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Stellar feedback created by radiation and winds from massive stars

plays a significant role in both physical and chemical evolution of molecular

clouds. This energy and momentum leaves an identifiable signature (“bub-

bles”) that affect the dynamics and structure of the cloud. Most bubble

searches are performed “by-eye”, which are usually time-consuming, subjec-

tive and difficult to calibrate. Automatic classifications based on machine

learning make it possible to perform systematic, quantifiable and repeatable

searches for bubbles. We employ a previously developed machine learning

algorithm, Brut, and quantitatively evaluate its performance in identifying

bubbles using synthetic dust observations. We adopt magneto-hydrodynamics

simulations, which model stellar winds launching within turbulent molecular

clouds, as an input to generate synthetic images. We use a publicly avail-

able three-dimensional dust continuum Monte-Carlo radiative transfer code,

hyperion, to generate synthetic images of bubbles in three Spitzer bands
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(4.5 µm, 8 µm and 24 µm). We designate half of our synthetic bubbles as a

training set, which we use to train Brut along with citizen-science data from

the Milky Way Project. We then assess Brut ’s accuracy using the remaining

synthetic observations. We find that after retraining Brut ’s performance in-

creases significantly, and it is able to identify yellow bubbles, which are likely

associated with B-type stars. Brut continues to perform well on previously

identified high-score bubbles, and over 10% of the Milky Way Project bubbles

are reclassified as high-confidence bubbles, which were previously marginal or

ambiguous detections in the Milky Way Project data. We also investigate the

size of the training set, dust model, evolution stage and background noise on

bubble identification.
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Chapter 1

Introduction

During the process of star formation, stellar feedback plays a signifi-

cant role in both physical and chemical evolution of molecular clouds [19, 17].

One of the most important feedback mechanisms is mass-loss [26]. There are

two typical manifestations of stellar winds: protostellar outflows, which are of-

ten highly collimated, and radiatively driven winds from main sequence stars,

which are more isotropic [8, 1, 2, 28]. Both type of stellar winds inject mo-

mentum and energy into the environment, and thereby affect the dynamics

and structure of the parent molecular cloud.

Recent observational studies have shown that the momentum and en-

ergy injected by stellar winds are one or more orders of magnitude larger than

those of outflows owing to their larger volume and longer lifetime [2, 28]. Arce

et al. [2] found that the energy injection rate from these stellar winds is com-

parable to the turbulent dissipation rate in the Perseus molecular cloud, which

means that in the current epoch, stellar feedback is sufficient to maintain the

observed turbulence in Perseus. A similar conclusion was also reached by Li

et al. [28] in the Taurus molecular cloud. It is notable that both regions are

low-mass star forming regions, and high-mass stars, which generally dominate
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feedback energetics are absent.

Simulations confirm the significant kinematic impact due to stellar feed-

back on the global star formation process. Winds can replenish energy dissi-

pated by turbulence and also trigger star formation by compressing the cloud

[9, 30, 10, 11, 12, 33, 48]. Winds can also gradually ablate the molecular

material from forming stellar clusters [43]. Offner and Arce [35] quantified

the stellar wind mass-loss rates for individual stars, which they found must

be greater than 10−7 M� yr−1 to be consistent with observations. Addition-

ally, ionizing radiation feedback from O-stars also influences the morphology

of clouds and the formation of stars [10, 11, 12, 18, 23].

Despite many observational and theoretical studies, the importance and

impact of feedback on molecular clouds remain debated. This is because wind

signatures are difficult to identify and quantify. Most bubble searches are done

“by eye” [8, 2, 28]. For example, over 35,000 citizen scientists participated in

the Milky Way Project [MWP, 46] in order to identify bubbles in Spitzer im-

ages. This approach is time-consuming, subjective and difficult to calibrate

[4]. Analyzing the completeness of visually identified bubbles, which has a

significant effect on the estimation of the injected momentum and energy, re-

mains a great challenge. However, automatic classifications driven by machine

learning approaches enable systematic, quantifiable and repeatable searches to

identify bubbles [3, 4].

One of the most popular types of machine learning algorithms in as-

tronomical classification is “Random Forests” [e.g. 7, 4, 29], which are based
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on decision trees. A decision tree is a data structure which classifies feature

vectors by computing a series of constraints, and propagating vectors down

the tree based on whether these constraints are satisfied. Compared to other

machine learning approaches, the Random Forests approach does well in clas-

sifying problems that have a large number of feature dimensions [6]. Beaumont

et al. [4] developed an algorithm Brut based on Random Forests and applied

it to classifying bubbles in the Milky Way. For each bubble, they defined a

“score”, which is related to the probability that a given structure is a bubble.

After conducting a blind search in the Milky Way, they found a substantial

population of low-score bubble candidates not in MWP catalog produced by

citizen scientists. In other words, citizen scientists are likely to miss a signifi-

cant number of bubbles, but machine leaning can compensate for some of this

incompleteness.

Increasingly rich and detailed data of the local ISM and star-forming

regions are available, such as GLIMPSE [Galactic Legacy Infrared Mid-Plane

Survey Extraordinaire, 5], Hi-GAL [Herschel infrared Galactic Plane, 31] Sur-

vey and GALFA-HI [The Galactic Arecibo L-band Feed Array HI, 36] Survey.

