

i

User’s Guide to the Nueces Delta

Hydrodynamic Model v1.0

Andrea J. Ryan, M.S.
Ben R. Hodges, Ph.D.

Center for Research in Water Resources

The University of Texas at Austin

CRWR Online Report 11-8
Submitted to the Coastal Bend Bays and Estuaries Program
Nueces Delta Hydrodynamics Modeling, Contract #1001
October 10, 2011

ii

Copyright 2011

A.J. Ryan and B.R. Hodges

iii

Acknowledgments
This user manual is part of a project funded by the Coastal Bend Bays and
Estuaries Program, with support of the City of Corpus Christi and the U.S. Army
Corps of Engineers. Some work related to subgrid-scale roughness in developing
the NDHM was developed under National Science Foundation Grant No.
0710901. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation or any other sponsor.

iv

Preface
This document provides guidance for version 1.0 of the Nueces Delta
Hydrodynamic Model. As of this writing, the model remains under development.
The second author is continuing to revise and improve both the underlying model
algorithms and the user interface. Comments or questions from model users are
welcome. Please contact the second author at hodges@mail.utexas.edu.

v

Table of Contents

1	
 INTRODUCTION	
 1	

2	
 INSTALLATION	
 3	

2.1	
 COPYING	
 FOLDERS	
 AND	
 FILES	
 3	

2.2	
 FOLDER	
 AND	
 FILE	
 HIERARCY	
 3	

3	
 CUSTOMIZATION	
 OF	
 INPUT	
 FILES	
 5	

3.1	
 FOLDERS	
 AND	
 FILES	
 5	

3.2	
 MODIFYING	
 FILE	
 PC2_SOLVER_MAIN.M	
 5	

3.3	
 MODIFYING	
 FILE	
 USER_SETTINGS.M	
 5	

3.3.1	
 RESTART	
 WRITE	
 FILE	
 OUTPUT	
 CONFIGURATION:	
 5	

3.3.2	
 RESTART	
 READ	
 FILE	
 INPUT	
 CONFIGURATION	
 5	

3.3.3	
 TIME	
 STEP	
 SIZE	
 A	
 NUMBER	
 OF	
 STEPS	
 6	

3.3.4	
 INPUT	
 SUBDIRECTORY:	
 6	

3.3.5	
 GRID	
 GEOMETRY	
 6	

3.3.6	
 TEMPORAL	
 BOUNDARY	
 CONDITIONS:	
 6	

3.3.7	
 SOLUTION	
 METHOD	
 7	

3.3.8	
 OUTPUT	
 FORMATTING:	
 7	

3.3.9	
 VELOCITY	
 INITIAL	
 CONDITIONS:	
 8	

3.3.10	
 BOTTOM	
 DRAG	
 COEFFICIENT:	
 8	

3.3.11	
 CELL	
 EDGES:	
 9	

3.3.12	
 SCALARS:	
 9	

3.4	
 MODIFYING	
 USER_OUTPUT_DATA_SAVED.M	
 9	

3.5	
 USER_OUTPUT_MOVIES.M	
 10	

3.6	
 INPUT	
 FILES	
 10	

3.6.1	
 INFLOW	
 BOUNDARY	
 CONDITION	
 FILE	
 10	

3.6.2	
 TIDAL	
 BOUNDARY	
 CONDITION	
 FILE	
 11	

3.6.3	
 TEMPORAL	
 BOUNDARY	
 CONDITIONS	
 11	

3.6.4	
 TRACER	
 BC	
 AND	
 IC	
 FILES	
 12	

3.6.5	
 SALINITY	
 BC	
 AND	
 IC	
 FILES	
 12	

3.6.6	
 BATHYMETRY:	
 12	

3.6.7	
 BATHYMETRY	
 EDGES	
 FILE	
 13	

3.6.8	
 BOTTOMDRAG	
 INITIAL	
 CONDITION	
 FILE	
 13	

3.6.9	
 FREE_SURFACE	
 INITIAL	
 CONDITION	
 FILE	
 13	

3.6.10	
 LAYER	
 FILE	
 13	

3.6.11	
 VELOCITY	
 INITIAL	
 CONDITION	
 FILE	
 14	

3.6.12	
 WIND	
 BOUNDARY	
 CONDITION	
 FILE	
 14	

3.6.13	
 UNUSED	
 INPUT	
 FILES	
 14	

3.7	
 COMMON	
 INITIAL	
 CONDITION	
 *.MAT	
 FILES	
 14	

4	
 MODEL	
 EXECUTION	
 15	

4.1	
 RUNNING	
 A	
 SINGLE	
 SIMULATION	
 15	

4.2	
 RUNNING	
 BATCH	
 SIMULATIONS	
 15	

4.3	
 RESTARTING	
 A	
 SIMULATION	
 16	

5	
 OUTPUT	
 HANDLING	
 17	

vi

This page intentionally left blank for two-sided printing.

