
Copyright

by

Na Meng

2014

The Dissertation Committee for Na Meng
certifies that this is the approved version of the following dissertation:

Automating Program Transformations based on

Examples of Systematic Edits

Committee:

Miryung Kim, Supervisor

Kathryn S. McKinley, Co-Supervisor

Don Batory

Dewayne Perry

Vitaly Shmatikov

Automating Program Transformations based on

Examples of Systematic Edits

by

Na Meng, B.E.; M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2014

Dedicated to my father, mother, and Yu.

Acknowledgments

I would like to express my sincere gratitude to Kathryn McKinley and

Miryung Kim for supporting and mentoring me. I will never forget the first

meeting I had with Kathryn to cautiously ask whether she would like to take

me as her student. Although she almost knew nothing about me except that

my English is poor, she said “Yes” without much thinking and immediately

asked me whether I had any financial support because she would like to provide

me a Research Assistantship. I will also never forget the first time Miryung

asked me whether I would like to get involved in her project during the begin-

ning days of my PhD when I had a hard time to figure out what research to do

for the following five years. Both advisors entered my life when I felt at loss and

badly needed help. Ever since then they have provided me a lot of important

guidance and enlightenment, which will affect my entire life. It is my great

honor to work with two advisors who are diverse in their personality and exper-

tise. Kathryn’s vitality and optimistism always encourage me to aggressively

push myself to limits and proactively face challenges head on, while Miryung’s

rigorousness and precision always remind me to fight hard for every single goal

I want to achieve and pay attention to details in the process. Kathryn has

expanded my horizon on research spanning compilers, memory management,

programming languages, architecture and machine learning, while Miryung

has led me delve into research on software evolution. Despite the diversity,

both advisors exhaust their ability to cultivate my interest in research, inspire

me to think creatively, share their expertise with me, polish up my writing,

and compliment me a lot. I entered UT graduate school unconfident about

v

getting a Ph.D., and I leave ambitious to pursue an academic career because

of them.

Don Batory, Perry Dewayne, and Vitaly Shmatikov have given helpful

feedback and spent a lot of time reading long documents and attending long

talks. Ira Baxter has provided valuable suggestion.

Jungwoo Ha and Todd Mytkowicz have been enthusiastic supporters,

brainstorming novel research and sharing their research skills. Don Batory,

Dewayne Perry, and Vitaly Shmatikov have given helpful feedback and spent

a lot of time reading long documents and attending long talks. William Cook

has been very supportive to my projects and has provided valuable advice and

mentoring.

The student community at UT has been incredibly supportive. I am

really grateful to have John Jacobellis and Lisa Hua as friends and colleagues.

I am indebted to them and the following friends and colleagues for their tech-

nical and personal support: Byeongchol Lee, Dong Li, Alex Loh, Sooel Son,

Baishakhi Ray, Tianyi Zhang, Myoungkyu Song, Yamini Gotimukul, Ray Qiu,

Aibo Tian, Xin Sui, Yang Wang, Chen Qian, Wei Dong, Song Han, Xu Wang,

Jian Chen, Xiaohu Shen, Xiuming Zhu, Hongyu Zhu, Dimitris Prountzos, John

Thywissen, Katie Genter, Patrick MacAlpine, Ivan Jibaja, Katherine Coons,

Bert Maher, Michael Bond, Suriya Subramaniam, Jennifer Sartor and Maria

Jump. They have given me both technical and personal support.

I am thankful for guidance and help provided by Phyllis Bellon, Lindy

Aleshire, Lydia Griffith, and Gem Naviar.

I am really thankful to my parents for all unconditional love and selfless

support they have provided throughout my life.

vi

My husband Yu has provided quite important support for my study

and daily life while also being awesome and fun, and I’m grateful.

vii

Automating Program Transformations based on

Examples of Systematic Edits

Publication No.

Na Meng, Ph.D.

The University of Texas at Austin, 2014

Supervisors: Miryung Kim
Kathryn S. McKinley

Programmers make systematic edits—similar, but not identical changes

to multiple places during software development and maintenance in order to

add features and fix bugs. Finding all the correct locations and making the ed-

its correctly is a tedious and error-prone process. Existing tools for automating

systematic edits are limited because they do not create general purpose edit

scripts or suggest edit locations, except for specialized or trivial edits. Since

many similar changes occur in similar contexts (in code with similar surround-

ing dependent relations and syntactic structures), there is an opportunity to

automate program transformations based on examples of systematic edits. By

inferring systematic edits and relevant context from one or more exemplar

changes, automated approaches can (1) apply similar changes to other loca-

tions, (2) locate code that requires similar changes, and (3) refactor code which

undergoes systematic edits. This thesis seeks to improve programmer produc-

tivity and software correctness by automating parts of systematic editing and

refactoring.

viii

Applying similar, but not identical code changes, to multiple locations

with similar contexts requires (1) understanding and relating common program

context—a program’s syntactic structure, control, and data flow—relevant

to the edits in order to propagate code changes from one location to oth-

ers, and (2) recognizing differences between locations in order to customize

code changes for each location. Prior approaches for propagating nontrivial,

general-purpose code changes from one location to another either do not ob-

serve the program context when placing edits, or do not handle the differences

between locations when customizing edits, producing syntactic invalid or in-

correctly modified programs. We design a novel technique and implement it

in a tool called Sydit. Our approach first creates an abstract, context-aware

edit script which contains a syntax subtree enclosing the exemplar edit with

all concrete identifiers abstracted and a sequence of edit operations. It then

applies the edit script to user-selected locations by establishing both context

matching and identifier matching to correctly place and customize the edit.

Although Sydit is effective in helping developers correctly apply edits

to multiple locations, programmers are still on their own to identify all the

appropriate locations. When developers omit some of the locations, the edit

script inferred from a single code location is not always well suited to help

them find the locations. One approach to infer the edit script is encoding

the concrete context. However, the resulting edit script is too specific to the

source location, and therefore can only identify locations which contain syntax

trees identical to the source location (false negatives). Another approach is

to encode context with all identifiers abstracted, but the resulting edit script

may match too many locations (false positives). To suggest edit locations,

we use multiple examples to create a partially abstract, context-aware edit

ix

script, and use this edit script to both find edit locations and transform the

code. Our experiments show that edit scripts from multiple examples have

high precision and recall in finding edit locations and high accuracy when

applying systematic edits because the extracted common context together with

identified common concrete identifiers from multiple examples improves the

location search without sacrificing edit application accuracy.

For systematic edits which insert or update duplicated code, our sys-

tematic editing approaches may encourage developers in the bad practice of

creating or evolving duplicated code. We investigate and evaluate an approach

that automatically refactors cloned code based on the extent of systematic ed-

its by factoring out common code and parameterizing any differences between

them. Our investigation finds that refactoring systematically edited code is

not always feasible or desirable. When refactoring is desirable, systematic ed-

its offer a better way to scope the refactoring as compared to whole method

refactoring. Automatic clone removal refactoring cannot obviate the need for

systematic editing. Developers need tool support for both automatic refactor-

ing and systematic editing.

Based on the systematic changes already made by developers for a

subset of change locations, our automated approaches facilitate propagating

general purpose systematic changes across large programs, identifying loca-

tions requiring systematic changes missed by developers, and refactoring code

undergoing systematic edits to reduce code duplication and future repetitive

code changes. The combination of these techniques opens a new way of helping

developers automate tedious and error-prone tasks, when they add features,

fix bugs, and maintain software. These techniques also have the potential

to guide automated software development and maintenance activities based

x

on existing code changes mined from version histories for bug fixes, feature

additions, refactoring, and software migration.

xi

Table of Contents

Acknowledgments v

Abstract viii

List of Tables xv

List of Figures xvi

Chapter 1. Introduction 1

1.1 Thesis Statement . 3

1.1.1 Automating Systematic Edits 6

1.1.2 Finding Systematic Edit Locations 9

1.1.3 Refactoring Systematically Edited Code 12

1.2 Contributions . 14

1.3 Impact . 16

Chapter 2. Definitions 17

Chapter 3. Related Work 19

3.1 Exemplar Change based Systematic Editing 19

3.1.1 Program Differencing 19

3.1.2 Refactoring . 20

3.1.3 Source Transformation Languages 21

3.1.4 Simultaneous Editing 22

3.1.5 Programming by Demonstration 22

3.1.6 Edit Location Suggestion 23

3.1.7 Automated Program Repair 23

3.2 Common Change based Clone Removal Refactoring 24

3.2.1 Clone Removal Refactoring 24

xii

3.2.2 Automatic Procedure Extraction 26

3.2.3 Empirical Studies of Code Clones 26

Chapter 4. Automating Systematic Edits 28

4.1 Motivating Example . 30

4.2 Approach . 34

4.2.1 Phase I: Creating Abstract Edit Scripts 35

4.2.1.1 Syntactic Program Differencing 35

4.2.1.2 Extracting Edit Contexts 38

4.2.1.3 Abstracting Identifiers and Edit Positions . . . 42

4.2.2 Phase II: Applying Abstract Edits 43

4.2.2.1 Matching Abstract Contexts 44

4.2.2.2 Alternative matching algorithms 50

4.2.2.3 Generating Concrete Edits 51

4.3 Evaluation . 53

4.4 Summary . 63

Chapter 5. Finding Systematic Edit Locations 65

5.1 Motivating Example . 67

5.2 Approach . 72

5.2.1 Phase I: Learning from Multiple Examples 73

5.2.1.1 Generating Syntactic Edits 74

5.2.1.2 Identifying Common Edit Operations 74

5.2.1.3 Generalizing Identifiers in Edit Operations . . . 75

5.2.1.4 Extracting Common Edit Context 76

5.2.2 Phase II: Finding Edit Locations 79

5.2.3 Phase III: Applying the Edit 80

5.3 Evaluation . 80

5.3.1 Precision, recall, and accuracy with an oracle data set . 81

5.3.2 Sensitivity of Edit Scripts 86

5.4 Summary . 90

xiii

Chapter 6. Refactoring Systematically Edited Code 92

6.1 Motivating Example . 94

6.2 Approach . 98

6.2.1 Abstract Template Creation 98

6.2.2 Clone Removal Refactoring 100

6.3 Evaluation . 107

6.3.1 Method Pairs . 108

6.3.2 Method Groups . 110

6.3.3 Reasons for Not Refactoring 112

6.3.4 Examination of software evolution after systematic edits 114

6.4 Threats to Validity . 118

6.5 Summary . 119

Chapter 7. Conclusion 121

7.1 Summary . 122

7.2 Future Work . 123

7.3 Open Questions . 126

7.4 Impact . 129

Bibliography 130

xiv

List of Tables

4.1 Sydit’s capabilities, coverage, accuracy, and similarity for k=1,
upstream control and data dependences 54

4.2 Replicating similar edits to multiple contexts 59

4.3 Sydit’s context characterization 61

4.4 Sydit’s sensitivity to context characterization 62

4.5 Sydit’s sensitivity to input threshold σ used in ChangeDistiller 63

5.1 Lase’s effectiveness on repetitive bug patches to Eclipse . . . 82

5.2 Lase’s effectiveness when learning from multiple examples . . 85

5.3 Learning from one example versus multiple examples 88

5.4 Comparison between Lase and its variants 89

6.1 Method pairs: Clone removal refactorings 109

6.2 Method groups: Clone removal refactorings 111

6.3 Reasons Rase does not refactor 26 cases: Method pairs 113

6.4 Reasons Rase does not refactor 10 cases: Method groups . . . 113

6.5 Manual evaluation of version history after systematic edits: Method
pairs . 116

6.6 Manual evaluation of version history after systematic edits: Method
groups . 116

xv

List of Figures

4.1 Systematic edit from revisions of org.eclipse.debug.core 31

4.2 Abstract edit script . 33

4.3 Two phases of Sydit . 34

4.4 Syntactic edit extraction for mA 38

4.5 Syntactic edit suggestion for mB 42

4.6 Abstract, context-aware edit script 43

4.7 A non-contiguous identical edit script (NI) for which Sydit
cannot match the change context (org.eclipse.compare:
v20060714 vs. v20060917) . 56

4.8 A non-contiguous, abstract edit script for which Sydit pro-
duces edits equivalent to the developer’s (org.eclipse.compare:
v20061120 vs. v20061218) . 57

5.1 A systematic edit to three methods based on revisions to org.-
eclipse.compare on 2007-04-16 and 2007-04-30 68

5.2 Sydit learns an edit from one example. A developer must lo-
cate and specify the other methods to change. 69

5.3 Edit script from Sydit abstracts all concrete identifiers. Gray
marks edit context, red marks deletions, and blue marks additions. 69

5.4 Lase learns an edit from two or more examples. Lase locates
other methods to change. 71

5.5 Edit script from Lase abstracts identifiers that differ in the
examples and uses concrete identifiers for common ones. Gray
marks edit context, red marks deletions, and blue marks additions. 71

5.6 mA’s and mB’s AST . 78

6.1 An example of systematic changes based on revisions to org.-
eclipse.compare.CompareEditorInput on 2006-11-20
and 2006-12-18 . 95

6.2 Abstract edit script inferred by Lase 96

6.3 Abstract refactoring template of common code created by Rase 96

xvi

6.4 Code refactoring based on inferred systematic program trans-
formation . 97

6.5 Parameterize type refactoring 102

6.6 Form template method refactoring 102

6.7 Introduce return object refactoring 105

6.8 Introduce exit label refactoring 105

xvii

Chapter 1

Introduction

Developers spend a lot of time and effort changing code when they fix

bugs, add features, adapt the software to new environments, and refactor code

to improve performance, correctness, and maintainability [83]. Even with all

this effort, software still has a lot of errors due in part to increasing software

complexity and time-to-market pressure during a development cycle. These er-

rors cost the U.S. economy an estimated 60 billion dollars every year [90]. The

magnitude of these costs shows there is a need for tools and techniques which

improve software correctness and enhance programmer productivity during

software development and maintenance.

Recent work observes that many changes are systematic—programmers

add, delete, and modify code at different code locations in similar, but not

identical ways [50, 75]. For example, Kim et al. find that on average, 75% of

structural changes to mature software are systematic [50]. They find that these

changes are not identical, but that their contexts have similar characteristics.

For instance, these contexts include similar methods and accesses to the same

field(s). Nguyen et al. find that 17% to 45% of bug fixes are recurring fixes

that involve similar edits to numerous methods [75]. Finding all the correct

locations and making these edits correctly is a tedious and error-prone process.

We call similar but not necessarily identical code changes to multiple

code locations systematic edits. We call related code for an edit context.

1

Existing tools offer limited support for systematic edits. The search

and replace feature in a text editor is the most popular approach, but it

supports only simple text replacements and cannot handle non-contiguous

edits, nor edits that require customization for different contexts. Refactor-

ing tools can automate a predefined set of semantics preserving transforma-

tions [25, 31, 78, 91, 96]. However, they do not provide an easy way for de-

velopers to define new program transformations, neither do they implement

semantics modifying transformations. With source transformation languages

and tools [14, 16, 35, 58, 95], users define program transformations by describ-

ing code patterns to match and edit actions in domain-specific languages.

These tools require developers to plan edit operations in advance and manu-

ally encode everything from scratch. Simultaneous editing tools [72, 92] proac-

tively replicate identical lexical edit actions, such as move the cursor to the

end of a line, in one text fragment to another preselected or identified text

fragment simultaneously. These tools put strict requirements on the way de-

velopers may edit text. Programming by demonstration tools either record a

human expert’s edit actions on several examples [59, 60] or look at several text

change examples [36, 77] to automate repetitive text editing tasks. However,

these tools process only plain text and do not observe syntactic structures in

programs.