Parsing these extensive data visually is prohibitively time-consuming but is

possible with the aid of machine learning algorithms.

There are two main types of machine learning algorithms: unsupervised

learning and supervised learning. Unsupervised learning algorithms make their

own criteria to discover structure in the data. An algorithm that learns from a

training dataset and makes decisions based on the input “knowledge” is called
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supervised learning. Supervised learning iteratively makes predictions on the

training data and is corrected by the input training dataset. Consequently,

the training dataset plays a significant role in the performance accuracy.

One fundamental problem with visual identification is that bubbles

identified “by eye” are not objective and can be incorrect, such that machine

learning approaches trained using flawed visual data will in turn produce de-

fective identifications. In addition, there is no independent, quantitative as-

sessment for completeness or any clear metric to determine how well bubbles

are actually identified. One solution is to use realistic simulations, where feed-

back properties are known and well-defined. Such simulations can evaluate the

accuracy of the training data and, in turn, supplement the original training

dataset.

In this paper, we assess the performance of Brut in identifying bub-

bles using synthetic observations. We produce synthetic dust observations of

bubbles in simulations. We use these as a supplemental training set to retrain

Brut and test the performance of retrained Brut in classifying both synthetic

bubbles and observed bubbles. We describe the method we use to construct

synthetic observations and the details of the machine learning algorithm in

Chapter 2. We compare and discuss several synthetic observation models in

Chapter 3. In Chapter 4, we present the performance of retrained Brut in

classifying both synthetic bubbles and observed bubbles. We summarize our

results and conclusions in Chapter 5.
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Chapter 2

Methods

2.1 Hydrodynamic Simulations

We adopt the magneto-hydrodynamics simulations from Offner and

Arce [35], which aim to model winds from intermediate-mass stars and explore

their impact on cloud morphology and turbulence. The simulations model a

piece of a molecular cloud with length of L = 5 pc, mass of M = 3762 M�

and periodic boundary conditions. The initial cloud temperature is T = 10

K. The initial density and velocity conditions are set through driving the gas

without gravity by adding random large-scale perturbations to the velocity

field. These simulations share the same Alfvén Mach number 2.3 but their

magnetic field distributions are spatially different at the initial time. Their

velocity and density Fourier spectral slopes are comparable to S(k) ∝ k−1.7

and S(k) ∝ k−1.3, respectively. The turbulence is initially external driving but

ceases when the stellar sources are inserted and the begin feedbacks. Table 2.2

lists the parameters of these models. More details about the simulations can

be found in Offner and Arce [35].

We adopt outputs from the strong wind run in which five stellar sources

with different mass-loss rates are randomly placed. The number density of
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Table 2.1: Physical Parameters of the Stellar Sources
ID M (M�) L (103 L�) T (104 K) Ṁ (10−7M�yr−1)
1 3.8 0.19 2.3 0.35
2 10.4 6.3 3.8 9.1
3 12.2 10.3 3.6 17.7
4 13.1 12.8 3.1 12.4
5 12.4 10.8 2.6 2.5

sources is similar to that in Perseus. These sources are all B-type stars with

the mass-loss rates ranging from 2.6×10−8 – 1.8×10−5 M� yr−1. Table 2.1

lists the physical parameters of each of the five stellar sources. In this work,

we explored outputs with different evolution stages and different turbulence

realizations.

2.2 Hyperion

We use the publicly available three-dimensional dust continuum Monte-

Carlo radiative transfer code hyperion [42] to generate synthetic observations

of the simulations described in Section 2.1. We adopt the gas density and

temperature distributions from the outputs listed in Table 2.2 and the stellar

properties from Table 2.1 as inputs. hyperion assumes stars radiate as a

blackbody.

Assumptions about the dust properties strongly influence the resulting

emission. A variety of models for ISM dust have been proposed in the literature

[e.g. 24, 13, 25], and we explore four different models in this work. Following

Koepferl et al. [25], we combine three different dust grain models with 80.63%
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Table 2.2: Model Propertiesa

Model ti (tcross) trun (Myr)
T1 t1b 1.6 0.1
T2 t1c 2.0 0.1
T2 t0 2.0 0.05
Notes:
a Model name, the initial start time in crossing
times and the evolutionary time. All models have
L = 5 pc, M = 3762 M� Ti = 10 K and initial
B=13.5 µG.
b Output corresponding to the model “W1 T1”
with an evolutionary time of 0.1 Myr in Offner and
Arce [35].
c Output corresponding to the model “W1 T2” in
Offner and Arce [35].

big grains (>200 Å), 13.51% smaller dust species, called very small grains

(20–200 Å, vsg), and 5.86% PAH molecules, called ultra-small grains (<20 Å,

usg). We label this dust model “K16” in the following discussion. We assume

a moderate gas-to-dust ratio of 100 [44] and adopt a regular Cartesian grid

with young stars embedded within. We calculate the emission for 20 different

angular views and convolve the spectra with the Spitzer transmission curve

[38, 21] to generate synthetic images in three Spitzer bands (4.5, 8, 24 µm).

Figure 2.1 shows synthetic bubble images of the five sources with 20 different

viewing angles.