1

1 Introduction

The Nueces Delta Hydrodynamic Model (NDHM) is a customized implementation of the
Predictor-Corrector 2nd order hydrodynamic code (PC2) developed at the Center for
Research in Water Resources at the University of Texas at Austin from 2005 to 2008.
The numerical algorithms for the model are described in Hodges and Rueda (2008). The
model application and testing for the Nueces Delta is described in Ryan and Hodges
(2011). This User Manual was developed in support of the Nueces Delta Hydrodynamic
Modeling project supported by the Coastal Bend Bays and Estuary Program, the City of
Corpus Christi, and the U.S. Army Corps of Engineers.
 The PC2 code is written in Matlab, which allows rapid model development and
customization. The PC2 implementation for the NDHM is a two-dimensional (2D)
solution of the hydrostatic Navier-Stokes equations with conservative mass transport.
Running the model requires a computer with Matlab already installed. While the model
is running, Matlab must remain open and operating. Generally, Matlab allows only a
single model to be run on a computer; however, if the Matlab Parallel Toolbox is
installed, up to 8 different copies of the model may be run simulateously on a single
multi-core workstation through the Matlab “batch” command.
 Installation and use of NDHM requires four steps, corresponding to the following
sections of this User Manual.
 Installation of PC2 code and NDHM files

 Customization of input files
 Model execution

 Output handling.
This User Manual is based upon PC2 Code v6.0 20110603. Because the code is used and
modified extensively for research, later versions of the PC2 Code may have different
requirements. The NDHM installation described in this User Manual is NDHMv1.0

2

This page intentionally left blank for two-sided printing.

3

2 Installation

2.1 Copying folders and files
The user should create an installation folder on their computer where they want to store
and run the model. In this User Manual, we will assume the user has created an
installtion folder with the path /usr/NDHM, although the user is free to install the path
into some other folder. Into the installation folder, the user should copy all the folders
and files from the installation disk. These should include the PC2 code folder PC2
Matlab Code v06 2011 06 03 along with folders entitled Nueces20xxx and the following
files:

 20080414_salinity.mat
 20090410_salinity.mat
 20100403_salinity.mat
 20100409_salinity.mat
 bathymetry_baybathy15_channels.mat
 manningsn_landcover_culvert.mat

2.2 Folder and file hierarchy
NDHMv1 has the Matlab code for the model stored in the folder PC2 Matlab Code v06
2011 06 03. The user should not need to modify any of this code. Installing a new model
requires replacing this folder in its entirety.

At the user’s installation folder (e.g. /usr/NDHM), binary Matlab files for initial
conditions that are used for multiple file runs are stored. It is planned that later model
implementations will use a common subfolder instead of the installation folder.
Other subfolders of /usr/NDHM provide the input/output data space for individual
NDHM model runs. The NDHM model runs completed for the Nueces Delta
Hydrodynamic Modeling project have folder names in the form

NuecesYYYY_FG_Nd_Rn_Mp

where YYYY provides the year being modeled, FG designates forcing conditions, N
provides the number of simulation days, R provides the roughness conditions, and M
provides the number of added pumps continuously turned on (i.e. pumping that was not
actually done, but is simulated for testing purposes). Cases examined during the Nueces
Delta Hydrodynamic Modeling project as of the date of this project are shown in Table 1.
The different roughness cases examined in Ryan (2011) are listed in Table 2.

4

Table 1. Folder name key

Code Values used Notes

YYYY 2008/2009/2010 YEAR of simulation

F W/S/2W WIND: normal / still (no wind) / 2x normal wind

G R/D/hR RAIN: normal / dry (0 rain) / heavy rain

N 7/14 DAYS: number of days simulated

R a/b/c/d/e ROUGHNESS: key for model (see Table 2)

M 0/1/2/3 PUMPS: number of added pumps (0 uses actual pumped inflows)

Table 2. Roughness model key

Roughness
ID

Description

a Original roughness created from land cover matrix

b 10 x roughness a

c 100 x roughness a

d 2 x roughness a for cells with subgrid-scale elevation standard deviation > 20 cm

e 10 x roughness a for cells with subgrid-scale elevation standard deviation > 20 cm

