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Magnesium sheet alloys, such as wrought AZ31, have material properties that 

make them an attractive option for use in automotive and aircraft components. However, 

the low ductility of magnesium alloys at room temperature necessitates the use of high-

temperature forming to manufacture complex components. Finite-element-method (FEM) 

simulations can assist in determining the optimum processing parameters for high-

temperature forming, but only if an accurate material constitutive model is used. New 

material constitutive models describing the deformation behavior of AZ31 sheet at 450°C 

are proposed. These models account for both active deformation mechanisms at this 

temperature: grain-boundary-sliding creep and five-power dislocation-climb creep. 

Phenomena affecting these deformation mechanisms, such as material anisotropy and 

grain growth, are also investigated. This physics-based approach represents an 

improvement over previous material models, which require nonphysical parameters and 

can only predict forming for a limited range of conditions. Tensile tests are conducted to 

obtain data used in fitting constitutive models. New models are used in FEM simulations 

of both tensile tests and biaxial gas-pressure bulge tests. Simulation results are compared 

to experimental data for validation and determination of model accuracy. 
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Chapter 1: Introduction 

 

In the automotive and aircraft industries, weight reduction is an effective method 

of increasing both the fuel efficiency and performance of a vehicle [1-5]. For example, a 

45 kg reduction in the weight of a 1,450 kg automobile can lead to a 0.6 miles-per-gallon 

improvement [5]. Therefore, lightweight magnesium alloys may be preferred over 

heavier materials, such as steels and aluminum alloys, for some applications. Magnesium 

is an attractive choice because of its lower density compared to steel or aluminum [6-11]. 

It is approximately two-thirds as dense as aluminum and over 75% less dense than steel. 

There is substantial interest in forming automotive components from wrought magnesium 

sheet alloys to achieve a reduction in vehicle weight. One particular alloy of interest, 

AZ31, is the most widely available commercial wrought magnesium alloy, due to its 

combination of strength, ductility, and corrosion resistance [12]. 

Although magnesium alloys such as AZ31 possess desirable properties, forming 

automotive parts from magnesium can be challenging. Magnesium alloys exhibit 

insufficient ductility at room temperature for forming the complex shapes required for 

many applications. For example, AZ31 exhibits tensile elongations of approximately 15% 

at room temperature [13]. To obtain sufficient ductility for the manufacture of complex 

parts, forming can be performed at high temperatures. At 450°C, AZ31 exhibits tensile 

elongations in excess of 250% [14]. High-temperature gas-pressure forming technologies 
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have already been used to produce demonstration automotive panels from AZ31 sheet 

[15], such as the trunk inner panel shown in Figure 1.1. 

 

 

Figure 1.1:  A magnesium-alloy AZ31 trunk inner panel is shown. The component was 

formed using gas-pressure at high temperature (>450°C). The figure is from 

Ref. 15. 

 

Finite-element-method (FEM) simulations can assist in determining the 

processing parameters (temperature, gas pressure) necessary for high-temperature 

forming of complex components. During FEM simulations, the deformation response of a 

workpiece material is described mathematically through a constitutive model relating 

stresses within the material to the resulting strains. Simulation results can be used to 

obtain useful predictions, such as the time required to form a component for particular 
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processing parameters. However, these predictions will only be accurate if an accurate 

material constitutive model is used. 

Some material constitutive models may contain artificial modifications to obtain 

accurate predictions of forming behavior under specific conditions. However, if the 

physical basis behind such modifications is not understood, it is difficult to predict 

behavior beyond these specific processing conditions. A physics-based material model is 

one where all components of the model have a physical basis. An understanding of the 

physics behind a material model makes it easier to evaluate the advantages and 

disadvantages of that model. The model can then, ideally, be modified to accurately 

account for the physical mechanisms that affect deformation across a broad range of 

conditions. Such a model allows for accurate forming behavior predictions described by 

only the most important process and material variables. 

The purpose of this dissertation is to construct physics-based material constitutive 

models capable of accurately predicting the forming behavior of AZ31 sheet at 450°C. 

Tensile test data are used to construct material models describing the mechanisms 

controlling deformation at 450°C. These material models are used in FEM simulations, 

from which results are compared to data from tensile tests and biaxial gas-pressure 

forming experiments. The goal of this research is for the new material models to 

represent an improvement over AZ31 material models currently found in the literature. 
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Chapter 2: Literature Review 

 

2.1. ADVANTAGES OF MAGNESIUM ALLOYS 

During the design process, it is often desirable to minimize or maximize a 

parameter while subject to some constraint. For example, automotive body panels are 

primarily subject to bending loads. These panels should be as lightweight as possible to 

maximize fuel efficiency. Thus, the objective is to minimize the mass of the panel. Panel 

mass can be reduced by decreasing the thickness of the sheet used to manufacture the 

part. However, the panels must remain thick enough to carry the required loads without 

exceeding the yield strength of the material or excessively deflecting. Thus, the sheet 

material should be chosen to minimize panel weight while maintaining the required 

bending strength and stiffness, which are constraints on the design of the panel. 

One method of determining the optimal material for an application is through the 

use of structural performance indices [16]. A performance index, M, is calculated using a 

combination of material properties related to the function of a component. Materials with 

a large performance index will better minimize or maximize the parameter of interest 

while meeting the constraints on the design. Consider an automotive component subject 

to bending loads. The component can be modified by changing material or sheet 

thickness. If strength is the limiting constraint, the appropriate structural performance 

index is 



 2
1

y
M   (1) 
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where σy is the yield strength of the material and ρ is density [1, 16]. If stiffness is the 

limiting constraint, the appropriate structural performance index is 



3
1

E
M   (2) 

where E is the elastic modulus of the material and ρ is density [1, 16]. These performance 

indices are appropriate for bending and in-plane biaxial buckling when thickness is a free 

variable. Note that the sole goal in this analysis is to minimize the weight of the 

component irrespective of cost. 

Luo [17] used structural performance indices to demonstrate that magnesium 

components can be made lighter than corresponding aluminum and steel components 

while retaining the same bending stiffness and strength. The performance indices given 

by Equations 1 and 2 are inversely proportional to the mass required in a part of a 

particular material. Thus, the mass ratio of components manufactured from two different 

materials, each with the same bending strength, is 

1

2

2
1

2,

1,

1

2
























y

y

m

m
  (3) 

where m is the mass of a component, σy is the yield strength of a material, ρ is the density 

of a material, and the subscripts 1 and 2 refer to the two materials. Similarly, the mass 

ratio of components manufactured from two different materials, each with the same 

bending stiffness, is 

1

2
3

1

2

1

1

2














E

E

m

m
  (4) 
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where m is the mass of a component, E is the elastic modulus of a material, ρ is the 

density of a material, and the subscripts 1 and 2 refer to the two materials. Luo calculated 

these mass ratios for various aluminum and magnesium alloys with respect to steel. The 

mass ratios for magnesium alloy AZ31, aluminum alloy AA5182, and steel, along with 

the relevant material properties, are presented in Table 2.1. 

Table 2.1:  Mass ratios were calculated for Mg alloy AZ31 and Al alloy AA5182 

relative to steel. The mass ratios were calculated assuming equal bending 

strength (Equation 3) and equal bending stiffness (Equation 4), with 

thickness as a free variable. The material properties used to calculate the 

mass ratios are also provided. Data are from Ref. 17. 

Material Density 

(g/cm
3
) 

Yield 

Strength 

(MPa) 

Elastic 

Modulus 

(GPa) 

Mass Ratio 

(equal bending 

strength) 

Mass Ratio 

(equal bending 

stiffness) 

Mg AZ31 1.77 220 45 0.22 0.38 

Al AA5182 2.68 235 70 0.32 0.50 

Steel 7.80 200 210 1 1 

 

The results of Luo’s analysis confirm that the use of magnesium alloys can 

provide a significant weight savings relative to both steel and aluminum alloys. For 

example, an Mg AZ31 component will be 62% lighter than a corresponding steel 

component while maintaining an equivalent bending stiffness and superior bending 

strength. Similarly, the Mg AZ31 component will be 24% lighter than a corresponding Al 

AA5182 component while maintaining an equivalent bending stiffness and superior 

bending strength. These examples demonstrate the advantages offered by magnesium’s 

low density. Although magnesium alloys have a lower elastic modulus and similar yield 

strength to many steel and aluminum alloys, the lower density of magnesium allows for 

parts to be formed from thicker sheet while still retaining less mass than corresponding 
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steel or aluminum parts. These thicker magnesium parts can equal or exceed the bending 

stiffness and strength of the thinner steel or aluminum parts. For these reasons, 

magnesium alloys are being investigated as potential replacements for steel and 

aluminum alloys in automotive components such as body panels and instrument housings 

[6-11]. It should be noted that Luo does not specify a particular steel alloy in his analysis, 

and many steels have yield strengths much greater than 200 MPa, which would reduce 

the advantage of magnesium in this analysis. Note also that magnesium alloys are more 

expensive than steel and aluminum alloys both per unit weight and per unit volume [17]. 

The mass savings represented by magnesium may or may not be worth the increased cost 

depending on the particular application. 

 

2.2. HIGH-TEMPERATURE FORMING 

Although magnesium alloys possess advantageous material properties, they also 

present challenges with respect to forming complex sheet metal components. Magnesium 

alloys are often excellent choices for manufacturing processes such as machining and 

casting [12]. However, automotive body panels are typically manufactured from sheet 

materials using traditional deformation processes such as die stamping [18-20]. 

Magnesium alloys, including AZ31, do not exhibit sufficient ductility for the formation 

of complex components at room temperature. Figure 2.1 shows the tensile elongation-to-

rupture behavior of AZ31 as a function of temperature. At room temperature, the 

elongation-to-rupture of AZ31 is approximately 15% [13], which is significantly less than 

both steel and aluminum [17, 21]. However, the ductility of magnesium can be increased 
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significantly by forming at elevated temperatures. At 450°C, the elongation-to-rupture of 

AZ31 is greater than 400% [14]. This suggests that high-temperature forming can be used 

to manufacture the complex magnesium sheet metal components required for automotive 

applications. 

 

 

Figure 2.1:  AZ31 tensile elongation-to-rupture is plotted against temperature. Data are 

from Ref. 13 and 14. 

 

The plastic behavior of magnesium results from its hexagonal close-packed 

(HCP) crystal structure, which is shown in Figure 2.2. HCP materials can deform through 

dislocation slip on basal, prismatic, or pyramidal planes, or by twinning. Five 

independent active slip systems are required for a polycrystalline material to exhibit 
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ductile behavior [22]. A slip system is only active if the resolved shear stress is greater 

than the critical resolved shear stress (CRSS) required for slip. Figure 2.3 [23] presents 

the CRSS for basal slip, prismatic slip, pyramidal slip, and twinning as a function of 

temperature [24-29]. At room temperature, only basal slip is active, which provides only 

two independent slip systems. The other slip systems must be provided by prismatic slip, 

pyramidal slip, or twinning. Prismatic slip and pyramidal slip require a much larger 

CRSS than basal slip, which makes them largely inactive at room temperature. Twinning 

can provide additional slip systems, but the formation of twins reorients the crystal 

structure of the material in locations and increases the area of interfaces between grains. 

These interfaces constrain the movement of dislocations, which leads to an increase in the 

CRSSs required for slip. Generally, there are too few active slip systems at room 

temperature for magnesium alloys to exhibit significant ductility. As temperature 

increases, the CRSSs for prismatic and pyramidal slip decrease significantly, and these 

additional slip systems become active [30]. The increase in the number of active slip 

systems with increasing temperature results in a corresponding increase in the ductility of 

magnesium alloys, such as is shown for AZ31 in Figure 2.1. High-temperature forming 

technologies are therefore effective for forming wrought magnesium sheet alloys into the 

complex shapes required for many applications. 
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Figure 2.2:  An HCP unit cell is shown along with examples of basal, prismatic, and 

pyramidal planes. 

 

 

Figure 2.3:  Critical resolved shear stress (CRSS) is plotted against temperature for basal 

slip, prismatic slip, pyramidal slip, and twinning in magnesium. Data are 

from Ref. 24 through 29. Figure is from Ref. 23. 
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One high-temperature forming process used to create complex automotive and 

aerospace components is superplastic forming (SPF) [31-34]. SPF of aluminum and 

magnesium alloys is characterized by deformation at high temperatures, typically above 

500°C, and slow strain rates less than 10
-3

 s
-1

. For materials with a fine grain size, 

typically less than 10 μm, deformation results primarily from grain-boundary-sliding 

(GBS) creep. GBS creep is associated with a high strain-rate sensitivity, m, of 

approximately 0.5. Creep mechanisms active at lower temperatures and faster strain rates, 

such as five-power dislocation-climb creep, typically have values of m of approximately 

0.2 [32]. An increase in m reduces the rate of neck growth during deformation, which 

significantly increases the tensile elongation that can be achieved prior to rupture. Tensile 

elongations of up to 1000% can be achieved prior to rupture during SPF [33]. Thus, SPF 

can be used to form the complex components required for automotive and aerospace 

applications. However, SPF has limitations which make it unsuitable for some 

applications. Superplasticity can only be maintained in materials with a fine grain size. 

The high temperatures required for superplasticity can lead to grain growth in many 

alloys, which eliminates the advantages of SPF. Grain growth must therefore be reduced 

or eliminated through the use of two-phase alloys or alloys with fine second-phase 

particles that pin grain boundaries. These alloys may be cost prohibitive for many 

applications. Also, the slow strain rates required to maintain GBS creep result in a 

process that can require several minutes to form one component. For these reasons, SPF 

is an expensive process that is often unsuitable for high-volume applications. 
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The limitations of the SPF process led to the development of quick plastic 

forming (QPF), which is characterized by lower temperatures (~450°C) and faster strain 

rates (>10
-3

 s
-1

) than SPF [35-37]. GBS creep is no longer the primary active creep 

mechanism under these conditions. Instead, QPF is characterized by creep mechanisms 

with moderate values of strain-rate sensitivity. For example, many aluminum alloys 

deform primarily by solute drag creep at the temperatures and strain rates characteristic 

of QPF [38-39]. The value of m for solute drag creep is approximately 0.3, which falls in 

between the values for GBS creep and dislocation-climb creep. Magnesium alloy AZ31 

deforms by both GBS creep and dislocation-climb creep at the temperatures and strain 

rates characteristic of QPF [40-42]. Both GBS creep and dislocation creep have been 

shown to occur in AZ31 at 450°C through the use of marker lines and scanning electron 

microscopy [40]. The combination of the two creep mechanisms also results in a value of 

m between the expected individual values for GBS creep and dislocation-climb creep. 

Although less ductility is typically obtained from QPF than from SPF, QPF is still a 

viable method of manufacturing complex components. In addition, QPF is associated 

with faster strain rates than SPF, which leads to faster part forming. 

 

 2.3. MATERIAL CONSTITUTIVE MODELS 

Various material constitutive models describing the high-temperature deformation 

behavior of AZ31 are available in the literature. Most of these models are fits of simple 

single-term creep laws to tensile data. These creep laws are constitutive relationships 



 13 

relating true stress, σ, and true-strain rate, . One relationship commonly used to describe 

AZ31 tensile flow behavior at high temperature [43-45] is  
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where A and n are constants describing the active creep mechanism, E is the elastic 

modulus of AZ31 for a particular temperature, T, Q is the activation energy for the active 

creep mechanism, and R is the ideal gas constant. Another relationship used to describe 

high-temperature forming of AZ31 [44-47] is 
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where α is a fitting parameter. The hyperbolic sine term allows Equation 6 to describe 

deformation behavior at faster strain rates for which power-law breakdown begins to 

occur, i.e. Equation 5 is no longer valid. If flow behavior is investigated at a single 

temperature, then Equations 5 and 6 simplify to  

nA     (7) 

 n
A   sinh  (8) 

respectively, where A´ and α´ are constants describing the active creep mechanism. A 

third relationship used to describe high-temperature forming of AZ31 is 

mnK     (9) 

where K is a constant describing the active creep mechanism, ε is true strain, n´ is the 

strain hardening exponent, and m is the strain-rate sensitivity [47]. Equation 9 can 

account for strain hardening during creep. The accuracies of the material constitutive 
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models described by Equations 5 through 9 are often checked only against experimental 

data from tensile tests [43-47].  

 Of particular note are the material constitutive models created by Khraisheh and 

Abu-Farha. Khraisheh et al. [48] and Abu-Farha et al. [49] proposed a material model, 

m
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where k is a material constant, d is average grain size, p is the grain size exponent, and fa 

is the area fraction of voids. This model can account for the effects of cavitation and 

grain size on deformation behavior. In Equation 10, d and fa are calculated using 

Cdd o    (11) 

 expaoa ff   (12) 

respectively, where do is the initial grain size, C is a grain growth material parameter, fao 

is the initial fraction of voids, and ψ is a void growth material parameter. Equation 10 

accurately describes the tensile deformation behavior of AZ31 at 400°C and strain rates 

from 5 × 10
-5

 to 10
-3

 s
-1

. Abu-Farha et al. also proposed a generalized material 

constitutive model, 
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which is appropriate for multiaxial stress states and can account for anisotropic 

deformation [50-51]. In Equation 13, D
p

ij is a component of the deformation tensor, J is 

an appropriate anisotropic yield function, Ko + R is a reference stress (R accounts for 



 15 

hardening), CI and CII are material constants, and σij is a component of the stress tensor. 

However, the accuracy of Equation 13 was only investigated under uniaxial loading 

conditions, and it was assumed that deformation is isotropic and only subject to 

hardening by grain growth. Under these conditions, Equation 13 reduces to Equation 10. 

In addition, Abu-Farha and Khraisheh [52] investigated the effects of AZ31 sheet 

orientation on deformation at 375 and 400°C. Tensile tests were conducted at orientations 

of 0°, 45°, and 90°, and it was determined that sheet orientation has little effect on tensile 

stress-strain behavior. This indicates that AZ31 does not exhibit planar anisotropy under 

these conditions. Note that this does not preclude the existence of plastic anisotropy 

normal to the plane of the AZ31 sheet. 

There has also been some investigation of AZ31 high-temperature deformation 

behavior due to biaxial stress. It is thought that a biaxial stress state may be more 

characteristic of the stress states occurring during forming of complex automotive 

components. Palumbo et al. [53] and El Morsy et al. [54] used AZ31 gas-pressure biaxial 

bulge forming experiments to determine appropriate fitting parameters for Equation 7.  

Giuliano and Franchitti [55] performed similar experiments to determine appropriate 

fitting parameters for Equation 9. Both Palumbo et al. and Giuliano and Franchitti 

examined AZ31 deformation behavior at 520°C, while El Morsy et al. examined AZ31 

deformation behavior at 370, 400, and 430°C. Palumbo et al. [53] compared results from 

FEM simulations to experimental bulge profile measurements through the use of an 

objective function. They modified the fitting constants in Equation 7 to minimize the 

value of the objective function. By this method, the values of A´ and n in Equation 7 were 
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optimized. Giuliano and Franchitti [54] also used objective functions to determine K and 

n´ in Equation 9, although m was calculated separately using 
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where p1 and p2 are the gas pressures required to reach a particular dome height in times 

t1 and t2, respectively. El Morsy et al. [55] calculated an effective stress, σe, and effective 

strain, εe, using 
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where p is gas pressure, h is dome height, R is the radius of the die cavity, tf is final 

thickness at the pole, and ti is initial thickness at the pole. The parameters in Equation 7 

were then fit to these values of σe and εe. 

The material constitutive models described above are all designed to predict 

forming behavior when a single creep mechanism controls deformation. However, recent 

studies suggest that the high-temperature forming behavior of AZ31 is controlled by two 

creep mechanisms. Taleff et al. [41] conducted AZ31 strain-rate-change tensile tests at 

temperatures from 350 to 500°C and strain rates from 10
-4

 to 3 × 10
-2

 s
-1

. Figure 2.4 

shows the logarithm of true-strain rate plotted against the logarithm of true stress for 

these experiments. These experiments indicate that AZ31 forming behavior under these 

conditions is controlled by two independent creep mechanisms. The slope of the data in 
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Figure 2.4 corresponds to the stress exponent of the active mechanism [56-57]. At high 

temperatures and slow strain rates, the slopes of the data are less than 2, indicating that 

GBS creep controls deformation for these conditions. At lower temperatures and faster 

strain rates, the slopes of the data increase to approximately 5, indicating that five-power 

dislocation-climb (DC) creep controls deformation for these conditions. Taleff et al. fit a 

material model of the form 
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where  is true-strain rate, σ is true stress, E is the elastic modulus of magnesium, R is the 

ideal gas constant, T is temperature, AGBS, nGBS, and QGBS are constants that describe GBS 

creep in AZ31, and ADC, nDC, and QDC are constants that describe DC creep in AZ31. The 

first term in Equation 17 represents the true-strain rate due to GBS creep, and the second 

term in Equation 17 represents the true-strain rate due to dislocation-climb creep. For 

independent creep mechanisms, these two terms are added together to calculate the total 

true-strain rate, after the manner described by Sherby and Burke [56]. A second material 

model, referred to as the 1.3 sigma model, was created by dividing σ in Equation 17 by 

1.3 to account for differences between tensile tests and biaxial gas-pressure forming 

experiments. The 1.3 sigma model provided successful predictions of dome height and 

pole thickness as a function of time when used in simulations of biaxial gas-pressure 

bulge forming at 450 and 900 kPa. Note that Figure 2.4 indicates that flow stress 

increases with strain at slow strain rates and high temperatures, which indicates that GBS 
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creep in AZ31 is strain-dependent. This strain-dependent behavior is not accounted for by 

the 1.3 sigma model. 

 

Figure 2.4:  The logarithm of true-strain rate is plotted against the logarithm of true 

stress for AZ31 tensile specimens tested at temperatures ranging from 350 to 

500°C. Markers represent tensile data, while lines represent the 1.3 sigma 

material model (Equation 17) fit to the data. The figure is from Ref. 41. 

 

To account for the strain dependence of GBS creep in AZ31, a strain-dependent 

tensile data (SDTD) material model was created [42]. Figure 2.5 presents data from 

AZ31 tensile tests at 450°C and strain rates from 10
-4

 to 10
-1

 s
-1

. The logarithm of true 

strain rate is plotted against the logarithm of true stress. Just as with the 1.3 sigma model 

data, Figure 2.5 indicates that the deformation behavior of AZ31 at 450°C is controlled 

by two independent creep mechanisms, GBS creep and DC creep. Flow stress increases 
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as strain increases for a constant slow strain rate less than 10
-2

 s
-1

. This is an expected 

result of grain growth during deformation. For a constant temperature, the strain rate for 

GBS creep, GBS , is 

GBSn

p

GBS

GBS
d

A
   (18) 

where AGBS and nGBS are constants that describe GBS creep in AZ31, d is either the 

average grain diameter or lineal-intercept grain size, p is the grain size exponent 

(typically 2-3 for GBS creep), and σ is true stress [56-57]. Grain size is expected to 

increase through grain growth during deformation at 450°C. As grain size increases with 

strain and time at temperature, the flow stress required to maintain a particular strain rate 

for GBS creep will increase according to Equation 18. Thus, flow stress increases with 

strain for slow strain rates at which GBS creep dominates, see Figure 2.5. At fast strain 

rates, dislocation-climb creep dominates deformation at 450°C. DC creep does not 

depend on grain size, so little strain hardening is expected at fast strain rates. Thus, the 

strain rate for DC creep, DC , is 

DCn

DCDC A    (19) 

where ADC and nDC are constants that describe DC creep in AZ31 and σ is true stress [56-

57]. The AZ31 sheet was tested at orientations of 0°, 45°, and 90°, and it was shown that 

the material does not exhibit planar anisotropy. This agrees with the conclusions of Abu-

Fahra and Khraisheh [52]. 
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Figure 2.5:  The logarithm of true-strain rate is plotted against the logarithm of true 

stress for AZ31 tensile specimens tested at 450°C. Markers represent tensile 

data, while lines represent the SDTD sigma material model (Equation 20) fit 

to the data. The figure is from Ref. 42. 

