SLUG 0.361746 0.199427 NA 0.0254 0 90 202417 0.295256 1.784203 NA 0.0254 0 -90 202155

Abu.Exp.10 Liquid Gas 995.4601 1.178579 0.712 1.979 NA 0.0254 0 202650 SLUG 0.394804 0.192612 NA 0.0254 0 90 202537 0.317199 1.784264 NA 0.0254 0 -90 202175

Bak.Sep.E1.5 Liquid Gas 797 1.4 0.07 5.1 NA 0.0381 0 120000 Stratified 0.001321 0.877122 NA 0.0381 90 90 120000 0.065151 3.94705 NA 0.0381 90 90 120000

Bak.Sep.E1.6 Liquid Gas 797 1.4 0.07 5.1 NA 0.0381 0 120000 Stratified 0.00055 4.448263 NA 0.0381 90 90 120000 0.066802 0.501213 NA 0.0381 90 90 120000

Bak.Sep.E2.20 Liquid Gas 797 1.4 0.18 3.3 NA 0.0381 0 120000 Slug 0.134595 2.819322 NA 0.0381 90 90 120000 0.053046 0.563864 NA 0.0381 90 90 120000

Els.Two.S4-1 Liquid Gas 998 1.787 0.0403 0.5 NA 0.0378 0 252325 Stratified 0.0403 0.5 NA 0.0378 -90 90 252325 0 0 NA 0.0378 0 90 252325

Els.Two.S4-2 Liquid Gas 998 1.787 0.0404 0.5 NA 0.0378 0 252325 Stratified 0.021156 0.5 NA 0.0378 -90 90 252325 0.019244 0 NA 0.0378 0 90 252325

Els.Two.W2-7 Liquid Gas 998 1.787 0.0403 10.04 NA 0.0378 0 252325 Wavy 0.014481 8.087272 NA 0.0378 -90 90 251352.7 0.014656 8.184929 NA 0.0378 0 90 251352.1

Els.Two.A1-1 Liquid Gas 998 1.787 0.0027 40.01 NA 0.0378 0 252325 Annular 0.0027 40.01 NA 0.0378 -90 90 249742 0 0 NA 0.0378 0 90 251929.2

Wre.Geo.B1-44 Liquid Gas 998 1.17 0.31 4 NA 0.127 0 206325 Stratified 0.017222 1.2 NA 0.0762 0 90 206325 0.3038 3.568 NA 0.127 0 0 206325

Sim.Two.5-5 Liquid Gas 998 1.787 0.0095 4.4 NA 0.0381 0 252325 Stratified-wavy 0.027182 17.58513 NA 0.01905 0 90 251945 0.002704 0.003717 NA 0.0381 0 0 252325

Sim.Two.23-4 Liquid Gas 998 1.787 0.0095 18.3 NA 0.0381 0 251325 Semi-annular 0.018183 92.75348 NA 0.00785 0 90 241261 0.008728 14.36391 NA 0.0381 0 0 251451

Sim.Two.24-1 Liquid Gas 998 1.787 0.002 40.2 NA 0.0381 0 251325 Annular 0.003721 22.26253 NA 0.00785 0 90 250705 0.001842 39.25527 NA 0.0381 0 0 251425

Sab.Pha.D1-45 Liquid Gas 998 2.001844 2.717621 13.68529 NA 0.0381 0 170762.5 Slug 0.802192 7.832788 NA 0.0381 0 90 170762.5 1.916746 2.531013 NA 0.0381 0 0 170762.5

Hwa.Stu.E1-46 Liquid Gas 998 1.650253 1.326494 1.966198 0.54233 0.0381 0 141000 Stratified 0.250321 1.65319 NA 0.0381 0 90 140800 1.076174 0.312689 NA 0.0381 0 0 141000

Azz.Spl.A2-1 Liquid Gas 998 1.198343 0.02 21 NA 0.125 90 253312.5 Annular 0.004 8.4 NA 0.125 0 90 253312.5 0.016 12.6 0 0.125 90 0 253312.5

Azz.Spl.A2-2 Liquid Gas 998 1.198343 0.02 21 NA 0.125 90 253312.5 Annular 0.0062 9.45 NA 0.125 0 90 253312.5 0.0138 11.55 0 0.125 90 0 253312.5