In addition to the K16 dust model above, we adopt three other com-

monly used dust models to produce synthetic observations:

(1). “kmh” dust model [24], which consists of astronomical silicates, graphite,
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and carbon with full scattering properties,

(2). “Draine” dust model [13], which is mainly Milky-Way carbonaceous-

silicate grains,

(3). “IPS” dust model [45], which represents “iron-poor” silicate dust.

Figure 2.2 shows synthetic images adopting the kmh dust model. The

synthetic observations adopting the Draine and IPS dust models are similar to

those adopting the kmh dust model, so we only include images with the kmh

model.

The SEDs of different dust models show distinct differences, especially

at 8 µm where PAH emission dominates. We extract the observed spectra

of the main molecular cloud of Ophiuchus, LDN 1688 [39] and compare the

SEDs of the different dust models as shown in Figure 2.3. The K16 dust model

appears to be more realistic since it includes PAH emission while the other

models lack PAH emission around 8 µm. Since the SEDs of the kmh model,

Draine model, and the IPS model have a similar intensity at 4.5 µm, 8 µm

and 24 µm, the Draine and IPS three-color synthetic images look similar to

the kmh model shown in Figure 2.2. The interiors of the bubbles in Figure 2.2

appear to be redder. This is because the 24 µm emission is stronger, but they

lack 8 µm emission, compared to Figure 2.1. Consequently, we adopt the K16

dust model for the remainder of the analysis.
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Figure 2.1: Three-color synthetic images of five sources with 20 different view-
ing angles adopting the dust model in Koepferl et al. [25]. Red, green and blue
represents 24 µm, 8 µm and 4.5 µm emission, respectively.

Figure 2.2: Same as Figure 2.1 but adopting the kmh dust model in Kim et al.
[24].
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Figure 2.3: The SEDs of different dust models compared with the spectra of
the Ophiuchus cloud LDN 1688 observed by Rawlings et al. [39].
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2.3 Brut

Brut is a machine learning algorithm developed to identify bubbles in

infrared images of the Galactic midplane [4]. Brut uses a Random Forest

approach that is based on decision trees. A decision tree is a data structure

that classifies a set of features, i.e., a numerical vector that describes the

properties of each region. Brut computes a series of constraints and propagates

the features down the tree based on whether these constraints are satisfied.

Brut defines four features, which extract the most useful information about

the difference between bubble and non-bubble images. It concatenates them

into a single feature vector to carry out the classification.

Beaumont et al. [4] adopted bubbles identified by citizen scientists from

the Milky Way Project as a training set. We include this same data for our

analysis. The training set consists of 468 visually identified bubbles and 2289

random fields that are not centered on a bubble. Brut has three forests on

different subsets of the sky, which we denote r1, r2 and r3. Each forest is

trained using examples from two-thirds of the survey area and then tested

using the remaining one-third area, as shown in Table 2.3. The illustration of

the zones can be found in Figure 7 in Beaumont et al. [4].

After training, Brut returns a score related to the probability that a

given structure is a bubble. If P is the probability that a given structure

belongs to the bubble set, the Brut score is defined as 2P − 1, where -1 is un-

likely to be a bubble and +1 is very likely. To find the threshold score for true

bubbles, Beaumont et al. [4] conduct a survey using experienced astronomers.
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Table 2.3: Random Forest Zone

Random Forest Name Training Zone (l) a Test Zone (l)
r1 3n+ 0.5◦ ≤ l < 3n+ 1.5◦ b 3n+ 1.5◦ ≤ l < 3n+ 3.5◦ d

r2 3n+ 1.5◦ ≤ l < 3n+ 2.5◦ 3n− 0.5◦ ≤ l < 3n+ 1.5◦

r3 3n− 0.5◦ ≤ l < 3n+ 0.5◦ c 3n+ 0.5◦ ≤ l < 3n+ 2.5◦

Notes:
a The training zones are interleaved across all lon-
gitudes.
b n is an integer ranging from 0 to 119.
c When n is 0, the training zone is 359.5◦(−0.5◦) ≤
l < 0.5◦

d When n is 119, the test zone is 358.5◦ ≤ l <
0.5◦(360.5◦)

They find about 50% of astronomers are likely to judge a region with a Brut

score of 0.2 as a bubble. Consequently, they set 0.2 as the minimum acceptable

score.
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Chapter 3

Synthetic Observations

We adopt models with different evolutionary stages and turbulence

properties as listed in Table 2.2 and consider different dust models in the

synthetic observations.

3.1 Cropped Data

When carrying out the synthetic observations, we exploit the periodic

nature of the simulation domain and wrap the data so all views have com-

plete N3 voxels, where N is the number of pixels in one dimension. However,

for large image sizes (L ≥ 3 pc), the Monte Carlo calculation becomes pro-

hibitively expensive at the resolution we require. Instead, we crop the data

into cubes of length 2.2 pc and 3 pc with each individual stellar object at the

center.

Figure 3.1 and 3.2 show the cropped synthetic bubble images. Com-

pared with Figure 2.1, in which the bubbles are embedded in the molecular

cloud, the synthetic bubble images of the cropped data (Figure 3.1 and 3.2)

are less extincted but the morphology does not change significantly. They ap-

pear to be a little bit brighter and bluer, which means the shorter wavelength
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emission is less attenuated. Another advantage of this strategy is that the

synthetic bubble images are not contaminated by as much foreground or back-

ground emission. For example, the bottom row of Figure 2.1 is contaminated

by the bubble from the source in the third row. Although observational data

likely have overlapping bubbles, most bubbles identified by citizen scientists

in MWP tend to be isolated. Consequently, we adopt the cropping strategy

to generate the synthetic bubble images in the following discussion.