When making similar changes to multiple locations, we believe that

fully-automated tool support for creating, locating, and applying general pur-

pose systematic edits will help developers create more correct code and pro-

duce it faster. None of these tools have been used or evaluated on a wide

range of real-world nontrivial examples. Furthermore, none of these techniques

recommends code duplication removal refactoring, when witnessing repetitive

2

changes to multiple locations in order to reduce the need for systematic edits

to multiple locations in the future.

1.1 Thesis Statement

This thesis seeks to exploit the observation that programmers often

make similar code changes to program locations which contain similar but not

identical contexts, such as similar program syntactic structures with differently

used variables. It investigates how to automate program transformation based

on examples of systematic edits. Our hypothesis is as follows:

By inferring systematic edits and relevant context from user-provided

exemplar changes, we can (1) create accurate general purpose edit

scripts that apply to multiple locations, (2) use the inferred edit

script together with relevant context to find edit locations missed by

developers, and (3) refactor code fragments based on the systematic

edits they experience.

Our goal is to provide automated program transformation tool support for

similar code scattered across software systems and to help developers identify,

locate, and apply similar changes consistently that fix bugs, add features,

migrate software, and refactor code. We expect developers to examine and

test the resulting code to ensure its correctness. We believe that automated

tool support will improve programmer productivity, enhance software quality,

and reduce software maintenance costs.

To verify our hypothesis, we investigate the following three questions:

3

• Can we create a generalized edit script from a single code change example

and correctly apply it to other code fragments?

• Can we use the edit script from one example or do we need to infer an edit

script from multiple examples to correctly locate places for systematic

edits?

• Can we apply clone removal refactoring to eliminate the need of system-

atic edits?

To investigate the first question, we design and implement an approach

that derives an abstract, context-aware edit script from one changed method

(or function) and applies the script to user-selected target methods (Chap-

ter 4). Each edit script consists of context, a code pattern represented as an

abstract syntax subtree, and a sequence of edit operations. The code pattern

abstracts away all concrete identifiers of used types, methods, and variables.

The edit operations represent simple and complex code changes which add,

delete, update, or move statements in single method bodies. When users se-

lect code locations to apply an edit script, the approach establishes matching

between the edit context and each location, to customize the general program

transformation for each location, and applies the result accordingly.

To investigate the second question, we use the edit script derived from

a single method to find edit locations without user assistance. Unfortunately,

such edit scripts are inadequate for identifying edit locations. They either re-

port too many incorrect locations or miss many correct locations, because the

contexts encoded in edit scripts from single examples are either too restrictive

for structure matching or too relaxed for identifier matching. A restrictive con-

text only recognizes edit locations whose program structures are very similar

4

to the original code or incorrectly filters out locations which are less struc-

turally similar. Relaxed identifier matching mechanisms reduce the capability

of differentiating and precisely matching identifiers used in edit context, and

thus incorrectly recommends edit locations. To reduce false positives and false

negatives when looking for edit locations with edit scripts, we design and im-

plement another approach that derives a partially abstract, context-aware edit

script from multiple exemplar changed methods (Chapter 5). The approach in-

fers the most specific generalization of systematic edits by specifying common

identifiers and code, and then abstracting variations between examples. It ex-

tracts common edits as well as relevant context and commonly used identifiers.

The resulting systematic edit is effective in finding edit locations because the

common context better characterizes edit locations and provides good indica-

tion of edit applicability, while abstracted identifiers and locations make the

edit script flexible.

To investigate the third question, we design and implement a clone

removal refactoring approach which leverages systematic edits to extract com-

mon code and parameterize any difference between similarly changed methods

(Chapter 6). The refactoring extracts common code guided by a systematic

edit; creates new types and methods as needed; parameterizes differences in

types, methods, variables, and expressions; and inserts return objects and exit

labels based on control and data flow. The evaluation with real-world system-

atic edits shows that scoping refactoring based on systematic edits significantly

improves the applicability of automate clone removal, compared with method

based refactoring. However, we cannot refactor many systematic edits due

to reasons like language limitations and semantic constraints. Our version

history examination shows that developers do not always refactor systematic

5

edits. Both observations show that automated refactoring cannot obviate the

need for systematic editing.

In the next three sections, we overview related work and elaborate on

our research questions, approaches, and results in more detail.

1.1.1 Automating Systematic Edits

To correctly apply similar edits to multiple locations, developers must

understand the program context, which includes the syntactic program struc-

ture, and control and data dependence relations between edited code and un-

changed code. Developers should be cautious about any difference between

locations, because they may affect customization and application of the gen-

eral program transformation.

Existing work either requires developers to manually prescribe system-

atic edits to apply [14, 16, 35, 58, 95] or provides limited support for general

purpose systematic edit application [45, 82, 88, 99]. Some techniques simply

propagate identical code changes in the source location to each target location

without adaptation [72, 92].

Since developers write or change at least one method before editing

other methods similarly, providing a code change example and locating other

places for change is a natural interface. The challenge is that both the edits and

relevant contexts are similar but different, meaning that the inferred system-

atic edit must tolerate differences between locations. Our hypothesis is that

by extracting the edit relevant context using program containment, control

and data dependence analysis, and abstracting identifiers of used types, meth-

ods, and variables, we can generalize a systematic edit applicable to different

contexts. To verify the hypothesis, we investigate the following questions:

6

• How much context should we extract and which identifiers should we

abstract to generalize a systematic edit from an exemplar edit?

• How can we customize and apply a general systematic edit to a concrete

edit location?

• How similar are tool-generated versions to developer-created versions?

We design an approach which generates an abstract, context-aware edit

script from an exemplar changed method (Chapter 4). It then customizes the

edit script and applies the result to each user-selected target method. The

approach is implemented in a tool called Sydit.

Given an exemplar changed method, Sydit performs syntactic program

differencing [26] to infer the edit applied. It then uses program containment,

control, and data dependence analysis to capture code relevant to the edit,

regarding it as edit relevant context. Sydit abstracts all identifiers used in

both edit operations and relevant context to create an abstract, context-aware

edit script. Next, it uses the relevant context as a code pattern to search

for matches in target locations specified by developers and then customizes

code changes for each location. The context refinement abstracts away code

irrelevant to a systematic edit and thus makes the edit applicable to locations

containing relevant context together with arbitrary irrelevant context. The

identifier abstraction makes the edit applicable to locations using different

identifiers.

Given a new target location specified by a user, Sydit establishes con-

text matching between the edit script and target location by finding a sub-

tree in the target method which matches the extracted subtree. If there is a

7

match, Sydit furthermore establishes an abstract-to-concrete identifier map-

ping. The established mappings facilitate Sydit’s customization of a system-

atic edit for a target location by repositioning each edit operation with respect

to the matching subtree in the target and replacing every abstract identifier

with corresponding concrete identifiers.

With a test suite consisting of 56 systematic editing tasks in five open

source projects, we demonstrate that Sydit produces syntactically valid trans-

formations for 82% of these tasks. It perfectly mimics developer edits for 70%.

Syntactic program differencing considers the human-generated version and the

Sydit-generated version 96% similar, indicating that developers need modest

manual effort to correct Sydit’s version in most cases. When applying non-

trivial systematic edits, which require modifying non-contiguous statements

inside methods, Sydit correctly handles 15 out of 23 cases. By exploring

different ways to extract edit context, we find that including one direct con-

tainment, and one direct upstream control and data dependence for each edited

statement leads to the most accurate code. By exploring different ways to ab-

stract identifiers, we find that abstracting all identifiers for types, methods,

and variables makes the inferred edit script most flexible and increases its

applicability.

We show that Sydit is able to infer a general program transformation

from one example and correctly customize and apply the transformation to

other code fragments. However, Sydit requires developers to manually specify

target locations. Our later experiments in Chapter 5 show that the inferred

systematic edit is not suitable to search edit locations because it either wrongly

matches too many locations or misses too many correct locations.

8

1.1.2 Finding Systematic Edit Locations

Prior work [66, 97] searches code based on matching patterns prescribed

by developers but requires a lot of manual effort for pattern prescription. Some

other techniques [63, 75] keep track of clone groups and their evolution history

to recommend similar changes among clones. Although it can be very complex

to maintain and propagate clone relevant information in large programs, the

feature of code search is still limited to clones within one group.

We require developers to make some edits, in this case to at least two

locations. We leverage these changes to infer the relevant context used for

both location search and edit application. We do not want to use as many

exemplar edits as possible. The more examples we require, the more manual

edit burden is put on developers and the fewer potential edit locations are left

for a tool to find out. We investigate using one exemplar edit by exploiting

the edit-relevant context—code matching pattern—inferred by Sydit. We

find that the context is not well suited to find edit locations for two reasons.

First, uniformly extracting context based on the program dependence rela-

tionship may include some relevant statements which are so specific to the

given exemplar edit that they do not generalize to other edit locations. Sec-

ond, uniformly abstracting identifiers of used types, methods, and variables

does not allow the abstract context to specially characterize locations using

certain identifiers, such as all locations accessing the field fContainer or

invoking the method isValid(). Given one exemplar edit, Sydit has a

limited choice of ways to generalize a program transformation: it either gener-

alizes everything, generalizes nothing, or generalizes something based on some

metrics. No matter which choice, Sydit has no insight about which program

statement or identifier is shared among all edit locations or not and should get

9

generalized or not. Consequently, it can only generate an abstract edit script

which may match one or some edit locations but not all of them. This limita-

tion indicates the potential if developers can provide more than one example,

the tool better infers and generalizes edit context for edit location search. To

verify our hypothesis, we investigate the following questions:

• How can we abstract the edit-relevant context from multiple systemati-

cally edited examples?

• How can we use the abstract context to search for edit locations?

• What is the capability of the inferred edit script to find correct edit

locations and correctly apply edits?

We design an approach which creates a partially abstract, context-aware

edit script from two or more exemplar changed methods, and uses the script

to automatically search for and identify edit locations, and then transforms

the code (Chapter 5). The approach is implemented as a tool called Lase.

Given two or more exemplar changed methods, Lase performs syntac-

tic program differencing to create an AST edit script for each method, and

then combines them to infer the most specific generalization of the edit scripts.

Lase extracts common AST edit operations, from all edit scripts based on the

type and content of each edit operation. It omits edit operations which differ

between examples and abstracts only discrepant identifiers and expressions.

For instance, if two examples delete an if statement, but disagree on certain

types, methods, variables, or expressions in the condition, Lase abstracts the

discrepancy while keeping the ones that match as concrete identifiers, creat-

ing a partially abstract edit operation. For each method, similar to Sydit,

10

Lase uses control and data dependence analysis to capture the AST change

context of extracted common edit operations; it also extracts edit relevant con-

text, a subtree including both change context and changed statements. Lase

then identifies common edit relevant context among methods with clone de-

tection [47] and common embedded subtree extraction [65]. The identified

common context together with the common edit constructs a partially ab-

stract, context-aware edit script. Lase then uses the abstract context to find

edit locations. It searches for methods within the whole program, which have a

subtree that matches the context and contains all concrete identifiers encoded

in the context. For each method containing the identifiers and matching the

context, Lase customizes the edit script and applies the result.

To evaluate our approach, we explore using the edit scripts inferred by

Sydit from single exemplar edits to search for edit locations and using scripts

from Lase that leverage two or more code change examples. We draw 37

systematic edits from Sydit’s test suite, and run Lase’s matching algorithm

with edit scripts learnt from either one or two examples. We compare their

precision and recall when finding edit locations. The result shows that edits

from two examples have significantly higher precision (94% vs. 74%) and recall

(100% vs. 82%) than from one example, showing that the strategy of learning

program transformation from multiple examples is crucial in automatically

suggesting edit locations. We further evaluate Lase with real-world repetitive

bug fixes that required multiple check-ins in Eclipse JDT and SWT as an

oracle. For these bugs, developers applied supplementary bug fixes because the

initial patches were either incomplete or incorrect [80]. We evaluate Lase by

learning edit scripts from the initial patches and determining if Lase correctly

derives the subsequent, supplementary patches. On average, Lase identifies

11

edit locations with 99% precision and 89% recall. The accuracy of applied

edits is 91%, i.e., the tool-generated version is 91% similar to the developer’s

version. Furthermore, Lase identifies and correctly edits 9 locations in the

oracle test suite which developers confirmed that they missed, showing that

Lase can detect and correct errors of omissions.

With these experiments, we show that Lase infers a program transfor-

mation from multiple examples, uses the resulting edit scripts to find edit loca-

tions with high precision and recall, and makes edits with high accuracy. The

extracted common context and identified common concrete identifiers improve

location search without sacrificing much edit application accuracy. Although

Lase requires developers to provide at least one more example than Sydit

to better characterize the edit-relevant context, we believe that task is easier

than finding every edit location by hand and thus is worth the developers’

effort.

1.1.3 Refactoring Systematically Edited Code

Sydit and Lase provide tool support for creating, locating, and ap-

plying systematic edits to multiple locations. However, they may encourage

developers in the bad practice of creating or maintaining duplicated code.

Similar edits to multiple locations may indicate that developers should in-

stead refactor code to eliminate redundancy and future systematic edits. We

explore this question by designing a fully automated refactoring tool called

Rase, which performs clone removal. Rase (1) extracts common code guided

by a systematic edit; (2) creates new types and methods as needed; (3) pa-

rameterizes differences in types, methods, variables, and expressions; and (4)

inserts return objects and exit labels based on control and data flow. Existing

12

clone removal refactoring tools [7, 41, 46, 57, 89] only implement some, but not

all of the refactoring techniques in Rase. To our knowledge, the functionality

makes Rase the most advanced automated clone removal refactoring tool.

To explore whether systematic edits are obviated by using automated

refactoring, we refactor code based on systematic edits. Our hypothesis is

similar edits applied to similar code are good indications for refactoring. To

verify our hypothesis, we investigate the following questions:

• Can we better scope clone removal refactoring based on systematic edits

than method based refactoring?

• How should we refactor to extract commonality and parameterize differ-

ences?

• Is it more desirable to refactor or to perform systematic edits?

We design and implement an automatic refactoring approach which

combines extract method (pg. 110 in [28]), add parameter (pg. 275 in [28]),

introduce exit label, parameterize type, form template method (pg. 345 in [28]),

and introduce return object refactorings to extract and remove similar code

(Chapter 6). The approach is implemented as a tool called Rase.

Rase takes as input two or more methods with systematic edits to

scope its refactoring region. It extracts the maximum common AST subtree

encompassing all edited statements in each method and creates a general rep-

resentation by abstracting any differences in used types, methods, variables,

and expressions. The general representation is called an abstract refactoring

template. Based on the template, Rase creates an extracted method, gener-

ates new types and methods for abstract type and method identifiers, declares

13

extra method parameters for abstract variables and expressions, defines return

objects if more than one variable is returned by the extracted method, and

inserts exit labels if the extracted method contains non-local jumps such as

break and return. Finally, it replaces the extracted code in each original

location with customized invocations of the extracted method.

We evaluate Rase with real-world systematic edits and compare to

method based clone removal. Rase successfully performs clone removal in

30 of 56 cases for systematic edits from method pairs (n=2) and 20 of 30

cases from method groups (n≥3). We find that scoping refactoring based on

systematic edits (58%), rather than the entire method (33%), significantly

improves the applicability of automated clone removal. Lack of automated

refactoring feasibility in the other 42% cases and lack of manual refactoring in

later versions after systematic edits indicate that automated refactoring does

not obviate the need for systematic editing. We believe these results offer

strong evidence that both systematic editing and clone removal refactoring

are necessary for software evolution.