 

The tensile data shown in Figure 2.5 were used to fit the SDTD material model, 

which is of the form 

    DCGBS n

DC

n

GBS AA  
 (20) 

where  is the strain rate due to both creep mechanisms, σ is flow stress, AGBS and nGBS 

are functions of strain, ε, that describe GBS creep, and ADC and nDC are constants that 

describe DC creep. AGBS and nGBS are described as functions to account for the strain 

hardening observed at slow strain rates, see Figure 2.5. No hardening is observed at fast 
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strain rates, so ADC and nDC are constants. Values for AGBS, nGBS, ADC, and nDC are 

provided in Table 2.2. 

Table 2.2:  The parameters describing the SDTD material constitutive model are 

presented [42]. The material model is described by the form of Equation 20. 

AGBS and nGBS are described as functions of true strain, ε, while ADC and nDC 

are described as constants. 

Parameter SDTD Material Model 

AGBS (s
-1

 MPa
-nGBS

) exp(-9.98 – 12.59ε + 17.85ε
2
 – 11.1ε

3
) 

nGBS 1.333 + 0.667tanh(4.63 ε) 

ADC (s
-1

 MPa
-nDC

) 5.9 × 10
-10

 

nDC 5.54 

 

Sherek evaluated the accuracy of the SDTD material model by running 

simulations of tensile tests and biaxial gas-pressure bulge forming and comparing the 

results to experimental measurements [23, 42]. During the biaxial bulge forming 

experiments, gas pressure was used to form an AZ31 blank into the shape of a dome 

using a cylindrical die. The SDTD material model accurately reproduces tensile data at 

all strain rates tested (10
-4

 to 10
-1

 s
-1

) and predicts biaxial bulge forming at low pressures. 

However, the SDTD material model predicts faster biaxial bulge forming at high 

pressures than is experimentally observed. To correct for this discrepancy, the flow stress 

in the dislocation-climb creep term was divided by 1.3, a modification inspired by the 1.3 

sigma model, to create a modified material model of the form 
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which is designated the SDTDM1 (SDTD modification #1) material model. AGBS, nGBS, 

ADC, and nDC retain their values from the SDTD model. The SDTDM1 material model 
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predicts biaxial bulge forming behavior at both low and high pressures, but it no longer 

reproduces the tensile data used to create it. The 1.3 modification is clearly too crude to 

allow for one material model to accurately predict forming under multiple stress states. 

An additional weakness of the SDTD material model is revealed by experiments for 

which only preheat time prior to forming is varied. Sherek observed that the forming rate 

of the AZ31 blank decreases as preheat time increases, which is consistent with the 

occurrence of static grain growth during preheating. The SDTD material model cannot 

account for the effects of preheat time because it is purely a strain-dependent model. This 

suggests that grain growth in AZ31, and the resulting hardening during GBS creep, may 

depend on time at temperature as well as strain.  
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Chapter 3: Objectives and Methodology 

 

 3.1. RESEARCH OBJECTIVES 

The goal of this study is to create improved material constitutive models capable 

of accurately predicting the forming behavior of AZ31 sheet at 450°C. This temperature 

is of interest because it is the temperature at which General Motors forms vehicle closure 

panels using the QPF process [37]. The current study will address the two weaknesses of 

the SDTD and SDTDM1 models described in the previous section. To address these 

weaknesses, a better physical understanding of both GBS creep and DC creep in AZ31 is 

required. First, grain growth and its relationship to GBS creep are studied. A better 

physical understanding of the process variables that affect grain growth allows for GBS 

creep to be modeled more accurately. Second, the differences between tensile forming 

behavior and biaxial forming behavior at fast rates are investigated. An understanding of 

the physical mechanism that slows biaxial forming relative to tensile forming during DC 

creep is necessary to create a material model that describes AZ31 forming behavior for 

all stress states. It is hypothesized that anisotropic deformation is responsible for the 

observed differences between tensile and biaxial forming. Material models created during 

the study are implemented in finite-element-method (FEM) software. The accuracies of 

simulation predictions using these models are evaluated through comparisons with 

experimental data. 

Ideally, the final result of the study should be a material constitutive model that 

accurately describes AZ31 forming behavior during all experiments conducted for this 
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study. Specifically, the material model should accurately reproduce the tensile data used 

to create it. It should also successfully predict forming due to other stress states, such as 

those which occur in gas-pressure bulge forming. A material model that can predict 

forming under multiple stress states (e.g. both uniaxial and balanced biaxial tension) is 

required to predict the forming of complex components for real-world applications, 

which may experience different stress states in different regions and at different times 

during forming. The final material model should also account for the effects of both 

strain and time on microstructure evolution and the resulting deformation behavior. If 

microstructure evolution is correctly modeled, effects such as hardening due to 

preheating can be simulated and accounted for. 

 

3.2. GENERAL METHODOLOGY 

The methodology used to create and validate a new material constitutive model is 

summarized in Figure 3.1. This methodology requires an integrated approach combining 

theory, experiments, and simulations. A physical understanding of the mechanisms 

controlling deformation is needed to determine the form of an approriate material model. 

Data from AZ31 forming experiments are used to fit the model parameters. In addition, 

the results of both forming experiments and FEM simulations are required to verify the 

accuracy of the new material model. 
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Figure 3.1:  The methodology used in this investigation to create and validate new 

material constitutive models describing sheet metal deformation behavior is 

shown as a flowchart. 

 

Material constitutive models were constructed primarily using data from tensile 

tests at 450°C. Tensile tests are useful for creating material models because stress-strain 

data can be obtained directly from load and displacement measurements. Note that the 

tensile data from Figure 2.5 continues to be useful when creating new material models. 

Additional tensile tests were conducted using a computer-controlled, servohydraulic test 
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frame. Specimens were tested in tension at 450°C and a variety of constant true-strain 

rates ranging from 10
-4

 to 10
-1

 s
-1

. These strain rates are characteristic of those 

experienced by the sheet material during QPF [37]. After the completion of deformation, 

tensile specimens were quenched in water to arrest further microstructure evolution. 

Metallography was performed on selected tensile specimens to reveal microstructural 

characteristics, such as grain size. Anisotropic deformation was quantified through 

measurement of specimen geometry after deformation. Stress-strain data, geometrical 

measurements, and microstructural observations were used in construction of new 

material models that describe AZ31 deformation behavior at 450°C. 

Once a material model is created, it must be validated using data from additional 

experiments. Biaxial gas-pressure forming experiments were used to validate the material 

models created from tensile data. During biaxial gas-pressure bulge forming, gas pressure 

is applied to one face of a flat sheet material blank. This pressure causes the blank to 

form into a cylindrical die, creating a dome such as the one shown in Figure 3.2. During 

deformation, a biaxial stress state exists near the dome peak. The dome forms freely into 

the die cavity, and contact between the blank and die is limited to the edge of the 

specimen. Thus, there is little effect of friction on the experimental results, and 

deformation is due solely to the material constitutive behavior. Specimen height or 

thickness was measured at a particular location after forming. It was also possible to 

measure specimen height in situ using a digital micrometer, which provides multiple 

measurements at a variety of forming times, in an available biaxial gas-pressure bulge 

forming apparatus. Assuming that material models can be constructed solely from tensile 
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data, the gas-pressure bulge forming experiments represent an independent check on the 

accuracy of the material models. 

 

Figure 3.2:  A biaxial gas-pressure bulge forming specimen is shown. AZ31 sheet was 

formed into a circular die with a diameter of 100 mm. The specimen was 

formed at 450°C and a gas pressure of 75 psi. 

 

Measurements from tensile tests and gas-pressure bulge forming experiments 

were compared to FEM simulation results to validate material constitutive models. 

Simulations were conducted using the finite element analysis software Abaqus
TM

 [58]. 

The AZ31 sheet and die (for simulations of gas-pressure forming experiments) were 

modeled using discrete elements in an input file, and the stress-strain constitutive 

behavior of the sheet elements was described by the user-defined material model. 

Simulation results, such as stress-strain behavior for tensile tests and dome heights for 

gas-pressure bulge tests, were compared to both tensile test and gas-pressure bulge 
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forming data to determine the accuracy of material models under various stress states and 

forming rates. If needed, the material model was modified, and simulations were re-run to 

check for improved accuracy. 
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Chapter 4: Experimental Procedures 

 

4.1. MATERIAL DESCRIPTION 

The material investigated in this study is a commercial Mg AZ31 rolled sheet 

supplied in the H24 temper [59]. The as-received thickness of the sheet material is 2 mm, 

and its composition is provided in Table 4.1. The H24 temper results in the partially-

recrystallized microstructure shown in Figure 4.1(a), from which it is difficult to measure 

an average initial grain size. However, the microstructure finishes recrystallization 

quickly at 450°C. Figure 4.1(b) shows the microstructure after a static anneal in salt at 

450°C for only 80 s. Thus, the AZ31 sheet material is treated as a fully recrystallized 

microstructure during deformation in subsequent analyses. 

Table 4.1:  The Mg AZ31 sheet material composition is shown in wt%. 

Al Zn Mn Fe Cu Ni Si Ca Be Sr Ce Mg 

3.1 1.0 0.42 0.006 0.003 <0.003 <0.1 <0.01 <0.005 <0.005 <0.01 bal. 

 

 

Figure 4.1:  Photomicrographs of (a) the as-received AZ31 sheet microstructure and (b) 

the microstructure after annealing at 450°C in salt for 80 s are shown. 
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4.2. TENSILE TESTS 

4.2.1. Tensile Test Procedure 

Dog-bone-shaped tensile coupons were machined by electrical discharge 

machining from the Mg AZ31 sheet with a (straight) gage length of 25 mm, a gage width 

of 6 mm, a shoulder radius of 3 mm, and a thickness equal to the as-received sheet 

thickness of 2 mm. All coupons were produced with the tensile direction (TD) parallel to 

the rolling direction (RD) of the sheet. Figure 4.2 shows an example of an untested 

tensile coupon. A finite-element-method analysis, described in Appendix A, was 

performed to confirm that accurate R-values can be measured from this specimen 

geometry. 

 

Figure 4.2:  An untested AZ31 tensile coupon is shown. 

 

The tensile tests of the AZ31 sheet material were conducted using a computer-

controlled servohydraulic test frame with an attached three-zone resistance furnace. A 

photograph of this apparatus is shown as Figure 4.3. The furnace was preheated to 450°C, 

the test temperature for all specimens, prior to testing. Before each test, the initial width, 

wo, and thickness, to, of the tensile coupon’s gage region was measured using calipers. 

The uncertainty of these measurements was taken to be half of the caliper’s smallest scale 

division, or 0.0005 inches. The tensile coupon was engraved with a unique specimen 
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designation, and shoulder-loading grips were attached to each end, as in Figure 4.4. 

These grips are designed so the tensile specimen can be removed quickly from the 

furnace after deformation. The coupon was then inserted into the furnace and allowed to 

reach 450°C. This process typically took approximately 20 minutes. Specimen 

temperature was measured using type-K thermocouples inserted into the grips to contact 

the specimen at both ends. After reaching 450°C, each tensile coupon was tested in 

tension at a constant true-strain rate ranging from 10
-4

 to 10
-1

 s
-1

. Crosshead velocity was 

increased throughout each test to maintain this true-strain rate. Force and displacement 

were measured during each test using a load cell and a linear variable differential 

transformer, respectively. Deformation was imposed until a final true strain, εf, ranging 

from 0.14 to 0.59 was achieved. Upon completion of the test, the tensile coupon was 

quickly removed from the furnace and quenched in water to arrest any further 

microstructure evolution. 
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Figure 4.3:  The apparatus used in tensile testing of the AZ31 sheet is shown. 

 

 

Figure 4.4:  The shoulder-loading grips used during tensile testing are shown. 
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4.2.2. Tensile Specimen Measurements 

The force and displacement measurements obtained during tensile testing were 

used to calculate true stress, σ, and true strain, ε, throughout each test using 
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where σe is engineering stress, εe is engineering strain, F is force, ∆l is displacement, and 

lo is the initial gage length of the specimen [60]. These calculations assume conservation 

of volume and uniform deformation in the gage region of each specimen. These 

assumptions are no longer accurate after the initiation of cavitation and flow localization, 

which typically occurs after the AZ31 sheet material reaches a true strain of 0.6 [42]. 

Tensile data obtained at true strains greater than 0.6 were therefore unused in the creation 

of material constitutive models. Also, the stress-strain data were corrected to remove 

errors due to machine compliance by enforcing the known elastic modulus of Mg at 

450°C, 32 GPa [61-62]. 

The final gage width, wf, and thickness, tf, were measured at five different 

locations along each tested specimen using a micrometer with 0.0001 inch graduations 

and a blade anvil. The uncertainty of any individual measurement is estimated to be 

±0.0002 inch, which is the accuracy limit that can reasonably be expected from a 
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micrometer with a vernier scale [63]. The results of the FEM simulations in Appendix A 

suggest that accurate R-values can be measured at locations further than 6 mm from the 

grips. Thus, no measurements were obtained within 6 mm of the grips. The final true 

strain in the gage region, εf, was calculated from area reduction using 


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where woto is the initial cross-sectional area of the gage region prior to deformation and 

wftf is the cross-sectional area of the gage region after deformation. An average true strain 

was calculated from the five εf measurements along each specimen. At each of the five 

locations, anisotropy was quantified through use of the Lankford coefficient, or R-value 

[64]. The effective R-value, reff, was calculated using 
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where εLD is the true strain in the long-transverse direction (across the width of the 

specimen) and εSD is the true strain in the short-transverse direction (through the 

thickness of the specimen). This method of calculating R-values differs from the standard 

test method, ASTM E517 [65], provided by ASTM International for measuring R-values. 

ASTM E517 requires an extensometer, which cannot be used for the high-temperature 

testing of this study. As with the true strain measurements, an average reff was calculated 

from the five individual reff values for each specimen. The uncertainties of true strain, ∆εf, 
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and effective R-value, ∆reff, were calculated using a standard formula for propagation of 

uncertainty, 

 
















2

i

i

x
x

y
y   (28) 

where xi are the variables used to calculate the parameter of interest, y, and ∆x and ∆y are 

the uncertainties of x and y, respectively [66]. ∆εf and ∆reff are 
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using this approach. 

Samples for metallographic examination were excised from the tensile specimens 

to study grain growth prior to and during deformation. From each tensile specimen, the 

samples were sectioned from the locations shown in Figure 4.5 using a precision cut-off 

machine with a diamond saw blade. The samples from each specimen were then mounted 

in epoxy, ground using silicon carbide paper, and polished using diamond suspensions. 

After a final polish with colloidal silica, the grain boundaries of the samples were 

revealed through a brief immersion in an acetic-picral etchant (35 mL ethanol, 5 mL H2O, 

5 mL acetic acid, and 2.1 g picric acid). Three optical photomicrographs were acquired 

from each sample to obtain grain size measurements. On each photomicrograph, lines 
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were drawn in both the horizontal and vertical directions in the image processing 

program ImageJ [67]. The distances between individual grain boundaries were measured 

along these lines. Arithmetic means of these measurements were calculated to obtain the 

average grain sizes, d, in the rolling (tensile), long-transverse, and short-transverse 

directions. The uncertainty of the grain size measurements, ∆d, was determined by 

calculating the 95% confidence limit from the standard error of the mean, SE, using the 

relationship 

n

s
SEd 22    (22) 

where s is the standard deviation of the sample grain size measurements and n is the 

number of acquired measurements [61]. The AZ31 grains within the tensile specimen are 

equiaxed. Thus, a simple arithmetic average of the individual grain sizes is sufficient to 

characterize the microstructure. However, it is expected that the AZ31 grains are no 

longer equiaxed after deformation, and the directional measurements are therefore 

required to characterize the grain morphology in the gage region. An effective grain size, 

d , was calculated by taking the geometric mean of the average grain size measurements 

in the rolling (tensile) (dRD), long-transverse (dLD), and short-transverse (dSD) directions, 

as recommended by ASTM standard E112 [68]. The uncertainty of this effective grain 

size was calculated from the uncertainties of the individual grain size measurements 

using Equation 28. ∆ d  is 

  3
4

222222222

9 SDLDRD

SDLDRDLDSDRDRDSDLD

ddd

ddddddddd
d


   (32) 



 37 

using this method. 

 

Figure 4.5:  Metallographic samples were sectioned from (A) the grip and (B) the gage 

region of each tensile specimen. The short-transverse direction (SD) of the 

specimen is perpendicular to the sheet. The tensile direction (TD) is also the 

rolling direction (RD) of the sheet. 

 

4.3. GAS-PRESSURE BULGE TESTS 

4.3.1. The University of Texas Bulge Test Procedure 

Many of the biaxial gas-pressure bulge specimens of this study were formed in a 

bulge testing apparatus located at The University of Texas at Austin. This apparatus was 

designed to acquire in situ measurements of dome height during deformation [69]. A 

photograph of the University of Texas bulge testing apparatus is shown as Figure 4.6. 
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Figure 4.6:  A photograph of the University of Texas bulge testing apparatus is shown. 

The photograph is from Ref. 69. 

 

 Specimen blanks were machined from the Mg AZ31 sheet with a diameter of 90 

mm and the as-received sheet thickness of 2 mm. An example blank is shown on the left 

side of Figure 4.7. The bulge tester’s furnace was preheated to 450°C prior to testing. A 

K-type thermocouple placed near the die holder monitored the temperature during testing. 

Before each test, SAF-T-EZE
®
 anti-seize coating was applied to the upper and lower die 

contact regions of an AZ31 blank, and the blank was placed in the die holder. The 
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loading ram was then raised to clamp the upper and lower dies together with a force of 

approximately 3000 lbs. After clamping, the blank was preheated for a time ranging from 

0 to 960 s. A constant gas pressure ranging from 550 to 1100 kPa was then applied to the 

top of the blank. This gas pressure caused the blank to form downward into the lower die, 

which is a cylinder with an inner diameter of 55.4 mm and an entry radius of 1.5 mm. As 

the blank formed into a dome shape, it displaced a rod attached to a digital micrometer. 

The digital micrometer connects to a computer, and captures approximately five dome 

height measurements per second. The maximum height measurable in the bulge tester is 

approximately 25 mm. Once the bulge specimen reached this height, the loading ram was 

lowered and the specimen was removed an allowed to air cool. An example formed 

specimen is shown on the right side of Figure 4.7. Further information about the test 

procedure is provided in Ref. 69.  

 

Figure 4.7:  An example specimen blank used in bulge testing (left) and dome formed 

from the University of Texas apparatus (right) are presented. 
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4.3.2. General Motors Bulge Test Procedure 

Additional gas-pressure bulge specimens were formed in a bulge tester located at 

the General Motors Technical Center. This apparatus contains a cylindrical die with an 

inner diameter of 100 mm and an entry radius of 5 mm. A photograph of this die is 

shown in Figure 4.8. AZ31 specimen blanks were produced using a sheet metal shear for 

use in these biaxial gas-pressure bulge tests. The blanks were squares with sides of 

approximately 200 mm. Before testing, the furnace was preheated to 450°C. A K-type 

thermocouple inserted into a port on the upper die monitored temperature during testing. 

Prior to each test, a specimen blank was inserted between the upper and lower dies. The 

dies were then clamped together using gas pressure to form a tight seal, and the blank 

was preheated for a time ranging from 0 to 660 seconds. Upon the completion of 

preheating, a constant gas pressure ranging from 280 to 520 kPa was applied to the 

bottom of the specimen blank, causing it to form into the upper die. After forming for a 

set time, the dies were unclamped and the formed dome was removed and allowed to air 

cool. After cooling, the dome height and pole thickness of the specimen were measured. 

Dome heights were obtained using a stand specially built by General Motors for that 

purpose, while pole thicknesses were measured using a magnetic thickness gauge. 
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Figure 4.8:  The furnace and die used in biaxial gas-pressure bulge tests at General 

Motors are shown. 

 

 Further experiments were performed to study the effects of initial grain size on 

the deformation behavior of the AZ31 sheet material. These experiments were conducted 

by Aravindha Antoniswamy. First, the as-received sheet was statically annealed at 350°C 

for 15 minutes. This annealing treatment resulted in a fully recrystallized microstructure 

with an average grain size of 6.68 µm. Second, the thickness of the annealed sheet was 

reduced by 3% through cold rolling, resulting in a final thickness of 1.94 mm. The rolled 

sheet was further annealed at 350°C for 15 minutes, which resulted in an average grain 

size of 19.7 µm. Sheets with these two new initial grain sizes were then tested in the 

General Motors bulge tester at 280 and 520 kPa. 
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Chapter 5: Static and Dynamic Grain Growth 

 

5.1. GRAIN GROWTH LAWS 

5.1.1. Static Grain Growth 

The mobility of grain boundaries within a material is highly temperature-

dependent [70]. At high temperatures, enhanced grain boundary mobility can produce 

grain growth, which reduces the overall energy in a material through a reduction in the 

number of atoms adjacent to a grain boundary. These atoms have higher energies than 

atoms within the lattice of an individual grain. Static grain growth therefore leads to an 

increase in the average grain size. 

Burke and Turnbull [71] modeled the kinetics of static grain growth by assuming 

that the curvature of a grain boundary, 1/R, where R is the radius of curvature, is 

proportional to the driving pressure, P, on the boundary, such that 

R
P b
  (34) 

where α is a proportionality constant and γb is the energy of the boundary. If this driving 

pressure is proportional to the boundary velocity,
dt

dR
, and the average radius of curvature 

is equal to the average grain size due to static grain growth, ds, then it follows that 

Ctdd os 
22

 (35) 

where do is the initial grain size of the material, C is constant for a particular material and 

temperature, and t is the time at temperature. The grain size exponent, N, for many 
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materials is often larger than the value of 2 shown in Equation 35 [72]. Thus, a more 

general static grain growth law can be written as 

  NN

os Ctdd
/1

  (36) 

Equation 36 reduces to 

N
s Ctd

1

   (37) 

if ds is much larger than do. Thus, for a particular material at a constant temperature, ds 

can be approximated solely as a function of time at temperature, t. 

5.1.2. Dynamic Grain Growth 

During high-temperature deformation, the grain size of a material may increase 

beyond that of a material statically annealed for the same time at the same temperature. 

This phenomenon is termed dynamic, or strain-enhanced, grain growth. There are some 

models describing dynamic grain growth in the literature, particularly for superplastic 

materials. Typically, these models treat static and dynamic grain growth as independent 

mechanisms, and they assume that the dynamic grain growth rate is proportional to the 

strain rate during deformation. Thus, the increase in grain size due to dynamic grain 

growth is typically assumed to be a function of strain. 

Wilkinson and Cáceres [73-74] investigated the effects of superplastic 

deformation on grain growth for a variety of alloys. They observed that the increase in 

grain size due to dynamic grain growth is often proportional to the applied strain over a 

range of true-strain rates. They proposed a relationship where the dynamic grain growth 
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rate, d , normalized by the initial grain size, do, is proportional to true-strain rate,  , 

such that 




odd    (38) 

where α is a proportionality parameter. This relationship can be integrated to obtain 

 os ddd   (39) 

where d is the final average grain size after deformation and ds is the grain size solely due 

to static annealing, which can be calculated from Equation 36 or 37. 

Seidensticker and Mayo [75] proposed a similar model to the one developed by 

Wilkinson and Cáceres. However, they normalized the dynamic grain growth rate by the 

final grain size, d, rather than by the initial grain size, do, as they believed that d is a more 

accurate estimate of the average grain size during deformation than do. Thus, the model 

investigated by Seidensticker and Mayo is 




d

dd s   (40) 

Equation 40 can be rearranged to obtain a model for d of the form 




1

sd
d   (41) 

Again, ds can be calculated from Equation 36 or 37. 

 Sato et al. [76] and Kim et al. [77] developed a model with the assumption that 

the contributions from static and dynamic grain growth can be added together to estimate 

the final grain size. Assuming a constant true-strain rate, they concluded that the final 

grain size after deformation, d, is described by 
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where do, C, and N are the same as in Equation 35 and α is a constant describing dynamic 

grain growth. Sato et al. proposed an approximation to Equation 42, 

 expsdd    (43) 

while Kim et al. proposed the approximation 

  1exp  os ddd  (44) 

In Equations 43 and 44, ds is the grain size expected solely from static grain growth. 