Figure 3.1: Three-color synthetic images adopting the K16 dust model where
the hyperion input is cropped to 2.2 pc.

Figure 3.2: Three-color synthetic images adopting the K16 dust model where
the hyperion input is cropped to 3 pc.
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3.2 Evolutionary Stage

The morphology of the bubbles changes with time as the winds expand

into the cloud and interact with the surrounding gas. At earlier evolutionary

stages, the bubbles are more compact compared with those at later stages,

which have undergone additional expansion driven by the stellar wind. Fig-

ure 3.3 shows younger bubbles (“T2 t0” listed in Table 2.2). The bubbles at

the earlier time appear brighter in the center, owing to their compact and

concentrated structure.

Figure 3.3: Three-color synthetic images at an earlier evolution stage with
0.05 Myr (“T2 t0” listed in Table 2.2) where the hyperion input is cropped
to 3 pc.

3.3 Turbulent Realization

We also analyze a simulation with different initial turbulence. The

synthetic observation process remains the same as described above, where we

crop the hyperion input data cube and use the K16 dust model. Figure 3.4

shows the synthetic images with different initial turbulence (“T1 t1” listed in

Table 2.2).
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“T1 t1” and “T2 t1” have the same initial mean magnetic field, ratio

of thermal to magnetic pressure, mean density, and stellar properties, but the

shape of the bubbles are distinctly different owing to the different density dis-

tribution of the cloud material. Since the turbulent structure of real molecular

clouds is varied, we adopt different initial turbulence to explore the diversity

of bubble morphology and enrich our training dataset.

Figure 3.4: Three-color synthetic images with different turbulence where the
hyperion input is cropped to 3 pc.

3.4 Noise

The synthetic images are smooth, which is distinct from real observa-

tional images, which have fluctuations produced by noise. It is important that

the training data be as close as possible to the observational data to reduce

bias in detection caused by differences. To make the synthetic images more

realistic, we identify patches of GLIMPSE data that are removed from the

Galactic plane and have low signal to noise (S/N). We add these “stamps” to

the synthetic images using the same S/N as the GLIMPSE data, where S/N

∼ 8. Figure 3.5 shows the synthetic bubble images with noise.
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Figure 3.5: Three-color synthetic images with noise. From top to bottom:
Figure 2.1, 3.1 and 3.2 with noise added.
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Chapter 4

Results

4.1 Retraining Brut with Synthetic Observation

We divide all the synthetic images into two equal parts. One half acts as

a training data set, which we use to supplement the original MWP bubble set.

The remainder serve as a test set, which allows us to assess the performance

of the retrained algorithm. We summarize all the synthetic images we use in

the training and testing sets in Table 4.1.

We analyze the performance of the three Random Forests before and

after supplementing with the new training data. First, we retrain Brut using

the synthetic images without noise (IDs 1-7 in Table 4.1). Figure 4.1 shows the

performance with the original training and the algorithm retrained on noiseless

synthetic images on the test bubbles. Table 4.2 briefly describes the meaning

of labels in Figure 4.1. The scores returned after retraining on the noiseless

data are significantly higher than those given by the original training. After

retraining, the feature vector more accurately represents the synthetic bubbles

and Brut does a better job identifying them.

We then augment the training set by adding the bubbles with IDs 7-14

in Table 4.1, so that the new training set consists of half of the bubbles with
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and without noise. Figure 4.3 shows the performance with the original training

and the algorithm retrained on synthetic images with and without noise on the

second half of the noisy data. The scores returned by the retrained algorithm

are significantly higher than those given with the original training. Compared

with the scores retrained using noiseless data in Figure 4.1, the scores given by

the retrained algorithm including some noisy images are more concentrated.

This is likely because delicate bubble structure is reduced, i.e., there is less

variation in bubble appearance since the noise hides small-scale sub-structure.

We next explore the impact of the training set size and composition

on the performance of retrained algorithm. We retrain the algorithm with

only synthetic images and retrain the algorithm with a set containing half the

number of MWP bubbles and all the synthetic images. Figure 4.5 shows the

performance of the algorithm trained with only synthetic images and the al-

gorithm trained with fewer MWP images+synthetic images on the noisy data.

Compared with the scores returned when training with all the MWP data and

synthetic images in Figure 4.3, the scores returned by different random forests

are similar but more concentrated. This is likely caused by the larger fraction

of synthetic bubbles, which are similar to the test set, in the training set. The

synthetic images are responsible for the better performance of the retrained

algorithm on the synthetic images test set.