1.2 Contributions

In summary, this thesis makes the following contributions:

• Sydit is the first tool to apply nontrivial general-purpose abstract edits

to similar user-specified code fragments given one code change example.

It significantly improves the capabilities of the state-of-the-practice tools

such as a line-based GNU patch or the search and replace feature in text

editors. Our evaluation shows that Sydit matches edit context and

applies an edit on 82% of cases in our test suite, makes correct edits

14

for 70%, and produces code on average 96% similar to developer-created

version.

• Sydit improves programmer productivity and software correctness by

consistently propagating similar changes automatically.

• Lase is the first tool to learn a general-purpose partially abstract edit

from multiple changed methods, to use the edit to find edit locations, and

to perform customized program transformation at each found location.

Our results show that Lase finds edit locations with 99% precision and

89% recall, and transforms code with 91% accuracy.

• Lase improves programmer productivity and software correctness by

identifying edit locations missed by developers and changing multiple

locations consistently.

• Rase is the first clone removal refactoring tool that takes methods

with systematic edits as input and exploits systematic edits to improve

method refactoring. It is the start-of-the-art in terms of its capability to

factorize and generalize. In our evaluation, it automates refactoring for

30 out of 56 cases of systematically edited method pairs and 20 out of

30 cases of method groups.

• Rase improves programmer productivity and software correctness by

leveraging systematic edits to automatically scope a refactoring region

and creates an executable plan of commonality extraction and variation

parameterization.

15

1.3 Impact

This dissertation seeks to influence tool developers and programmers.

For tool developers, our work will guide them to build automated program

transformation tools by propagating bug fixes, feature additions, adaptive

changes, and refactorings in one or some code locations to other locations

which contain similar contexts—similar program syntactic structures with sim-

ilar definition and/or use patterns of variables—to ease software development

and maintenance activities. For programmers, our work provides alternative

automatic support to help them identify, understand, modify, and/or refactor

multiple code fragments in need of similar changes, and facilitate consistent

and efficient programming practice,s both of which can lead to higher quality

software.

16

Chapter 2

Definitions

• An AST edit operation describes a tree edit operation manipulating

a program’s AST. We focus on four types of AST edit operations: state-

ment insertion, statement deletion, statement update, and statement

move. Each edit operation records the edit type, edit content—text of

the AST node it manipulates, and edit position in an AST.

• An AST edit script consists of a sequence of AST edit operations.

Every operation takes an AST as input, edits the tree, and outputs a

new AST, and thus each succeeding edit operation works on the resulting

tree output by its predecessor.

• Context means code in a method.

• Edit relevant context is a code snippet extracted from an edited

method. The code snippet corresponds to a syntactically valid AST.

Given an edit, edit relevant context includes both edited statements and

unchanged statements which either have control or data dependence re-

lationship with the edited ones.

• Abstract edit relevant context is a code template generated from

edit relevant context with all identifiers of types, methods, and variables

abstracted as opposed to using the actual concrete identifiers.

17

• Partially abstract edit relevant context is a code template gener-

ated from edit relevant context with some identifiers of types, methods,

variables, and expressions abstracted.

• An abstract, context-aware edit script is derived from one changed

method. The script consists of a sequence of AST edit operations and

the relevant context. All concrete identifiers used in the edit script are

abstracted. Each edit operation is positioned with respect to the abstract

edit relevant context’s AST.

• A partially abstract, context-aware edit script is derived from

multiple changed methods. The script consists of a sequence of AST edit

operations and partially abstract context. Some used concrete identifiers

are abstracted. Each edit operation is positioned with respect to the

partially abstract edit relevant context’s AST.

• Systematic edits are similar, but not necessarily identical changes ap-

plied to multiple locations in software. In our research, a systematic

edit is represented either as an abstract, context-aware edit script or a

partially abstract, context-aware edit script, depending on how the edit

is created.

18

Chapter 3

Related Work

This chapter elaborates prior work relevant to our exemplar change

based systematic editing tools in Section 3.1, and that relevant to our common

change based opportunistic refactoring tool in Section 3.2.

3.1 Exemplar Change based Systematic Editing

The related work includes program differencing, refactoring, source

transformation languages, simultaneous editing, programming by demonstra-

tion, edit location suggestion, and automated program repair.

3.1.1 Program Differencing

Program differencing takes two program versions and matches names

and structure at various granularities, e.g., lines [43], abstract syntax tree

nodes [26, 101], control-flow graph nodes [4], and program dependence graph

nodes [40]. For example, the ubiquitous tool diff computes line-level differ-

ences per file using the longest common subsequence algorithm [43]. JDiff

computes CFG-node level matches between two program versions based on

similarity in node labels and nested hammock structures [4]. ChangeDistiller

computes syntactic differences using a hierarchical comparison algorithm [26].

It matches statements, such as method invocations, using bigram string simi-

19

larity, and control structures using subtree similarity. It outputs tree edit op-

erations—insert, delete, move, and update. More advanced tools group sets of

related differences with similar structural characteristics and find exceptions

to identify potentially inconsistent updates [50, 51]. Our systematic editing

tools extend ChangeDistiller and go beyond these approaches by deriving an

edit script from program differences, abstracting the script, and then applying

it elsewhere.

3.1.2 Refactoring

Refactoring is the process of changing a software system in such a way

that it does not alter the external behavior of the code yet improves the inter-

nal structure [28]. Refactorings may require applying one or more elementary

transformations to multiple code locations. Refactoring engines in IDEs au-

tomate many commonly recognized refactoring types such as rename a vari-

able. However, most refactoring tools are developer-driven, requiring develop-

ers to explicitly invoke the functionality and provide all necessary information

for the program transformation [25, 30, 34, 73, 78, 85, 91, 96]. Few refactoring

tools [27, 31] infer developers’ refactoring intention by matching developers’

edits with predefined refactoring edit patterns at runtime, and suggest refac-

toring completion automatically. However, all refactoring tools are confined to

predefined, semantic-preserving transformations. There is no easy way for de-

velopers to define customized refactoring. In contrast, our systematic editing

tools automatically infer and apply general purpose program transformations,

including semantic-modifying transformations, based on code change exam-

ples. Our clone removal refactoring tool automatically recommends develop-

ers edit locations to apply refactoring and creates refactored versions based on

20

similar edits applied to similar code.

3.1.3 Source Transformation Languages

Source transformation languages and tools allow users to define source

transformation by describing code patterns to match and update actions to

take. The transformation engines then search for code matching the patterns

and take specified update actions to transform the code. However, most of

these tools [14, 16, 35, 58, 95] are difficult to use because they require devel-

opers to prescribe program transformation from scratch using manipulation

primitives on a syntax tree or the grammar underlying a programming lan-

guage, instead of on the source code familiar to common developers. iXj [12]

is simpler to use because it allows programmers to define code transforma-

tions in a visualized way by selecting an expression to change, generalizing

some of its subexpressions with wildcards, and describing changes based on

the generalized representation. However, it only handles trivial update edits

for expressions. SmPL [79] is a semantic patch language which is very close to

the C language and builds on the existing patch notation. Developers can use

spdiff [3] to infer source transformation described with SmPL from examples

and use Coccinelle [79] to apply it. This series of work is the one most related

to ours, but it is mainly focused on API migration changes—collateral evolu-

tion of client applications to adapt to API changes. Besides, spdiff ’s trans-

formation inference algorithm cannot always correctly position edits, because

it computes positions without considering both data and control dependence

constraints that edits have on their surrounding context.

21

3.1.4 Simultaneous Editing

When users interactively demonstrate their edits in one context, simul-

taneous text editing tools [72, 92] automatically replicate the identical lexical

edits on preselected code fragments. Compared with these tools, our sys-

tematic editing tools infer systematic edits by comparing two versions of a

changed method, which allows developers to freely make edits as they like.

CloneTracker [19] takes the output of a clone detector as input, maps corre-

sponding lines in the clones, and then echoes edits in one clone to another upon

a user’s request. The Clever version control system [76] detects code clones

and changes to them, and then recommends edit propagation among clones.

Different from these tools, Sydit and Lase extract edit relevant context using

static analysis and abstract the inferred edit scripts so that they are applicable

to locations containing different contexts or using different identifiers.

3.1.5 Programming by Demonstration

Programming by demonstration (PbD) is an end-user development tech-

nique for teaching a computer or a robot new behaviors by demonstrating the

task to transfer directly instead of programming it through machine com-

mands [17]. Such transformation tools either record human experts’ edit ac-

tions on several examples [59, 60, 67, 100] or look at several text change ex-

amples [36, 69, 77] in order to synthesize a program automating repetitive

text editing tasks. Specifically, Gulwani et al. [36] have applied program syn-

thesis based on input/output examples to different domains, like spreadsheet

table transformation [37], semantic string transformation [86], natural deduc-

tion problem and solution generation [2], etc.. Different from these text editing

tools, our systematic editing tools do not treat programs as pure text. Instead,

22

we exploit program syntactic structures to characterize edit context so that

the inferred program transformation is applicable to programs with similar

but different syntactic structures.

3.1.6 Edit Location Suggestion

Code searching and bug finding tools are used to identify code frag-

ments which often require similar edits. Query-based code search engines [66,

97] look for code fragments of interest based on queries written in domain-

specific languages. For instance, the approach of Want et al. [97] allows

developers to write a query for program dependence graph in order to find

code locations sharing certain control or data dependence relations. PQL [66]

supports users to write declarative rule-based queries for sequence of events

associated with a set of related objects to correct erroneous execution on the

fly. Some bug finding tools mine implicit API migration rules from software

version history [74] or mine API usage rules from large software systems [64],

detect code locations violating the mined rules, and report them as edit lo-

cations to enforce the detected rules. Some other bug finding tools detect

code clones and establish mappings between them [63, 75] to suggest locations

which contain inconsistent identifier mappings or update inconsistently with

their peers so that developers edit these locations to solve the inconsistency.

Although these tools suggest edit locations, none of them transform code.

3.1.7 Automated Program Repair

Automatic program repair generates candidate patches and checks cor-

rectness using compilation and testing. GenProg [62] generates candidate

patches by replicating, mutating, or deleting code randomly from the existing

23

program. PAR [49] improves the approach by also including ten common bug

fix patterns mined from Eclipse JDT’s version history when generating candi-

date repairs. These approaches totally depend on full coverage of test cases and

existence of candidate repairs in a buggy program. Some bug fixing tools look

for concurrency bugs [45] or security bugs [88] based on patterns and generate

fixes for them according to predefined bug fixing strategies. Specification-

based approaches require developers to define constraints to express expected

behaviors [98] or data structure properties [18, 21] of correct programs, run

a program against the constraints, detect constraint violations, and generate

candidate fixes based on predefined repair strategies. To remove specification

burden on developers, ClearView [82] infers invariants from program success-

ful runs, detects invariant violations in program failing runs, modifies program

states accordingly to make failing runs succeed. Compared with these tools,

Sydit and Lase infer general-purposed edits from user-provided examples

and only apply them to locations containing edit-relevant context.

3.2 Common Change based Clone Removal Refactoring

The related work includes clone removal refactoring, automatic proce-

dure extraction and empirical studies of code clones.

3.2.1 Clone Removal Refactoring

Based on code clones detected by various techniques [44, 47, 56], many

tools identify or rank program refactoring opportunities [6, 33, 38, 39, 94]. For

instance, Balazinska et al. [6] define a clone classification scheme based on

various types of differences between clones and automate the classification

to help developers assess refactoring opportunities for each clone group ac-

24

cording to its category. Higo et al. [39] and Goto et al. [33] rank clones as

refactoring candidates based on coupling or cohesion metrics. Others [38, 94]

integrate evolution information in software history to rank clones that have

been repetitively or simultaneously changed in the past. While these tools

detect refactoring opportunities for clones, they do not automatically refactor

code.

A number of techniques [7, 41, 46, 57, 89] automate clone removal refac-

torings by factorizing the common parts and by parameterizing their differ-

ences using strategy design pattern or a form template method refactoring.

Similar to Rase, these tools insert customized calls in each original location

to use newly created methods. Juillerat et al. [46] automate introduce exit label

and introduce return object refactorings supported by Rase. However, for vari-

able and expression variations, CloRT [7] and Juillerat et al.’s approach [46]

define extra methods to mask the differences, while Rase passes these varia-

tions as arguments of the extracted method. CloRT was applied to JDK 1.5

to automatically reengineer class level clones and, similar to our results, the

reengineering effort led to an increase in the total size of code due to the nu-

merous but simple methods created. Hotta et al. [41] use program dependence

analysis to handle gapped clones—trivial differences inside code clones that

are safe to be factored out such that the form template method refactoring is

applicable. Krishnan et al. [57] use PDGs of two programs to identify a maxi-

mum common subgraph so that the differences between the two programs are

minimized and fewer parameters are introduced. Unlike Rase, none of these

tools handle type variations, when performing generalization tasks.

25

3.2.2 Automatic Procedure Extraction

Komondoor et al. [54, 55] extract methods based on the user-selected or

tool-selected statements in one method. The extract method refactoring in the

Eclipse IDE requires contiguous statements, whereas these tools handle non-

contiguous statements. Program dependence analysis identifies the relation

between selected and unselected statements and determines whether the non-

contiguous code can be moved together to form extractable contiguous code.

Similar to Rase, Komondoor et al. [55] apply introduce exit label refactoring

to handle exiting jumps in selected statements. Tsantalis et al. [93] extend the

techniques by requiring developers to specify a variable of interest at a specific

point only. They use a block-based slicing technique to suggest a program

slice to isolate the computation of the given variable. These approaches are

only focused on extracting code from a single method. Therefore, they do

not handle extracting common code from multiple methods and resolving the

differences between them as Rase does.

3.2.3 Empirical Studies of Code Clones

Many empirical studies on code clones [5, 11, 32, 48, 52] find that remov-

ing clones is not necessary nor beneficial. Bettenburg et al. [11] report that

only 1% to 3% of inconsistent changes to clones introduce software errors, in-

dicating that developers are currently able to effectively manage and control

clone evolution. Kim et al. [52] observe that many long-lived, consistently

changed clones are not easy to refactor without modifying public interfaces.

Göde et al. [32] reveal that there is a significant discrepancy between clones

detected by state-of-the-art clone detectors and clones removed by developers.

In 66% cases, developers refactor only a small part of a larger clone.

26

These empirical studies show that the removal of code clones is not al-

ways necessary or beneficial. While these studies use longer version histories or

larger programs than our evaluation, none of these studies, automatically per-

form refactorings as Rase does. Rase thus improves over their methodology

by eliminating human judgement when determining the feasibility of edits.

27

Chapter 4

Automating Systematic Edits

When developers make similar but not identical changes to multiple

locations, they usually first edit one location, run tests to check correctness

of the edit, copy and paste the edit to other locations, and customize the

edits as needed. The copy-paste-customize process to propagate changes is

tedious and error-prone. Developers may wrongly customize edits and produce

syntactically valid but semantically invalid programs. A crucial observation is

that similarly changed locations usually share a syntactic structure template.

For instance, locations which are similarly refactored to enumerate elements

in a data structure usually contain a loop structure. We hypothesize that by

extracting out the template, we can automatically edit multiple locations in

similar ways when developers demonstrate the edit in one location. Existing

clone detection tools [9, 10, 13, 29] cannot always help to identify the template

because they all start with similar code chunks. Instead, our tool extracts

the template based on a systematic edit. Starting with a systematic edit, our

tool slices code with control and data dependence analysis to identify a code

template relevant to the edit. The resulting template may not correspond to

code clones because it can represent a sequence of non-contiguous code chunks.