 

5.2. GRAIN SIZE MEASUREMENTS 

5.2.1. Summary of Results 

 The grain size measurements from each of the tensile specimens are summarized 

in Table 5.1. For each specimen, the average grain size in the gage region was larger than 

the average grain size in the grip region. This indicates that the gage regions of all 

specimens experienced dynamic grain growth during deformation. The observed dynamic 

grain growth was typically normal, i.e. all grains generally grew at similar rates. 

However, abnormally large grains were observed in the gage region of two specimens 

tested at the fastest strain rate of 3 × 10
-2

 s
-1

. An example of one of these abnormal grains 

is shown in Figure 5.1. At 3 × 10
-2

 s
-1

, DC creep is expected to almost completely control 

deformation, as indicated by Figure 2.5. Because DC creep is not affected by grain size 

[56], abnormal grain growth is not expected to significantly affect the deformation 

behavior of the AZ31 sheet. Thus, the growth of abnormal grains was ignored in the 
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subsequent analysis, and the gage region grain sizes in Table 5.1 only represent the 

effects of dynamic normal grain growth.  

Table 5.1:  Grain size and true strain measurements, along with their respective 

uncertainties, are presented for each tensile specimen examined. Specimens 

designated with a 
*
 developed some abnormal grains in the gage region. 

True-Strain 

Rate (s
-1

) 

Specimen 

Designation 

True Strain, 

εf 

Grip region grain 

size, ds (μm) 

Gage region 

grain size, d (μm) 

10
-4

 GM28 0.14 ± 0.01 10.6 ± 0.7 11.2 ± 0.7 

 GM22 0.30 ± 0.01 12.6 ± 0.9 14.4 ± 0.9 

 GM25 0.47 ± 0.01 12.7 ± 0.9 17.5 ± 1.2 

3 × 10
-4

 GM29 0.15 ± 0.01 10.5 ± 0.8 11.0 ± 0.7 

 GM31 0.32 ± 0.01 12.7 ± 1.0 13.7 ± 1.0 

 GM24 0.49 ± 0.01 12.1 ± 0.9 16.6 ± 1.2 

10
-2

 GM26 0.17 ± 0.01 9.9 ± 0.6 10.1 ± 0.5 

 GM33 0.37 ± 0.01 10.4 ± 0.9 12.3 ± 0.8 

 GM27 0.57 ± 0.01 10.2 ± 0.6 12.5 ± 0.7 

3 × 10
-2

 GM30 0.18 ± 0.01 8.7 ± 0.6 10.8 ± 0.6 

 GM23
*
 0.39 ± 0.01 9.2 ± 0.5 11.0 ± 0.6 

 GM32
*
 0.59 ± 0.01 10.7 ± 0.8 16.0 ± 2.4 
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Figure 5.1:  A photomicrograph containing an example of an abnormally large grain is 

shown. This abnormal grain was observed in the gage region of the tensile 

specimen tested at 3 × 10
-2

 s
-1

 to a final true strain of 0.39. 

 

5.2.2. Static Grain Growth 

 Grain sizes, ds, in the undeformed grip region were plotted against time, t, for 

each test condition. These measurements, shown as open circles in Figure 5.2, illustrate 

the effects of time at temperature on static grain growth of the AZ31 sheet. The error bars 

on ds represent the uncertainties calculated from the standard errors on the average grain 

size measurements. Equations 36 and 37 were fit to the experimental open circles shown 
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in Figure 5.2 using the NonlinearModelFit routine in the computational software program 

Mathematica
®
 [78]. The fitting parameters C and N were chosen to minimize the sum of 

the squares of the differences between the fitted equation and the experimental data. Note 

that the initial grain size of the AZ31 sheet (do in Equation 35) cannot be directly 

measured. This is because the as-received sheet is provided in a partially-annealed, 

unrecrystallized condition. However, the material recrystallizes to equiaxed grains 

quickly at 450°C. The tensile specimen tested at 3 × 10
-2

 s
-1

 to a true strain of 0.18, which 

represents the fastest tensile test conducted for this study, recrystallized equiaxed grains 

with an average size of 8.7 μm in the grip region. This grain size was used as an estimate 

of the “initial” grain size of the AZ31 sheet after recrystallization, do, in Equation 36. 

Values of C and N obtained from the fits of Equations 36 and 37 are shown in Table 5.2. 

The fits themselves are plotted as curves in Figure 5.2. Equations 36 and 37 both provide 

reasonable agreement with the grain size data. However, Equation 37 predicts that ds = 0 

for t = 0. A grain-size dependent material model, describing the strain-rate due to GBS 

creep using Equation 18, would therefore predict an infinitely large value of GBS  as 

forming begins, which is clearly nonphysical. Therefore, Equation 36 is used to model 

static grain growth in subsequent analyses. Figure 5.2 also shows the average grain size 

measured from AZ31 specimens annealed in salt at 450°C for various times. These data 

are presented as closed circles. Although these additional data were not used in fitting, 

they confirm that the grip grain sizes are consistent with exposure to 450°C for the 

specified times.  
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Figure 5.2:  The average grain size in the undeformed grip region, ds, is plotted against 

time, t, for tensile specimens tested at 450°C and constant true-strain rates 

ranging from 10
-4

 to 3 × 10
-2

 s
-1

. Experimental data are shown as open 

circles, while fits to the data using Equations 36 and 37 are shown as curves. 

The closed circles are grain size measurements from specimens annealed in 

salt at 450°C. 

Table 5.2:  The parameters obtained from fitting the static grain growth models to 

experimental data are provided. The value of do was assumed to be 8.7 μm, 

which was the smallest grain size measured in the grip regions of the tensile 

specimens. 

Fitting Parameter ds = Ct
1/N

 ds = (do
N
 + Ct)

1/N
 

C (μm s
-N

) 8.5 1.1 × 10
20

 

N 22 22 
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5.2.3. Dynamic Grain Growth 

 The grain size, d, in the deformed gage region measured from the tensile 

specimens represents the combined effects of both static and dynamic grain growth. The 

four models for dynamic grain growth can be divided into two types. The models 

proposed by Wilkinson and Cáceres (Equation 39) and Kim et al. (Equation 44) suggest 

that the difference between d and the grip region grain size, ds, is a function of true strain, 

ε. The models proposed by Seidensticker and Mayo (Equation 41) and Sato et al. 

(Equation 43) suggest that the ratio between d and the grip region grain size, ds, is a 

function of true strain, ε. 

Figure 5.3 shows the measurements of d – ds from the tensile specimens plotted as 

markers against ε. The error bars were calculated from the individual uncertainties ∆d and 

∆ds on d and ds, respectively. The uncertainty ∆(d – ds) is given by Equation 28 [66], such 

that 

     22

ss dddd    (45) 

The Wilkinson-Cáceres and Kim et al. models were fit to the experimental data shown in 

Figure 5.3 using the NonlinearModelFit routine in the computational software program 

Mathematica
®
 [78]. The fitting parameter α was chosen to minimize the sum of the 

squares of the differences between the fitted equation and the experimental data, and do 

was again assumed to be 8.7 μm. The fitted values of α are provided in Table 5.3. The 

Wilkinson-Cáceres and Kim et al. fits are plotted as curves in Figure 5.3. 
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Figure 5.3:  The difference in average grain size between the gage region and grip region 

after tensile deformation, d – ds, is plotted against true strain, ε. The 

experimental measurements, which are shown as markers, were obtained 

from tensile specimens tested at 450°C and constant true-strain rates ranging 

from 10
-4

 to 3 × 10
-2

 s
-1

. Fits to the data using the Wilkinson-Cáceres and 

Kim et al. models are shown as curves. 

Table 5.3:  The values of α obtained from fitting the dynamic grain growth models to 

experimental data are provided. The value of do was assumed to be 8.7 μm, 

which was the smallest grain size measured in the grip region of the tensile 

specimens. 

Model α 

Wilkinson-Cáceres 0.78 

Kim et al. 0.67 

Seidensticker-Mayo 0.48 

Sato et al. 0.54 
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Figure 5.4 shows the measurements of d/ds from the tensile specimens plotted as 

markers against ε. Again, the error bars were calculated from the individual uncertainties 

∆d and ∆ds on d and ds, respectively. The uncertainty ∆(d/ds) is given by Equation 28 

[66], such that 
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The Seidensticker-Mayo and Sato et al. models were fit to the experimental data shown 

in Figure 5.4 using the NonlinearModelFit routine in the computational software program 

Mathematica
®
 [78]. Again, the fitting parameter α was chosen to minimize the sum of the 

squares of the differences between the fitted equation and the experimental data. The 

fitted values of α are also provided in Table 5.3. The Seidensticker-Mayo and Sato et al. 

fits are plotted as curves in Figure 5.4. 
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Figure 5.4:  The ratio of average grain size between the gage region and grip region after 

tensile deformation, d/ds, is plotted against true strain, ε. The experimental 

measurements, which are shown as markers, were obtained from tensile 

specimens tested at 450°C and constant true-strain rates ranging from 10
-4

 to 

3 × 10
-2

 s
-1

. Fits to the data using the Seidensticker-Mayo and Sato et al. 

models are shown as curves. 

 

 Figures 5.3 and 5.4 indicate that all four dynamic grain growth models provide 

reasonable agreement with the experimental grain size measurements. Although it is 

difficult to quantitatively compare the models in Figure 5.3 to those in Figure 5.4, the two 

models within each figure can be compared to each other by calculating the root-mean-

square (RMS) error, xRMS, given by 

 



n

i

RMS xx
n

x
1

2

modexp

1
  (47) 
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where n is the number of experimental measurements, xexp is an experimentally-

determined measurement (in this case the difference (d – ds) or ratio (d/ds) between the 

gage region and grip region grain size), and xmod is the corresponding value predicted by a 

mathematical model. The RMS error for the Wilkinson-Cáceres model is 1.00 μm, while 

the RMS error for the Kim et al. model is 0.97 μm. This indicates that the Wilkinson-

Cáceres and Kim et al. models have similar accuracies. The RMS error for the 

Seidensticker-Mayo model is 0.081, while the RMS error for the Sato et al. model is 

0.082, which indicates that the Seidensticker-Mayo and Sato et al. models also have 

similar accuracies. These RMS errors, along with a qualitative comparison of Figures 5.3 

and 5.4, suggest that all four dynamic grain growth models provide similar utility. Thus, 

all four models were considered in the subsequent analysis. 

 

5.3. A GRAIN-SIZE DEPENDENT MATERIAL MODEL 

 A static grain growth model, such as Equation 36, can be combined with a 

dynamic grain growth model to create a model for grain size, d, that is a function of both 

time, t, and strain, ε. Recall that GBS creep depends on grain size as described by 

Equation 18, while DC creep is independent of grain size as described by Equation 19 

[56-57]. Because GBS creep and DC creep are the two independent mechanisms 

governing deformation, the relationship between true-strain rate,  , and true stress, σ, is 

therefore given by the sum of Equations 18 and 19, 

 
DCGBS n

DC

n

p

GBS A
td

A



 

,
   (48) 
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where AGBS, nGBS, and p are parameters that describe GBS creep; ADC and nDC are 

parameters that describe DC creep; and d is the average grain size, which is calculated 

using Equation 36 and one of the dynamic grain growth models. 

 For all four dynamic grain growth models, Equation 48 was fit to the same tensile 

data used to create the SDTD material constitutive model. During that investigation [42], 

it was determined that the experimental data could be modeled by a Voce-type strain-

hardening law [79], 

   cao  exp1  (49) 

for each true-strain rate ranging from 10
-4

 to 3 × 10
-3

 s
-1

 and true strains ranging from 0 to 

0.6. In Equation 49, σ represents the flow stress at a particular strain ε, σo represents the 

expected flow stress due to plastic deformation at ε = 0, and a and c are constants for a 

particular temperature and strain rate. For true-strain rates ranging from 10
-2

 to 10
-1

 s
-1

, σ 

was approximately constant for true strains ranging from 0 to 0.6. The Voce law 

parameters for strain rates from 10
-4

 to 3 × 10
-3

 s
-1

 and the mean flow stress σm for strain 

rates from 10
-2

 to 10
-1

 s
-1

 are listed in Table 5.4. The values in Table 5.4 are average 

parameters determined from tensile tests at orientations of 0, 45, and 90° relative to the 

rolling direction. The average parameters are sufficient because the stress-strain behavior 

is nearly identical between specimen orientations at all strain rates [42]. At 10
-2

 s
-1

 and 

faster, σ is constant, which suggests no hardening from grain growth, implying that 

deformation is almost completely due to DC creep. Values for ADC and nDC were 

therefore determined by fitting Equation 19 to the data obtained at 10
-2

 s
-1

 and faster to 

minimize the sum of the squares of the differences between the fitted equation and the 
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experimental data. Next, the flow stress, σ, was calculated using Equation 49 (10
-4

 to 3 × 

10
-3

 s
-1

) or assumed to be constant (10
-2

 to 10
-1

 s
-1

) for each of the seven tested true-strain 

rates and true strains from 0 to 0.6 in increments of 0.1. For each of these 49 values, d 

was then calculated from Equation 36 and one of the dynamic grain growth models, 

where t = ε/  for a constant true-strain rate test. Equation 48 was then fit to the data 

using the NonlinearModelFit routine in the computational software program 

Mathematica
®
 [78]. Values of AGBS, nGBS, and p were chosen to minimize the sum of the 

squares of the differences between the fitted equation and the experimental data. The 

RMS errors of each of the four resulting material models were then calculated on the base 

10 logarithm of true-strain rate using Equation 47. 

Table 5.4:  The parameters resulting from fits to tensile data of AZ31 sheet at 450°C are 

presented. Data from true-strain rates ranging from 10
-4

 to 3 × 10
-3

 s
-1

 

followed the Voce strain-hardening law (Equation 49). At true-strain rates 

ranging from 10
-4

 to 3 × 10
-3

 s
-1

, the flow stress exhibited a nearly constant 

value of σm for strains ranging from 0 to 0.6. The values in the table are from 

Ref. 42. 

True-strain 

rate, (s
-1

) 

σo 

(MPa) 

a 

(MPa) 
c 

σm 

(MPa) 

10
-4

 1.77 7.18 2.18 - 

3 × 10
-4

 4.03 6.58 3.49 - 

10
-3

 8.82 4.69 4.60 - 

3 × 10
-3

 14.4 1.99 6.47 - 

10
-2

 - - - 20.3 

3 × 10
-2

 - - - 24.8 

10
-1

 - - - 30.3 

 

 The resulting RMS errors are summarized in Table 5.5. The material constitutive 

model created using the Seidensticker-Mayo dynamic grain growth model has the lowest 

RMS error, which indicates that it best describes the experimental tensile data. However, 
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the Seidensticker-Mayo model has a singularity at ε = 2.1. At this strain, d becomes 

infinite, and the model predicts a negative grain size for larger strains, which is clearly 

unphysical. The material constitutive model created using the Sato et al. dynamic grain 

growth model has the next lowest RMS error, which is identical to that of the 

Seidensticker-Mayo model for all practical purposes. Thus, the Sato et al. model is 

chosen for use in the resulting grain-size dependent tensile data (GDTD) material 

constitutive model. The final grain size model, created by combining Equations 36 and 

43, is 

   exp
/1 NN

o Ctdd    (50) 

The parameters do, C, N, and α are summarized in Table 5.6. 

Table 5.5:  The RMS errors on the base 10 logarithms of true-strain rate are presented 

for four material constitutive models. Each material model was created 

using one of the investigated dynamic grain growth models. All material 

models are given by the form of Equation 48. 

Dynamic Grain 

Growth Model 

Corresponding Material 

Model RMS Error 

Wilkinson-Cáceres 0.038 

Kim et al. 0.037 

Seidensticker-Mayo 0.035 

Sato et al. 0.036 

 

Table 5.6:  The parameters describing the final grain size model are presented. The 

grain size model is described by the form of Equation 50. 

Parameter Final Grain Size Model 

do (μm) 8.7 

C (μm s
-N

) 1.1 × 10
20

 

N 22 

α 0.54 
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The parameters describing the GDTD material constitutive model are presented in 

Table 5.7. Figure 5.5 compares the GDTD model against the experimentally-determined 

tensile data used in fitting. The logarithm of true strain rate is plotted against the 

logarithm of true stress for both the experimental data, shown as markers, and the GDTD 

model, shown as curves for true strains ranging from 0 to 0.6. The figure indicates that 

the GDTD model accurately describes the tensile data. Unlike previous material models, 

such as the SDTD model, the GDTD model has a physical basis behind all of the terms 

within the model. The GDTD model accurately describes the experimental tensile data, 

which suggests that the model accounts for the most important mechanisms controlling 

deformation. The GDTD model also relates the deformation behavior of the AZ31 sheet 

to the average grain size within the material, which provides further evidence that GBS 

creep is responsible for deformation at slow strain rates. 

Table 5.7:  The parameters describing the GDTD material constitutive model are 

presented. The material model is described by the form of Equation 48. 

Parameter GDTD Material Model 

AGBS (s
-1

 MPa
-nGBS

 μm
p
) 0.048 

nGBS 1.3 

p 3.1 

ADC (s
-1

 MPa
-nDC

) 3.1 × 10
-10

 

nDC 5.7 
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Figure 5.5:  The logarithm of true-strain rate is plotted against the logarithm of true 

stress for AZ31 tensile specimens tested at 450°C. Markers represent tensile 

data, while curves represent the GDTD material model (Equation 48) fit to 

the data. 
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Chapter 6: Plastic Anisotropy 

 

6.1. TWO-MECHANISM THEORY 

It is theorized that plastic anisotropy is responsible for the observed differences 

between tensile and biaxial forming of AZ31 sheet [23, 41-42]. This anisotropy can be 

quantified using the R-values measured from tensile specimens. Note that the rolled Mg 

AZ31 sheet of this investigation deforms by two independent creep mechanisms at 

450°C: GBS creep and DC creep. The SDTDM1 material model requires modification of 

the DC creep term to predict biaxial deformation. However, no such modification is 

required of the GBS creep term. This suggests that GBS creep is isotropic, while DC 

creep is anisotropic. If the two creep mechanisms independently exhibit differing 

amounts of normal plastic anisotropy, the effective R-value, reff, measured after 

deformation is expected to be a function of the individual R-values for GBS creep, rGBS, 

and DC creep, rDC. Consider the volume of AZ31 sheet material in Figure 6.1 subject to a 

normal stress from uniaxial loading along the z-direction such that plastic deformation 

occurs. This material volume is oriented such that the x-direction is normal to the plane of 

the sheet, in reference to a tensile coupon from the Mg AZ31 sheet material. The y-

direction is along the long-transverse direction of the tensile coupon. During tensile 

deformation, the material will experience tensile strain along the z-direction from both 

GBS creep, εGBS, and DC creep, εDC. The total true strain along the z-direction, εz, is 

DCGBSz    (51) 
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As εz increases, the material will experience negative strains along the x- and y-directions 

such that volume is conserved, i.e., εx + εy + εz = 0, assuming no cavitation.  If GBS creep 

and DC creep are independent deformation mechanisms, then the true strains along the x-

direction, εx, and y-direction, εy, are 

DC

DC

GBS

GBS

x
rr





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for constant values of rGBS and rDC. Thus, the material will exhibit an effective R-value, 

reff, of 
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 (54)
 

which is the R-value that is measured from a tensile specimen after deformation. 

Equation 54 can be simplified to 

    
     DCGBSDCDC

DCGBSDCDCDCGBS

eff
frfr

frrfrr
r






111

111

 (55)
 

where fDC, the fraction of DC creep strain relative to the total true strain, is 

DCGBS

DC

DCf





  (56) 

Thus, the effective R-value in a Mg AZ31 tensile specimen is expected to be a function 

solely of fDC, assuming constant values for both rGBS and rDC. A similar result was 

obtained by Barnett et al. [80] for AZ31 deformation at temperatures from 25 to 250°C. 
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Figure 6.1:  A volume of Mg AZ31 sheet is subject to a tensile stress from uniaxial 

loading in the z-direction. The plane of the sheet is perpendicular to the x-

direction, and the tensile axis is along the z-direction. 

 

6.2. EXPERIMENTAL R-VALUE MEASUREMENTS 

The R-value and true strain measurements from the AZ31 tensile specimens, 

along with their uncertainties, are presented in Table 6.1. The true-strain measurements 

can be used to estimate the DC creep strain fraction, fDC, for each specimen using the 

GDTD material model developed in the previous chapter. The form of the GDTD model 

(see Equation 48 and Table 5.7) indicates that the true-strain rates due to GBS creep, GBS , 

and dislocation-climb creep, DC , are 

  
GBSn

p

o

NN

o

GBS
GBS

dCtd

A









/1

   (57) 
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DCn

DCDC A        (58) 

For a specimen tested at a constant true-strain rate, t = ε/ . Thus, the true strains due to 

GBS creep, εGBS, and dislocation-climb creep, εDC, can be estimated by integrating 

Equations 57 and 58, respectively, to obtain 

  







d

dCtd

Af
GBSn

p

o

NN

o

GBS
GBS 




0 /1

   (59) 




dA
f

DCn

DCDC  0
     (60) 

where εf is the final true strain in the specimen after deformation. For each tensile 

specimen, εGBS and εDC were numerically calculated from Equations 59 and 60 using the 

trapezoidal rule with 100 equally-spaced intervals. At each integration point, σ was 

calculated such that the total true-strain rate, , is equal to the true-strain rate of the 

tensile test. After calculating εGBS and εDC, fDC was determined using Equation 56.  The 

results of these calculations are also shown in Table 6.1. 
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Table 6.1:  R-value and true strain measurements, along with their respective 

uncertainties, are presented for each tested tensile specimen. The fraction of 

dislocation-climb creep strain that each specimen experienced, which was 

estimated using the GDTD material model, is also shown. 

True-Strain 

Rate (s
-1

) 

Specimen 

Designation 

True Strain, 

εf 

R-value, reff Dislocation-climb 

creep fraction, fDC 

10
-4

 GM28 0.14 ± 0.01 1.02 ± 0.10 0.003 

 GM22 0.30 ± 0.01 1.06 ± 0.05 0.010 

 GM25 0.47 ± 0.01 1.08 ± 0.04 0.026 

3 × 10
-4

 GM29 0.15 ± 0.01 1.04 ± 0.10 0.055 

 GM31 0.32 ± 0.01 1.09 ± 0.05 0.122 

 GM24 0.49 ± 0.01 1.16 ± 0.04 0.192 

10
-2

 GM26 0.17 ± 0.01 1.58 ± 0.17 0.822 

 GM33 0.37 ± 0.01 1.73 ± 0.09 0.859 

 GM27 0.57 ± 0.01 1.69 ± 0.06 0.882 

3 × 10
-2

 GM30 0.18 ± 0.01 1.69 ± 0.17 0.917 

 GM23 0.39 ± 0.01 1.79 ± 0.09 0.934 

 GM32 0.59 ± 0.01 1.86 ± 0.06 0.945 

 

Figure 6.2 shows reff plotted against fDC. These data reveal that reff is a strong 

function of fDC and that this dependence agrees well with Equation 55. To determine 

values of rGBS and rDC, Equation 55 was fit to the experimental data shown in Figure 6.2 

using the NonlinearModelFit routine in the computational software program 

Mathematica
®
 [78]. The values of rGBS and rDC were chosen to minimize the sum of the 

squares of the differences between the fitted equation and the experimental data. From 

fitting, it was determined that rGBS = 1.03 ± 0.04 and rDC = 1.85 ± 0.05. The value of rGBS 

is very close to 1.0, which confirms that GBS creep in Mg AZ31 is isotropic. Thus, 

Equation 55 was refit to the data in Figure 6.2 while constraining rGBS to unity. From this 

second fit, it was determined that rDC = 1.86 ± 0.05. Figure 6.2 presents a comparison of 

Equation 55 to the experimental measurements of reff, assuming rGBS = 1.0 and rDC = 1.86. 