In the folder for each model run (i.e. NuecesYYYY_FG_Nd_Rn_Mp) there are two
subfolders (Input, User_Code) and a single file PC2_solver_main.m. The file
PC2_solver_main.m is the Matlab top-level script that will run the NDHM model. The
folder Input contains Matlab functions that are customized for the initial conditions
(Input_xxxx_IC.m) and boundary conditions (Input_xxxx_BC.m) for the model run.
These files only need to be changed by the user to run simulations for different times or
different initial or boundary conditions.
The subfolder User_Code has three subfolders (RestartIn, RestartOut, UserOut) and
three files (User_Output_Data_Saved.m, User_Output_Movies.m, User_Settings.m). The
RestartIn and RestartOut folders are used for setting up a restarted run (i.e. a run that
follows from a previously completed run). The UserOut folder is where the model will
write the output created during a model run. The User_Output_xxxx.m files are used to
configure the data saved by the model. The User_Settings.m is used to configure the
model run.

5

3 Customization of Input Files

3.1 Folders and files
Folders and files for a new simulation should follow the hierarchy described in § 2.2
above. Users with expertise in Matlab can customize the model path and folder hierarchy
as desired, but careful attention must be paid to the path relationships between some of
the input folders/files and common file locations.

3.2 Modifying File PC2_solver_main.m
The file PC2_solver_main.m is used to execute NDHM, and contains the information on
where Matlab should look for other input and model files. The Matlab code in this file
must be modified for a new simulation to provide the new directory names.

The directory wher the PC2 code is installed must be provided as setting.Folder.Model
similar to:

setting.Folder.Model =...
 ’/usr/NDHM/PC2 Matlab Code v06 2011 06 03’

The directory where the input and configuration data for the model can be found must
provided as setting.Folder.UserDirectory, similar to:

setting.Folder.UserDirectory =
 ’/usr/NDHM/Nueces2010_WR_14d_en_0p’;

Failure to change these directories for a new simulation may cause the model to either re-
run a prior simulation, or crash due to an inability to find the correct folder.

3.3 Modifying File User_Settings.m
The User_Settings.m file is the principal file for configuration of a model run. The model
sets defaults for many standard configuration settings, so this User Manual will focus on
settings that the user may need to alter.

3.3.1 Restart Write File Output Configuration:
A set of restart output files usually should be saved so that a simulation may be restarted
at a later date. The User_Settings.m file should contain the following

setting.Restart.Write_Type = ‘runfile_keep’;
setting.Restart.Write_Interval = 100;
setting.Restart.Writefile_Folder = ‘User_Code/RestartOut’;
setting.Restart.Writefile_Name = ‘restart’;

The setting runfile_keep requires the model to keep a restart file every Write_Interval
time steps in the folder User_Code/RestartOut with the output files named restart###
where ### is the time step that the particular restart file was written.

3.3.2 Restart Read File Input Configuration
The restart read setting should generally be commented unless a restarted simulation is
required (see § 4.3 below). These lines (commented out) should look like

6

% setting.Restart.Read_Type = 'run_file';
% setting.Restart.Readfile_Folder = 'User_Code/RestartIn';
% setting.Restart.Readfile_Name =

3.3.3 Time step size a number of steps

The model dt (number of seconds in a time step) for the simulation is defined by
setting.Time.dt = 300;

where 300 seconds has proven an acceptably robust value for the Nueces Delta. The
number of time steps in a simulation is controlled by the setting nstep, defined by

setting.Time.nstep = 2016;

where 2016 time steps is a 7 day simulation for dt = 300 seconds. Although the model
has the capability to provide for an adjustable time step (i.e. dt changing as a function of
the flow conditions), this feature is not recommended for NDHM, so the following
setting should be retained

setting.Time.adjustable_dt = ‘no’;

Future versions may include a more robust adjustable time step feature.

3.3.4 Input Subdirectory:

If all the boundary and initial condition input files are stored directly in the folder Input,
then the User_Settings.m file should contain the line

setting.Folder.Input_Subdirectory = '';

However, there may be cases where the user would like to store input data in a subfolder
of input, in which case that subfolder name should be provided in the single quotation
marks. Note that the path name should not be provided, only the subfolder name.

3.3.5 Grid Geometry

The name of the input files for the bathymetry, bathymetry edges, initial conditions for
the free surface, and the vertical layers are provided through

setting.Grid.File.Bathymetry = 'Input_Bathymetry_Nueces1';
setting.Grid.File.BathymetryEdges = 'Input_Bathymetry_Edges';
setting.Grid.File.Surface = 'Input_Free_Surface_Nueces1';
setting.Grid.File.Layer = 'Input_Layer_Nueces1';

The size (in meters) of each model grid cell in the x and y directions are defined by
setting.Grid.dx = 15;
setting.Grid.dy = 15;

where 15 m has proven practical for the NDHM. Note that if the grid dx or dy is
changed, the entire bathymetry input file, bathymetry edge file and all the inflow and
tidal boundary condition files must be modified.