It is then used to search for a match in user-selected code, which determines

how to customize and apply the demonstrated edit for the specific location.

Existing tools provide limited support for systematic editing. For ex-

28

ample, the search and replace feature in a text editor supports only simple

text replacements. It cannot handle non-contiguous edits, nor edits requiring

adaption to different contexts. Simultaneous editing tools [19, 72, 92] require

developers to interactively demonstrate their edit in one context and the tool

replicates identical lexical edits on the preselected code fragments. Similar to

search-and-replace, these tools cannot automatically customize edits for dif-

ferent contexts. Source transformation languages and tools [23, 35, 58, 79, 95]

automate program transformations based on the edit scripts prescribed by de-

velopers with certain domain-specific languages. However, learning to use a

source transformation language and precisely describing each transformation

are challenging for developers.

This chapter introduces a novel approach to investigate inferring a sys-

tematic program transformation from one change example, customizing the

transformation to each user-selected code fragment and applying the result.

We implement the approach in a tool called Sydit. Given an exemplar

changed method, Sydit uses a syntactic differencing algorithm to represent

code changes as an AST edit script. It then generalizes the edit script by

extracting a context relevant to the edit based on program containment, con-

trol and data dependence analysis, and by abstracting identifiers of types,

methods, and variables occurring in the edit. The generalized edit script is

an abstract, context-aware edit script. For each user-specified target method,

Sydit customizes the edit script by establishing context matching between

the edit script and the method in order to correctly place the code changes,

and by establishing identifier mapping between the two, in order to correctly

use existing identifiers in the target. Finally, it applies the customized edit to

suggest a modified version for developers to review.

29

Our evaluation with Sydit demonstrates that our approach is effective

in correctly inferring, customizing, and applying systematic edits based on

single examples. We use 56 systematic edit pairs from five large software

projects as an oracle. For each pair, we use Sydit to infer a systematic edit

from one method and apply the edit to the other. Sydit has high coverage

and accuracy. For 82% of the edits (46/56), Sydit matches the context and

applies an edit, producing code that is 96% similar to the oracle. It mimics

human programmers correctly on 70% (39/56) of the edits. To our knowledge,

Sydit is the first tool to perform nontrivial general-purpose abstract edits to

similar but different contexts based on a single code change example.

4.1 Motivating Example

This section overviews our approach with a running example drawn

from revisions to org.eclipse.debug.core on 2006-10-05 and 2006-11-

06. Figure 4.1 shows the original code in black, additions in bold blue with

a ’+’, and deletions in red with a ’-’. Consider methods mA and mB: get-

LaunchConfigurations(ILaunchConfigurationType type) and get-

LaunchConfigurations(IProject project). These methods iterate

over elements received by calling getAllLaunchConfigurations(), pro-

cess the elements one by one, and when an element meets a certain condition,

add it to a predefined list.

Suppose that Pat intends to apply similar changes to mA and mB. In mA,

Pat wants to move the declaration of variable config out of the while loop

and add code to process config as shown in lines 5, and 7-11 in mA. Pat wants

to perform a similar edit to mB, but on the cfg variable instead of config.

This example typifies systematic edits. Such similar yet not identical edits

30

Aold to Anew

1. public ILaunchConfiguration[] getLaunchConfigurations (ILaunchConfigurationType
2. type) throws CoreException {
3. Iterator iter = getAllLaunchConfigurations().iterator();
4. List configs = new ArrayList();
5. + ILaunchConfiguration config = null;
6. while (iter.hasNext()) {
7. - ILaunchConfiguration config = (ILaunchConfiguration)iter.next();
8. + config = (ILaunchConfiguration)iter.next();
9. + if (!config.inValid()) {
10.+ config.reset();
11.+ }
12. if (config.getType().equals(type)) {
13. configs.add(config);
14. }
15. }
16. return (ILaunchConfiguration[])configs.toArray(new ILaunchConfiguration
17. [configs.size()]);
18.}

Sydit’s replication of relevant edits on Bold, resulting in Bnew

1. protected List getLaunchConfigurations(IProject project) {
2. Iterator iter = getAllLaunchConfigurations().iterator();
3. + ILaunchConfiguration cfg = null;
4. List cfgs = new ArrayList();
5. while (iter.hasNext()) {
6. - ILaunchConfiguration cfg = (ILaunchConfiguration)iter.next();
7. + cfg = (ILaunchConfiguration)iter.next();
8. + if (!cfg.inValid()) {
9. + cfg.reset();
10.+ }
11. IFile file = cfg.getFile();
12. if (file != null && file.getProject().equals(project)) {
13. cfgs.add(cfg);
14. }
15. }
16. return cfgs;
17.}

Figure 4.1: Systematic edit from revisions of org.eclipse.debug.core

31

to multiple methods cannot be applied using the search and replace feature

because the edited text in different methods is different. These edits cannot be

applied using existing refactoring engines in IDE, either, because they change

the semantics of a program. Even though these two program changes are

similar, without assistance, Pat must manually edit both methods, which is

tedious and error-prone.

Using Sydit, Pat makes changes only to mA, provides mA as a changed

example, and specifies mB as a code fragment to change similarly. Sydit infers

a systematic edit from mA, applies it to mB, and suggests the resulting version

for developers to review.

With more details, when given mAold and mAnew, Sydit applies a syn-

tactic program differencing algorithm to the two versions to represent the

exemplar edit (lines 5, and 7-11) as a statement-level Abstract Syntax Tree

(AST) together with a sequence of AST node insertions, deletions, updates,

and moves. For each generated AST edit operation, it performs data and con-

trol dependence analysis to extract relevant statements, i.e., statements which

contain, or are control or data dependent on by the edited statement. By ex-

tracting the relevant statements together with the edited statements, Sydit

abstracts away unchanged statements irrelevant to the exemplar edit. The

extracted code is the edit relevant context of the exemplar edit. To generalize

a systematic edit out of the demonstrated edit, Sydit recalculates position of

each edit operation with respect to the extracted code and abstracts identifiers

of types, methods, and variables used in the code. The abstraction of both edit

positions and identifiers creates an abstract, context-aware edit script, which

is applicable to code fragments containing different contexts or using different

identifiers. Figure 4.2 shows the generalized abstract edit script.

32

1. … …method_declaration(… …) {
2. T1 v1 = m1().m2();
3. … …
4. while(v1.m3()) {

5. UPDATE: T2 v2 = (T2)v1.m4();
6. TO: T2 v2 = null;

7. INSERT: v2 = (T2)v1.m4();

8. INSERT: if (!v2.m5()) {
9. INSERT: v2.m6();
10. }
11. … …
12. }
13. … …
14.}

!MOVE

Figure 4.2: Abstract edit script

Currently, Sydit does not guarantee to generate an edit script contain-

ing the fewest edits. For this example, a shorter edit script should have been

one insertion for the variable declaration statement (line 5 in mA), one update

for a variable assignment statement (line 7-8 in mA), and two other insertions

(line 9-11 in mA), summing up to four edit operations, instead of five as shown

in the generated edit script.

Next, Sydit tries to apply the inferred edit script to user-specified

method, mB. It looks for code snippet(s) in mB matching the extracted context

(i.e., lines 2, 5 and 6 in mB). If there is a match, Sydit recalculates position

of each edit operation with respect to mB’s context, and establishes mappings

between abstract identifiers and concrete identifiers used in mB, in order to

customize the edit script and apply the result.

33

Program

differencing
A

old

A
new

Abstract

edit script

application

Abstract edit

script

application

Context

extraction

Identifier &

edit position

abstraction

B
old

B
new

C
old

C
new

Phase I Phase II

Figure 4.3: Two phases of Sydit

4.2 Approach

This section describes the two phases of Sydit, as shown in Figure 4.3.

Phase I takes as input an old and new version of method mA as its exemplar

edit, and creates an abstract, context-aware edit script from mAo and mAn.

Phase II applies the edit script to new contexts, such as mB and mC, producing

a suggested version for each new context, mBs and mCs. We first summarize

the steps in each phase and then describe each step in detail.

Phase I: Creating Edit Scripts

• Sydit compares two versions of an exemplar changed method, mAo and

mAn, and describes the differences as a sequence of statement-level AST

node insertions, deletions, updates, and moves: ∆A = {eo, e1, . . . , en}.

34

• Sydit identifies the context of the edit ∆A based on containment, control

and data dependences between each ei and other statements in mAo and

mAn.

• Sydit abstracts the edit, ∆, by encoding each ei position with respect

to the identified context and by replacing all concrete identifiers of types,

methods, and variables with abstract identifier names.

Phase II: Applying Edit Scripts

• Sydit looks for a sub-context in ASTs of target methods, mB and mC

for instance, to match the abstract context.

• If there is a match in mB, Sydit generates a concrete edit ∆B by trans-

lating abstract edit positions in ∆ into concrete positions in mB and

abstract identifiers in ∆ into concrete identifiers in mB.

• Sydit then applies ∆B to mB, producing mBs. Similar process is done

for mC.

4.2.1 Phase I: Creating Abstract Edit Scripts

This section explains how Sydit creates an abstract, context-aware

edit script from single changed example.

4.2.1.1 Syntactic Program Differencing

Sydit compares the syntax trees of an exemplar edit, mAo and mAn,

using a modified version of ChangeDistiller [26]. ChangeDistiller generates

statement-level AST node insertions, deletions, updates, and moves. We chose

35

ChangeDistiller in part because it produces concise AST edit operations by (1)

representing related node insertions and deletions as moves and updates, and

(2) aggregating multiple fine-grained expression edits into a single statement

edit.

ChangeDistiller computes one-to-one node mappings from the original

and new AST trees for all updated, moved, and unchanged nodes. If a node

is not in the mappings, ChangeDistiller generates deletes or inserts as appro-

priate. It creates the mappings bottom-up using: bigram string similarity for

leaf nodes (e.g., expression statements), and subtree similarity for inner nodes

(e.g., while and if statements). It first converts each leaf node to a string

and computes its bigram—the set of all adjacent character pairs. The bigram

similarity of two strings is the size of their bigram set intersection divided by

the average of their set sizes. If the similarity is above an input threshold,

σ, ChangeDistiller includes the two leaves in its pair-wise mappings. It then

computes subtree similarity based on the number of leaf node matches in each

subtree, and establishes inner node mappings bottom up.

We modify ChangeDistiller’s matching algorithms in two ways. First,

we require inner nodes to perform equivalent control-flow functions. For in-

stance, the original algorithm sometimes mapped a while to an if node. We

instead enforce a structural match, i.e., while nodes only map to while or

other loop nodes. Second, we allow unmatched leaf nodes to tentatively map

to unmatched inner nodes using bigram string similarity if they fail both leaf

node matching pass and inner node matching pass mentioned above in order

to increase successful matching rate. The intuition behind is the more nodes

we manage to match, the fewer edit operations are generated to represent the

difference, and the more likely the resulting edit script is to be optimal in

36

terms of length. This change overcomes inconsistent treatment of blocks. For

example, ChangeDistiller treats a catch clause with an empty body as a leaf

node, but a catch clause with a non-empty body as an inner node. Without

mapping them together, we may end up with a redundant edit script consisting

of a deletion of an empty catch clause and insertions for a non-empty catch

clause, while a better edit script should have only included node insertions into

the catch clause.

With AST node mappings established, Sydit describes edit operations

with respect to the original method mAo as follows:

delete (Node u): delete node u.

insert (Node u, Node v, int k): insert node u and position it as the (k +

1)th child of node v.

move (Node u, Node v, int k): delete u from its current position and in-

sert it as the (k + 1)th child of v.

update (Node u, Node v): replace u with v. This step replaces the AST

node type and content of u with v’s, but maintains all of u’s relationship

with its AST parent and children.

The resulting sequence of syntactic edits is ∆A = {ei|ei ∈ {delete (u), insert

(u,v,k), move (u,v,k), update (u,v)}}. We use a total order for ei to ease

relative positioning of edit operations, although in reality there may be only

partial order between them.

Figure 4.4 presents the mapping for our example, where ’O’ is a node in

the old version mAo and ’N’ is a node in the new version mAn. Below we show

the concrete edit script ∆A that transforms mAo into mAn for our example:

37

�

!

�

method_decl!

iter_decl! configs_decl! while_stmt! return_stmt!

config_decl� if_stmt!

then!

configs_mi!

O1!

O2! O3! O4! O5!

O6! O7!

O8!

O9!

method_decl!

iter_decl! while_stmt! return_stmt!

N1!

N2! N3! N5! N6!
configs_decl!

config_asgn� if_stmt!

then!

configs_mi!

insert(N8,N5,1)!

N12!

N13!

config_decl!

if_stmt�

then�

config_mi�

insert(N7,N5,0)!

insert(N9,N8,0)!

insert(N10,N9,0)!
Legend!
decl:!declaration!
stmt:!statement!
mi:!method!invocation!
asgn:!assignment!
!!!!!!!!!!!!

update(O6,N4,c)!
move(O6,!N1,!!2)!

N7!
N8!

N9!

N10!

N4!

TreeA%old) TreeA%new)

N11!

Correpondence:!
(O1,!N1),!(O2,!N2),!(O3,!N3),!(O4,!N5),!
(O5,!N6),!(O7,!N11),!(O8,!N12),!(O9,!N13)!

! context node

! irrelevant node

! updated node insert

data dependence move

Figure 4.4: Syntactic edit extraction for mA

1. update (O6, N4)

O6 = ‘ILaunchConfiguration config =

(ILaunchConfiguration) iter.next();’

N4 = ‘ILaunchConfiguration config = null;’

2. move (O6, N1, 2)

3. insert (N7, N5, 0)

N7 = ‘config = (ILaunchConfiguration) iter.next();’

4. insert (N8, N5, 1) N8 = ‘if (!config.inValid())’

5. insert (N9, N8, 0) N9 = ‘then’

6. insert (N10, N9, 0) N10 = ‘config.reset();’

4.2.1.2 Extracting Edit Contexts

Sydit identifies relevant statements in both the old and new versions

for each edit operation and projects them to the old version in order to extract

the edit-relevant context.

38

For each ei ∈ ∆A, Sydit analyzes mAo and mAn to find the unchanged

nodes on which changed nodes in ei are containment, control, or data depen-

dent. We call these nodes context. Context information increases the chance of

generating syntactically valid edits and also serves as anchors to position edits

correctly in a new target location. First, in order to respect the syntax rules

of the underlying programming language, we include AST nodes directly en-

closing the edited statements. For example, insertion of a return statement

must occur inside a method declaration subtree. This context increases the

probability of producing a syntactically valid, compilable program. Second,

we use control dependences to describe the position to apply an edit, such

as inserting a statement at the first child position of while loop. While the

edit may be valid outside the while, positioning the edit within the while

increases the probability that the edit will be correctly replicated. Third, con-

text helps preserve data dependences. For example, consider an edit operation

that inserts statement S2:foo++; after S1:int foo = bar;. If we re-

quire S1 to precede S2 by including S1 in the context of S2, the resulting

edit will guarantee that foo is defined before it is incremented. However, in-

cluding and enforcing more dependence requirements in the edit context may

decrease the number of target methods that will match the context and thus

may sacrifice coverage.