This figure demonstrates that the fitted Equation 55 accurately describes the R-values 
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measured after tensile deformation of Mg AZ31 at 450°C. From this point forward, all 

analyses assume rGBS = 1.0 and rDC = 1.86. 

 

Figure 6.2:  Effective R-value, reff, is plotted against the fraction of true strain from 

dislocation-climb creep, fDC. Experimental data are plotted as markers. R-

values expected from theory (Equation 55) are plotted as a solid line. Values 

of fDC for experimental data were determined using the GDTD material 

model. 

 

Figure 6.3 shows the effective R-value, reff, plotted as a function of local true 

strain, εf. Values of reff increase with both true-strain rate, , and local true strain, εf. This 

is consistent with the coexistence of two independent creep mechanisms, one isotropic 

and one anisotropic, controlling deformation in Mg AZ31. As   increases, the dominant 

deformation mechanism transitions from GBS creep to DC creep: DC creep is associated 
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with a larger R-value than GBS creep. Thus, reff is expected to increase with increasing , 

and the data of Figure 6.3 agree with this expectation. Grain size increases with 

increasing εf due to dynamic grain growth in AZ31 at 450°C, as shown in the previous 

chapter. As grain size increases with εf, the strain rate due to GBS creep rapidly 

decreases, and the contribution of DC creep (fDC) to the overall strain rate, and to the total 

strain, increases. Because of this increasing importance of DC creep with increasing 

strain (εf) and the greater anisotropy of DC creep, reff is expected to increase with 

increasing εf. Again, the data of Figure 6.3 agree with this expectation. The SDTD 

material model was used to calculate fDC for each of the four strain rates of tensile 

experiments over true strains from 0 to 0.6 using Equations 56, 59, and 60. Equation 55 

was then used to determine the theoretical relationship between effective R-value, reff, 

and true strain, εf, which is shown by the curves in Figure 6.3. The values of reff predicted 

from theory agree reasonably well with the experimentally measured R-values. 
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Figure 6.3:  Effective R-value, reff, is plotted against final true strain, εf. Experimental 

data are plotted as markers. R-values expected from theory (Equation 55) 

are plotted as a solid line. 
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6.3. EFFECTS OF ANISOTROPY AND STRESS STATE ON DEFORMATION 

 Plastic anisotropy in AZ31 sheet at 450°C was quantified through measurements 

taken after tensile deformation. However, this anisotropy also affects deformation under 

other stress states. These effects are demonstrated through the investigation of equivalent 

tensile stresses, which are related to yield criteria. When generalized to any stress state, 

the stress variable, σ, in material models such as the 1.3 sigma model (Equation 17) and 

SDTD model (Equation 20) is an equivalent stress calculated from the stress tensor at the 

location of interest. One of the most commonly utilized equivalent stresses is the von 

Mises stress, σV, 

       
2

6
2

31

2

23

2

12

2

1133

2

3322

2

2211 



V   (61) 

where σij are components of the stress tensor [81]. This is the equivalent stress used by 

the finite element software package Abaqus
TM

 [58] for isotropic deformation during 

metal plasticity, and it is also the equivalent stress used in the 1.3 sigma, SDTD, and 

SDTDM1 material models. However, the von Mises stress is only appropriate if 

deformation is isotropic. For anisotropic deformation, a different equivalent stress is 

required. One anisotropic equivalent stress is the quadratic Hill stress, σH, 

      2
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2

2211
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1133

2

3322 222  NMLHGFH   (62) 

where F, G, H, L, M, and N are coefficients that describe plastic anisotropy [82]. This is 

the equivalent stress used by Abaqus
TM

 for anisotropic deformation during metal 

plasticity. Note that other anisotropic equivalent stresses have been proposed in the 

literature [83-85]. However, these typically require additional parameters beyond those of 
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the Hill stress. Calculation of these parameters would require additional experimental 

data to determine these parameters independent of the data used for validation. Also, it is 

not clear that these more complex formulations offer any practical advantage over the 

Hill formulation for this application. Thus, the Hill stress is the anisotropic equivalent 

stress used in further analyses. 

During deformation of a thin sheet, such as the 2-mm thick Mg AZ31 sheet of this 

investigation, σ33, σ23, and σ31 are negligibly small [86]; they are assumed to be zero here. 

Under this assumption, Equations 61 and 62 simplify to 
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V    (63) 
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22 2  NHGFH    (64) 

The coefficients in Equation 64 can be calculated from R-values measured after tensile 

deformation. Recall that the AZ31 material of this investigation does not exhibit planar 

anisotropy [42], but only normal anisotropy. Thus, the anisotropy observed in the AZ31 

tensile specimens must be solely normal to the sheet plane. Assuming only normal 

anisotropy, F, G, H, and N are 

r
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where r is the R-value expected during tensile deformation [82, 87].  
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Equations 63 through 67 demonstrate how plastic anisotropy interacts with stress 

state during deformation. The normal plastic anisotropy observed during tensile 

deformation will affect deformation under other stress states and is a likely reason that 

the 1.3 stress factor was necessary in previous material models to accurately predict gas-

pressure bulge forming. The relationship between the 1.3 factor and normal anisotropy 

during dislocation creep is revealed through calculations of the von Mises stress 

(Equation 63) and Hill stress (Equation 64) assuming normal anisotropy. First, consider 

the uniaxial stress state that occurs during a tensile test, where 

 1   (68) 

032    (69) 

Assuming uniaxial stress, 

  HV   (70) 

according to Equations 63 through 67. During uniaxial deformation, the von Mises and 

Hill stresses are identical. This is why the SDTD material model correctly predicts 

uniaxial stress-strain behavior at 450°C despite its incorrect assumption of isotropic 

deformation [23, 42]. Now consider the balanced-biaxial stress state that is characteristic 

of the dome pole during biaxial gas-pressure bulge forming, where 

  21   (71) 

s 3 = 0    (72) 

Assuming balanced-biaxial stress, 

 V   (73) 
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
r

H



1

2
  (74) 

according to Equations 63 through 67. The presence of normal anisotropy (with r > 1) 

results in a Hill stress that is some fraction of the corresponding von Mises stress, just as 

the 1.3 factor (see the 1.3 sigma and SDTDM1 material models) reduces the von Mises 

stress in the DC creep term. The 1.3 stress factor, therefore, acts as a crude method of 

converting the von Mises stress into the Hill stress for a balanced-biaxial stress state. 

Equation 74 suggests that the 1.3 factor corresponds to an R-value of 2.38, though this 

does not account for the effects of anisotropy on the resulting plastic strains. 

 The presence of normal anisotropy also affects the individual strain components 

produced during deformation. During deformation of a metallic material, these strains 

can be calculated using an associated flow rule, 

ij

eff

ij dd







  (75) 

where dεij are the increments in components of the strain tensor during a particular time 

step, dε is the uniaxial equivalent creep strain increment, calculated here by multiplying 

  in Equation 48 by the time increment experienced during deformation, σeff is the 

appropriate effective stress (typically either the von Mises stress or Hill stress), and σij are 

components of the stress tensor [88]. Equations 64 through 67 indicate that σeff is affected 

by the degree of normal anisotropy, which is quantified by r. 
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6.4. AN ANISOTROPIC MODIFICATION TO THE GDTD AND SDTD MODELS 

 Both the GDTD (Equation 48) and SDTD (Equation 20) material models can be 

modified to account for normal anisotropy by using the Hill stress in place of the von 

Mises stress, and using appropriate R-values to calculate the Hill stress for each of the 

two creep mechanisms controlling deformation. The new grain-size dependent material 

model, termed the GDTDAM (GDTD with anisotropy modification) model is 

DCGBS n

DCDC

n

GBSp

GBS A
d

A
    (76) 

where σGBS and σDC are Hill stresses calculated from the components of the stress tensor, 

see Equations 64 through 67. Specifically, σGBS is calculated with r = rGBS = 1.0, and σDC 

is calculated with r = rDC = 1.86. The remaining parameters in Equation 76 are the same 

as for the GDTD material model, see Table 5.7. Likewise, the new strain-dependent 

material model, termed the SDTDAM (SDTD with anisotropy modification) model is 

    DCGBS n

DCDC

n

GBSGBS AA 

  (77) 

Both σGBS and σDC are calculated the same way as for the GDTDAM model. The 

remaining parameters in Equation 77 are the same as for the SDTD material model, see 

Table 2.2. 

For both models, the resulting value of   is multiplied by the incremental time 

during which deformation occurs to obtain dε. Finally, the resulting components of the 

strain tensor are calculated using Equation 75, where σeff is associated with the effective 

R-value, reff, from Equation 55. The value of fDC in Equation 55 can be calculated using 

the individual values for GBS  and DC  such that 
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DCGBS

DC

DCf









  (77) 

Thus, the stress tensor is fully related to the resulting strain tensor in a material 

constitutive model describing the deformation behavior of AZ31 sheet at 450°C. 

 

6.5. ANISOTROPY AND CRYSTALLOGRAPHIC TEXTURE  

 R-value measurements are used to quantify the anisotropic deformation of the 

AZ31 sheet. These measurements do not require any information as to the cause of the 

anisotropy. However, magnesium’s HCP crystal structure suggests a likely reason for the 

normal anisotropy observed during this study. Recall that magnesium exhibits a range of 

critical resolved shear stresses (CRSS) for its various slip systems, as shown in Figure 

2.3. The figure suggests that the CRSS for both pyramidal and prismatic slip are 

approximately 1 to 2 MPa at 450°C. For basal slip, the figure only provides data up to 

280°C. However, the CRSS for basal slip is generally observed to be constant [89], and it 

is unlikely to increase with temperature. This suggests that the CRSS for basal slip is 0.5 

MPa or less at 450°C. These values indicate that magnesium’s HCP crystal structure 

remains anisotropic even at 450°C. A random orientation of the grains within the AZ31 

sheet would cause the anisotropy of the individual grains to cancel out on the large length 

scale represented by the sheet, resulting in isotropic deformation. However, the AZ31 

sheet may instead have a texture, such that the grains within the sheet have a preferred 

orientation. The textured sheet would exhibit similar anisotropy to that of the individual 

grains in their preferred orientation. 
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 Many AZ31 sheet materials exhibit a strong basal texture [90-93], in which the 

basal planes of the grains (see Figure 2.2) tend to align with the plane of the sheet. Figure 

6.4 contains pole figures obtained through electron backscatter diffraction (EBSD) of the 

AZ31 sheet used in this investigation. The sheet was annealed at 150°C for 20 minutes to 

recrystallize the microstructure prior to EBSD, which was performed by Aravindha 

Antoniswamy. The pole figures show that there is a preferable orientation of the grains 

within the AZ31 sheet. The (0001) directions of the grain’s crystal structures, shown in 

Figure 2.2, are oriented closely to the sheet normal. This confirms that the sheet contains 

a strong basal texture similar to that observed in other studies. 

 

Figure 6.4:  Pole figures obtained from EBSD of the AZ31 sheet are shown. The sheet 

was recrystallized at 150°C for 20 minutes prior to EBSD. Texture 

intensities are displayed using a times-random scale. The pole figures were 

obtained by Aravindha Antoniswamy. 
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 It is likely that the basal texture of the AZ31 sheet is responsible for anisotropic 

deformation during DC creep. DC creep occurs when crystallographic planes slip relative 

to one another through the movement of dislocations [56-57]. Figure 2.3 suggests that 

basal slip occurs more easily than non-basal slip, even at 450°C. For a material with a 

strong basal texture, this suggests that slip will occur more easily in the sheet plane than 

normal to the sheet. This results in the observed normal anisotropic deformation during 

DC creep. Note that GBS creep occurs when grain boundaries slide relative to one 

another [56-57]. This suggests that GBS creep does not depend on grain orientation, as 

deformation is confined primarily to grain boundaries. Thus, GBS creep is expected to be 

isotropic, as was observed in this study. 
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Chapter 7: Finite-Element-Method Simulations 

 

7.1. USER-DEFINED FUNCTIONS 

 The GDTDAM and SDTDAM material constitutive models must be implemented 

into a finite-element-method (FEM) code if they are to be used in simulations. Abaqus
TM

 

[58], a suite of commercial FEM software, was used for simulations because it was also 

previously used to evaluate the SDTD and SDTDM1 material models [23, 42]. All of the 

two-term material constitutive models discussed in this work are too complicated to be 

described by the simple default creep models available in Abaqus. However, Abaqus 

allows the user to define more complicated material constitutive behavior in additional 

subroutines, which are written in the programming language Fortran [94]. The two-term 

material models are all implemented in a user-defined subroutine named CREEP. 

 The CREEP subroutine allows the user to define the uniaxial equivalent creep 

strain, dε (the product of   and the current time increment dt), as a function of variables 

such as the equivalent strain, ε (calculated using Equation 33), forming time, t, and an 

equivalent stress. The equivalent stress is automatically calculated using either the von 

Mises stress or Hill stress formulations. This implementation is sufficient for the SDTD 

and SDTDM1 models, which assume that the equivalent stresses in the GBS and DC 

terms are identical [23, 42]. However, the GDTDAM and SDTDAM models are two-

term (two-mechanism) creep models wherein each term (mechanism) produces a different 

plastic anisotropy. This subtlety requires calculation of a different equivalent stress for 
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each creep term (see Equation 76 and 77), which cannot be done using the CREEP 

subroutine alone. A second user subroutine, USDFLD, is needed to meet this 

requirement. The USDFLD subroutine allows the user to obtain values for individual 

variables at integration points, such as individual tensor components, and update user-

defined variables. The stress tensor is obtained at each integration point using the 

USDFLD subroutine and used to calculate the mechanism-dependent equivalent stresses 

σGBS and σDC, which are stored in solution-dependent state variables. These state variables 

can then be accessed by CREEP and used to calculate   for the GDTDAM (Equation 76) 

or SDTDAM (Equation 77) material models. The CREEP subroutine also automatically 

calculates the individual strain tensor components using the associated flow rule, see 

Equation 75. This equation is only valid if σeff is the Hill stress calculated from the 

effective R-value, reff, expected from both GBS and DC creep. Thus, fDC is calculated 

from Equation 77, and reff is calculated using Equation 55 and stored in a solution-

dependent state variable. 

 The Fortran codes for the GDTDAM and SDTDAM material constitutive models 

are provided in Appendix B. Each model’s code is typically stored in a computer file 

named creep.f, which can be included in an Abaqus FEM analysis. 

 

7.2. SIMULATION DESCRIPTIONS 

7.2.1. Tensile Simulations 

In FEM simulations of tensile tests, the gage section of the tensile coupon was 

modeled with a mesh comprised of four-node quadrilateral membrane (M3D4) elements 
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measuring 1 mm on a side with an initial thickness of 2 mm. This mesh, shown in Figure 

7.1, was used previously in tensile simulations of the SDTD and SDTDM1 material 

constitutive models [23, 42]. Membrane elements suffice because flow localization 

(necking) is neglected for the simulations. During simulations, one of the mesh 

boundaries was fixed in the y-direction, as shown in Figure 7.1. The other boundary was 

displaced at an increasing speed to approximate a constant true-strain rate along the 

tensile direction of the mesh. Stress and strain components were recorded during 

simulations for the element indicated with an X in Figure 7.1. Tensile simulations were 

conducted for constant true-strain rates of 10
-4

, 3 × 10
-4

, 10
-2

, and 3 × 10
-2

 s
-1

 using both 

the GDTDAM and SDTDAM material models. The simulation results were compared to 

both experimental data and results obtained using the SDTD and SDTDM1 material 

models. Appendix C contains an example input file for use in Abaqus
TM

 tensile 

simulations. 
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Figure 7.1:  The mesh used in Abaqus tensile simulations is shown. The mesh elements 

are 1 mm on a side with an initial thickness of 2 mm. The X indicates the 

element for which stresses and strains are output during simulations. The 

figure is from Ref. 23. 

 

7.2.2. Biaxial Bulge Forming Simulations 

In FEM simulations of biaxial gas-pressure bulge tests, both the specimen blank 

and die were modeled as axisymmetric two-node linear shell (SAX1) elements with an 

average size of 1.5 mm. Note that the shell elements do not account for thinning 

X 
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localization at large strains. The axisymmetric blank and die meshes are shown in Figure 

7.2 for the University of Texas bulge forming geometry, which has a die inner diameter 

of 55.4 mm and a die entry radius of 1.5 mm. In the figure, both meshes were revolved 

180° around the axis of symmetry to provide better visualization of the blank and die. A 

second similar pair of meshes was created to model the General Motors bulge forming 

geometry, which has a die inner diameter of 100 mm and die entry radius of 5 mm. 

During simulations, the edge node of the blank was fixed, which mimics the effect of the 

seal bead as it clamps down on the AZ31 sheet blank. Pressure was then applied to the 

top of the specimen blank, causing it to form downward into the die. The displacement 

and thickness of the blank element closest to the axis of symmetry were recorded during 

the simulation. For the University of Texas geometry, simulations were conducted for 

pressures of 550, 830, and 1100 kPa using both the GDTDAM and SDTDAM material 

models. At 830 kPa, further simulations were conducted to account for the effects of 

preheat time on the AZ31 deformation behavior. This was accomplished by replacing 

time, t, in the GDTDAM model with t + tpre, where tpre is a preheat time ranging from 30 

to 960 s. For the General Motors geometry, simulations were conducted for pressures of 

280 and 520 kPa using both the GDTDAM and SDTDAM material models. For both 

pressures, further simulations were conducted to account for the effects of initial grain 

size on the AZ31 deformation behavior. This was accomplished by replacing the initial 

grain size in the GDTDAM model, do = 8.7 μm, with the initial grain size of one of the 

other two tested materials, 6.68 or 19.7 μm. Simulation results were compared to both 

experimental data and results obtained using the SDTD and SDTDM1 material models.  
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Appendix C contains example input files for use in Abaqus simulations of the University 

of Texas and General Motors bulge forming geometries. 

 

Figure 7.2:  The mesh used in Abaqus gas-pressure bulge forming simulations of the 

University of Texas geometry is shown. The nodes of the axisymmetric 

sheet blank and forming die meshes are shown as red markers, while the 

axisymmetric elements are shown as red lines. The axisymmetric mesh is 

revolved 180° around the axis of symmetry to provide a better visualization 

of the blank and die. The AZ31 blank is shown in blue, while the forming 

die is shown in gray.  
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Chapter 8: Results and Discussion 

 

8.1. MEASURES OF ERROR 

 FEM simulation results are compared to experimental data to determine the 

accuracy of material constitutive models under various forming conditions. When 

comparing simulations to experiments, it is useful to quantify the resulting errors to 

facilitate subsequent comparisons of the various material models. Two common measures 

of error are the root-mean-square (RMS) error and the mean-percent-difference (MPD) 

error. The RMS error is given by 

 



n

i

simRMS xx
n

x
1

2

exp

1
  (78) 

where n is the number of comparisons between two data sets, xexp is an experimental 

measurement from a data set, and xsim is the corresponding simulation prediction. The 

RMS error provides a quantitative measure of the magnitude difference between 

experimental data and the corresponding simulation predictions. However, it is always 

positive, so it does not indicate whether simulation predictions are smaller or larger than 

experimental measurements. The MPD error is given by 
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where n is the number of comparisons between two data sets, xexp is an experimental 

measurement from a data set, and xsim is the corresponding simulation prediction. The 

sign of the MPD error indicates whether simulation predictions are generally smaller or 
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larger than the corresponding experimental data. However, the MPD error may average 

individual errors within a data set to approximately zero if some simulation results are 

smaller than experimental measurements and other simulation results are larger than 

experimental measurements. Thus, the RMS and MPD errors are both required to 

meaningfully quantify differences between simulations and experiments. 

 The primary method of evaluating the ability of a material constitutive model to 

predict tensile deformation is to compare the stress-strain curves predicted by simulations 

to the experimental stress-strain data. Results are compared here for true strains ranging 

from 0 to 0.6. These strains are generally low enough to avoid flow localization 

(necking), which is not predicted by the material models. Therefore, the RMS and MPD 

errors were calculated from 100 equally-spaced true strains ranging from 0 to 0.6, such 

that n = 100 in Equations 78 and 79. At each of these strains, xexp is the true stress from 

experimental data, and xsim is the true stress predicted by simulation. These stresses were 

obtained through linear interpolation of the experimental data and simulation results so 

that comparisons could be performed at the equally-spaced true strains. 

 Two measurements are used to evaluate a material constitutive model’s ability to 

predict biaxial gas pressure bulge forming: dome heights and pole thicknesses. Forming 

is fastest immediately upon the application of gas pressure and at the end of forming prior 

to rupture. The increase in forming rate prior to rupture is thought to be caused by the 

onset of localized thinning and/or damage such as cavitation. These effects, which are not 

accounted for by the various material models, cause forming to speed up once the dome 

height becomes approximately 40% of the die diameter. This corresponds to a dome 
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height of 22 mm for the University of Texas geometry and a dome height of 40 mm for 

the General Motors geometry. Thus, bulge forming results are compared for forming 

times ranging from 0 to the time at which experimental dome heights reach these limits. 

For comparisons involving the University of Texas geometry, the RMS and MPD errors 

on dome height were calculated from 100 equally-spaced forming times within this 

range, such that n = 100 in Equations 78 and 79. For comparisons involving the General 

Motors geometry, the RMS and MPD errors were calculated for each experimental 

measurement within this range.  At each forming time, xexp is the dome height or pole 

thickness calculated from experiment, while xsim is the corresponding dome height or pole 

thickness predicted by simulation. These values were obtained through linear 

interpolation so that experimental data and simulation results are compared at the same 

forming times. 

 

8.2. VARIABILITY AND REPEATABILITY 

The measures of error were also used to evaluate the repeatability of experiments 

conducted during the study. Multiple tensile tests were conducted at 450°C and 10
-3

 s
-1

 to 

evaluate the variability and repeatability inherent in tensile testing of the AZ31 sheet. 

Tensile tests should obviously be repeatable. Otherwise, there is little reason to try to 

predict tensile forming. The additional tensile test results were compared to the data used 

to create the material constitutive models [42] in this study. A similar comparison was 

performed at 450°C and 10
-1

 s
-1

, though with fewer repetitions. 
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 Figure 8.1(a) presents true stress-true strain measurements from five tensile tests 

at 450°C and 10
-3

 s
-1

. The data contain some noise from the load cell, which is due to the 

low loads required for deformation at 10
-3

 s
-1

. The Voce law, see Equation 49, was fit to 

each stress-strain curve to smooth out the noise. The Voce law fits for each tensile test 

are presented in Figure 8.1(b). These curves indicate that there is little variation between 

tests at 10
-3

 s
-1

. The MPD between each pair of curves in Figure 8.1(b) was calculated 

using Equation 79. The maximum RMS error between any two tensile tests is 0.51 MPa, 

while the maximum absolute value of the MPD between any two tensile tests is 3.8%. 

 

Figure 8.1:  True stress (a) data and (b) the corresponding Voce law fits are plotted 

against true strain for tensile tests at 450°C and 10
-3

 s
-1

. Solid curves 

represent data from this study, while dashed curves represent data from a 

previous study [42]. 

 

 Figure 8.2 presents true stress-true strain measurements from three tensile tests at 

450°C and 10
-1

 s
-1

. The loads required for deformation at 10
-1

 s
-1

 are large enough that 

noise from the load cell is minimal. The data indicate that there is little variation between 

tests at 10
-1

 s
-1

 for true strains less than 0.4. Beyond this strain, flow localization results in 
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a drop in true stress, though the degree of this drop varies between tests. Flow 

localization is neglected in this study. Thus, the MPD between each pair of curves in 

Figure 8.2 was calculated using data at true strains less than 0.4. The maximum RMS 

error between any two tensile tests is 0.91 MPa, while the maximum absolute value of the 

MPD between any two tensile tests is 3.4%. 

 

Figure 8.2:  True stress is plotted against true strain for tensile tests at 450°C and 10
-1

 s
-1

. 

Solid curves represent data from this study, while dashed curves represent 

data from a previous study [42]. 