The increased scores after retraining suggest the original training dataset

is incomplete, especially lacking bubbles driven by intermediate or low-mass

stars. We further examine the performance of retrained Brut on observational
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Table 4.1: Parameters of the Synthetic Images

ID Labela Turbulenceb Evolutionary Image Crop Noise
Stage (Myr) Size (pc) Crop Noise

1 T1 t1 c2 T1 0.1 2.2 X X
2 T1 t1 c3 T1 0.1 3 X X
3 T2 t1 2 T2 0.1 2.2 X X
4 T2 t0 c2 T2 0.05 2.2 X X
5 T2 t0 c3 T2 0.05 3 X X
6 T2 t1 c2 T2 0.1 2.2 X X
7 T2 t1 c3 T2 0.1 3 X X
8 T1 t1 c2n T1 0.1 2.2 X X
9 T1 t1 c3n T1 0.1 3 X X
10 T2 t1 2n T2 0.1 2.2 X X
11 T2 t0 c2n T2 0.05 2.2 X X
12 T2 t0 c3n T2 0.05 3 X X
13 T2 t1 c2n T2 0.1 2.2 X X
14 T2 t1 c3n T2 0.1 3 X X
Notes:
a The label with “n” indicates the synthetic image with noise.
b Turbulent distributions listed in Table 2.2.

data in Section 4.2 and 4.3.

Table 4.2: Parameters of the Random Forests

Random Forests Training Set Test Set
Label a MWP Zoneb / Synthetic Image (ID)c

Label a Number Number
T1 t1 c2 r1 r1 / 314 no / 0 T1 t1 c2
T1 t1 c2 r1s r1 / 314 1-7 / 280 T1 t1 c2
T1 t1 c3 r1 r1 / 314 no / 0 T1 t1 c3
T1 t1 c3 r1s r1 / 314 1-7 / 280 T1 t1 c3
T2 t1 2 r1 r1 / 314 no / 0 T2 t1 2
T2 t1 2 r1s r1 / 314 1-7 / 280 T2 t1 2
T2 t0 c2 r1 r1 / 314 no / 0 T2 t0 c2
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Table 4.2 Continued:

T2 t0 c2 r1s r1 / 314 1-7 / 280 T2 t0 c2
T2 t0 c3 r1 r1 / 314 no / 0 T2 t0 c3
T2 t0 c3 r1s r1 / 314 1-7 / 280 T2 t0 c3
T2 t1 c2 r1 r1 / 314 no / 0 T2 t1 c2
T2 t1 c2 r1s r1 / 314 1-7 / 280 T2 t1 c2
T2 t1 c3 r1 r1 / 314 no / 0 T2 t1 c3
T2 t1 c3 r1s r1 / 314 1-7 / 280 T2 t1 c3
T1 t1 c2n r1 r1 / 314 no / 0 T1 t1 c2n
T1 t1 c2n r1s r1 / 314 1-14/ 560 T1 t1 c2n
T1 t1 c3n r1 r1 / 314 no / 0 T1 t1 c3n
T1 t1 c3n r1s r1 / 314 1-14/ 560 T1 t1 c3n
T2 t1 2n r1 r1 / 314 no / 0 T2 t1 2n
T2 t1 2n r1s r1 / 314 1-14/ 560 T2 t1 2n
T2 t0 c2n r1 r1 / 314 no / 0 T2 t0 c2n
T2 t0 c2n r1s r1 / 314 1-14/ 560 T2 t0 c2n
T2 t0 c3n r1 r1 / 314 no / 0 T2 t0 c3n
T2 t0 c3n r1s r1 / 314 1-14/ 560 T2 t0 c3n
T2 t1 c2n r1 r1 / 314 no / 0 T2 t1 c2n
T2 t1 c2n r1s r1 / 314 1-14/ 560 T2 t1 c2n
T2 t1 c3n r1 r1 / 314 no / 0 T2 t1 c3n
T2 t1 c3n r1s r1 / 314 1-14/ 560 T2 t1 c3n

T1 t1 c2n r1Ns no positive training setd / 0 1-14/ 560 T1 t1 c2n
T1 t1 c2n r1Hs half r1 / 159 1-14/ 560 T1 t1 c2n

T1 t1 c2 r2 r2 / 311 no / 0 T1 t1 c2
T1 t1 c2 r3 r3 / 311 no / 0 T1 t1 c2

T1 t1 c2n r2Hs half r2 / 161 1-14/ 560 T1 t1 c2n
T1 t1 c2n r3Hs half r3 / 158 1-14/ 560 T1 t1 c2n

...
...

...
...

Notes:
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Table 4.2 Continued:

a We list the random forest “r1” and “r1s” for example, where suffix “s” means
adding synthetic images into the training set. The random forests label with
only “s” adopts the synthetic images without noise as part of the training
set. The label with both “n” and “s” means adding the synthetic images with
and without noise into the training set. There is a similar set of cases for
random forest “r2”, “r2s”, “r3” and “r3s”. “r1Ns” indicates the training set
only includes the synthetic images without any MWP bubbles in the positive
training set. “r1Hs” means the training set consists of half the MWP bubble
in r1 and all the synthetic images.
b The random forest zone listed in Table 2.3.
c The synthetic images listed in Table 4.1. The synthetic images are divided
into two equal parts. One half acts as a training data set, and the second half
serves as a test set.
d The training set does not have any MWP bubbles in the positive training set
but contains the MWP images without bubbles in the negative training set.

4.2 Re-Testing Brut on the Milky Way Project Data

We adopt all 3716 large bubbles found by the citizen scientists in Simp-

son et al. [46] as a test set to assess the performance of Brut after retraining.