3.3.6 Temporal Boundary Conditions:

File names for time-varying boundary conditions on inflows, tides, wind, rain and
meteorology are provided using

setting.BC.File.Inflow = 'Input_Inflow_Boundary_Condition';
setting.BC.File.Tide = 'Input_Tidal_Boundary_Condition';
setting.BC.File.Wind = 'Input_Wind_BC';

7

setting.BC.File.Rain = 'Input_Rain_BC';
% setting.BC.File.Meteorology = 'Input_Meteorology_BC';

Note that meteorological modeling (temperature, evaporation) requires further
development for NDHM and is commented out.

3.3.7 Solution Method

The PC2 model contains a variety of options controlling how it solves the Navier-Stokes
and transport equations. Most of these options are associated with how the model
handles extreme cases with thin layers or artificially high velocities. Many of these are
selected by defaults with the code itself. A few of the settings are illustrated in the
User_Settings.m file. It is suggested that the following settings be used for any NDHM
model.

setting.NavierStokes.corrector_steps = 0;
setting.NavierStokes.DryCell.Model = 'Zlimit';
setting.NavierStokes.DryCell.Zlimit.Zinterval = 0.25;
setting.NavierStokes.MinimumDepth = 1e-6;
setting.NavierStokes.MomentumNonlinearLimiter.Model = 'CFL';

setting.Groundwater.Model = 'UplandConstantLossRate';
setting.Groundwater.UplandConstantLossRate.DepthLossRate = 1.0e-4;
setting.Groundwater.UplandConstantLossRate.UplandElevation = 1.5;

setting.Scalar.SubTimeStep.Method = 'FluxVolumeLocal';

setting.Wind.ThinLayer.Model = 'ExponentialDecay';
setting.Wind.ThinLayer.ExponentialDecay.DepthCutoff = 0.5;
setting.Wind.ThinLayer.ExponentialDecay.CwT = 5;

setting.Velocity.Limiter.Model = 'SourceCutoff';
setting.Velocity.Limiter.SourceCutoff.CFLx = 6;
setting.Velocity.Limiter.SourceCutoff.CFLy = 6;

setting.BottomDrag.ThinLayer.Model = 'LinearIncrease';
setting.BottomDrag.ThinLayer.LinearIncrease.ThinLayerDepth = 0.06;

3.3.8 Output formatting:
The default for NDHM is to provide several types of output: Information, Status, Movie,
Figure, and Data. Each of these categories can be controlled from the User_Settings.m
file.

The Information is output to the command line of Matlab that provides detail on model
settings selected by the user (or through model defaults). Generally this Information is
valuable to an expert in debugging a model that is working poorly. To provide
Information output, use the setting

setting.Output.Information = 0;

To suppress information, use
setting.Output.Information = 1;

The Status output provides command line output that tells the user what the model is
presently doing. Again, this is mostly useful to experts in model debugging. However, it
also provides feedback that lets the user know the model is actually doing something.
The general command to see Status output is

8

setting.Output.Status= 1;

with “=0” used to suppress the status output.

Control for movies of model output are controlled by the User_Output_Movies.m file.
To suppress movie output without changing the file, use

setting.Output.SkipMovie = 1;

Skipping movies is generally a good idea for any simulation for a large number of time
steps. The movies significantly slow the model and can cause Matlab to run out of
memory.

Figures are output that the model provides that are helpful in debugging. These figures
track data through the simulation and then graph it when the simulation is finished. For a
large number of time steps, these figures can cause problems, so it is a good idea to skip
them with

setting.Output.SkipFigure = 1;

To see the figures at the end of a run use =0.

In unusual conditions a user might want to run a simulation without creating the data
output defined in the User_Output_Data_Saved.m file. To suppress the data output, use

setting.Output.SkipOutput = 1;

Note that the model run with =1 will not produce any output, and won’t be of much use.
Generally use =0
There are several Write_to_File settings that provide control over the simulation output.
At the present time, the only change that the user might want to make is to

setting.Output.Write_To_File.FileName = 'Test';

which controls the first part of the file name on the output files. The user may provide
any string in place of “Test,” which will change the output file names.

3.3.9 Velocity Initial Conditions:
The initial conditions for velocity are defined in the Input_Velocity_IC.m file, using

setting.Velocity.InitFunction = ‘Input_Velocity_IC’;

For NDHM, the velocity initial conditions are unknown, so the file Input_Velocity_IC.m
sets the initial velocity to zero.