Mak.Spl.R1-1 Liquid Gas 998 1.692937 0.11 10.8 NA 0.005 90 140000 Annular-Churn 0.045316 3.820613 NA 0.005 0 90 140000 0.07022 6.798886 0 0.005 90 0 140000

Mak.Spl.R6-8 Liquid Gas 998 1.692738 0.02 17.27 NA 0.005 90 140000 Annular-Churn 0.019596 9.327003 NA 0.005 0 90 140000 0 7.912909 0 0.005 90 0 140000

Mak.Spl.R7-1 Liquid Gas 998 1.685945 0.25 2.9 NA 0.005 90 140000 Slug 0.257965 2.9 NA 0.005 0 90 140000 0 0 0 0.005 90 0 140000

Pand.Liq.Std.2-9 Liquid Liquid 1000 787 0.17 0.05 NA 0.0254 0 115100 Stratified 0.169573 0.05 NA 0.0254 0 90 115100 0.000427 0 0 0.0254 0 0 115100

Pand.Liq.Std.5-13 Liquid Liquid 1000 787 0.56 0.71 NA 0.0254 0 115100 Stratified-Wavy 0.486797 0.529696 NA 0.0254 0 90 115100 0.073203 0.180304 0 0.0254 0 0 115100

Pand.Liq.Std.8-7 Liquid Liquid 1000 787 0.9 0.05 NA 0.0254 0 115100 Plug 0.840001 0.049938 NA 0.0254 0 90 115100 0.059999 6.21E-05 0 0.0254 0 0 115100

Pand.Liq.Pres.1-15 Liquid Liquid 1000 787 0.07 0.05 NA 0.0254 0 115100 Stratified 0.066048 0.046174 NA 0.0254 0 90 115100 0.003952 0.003826 0 0.0254 0 0 115100

Pand.Liq.Pres.1-16 Liquid Liquid 1000 787 0.07 0.05 NA 0.0254 0 135800 Stratified 0.069088 0.046239 NA 0.0254 0 90 135800 0.000912 0.003761 0 0.0254 0 0 135800

Pand.Liq.Pres.2-27 Liquid Liquid 1000 787 0.28 0.05 NA 0.0254 0 135800 Stratified-Wavy 0.27851 0.04928 NA 0.0254 0 90 135800 0.00149 0.00072 0 0.0254 0 0 135800

Fun.Two.Slip-1 Liquid Gas 998 1.697653 6.836 1.308 0.153 0.05 90 264779.6 0 2.047 0.59 0.218 0.05 0 90 264779.6 4.79 0.745 0.13 0.05 90 0 264779.6

Fun.Two.Slip-2 Liquid Gas 998 1.697653 3.445 1.382 0.276 0.05 90 264779.6 0 1.053 0.689 0.386 0.05 0 90 264779.6 2.414 0.636 0.213 0.05 90 0 264779.6

Fun.Two.Slip-3 Liquid Gas 998 1.697653 3.057 1.774 0.347 0.05 90 264779.6 0 0.95 0.1296 0.537 0.05 0 90 264779.6 2.107 0.516 0.196 0.05 90 0 264779.6

Fun.Two.Slip-4 Liquid Gas 998 1.697653 2.569 2.437 0.442 0.05 90 264779.6 0 0.875 1.895 0.65 0.05 0 90 264779.6 1.681 0.503 0.211 0.05 90 0 264779.6

Fun.Two.Slip-5 Liquid Gas 998 1.697653 1.926 2.862 0.548 0.05 90 264779.6 0 0.588 2.112 0.737 0.05 0 90 264779.6 1.338 0.837 0.354 0.05 90 0 264779.6

Fun.Two.Slip-6 Liquid Gas 998 1.697653 6.836 1.308 0.153 0.05 90 264779.6 0 4.149 1.325 0.23 0.025 0 90 264779.6 5.799 1.047 0.154 0.05 90 0 264779.6

Fun.Two.Slip-7 Liquid Gas 998 1.697653 3.445 1.382 0.276 0.05 90 264779.6 0 1.821 2.044 0.498 0.025 0 90 264779.6 2.989 0.855 0.23 0.05 90 0 264779.6