We ignore the objects contained in the “small bubble” catalogue, which are

mainly green knots, dark nebulae, star clusters, galaxies or fuzzy red objects.

We compare the performance for the original training, the retrained algo-

rithm (using both noisy and noiseless synthetic bubbles), the algorithm trained

with only synthetic images and the algorithm trained with fewer MWP im-

ages+synthetic images in classifying MWP bubbles, as shown in Figure 4.7.

The scores returned by the retrained algorithm are significantly higher com-
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Figure 4.1: The cumulative distribution function (CDF) of all the scores given
by Brut with the original training. The labels are described in Table 4.2.
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Figure 4.2: The cumulative distribution function (CDF) of all the scores given
by Brut retrained on noiseless synthetic images. The labels are described in
Table 4.2.
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Figure 4.3: The CDF of all the scores given by Brut with the original training.
The labels are described in Table 4.2.
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Figure 4.4: The CDF of all the scores given by Brut retrained on synthetic
images with and without noise. The labels are described in Table 4.2.
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Figure 4.5: The CDF of all the scores given by the retrained algorithm without
original MWP training set but with only synthetic images. The labels are
described in Table 4.2.
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Figure 4.6: The CDF of all the scores given by the retrained algorithm on half
original MWP training set and the synthetic images. The labels are described
in Table 4.2.
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pared with those returned by Brut without additional training. When we

retrain the algorithm with only synthetic images, the scores under 0.55 show

a dramatic improvement. After investigating the high and low score bubble

images, we find the algorithm trained with only synthetic images improves

the scores of ambiguous bubbles with low S/N and reduces the scores of red

bubbles with high S/N.

To explain the performance of the algorithm retrained on several dif-

ferent training sets, we characterize the bubble properties that compose each

training set as shown in Figure 4.8. The “Normalized S/N” quantifies the

contrast and S/N of the image. We define it as

NormalizedS/N = C(Ī95 − Ī30)(Ī95 − Ī50)f≥8σ, (4.1)

where (Ī95 − Ī30) is the difference between the top 5% and the bottom 30% of

values, (Ī95 − Ī50) is the difference between the top 5% values and the median

value, f≥8σ is the fraction of bright pixels (≥ 8σ), and C is a constant to nor-

malize the values to unity. In most of the high S/N bubble images, the bubble

rim structures occupy the top 5% of the image values, and the noise occupies

the bottom 30%. The average of the diffuse emission is well represented by

the median image value. We use this product to indicate the contrast of the

image. In a random noisy image, the normalized S/N is close to 0. The x-axis

in Figure 4.8 indicates the “Yellow Index,” which describes the color of the

bubble. We define it as the ratio between the number of yellow pixels and the

number of red pixels. Although the original training set spans a wide range of
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color and S/N, it is concentrated in the red domain. The large representation

of red bubbles in the training set means that Brut will more easily identify red

bubbles than yellow bubbles. In contrast, the synthetic bubbles are located

in the yellow part of the parameter space. The MWP bubbles are mostly

low S/N red bubbles, with some low S/N yellow bubbles and high S/N red

bubbles, but there are very few high S/N yellow bubbles. Consequently, the al-

gorithm trained with only synthetic images mainly captures bubbles with low

S/N. This explains why a training set with only synthetic images improves the

scores of ambiguous bubbles with low S/N and reduces the scores of bubbles

that are red and have high S/N.

Figure 4.7 also shows the result when we randomly remove half of the

bubbles in the original MWP training set. The score distribution returned by

the algorithm trained with fewer MWP images+synthetic images compared to

when the results of the algorithm trained with only synthetic images is sur-

prising. When including half of the original MWP bubbles in the training set,

the performance of the algorithm dramatically decreases. The original MWP

training bubbles are mostly red, while the synthetic images nearly all contain

yellow bubbles. Consequently, these sets inhabit two different color domains.

The reduction of red bubbles in the training set lowers the scores of these types

of bubbles in the test set. When including all the original and synthetic images

in the training set, the performance of the retrained algorithm significantly and

steadily improves. Consequently, this demonstrates the composition and size

of the training set significantly impacts the performance of the algorithm.
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Following our comparison of the algorithm performance after retraining

with several different training sets, we adopt the training that includes all the

original MWP bubbles and synthetic images. This training set significantly

improves the scores of most bubbles with little change in the number of high-

score objects. Although the algorithm trained with only synthetic images

improves the scores of a large number of bubbles, it no longer returns any high

score bubbles, which were previously assigned to images with red bubbles.
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Figure 4.7: The CDF of the scores of 3716 Milky Way Project large bubbles
given by algorithm with the original training and the algorithm retrained on
several different training sets including synthetic bubbles.

The MWP characterizes the consensus among users that an image con-
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tains a bubble in terms of the “hit rate”, which is the fraction of citizen

scientists who identified a bubble in the image. They define hit rates above

0.1 as being high-confidence bubble candidates.

We further compare the scores given by Brut with the original training,

the scores after it is retrained, and the MWP hit rate as shown in Figure 4.9

and 4.10. T he average Brut score in each bin with the original training and

after retraining both show a clear trend with the hit rate. The error bars

indicate the standard deviation of the scores and hit rate in each bin. The

higher the hit rate, the higher the score Brut returns, which is consistent

with our expectations. In other words, the retrained algorithm preserves the

hit-rate distribution, where bubbles with low hit rates continue to have low

scores.