3.3.10 Bottom Drag Coefficient:
For NDHM, the method used to specify bottom drag is the traditionall to Manning’s n
value, which is specified by

setting.BottomDrag.method = 'ManningsN';

A global default value for Manning’s n is set with
setting.BottomDrag.ManningsN = 0.025;

However this value is overwritten by the Manning’s n values provided through the file
specified by

setting.BottomDrag.InitFunction = 'Input_BottomDrag_IC';

See § 3.6.8 for a information on the bottom drag input file

9

3.3.11 Cell Edges:
Because the Nueces Delta has narrow railroad dikes that cannot be easily represented by
bathymetry of a 15m x 15 m grid, the PC2 cell edge feature is used to define the dikes as
edges of model cells that are higher than the cell centers. There are several different
ways of handling the mathematics for cell edges within the PC2 code. Form NDHM the
recommended approach is to treat the edge value as a maximum that is independent of
the cell center elevation. This feature is known as a sill_max approach, which is defined
using

setting.CellEdge.type = 'sill_max';

3.3.12 Scalars:

Scalars for NDHM include salinity and any tracers that the user desires to create. In the
existing data set a tracer called Blue is used to track the flow of water from the Calallen-
Rincon pumping station. Each scalar must have a unique name that is provided in the
setting.Scalar.fieldname list, similar to

setting.Scalar.fieldname = {'Salinity','Blue'};

New scalars can be added after Blue with each fieldname separated by a comma. The
temporal boundary conditions for a scalar need to be provided in a file, with the file name
specified by a command similar to

setting.Scalar.BCfunction.Blue = {'Input_Blue_BC'};

Note that the field name of the scalar (in this case Blue) must be correctly represented on
the left-hand-side of the command. Similarly, an initial condition function is provided by

setting.Scalar.InitFunction.Blue = {'Input_Blue_IC'};
setting.Scalar.InitArgument.Blue = {'array3D'};

where the InitArgument allows the user to design an initial spatial distribution (see file
Input_Velocity_IC.m for an example). Maximum and minimums for scalars are
recommended to allow the code to truncate spurious high values that sometimes occur in
very thin layers. These are set with

setting.Scalar.Minimum.Blue = 0;
setting.Scalar.Maximum.Blue = 1;

In the present code, all scalars should be modeled using the scalar mass approach with the
setting

setting.Scalar.UseConcentrationToZero.Blue = 'yes';

To prevent the code from spending time computing meaningless small concentrations, it
is useful to set a lower bound on concentrations that the model will truncate to zero. This
feature is invoked using

setting.Scalar.UseConcentrationToZero.Blue = 'yes';
setting.Scalar.ConcentrationToZero.Blue = 1e-6;

3.4 Modifying User_Output_Data_Saved.m
The User_Output_Data_Saved.m file is used to define the data that will be saved. This
file is a Matlab function that provides the data name and the step interval for saving data,
similar to

user.Output_Data_Name{ii} = 'Surface Elevation';

10

user.Output_Data_Interval{ii} = 12;
ii=ii+1;

Note that the ii=ii+1 is a counter used to increment storage so that it is easy to comment
out or add new data.
 The Data_Interval setting is the number of time steps (not the number of seconds)
between saving data sets. Thus, the time (in seconds) between data output is given by dt
x Data_Interval.

 A common error is including a Data_Name in this file that is not actually
simulated. For example, if we us

user.Output_Data_Name{ii} = 'Red';
user.Output_Data_Interval{ii} = 1;
ii=ii+1;

but do not include specifications for scalar Red in User_Settings.m (see § 3.3.12), then
the model will crash when it tries to process the User_Output_Data_Saved.m file.
 The depth, surface elevation, and three velocity (U, V, and W) variables can be
saved for any simulation, as they are a part of every simulation even though they are not
specificed in the User_Settings.m file. Note that velocities can either be saved on the cell
faces (which is what the model uses) or interpolated to the cell centers (which provides U
V and W velocities at the same location).

3.5 User_Output_Movies.m
This file defines what debugging movies will be created from the simulation. These
movies are created directly after the model has finished running, and are mainly useful
for rapid debugging by model developers. It is recommended that users develop their
own scripts for displaying data and creating movies directly from the output data.