Formally, node y is context dependent on x if one of the following rela-

tionships holds:

• Containment dependence: node y is containment dependent on x if y is

a child of x in the AST. For instance, N4 is containment dependent on

N1.

39

• Control dependence: node y is control dependent on node x if x makes

a decision about whether y executes or not. For instance, whether N7

executes or not depends on the decision made at the while condition

of N5. Therefore, N7 is control dependent on N5.

• Data dependence: node y is data dependent on node x if y uses a variable

whose value is defined in node x. For example, N10 in Figure 4.4 uses

variable config, whose value is defined in N7. Therefore, N10 is data

dependent on N7.

To extract the context for an edit script, we compute containment, control,

and data dependences on the old and new versions. The context of an edit

script ∆A is the union of these dependences. The containment dependence is

usually redundant with immediate control dependence of x, except when loops

contain early returns. To combine dependences, Sydit projects nodes found

in the new version mAn onto corresponding nodes in the old version mAo based

on the mappings generated by the modified version of ChangeDistiller. For

each ei ∈ ∆A, we determine relevant context nodes as follows.

delete (u): The algorithm computes nodes in mAo that the deleted node, u,

depends on.

insert (u, p, k): Since u does not exist in mAo, the algorithm first computes

nodes in mAn on which u depends and then projects them into corre-

sponding nodes in mAo.

move (u, v, k): The algorithm finds nodes on which u depends in both mAo

and mAn. The nodes in the new version help guarantee dependence

40

relationships after the move. The algorithm projects the nodes from

mAn onto corresponding nodes in mAo and then unions the two sets.

update (u, v): The algorithm finds nodes on which u depends in mAo and

those on which v depends in mAn. It projects the nodes from mAn into

corresponding nodes in mAo and then unions the two sets.

Consider insert (N7, N5, 0) from Figure 4.4. The inserted node N7 is control

dependent on N5, and data dependent on N2 and N4. Projecting these nodes

to the old version yields the context node set {O2, O4, O6}. The move (O6,

N1, 2) operation is more complicated because O6 depends on the node set C1

= {O4, O2} in the old version, while N4, N1’s child at position 2, depends

on the node set C2 = {N1} in the new version. After deriving the two sets,

we project C2 onto nodes in mAo, which yields C3 = {O1}. Finally, we union

C1 and C3 to get the context node set {O1, O2, O4} for the move operation.

Figure 4.4 illustrates the result, marking irrelevant nodes with dotted lines

and context nodes in gray.

Sydit allows the user to configure the amount of context. For example,

the number of dependence hops, k, controls how many surrounding, unchanged

nodes to include in the context. Setting k = 1 selects just the immediate

control and data dependent nodes. Setting k = ∞ selects all control and

data dependent nodes. We can restrict dependences to reaching definitions or

include the nodes in a chain of definitions and uses depending on k. Sydit

differentiates upstream and downstream dependences. Upstream dependences

precede the edit in the text, whereas downstream dependences follow the edit.

The default setting of Sydit is k = 1 with control, data, and containment

upstream dependences, which was best in practice. Section 4.3 shows how

varying context affects Sydit’s coverage and accuracy.

41

!

"#$%&'('#)*!

+$#,('#)*!)-./('#)*! 0%+*#(/$"$! ,#$1,2(/$"$!

)-.('#)* +-(/$"$!

$%#2!

)-./("+!

34!

35! 36! 37! 38!

39! 3:!

3;!

34<!

"#$%&'('#)*!

+$#,('#)*! 0%+*#(/$"$! ,#$1,2(/$"$!

=4!

=5! =6! =8! =9!

)-./('#)*!

)-.(>/.2 +-(/$"$!

$%#2!

)-./("+!

=46!

=47!

)-.('#)*!

+-(/$"$

$%#2

)-.("+

+2/#,$?=;@=A@<B!

+2/#,$?=4<@=;@<B!

1C'>$#?39@=6B!

"&D#?39@!=4@!!4B! =:!

=A!

=;!

=4<!

=7!

=45!
-+*#('#)*!

-+*#('#)*!

3A!
=44!

E&,,#/C&2'#2)#/F!
?34@!=4B@!?35@!=5B@!?36@!=6B@!?37@!=8B@!
?38@!=9B@!?39@!=6B@!?3:@!=44B@!?3A@!=45B@!
?3;@!=46B@!?34<@!=47B!

!"#$!"%$

G#,+D#'!">CC+2./F!!
H4!IIterator!!
H5!IILaunchConfiguration!
D4!Iiter!
D5!I!cfg!J!

+2/#,$?=:@=8@<B! +2/#,$?=A@=8@4B!

Figure 4.5: Syntactic edit suggestion for mB

4.2.1.3 Abstracting Identifiers and Edit Positions

At this point, the inferred edit script uses concrete identifiers of types,

methods, variables, and positions edit operations with respect to the example

method. To make the edit script more general and applicable to code frag-

ments using different identifiers or containing different contexts, we abstract

identifiers and edit operation positions.

To abstract identifiers, we replace all concrete identifiers of used types,

methods, and variables with equivalent abstract representations: T$, m$, and

v$ respectively. Each unique concrete identifier corresponds to a unique ab-

stract one. For example, we convert the concrete expression !config.inValid()

in Figure 4.4 to !v2.m5() in Figure 4.6.

We abstract the position of edits to make them applicable to code that

differs structurally from the original source example. We encode an edit po-

sition as a relative position with respect to all the extracted context nodes,

instead of all nodes in the original syntax tree. For example, we convert the

concrete edit move (O6, N1, 2) to an abstract edit move (AO4, AN1, 1). In

42

�

method_decl*

AO1*

AO2* AO3*

AO4*

method_decl*

AN1*

AN2* AN4*

insert(AN6,*AN4,*1)*

then�

insert(AN5,*AN4,*0)*

insert(AN7, AN6, 0)

insert(AN8, AN7, 0)

update(AO4,*AN3,*‘T2*v2*=*null;’)*

move(AO4,*AN1,*1)*

AN5* AN6*

AN7*

AN8*

AN3*

AbstractContext-old0 AbstractContext-new0

Correpondence:*
(AO1,*AN1),*(AO2,*AN2),*(AO3,*AN4)**

while_stmt*
while(v1.m3())*

�ILaunchConfiguration_decl*
* T2*v2*=*(T2)*v1.m4();*

Iterator.decl*
T1*v1=*m1(*).m2(*);*

Iterator.decl*
T1*v1*=*m1(*).m2(*);*

ILaunchConfiguration_decl*
* T2*v2*=*null;*

while_stmt*
while(v1.m3())*

ILaunchConfiguration*_asgn�

*******************v2=*(T2)*v1.m4*();*

if_stmt�
******************if(v2.m5())*

ILaunchConfiguration*_mi�
v2.m6();*

Figure 4.6: Abstract, context-aware edit script

this case, the abstract edit position is child position 1 of the while because

the context of the edit includes the definition of ILaunchConfiguration

at abstract child position 0 and no other dependences. This relative position

ensures that ILaunchConfiguration is defined by some statement before

it is used, but requires no other statements in the while. When we apply

the edit, we require the context to match and apply edits relative to the con-

text position in the target, not the concrete positions in the original method.

Abstracting edit positions is essential for applying an edit when the target

method satisfies the context dependences, regardless of the exact positions of

the statements in the code.

4.2.2 Phase II: Applying Abstract Edits

This section describes how Sydit applies an edit script ∆ to a method

mB, producing a modified method mBs for suggestion.

43

4.2.2.1 Matching Abstract Contexts

The goal of our matching algorithm is to find nodes in the target method

that match the context nodes in ∆ and that induce one-to-one mappings be-

tween abstract and concrete identifiers. To simplify this process, we first ab-

stract the identifiers in mB. We use the procedure as described in Section 4.2.1.3

to create mBAbstract from mB. For concision in this section, we simply use mB

instead of mBAbstract.

This problem can be posed as the labeled subgraph isomorphism prob-

lem. Although we experimented with an off-the-shelf implementation [68],

adapting it to match nodes while simultaneously requiring one-to-one sym-

bolic identifier mappings is difficult. Yet these two features are essential re-

quirements for applying edits to new contexts. See Section 4.2.2.2 for more

details. The algorithm we propose below tolerates inexact label matches for

unchanged context nodes while enforcing one-to-one symbolic identifier map-

pings.

The intuition behind our algorithm is to first find candidate leaf matches

and then use them to match inner nodes. We find as many candidate matches

as possible between leaf nodes in the abstract context and leaf nodes in the

target tree, x ∈ AC, y ∈ mB, where x and y form an exact match, i.e., the

equivalent AST node types and node labels (see below). Based on these ex-

act matches (x, y), we add node matches (u, v), where u and v are on paths

from the respective root nodes, u ∈ (rootAC ; x) and v ∈ (rootmB ; y).

We add (u, v) type matches bottom-up, requiring only their node types to be

equivalent. Finally for each unmatched leaf in the abstract context, we find

additional type matches based on the established set of matches. We repeat

these steps until the set of candidate leaf matches, CL, does not increase any

44

more. We define two types of node matches and one type of path matches:

Type match: Given two nodes u and v, (u,v) is a type match if their AST

node types match. For example, both are ifs or one is a while and

the other is a for. The conditions need not match.

Exact match: Given two nodes u and v, (u,v) is an exact match if it is a

type match and their AST labels are equivalent. We define the label as

the abstract strings in the statements and ignore numerics in abstract

identifiers. For example, ‘T1 v1 = null;’ and ‘T2 v2 = null;’

are equivalent since we ignore the numeric and convert them both to ‘T

v = null;’.

Path match: Given two paths p1 and p2, (p1, p2) is a path match if for every

node u on p1, there exists node v on p2 where (u, v) is a type match.

For example, given two leaf nodes x and y, the paths match if parent(x)

and parent(y) type match, parent(parent(x)) and parent(parent(y)) type

match, and so on.

We use these definitions to map the nodes in the abstract context AC in ∆ to

mB in the following four steps, which Algorithm 1 describes procedurally.

1. Sydit finds all exact leaf matches between AC and mB and adds each

(x, y) pair to a set of candidate leaf matches, CL.

2. Based on CL, Sydit then tries to find the best path match for each leaf

node x where (x, y) ∈ CL and finds node matches based on the best path

match. Let p1 = rootAC ; x and p2 = rootmB ; y. This step is broken

into three cases, for each node match (x, y) in CL,

45

Algorithm 1: Matching Abstract Context to Target Tree

Input: AC, mB /* abstract context and target tree */
Output: M /* a set of node matches from AC to mB */
/* 1. create candidate leaf exact matches */
CL:= ∅; M := ∅; S:= ∅;
foreach leaf node x ∈ AC, leaf node y ∈ mB do

CL:= CL ∪ {(x, y) | (x, y) is an exact match};
end
repeat

/* 2(a). create node matches based on unique
path matches */

foreach (x, y) ∈ CL such that 6 ∃ (x, z) ∈ CL ∧ y 6= z do
p1 = (rootAC ; x); p2 = (rootmB ; y);
if pathMatch(p1, p2) then

M:= M ∪ {(u, v) | ((u, v) is a type match, u ∈ p1, v ∈ p2,
and they appear in corresponding positions on p1 and p2};

end

end
/* 2(b). select the best path match between

candidate path matches */
foreach leaf node x ∈ AC such that (x, y) ∈ CL ∧ (x,y) /∈ M do

p1 = (rootAC ; x); p2 = (rootmB ; y);
select ym with the maximum pathMatchScore(p1, p2, M);
M:= M ∪{(u, v) | u ∈ p1 and v ∈ p2 where p2 = rootmB ; ym};

end
/* 2(c). disambiguate path matches based on the

sibling order of matched leaf nodes in M */
foreach (leaf node x ∈ AC such that (x, y) ∈ CL ∧ (x,y) /∈ M) do

select ym with the maximum LCSMatchScore(x, y, M);
M:= M ∪{(u, v) | u ∈ (rootAC ; x) and v ∈ rootmB ; ym};

end
/* 3. establish symbolic identifier mappings */
foreach (u, v) ∈ M do

S:= S ∪ {(Tn, Tm), (vi, vj), and/or (mk, ml)
that are supported by (u, v)};

end
removeConflicts(S, M);
/* 4. relax constraints to add leaf matches */
CL:= CL ∪ relaxConstraints(AC, M);

until CL reaches fixpoint ;

46

Function pathMatch(path p1, path p2)

t1 := p1’s bottom-up iterator;
t2 := p2’s bottom-up iterator;
while t1.hasPrev() ∧ t2.hasPrev() do

u := t1.prev();
v := t2.prev();
if !EquivalentNodeType(u, v) then

return false;
end

end
if t1.hasPrev() then

return false;
end
return true;

(a) If there exists single path match (p1, p2) between AC and mB, we

add all its constituent node matches (u, v) on these paths to M.

(b) If there exists multiple path matches, e.g., (p1, (rootmB ; y1)) and

(p1, (rootmB ; y2)), and one of these path matches contains more

constituent nodes already in the established match set M, we regard

it as the best path match and add constituent (u, v) matches to M.

Function pathMatchScore(path p1, path p2, matches M)
counter := 0;
t1 := p1’s bottom-up iterator;
t2 := p2’s bottom-up iterator;
while t1.hasPrev() ∧ t2.hasPrev() do

u := t1.prev();
v := t2.prev();
if (u, v) ∈ M then

counter + +;
end

end
return counter;

47

(c) If there exists multiple path matches with the same number of con-

stituent node matches in M, Sydit leverages sibling ordering re-

lationships among the leaf nodes to disambiguate the best path

match. Given a leaf node x ∈ AC, suppose that path p1 matches

two paths, e.g., (p2 = rootmB ; y2), (p3 = rootmB ; y3), with the

same score and assume that y2 precedes y3 in sibling order. If M

contains a node match (u, v) where u precedes x as a sibling, while

v is a sibling between y2 and y3. Sydit prefers the path match

((rootAC ; x), (rootmB ; y3)), since this choice is consistent with

an already established match (u, v). Similarly, based on this path

match, we add constituent node matches on the matched paths to

M. While this approach is similar to how the longest common sub-

sequence (LCS) algorithm aligns nodes [43], our approach matches

leaf nodes based on established matches in M.

Function LCSMatchScore(node x, node y, matches M)
score := 0;
/* identify left siblings of x and y */
l1 := left children(parent(x), x);
l2 := left children(parent(y), y);
/* identify right siblings of x and y */
r1 := right children(parent(x), x);
r2 := right children(parent(y), y);
/* compute the size of longest common sequences of

l1 and l2 and r1 and r2 respectively with respect
to M. */

score := LCS(l1, l2, M) + LCS(r1, r2, M);
return score;

3. Sydit establishes mappings between symbolic identifiers in AC and mB

by enumerating all node matches in M. For example, if the label of

48

matched nodes are ‘T1 v1 = null;’ and ‘T2 v2 = null;’, we

add the symbolic identifier mappings (T1, T2) and (v1, v2) to S.

While collecting identifier mappings, the algorithm may encounter in-

consistencies, such as (T1, T3), which violates an already established

mapping from T1 to T2. To remove the conflict between (T1, T2)

and (T1, T3), Sydit counts the number of node matches that sup-

port each mapping. It keeps the mapping with the most support, and

removes other mappings from S and all their supporting node matches

from M.