Moreover, over 10% of the MWP bubbles, which were previously marginal

or ambiguous detections, are reclassified as high-confidence bubbles after re-

training. Their average Brut score increases from -0.07 to 0.39. About 2%

of the previously identified MWP bubbles are no longer classified as high-

confidence bubbles, and their average Brut score drops from 0.31 to 0.06.

Figure 4.11 shows one hundred bubbles, whose score significantly in-

creases after retraining. Most of these bubbles are yellow, indicating the 8 µm

and 24 µm emission are similar. These yellow bubbles are likely ultra-compact

and compact H ii regions or analogous regions for less massive B-type stars [22].

The performance of the retrained algorithm is consistent with our training set,

in which bubbles are created by the stellar winds of B-type stars. For these
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type of stars, the amount of ionizing radiation is small, so the bubbles are

predominantly cleared by the wind (or earlier protostellar outflows) and then

illuminated by the stellar radiation field.

Figure 4.12 shows nine bubbles, which were previously identified MWP

bubbles but are no longer classified as high-confidence bubbles after retraining.

These bubbles are very red and, thus, quite distinct from our yellow bubbles,

and their morphology does not show a distinct shell rim. Consequently, since

we supplemented the training set with synthetic yellow bubbles, the decline of

these bubbles Brut scores is unsurprising.

In summary, the performance of the retrained algorithm in classifying

yellow bubbles significantly increases when synthetic observations are added

to the training set.

4.3 Application: Bubbles in the Perseus Molecular Cloud

Perseus is located in the larger Taurus-Auriga-Perseus dark cloud com-

plex with a distance of 250±50 pc, spanning a total area of about 70 pc2

[15, 16]. With a mass of 104 M�, the Perseus cloud is often considered to be

an intermediate case between low-mass star forming regions such as Taurus

and turbulent, high-mass regions such as Orion [27], making it an ideal lo-

cation to study low and intermediate-mass star formation. The feedback of

young stars makes Perseus a “bubbly” cloud [2].
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Figure 4.11: One hundred bubbles from MWP. The first number in the title
of each panel presents the raw score, which is returned by the original MWP
training algorithm. The middle number is the change in score after Brut is
retrained with synthetic observations. The last number is the hit rate.
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0.50-0.416 0.12 0.21-0.345 0.19 0.35-0.330 0.26

0.49-0.317 0.22 0.44-0.289 0.13 0.32-0.284 0.26

0.23-0.220 0.33 0.32-0.215 0.10 0.34-0.144 0.16

Figure 4.12: Nine bubbles, which were previously likely MWP bubbles but are
no longer classified as high-confidence bubbles after retraining. The meaning
of each number in the title is described in Figure 4.11.
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Arce et al. [2] identified 12 bubbles using CO spectral data. We extract

the Spitzer image of Perseus in 4.5 µm, 8 µm and 24 µm bands (Gutermuth

priv. comm.) and apply Brut to this data. Figure 4.13 shows four exam-

ples of bubbles in the Perseus molecular cloud. These bubbles are associated

with shells CPS6, CPS8, CPS10 and CPS11 in the CO data, which were vi-

sually identified by Arce et al. [2]. Table 4.3 lists the physical properties of

these bubbles. All these bubbles are probably driven by relatively low or

intermediate-mass young stars such as B type or F type stars. Figure 4.13

shows these bubbles and their associated Brut scores before and after retrain-

ing. These four cases show a significant improvement in score, most from a

negative score (non-bubble) to a positive score (likely bubble).

CPS6 and 8 are similar to the synthetic bubbles and the MWP yellow

bubbles. They are the best examples of the good performance produced by

retraining Brut. CPS11 is a partial bubble, which is probably why its score is

still < 0.2. Table 4.3 shows that CPS10 is driven by a B5V star, but there is no

distinct evidence of the existence of the star in the infrared images. However,

in the optical data, the star is bright and is clearly visible.

The dust emission exceeds that of the star, so the B5V star becomes

invisible when embedded in the cloud. Although CPS10 is not a yellow bubble,

it is nonetheless consistent with the bubble model in Figure 1 in Beaumont

et al. [4], where green shell structure is produced by PAH emission and the

red interior is dominated by hot dust. The bubble score is low, which is likely

due to the contamination by other emission at the upper right corner.
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Table 4.3: Physical Properties of Four Perseus Bubbles

Bubble Cloud Center Candidate Source
Name Region (α2000, δ2000) Source Type
CPS-6 L1468 03 41 24, 31 54 10 IRAS 03382+3145 unknowna

CPS-8 IC 348 03 44 10, 32 17 20 omi Per B1III b

CPS-10 IC 348 03 44 35, 32 10 10 HD 281159 B5V c

CPS-11 IC 348 03 44 50, 32 18 10 V* 695 Per & IC 348 LRL 30 M3.75 & F0 d

Notes:
a This is likely not a typical main-sequence star; it is probably a young pre-
main-sequence star [2]. There is no reliable mid-IR detection in the MIPS
bands because the source is confused with the bright nebulosity in this region
[40].
b This bright source is observed both in the optical and the infrared, and it is
classified as a YSO candidate in the c2d point-source catalog [16].
c. HD 281159 is a binary system with two massive B5 main sequence stars,
which has a disk around the binary pair. And they have an age ≤ 10 Myr [32].
d Two possible candidates are V* 695 Per and IC 348 LRL 30, which are
an M3.75 star and F0 star, respectively. Both stars are classified as a YSO
candidates in the c2d catalog and both have been detected in X-ray [37].