3.6 Input Files

3.6.1 Inflow Boundary Condition file

The Input_Inflow_Boundary_Condition.m file defines the locations of the inflows (other
than tidal forcing) and the values of the inflows at different times. Each inflow is
provided a unique identification (ID), a type (zType), an inflow side (side) and a set of ii,
jj indexes (ijPair). The dataName for an inflow is always Inflow, to distinguish it from
tidal or rainfall inflows. The ijPair identifies the indexes in the bathymetry for an inflow
cell, and the side identifies the side of the cell the inflow comes through. In NDHM, the
inflows (USGS gage and Calallen-Rincon pipeline) are treated as zType=bottom and
side=–z, so the inflow is treated as rising from the bottom of the grid cell. This bottom
inflow treatment is consistent with the model grid scale of 15x15 m grid, which cannot
accurately capture the smaller scale features near the inflows that would be required for a
treating the inflows as side boundaries.
 The temporal data in the inflow file is similar to other boundary condition files,
and is discussed in § 3.6.3 below.

11

3.6.2 Tidal Boundary Condition file
The Input_Tidal_Boundary_Condition.m file provides the ID, dataName, side, zType and
ijPair similar to as discussed for inflows in § 3.6.1 above. The dataName for a tidal
boundary is always Tide. For the NDHM, the tidal boundary is enforced along the +y
side of the ijPair cells. The tidal boundary is enforced over the entire water column, so
the zType is column. The ID for the tide in the current NDHM is WhitePointTide, which
is the location of the tide gauge used for the boundary condition data. The ijPair for the
tidal input are ijPair(:,1) = 353:609 (rows 353 - 609) and ijPair(:,2) = 970 (column 970),
as shown in Figure 1.

Figure 1. Tidal boundary condition enforced in column 970 along y+ boundary.

The temporal data in the tidal BC file is similar to other boundary condition files, and is
discussed in § 3.6.3 below.

3.6.3 Temporal Boundary Conditions
Temporal boundary condition files (file names using the form Input_xxxx_BC.m or
Input_xxxx_Boundary_Condition.m) require input for a value versus time. Values
depend on the simulation models applied, but typically include rainfall rate, tidal
elevation, inflow rate, salinity, scalar concentration, wind speed, and wind direction. The
time must be provided as time in seconds (considering the starting point to be zero
seconds). Future versions of the model will include year, month, day, clock formatting
for time.

As a typical example, a tidal boundary condition with data provided every 30 minutes
(1800 seconds) for 7 days might look like

tidal(1).data2D = …
[0 , 0.069 ;…
1800 , 0.061 ;…
3600 , 0.056 ;…
.
.
.
604,800 , 0.533];

where 332 lines of data have been truncated. The first column is the time (in seconds), the
second column is the tidal elevation (in meters).
Note that thhe model will crash if insufficient BC data is provided. Each BC file should
have time that covers dt x nstep (see § 3.3.3).

970

353

609

the tide comes in from this direction (+y);
and is defined as a water level vs time

12

3.6.4 Tracer BC and IC files
The model has been tested with different “colors” of tracers associated with different
inputs. These are

Input_Blue_BC.m
Input_Blue_IC.m
Input_Green_BC.m
Input_Green_IC.m
Input_Red_BC.m
Input_Red_IC.m
Input_Yellow_BC.m
Input_Yellow_BC.m

The BC files provide the concentration of the tracer for each of the inflow, tide, or rain
inflow cell sets. The IC files provide the initial distribution of the tracer. Because the
tracers can significantly increase the computational time, it is recommended that the user
only set up the tracers of interest. For the runs conducted in the Nueces Delta
Hydrodynamic Modeling project, only the Blue (pumped water) tracer was used.

The BC files must specify tracer concentrations (even if zero) at every tidal inflow, river,
or rainfall boundary. The connection between the tracer BC file and the tide/flow/rain
BC file is through the scalar.ID setting, typically appearing as

scalar(ii).ID = {'WhitePointTide'};

The above ID must match one of the ID’s given in a tide/flow/rain BC file, in this case
we find in Input_Tidal_Boundary_Condition.m an ID of

tidal(1).ID = 'WhitePointTide';

Mismatches in the ID between the scalar value at an inflow location and the name of the
inflow location will cause the code to stop with an error flag. n

The temporal data in the tracer BC files is similar to other boundary condition files, and
is discussed in § 3.6.3 above

3.6.5 Salinity BC and IC files
The salinity BC and IC files Input_Salinity_BC.m and Input_Salinity_IC.m are similar to
the tracer files discussed in § 3.6.4. For the NDHM, zero salinity is used for all pumped
water, river inflow, and rainfall. The salinity for the tide is set equal to the observed
salinity measured at SALT03 in Nueces Bay from TCOON.