Function removeConflicts(mappings S, matches M)

foreach (s1, s2) ∈ S do
T = {t | (s1, t) ∈ S };
if |T | > 1 then

select t with the most supporting matches;
T = T - (s1, t);
foreach s2 ∈ T do

S := S −{(s1, s2)};
M := M− {(u, v)|(u, v) supports (s1, s2)};

end

end

end

4. Sydit leverages the parent-child relationship of matched nodes in M to

introduce type matches for unmatched leaf(s) in AC. For each unmatched

leaf z in AC, Sydit traverses bottom-up along its path to root in order

to find the first ancestor u which has a match (u, v) ∈ M . Next, if it

finds an unmatched node w in the subtree rooted at v and if (z, w) is a

type match, Sydit adds it into CL. We repeat steps 2 to 4 until step 4

does not add any to CL.

49

Function relaxConstraints(context AC, matches M)

CL := ∅
foreach leaf node z ∈ AC such that 6 ∃(z, w) ∈ M do

u := z;
repeat

u := parent(u);
until u=null ∨∃(u, v) ∈ M;
if u 6=null then

CL := CL ∪{(z, w)|w is a node in the subtree rooted at v, where
(z, w) is a type match and w is not matched};

end

end
return CL;

At any point in this process, if every node in the abstract context AC has a

match in M, we proceed to derive concrete edits customized to mB, described

in Section 4.2.2.3. If we fail to find a match for each node, Sydit reports to

the user that the edit context does not match and it cannot replicate the edit

on the target context.

4.2.2.2 Alternative matching algorithms

Standard labeled subgraph isomorphism is a promising alternative ap-

proach for matching abstract context in ∆ to a new target method mB that we

also explored. We formulated both the abstract content and target method as

graphs in which nodes are labeled with their AST node types, and edges are la-

beled with constraint relationships between nodes, such as containment, data,

and control dependences. To preserve a one-to-one mapping between abstract

and concrete identifiers, we included additional labeled nodes to represent the

sequence of symbols appearing in the statement. We included identifiers of

types, methods, and variables, as well as constants like null and operators

50

like = as node labels. Next, we connected all the identifiers with the same

name with edges labeled “same name.” We thus converted our problem to

finding a subgraph in the target method’s graph which is isomorphic to the

abstract context’s graph.

A problem with this direct conversion is that it requires each symbol

in the abstract context must match a symbol in the target method. This

requirement is needlessly strict for the unchanged context nodes. For instance,

consider inserting a child of an if in the target. When the guard condition of

the target if is a little different from the known if, i.e., field != null vs.

this.getField() != null, exact graph isomorphism fails in this case.

Although our algorithm is a little messy compared with an off-the-shelf labeled

subgraph isomorphism algorithm [68], the heuristics for identifier replacements

and siblings alignment work well in practice. Specifying which node matches to

relax, and when and how to relax them is the key contribution of the algorithm

we present above.

4.2.2.3 Generating Concrete Edits

To generate the concrete edit script ∆B for mB, Sydit substitutes sym-

bolic names used in ∆ and recalculates edit positions with respect to the

concrete nodes in mB. This process reverses the abstraction performed in Sec-

tion 4.2.1.3.

The substitution is based on the symbolic identifier mappings estab-

lished in Section 4.2.2.1, e.g., (T1, T2), and the abstract-concrete identifier

mappings established in Section 4.2.1.3, e.g., (T1, int), (T2, int). For

this specific case, each time T1 occurs in ∆, it is directly mapped to T2 and

thus indirectly mapped to int in ∆B via T2. Some edits in ∆ use symbolic

51

identifiers that only exist in the new version, thus the corresponding concrete

identifiers do not exist in the original code of mAo or mBo. In this case, we bor-

row the concrete identifiers from mAn. For example, the identifier inValid

used in Figure 4.1 only exists in mAn, but does not in mAo or mBo. We thus

just use the name from mAn, storing it in ∆ for ∆B.

We make edit positions concrete with respect to the concrete nodes in

mB. For instance, with the node match (u, v), an abstract edit which inserts

a node after u is translated to a concrete edit which inserts a node after v.

Using the above algorithms, Sydit produces the following concrete edits for

mB (see Figure 4.5).

1. update (O6, N3), N3 = ‘ILaunchConfiguration cfg = null;’

2. move (O6, N1, 1)

3. insert (N7, N5, 0),

N7 = ‘cfg = (ILaunchConfiguration) iter.next();’

4. insert (N8, N5, 1), N8 = ‘if (!cfg.inValid())’

5. insert (N9, N8, 0), N9 = then

6. insert (N10, N9, 0), N10 = ‘cfg.reset();’

This edit script shows that mB is changed similarly to mA. It differs because of

the move (O6, N1, 1), which puts the designated node in a different location

compared to mA. This difference does not compromise the edit’s correctness

since it respects the relevant data dependence constraints encoded in ∆. Sydit

then converts ∆B to Eclipse AST manipulations to produce mBs.

52

4.3 Evaluation

To assess the coverage and accuracy of Sydit, we create an oracle data set of

56 pairs of example edits from open source projects, which we refer to simply as

the examples. To examine the capabilities of Sydit, we select a range of simple

to complex examples, and show that Sydit produces accurate edits across

the examples. We compare Sydit to common search and replace text editor

functionality and demonstrate that Sydit is much more effective. We evaluate

the sensitivity of Sydit to the source and target method. Most correct edits

are insensitive to this choice, but when there is a difference, choosing a simpler

edit as the source method typically leads to higher coverage. We also study

the best way to characterize edit context. We find that more context does not

always yield more accurate edits. In fact, minimal, but non-zero context seems

to be the sweet spot that leads to higher coverage and accuracy. Configuring

Sydit to use an upstream context with k = 1 yields the highest coverage and

accuracy on our examples.

For the evaluation data set, we collected 56 method pairs that expe-

rienced similar edits. We included 8 examples from a prior study of system-

atic changes to code clones from the Eclipse jdt.core plug-in and from

jEdit [52]. We collected the remaining 48 examples from 42 releases of the

Eclipse compare plug-in, 37 releases of the Eclipse core.runtime plug-in,

and 50 releases of the Eclipse debug plug-in. For each pair, we computed

the syntactic differences with ChangeDistiller. We identified method pairs mA

and mB that share at least one common syntactic edit between the old and

new versions and their content is at least 40% similar. We use the following

similarity metric:

similarity(mA, mB) =
|matchingNodes(mA,mB)|
size(mA) + size(mB)

(4.1)

53

Table 4.1: Sydit’s capabilities, coverage, accuracy, and similarity for k=1,
upstream control and data dependences

Single node Multiple nodes
Contiguous Non-contiguous

Identical SI CI NI

examples 7 7 11
matched 5 7 8
compilable 5 7 8
correct 5 7 8

coverage 71% 100% 73%
accuracy 71% 100% 73%
similarity 100% 100% 100%

Abstract SA CA NA

examples 7 12 12
matched 7 9 10
compilable 6 8 9
correct 6 6 7

coverage 100% 75% 83%
accuracy 86% 50% 58%
similarity 86% 95% 95%

Total coverage 82% (46/56)
Total accuracy 70% (39/56)
Total similarity 96% (46)

where matchingNodes(mA, mB) is the number of matching AST node pairs

computed by ChangeDistiller, and size(mA) is the number of AST nodes in

method mA.

We manually inspected and categorized these examples based on (1)

whether the edits involve changing a single AST node vs. multiple nodes, (2)

whether the edits are contiguous vs. non-contiguous, and (3) whether the edits’

content is identical vs. abstract. An abstract content means source and target

methods do not use exactly the same type, method, or variable identifiers.

To test this range of functionality in Sydit, we chose at least 7 examples in

54

each category. Table 4.1 shows the number of examples in each of these six

categories. The systematic change examples in the data set are non-trivial

syntactic edits that include on average 1.66 inserts, 1.54 deletes, 1.46 moves,

and 0.70 updates.

Coverage and accuracy. For each method pair (mAo, mBo) in the old ver-

sion that changed similarly to become (mAn, mBn) in the new version, Sydit

generates an abstract, context-aware edit script from mAo and mAn and tries to

apply the learned edits to the target method mBo, producing mBs. In Table 4.1,

matched is the number of examples for which Sydit matches the learned con-

text to the target method mBo. The compilable row is the number of examples

for which Sydit produces a syntactically-valid program, and correct is the

number of examples for which Sydit replicates edits that are semantically

identical to what the programmer actually did. Coverage is matched
examples

, and accu-

racy is correct
examples

. We also measure syntactic similarity between Sydit’s output

and the expected output according to the above similarity formula (4.1).

This table uses our best configuration of k=1, upstream context only,

i.e., one source node for each control and data dependence edge in the context,

in addition to including a parent node of each edit. For this configuration,

Sydit matches the derived abstract context for 46 of 56 examples, achieving

82% coverage. In 39 of 46 cases, the edits are semantically equivalent to the

programmer’s hand editing. Even for those cases in which Sydit produces a

different edit, the output and the expected output are often similar. For the

examples Sydit produces edits, on average, its output is 96% similar to the

version created by a human developer.

In the examples where Sydit cannot match the abstract context, the

55

Aold to Anew

1. private void paintSides(GC g, MergeSourceViewer tp, Canvas canvas, boolean right) {
2.
3. - g.setLineWidth(LW);
4. + g.setLineWidth(0 /* LW */);
5.
6.}

Bold to Bnew

1. private void paintCenter(Canvas canvas, GC g) {
2.
3. if (fUseSingleLine) {
4.
5. - g.setLineWidth(LW);
6. + g.setLineWidth(0 /* LW */);
7.
8. } else {
9. if(fUseSplines){
10.
11.- g.setLineWidth(LW);
12.+ g.setLineWidth(0 /* LW */);
13.
14. } else {
15.
16.- g.setLineWidth(LW);
17.+ g.setLineWidth(0 /* LW */);
18. }
19. }
20.
21.}

Figure 4.7: A non-contiguous identical edit script (NI) for which Sydit
cannot match the change context (org.eclipse.compare: v20060714
vs. v20060917)

target method was usually very different from the source method, or the edit

script needs to be applied multiple times in the target method. In Figure 4.7

(from org.eclipse.compare: v20060714 vs. v20060917), g.setLineWid-

th(LW) was replaced with g.setLineWidth(0) once in the source method.

The same edit needs to be replicated in three different control-flow contexts

in the target. Sydit does not automate the systematic edit because it always

tries to find the only one best match for the edit’s relevant context or code

56

pattern. If there is more than one best match, such as three, Sydit gives

up and concludes that it cannot apply the systematic edit because there is

ambiguity in context matching process. This may be counterintuitive because

it should have allowed more than one best match and applied the same edit to

all matching locations. Additional user assistance would solve this problem.

Aold to Anew

1. public IActionBars getActionBars() {
2. + IActionBars actionBars = fContainer.getActionBars();
3. - if (fContainer == null) {
4. + if (actionBars == null && !fContainerProvided) {
5. return Utilities.findActionBars(fComposite);
6. }
7. - return fContainer.getActionBars();
8. + return actionBars;
9. }

Bold to Bnew

1. public IServiceLocator getServiceLocator() {
2. + IServiceLocator serviceLocator = fContainer.getServiceLocator();
3. - if (fContainer == null) {
4. + if (serviceLocator == null && !fContainerProvided) {
5. return Utilities.findSite(fComposite);
6. }
7. - return fContainer.getServiceLocator();
8. + return serviceLocator;
9. }

Bold to Bsuggested

1. public IServiceLocator getServiceLocator() {
2. + IServiceLocator actionBars = fContainer.getServiceLocator();
3. - if (fContainer == null) {
4. + if (actionBars == null && !fContainerProvided) {
5. return Utilities.findSite(fComposite);
6. }
7. - return fContainer.getServiceLocator();
8. + return actionBars;
9. }

Figure 4.8: A non-contiguous, abstract edit script for which Sydit produces
edits equivalent to the developer’s (org.eclipse.compare: v20061120
vs. v20061218)

57

Figure 4.8 shows a complex example (from org.eclipse.compare

v20061120 vs. v20061218) that Sydit handles well. Although the methods

mAo and mBo use different identifiers, Sydit successfully matches mBo to the

abstract context AC derived from mA, creating a version mBs, which is seman-

tically equivalent to the manually crafted version mBn.

In addition to these 56 pairs, we collected six examples that perform

similar edits on multiple contexts—on at least 5 different methods. Table 4.2

shows the results. In four out of six categories, Sydit correctly replicates

similar edits to all target contexts. In the CI category, Sydit misses one

of five target methods because the target does not fully contain the inferred

abstract context. In the NI category, Sydit produces incorrect edits in two

out of six targets because it inserts statements before the statements that

define variables used by the inserts, causing a compilation error. To prevent

undefined uses, Sydit should, and in the future will, adjust its insertion point

based on data dependences.

Comparison with search and replace. The search and replace (S&R) fea-

ture is the most widely used approach to systematic editing. Though Sydit’s

goal is not to replace S&R but to complement it, we nevertheless compare

them to assess how much additional capability Sydit provides for automating

repetitive edits. 32 of the 56 examples in our test suite require non-contiguous

and abstract edit scripts. S&R cannot perform them in a straightforward man-

ner because even after a developer applies one or more S&R actions, he or she

would have to customize either the type, method, and/or variable names. For

those 32 examples, Sydit produces correct edits in 20 cases. For the remain-

ing 24 examples, we categorize typical user-specified S&R sophistication into

58

Table 4.2: Replicating similar edits to multiple contexts

SI: single, identical edit
8 targets 8 matched 8 correct
100% coverage (8/8) 100% accuracy (8/8) 100% similarity

CI: contiguous, identical edits
5 targets 4 matched 4 correct
80% coverage (4/5) 80% accuracy (4/5) 100% similarity

NI: non-contiguous, identical edits
6 targets 4 matched 0 correct
67% coverage (4/6) 0% accuracy (0/6) 67% similarity

SA: single, abstract edit
5 targets 5 matched 5 correct
100% coverage (5/5) 100% accuracy (5/5) 100% similarity

CA: contiguous, abstract edits
4 targets 4 matched 4 correct
100% coverage (4/4) 100% accuracy (4/4) 100% similarity

NA: non-contiguous, abstract edits
4 targets 4 matched 4 correct
100% coverage (4/4) 100% accuracy (4/4) 100% similarity

three levels:

• Level 1: Search for a single line and replace it.

• Level 2: Search for several contiguous lines and replace them.

• Level 3: Perform multiple S&R operations to modify several non-contiguous

lines.

On the remaining 24 examples, Sydit handles 7 of 11 Level 1 examples, 5 of 5

in Level 2, 7 of 8 in Level 3. Even though Level 1 examples are straightforward

with S&R, Sydit misses cases like the one in Figure 4.7. Overall, Sydit is

much more effective and accurate than S&R.

59

Self application of a derived edit script. To assess whether Sydit gen-

erates correct program transformations from an example, we derive an edit

script from mAo and mAn and then apply it back to mAo. We then compare the

Sydit generated version with mAn. Similarly, we derive an edit script from

mBo and mBn and compare the application of the script to mBo with mBn. In

our experiments, Sydit replicated edits correctly in all 112 cases.

Selection of source and target method. Sydit currently requires the

user to select a source and target method. To explore how robust Sydit is

to which method the user selects, we switched the source and target methods

for each example. In 35 of 56 examples (63%), Sydit replicates edit scripts

in both directions correctly. In 9 of 56 examples (16%), Sydit could not

match the context in either direction. In 7 out of 56 examples (13%), Sydit

replicates edit scripts in only one direction. In the failed cases, the source

method experiences a super set of the edits needed in the target. Additional

user guidance to select only a subset of edits in the source would solve this

problem.