Fun.Two.Slip-8 Liquid Gas 998 1.697653 3.057 1.774 0.347 0.05 90 264779.6 0 1.837 3.075 0.582 0.025 0 90 264779.6 2.598 1.086 0.281 0.05 90 0 264779.6

Fun.Two.Slip-9 Liquid Gas 998 1.697653 2.569 2.437 0.442 0.05 90 264779.6 0 1.705 4.777 0.685 0.025 0 90 264779.6 2.129 1.256 0.348 0.05 90 0 264779.6

Fun.Two.Slip-10 Liquid Gas 998 1.697653 1.926 2.862 0.548 0.05 90 264779.6 0 1.13 5.777 0.764 0.025 0 90 264779.6 1.643 1.611 0.468 0.05 90 0 264779.6

Rie.Two.Run-186-85 Liquid Gas 996.3772 12.06427 1.03 14.73 NA 0.05 0 1000000 0 0.188109 4.474238 NA 0.05 0 90 1000000 0.841832 10.26057 0 0.05 0 0 1000000

Rie.Two.Run-187-86 Liquid Gas 998.6272 11.86622 1.1 15.07 NA 0.05 0 990000 0 0.228983 5.537066 NA 0.05 0 90 990000 0.871099 9.526049 0 0.05 0 0 990000

Rie.Two.Run-37-129 Liquid Gas 996.0458 9.971322 4.22 10.41 NA 0.05 0 826000 0 1.017179 8.15535 NA 0.05 0 90 826000 3.202306 2.254957 0 0.05 0 0 826000
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Appendix E: Raw Data 

 
Figure E.1: Fractional flow at inlet versus fractional flow at branch for a horizontal side-

branch configuration. Points are experimental data from various studies (Riemann, 

Brinkmann, & Domanski, 1988) (Lahey & Hwang, A Study on Phase Separation 

Phenomena in Branching Conduits, 1986) (Pandey, Gupta, Chakrabarti, Das, & Ray, 

2006) (Nasr-El-Din, Masliyah, & Afacan, 1989) (Conte, 2001) (Wren, 2001) (Walters, 

Soliman, & Sims, 1998) (Saba & Lahey, Phase Separation Phenomena in Branching 

Conduits, 1981) . The unit slope line is the equal splitting line. 
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Figure E.2: Fractional flow at inlet versus fractional flow at branch for a horizontal side-

branch configuration with a 45° azimuth. Points are experimental data from Lahey & 

Hwang at different takeoffs (Lahey & Hwang, A Study on Phase Separation Phenomena 

in Branching Conduits, 1986). The unit slope line is the equal splitting line. 
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Figure E.3: Fractional flow at inlet versus fractional flow at branch for a horizontal side-

branch configuration with a 135° azimuth. Points are experimental data from Lahey & 

Hwang at different takeoffs (Lahey & Hwang, A Study on Phase Separation Phenomena 

in Branching Conduits, 1986). The unit slope line is the equal splitting line. 
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Figure E.4: Fractional flow at inlet versus fractional flow at branch for a vertical side-

branch configuration. Points are experimental data from various studies (Riemann, 

Brinkmann, & Domanski, 1988) (Nasr-El-Din, Masliyah, & Afacan, 1989) (Wren, 2001) 

. The unit slope line is the equal splitting line. 
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Figure E.5: Fractional flow at inlet versus fractional flow at branch for a downward 

vertical side-branch configuration. Points are experimental data from various studies 

(Riemann, Brinkmann, & Domanski, 1988) (Wren, 2001) (Baker, 2003). The unit slope 

line is the equal splitting line. The scatter seen in the data below the equal split line are 

due to other differences in the inlet conditions (flow rates, pressures, etc.) and takeoff. 
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Figure E.6: Fractional flow at inlet versus branch, with example data taken from vertical 

inlet, horizontal side-branch junctions. Experimental data collected from published 

articles (Conte, 2001) (Mak, Omebere-Iyari, & Azzopardi, 2006) (Azzopardi, The Split 

of Vertical Annualar Flow at a Large Diameter T Junction, 1994) (Davis & Fungtamasan, 

1990). Columns of data represent data at different mass takeoffs. 
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