3.6.6 Bathymetry:

The file Input_Bathymetry_Nueces1.m is called to initialize the model bathymetry.
Although the PC2 code is designed to read a Matlab function that describes the
bathymetry, for NDHM it is convenient to pre-process the bathymetry into a Matlab file
(*.mat) that is faster to read and process. The bathymetry file used for NDHMv1.0
bathymetry_baybathy15_channels.mat, which is a common file stored at the top of the
user installation directory. When the model calls Input_Bathymetry_Nueces1.m it is
directed to read the file bathymetry_baybathy15_channels.mat that is located two folders
above Input_Bathymetry_Nueces1.m. Note that if either file is moved or if the name is
changed, the call in Input_Bathymetry_Nueces1.m will need to be re-written.

13

3.6.7 Bathymetry Edges file
The file Input_Bathymetry_Edges.m defines the locations and heights of the sills used to
block flow across the railroad dikes in the Nueces Delta. All of the ii and jj index
locations of these sills (as well as their heights) are identified in the file. If you choose to
manipulate this file, be cautious of the definition of ii and jj indexes, as improper
identification can lead to discontinuities in the railroad dike. For the present simulations
and bathymetry, this file should not need alteration.
The sill locations are defined using iiP (the positive ii side of a cell) and jjP (the positive
jj side of a cell) and are associated with the height of the sill at this location. The cell
faces are oriented as depicted in Figure 2.

Figure 2. Definitions of the plus (+) and minus (-) faces of cells using the row (ii) and column (jj)
index convention for Matlab

3.6.8 BottomDrag Initial Condition file

Input_BottomDrag_IC.m provides the settings for Manning’s n used in the NDHM. This
file calls the Manning’s n Matlab binary file manningsn_landcover_culvert.mat that is
common to all NDHM simulations. If the path relationship between the Manning’s n file
and the Input_BottomDrag_IC.m file is changed, then the latter file will need to be
customized.

3.6.9 Free_Surface Initial Condition file

Input_Free_Surface_Nueces1.m sets the initial water level in the delta. This value should
be equal to the initial tide level in the file Input_Tidal_Boundary_Condition.m. If there is
a mismatch between the initial water level and the initial tide, the model may see a sharp
shock at the first time step and crash.

3.6.10 Layer file
The PC2 code is designed for both 2D and 3D operation. In 3D operation, the vertical
dimension is discretized into thin layers. For a 2D model, such as NDHM, there are
always three layers: the operational layer (in the middel) and ghost layers above and
below for enforcing boundary conditions. Input_Layer_Nueces1.m sets up the number of
layers used in the model. The layer thickness in NDHM is required to cover all the
terrain represented in the bathymetry, which ranges from approximately -4 m to 25 m in
elevation. The model presently uses a thickness of 100m, although this could readily b
reduced to 30 m without affecting model operation.

ii -

ii +

jj + jj - jj +

ii +

14

3.6.11 Velocity Initial Condition file
This file defines the initial condition for the water velocity in the system. In the NDHM,
we set the velocity in all directions equal to zero.

3.6.12 Wind Boundary Condition File

Input_Wind_BC.m provides woth wind speed and direction using
dataName = {‘WindSpeed’,’WindDeirection’};

The zType is surface, side is z+ and ijPair is the empty set as the wind is enforced over
the entire free surface. Unlike the inflow and tidal boundary conditions, the wind file
uses three columns

[time (in seconds) , wind speed (in m/s) , wind direction (in degrees) ; …

Note that the wind direction uses the conventional meteorological definition as the
direction the wind is coming from.

3.6.13 Unused input files
The Input_DragOutflow_BC.m and Input_Meteorology_BC.m files are not used in
NDHMv1.

3.7 Common Initial Condition *.mat Files
Because the 15 x 15 m grid applied to the Nueces Delta requires on the order of 500,000
grid cells, specifying the bathymetry and initial conditions in an ASCII text file is not
recommended. Each (i,j) grid cell location requires a bathymetry elevation value, a
Manning's n value, and an initial salinity. Data processing for the 15 x 15 m bathymetry,
salinity and land cover is described by Ryan (2011). The data processing created salinity
files for different dates (YYYYMMDD). The common files are

 20080414_salinity.mat
 20090410_salinity.mat
 20100403_salinity.mat
 20100409_salinity.mat
 bathymetry_baybathy15_channels.mat
 manningsn_landcover_culvert.mat

The initial conditions for salinity were created as a 3D matrix; the z-direction has
identical values (since 2 of these layers are ghost layers). The x & y directions match up
with the salinity in the delta, defined as being equal from north – south and varying with
the salinities measured at the TCOON stations from east – west. The values at the
TCOON stations were averaged through time for the day previous to the start of
simulation, and then linearly interpolated between stations to create the initial condition
matrix.