Context characterization. Table 4.3 characterizes the number of AST

nodes and dependence edges in each edit script with the best configuration

of k = 1 upstream only dependences. On average, an edit script involves

7.66 nodes, 2.77 data dependence edges, 5.63 control dependence edges, 5.04

distinct type names, 4.07 distinct method names, and 7.16 distinct variable

names. These results show that Sydit creates and uses complex abstract

contexts.

Table 4.4 explores how different context characterization strategies af-

60

Table 4.3: Sydit’s context characterization

Size Min Max Median Average

nodes 1 56 3.5 7.66
data dependences 0 34 0.5 2.77
control dependences 1 38 3 5.63

Abstraction

types 0 17 4 5.04
methods 0 17 2 4.07
variable 0 26 4.5 7.16

fect Sydit’s coverage, accuracy, and similarity for the 56 examples. These

experiments vary the amount of control and data dependence context, but

always include the containment context (see Section 4.2.1.2).

The first part of the table shows that Sydit’s results degrade slightly

as the number of hops of control and data dependence chains in the context

increases. k = 1 selects context nodes with one direct upstream or downstream

control or data dependence on any edited node. We hypothesized that the

inclusion of more contextual nodes would help Sydit produce more accurate

edits without sacrificing coverage. Instead, we found the opposite.

The second part of Table 4.4 reports on the effectiveness of identifier

abstraction for types (T), methods (M), and variables (V). As expected, ab-

stracting all three leads to the highest coverage, while no abstraction leads to

the lowest coverage.

The third part of the same table shows results when varying the setting

of upstream and downstream dependence relations for k = 1. All uses both

upstream and downstream dependence relations to characterize the context,

containment only neither uses upstream nor downstream data or control de-

pendences, and upstream only uses only upstream dependence relations. Sur-

61

Table 4.4: Sydit’s sensitivity to context characterization

matched correct % coverage % accuracy % similarity

Varying the number of dependence hops

k=1 44 37 79% 66% 95%
k=2 42 35 75% 63% 95%
k=3 42 35 75% 63% 95%

Varying the abstraction settings

abstract V T M 46 39 82% 70% 96%
abstract V 37 31 66% 55% 55%
abstract T 37 31 66% 55% 55%
abstract M 45 38 80% 68% 96%

no abstraction 37 31 66% 55% 55%

Control, data, and containment vs. containment only vs. upstream only

all (k=1) 44 37 79% 66% 95%
containment only 47 38 84% 68% 90%

upstream only (k=1) 46 39 82% 70% 96%

prisingly, upstream only—which has neither the most nor fewest contextual

nodes—gains the best coverage and accuracy.

ChangeDistiller similarity threshold. Sydit uses ChangeDistiller to com-

pute statement-level AST edit script between two program versions. When

comparing the labels of AST nodes, ChangeDistiller uses a bigram similar-

ity threshold and if the similarity between two node labels is greater than

σ, it matches the nodes. Our experiments use a default setting of 0.5 for

σ. Since our edit script generation capability depends heavily on ChangeDis-

tiller’s ability to compute syntactic edits accurately in the source example, we

experimented with different settings of σ. Table 4.5 shows that when σ is in

the range of 0.3 to 0.6, Sydit’s accuracy does not change. When σ is 0.2,

the relaxed similarity criterion leads to AST node mismatches, which produce

incorrect updates or moves, and consequently Sydit’s coverage, accuracy and

62

Table 4.5: Sydit’s sensitivity to input threshold σ used in ChangeDistiller

σ matched correct % coverage % accuracy % similarity

0.6 46 39 82% 70% 96%
0.5 46 39 82% 70% 96%
0.4 46 39 82% 70% 96%
0.3 46 39 82% 70% 96%
0.2 45 33 80% 59% 86%

similarity decrease.

In summary, Sydit has high coverage and accuracy, and is relatively

insensitive to the thresholds in ChangeDistiller and the number of dependences

in the context. The best configuration is upstream with k = 1 for Sydit and σ

= 0.5 for ChangeDistiller, which together achieve 82% coverage, 70% accuracy,

and 96% similarity.

4.4 Summary

Sydit improves developer efficiency and program quality by automat-

ing systematic edits in user-selected targets and presenting suggested versions

for developers to check and improve if necessary. It does not guarantee the

correctness of generated code. It extracts context relevant to a systematic edit

in a way to observe control and data dependence relationships between the

edit and surrounding context. Therefore, by establishing matches between a

user-selected method and the relevant context’s code pattern, it enforces all

constraints the edit has on target code. This enforcement provides two guaran-

tees: (1) the edit produces a syntactically valid program; and (2) the edit alters

program syntax and semantics in an expected way, as demonstrated by the

example. However, if applying the systematic edit is not sufficient to produce

a semantically correct program, Sydit has no idea what extra edit to add.

63

On the other hand, Sydit exploits existing identifiers instead of creating new

identifiers to concretize wildcards in a systematic edit. Therefore, when the

edit introduces some new identifiers, Sydit will not create new identifiers to

concretize them for target code, producing an incorrect program. Developers

must choose a name in this case.

Sydit’s dependence on developers for edit method selection may still

burden programmers, especially in cases when finding edit locations is more

challenging than applying edits. If developers forget to provide target meth-

ods, Sydit cannot locate them. We can extend Sydit to locate code for

editing by searching for code matching the abstract context in a systematic

edit. However, our evaluation in the next chapter shows that the abstract

context generalized from one exemplar edit is not sufficient to precisely find

edit locations. The reason is that Sydit creates the abstract context by uni-

formly generalizing control or data relevant context of every edit operation

and abstracting every concrete identifier in an exemplar edit, although devel-

opers may only want to generalize some of them. Given a single exemplar edit,

Sydit has no clue how developers want to generalize the context versus use

concrete. The experience with Sydit leads us to a more challenging and in-

teresting problem about how to find locations to apply systematic edits, which

is to be discussed in the next chapter.

64

Chapter 5

Finding Systematic Edit Locations

This chapter addresses the problem of both correctly identifying loca-

tions in need of systematic edits and making correct edits to each location.

Existing tools either suggest code locations or transform code, but not both,

except for specialized or trivial edits. For instance, code search either requires

developers to write code pattern queries [66, 97], or automatically mines API

usage patterns from large software or version control systems [22, 64] to find

edit locations matching or violating the desired code patterns. However, these

tools do not transform code. Bug fixing tools [45, 88] integrate expertise about

bug patterns and fixing strategies for certain security or concurrency bugs, au-

tomatically search for locations matching the patterns and fix bugs based on

predefined strategies. However, they do not allow users to customize code

patterns or transformation strategies. Chapter 4’s approach applies program

transformation to user-selected edit locations but does not automatically find

the edit locations.

This chapter introduces a novel approach to use multiple change exam-

ples to infer a systematic edit, whose inherent edit-relevant context serves as a

template to correctly identify edit locations. We implement the approach in a

tool called Lase. It generalizes a systematic edit by extracting common edit

as well as relevant context shared between exemplar edits.

Developers specify two or more example edits by hand. Lase performs

65

syntactic program differencing to represent code changes in each method as

a statement-level AST edit script. It then identifies the longest common edit

operation subsequence between edit scripts. Any uncommon edit operation

specific to some examples is filtered out because they do not generalize to all

examples. Next, Lase compares the identified edit operations from different

scripts to create a general representation. If edit operations agree on identifier

usage for types, methods, and variables, Lase uses these concrete identifiers

in the resulting edit script. Otherwise, it creates wildcards T$, m$, v$, sep-

arately, to abstract away any divergence. Similar to Sydit, based on the

identified common edit, Lase leverages control and data dependence analysis

to extract edit relevant context in each method. It exploits common subtree

extraction and clone detection techniques to identify code commonality be-

tween examples. By combining the information of edit relevant context per

method and code commonality among methods, Lase decides the common

edit relevant context. This context and the common edit construct a partially

abstract, context-aware edit script. The commonality of both edit and rele-

vant context makes sure that Lase only extracts and generalizes information

demonstrated by all examples, which is more likely to generalize to edit loca-

tions which are not provided by developers but waiting for Lase to correctly

suggest them out.

Lase then uses the inferred systematic edit to find candidate edit lo-

cations by establishing matches between the code pattern and every method

in the whole project or software system. If a method includes all concrete

identifiers used in the pattern and has a code snippet matching the pattern’s

skeleton, the method is selected as a candidate. Again, we use common subtree

extraction technique to decide whether a method contains a subtree matching

66

the code pattern’s AST. For each candidate, Lase customizes and applies the

systematic edit to transform code.

Our evaluation with Lase demonstrates that our approach is effective

in both correctly finding edit locations and correctly making edits. We use

24 repetitive bug fixes that require multiple check-ins from two open source

projects as an oracle. For these bugs, developers applied repetitive bug fixes

because the initial patches were either incomplete or incorrect [80]. We eval-

uate Lase by learning edit scripts from the initial patches and determining if

Lase correctly derives the subsequent, supplementary patches. On average,

Lase identifies edit locations with 99% precision and 89% recall. The accu-

racy of applied edits is 91%, i.e., the tool-generated version is 91% similar to

the developer’s version. To our knowledge, Lase is the first tool to learn a

general purpose abstract edit script from multiple changed methods, and to

use an edit script for both location search and code transformation.

5.1 Motivating Example

This section uses a motivating example (see Figure 6.1) drawn from

revisions to org.eclipse.compare on 2007-04-16 and 2007-04-30 to show

Sydit’s work flow (see Figure 5.2) and compare it to Lase’s work flow (see

Figure 5.4). Figure 6.1 shows three methods with similar changes: mA, mB,

and mC. The changes to method mA delete two print statements (line 3-4),

insert a local variable declaration next for each enumerated element (line 6),

and insert a type check for the element before it is processed (line 7).

Figure 5.2 shows Sydit’s work flow to automate systematic editing. In

the figure, gray bars represent edit context, red bars represent deleted code,

and blue bars represent inserted code. When a user shows Sydit an exem-

67

Aold to Anew

1. public void textChanged (TEvent event) {
2. Iterator e = fActions.values().iterator();
3. - print(event.getReplacedText());
4. - print(event.getText());
5. while(e.hasNext()){
6. + Object next = e.next();
7. + if (next instanceof MVAction){
8. - MVAction action = (MVAction)e.next();
9. + MVAction action =(MVAction)next;
10. if(action.isContentDependent())
11. action.update();
12.+ }
13. }
14. System.out.println(event + ‘‘ is processed’’);
15.}

Bold to Bnew

1. public void updateActions () {
2. Iterator iter = getActions().values().iterator();
3. while(iter.hasNext()){
4. - print(this.getReplacedText());
5. + Object next = iter.next();
6. + if (next instanceof MVAction){
7. - MVAction action = (MVAction)iter.next();
8. + MVAction action = (MVAction)next;
9. if(action.isDependent())
10. action.update();
11.+ }
12.+ if (next instanceof FRAction){
13.+ FRAction action = (FRAction)next;
14.+ if(action.isDependent())
15.+ action.update();
16.+ }
17. }
18. print(this.toString());
19.}

Cold to Cnew

1. public void selectionChanged (SEvent event) {
2. Iterator e = fActions.values().iterator();
3. while(e.hasNext()){
4. + Object next = e.next();
5. + if (next instanceof MVAction){
6. - MVAction action = (MVAction)e.next();
6. + MVAction action =(MVAction)next;
7. if(action.isSelectionDependent())
8. action.update();
9. + }
10. }
11.}

Figure 5.1: A systematic edit to three methods based on revisions to org.-
eclipse.compare on 2007-04-16 and 2007-04-30

68

!"#$%

!&'(%

!"#$%"#&#'("%
#)*+,&#%

)"#$% *"#$%

!"#$%"#&#'("%
+#(-./"%(-*(%0##/%(.%'-*01#%

2$$#*0(%%
+#(-./%

+"#$%

 ! !"

%%%%%%%4#*$0#/%#/5(%5"%(..%",#'56'%(.%7%
89:2;%'*00.(%*,,&<%5(%

Figure 5.2: Sydit learns an edit from one example. A developer must locate
and specify the other methods to change.

1. … … method_declaration(… …){
2. T$0 v$0 = v$1.m$0().m$1();
3. DELETE: m$2(v$2.m$3());
4. DELETE: m$2(v$2.m$4());
!
3. while(v$0.m$5()){

4. UPDATE: T$1 v$3 = (T$1)v$0.m$6();
5. TO: T$2 v$4 = v$0.m$6();
6. if(v$3.m$7()){
7. … …
8. }
9. INSERT: if(v$4 instanceof T$1){
10. INSERT: T$1 v$3 = (T$1)v$4;
11. … …
12. }

!

MOVE

Figure 5.3: Edit script from Sydit abstracts all concrete identifiers. Gray
marks edit context, red marks deletions, and blue marks additions.

plar changed method, e.g., mAo and mAn, and all target methods to change

systematically, e.g., mB and mC, Sydit is expected to generate a general edit

script, customize the script to each target method, and apply the result. For

69

this example, Sydit manages to infer an edit script as shown in Figure 5.3.

However, it cannot apply any edit to the target methods because the inferred

script includes deleting two statements (lines 3-4), which operations are overly

specific to mA and prevent the script from being applied to mB and mC.

When using the edit script inferred by Sydit to find systematic edit

locations, we still suffer from the over specification problem mentioned above

since the edit script may fail to match methods it should have matched. On

the other hand, we may also suffer from another problem—over generalization

when the edit script succeeds to match irrelevant methods, such as mD, which

it should have not matched. The reason for this is Sydit’s full identifier

abstraction strategy makes the edit script too flexible, causing it to match

types, methods, or variables in many unrelated methods, and consequently

would incorrectly apply edit scripts to too many methods.

Lase seeks to generate an edit script that serves double duty, both

finding edit locations and accurately transforming the code. It learns from

two or more example edits to solve the problems of over generalization and

over specification. Although developers may also want to directly create or

modify a script, since they already write and edit code, we think providing

multiple examples is a natural interface.

Figure 5.4 shows the work flow of Lase. The developer specifies two

exemplar changed methods, mA and mB. Lase infers the edit script shown

in Figure 5.5 from the examples. It uses the edit script to find matching

locations, and applies customized script to each location. Using multiple ex-

amples requires new algorithms to identify common changes and context, and

to abstract or omit differences. None of these algorithms are necessary when

learning from a single example.

70

!"#$%

!&'(()&*)$%

+"#$%

!"#$%&'(')*&%
+'*,-.&%

/00'('123*%
4'*,-.%

,"#$%

,-).%

/"#$%

/-).%

5&'0%&'(')*&%'62+7('&%

!%%%%%%%
+2*),%

"#

%%3-%+2*),%

Figure 5.4: Lase learns an edit from two or more examples. Lase locates
other methods to change.

1. … … method_declaration(… …){
2. Iterator v$0 = u$0:FieldAccessOrMethodInvocation

.values().iterator();
3. while(v$0.hasNext()){
4. UPDATE: MVAction action = (MVAction)v$0.next();
5. TO: Object next = v$0.next();
6. if(action.m$0()){
7. … …
8. }
9. INSERT: if(next instanceof MVAction){
10. INSERT: MVAction action = (MVAction)next;
11. … …
12. }

!

MOVE

Figure 5.5: Edit script from Lase abstracts identifiers that differ in the exam-
ples and uses concrete identifiers for common ones. Gray marks edit context,
red marks deletions, and blue marks additions.