 

 The repeatability of the biaxial gas-pressure bulge tests was also investigated. 

Predictions of bulge forming are only meaningful if gas-pressure bulge tests are 

repeatable. Multiple bulge tests were conducted using the University of Texas geometry 
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at 450°C and 830 kPa, and dome height measurements from the tests were compared to 

data from a test by Sherek [23]. Two additional tests were conducted at 550 and 1100 

kPa, and the dome height measurements from each test were also compared to Sherek’s 

data. 

 Figure 8.3 presents measurements of dome height versus forming time for the 

bulge tests conducted at 450°C and 830 kPa. The data indicate that there is little variation 

between bulge tests. The MPD between each pair of curves in Figure 8.3 was calculated 

using Equation 79. The maximum RMS error between any two bulge tests is 0.62 mm, 

while the maximum absolute value of the MPD between any two bulge tests is 4.7%. 

 

Figure 8.3:  Dome height is plotted against forming time for bulge tests run using the 

University of Texas apparatus at 450°C and 830 kPa. Solid curves represent 

data from this study, while dashed curves represent data from a previous 

study [23]. 



 88 

 

 Figure 8.4 presents measurements of dome height versus forming time for the 

bulge tests conducted at (a) 550 and (b) 1100 kPa. These data also indicate that there is 

little variation between bulge tests. The MPD between each pair of curves in Figure 8.4 

was calculated using Equation 79. The RMS error between the two bulge tests is 0.75 

mm at 550 kPa and 0.27 mm at 1100 kPa. The absolute value of the MPD between the 

two bulge tests is 3.5% at 550 kPa and 0.9% at 1100 kPa. 

 

Figure 8.4:  Dome height is plotted against forming time for bulge tests run using the 

University of Texas apparatus at 450°C and (a) 550 kPa or (b) 1100 kPa. 

Solid curves represent data from this study, while dashed curves represent 

data from a previous study [23]. 

These results suggest that the inherent variability of both tensile stress and biaxial 

dome height measurements is less than 5%. The MPD between simulation results and 

experimental data should ideally fall within this range. However, the material constitutive 

models used in simulations only approximate the complex physics of plastic deformation, 

and even a reasonably accurate material model may occasionally fall outside of this 

range. For this study, a material model is considered to successfully predict the results of 
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a particular forming experiment if the absolute value of the MPD is less than 10% (twice 

the maximum experimental MPD), as a prediction of this accuracy would certainly be 

useful when designing a forming operation and determining processing parameters. 

The results also suggest that the maximum RMS error between tensile tests is 

approximately 1 MPa. Again, an accurate material model should have an RMS error of 

less than twice this value, which is 2 MPa. The maximum RMS error between bulge tests 

is approximately 0.8 mm for the University of Texas apparatus, which suggests that a 

material model should have an RMS error less than 1.6 mm when predicting forming 

with the University of Texas geometry. The General Motors bulge test die is 

approximately 1.8 times as large as the University of Texas bulge test die, which suggests 

that a material model should have an RMS error less than 2.9 mm when predicting bulge 

forming with the General Motors geometry. 

 

8.2. TENSILE RESULTS 

8.2.1. True Stress-True Strain Curves 

 Figure 8.5 compares experimental true stress-true strain data from tensile tests at 

450°C to simulation results obtained using the SDTD, SDTDM1, SDTDAM, and 

GDTDAM material models. Comparisons are presented for constant true-strain rates of 

(a) 10
-4

, (b) 3 × 10
-4

, (c) 10
-2

, and (d) 3 × 10
-2

 s
-1

. For all four strain rates, the 

experimental data are from Ref. 42. At each strain rate, the RMS and MPD true stress 

errors were calculated for the SDTD, SDTDM1, SDTDAM, and GDTDAM material 

models. These errors are presented in Tables 8.1 and 8.2. 
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Figure 8.5:  True stress is plotted against true strain at 450°C for constant true-strain 

rates of (a) 10
-4

, (b) 3 × 10
-4

, (c) 10
-2

, and (d) 3 × 10
-2

 s
-1

. Experimental data 

are from Ref. 42. For all strain rates, the SDTD simulation results are 

identical to the SDTDAM results. 

Table 8.1:  The RMS errors on true stresses for the SDTD, SDTDM1, SDTDAM, and 

GDTDAM material constitutive models are presented. All values are in 

MPa. 

True-Strain Rate (s
-1

) SDTD SDTDM1 SDTDAM GDTDAM 

10
-4

 0.09 0.23 0.09 0.39 

3 × 10
-4

 0.14 1.11 0.14 0.59 

10
-2

 0.32 5.27 0.32 0.19 

3 × 10
-2

 0.32 7.02 0.23 0.23 
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Table 8.2:  The MPD errors on true stresses for the SDTD, SDTDM1, SDTDAM, and 

GDTDAM material constitutive models are presented. All values are 

percentages. 

True-Strain Rate (s
-1

) SDTD SDTDM1 SDTDAM GDTDAM 

10
-4

 -1.2 2.0 -1.1 -0.9 

3 × 10
-4

 1.8 11.3 1.8 7.8 

10
-2

 -1.4 26.2 -1.4 -0.5 

3 × 10
-2

 -0.2 28.5 -0.6 -0.6 

 

 The comparisons with tensile data reveal that three of the four material 

constitutive models provide accurate predictions of tensile stress-strain data. The SDTD 

and SDTDAM stress-strain curves are almost identical. This is expected because the two 

models only differ in their equivalent stresses. Both the von Mises stress and Hill stress 

are equal under a uniaxial stress state, see Equation 70. Thus, those two models provide 

equivalent results. The SDTD and SDTDAM models both agree well with the 

experimental data for all four strain rates, as both models have RMS errors less than 0.4 

MPa and MPD errors with absolute values less than 2%. The GDTDAM model is 

somewhat less accurate than the SDTD and SDTDAM models at the two slower strain 

rates, with RMS errors as large as 0.6 MPa and MPD errors as large as 8%. Still, the 

GDTDAM model, which assumes that GBS creep hardening depends on grain size, is 

accurate enough to provide further evidence that grain growth is responsible for the 

observed strain hardening at slow strain rates. The SDTDM1 model provides accurate 

predictions at the slowest strain rate of 10
-4

 s
-1

. As strain rate increases, however, the 

stresses predicted by the SDTDM1 model become larger than those observed 

experimentally. The RMS error of the SDTDM1 model increases to approximately 7 

MPa, while the MPD error is almost 30% at the fastest strain rate of 3 × 10
-2

 s
-1

. This 
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indicates that the 1.3 factor in the SDTDM1 model, which was added to provide accurate 

predictions of biaxial gas-pressure bulge forming, eliminates the ability of the model to 

reproduce tensile data across the range of relevant strain rates. 

8.2.2. R-value Data 

 In addition to stress-strain data, an accurate material model should also predict the 

resulting strains in the non-tensile directions. Therefore, R-values from simulations run 

using the SDTD, SDTDM1, SDTDAM, and GDTDAM material models are compared to 

the experimental measurements from Figure 6.3. Figure 8.6 presents the R-values as a 

function of true strain for true-strain rates of 10
-4

, 3 × 10
-4

, 10
-2

, and 3 × 10
-2

 s
-1

. The 

SDTD and SDTDM1 models both provide identical R-value predictions, and they are 

plotted as the same dashed line. Similarly, the SDTDAM and GDTDAM models provide 

identical R-value predictions, and they are plotted as the same solid curves. 
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Figure 8.6:  Effective R-values, reff, are plotted against true strain for constant true-strain 

rates of 10
-4

, 3 × 10
-4

, 10
-2

, and 3 × 10
-2

 s
-1

. Experimental data are plotted as 

markers. SDTD and SDTDM1 simulation results are plotted as a dashed line 

for all strain rates. SDTDAM and GDTDAM simulation results are plotted 

as solid curves for each strain rate. 

 

 Figure 8.6 illustrates a key weakness of the SDTD and SDTDM1 material 

constitutive models. Both the SDTD and SDTDM1 models predict effective R-values of 

1.0 for all true-strain rates, as these models do not explicitly address plastic anisotropy. 

The SDTD and SDTDM1 models use the von Mises stress in calculations, which assumes 

isotropic deformation. However, Mg AZ31 sheet exhibits anisotropic deformation at the 

fast strain rates for which DC creep produces deformation, which is illustrated by the 

experimental data. Although the SDTD material model accurately reproduces 
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experimental stress-strain curves, it cannot accurately predict normal strains along the 

short-transverse and long-transverse directions in a tensile coupon. Thus, the SDTD 

model does not predict reff. This indicates that the SDTD material model does not predict 

tensile deformation as accurately as previously thought [23, 42]. Conversely, the 

SDTDAM and GDTDAM material models accurately reproduce the R-values measured 

from experiment. Thus, they can accurately predict the full strain tensor resulting from 

normal anisotropy. This ability represents a significant improvement over previous 

material models, such as the SDTD and SDTDM1 models. Furthermore, this allows the 

SDTDAM and GDTDAM models to be applied to any general stress state occurring 

during deformation at 450°C, a capability beyond previous material models. 

 

8.3. BIAXIAL BULGE FORMING RESULTS 

8.3.1. University of Texas Geometry 

Figure 8.7 compares experimental dome heights from biaxial gas-pressure bulge 

tests using the University of Texas geometry to simulation results obtained using the 

SDTD, SDTDM1, SDTDAM, and GDTDAM material models. Comparisons are 

presented for gas pressures of (a) 550, (b) 830, and (c) 1100 kPa. At each pressure, the 

RMS and MPD dome height errors were calculated for the SDTD, SDTDM1, SDTDAM, 

and GDTDAM material models. These errors are presented in Tables 8.3 and 8.4. 
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Figure 8.7:  Dome height is plotted against forming time at 450°C for gas pressures of 

(a) 550, (b) 830, and (c) 1100 kPa. Experiments and simulations use the 

University of Texas geometry. 

Table 8.3:  The RMS errors on dome heights for the SDTD, SDTDM1, SDTDAM, and 

GDTDAM material constitutive models are presented. Experiments and 

simulations were conducted using the University of Texas geometry. All 

values are in mm. 

Gas Pressure (kPa) SDTD SDTDM1 SDTDAM GDTDAM 

550 1.7 1.2 1.3 1.6 

830 1.5 0.3 0.3 0.4 

1100 2.5 0.5 0.3 0.6 
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Table 8.4:  The MPD errors on dome heights for the SDTD, SDTDM1, SDTDAM, and 

GDTDAM material constitutive models are presented. Experiments and 

simulations use the University of Texas geometry. All values are 

percentages. 

Gas Pressure (kPa) SDTD SDTDM1 SDTDAM GDTDAM 

550 10.4 7.3 7.7 8.6 

830 8.0 -1.1 0.1 -2.0 

1100 14.7 -2.8 -0.5 -3.8 

  

The gas-pressure bulge test comparisons signify the need to account for the 

normal anisotropy resulting from DC creep during biaxial forming. At 550 kPa, all 

material models provide similar predictions of dome height versus forming time. The 

RMS errors for the SDTDM1, SDTDAM, and GDTDAM models are less than 1.6 mm, 

while the RMS error for the SDTD model is only slightly larger. Similarly, the MPD 

errors for the SDTDM1, SDTDAM, and GDTDAM models are all 10% or less, while the 

MPD error for the SDTD model is only slightly larger. The results from all four material 

models agree well with those observed experimentally because GBS creep, which is 

isotropic, dominates deformation. At 830 and 1100 kPa, DC creep begins to play an 

increased role in deformation. The SDTD model does not account for the anisotropy 

resulting from DC creep. Thus, the SDTD model predicts faster forming than observed 

experimentally, especially at 1100 kPa. The MPD error at this pressure is almost 15%. 

The 1.3 factor in the SDTDM1 model is a crude method of accounting for the anisotropy 

resulting from DC creep during balanced biaxial deformation, while the SDTDAM and 

GDTDAM models uses the Hill stress and experimentally-determined R-values to 

account for anisotropy. Thus, all three models agree very well with the experimental 
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results at 830 and 1100 kPa. For these pressures, the three models have RMS errors less 

than 0.7 mm and MPD errors with absolute values less than 4%. 

8.3.2. General Motors Geometry 

Figure 8.8 compares experimental (a) dome heights and (b) pole thicknesses from 

biaxial gas-pressure bulge tests at 280 kPa using the General Motors geometry to 

simulation results obtained using the SDTD, SDTDM1, SDTDAM, and GDTDAM 

material models. Similarly, Figure 8.9 compares experimental (a) dome heights and (b) 

pole thicknesses from biaxial gas-pressure bulge tests at 520 kPa using the General 

Motors geometry to simulation results obtained using the SDTD, SDTDM1, SDTDAM, 

and GDTDAM material models. Tables 8.5 and 8.6 contain the RMS and MPD dome 

height errors for the two pressures, while Tables 8.7 and 8.8 contain the RMS and MPD 

pole thickness errors. 

 
 

Figure 8.8:  (a) Dome height and (b) pole thickness are plotted versus forming time at 

450°C and 280 kPa. Experiments and simulations use the General Motors 

geometry. 
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Figure 8.9:  (a) Dome height and (b) pole thickness are plotted versus forming time at 

450°C and 520 kPa. Experiments and simulations use the General Motors 

geometry. 

Table 8.5:  The RMS errors on dome heights for the SDTD, SDTDM1, SDTDAM, and 

GDTDAM material constitutive models are presented. Experiments and 

simulations use the General Motors geometry. All values are in mm. 

Gas Pressure (kPa) SDTD SDTDM1 SDTDAM GDTDAM 

280 2.6 2.2 2.2 3.1 

520 3.5 1.3 1.1 1.6 

 

Table 8.6:  The MPD errors on dome heights for the SDTD, SDTDM1, SDTDAM, and 

GDTDAM material constitutive models are presented. Experiments and 

simulations use the General Motors geometry. All values are percentages. 

Gas Pressure (kPa) SDTD SDTDM1 SDTDAM GDTDAM 

280 8.3 6.8 6.9 9.3 

520 10.6 -1.6 -0.5 -3.3 

 

Table 8.7:  The RMS errors on pole thicknesses for the SDTD, SDTDM1, SDTDAM, 

and GDTDAM material constitutive models are presented. Experiments and 

simulations use the General Motors geometry. All values are in mm. 

Gas Pressure (kPa) SDTD SDTDM1 SDTDAM GDTDAM 

280 0.02 0.02 0.03 0.01 

520 0.19 0.08 0.08 0.09 
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Table 8.8:  The MPD errors on pole thicknesses for the SDTD, SDTDM1, SDTDAM, 

and GDTDAM material constitutive models are presented. Experiments and 

simulations use the General Motors geometry. All values are percentages. 

Gas Pressure (kPa) SDTD SDTDM1 SDTDAM GDTDAM 

280 -0.9 0.9 1.3 -0.6 

520 -13.7 1.7 1.8 3.4 

 

 At 280 kPa, all four material models provide similar predictions of both dome 

height and pole thickness. For dome height, the RMS errors for the SDTD, SDTDM1, 

and SDTDAM models are less than 2.9 mm, while the RMS error for the GDTDAM 

model is only slightly larger. The MPD errors are all between 6 and 10%. For pole 

thickness, the RMS errors are all less than 0.01 mm, while the MPD errors are all less 

than 1.5%. However, an increase in pressure increases the fraction of strain due to DC 

creep, which was also observed with the University of Texas geometry. Because DC 

creep is anisotropic, the SDTD model is less accurate than the other three models at 520 

kPa. At this pressure, the SDTD MPD errors for dome height and pole thickness are 10.6 

and -13.7% respectively. The other three material models, which account for the 

anisotropy of the AZ31 sheet, have MPD errors with absolute values less than 4% at 520 

kPa. Note that the SDTDM1, SDTDAM, and GDTDAM material models diverge from 

the experimental data at dome heights greater than 40 mm, see Figure 8.9. This 

divergence represents the effects of cavitation and/or localized thinning, which cause the 

forming rate to increase. These effects are not accounted for by the material models, 

because a formed part that exhibits cavitation damage or localized thinning is likely unfit 

for service anyway. 
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8.3.3. Effects of Preheat Time 

 The above results indicate that the SDTDAM material model is slightly more 

accurate than the GDTDAM model, especially for tensile predictions at slow strain rates. 

However, the GDTDAM model does have a significant advantage over strain-dependent 

material models such as the SDTDAM model. The GDTDAM material model couples 

GBS creep hardening to the grain size of the material. Thus, the grain size model within 

the GDTDAM material model can be modified to account for factors that would affect 

grain size, which in turn affects the deformation behavior of the AZ31 sheet. The strain-

dependent models account for hardening in the GBS creep regime with strain-dependent 

functions that do not have a physical basis. These models cannot be easily modified to 

account for microstructural changes that would affect GBS creep. 

One processing parameter that can affect both grain size and forming behavior is 

preheat time. Recall that Sherek observed a decrease in the deformation rate during gas-

pressure bulge forming as preheat time increases prior to forming [23]. The same effect 

was observed during this study. Figure 8.10 presents experimental measurements of 

dome height versus forming time for three biaxial gas-pressure bulge tests run on the 

University of Texas apparatus. Each test occurred at 450°C and 830 kPa. The only 

difference between the three tests was the amount of preheat time that the AZ31 blank 

was exposed to at 450°C prior to the application of gas pressure, which ranged from 30 to 

960 s. The data show that the forming time required to reach a particular dome height 

increases as preheat time increases. 
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Figure 8.10:  Dome height is plotted against forming time for biaxial gas-pressure bulge 

tests for which only preheat time varied. The experiments use the University 

of Texas apparatus at 450°C and 830 kPa. 

 

It is hypothesized that the preheat time effect is due to static grain growth, which 

slows deformation by GBS creep. The GDTDAM material model contains a static grain 

growth term that calculates the grain size after static grain growth, ds, as a function of 

time, t. Therefore, the GDTDAM model can be modified to account for preheat time, tpre, 

by replacing t with t + tpre. This modification increases the time at temperature, t, that the 

AZ31 blank experiences during simulations, just as preheating increases the time at 

temperature, t, that the blank experiences during an experiment. Figure 8.11 presents 

simulation predictions of dome height versus forming time at 450°C and 830 kPa. The 
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data show that the GDTDAM model predicts the preheat time effect, which is a 

capability beyond that of the strain-dependent material models. 

 

Figure 8.11:  Dome height is plotted against forming time for biaxial gas-pressure bulge 

simulations using the GDTDAM model. All simulations use the University 

of Texas geometry at 450°C and 830 kPa with only preheat time varying. 

 

Figure 8.12 compares the experimental dome height measurements in Figure 8.10 

to the simulation results in Figure 8.11. Comparisons are presented for preheat times of 

(a) 30, (b) 120, and (c) 960 s. At each preheat time, the RMS and MPD dome height 

errors were calculated for the GDTDAM material model. These errors are presented in 

Table 8.9. The results in Figure 8.12 and Table 8.9 indicate that the GDTDAM model 

accurately predicts the deformation behavior of the AZ31 sheet for various preheat times. 
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All RMS errors are less than 1.1 mm, while the MPD errors all have absolute values less 

than 7%. Thus, the GDTDAM material constitutive model provides both qualitative and 

quantitative predictions of the preheat time effect. Recall that full recrystallization of the 

AZ31 sheet was observed after 80 s at 450°C, see Figure 4.1. It is possible that the AZ31 

sheet did not fully recrystallize after only 30 s at 450°C, which may explain why the error 

between simulation and experiment is larger for a 30 s preheat than a longer preheat. 

  

 

 

Figure 8.12:  Dome height is plotted against forming time at 450°C and 830 kPa for 

preheat times of (a) 30, (b) 120, and (c) 960 s. Experiments use the 

University of Texas apparatus, and simulations were conducted using the 

GDTDAM material model. 
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Table 8.9:  The RMS and MPD errors on dome heights are presented for the GDTDAM 

material model at 450°C and 830 kPa. Experiments and simulations use the 

University of Texas geometry, and only preheat time was varied. 

Preheat Time (s) RMS (mm) MPD (%) 

30 1.1 -6.2 

120 0.2 -0.5 

960 0.5 -2.8 

 

8.3.4. Effects of Initial Grain Size 

 Because grain size affects GBS creep, it is expected that a change in the initial 

grain size of the AZ31 sheet material will affect the deformation behavior at 450°C. The 

grain size of a sheet material is strongly dependent on how it is processed, and different 

sheet materials, even with the same nominal composition, may have different initial grain 

sizes. Just as with preheat times, there is no way to easily modify the strain-dependent 

material constitutive models to account for different initial grain sizes. However, the 

GDTDAM material model has an initial grain size term, see Equations 48 and 50. The 

initial grain size, do, was estimated to be 8.7 μm for the as-received material. The 

parameter do has physical significance; thus, a new initial grain size can be input into the 

GDTDAM material model when the initial grain size changes. To investigate this, two 

new AZ31 sheet materials were created through rolling and annealing processes 

described in the experimental procedures. The initial grain sizes of the two materials were 

measured as 6.7 and 19.7 μm, respectively. 
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Figure 8.13 compares experimental (a) dome heights and (b) pole thicknesses 

from biaxial gas-pressure bulge tests of these different materials at 280 kPa using the 

General Motors geometry to simulation results obtained using the GDTDAM material 

model. Similarly, Figure 8.14 compares experimental (a) dome heights and (b) pole 

thicknesses from biaxial gas-pressure bulge tests at 520 kPa using the General Motors 

geometry to simulation results obtained using the GDTDAM material model. At both 

pressures, experiments and simulations were conducted using the experimentally-

measured initial grain sizes of 6.7 and 19.7 μm. Table 8.10 presents the RMS and MPD 

errors for both dome height and pole thickness at the two pressures of the tests. 

 

 

Figure 8.13:  (a) Dome height and (b) pole thickness are plotted versus forming time at 

450°C and 280 kPa. Experiments use the General Motors apparatus, and 

simulations were conducted using the GDTDAM material model. 
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Figure 8.14:  (a) Dome height and (b) pole thickness are plotted versus forming time at 

450°C and 520 kPa. Experiments use the General Motors apparatus, and 

simulations were conducted using the GDTDAM material model. 

 

Table 8.10:  The RMS and MPD errors on both dome heights and pole thicknesses are 

presented for the GDTDAM material model at 450°C. Experiments and 

simulations use the General Motors geometry, and only initial grain size was 

varied. 

  Dome Height Pole Thickness 

Pressure 

(kPa) 

Initial Grain 

Size (μm) 

RMS 

(mm) 

MPD 

(%) 

RMS 

(mm) 

MPD 

(%) 

280 6.7 2.7 7.9 0.03 0.6 

 19.7 0.8 -2.8 0.09 2.9 

520 6.7 2.8 -6.8 0.17 12.6 

 19.7 6.1 -17.4 0.21 1.6 

 

At 280 kPa, the GDTDAM material model provides accurate predictions of both 

dome height and pole thickness for the two sheet materials. The MPD errors all have 

absolute values less than 10% at this pressure, and the RMS dome height errors are less 

than 2.9 mm. Note that the domes formed from the fine-grained material (do = 6.7 μm) 

are more than 10 mm taller than the domes formed from the coarse-grained material (do = 

19.7 μm) for forming times greater than 1500 s. The ability of the GDTDAM model to 
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predict the deformation behavior of two different sheet materials with these very different 

forming rates is remarkable. Unfortunately, the GDTDAM model predicts slower 

forming than experimentally observed in both sheet materials at 520 kPa. This 

discrepancy could result from the texture of the materials and the resulting plastic 

anisotropy. The GDTDAM simulations assumed that the anisotropic behavior of the 6.7 

and 19.7 μm grain sized materials is the same as the original as-received material. 