15

4 Model Execution

4.1 Running a single simulation
NDHM is run from the command line of Matlab. The user must be in the folder where
the PC2_solver_main.m file is located for the particular model case. Because
PC2_solver_main.m contains a customized path for a particular model case, the user must
be careful to ensure that their Matlab command line is at the correct location before
trying to run the model.

 The model is executed by entering
PC2_solver_main

at the Matlab command line. The NDHM models run on a single processor of a 2.66GHz
Intel Xeon multi-core chip have been running at 7 times faster than real time using a 300
second time step. It is recommended that model runs that are expected to last more than a
few days should be broken up into pieces and run using the restart capability, see § 4.3
below.

4.2 Running batch simulations
With the Matlab Parallel Computing Toolbox, it is possible to run multiple NDHM
models at the same time. Each model case uses a separate processor. The Matlab
Parallel Toolbox presently supports up to 8 simultaneous jobs on a single workstation.
However, the NDHM uses requires 4 to 5 GB of memory for each model, which may be
more limiting. Matlab will allow 8 jobs to be started, but if there is not enough memory
available, either Matlab may crash or the models be forced to use hard disk space as
memory, which will significantly slow the operational time.
Parallel jobs are run using a Matlab batch() command. Each NDHM model requires its
own folder hierarchy (see § 2.2) and its own PC2_solver_main.m file. To run the first
model in parallel batch mode, change the Matlab command line to the appropriate model
folder and type the command

job1 = batch(‘PC2_solver_main’)

After changing to the folder to the location of the second model, at the command line
type

job2 = batch(‘PC2_solver_main’)

Similar commands are issued at the command line within the folders for other model
runs.

Progress on the simulations can be monitored using the following commands within any
folder

sched = findResource()
[JobPending JobQueued JobRunning JobCompleted = findJob(sched)

To cancel a simulation use:
 cancel(JobRunning(##))

16

where ## is from the findJob(sched) output shown above. Here is a summary of the
commands used in running batch simulations:

4.3 Restarting a Simulation
A simulation can either be restarted within its existing folder hierarchy, or a new
hierarchy can be created. If an existing folder is used, existing output files may be
overwritten.
A restart can only be done when a model has been run with the Restart Write option (see
§ 3.3.1). The restart files from the prior run were written into the RestartOut folder.
Each file should have a number indicating the time step when the file was written.

Move or copy the desired restart file from the RestartOut folder into the RestartIn folder.
Open the User_Setting.m file, and uncomment or add the following lines of code

setting.Restart.Read_Type = 'run_file';
setting.Restart.Readfile_Folder = 'User_Code/RestartIn';
setting.Restart.Readfile_Name = 'restart_2500.mat';

where restart_2500.mat should be replaced with the name of the restart file you want to
use.
Modify the setting.Time.nstep in User_Setting.m file for the number of time steps that
you want to add to the restarted simulation.

17

5 Output Handling

The output of a simulation is located in the User_Code/UserOut folder.

If the User_Settings.m file includes the line
setting.Output.Write_To_File.FileName = 'Test';

then the raw model output saved is located in Test_##.mat files, where ## is a number
indicating to the time step. If the Write_To_File.FileName is given a different character
string, then that string will be the leading string for the raw output files. For model
efficiency, these raw output files store data in one-dimensional arrays, which are
converted to 2D or 3D space at the end of the simulation

If the simulation was run was successfully without stopping or restarting through the
specified setting.Time.nstep, then a file named Test_FINAL_###.mat will automatically
be created, where ### is a date and time stamp when the file was created. This file
contains the output data formulated into arrays that directly map to the bathymetry
indexes. The string Test at the start of this filename will be replaced by whatever string is
specified in the User_Settings.m command

setting.Output.Write_To_File.FileName = 'Test';

If a run is restarted, the output Test_FINAL _###.mat file will contain only the data for
the restarted run. If a run crashes, then the Test_FINAL_###.mat file will not be created.
Additional Matlab scripts to recover data from a crashed run are under development.

The Test_FINAL_###.mat file can be loaded into Matlab and contains all the data output
by the model in OutData2D and OutData3D arrays.

6 References

Hodges, B.R., and F.J. Rueda (2008). “Semi-implicit two-level predictor-corrector
methods for non-linearly coupled, hydrostatic, barotropic/baroclinic flows.” International
Journal of Computational Fluid Dynamics, 22:9:593-607.
Ryan, A.J. and B.R. Hodges (2011), Modeling Hydrodynamic Fluxes in the Nueces River
Delta, Technical Report, CRWR Online Report 11-7, Oct. 10, 2011. 86 pgs.