These results indicate the retrained algorithm can perform well for

molecular cloud data not included in the MWP. The synthetic observations are

able to improve Brut performance in classifying bubbles produced by relatively

low or intermediate-mass young stars such as B-type stars.
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CPS6
0.27041667 0.433125

CPS8
0.36770833 0.775

CPS10
0.29938095 0.02270833

CPS11
0.3055119 0.16875

Figure 4.13: Four examples of bubbles in the Perseus molecular cloud. The
upper right label in each panel corresponds to the bubble name in Arce et al.
[2]. The left number in the title of each panel indicates the raw score, which
is returned by the original training algorithm. The right number in the title
of each panel indicates the new score returned by the retrained algorithm.
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Chapter 5

Summary

5.1 Conclusions

We adopt magneto-hydrodynamics simulations of stellar winds interact-

ing with a molecular cloud and post-process them using a three-dimensional

dust continuum Monte-Carlo radiative transfer code. We generate synthetic

observations of bubbles in the Spitzer bands (4.5 µm, 8 µm and 24 µm). We

employ a previously developed machine learning algorithm, Brut and quan-

titatively evaluate its performance in identifying bubbles using synthetic dust

observations. Our main findings are the following:

1. Synthetic observations in combination with visually identified sources can

be used to significantly improve machine learning classification.

2. After retraining with synthetic images, Brut better identifies yellow bub-

bles, which are likely associated with H ii regions for less massive B-type

stars or cavities evacuated by stellar winds.

3. The completeness of the training set significantly impacts the performance

of the algorithm. We suggest that the number of yellow bubbles in the

current MWP bubble catalog is incomplete, and we expect a random search
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of the full GLIMPSE dataset with Brut would return many more yellow

bubble candidates.

4. Some of the bubbles with improved scores are associated with lower confi-

dence sources in the MWP. These would likely be identified as bubbles by

an expert, and thus the simulations provide an efficient means to enhance

machine learning training sets.

5. Turbulent structures greatly affect the morphology of bubbles, yielding

a variety of bubble shapes. Different evolutionary stages and different

cropped image sizes further enhance the bubbles contained in the training

set. Adding noise similar to that in the GLIMPSE data makes the synthetic

observations more realistic. In combination, these modifications create a

more complete training set to improve the machine learning classifications.

6. The retrained algorithm performs well classifying bubbles associated with

more embedded sources located in Perseus. Thus, retraining with synthetic

observations expands the parameter space of the training set beyond the

less embedded and more distant regions with massive stars covered by the

MWP.

5.2 Future Work

Brut is sensitive to the position of bubbles in the image. This makes

it computationally expensive to identify bubbles in a large sky survey map

because it needs to crop the map into small chunks at different positions with
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different sizes. Recently developed deep learning methods are more powerful

in image recognition than Brut. Ntampaka et al. [34] develop a deep machine

learning tool based on Convolutional Neural Networks (CNNs) to estimate

the mass of galaxy clusters in X-ray emission. The CNN is not sensitive to

the position of galaxy clusters, making it straightforward to apply on large

sky survey maps. Van Oort et al. [47] develop an “Encoder-Decoder” CNN

to identify stellar wind bubbles in density slices and 2D CO emission. This

CNN approach achieves a 98% accuracy. However, one caveat of these models

is that they are limited to 2D integrated intensity maps. These algorithms do

not take the information along the velocity axis into consideration, which may

lead to a high false detection rate. In other words, this technique may identify

a clear ring structure as a bubble even though this structure is caused by a

turbulent pattern without any evidence of expansion in the spectra.

In the future, we are planning to extend the algorithm from Van Oort

et al. [47] to 3D CNNs in order to exploit the full 3D CO data information

(position-position-velocity). We will apply the publicly available radiation

transfer code radmc-3d [14] to model the 12CO and 13CO (J=1-0) line emis-

sion of the MHD simulations. We will train the 3D CNN model with synthetic

observations and apply it to the observational CO emission data to identify

stellar feedback bubbles in molecular clouds.

Furthermore, substantial surveys and archival observational data are

available to study stellar feedback, such as the GPS [Spitzer Galactic Plane

Survey, 5], Hi-GAL [Herschel infrared Galactic Plane, 31] Survey, GALFA-HI
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[Galactic Arecibo L-band Feed Array HI, 36] Survey and FCRAO Gould Belt

Survey[41]. An upcoming survey by the Large Millimeter Telescope (LMT

[20]) will provide considerable dust emission and molecular emission data. It

is almost impossible for humans to identify feedback features visually given

the exponentially increasing amount of data. However, systematic and re-

peatable identification is possible with the aid of machine learning approaches

[3, 4, 47]. An unbiased sample of stellar feedback features will enable a better

understanding of the origin of turbulence and the energy budget in molecular

clouds.
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