However, the 6.7 and 19.7 μm materials were recrystallized at 350°C. This temperature is 

lower than the temperature at which the as-received material recrystallizes, 450°C. It is 

possible that recrystallization at the lower temperature leads to a different texture within 

the sheet. This texture could be less anisotropic than the texture that develops in the as-

received sheet, which would lead to faster forming. Further investigation of this 

possibility is beyond the scope of this study. However, it should be noted that if the above 

hypothesis is true, the GDTDAM model can be easily modified to account for the new 

texture simply by measuring new R-values from tensile specimens, which is much easier 

than creating a new material constitutive model. 
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Chapter 9: Conclusions and Future Work 

 

9.1. CONCLUSIONS 

Two new material constitutive models describing the deformation behavior of 

AZ31 sheet at 450°C were created and validated during this investigation. At this 

temperature, AZ31 deforms by two independent creep mechanisms: GBS creep and DC 

creep. Grain growth, which affects GBS creep, and anisotropy, which affects DC creep, 

were studied during the creation of the new material models. AZ31 exhibits both static 

and dynamic grain growth at 450°C. Static grain growth depends on time at temperature, 

while dynamic grain growth depends on true strain. Thus, grain growth in the material 

can be modeled as a function of both time and strain. A grain size model was used to 

create a grain-size dependent tensile data (GDTD) material constitutive model. This 

model provides a more physical basis for GBS creep hardening than a previous strain-

dependent tensile data (SDTD) material model. 

Both the GDTD and SDTD material models were modified to account for the 

normal anisotropy exhibited by the AZ31 sheet. This anisotropy is mechanism-

dependent, such that DC creep is anisotropic while GBS creep is isotropic. An 

appropriate anisotropic equivalent stress, such as the Hill stress, must be calculated when 

predicting the deformation behavior of an anisotropic material. The coefficients in the 

Hill stress formula are functions of R-values measured during tensile tests. The resulting 

GDTDAM and SDTDAM material models each require two different equivalent stresses 

because of the mechanism-dependent anisotropy. Both of these models were then 
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implemented in the finite-element-method software Abaqus and used in simulations. The 

simulation results were compared to experimental data from both tensile tests and biaxial 

gas-pressure bulge tests to evaluate the accuracy of the two material models. 

Simulation results confirm that the anisotropy of the AZ31 sheet must be 

accounted for to predict the forming behavior under multiple stress states. Previous 

material models, such as the SDTD and SDTDM1 models, can only predict forming 

behavior for one of these stress state. The SDTD model accurately predicts the uniaxial 

stress-strain behavior of AZ31 at 450°C. However, it cannot accurately predict 

deformation perpendicular to the tensile direction, nor can it predict biaxial deformation 

behavior, because it does not account for plastic anisotropy. Conversely, the SDTDM1 

model accurately predicts the biaxial deformation of Mg AZ31 at 450°C. However, it 

cannot predict uniaxial deformation behavior because the 1.3 factor only accounts for 

anisotropy during biaxial deformation, and does so quite crudely. The anisotropy 

modification present in the GDTDAM and SDTDAM material models allows for 

accurate predictions of the plastic deformation of Mg AZ31 sheet at 450°C under both 

uniaxial and biaxial stress states in the range of thinning up to about 40%, which is 

typically the range of greatest practical interest for hot gas-pressure forming of 

automotive panels. This ability represents a significant improvement over the SDTD and 

SDTDM1 models. Complex stress states develop during the hot forming of automotive 

body closure panels. The SDTDAM and GDTDAM material models are the only models 

investigated that can account for the variety of stress states expected in forming practice. 
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The strain-dependent material models cannot be modified to account for 

microstructural changes that affect GBS creep, because the strain-dependent functions in 

these models have no physical basis. However, the GDTDAM model, which models GBS 

creep hardening as a function of grain size, can be modified to account for the effects of 

microstructure evolution on deformation behavior. For example, an increase in preheat 

time prior to forming leads to a decrease in forming rate. The time variable in the 

GDTDAM model can be advanced by the corresponding preheat time to provide 

qualitative and quantitative predictions of the preheat time effect. The GDTDAM model 

can even be modified to predict the deformation behavior of AZ31 sheet materials with 

different initial grain sizes. This modification is far beyond the capabilities of the strain-

dependent material models, and it works especially well when predicting biaxial 

deformation behavior at low gas pressures, where potential differences in R-values, 

associated with DC creep, between different materials are of less importance. 

 

9.2. FUTURE WORK 

 The material constitutive models created during this study provide accurate 

predictions of AZ31 forming behavior at 450°C. However, they do not provide 

information about the deformation of AZ31 at other temperatures. It may be 

advantageous to form automotive and aerospace components at lower temperatures. 

When parts are formed at high temperature, they may distort when removed quickly from 

the die [36]. In addition, higher-temperature forming requires a high energy input and 

may, under some circumstances, produce abnormal grains within the formed part. 
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Abnormal grains have a deleterious effect on yield strength [95]. A material constitutive 

model that could predict deformation over a range of temperatures would therefore be 

useful. For example, it could be used in FEM simulations to determine the optimum 

temperature for a forming operation. However, such material models require a better 

understanding of how phenomena such as grain growth and anisotropy vary with 

temperature, as well as identification of the mechanisms governing deformation over the 

temperature range of interest. Such work would provide improved predictive capabilities 

that could be applied to real-world commercial forming operations. 

 Material constitutive models may be improved through investigations of 

phenomena such as cavitation that affect deformation at large strains. These phenomena 

are the likely reason that simulation predictions diverge from experimental data as the 

material approaches failure. However, it should be noted that cavitation also negatively 

affects material properties, and a part with as little as 2% cavitation may be unacceptable 

[96]. Thus, investigation into the effects of severe cavitation damage on deformation 

behavior may only be of limited usefulness. 

 The results of this investigation suggest that the SDTDAM and GDTDAM 

material models can accurately predict deformation under multiple stress states. 

However, these material models must be shown to predict the forming of the complex 

components required in automotive and aerospace applications if they are to be fully 

trusted. Future work should include FEM simulations of the forming of magnesium 

vehicle closure panels. These simulations represent the final test for the SDTDAM and 

GDTDAM material constitutive models. If the material models can predict the forming of 
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actual commercial components, then they will have proven their worth and succeeded in 

the job for which they were created. 
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Appendix A: Effects of Specimen Geometry on R-value 

  

During the course of this investigation, R-value measurements were used to 

quantify the plastic anisotropy of the AZ31 sheet material. It was assumed that the R-

values are constants describing anisotropic deformation from a particular measurement at 

a particular temperature. For this assumption to hold, R-values must not depend on the 

specimen width-to-thickness ratio. Finite-element-method (FEM) simulations were 

conducted to investigate whether or not the width-to-thickness ratio has an effect. These 

simulations utilized two tensile meshes. One is the tensile mesh described in Chapter 7, 

with a width of 6 mm and thickness of 2 mm, which corresponds to a width-to-thickness 

ratio of 3. The second mesh was created from the first by reducing the width of the initial 

mesh by two-thirds. This results in a mesh with a width of 2 mm and a thickness of 2 

mm, which corresponds to a width-to-thickness ratio of 1. Each mesh was used in FEM 

simulations using the SDTD and SDTDAM material models. Simulations were 

conducted at 10
-3

 s
-1

 to a final true strain of 0.6. The SDTD material model resulted in an 

R-value of 1.0 for both meshes, as expected for isotropic deformation. The SDTDAM 

material model resulted in an R-value of 1.38 for both meshes. These results suggest that 

the specimen width-to-thickness ratio has no effect on measured R-values for uniaxial 

deformation. 

However, specimen geometry can affect R-values measured from tensile 

specimens. Each tensile specimen has a wider grip at each end of its gage region. This 
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grip imposes a constraint on the ends of the gage region, which affects the resulting 

strains near the grip. To mimic this constraint, the nodes at each end of both tensile 

meshes were fixed such that the width of the specimen cannot decrease at these locations. 

Simulations were again conducted for a true-strain rate of 10
-3

 s
-1

 to a final true strain of 

0.6 using the SDTD and SDTDAM material constitutive models. After completion of the 

simulations, R-values were obtained from the deformed meshes at various distances from 

the end of the mesh, which represents the location at which the gage region meets the 

specimen grips. These R-values are shown in Figure A.1. The figure indicates that R-

values measured near the grip may be different from those measured away from the grip. 

The constraint imposed by the grip on the gage region results in a non-uniaxial stress 

state near the grip. The distance beyond which constant R-values are measured is 

approximately equal to the gage width. This indicates that accurate R-values can be 

measured from a specimen with a gage width of 6 mm, but a much wider specimen could 

provide inaccurate R-values. 



 115 

 

Figure A.1:  R-values are plotted against the distance from the end of the tensile mesh, 

which represents the distance from the grip in an actual tensile test. 

Simulations were conducted using the SDTD and SDTDAM material 

models at 10
-3

 s
-1

 to a final true strain of 0.6. 
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Appendix B: User-Defined Code for Material Constitutive Models 

 

This appendix contains the user-defined functions required to implement the 

GDTDAM and SDTDAM material constitutive models in the FEM software package 

Abaqus
TM

. Each model’s code can be used in Abaqus FEM simulations when placed 

within a computer file named creep.f. Note that the GDTDAM model can be modified to 

account for changes in preheat time (tpre) and initial grain size (do) by changing the 

bolded values in the code. All code was written in the programming language Fortran. 

 

GDTDAM MATERIAL CONSTITUTIVE MODEL 

      SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT, 

     1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER, 

     2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME,ORNAME 

      CHARACTER*3  FLGRAY(15) 

      DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3), 

     1 T(3,3),TIME(2) 

      DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*) 

 

C Get the components of the stress tensor (stored in array ARRAY) 

      CALL GETVRM('S',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO, 

     1 LACCFLA) 

 

C Input R-values for creep mechanisms 1 and 2 

      R1 = 1.0 

      R2 = 1.86 

 

C Calculate Hill stress for creep mechanism 1 

C Assumes plane stress and normal anisotropy 

      STATEV(1) = SQRT(1/(1+R1)*ARRAY(2)**2+1/(1+R1)*(-ARRAY(1))**2+ 

     1 R1/(1+R1)*(ARRAY(1)-ARRAY(2))**2+2*(1+R1/(1+R1))*ARRAY(4)**2) 

 

C Calculate Hill stress for creep mechanism 2 

C Assumes plane stress and normal anisotropy 
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      STATEV(2) = SQRT(1/(1+R2)*ARRAY(2)**2+1/(1+R2)*(-ARRAY(1))**2+ 

     1 R2/(1+R2)*(ARRAY(1)-ARRAY(2))**2+2*(1+R2/(1+R2))*ARRAY(4)**2) 

 

C Stores the effective R-value as a field variable 

C Needed to calculate the appropriate stress ratios in the input 

file  

      FIELD(1)=STATEV(3) 

 

      RETURN 

      END 

c 

C constitutive equation 

c     de/dt = A1/d^p*sigma1^n1+A2*sigma2^n2 

c             A1 = 0.0476 

c             p = 3.13 

c             n1 = 1.29 

c             A2 = 3.12E-10 

c             n2 = 5.73 

c             d = ds*exp(0.540*EC(2)) 

c             ds = [8.74^(1/0.0457)+1.07E20*TIME(2)]^0.0457 

c 

c 

      SUBROUTINE CREEP(DECRA,DESWA,STATEV,SERD,EC,ESW,P,QTILD, 

     1 TEMP,DTEMP,PREDEF,DPRED,TIME,DTIME,CMNAME,LEXIMP,LEND, 

     2 COORDS,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

C 

      DIMENSION DECRA(5),DESWA(5),STATEV(*),PREDEF(*),DPRED(*), 

     1 TIME(2),EC(2),ESW(2),COORDS(*) 

 

C===================================================================

==== 

C-------------------------------------------------------------------

---- 

C----------------  DEFINITION OF CREEP CONSITUTIVE LAW  ------------

---- 

C---------------------------   POWER MODEL  ------------------------

---- 

C-------------------------------------------------------------------

---- 

C===================================================================

==== 

C 

C VARIABLES TO BE DEFINED : 

C --------- 

C---  In all cases  

C  DECRA(1)  :   
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C  DESWA(1)  :   

C---  For implicit creep integration (LEXIMP=1, see below) 

C  DECRA(2)  :   

C  DECRA(3)  :   

C  DECRA(4)  :   

C  DECRA(5)  :   

C  DESWA(2)  :   

C  DESWA(3)  :    

C  DESWA(4)  :   

C  DESWA(5)  :   

C 

C VARIABLES THAT CAN BE UPDATED : 

C --------- 

C  STATEV    : Array containing the user-defined solution-dependent 

state variables. 

C  SERD      : Magnitude of the strain energy rate density Wdot. 

C 

C VARIABLES PASSED IN FOR INFORMATION : 

C --------- 

C  EC(1)     : Creep `Ecr' at the start of the increment. 

C  EC(2)     : Creep `Ecr' at the end of the increment. 

C  ESW(1)    : Creep 'Esw' at the start of the increment. 

C  ESW(2)    : Creep 'Esw' at the end of the increment. 

C  P         : Equivalent pressure stress. 

C  QTILD     : Mises or Hill equivalent stress. 

C  TEMP      : Temperature at the end of the increment. 

C  DTEMP     : Increment of temperature during the time increment. 

C  PREDEF    : Array containing the values of all of the predefined 

variables. 

C  DPRED     : An array containing the increments of all of the 

predefined variables during the time increment. 

C  TIME(1)   : Value of step time at the end of the increment. 

C  TIME(2)   : Value of total time at the end of the increment. 

C  DTIME     : Time increment. 

C  CMNAME    : Material name given on the *MATERIAL option. 

C  LEXIMP    : Explicit/implicit flag. 

C  LEND      : Start/end of increment flag. 

C  COORDS(3) : An array containing the current coordinates of this 

point. 

C  NSTATV    : Number of solution-dependent state variables 

associated with this material. 

C  NOEL      : Element number. 

C  NPT      : Integration point number. 

C  LAYER     : Layer number (for composite shells and layered 

solids). 

C  KSPT      : Section point number within the current layer. 

C  KSTEP     : Step number. 

C  KINC      : Increment number. 

C 
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C-------------------------------------------------------------------

---+ 

C-------------------------------------------------------------------

---+ 

C----------------------------  DECLARATIONS  -----------------------

---* 

C-------------------------------------------------------------------

---+ 

      PARAMETER (dzero=1.D-20) 

C 

C-------------------------------------------------------------------

---+ 

C-------------------------------------------------------------------

---+ 

C-------------------  BEGINNING OF EXECUTABLE CODE  ----------------

---* 

C-------------------------------------------------------------------

---+ 

C-------------------------------------------------------------------

---+ 

C 

      A1 = 0.0476 

 dn1 = 1.29 

      A2 = 3.12D-10 

      dn2 = 5.73 

      do = 8.74 

      tpre = 0.0 

      davg = ((do**(1/0.0457)+1.07D20*(TIME(2)+tpre))**0.0457) 

     1 *EXP(0.540*EC(2))  

      dp = 3.13 

C-------------------------------------------------------------------

---+ 

C-------- Metal creep: Equivalent (uniaxial) deviatoric creep strain 

increment. 

      

DECRA(1)=(A1/(davg**dp)*STATEV(1)**dn1+A2*STATEV(2)**dn2)*DTIME 

C-------------------------------------------------------------------

---+ 

C-------- Metal creep: Derivative  

C-------- DECRA(2): D(de^cr)/D(e^cr) 

C-------- DECRA(5): D(de^cr)/D(q) 

 

C Calculate the appropriate derivatives of the creep strain 

increment 

      IF(LEXIMP.EQ.1) THEN 

      DdDe = ((do**(1/0.0457)+1.07D20*(TIME(2)+tpre))**(-0.9543)) 

     1 *0.0457*1.07D20*EXP(0.540*EC(2))/(DECRA(1)/DTIME) 

     2 +((do**(1/0.0457)+1.07D20*(TIME(2)+tpre))**0.0457) 

     3 *EXP(0.540*EC(2)) 

      DECRA(2)=-dp*A1*davg**(-dp-1)*STATEV(1)**dn1*DdDe  
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      DECRA(5)=(dn1*A1/(davg**dp)*STATEV(1)**(dn1-1.D0)+ 

     1 dn2*A2*STATEV(2)**(dn2-1.D0))*DTIME 

       

      END IF 

 

C Input R-values for creep mechanisms 1 and 2 

      R1 = 1.0 

      R2 = 1.86 

 

C Calculate the effective R-value 

C Based on the ratio of mechanism 2 strain rate to total strain rate 

      SRR=(A2*STATEV(2)**dn2)/ 

     1 (A1/(davg**dp)*STATEV(1)**dn1+A2*STATEV(2)**dn2) 

      STATEV(3)=((R2/(1+R2)-R1/(1+R1))*SRR+R1/(1+R1))/ 

     1 ((1/(1+R2)-1/(1+R1))*SRR+1/(1+R1)) 

 

      RETURN 

      END 

 

SDTDAM MATERIAL CONSTITUTIVE MODEL 

      SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT, 

     1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER, 

     2 KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME,ORNAME 

      CHARACTER*3  FLGRAY(15) 

      DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3), 

     1 T(3,3),TIME(2) 

      DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*) 

 

C Get the components of the stress tensor (stored in array ARRAY) 

      CALL GETVRM('S',ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO, 

     1 LACCFLA) 

 

C Input R-values for creep mechanisms 1 and 2 

      R1 = 1.0 

      R2 = 1.87 

 

C Calculate Hill stress for creep mechanism 1 

C Assumes plane stress and normal anisotropy 

      STATEV(1) = SQRT(1/(1+R1)*ARRAY(2)**2+1/(1+R1)*(-ARRAY(1))**2+ 

     1 R1/(1+R1)*(ARRAY(1)-ARRAY(2))**2+2*(1+R1/(1+R1))*ARRAY(4)**2) 

 

C Calculate Hill stress for creep mechanism 2 

C Assumes plane stress and normal anisotropy 
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      STATEV(2) = SQRT(1/(1+R2)*ARRAY(2)**2+1/(1+R2)*(-ARRAY(1))**2+ 

     1 R2/(1+R2)*(ARRAY(1)-ARRAY(2))**2+2*(1+R2/(1+R2))*ARRAY(4)**2) 

 

C Stores the effective R-value as a field variable 

C Needed to calculate the appropriate stress ratios in the input 

file  

      FIELD(1)=STATEV(3) 

 

      RETURN 

      END 

c 

C constitutive equation 

c     de/dt = A1(e)*sigma1^n1(e)+A2*sigma2^n2 

c             A1(e) = exp(-9.97333-12.5909e+17.8488e^2-11.0985e^3) 

c             n1(3) = 1.3325+0.667476tanh(4.6266e) 

c 

c 

      SUBROUTINE CREEP(DECRA,DESWA,STATEV,SERD,EC,ESW,P,QTILD, 

     1 TEMP,DTEMP,PREDEF,DPRED,TIME,DTIME,CMNAME,LEXIMP,LEND, 

     2 COORDS,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

C 

      DIMENSION DECRA(5),DESWA(5),STATEV(*),PREDEF(*),DPRED(*), 

     1 TIME(2),EC(2),ESW(2),COORDS(*) 

 

C===================================================================

==== 

C-------------------------------------------------------------------

---- 

C----------------  DEFINITION OF CREEP CONSITUTIVE LAW  ------------

---- 

C---------------------------   POWER MODEL  ------------------------

---- 

C-------------------------------------------------------------------

---- 

C===================================================================

==== 

C 

C VARIABLES TO BE DEFINED : 

C --------- 

C---  In all cases  

C  DECRA(1)  :   

C  DESWA(1)  :   

C---  For implicit creep integration (LEXIMP=1, see below) 

C  DECRA(2)  :   

C  DECRA(3)  :   

C  DECRA(4)  :   
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C  DECRA(5)  :   

C  DESWA(2)  :   

C  DESWA(3)  :    

C  DESWA(4)  :   

C  DESWA(5)  :   

C 

C VARIABLES THAT CAN BE UPDATED : 

C --------- 

C  STATEV    : Array containing the user-defined solution-dependent 

state variables. 

C  SERD      : Magnitude of the strain energy rate density Wdot. 

C 

C VARIABLES PASSED IN FOR INFORMATION : 

C --------- 

C  EC(1)     : Creep `Ecr' at the start of the increment. 

C  EC(2)     : Creep `Ecr' at the end of the increment. 

C  ESW(1)    : Creep 'Esw' at the start of the increment. 

C  ESW(2)    : Creep 'Esw' at the end of the increment. 

C  P         : Equivalent pressure stress. 

C  QTILD     : Mises or Hill equivalent stress. 

C  TEMP      : Temperature at the end of the increment. 

C  DTEMP     : Increment of temperature during the time increment. 

C  PREDEF    : Array containing the values of all of the predefined 

variables. 

C  DPRED     : An array containing the increments of all of the 

predefined variables during the time increment. 

C  TIME(1)   : Value of step time at the end of the increment. 

C  TIME(2)   : Value of total time at the end of the increment. 

C  DTIME     : Time increment. 

C  CMNAME    : Material name given on the *MATERIAL option. 

C  LEXIMP    : Explicit/implicit flag. 

C  LEND      : Start/end of increment flag. 

C  COORDS(3) : An array containing the current coordinates of this 

point. 

C  NSTATV    : Number of solution-dependent state variables 

associated with this material. 

C  NOEL      : Element number. 

C  NPT      : Integration point number. 

C  LAYER     : Layer number (for composite shells and layered 

solids). 

C  KSPT      : Section point number within the current layer. 

C  KSTEP     : Step number. 

C  KINC      : Increment number. 

C 

C-------------------------------------------------------------------

---+ 

C-------------------------------------------------------------------

---+ 

C----------------------------  DECLARATIONS  -----------------------

---* 
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C-------------------------------------------------------------------

---+ 

      PARAMETER (dzero=1.D-20) 

C 

C-------------------------------------------------------------------

---+ 

C-------------------------------------------------------------------

---+ 

C-------------------  BEGINNING OF EXECUTABLE CODE  ----------------

---* 

C-------------------------------------------------------------------

---+ 

C-------------------------------------------------------------------

---+ 

C 

      A1 = exp(-9.9733-12.5909*EC(2)+17.8488*EC(2)**2-

11.0985*EC(2)**3) 

 dn1 = 1.3325+0.667476*tanh(4.6266*EC(2)) 

      A2 = 5.9D-10 

      dn2 = 5.53 

C-------------------------------------------------------------------

---+ 

C-------- Metal creep: Equivalent (uniaxial) deviatoric creep strain 

increment. 

      DECRA(1)=(A1*STATEV(1)**dn1+A2*STATEV(2)**dn2)*DTIME 

C-------------------------------------------------------------------

---+ 

C-------- Metal creep: Derivative  

C-------- DECRA(2): D(de^cr)/D(e^cr) 

C-------- DECRA(5): D(de^cr)/D(q) 

 

C Calculate the appropriate derivatives of the creep strain 

increment 

      IF(LEXIMP.EQ.1) THEN 

      DA1De = A1*(-12.5909+2*17.8488*EC(2)-3*11.0985*EC(2)**2) 

 Ddn1De = 0.667476*4.6266*(1.D0-tanh(4.6266*EC(2))**2) 

      DECRA(2)=(DA1De+A1*log(STATEV(1)+dzero)*Ddn1De)* 

     1 STATEV(1)**dn1*DTIME 

 DECRA(5)=(dn1*A1*STATEV(1)**(dn1-1.D0)+ 

     1 dn2*A2*STATEV(2)**(dn2-1.D0))*DTIME 

       

      END IF 

 

C Input R-values for creep mechanisms 1 and 2 

      R1 = 1.0 

      R2 = 1.87 

 

C Calculate the effective R-value 

C Based on the ratio of mechanism 2 strain rate to total strain rate 

      SRR=(A2*STATEV(2)**dn2)/(A1*STATEV(1)**dn1+A2*STATEV(2)**dn2) 



 124 

      STATEV(3)=((R2/(1+R2)-R1/(1+R1))*SRR+R1/(1+R1))/ 

     1 ((1/(1+R2)-1/(1+R1))*SRR+1/(1+R1)) 

 

      RETURN 

      END 

  



 125 

Appendix C: Abaqus Input Files 

 

This appendix contains example input files used to simulate tensile forming and 

biaxial gas-pressure bulge forming in the FEM software package Abaqus
TM

. The example 

tensile input file assumes a true-strain rate of 10
-4

 s
-1

, the example University of Texas 

bulge forming input file assumes a pressure of 830 kPa, and the example General Motors 

bulge forming input file assumes a pressure of 520 kPa. However, these files can be 

easily modified to predict forming at different true-strain rates or gas pressures.  

 

EXAMPLE TENSILE INPUT FILE 

*NODE 

1 , 0 , 0 , 0 

2 , 1 , 0 , 0 

3 , 2 , 0 , 0 

4 , 3 , 0 , 0 

5 , 4 , 0 , 0 

6 , 5 , 0 , 0 

7 , 6 , 0 , 0 

8 , 0 , 1 , 0 

9 , 1 , 1 , 0 

10 , 2 , 1 , 0 

11 , 3 , 1 , 0 

12 , 4 , 1 , 0 

13 , 5 , 1 , 0 

14 , 6 , 1 , 0 

15 , 0 , 2 , 0 

16 , 1 , 2 , 0 

17 , 2 , 2 , 0 

18 , 3 , 2 , 0 

19 , 4 , 2 , 0 

20 , 5 , 2 , 0 

21 , 6 , 2 , 0 

22 , 0 , 3 , 0 

23 , 1 , 3 , 0 

24 , 2 , 3 , 0 

25 , 3 , 3 , 0 

26 , 4 , 3 , 0 
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27 , 5 , 3 , 0 

28 , 6 , 3 , 0 

29 , 0 , 4 , 0 

30 , 1 , 4 , 0 

31 , 2 , 4 , 0 

32 , 3 , 4 , 0 

33 , 4 , 4 , 0 

34 , 5 , 4 , 0 

35 , 6 , 4 , 0 

36 , 0 , 5 , 0 

37 , 1 , 5 , 0 

38 , 2 , 5 , 0 

39 , 3 , 5 , 0 

40 , 4 , 5 , 0 

41 , 5 , 5 , 0 

42 , 6 , 5 , 0 

43 , 0 , 6 , 0 

44 , 1 , 6 , 0 

45 , 2 , 6 , 0 

46 , 3 , 6 , 0 

47 , 4 , 6 , 0 

48 , 5 , 6 , 0 

49 , 6 , 6 , 0 

50 , 0 , 7 , 0 

51 , 1 , 7 , 0 

52 , 2 , 7 , 0 

53 , 3 , 7 , 0 

54 , 4 , 7 , 0 

55 , 5 , 7 , 0 

56 , 6 , 7 , 0 

57 , 0 , 8 , 0 

58 , 1 , 8 , 0 

59 , 2 , 8 , 0 

60 , 3 , 8 , 0 

61 , 4 , 8 , 0 

62 , 5 , 8 , 0 

63 , 6 , 8 , 0 

64 , 0 , 9 , 0 

65 , 1 , 9 , 0 

66 , 2 , 9 , 0 

67 , 3 , 9 , 0 

68 , 4 , 9 , 0 

69 , 5 , 9 , 0 

70 , 6 , 9 , 0 

71 , 0 , 10 , 0 

72 , 1 , 10 , 0 

73 , 2 , 10 , 0 

74 , 3 , 10 , 0 

75 , 4 , 10 , 0 

76 , 5 , 10 , 0 
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77 , 6 , 10 , 0 

78 , 0 , 11 , 0 

79 , 1 , 11 , 0 

80 , 2 , 11 , 0 

81 , 3 , 11 , 0 

82 , 4 , 11 , 0 

83 , 5 , 11 , 0 

84 , 6 , 11 , 0 

85 , 0 , 12 , 0 

86 , 1 , 12 , 0 

87 , 2 , 12 , 0 

88 , 3 , 12 , 0 

89 , 4 , 12 , 0 

90 , 5 , 12 , 0 

91 , 6 , 12 , 0 

92 , 0 , 13 , 0 

93 , 1 , 13 , 0 

94 , 2 , 13 , 0 

95 , 3 , 13 , 0 

96 , 4 , 13 , 0 

97 , 5 , 13 , 0 

98 , 6 , 13 , 0 

99 , 0 , 14 , 0 

100 , 1 , 14 , 0 

101 , 2 , 14 , 0 

102 , 3 , 14 , 0 

103 , 4 , 14 , 0 

104 , 5 , 14 , 0 

105 , 6 , 14 , 0 

106 , 0 , 15 , 0 

107 , 1 , 15 , 0 

108 , 2 , 15 , 0 

109 , 3 , 15 , 0 

110 , 4 , 15 , 0 

111 , 5 , 15 , 0 

112 , 6 , 15 , 0 

113 , 0 , 16 , 0 

114 , 1 , 16 , 0 

115 , 2 , 16 , 0 

116 , 3 , 16 , 0 

117 , 4 , 16 , 0 

118 , 5 , 16 , 0 

119 , 6 , 16 , 0 

120 , 0 , 17 , 0 

121 , 1 , 17 , 0 

122 , 2 , 17 , 0 

123 , 3 , 17 , 0 

124 , 4 , 17 , 0 

125 , 5 , 17 , 0 

126 , 6 , 17 , 0 
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127 , 0 , 18 , 0 

128 , 1 , 18 , 0 

129 , 2 , 18 , 0 

130 , 3 , 18 , 0 

131 , 4 , 18 , 0 

132 , 5 , 18 , 0 

133 , 6 , 18 , 0 

134 , 0 , 19 , 0 

135 , 1 , 19 , 0 

136 , 2 , 19 , 0 

137 , 3 , 19 , 0 

138 , 4 , 19 , 0 

139 , 5 , 19 , 0 

140 , 6 , 19 , 0 

141 , 0 , 20 , 0 

142 , 1 , 20 , 0 

143 , 2 , 20 , 0 

144 , 3 , 20 , 0 

145 , 4 , 20 , 0 

146 , 5 , 20 , 0 

147 , 6 , 20 , 0 

148 , 0 , 21 , 0 

149 , 1 , 21 , 0 

150 , 2 , 21 , 0 

151 , 3 , 21 , 0 

152 , 4 , 21 , 0 

153 , 5 , 21 , 0 

154 , 6 , 21 , 0 

155 , 0 , 22 , 0 

156 , 1 , 22 , 0 

157 , 2 , 22 , 0 

158 , 3 , 22 , 0 

159 , 4 , 22 , 0 

160 , 5 , 22 , 0 

161 , 6 , 22 , 0 

162 , 0 , 23 , 0 

163 , 1 , 23 , 0 

164 , 2 , 23 , 0 

165 , 3 , 23 , 0 

166 , 4 , 23 , 0 

167 , 5 , 23 , 0 

168 , 6 , 23 , 0 

169 , 0 , 24 , 0 

170 , 1 , 24 , 0 

171 , 2 , 24 , 0 

172 , 3 , 24 , 0 

173 , 4 , 24 , 0 

174 , 5 , 24 , 0 

175 , 6 , 24 , 0 

176 , 0 , 25 , 0   
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177 , 1 , 25 , 0   

178 , 2 , 25 , 0   

179 , 3 , 25 , 0   

180 , 4 , 25 , 0   

181 , 5 , 25 , 0   

182 , 6 , 25 , 0   

*ELEMENT, TYPE=M3D4, ELSET=SHEET      

1 , 1 , 8 , 9 , 2 

2 , 2 , 9 , 10 , 3 

3 , 3 , 10 , 11 , 4 

4 , 4 , 11 , 12 , 5 

5 , 5 , 12 , 13 , 6 

6 , 6 , 13 , 14 , 7 

7 , 8 , 15 , 16 , 9 

8 , 9 , 16 , 17 , 10 

9 , 10 , 17 , 18 , 11 

10 , 11 , 18 , 19 , 12 

11 , 12 , 19 , 20 , 13 

12 , 13 , 20 , 21 , 14 

13 , 15 , 22 , 23 , 16 

14 , 16 , 23 , 24 , 17 

15 , 17 , 24 , 25 , 18 

16 , 18 , 25 , 26 , 19 

17 , 19 , 26 , 27 , 20 

18 , 20 , 27 , 28 , 21 

19 , 22 , 29 , 30 , 23 

20 , 23 , 30 , 31 , 24 

21 , 24 , 31 , 32 , 25 

22 , 25 , 32 , 33 , 26 

23 , 26 , 33 , 34 , 27 

24 , 27 , 34 , 35 , 28 

25 , 29 , 36 , 37 , 30 

26 , 30 , 37 , 38 , 31 

27 , 31 , 38 , 39 , 32 

28 , 32 , 39 , 40 , 33 

29 , 33 , 40 , 41 , 34 

30 , 34 , 41 , 42 , 35 

31 , 36 , 43 , 44 , 37 

32 , 37 , 44 , 45 , 38 

33 , 38 , 45 , 46 , 39 

34 , 39 , 46 , 47 , 40 

35 , 40 , 47 , 48 , 41 

36 , 41 , 48 , 49 , 42 

37 , 43 , 50 , 51 , 44 

38 , 44 , 51 , 52 , 45 

39 , 45 , 52 , 53 , 46 

40 , 46 , 53 , 54 , 47 

41 , 47 , 54 , 55 , 48 

42 , 48 , 55 , 56 , 49 

43 , 50 , 57 , 58 , 51 
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44 , 51 , 58 , 59 , 52 

45 , 52 , 59 , 60 , 53 

46 , 53 , 60 , 61 , 54 

47 , 54 , 61 , 62 , 55 

48 , 55 , 62 , 63 , 56 

49 , 57 , 64 , 65 , 58 

50 , 58 , 65 , 66 , 59 

51 , 59 , 66 , 67 , 60 

52 , 60 , 67 , 68 , 61 

53 , 61 , 68 , 69 , 62 

54 , 62 , 69 , 70 , 63 

55 , 64 , 71 , 72 , 65 

56 , 65 , 72 , 73 , 66 

57 , 66 , 73 , 74 , 67 

58 , 67 , 74 , 75 , 68 

59 , 68 , 75 , 76 , 69 

60 , 69 , 76 , 77 , 70 

61 , 71 , 78 , 79 , 72 

62 , 72 , 79 , 80 , 73 

63 , 73 , 80 , 81 , 74 

64 , 74 , 81 , 82 , 75 

65 , 75 , 82 , 83 , 76 

66 , 76 , 83 , 84 , 77 

67 , 78 , 85 , 86 , 79 

68 , 79 , 86 , 87 , 80 

69 , 80 , 87 , 88 , 81 

70 , 81 , 88 , 89 , 82 

71 , 82 , 89 , 90 , 83 

72 , 83 , 90 , 91 , 84 

73 , 85 , 92 , 93 , 86 

74 , 86 , 93 , 94 , 87 

75 , 87 , 94 , 95 , 88 

76 , 88 , 95 , 96 , 89 

77 , 89 , 96 , 97 , 90 

78 , 90 , 97 , 98 , 91 

79 , 92 , 99 , 100 , 93 

80 , 93 , 100 , 101 , 94 

81 , 94 , 101 , 102 , 95 

82 , 95 , 102 , 103 , 96 

83 , 96 , 103 , 104 , 97 

84 , 97 , 104 , 105 , 98 

85 , 99 , 106 , 107 , 100 

86 , 100 , 107 , 108 , 101 

87 , 101 , 108 , 109 , 102 

88 , 102 , 109 , 110 , 103 

89 , 103 , 110 , 111 , 104 

90 , 104 , 111 , 112 , 105 

91 , 106 , 113 , 114 , 107 

92 , 107 , 114 , 115 , 108 

93 , 108 , 115 , 116 , 109 



 131 

94 , 109 , 116 , 117 , 110 

95 , 110 , 117 , 118 , 111 

96 , 111 , 118 , 119 , 112 

97 , 113 , 120 , 121 , 114 

98 , 114 , 121 , 122 , 115 

99 , 115 , 122 , 123 , 116 

100 , 116 , 123 , 124 , 117 

101 , 117 , 124 , 125 , 118 

102 , 118 , 125 , 126 , 119 

103 , 120 , 127 , 128 , 121 

104 , 121 , 128 , 129 , 122 

105 , 122 , 129 , 130 , 123 

106 , 123 , 130 , 131 , 124 

107 , 124 , 131 , 132 , 125 

108 , 125 , 132 , 133 , 126 

109 , 127 , 134 , 135 , 128 

110 , 128 , 135 , 136 , 129 

111 , 129 , 136 , 137 , 130 

112 , 130 , 137 , 138 , 131 

113 , 131 , 138 , 139 , 132 

114 , 132 , 139 , 140 , 133 

115 , 134 , 141 , 142 , 135 

116 , 135 , 142 , 143 , 136 

117 , 136 , 143 , 144 , 137 

118 , 137 , 144 , 145 , 138 

119 , 138 , 145 , 146 , 139 

120 , 139 , 146 , 147 , 140 

121 , 141 , 148 , 149 , 142 

122 , 142 , 149 , 150 , 143 

123 , 143 , 150 , 151 , 144 

124 , 144 , 151 , 152 , 145 

125 , 145 , 152 , 153 , 146 

126 , 146 , 153 , 154 , 147 

127 , 148 , 155 , 156 , 149 

128 , 149 , 156 , 157 , 150 

129 , 150 , 157 , 158 , 151 

130 , 151 , 158 , 159 , 152 

131 , 152 , 159 , 160 , 153 

132 , 153 , 160 , 161 , 154 

133 , 155 , 162 , 163 , 156 

134 , 156 , 163 , 164 , 157 

135 , 157 , 164 , 165 , 158 

136 , 158 , 165 , 166 , 159 

137 , 159 , 166 , 167 , 160 

138 , 160 , 167 , 168 , 161 

139 , 162 , 169 , 170 , 163 

140 , 163 , 170 , 171 , 164 

141 , 164 , 171 , 172 , 165 

142 , 165 , 172 , 173 , 166 

143 , 166 , 173 , 174 , 167 
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144 , 167 , 174 , 175 , 168 

145 , 169 , 176 , 177 , 170 

146 , 170 , 177 , 178 , 171 

147 , 171 , 178 , 179 , 172 

148 , 172 , 179 , 180 , 173 

149 , 173 , 180 , 181 , 174 

150 , 174 , 181 , 182 , 175 

*MEMBRANE SECTION,  ELSET = SHEET,  MATERIAL = AZ31 

2.0 , 

*NSET, NSET=ALLNODES  

1, 2, 3, 4, 5,  

6, 7, 8, 9, 10  

11, 12, 13, 14, 15,  

16, 17, 18, 19, 20 

21, 22, 23, 24, 25,  

26, 27, 28, 29, 30 

31, 32, 33, 34, 35,  

36, 37, 38, 39, 40 

41, 42, 43, 44, 45,  

46, 47, 48, 49, 50 

51, 52, 53, 54, 55,  

56, 57, 58, 59, 60 

61, 62, 63, 64, 65,  

66, 67, 68, 69, 70 

71, 72, 73, 74, 75,  

76, 77, 78, 79, 80 

81, 82, 83, 84, 85,  

86, 87, 88, 89, 90 

91, 92, 93, 94, 95,  

96, 97, 98, 99, 100 

101, 102, 103, 104, 105,  

106, 107, 108, 109, 110 

111, 112, 113, 114, 115,  

116, 117, 118, 119, 120 

121, 122, 123, 124, 125,  

126, 127, 128, 129, 130 

131, 132, 133, 134, 135,  

136, 137, 138, 139, 140 

141, 142, 143, 144, 145,  

146, 147, 148, 149, 150, 

151, 152, 153, 154, 155,  

156, 157, 158, 159, 160, 

161, 162, 163, 164, 165,  

166, 167, 168, 169, 170, 

171, 172, 173, 174, 175,  

176, 177, 178, 179, 180, 

181, 182            

*NSET,  NSET=EDGENODES       

1, 2, 3, 4, 5, 6, 7 

*NSET,  NSET=DISPNODES 
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176, 177, 178, 179, 180, 181, 182 

*NSET,  NSET=POLENODE       

179  

*NSET, NSET=MIDEDGE 

4    

*ELSET,      ELSET=MID 

93    

*NSET,  NSET=NREF       

4        

*ELSET,  ELSET=poleelement1       

148             

*SURFACE,  NAME=SHEET_SURF       

SHEET,   SPOS       

**        

*MATERIAL,  NAME=AZ31       

*ELASTIC        

32281, 0.33       

*CREEP,  LAW=USER       

**1.8838E-8, 4., 0.  

*POTENTIAL, DEPENDENCIES=1 

1.0, 1.0, 1.000, 1.000, 1.0, 1.0, 0.0, 1.0 

1.0, 1.0, 1.025, 0.992, 1.0, 1.0, 0.0, 1.1 

1.0, 1.0, 1.049, 0.985, 1.0, 1.0, 0.0, 1.2 

1.0, 1.0, 1.072, 0.979, 1.0, 1.0, 0.0, 1.3 

1.0, 1.0, 1.095, 0.973, 1.0, 1.0, 0.0, 1.4 

1.0, 1.0, 1.118, 0.968, 1.0, 1.0, 0.0, 1.5 

1.0, 1.0, 1.140, 0.964, 1.0, 1.0, 0.0, 1.6 

1.0, 1.0, 1.162, 0.959, 1.0, 1.0, 0.0, 1.7 

1.0, 1.0, 1.183, 0.956, 1.0, 1.0, 0.0, 1.8 

1.0, 1.0, 1.204, 0.952, 1.0, 1.0, 0.0, 1.9 

1.0, 1.0, 1.225, 0.949, 1.0, 1.0, 0.0, 2.0 

1.0, 1.0, 1.245, 0.946, 1.0, 1.0, 0.0, 2.1 

1.0, 1.0, 1.265, 0.943, 1.0, 1.0, 0.0, 2.2 

1.0, 1.0, 1.285, 0.940, 1.0, 1.0, 0.0, 2.3 

1.0, 1.0, 1.304, 0.938, 1.0, 1.0, 0.0, 2.4 

*USER DEFINED FIELD 

*DEPVAR 

3       

**-------------------------------------------------------**   

      

**-------------------------------------------------------**   

      

**         

**-------------------------------------------------------**  

**-------------------------------------------------------** 

**-------------------------------------------------------**  

**  

** BOUNDARY CONDITIONS 

** 

*BOUNDARY,TYPE=DISPLACEMENT 
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EDGENODES,   2,   

*BOUNDARY,TYPE=DISPLACEMENT 

ALLNODES,   3,  

*BOUNDARY, TYPE=DISPLACEMENT 

MIDEDGE, 1,  

**-------------------------------------------------------** 

**-------------------------------------------------------**  

**  

** INITIAL CONDITIONS 

** 

**INITIAL CONDITIONS, TYPE=FIELD, VARIABLE=1 

**SHEET, 1.86 

*INITIAL CONDITIONS, TYPE=SOLUTION 

SHEET, 0.0, 0.0, 1.86 

*INITIAL CONDITIONS, TYPE=STRESS, UNBALANCED STRESS=STEP 

SHEET, 0.1, 0.1 

**-------------------------------------------------------**  

**-------------------------------------------------------**  

** STEP ANALYSIS 

**-------------------------------------------------------**  

**-------------------------------------------------------**  

**STEP, NAME=STATIC,NLGEOM=YES,UNSYMM=YES 

**STATIC 

**1.E-04,1.0, 

**-------------------------------------** 

**BOUNDARY, TYPE=VELOCITY 

**DISPNODES, 2, 2, 0.0075 

**-------------------------------------** 

**MONITOR,DOF=3,NODE=SHEET.SHEET.4 

**-------------------------------------** 

**OUTPUT,FIELD,FREQUENCY=1 

**ELEMENT OUTPUT,ELSET=SHEET 

**LE,S,STH,ER,CE 

**NODE OUTPUT 

**COORD, U, RF 

**Output, history,FREQUENCY=1 

**Node Output, NSET=POLENODE 

**U1,U2,U3 

**Element Output, elset=poleelement1 

**STH, ER 

**Node PRINT,FREQUENCY=1,nset=POLENODE 

**U1, U2, U3 

**EL PRINT,FREQUENCY=1,elset=poleelement1 

**S, LE, ER 

**EL PRINT,FREQUENCY=1,elset=poleelement1 

**STH 

**END STEP 

**-------------------------------------------------------**  

**-------------------------------------------------------**  

*STEP, NAME=CREEP,NLGEOM=YES,UNSYMM=YES,INC=50000 
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*VISCO, CETOL=0.005  

0.0005,   6500, 0.00001 , 1.0  

*AMPLITUDE, NAME=velocity, DEFINITION=SMOOTH STEP 

0, .0025, 250, .002563, 500, .002628, 750, .002695, 

1000, .002763, 1250, .002833, 1500, .002905, 1750, .002978, 

2000, .003054, 2250, .003131, 2500, .003210, 2750, .003291, 

3000, .003375, 3250, .003460, 3500, .003548, 3750, .003638, 

4000, .003730, 4250, .003824, 4500, .003921, 4750, .00402,  

5000, .004122, 5250, .004226, 5500, .004333, 5750, .004443, 

6000, .004555 

*BOUNDARY, TYPE=VELOCITY, AMPLITUDE=velocity 

DISPNODES, 2, 2, 1 

**-------------------------------------** 

**MONITOR,DOF=3,NODE=SHEET.SHEET.4 

**-------------------------------------** 

*OUTPUT,FIELD,TIME INTERVAL=60 

*ELEMENT OUTPUT,ELSET=SHEET 

LE,S,STH,ER,CE 

*NODE OUTPUT 

COORD, U, RF 

*Output, history,FREQUENCY=1 

*Node Output, NSET=POLENODE 

U1,U2,U3 

*Element Output,elset=poleelement1 

S, E, ER 

*NODE PRINT,FREQUENCY=1,nset=POLENODE 

U1, U2, U3 

*EL PRINT, FREQUENCY=1, elset=MID 

S, E 

*NODE PRINT,FREQUENCY=1, nset=MIDEDGE 

U2 

*EL PRINT,FREQUENCY=1,elset=poleelement1 

S, LE, ER 

*EL PRINT,FREQUENCY=1,elset=poleelement1 

STH 

*END STEP 

**-------------------------------------------------------**  

**-------------------------------------------------------** 

 

EXAMPLE UNIVERSITY OF TEXAS BULGE FORMING INPUT FILE 

*NODE 

1 , 40  , 0  

2 , 37.5  , 0   

3 , 35  , 0 

4 , 33.75  , 0    

5 , 32.5  , 0 

6 , 30.8425  , 0    

7 , 29.185  , 0 

8 , 28.98921 , -0.01283    
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9 , 28.79677143 , -0.051111 

10 , 28.61097 , -0.11418    

11 , 28.435  , -0.200962 

12 , 28.27186 , -0.30997     

13 , 28.12433983 , -0.43934 

14 , 27.99497 , -0.58686    

15 , 27.8859619 , -0.75  

16 , 27.79918 , -0.92597    

17 , 27.73611126 , -1.111771 

18 , 27.69783 , -1.30421     

19 , 27.685  , -1.5 

20 , 27.685  , -2.75     

21 , 27.685  , -4  

22 , 27.685  , -7  

23 , 27.685  , -10 

24 , 27.685  , -15     

25 , 27.685  , -20 

26 , 27.685  , -35      

27 , 27.685  , -50    

55000 , 0  , 0 

55001 , 1.5  , 0 

55002 , 3  , 0 

55003 , 4.5  , 0 

55004 , 6  , 0 

55005 , 7.5  , 0 

55006 , 9  , 0 

55007 , 10.5  , 0 

55008 , 12  , 0 

55009 , 13.5  , 0 

55010 , 15  , 0 

55011 , 16.5  , 0 

55012 , 18  , 0 

55013 , 19.5  , 0 

55014 , 21  , 0 

55015 , 22.5  , 0 

55016 , 24  , 0 

55017 , 25.5  , 0 

55018 , 27  , 0 

55119 , 27.15  , 0 

55120 , 27.3  , 0 

55121 , 27.45  , 0  

55122 , 27.6  , 0 

55123 , 27.75  , 0  

55124 , 27.9  , 0 

55125 , 28.05  , 0  

55126 , 28.2  , 0 

55127 , 28.35  , 0  

55128 , 28.5  , 0 

55129 , 28.7  , 0  

55130 , 28.9  , 0 
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55131 , 29.05  , 0  

55132 , 29.2  , 0 

55133 , 29.35  , 0  

55134 , 29.5  , 0 

55135 , 29.65  , 0  

55136 , 29.8  , 0 

55137 , 30.475  , 0  

55138 , 30.75  , 0 

55139 , 31.575  , 0 

55140 , 32.4  , 0     

*ELEMENT, TYPE=SAX1, ELSET=SHEET      

5000 , 55000  , 55001 

5001 , 55001  , 55002 

5002 , 55002  , 55003 

5003 , 55003  , 55004 

5004 , 55004  , 55005 

5005 , 55005  , 55006 

5006 , 55006  , 55007 

5007 , 55007  , 55008 

5008 , 55008  , 55009 

5009 , 55009  , 55010 

5010  , 55010  , 55011 

5011 , 55011  , 55012 

5012 , 55012  , 55013 

5013 , 55013  , 55014 

5014 , 55014  , 55015 

5015 , 55015  , 55016 

5016 , 55016  , 55017 

5017 , 55017  , 55018 

5018 , 55018  , 55119 

5119 , 55119  , 55120 

5120 , 55120  , 55121 

5121 , 55121  , 55122 

5122 , 55122  , 55123 

5123 , 55123  , 55124 

5124 , 55124  , 55125 

5125 , 55125  , 55126 

5126 , 55126  , 55127 

5127 , 55127  , 55128 

5128 , 55128  , 55129 

5129 , 55129  , 55130 

5130  , 55130  , 55131 

5131 , 55131  , 55132 

5132 , 55132  , 55133 

5133 , 55133  , 55134 

5134 , 55134  , 55135 

5135 , 55135  , 55136 

5136 , 55136  , 55137 

5137 , 55137  , 55138 

5138 , 55138  , 55139 
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5139 , 55139  , 55140 

*ELEMENT, TYPE=SAX1, ELSET=DIE  

1001 , 27  , 26 

1002 , 26  , 25 

1003 , 25  , 24 

1004 , 24  , 23 

1005 , 23  , 22 

1006 , 22  , 21 

1007 , 21  , 20 

1008 , 20  , 19 

1009 , 19  , 18 

1010 , 18  , 17 

1011 , 17  , 16 

1012 , 16  , 15 

1013 , 15  , 14 

1014 , 14  , 13 

1015 , 13  , 12 

1016 , 12  , 11 

1017 , 11  , 10 

1018 , 10  , 9 

1019 , 9  , 8 

1020 , 8  , 7 

1021 , 7  , 6 

1022 , 6  , 5 

1023 , 5  , 4 

1024 , 4  , 3 

1025 , 3  , 2 

1026 , 2  , 1 

*SHELL SECTION,  ELSET = SHEET,  MATERIAL = AZ31      

2.0 , 

*SHELL SECTION,  ELSET = DIE,  MATERIAL = AZ31      

2.0 ,      

*RIGID BODY,  REF NODE = NREF,  ELSET = DIE      

*NSET,  NSET=EDGENODES       

55140 

*NSET,  NSET=POLENODE       

55000        

*NSET,  NSET=NREF       

3        

*ELSET,  ELSET=poleelement1       

5000        

*SURFACE,  TYPE=ELEMENT,  NAME=DIE_SURF      

DIE,   SPOS       

*SURFACE,  NAME=SHEET_SURF       

SHEET,   SPOS       

**        

*MATERIAL,  NAME=AZ31       

*ELASTIC        

32281, 0.33       

*CREEP,  LAW=USER       
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**1.8838E-8, 4., 0. 

*POTENTIAL, DEPENDENCIES=1 

1.0, 1.0, 1.000, 1.000, 1.0, 1.0, 0.0, 1.0 

1.0, 1.0, 1.025, 0.992, 1.0, 1.0, 0.0, 1.1 

1.0, 1.0, 1.049, 0.985, 1.0, 1.0, 0.0, 1.2 

1.0, 1.0, 1.072, 0.979, 1.0, 1.0, 0.0, 1.3 

1.0, 1.0, 1.095, 0.973, 1.0, 1.0, 0.0, 1.4 

1.0, 1.0, 1.118, 0.968, 1.0, 1.0, 0.0, 1.5 

1.0, 1.0, 1.140, 0.964, 1.0, 1.0, 0.0, 1.6 

1.0, 1.0, 1.162, 0.959, 1.0, 1.0, 0.0, 1.7 

1.0, 1.0, 1.183, 0.956, 1.0, 1.0, 0.0, 1.8 

1.0, 1.0, 1.204, 0.952, 1.0, 1.0, 0.0, 1.9 

1.0, 1.0, 1.225, 0.949, 1.0, 1.0, 0.0, 2.0 

1.0, 1.0, 1.245, 0.946, 1.0, 1.0, 0.0, 2.1 

1.0, 1.0, 1.265, 0.943, 1.0, 1.0, 0.0, 2.2 

1.0, 1.0, 1.285, 0.940, 1.0, 1.0, 0.0, 2.3 

1.0, 1.0, 1.304, 0.938, 1.0, 1.0, 0.0, 2.4 

*USER DEFINED FIELD 

*DEPVAR 

3     

**-------------------------------------------------------**    

**-------------------------------------------------------**    

**         

** INTERACTION PROPERTIES        

**        

*CONTACT PAIR, INTERACTION=DIE_CONT,SMOOTH=0.2 

SHEET_SURF, DIE_SURF  

*SURFACE INTERACTION, NAME=DIE_CONT 

**-------------------------------------------------------**  

**-------------------------------------------------------** 

**-------------------------------------------------------**  

**  

** BOUNDARY CONDITIONS 

** 

*BOUNDARY,TYPE=DISPLACEMENT 

NREF,       1, 6, 

EDGENODES,  1, 2 

POLENODE,   1 

**-------------------------------------------------------** 

**-------------------------------------------------------**  

**  

** INITIAL CONDITIONS 

** 

**INITIAL CONDITIONS, TYPE=FIELD, VARIABLE=1 

**SHEET, 1.86 

*INITIAL CONDITIONS, TYPE=SOLUTION 

SHEET, 0.0, 0.0, 1.86 

*INITIAL CONDITIONS, TYPE=STRESS, UNBALANCED STRESS=STEP 

SHEET, 0.1, 0.1 

**-------------------------------------------------------**  
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**-------------------------------------------------------**  

** STEP ANALYSIS 

**-------------------------------------------------------**  

**-------------------------------------------------------**  

*STEP, NAME=STATIC,NLGEOM=YES,UNSYMM=NO 

*STATIC 

1.E-04,1.0, 

**-------------------------------------** 

*DLOAD 

SHEET,  P,  -0.827371 

**SHEET,  P,  0.827371   

**-------------------------------------** 

**MONITOR,DOF=3,NODE=SHEET.SHEET.4 

**-------------------------------------** 

*OUTPUT,FIELD,FREQUENCY=4 

*ELEMENT OUTPUT,ELSET=SHEET 

LE,S,STH,ER,CE 

*NODE OUTPUT 

COORD, U, RF 

*Output, history,FREQUENCY=1 

*Node Output, NSET=POLENODE 

U1,U2,U3 

*Element Output, elset=poleelement1 

STH, ER 

*Node PRINT,FREQUENCY=1,nset=POLENODE 

U2 

*EL PRINT,FREQUENCY=1,elset=poleelement1 

S, LE, ER 

*EL PRINT,FREQUENCY=1,elset=poleelement1 

STH 

*END STEP 

**-------------------------------------------------------**  

**-------------------------------------------------------**  

*STEP, NAME=CREEP,NLGEOM=YES,UNSYMM=NO,INC=50000 

*VISCO, CETOL=0.005  

0.00005,   10000.0, 0.0000001 , 2.0 

**DLOAD 

**SHEET,  P,  -0.28958 

**SHEET,  P,  0.28958     

**-------------------------------------** 

**MONITOR,DOF=3,NODE=SHEET.SHEET.4 

**-------------------------------------** 

*OUTPUT,FIELD,TIME INTERVAL=2 

*ELEMENT OUTPUT,ELSET=SHEET 

LE,S,STH,ER,CE 

*NODE OUTPUT 

COORD, U, RF 

*Output, history,FREQUENCY=3 

*Node Output, NSET=POLENODE 

U1,U2,U3 
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*Element Output,elset=poleelement1 

STH, ER 

*NODE PRINT,FREQUENCY=3,nset=POLENODE 

U2 

*EL PRINT,FREQUENCY=3,elset=poleelement1 

S, LE, ER 

*EL PRINT,FREQUENCY=3,elset=poleelement1 

STH 

*END STEP 

**-------------------------------------------------------** 

 

EXAMPLE GENERAL MOTORS BULGE FORMING INPUT FILE 

*NODE 

1 , 70  , 0  

2 , 68  , 0 

3 , 66  , 0 

4 , 64  , 0 

5 , 62  , 0 

6 , 60  , 0 

7 , 58  , 0 

8 , 56  , 0 

9 , 55  , 0    

59 , 54.7819 , -0.00476 

60 , 54.56422 , -0.01903    

61 , 54.34737 , -0.04278 

62 , 54.13176 , -0.07596     

63 , 53.9178 , -0.11852 

64 , 53.7059 , -0.17037    

65 , 53.49647 , -0.23142  

66 , 53.2899 , -0.30154    

67 , 53.08658 , -0.3806 

68 , 52.88691 , -0.46846 

69 , 52.69126 , -0.56495    

70 , 52.5  , -0.66987 

71 , 52.3135 , -0.78304    

72 , 52.13212 , -0.90424 

73 , 51.95619 , -1.03323     

74 , 51.78606 , -1.16978 

75 , 51.62205 , -1.31361 

76 , 51.46447 , -1.46447    

77 , 51.31361 , -1.62205 

78 , 51.16978 , -1.78606    

79 , 51.03323 , -1.95619 

80 , 50.90424 , -2.13212     

81 , 50.78304 , -2.3135 

82 , 50.66987 , -2.5    

83 , 50.56495 , -2.69126  

84 , 50.46846 , -2.88691    

85 , 50.3806 , -3.08658 
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86 , 50.30154 , -3.2899 

87 , 50.23142 , -3.49647    

88 , 50.17037 , -3.7059 

89 , 50.11852 , -3.9178    

90 , 50.07596 , -4.13176 

91 , 50.04278 , -4.34737     

92 , 50.01903 , -4.56422 

93 , 50.00476 , -4.7819    

94 , 50  , -5 

95 , 50  , -6     

96 , 50  , -7  

97 , 50  , -8  

98 , 50  , -10 

99 , 50  , -15     

100 , 50  , -20 

101 , 50  , -30 

102 , 50  , -40 

103 , 50  , -50      

104 , 50  , -60    

55000 , 0  , 0 

55001 , 1.5  , 0 

55002 , 3  , 0 

55003 , 4.5  , 0 

55004 , 6  , 0 

55005 , 7.5  , 0 

55006 , 9  , 0 

55007 , 10.5  , 0 

55008 , 12  , 0 

55009 , 13.5  , 0 

55010 , 15  , 0 

55011 , 16.5  , 0 

55012 , 18  , 0 

55013 , 19.5  , 0 

55014 , 21  , 0 

55015 , 22.5  , 0 

55016 , 24  , 0 

55017 , 25.5  , 0 

55018 , 27  , 0 

55019 , 28.5  , 0 

55020 , 30  , 0 

55021 , 31.5  , 0 

55022 , 33  , 0 

55023 , 34.5  , 0 

55024 , 36  , 0 

55025 , 37.5  , 0 

55026 , 39  , 0 

55027 , 40.5  , 0 

55028 , 42  , 0 

55029 , 43.5  , 0 

55030 , 45  , 0 
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55131 , 45.2  , 0 

55132 , 45.4  , 0 

55133 , 45.6  , 0 

55134 , 45.8  , 0 

55135 , 46  , 0 

55136 , 46.2  , 0 

55137 , 46.4  , 0 

55138 , 46.6  , 0 

55139 , 46.8  , 0 

55140 , 47  , 0 

55141 , 47.2  , 0 

55142 , 47.4  , 0 

55143 , 47.6  , 0 

55144 , 47.8  , 0 

55145 , 48  , 0 

55146 , 48.2  , 0 

55147 , 48.4  , 0 

55148 , 48.6  , 0 

55149 , 48.8  , 0 

55150 , 49  , 0 

55151 , 49.2  , 0  

55152 , 49.4  , 0 

55153 , 49.6  , 0  

55154 , 49.8  , 0 

55155 , 50  , 0  

55156 , 50.2  , 0 

55157 , 50.4  , 0  

55158 , 50.6  , 0 

55159 , 50.8  , 0  

55160 , 51  , 0 

55161 , 51.2  , 0  

55162 , 51.4  , 0 

55163 , 51.6  , 0  

55164 , 51.8  , 0 

55165 , 52  , 0  

55166 , 52.2  , 0 

55167 , 52.4  , 0 

55168 , 52.6  , 0 

55169 , 52.8  , 0  

55170 , 53  , 0  

55171 , 53.2  , 0 

55172 , 53.4  , 0 

55173 , 53.6  , 0 

55174 , 53.8  , 0 

55175 , 54  , 0  

55176 , 54.2  , 0 

55177 , 54.4  , 0 

55178 , 54.6  , 0 

55179 , 54.8  , 0 

55180 , 55  , 0  
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55181 , 56  , 0 

55182 , 58  , 0 

55183 , 60  , 0 

55184 , 62  , 0 

55185 , 64  , 0 

55186 , 66  , 0   

*ELEMENT, TYPE=SAX1, ELSET=SHEET      

5000 , 55000  , 55001 

5001 , 55001  , 55002 

5002 , 55002  , 55003 

5003 , 55003  , 55004 

5004 , 55004  , 55005 

5005 , 55005  , 55006 

5006 , 55006  , 55007 

5007 , 55007  , 55008 

5008 , 55008  , 55009 

5009 , 55009  , 55010 

5010  , 55010  , 55011 

5011 , 55011  , 55012 

5012 , 55012  , 55013 

5013 , 55013  , 55014 

5014 , 55014  , 55015 

5015 , 55015  , 55016 

5016 , 55016  , 55017 

5017 , 55017  , 55018 

5018 , 55018  , 55019 

5019 , 55019  , 55020 

5020 , 55020  , 55021 

5021 , 55021  , 55022 

5022 , 55022  , 55023 

5023 , 55023  , 55024 

5024 , 55024  , 55025 

5025 , 55025  , 55026 

5026 , 55026  , 55027 

5027 , 55027  , 55028 

5028 , 55028  , 55029 

5029  , 55029  , 55030 

5030 , 55030  , 55131 

5131 , 55131  , 55132 

5132 , 55132  , 55133 

5133 , 55133  , 55134 

5134 , 55134  , 55135 

5135 , 55135  , 55136 

5136 , 55136  , 55137 

5137 , 55137  , 55138 

5138 , 55138  , 55139 

5139 , 55139  , 55140 

5140 , 55140  , 55141 

5141 , 55141  , 55142 

5142 , 55142  , 55143 
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5143 , 55143  , 55144 

5144  , 55144  , 55145 

5145 , 55145  , 55146 

5146 , 55146  , 55147 

5147 , 55147  , 55148 

5148 , 55148  , 55149 

5149 , 55149  , 55150 

5150 , 55150  , 55151 

5151 , 55151  , 55152 

5152 , 55152  , 55153 

5153 , 55153  , 55154 

5154 , 55154  , 55155 

5155 , 55155  , 55156 

5156 , 55156  , 55157 

5157  , 55157  , 55158 

5158 , 55158  , 55159 

5159 , 55159  , 55160 

5160 , 55160  , 55161 

5161 , 55161  , 55162 

5162 , 55162  , 55163 

5163 , 55163  , 55164 

5164 , 55164  , 55165 

5165 , 55165  , 55166 

5166 , 55166  , 55167 

5167 , 55167  , 55168 

5168  , 55168  , 55169 

5169 , 55169  , 55170 

5170 , 55170  , 55171 

5171 , 55171  , 55172 

5172 , 55172  , 55173 

5173 , 55173  , 55174 

5174 , 55174  , 55175 

5175 , 55175  , 55176 

5176 , 55176  , 55177 

5177 , 55177  , 55178 

5178 , 55178  , 55179 

5179 , 55179  , 55180 

5180  , 55180  , 55181 

5181 , 55181  , 55182 

5182 , 55182  , 55183 

5183 , 55183  , 55184 

5184 , 55184  , 55185 

5185 , 55185  , 55186 

*ELEMENT, TYPE=SAX1, ELSET=DIE 

1001 , 104  , 103 

1002 , 103  , 102 

1003 , 102  , 101 

1004 , 101  , 100 

1005 , 100  , 99 

1006 , 99  , 98 
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1007 , 98  , 97 

1008 , 97  , 96 

1009 , 96  , 95 

1010 , 95  , 94 

1011 , 94  , 93 

1012 , 93  , 92 

1013 , 92  , 91 

1014 , 91  , 90 

1015 , 90  , 89 

1016 , 89  , 88 

1017 , 88  , 87 

1018 , 87  , 86 

1019 , 86  , 85 

1020 , 85  , 84 

1021 , 84  , 83 

1022 , 83  , 82 

1023 , 82  , 81 

1024 , 81  , 80 

1025 , 80  , 79 

1026 , 79  , 78 

1027 , 78  , 77 

1028 , 77  , 76 

1029 , 76  , 75 

1030 , 75  , 74 

1031 , 74  , 73 

1032 , 73  , 72 

1033 , 72  , 71 

1034 , 71  , 70 

1035 , 70  , 69 

1036 , 69  , 68 

1037 , 68  , 67 

1038 , 67  , 66 

1039 , 66  , 65 

1040 , 65  , 64 

1041 , 64  , 63 

1042 , 63  , 62 

1043 , 62  , 61 

1044 , 61  , 60 

1045 , 60  , 59 

1095 , 59  , 9 

1096 , 9  , 8 

1097 , 8  , 7 

1098 , 7  , 6 

1099 , 6  , 5 

1100 , 5  , 4 

1101 , 4  , 3 

1102 , 3  , 2 

1103 , 2  , 1 

*SHELL SECTION,  ELSET = SHEET,  MATERIAL = AZ31      

2.0 , 
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*SHELL SECTION,  ELSET = DIE,  MATERIAL = AZ31      

2.0 ,      

*RIGID BODY,  REF NODE = NREF,  ELSET = DIE      

*NSET,  NSET=EDGENODES       

55186 

*NSET,  NSET=POLENODE       

55000        

*NSET,  NSET=NREF       

3        

*ELSET,  ELSET=poleelement1       

5000        

*SURFACE,  TYPE=ELEMENT,  NAME=DIE_SURF      

DIE,   SPOS       

*SURFACE,  NAME=SHEET_SURF       

SHEET,   SPOS       

**        

*MATERIAL,  NAME=AZ31       

*ELASTIC        

32281, 0.33       

*CREEP,  LAW=USER       

**1.8838E-8, 4., 0. 

*POTENTIAL, DEPENDENCIES=1 

1.0, 1.0, 1.000, 1.000, 1.0, 1.0, 0.0, 1.0 

1.0, 1.0, 1.025, 0.992, 1.0, 1.0, 0.0, 1.1 

1.0, 1.0, 1.049, 0.985, 1.0, 1.0, 0.0, 1.2 

1.0, 1.0, 1.072, 0.979, 1.0, 1.0, 0.0, 1.3 

1.0, 1.0, 1.095, 0.973, 1.0, 1.0, 0.0, 1.4 

1.0, 1.0, 1.118, 0.968, 1.0, 1.0, 0.0, 1.5 

1.0, 1.0, 1.140, 0.964, 1.0, 1.0, 0.0, 1.6 

1.0, 1.0, 1.162, 0.959, 1.0, 1.0, 0.0, 1.7 

1.0, 1.0, 1.183, 0.956, 1.0, 1.0, 0.0, 1.8 

1.0, 1.0, 1.204, 0.952, 1.0, 1.0, 0.0, 1.9 

1.0, 1.0, 1.225, 0.949, 1.0, 1.0, 0.0, 2.0 

1.0, 1.0, 1.245, 0.946, 1.0, 1.0, 0.0, 2.1 

1.0, 1.0, 1.265, 0.943, 1.0, 1.0, 0.0, 2.2 

1.0, 1.0, 1.285, 0.940, 1.0, 1.0, 0.0, 2.3 

1.0, 1.0, 1.304, 0.938, 1.0, 1.0, 0.0, 2.4 

*USER DEFINED FIELD 

*DEPVAR 

3          

**-------------------------------------------------------**    

**-------------------------------------------------------**    

**         

** INTERACTION PROPERTIES        

**        

*CONTACT PAIR, INTERACTION=DIE_CONT,SMOOTH=0.2 

SHEET_SURF, DIE_SURF  

*SURFACE INTERACTION, NAME=DIE_CONT 

**-------------------------------------------------------**  

**-------------------------------------------------------** 
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**-------------------------------------------------------**  

**  

** BOUNDARY CONDITIONS 

** 

*BOUNDARY,TYPE=DISPLACEMENT 

NREF,       1, 6, 

EDGENODES,  1, 2 

POLENODE,   1 

**-------------------------------------------------------** 

**-------------------------------------------------------**  

**  

** INITIAL CONDITIONS 

** 

**INITIAL CONDITIONS, TYPE=FIELD, VARIABLE=1 

**SHEET, 1.86 

*INITIAL CONDITIONS, TYPE=SOLUTION 

SHEET, 0.0, 0.0, 1.86 

*INITIAL CONDITIONS, TYPE=STRESS, UNBALANCED STRESS=STEP 

SHEET, 0.1, 0.1 

**-------------------------------------------------------**  

**-------------------------------------------------------**  

** STEP ANALYSIS 

**-------------------------------------------------------**  

**-------------------------------------------------------**  

*STEP, NAME=STATIC,NLGEOM=YES,UNSYMM=NO 

*STATIC 

1.E-05,1.0,1.E-8 

**-------------------------------------** 

*DLOAD 

SHEET,  P,  -0.517107 

**SHEET,  P,  0.827371   

**-------------------------------------** 

**MONITOR,DOF=3,NODE=SHEET.SHEET.4 

**-------------------------------------** 

*OUTPUT,FIELD,FREQUENCY=4 

*ELEMENT OUTPUT,ELSET=SHEET 

LE,S,STH,ER,CE 

*NODE OUTPUT 

COORD, U, RF 

*Output, history,FREQUENCY=1 

*Node Output, NSET=POLENODE 

U1,U2,U3 

*Element Output, elset=poleelement1 

STH, ER 

*Node PRINT,FREQUENCY=1,nset=POLENODE 

U2 

*EL PRINT,FREQUENCY=1,elset=poleelement1 

S, LE, ER 

*EL PRINT,FREQUENCY=1,elset=poleelement1 

STH 
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*END STEP 

**-------------------------------------------------------**  

**-------------------------------------------------------**  

*STEP, NAME=CREEP,NLGEOM=YES,UNSYMM=NO,INC=50000 

*VISCO, CETOL=0.005  

0.000005,   10000.0, 0.00000001 , 2.0 

**DLOAD 

**SHEET,  P,  -0.28958 

**SHEET,  P,  0.28958     

**-------------------------------------** 

**MONITOR,DOF=3,NODE=SHEET.SHEET.4 

**-------------------------------------** 

*OUTPUT,FIELD,TIME INTERVAL=2 

*ELEMENT OUTPUT,ELSET=SHEET 

LE,S,STH,ER,CE 

*NODE OUTPUT 

COORD, U, RF 

*Output, history,FREQUENCY=3 

*Node Output, NSET=POLENODE 

U1,U2,U3 

*Element Output,elset=poleelement1 

STH, ER 

*NODE PRINT,FREQUENCY=3,nset=POLENODE 

U2 

*EL PRINT,FREQUENCY=3,elset=poleelement1 

S, LE, ER 

*EL PRINT,FREQUENCY=3,elset=poleelement1 

STH 

*END STEP 

**-------------------------------------------------------** 
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