71

Lase first finds the longest common edit operation subsequence among

exemplar edits to filter out operations specific to only a single example. Notice

that Lase omits the deleted print statements from mA because the edits are

not common to mA and mB. Lase extracts the context for each common edit

and then determines the largest common edit-relevant context. This algorithm

combines clone detection, maximum common embedded subtree extraction on

the Abstract Syntax Tree (AST), and dependence analysis. Finally, if type,

method, and variable identifiers agree, Lase uses these concrete identifiers.

Otherwise Lase abstracts the discrepant identifiers in both edit operations

and context. For example in Figure 5.5, Lase uses Iterator because it

is common to mA and mB. Since field access fActions in mA and method

invocation getActions() in mB match but differ, Lase generalizes them to

an abstract identifier u$0:FieldAccessOrMethodInvocation.

5.2 Approach

This section summarizes Lase’s three phases and formalizes our ter-

minology. Each subsection then describes one phase in detail.

Phase I: Generating an Edit Script. Generating an edit script from

multiple examples has four steps.

1. Generating Syntactic Edits. For each exemplar changed method mi ∈
M={m1, m2, . . ., mn}, Lase compares the old and new versions of mi and

creates an edit: Ei = [e1, e2, . . . , ek] where ei is an insert, delete, move,

or update operation of AST statements.

2. Identifying Common Edit Operations. Lase identifies the longest com-

mon edit operation subsequence Ec such that ∀1 ≤ i ≤ n, Ec ⊆ Ei, and

72

Ec preserves the sequential order of operations in each Ei.

3. Generalizing Identifiers in Edit Operations. When a common edit op-

eration e ∈ Ec uses distinct type, method, and variable identifiers in

different methods, Lase replaces the concrete identifiers with abstract

ones, resulting in E. Otherwise, it uses the original concrete identifiers.

4. Extracting Common Edit Context. Lase finds the largest common con-

text C relevant to E using code clone detection, maximum common

embedded subtree extraction, and dependence analysis. Lase abstracts

identifiers in the context C as well as the edits E.

The result of this process is a partially abstract, context-aware edit script ∆P .

Phase II: Finding Edit Locations. Lase uses the edit script’s context C

to search for methods Mf that match C.

Phase III: Applying an Edit. For each mf ∈ Mf , Lase specializes ∆P

to mf by mapping abstract identifiers and abstract edit positions in ∆P to

concrete ones in mf , producing ∆f . Lase applies this concrete edit script to

mf and suggests the resulting method mf’ to the developer.

5.2.1 Phase I: Learning from Multiple Examples

This section explains how Lase generates a partially abstract, context-

aware edit script from multiple exemplar edits.

73

5.2.1.1 Generating Syntactic Edits

For each exemplar changed method mi ∈M , Lase exploits the syntactic

program differencing algorithm used in Sydit to create an AST edit script

which may consist of statement-level AST node insertions, deletions, updates,

and moves.

5.2.1.2 Identifying Common Edit Operations

Lase identifies common edit operations in {E1, E2, . . . En} by itera-

tively comparing the edits pairwise using a Longest Common Edit Operation

Subsequence (LCEOS) algorithm, which is similar to the classic Longest Com-

mon Substring algorithm [43], as shown in Equation (5.1).

LCEOS(s(Ei, p), s(Ej, q)) =
0 if p = 0 or q = 0

LCEOS(s(Ei, p− 1), s(Ej , q − 1)) + 1 if equivalent(ep, eq)

max(LCEOS(s(Ei, p)), s(Ej , q − 1)), LCEOS(s(Ei, p− 1), s(Ej , q))) if !equivalent(ep, eq)

(5.1)
s(E∗, i) represents the edit operation subsequence e1, ..., ei in E∗.

We do not require exact equivalence between edit operations because

systematic edits are not necessarily identical. We define the comparison func-

tion equivalent(ep, eq) in two ways: concreteMatch(ei, ej, ts) and abstractMatch

(ei, ej). Lase first applies concreteMatch(ei, ej, ts) to compare ei and ej us-

ing their edit types and labels. Labels are string representations of AST nodes

with identifiers and operators. If two operations have the same node type

and their labels’ bi-gram string similarity [1] is above the threshold ts, the

function returns true. We use ts = 0.6 to include more matches. Lase also

matches AST node types inexactly, tolerating mapping return statement to

expression statement, and while to for to do. If Lase fails to find

74

any common edit operation between two edits with concreteMatch, it applies

abstractMatch(ei, ej), which converts all concrete identifiers of types, meth-

ods, and variable to abstract identifiers T$, m$, and v$. If two operations

have the same edit type and their labels’ abstract representations match, the

function returns true. Other matching heuristics may also perform well, such

as abstracting identifiers one at a time, but we did not explore them.

The result of matching is a list of concrete edit operations that are

equivalent and common to all exemplar methods, but their identifiers and

AST types may not match.

5.2.1.3 Generalizing Identifiers in Edit Operations

Lase next generalizes identifiers as needed. When all edit operations

agree on a concrete identifier, Lase uses the concrete identifier. If one or

more edit operations use a different identifier, Lase generalizes the identi-

fier. For example, Figure 6.1 shows eA = update(MVAction action =

(MVAction) e.next()) matches with eB = update(MVAction action

= (MVAction) iter.next()). When Lase detects the discrepant vari-

able names e vs. iter, it generalizes them by creating a fresh abstract iden-

tifier v$0, substituting it for the original identifiers, and creating e = up-

date(MVAction action = (MVAction)v$0.next()). Lase records the

pairs (e, v$0), (iter, v$0) in a map. It then substitutes v$0 for all instances

of e in mA and EA, and all instances of iter in mB and EB to enforce a con-

sistent naming for all edit operations and edit context. If some subsequent

common edit operations are inconsistent with the current mappings, Lase

omits them, resulting in a list of partially abstract edit operations E.

75

5.2.1.4 Extracting Common Edit Context

This section explains how Lase extracts the common edit context C

for E from the exemplar methods with clone detection and then refines this

context based on consistent name usage, AST subtree extraction, and program

dependence analysis.

Finding Common Text with Clone Detection For all matched edits

{E1, E2, . . . , En}, Lase extracts relevant unchanged context code. Lase first

finds common text by dividing the methods into three parts using their com-

mon edits as anchors. Given matching edits E1 on AST nodes n1, n2 ∈ m1 and

E2 on n′
1, n

′
2 ∈ m2, let n1 precede n2 in m1. Lase divides the methods into

code preceding n1 and n′
1, code between the two matching nodes, and code

after them. Lase next compares each of these three segment pairs with a clone

detector [47]. This step reveals all possible common text shared between each

pair of methods. This common text over approximates context. The steps

below refine the context based on name mapping, common embedded subtree

extraction, and dependence analysis.

Generalizing identifiers Because clone detection uses text similarity, it

does not guarantee that type, method, and variable identifiers in one method

are mapped consistently in other methods. Lase collects all identifier map-

pings between the two methods’ clone pairs. If there are conflicting mappings,

Lase retains the context statements for the most frequent mappings and ex-

cludes any inconsistent statements from the context. If different concrete

identifiers map consistently with each other, Lase generalizes them to a fresh

76

abstract identifier and substitutes it for the identifiers in all context statements

and edit operations to create an abstract common context Cabs.

Extracting Common Subtree(s) with MCESE Because clone detec-

tion uses text matching, the AST structure of two nodes may not match, e.g.,

two matching nodes may have different parent nodes. To solve this problem,

Lase uses an off-the-shelf Maximum Common Embedded Subtree Extraction

(MCESE) algorithm [65] to find the largest common forest structure, as shown

in Equation 5.2. This algorithm traverses each AST in pre-order, indexes

nodes, and encodes the tree structure into a node sequence. By computing

the longest common subsequence between the two sequences and reconstruct-

ing trees from the subsequence, Lase finds the largest common embedded

subtree(s), Csub. It then excludes all the other statements from the context.

MCESE(s, t)

=



0 if s or t is empty

max


MCESE(head(s), head(t)) if equivalent(s[0], t[0])

+MCESE(tail(s), tail(t)) + 1,

MCESE(head(s)tail(s), t),

MCESE(s, head(t)tail(t)) otherwise

(5.2)

Consider mA’s and mB’s AST in Figure 5.6. Lase traverses mA’s AST in

pre-order, indexes nodes, and encodes the tree into node sequence s = [1, 2, -2,

3, -3, 4, -4, 5, 6, -6, 7, 8, 9, -9, -8, -7, -5, 10, -10, -1], where “−” marks finishing

the traversal of current node. Indexes X and −X mark the boundaries of the

subtree rooted at X’s node. Similarly, Lase creates sequence t = [1, 2, -2, 3,

4, -4, 5, -5, 6, 7, 8, -8, -7, -6, -3, 9, -9, -1] for mB. We then use Equation (5.2)

to find the longest common subsequence between them, which corresponds to

77

!"#!$%&'(")*+,-

.!"/&!0/-

"123450'67+-

8/9'!

*":"'!7("!;"+-
<%9="*"7'"#!+-

>?3450'-

&450'1*>?+-

8/9'!

*":"'!7("!@+-

!%"'-

92*&450'7-

96$0'!"'!A"+-

&450'7-

B8)&!"*,-

C
3
D6-3E@-

F-

G- H- I- J-

K- L-

M-

N-

FOFP-
'0)"-9')"#"6-9'--

8/"0/)"/-!/&:"/6&=-

EQ6!"C70B!78/9

'!='*":"'!RS+-

FP-

B8)&!"3450'6*,-

.!"/&!0/-

9!"/1("!345+-
<%9="*"7'"#!+-

>?3450'-

&450'1*>?+-

!%"'-

92*&450'7-

96A"8"')"'!+-

&450'7-

B8)&!"*,-

C
T
D6-3E@-

F-

G- H-

I- J-

L-

M-

8/9'!

*!%967!0E!/9'+-

N-

8/9'!

*!%967("!;"8+,-

K-

")9!-40'!"#!-

Figure 5.6: mA’s and mB’s AST

subsequence [1, 2, -2, 5, 6, -6, 7, 8, 9, -9, -8, -7, -5, -1] of s and [1, 2, -2, 3, 5,

-5, 6, 7, 8, -8, -7, -6, -3, -1] of t. The reconstructed trees out of these sequences

are colored with orange and circled with dash lines.

In the equation, head(s) returns the sequence of nodes sub-rooting at

s[0] (excluding s[0] and -s[0]), while tail(s) returns the subsequence following

-s[0]. For instance, given a sequence s = [1, 2, -2, -1, 3, -3], head(s) = [2, -2],

tail(s) = [3, -3]. The function equivalent(i, j) checks string equality between

the two nodes’ labels.

Refining Edit Context with Dependence Analysis The common text

extracted between any two methods may include irrelevant code, i.e., code

that does not have any control or data dependence relations with edited code.

Blindly including them as edit context puts unnecessary constraints on poten-

tial edit locations, causing false negatives during edit location search. Lase

thus further refines the extracted context based on control and data depen-

dences.

Lase performs control and data dependence analysis and then deter-

mines direct and transitive dependences between edit operations and context

78

statements in each changed method. For each edit operation, Lase unions

all the unchanged AST statements that are the source of dependences with

the edit as relevant context. Finally, it intersects the identified edit-relevant

context in each method to produce Cdep. If C = Csub

⋂
Cdep is not empty,

Lase sets the context of E to C, omitting unrelated statements. If Cdep is

empty, Lase sets C = Csub, since matching an empty context is not useful for

detecting edit locations. E and C define a partially abstract, context-aware

edit script, ∆P , where each edit operation in E is positioned with respect to

context C.

5.2.2 Phase II: Finding Edit Locations

Given an edit script ∆P , Lase searches for methods containing ∆P ’s

context C. Based on our assumption that methods containing similar edit

contexts are more likely to experience similar changes, Lase suggests them as

edit locations.

Because C is partially abstract, it contains both concrete and abstract

type, method, and variable identifiers. When Lase matches C with a method

m, it matches concrete identifiers exactly and abstract identifiers by identifier

type (T$, m$, or v$) or AST node type. For instance, Iterator in C only

matches Iterator in m. An abstract identifier, such as v$0, matches any

variable, while u$0 FieldAccessOrMethodInvocation only matches Fi-

eldAccess or MethodInvocation AST nodes. Lase reuses the MCESE

algorithm from Section 5.2.1.4 to find the maximum common context between

C and m, but redefines the equivalent(i, j) function to compare concrete iden-

tifiers based on string equality and abstract identifiers based on identifier type

or AST node type. If each node of the common context C matches a node in

79

method m, Lase records identifier mappings between them and then suggests

m as an edit location mf .

This algorithm for identifying edit locations is simple because the con-

text in the edit scripts precisely encodes the exact and flexible matching cri-

teria.

5.2.3 Phase III: Applying the Edit

To apply the edit to a suggested location mf , Lase must customize the

edit ∆P for mf . For this process, we slightly modify the edit customization

algorithm of Sydit. The customization algorithm replaces all abstract iden-

tifiers in ∆P with the corresponding concrete identifiers from mf based on the

identifier mappings established in Phase II. Lase retains all the concrete iden-

tifiers in ∆P . Similar to Sydit, Lase positions each edit operation concretely

in the target method in terms of AST node positions. The result is ∆f , which

fully specifies each edit operation as an AST modification with concrete labels

and node positions. Lase applies this customized, concrete edit script and

suggests the resulting version to developers.

5.3 Evaluation

This section evaluates Lase’s precision and recall when finding correct

edit locations and its accuracy when applying edits. We use two oracle test

suites. One test suite consists of multiple systematic edits that fix the same bug

in multiple commits, drawn from two open-source programs, Eclipse JDT and

Eclipse SWT. The other one contains 37 systematic edits from five representa-

tive medium or large Java open-source programs (jEdit, Eclipse JDT, Eclipse

plugins of compare, core.runtime, and debug). We explore Lase’s sen-

80

sitivity to (1) multiple examples vs. one example, (2) example choice, and

(3) strategies for identifier abstraction and context. Lase matches context

against all methods in the entire program reasonably quickly to search for

edit locations, taking 28 seconds on average.

5.3.1 Precision, recall, and accuracy with an oracle data set

To measure precision, recall, and accuracy, we use an oracle test suite

based on edits to Eclipse JDT and Eclipse SWT identified by work on supple-

mentary bug fixes [80, 84]. They find bug fixes spanning multiple commits to

understand characteristics of incomplete or incorrect bug fixes, using the bug

ID and clone detection. The work illustrates that developers miss locations

that they need to change when initially fixing a bug, further motivating our

work. We select systematic edits from these programs. If a bug is fixed more

than once and there exist clones of at least two lines in bug patches checked in

at different times, we manually examine these methods for systematic changes.

We find 2 systematic edits in Eclipse JDT and 22 systematic edits in Eclipse

SWT, as shown in Table 5.1, where the first two rows are from JDT, while

the rest are from SWT. The table groups the examples into two sets based

on whether Lase refines the context with program dependence analysis or

not (see Section 5.2.1.4). The first 17 edits have non-empty Cdep, and thus

C = Csub

⋂
Cdep. The last 7 edits have empty Cdep and thus C = Csub.

We use these patches as an oracle test suite for correct systematic edits

and test if Lase can produce the same results as the developers given the

first two fixes in each set of systematic fixes. Since the developers may not

be perfect, there may be incorrect edits or missing edits for which we cannot

control. Indeed, we confirmed with developers that Lase found 9 methods in

81

Table 5.1: Lase’s effectiveness on repetitive bug patches to Eclipse

Edit Location Operations
Index Bug (patches) mi Σ X P % R % A % E C AE %

1 73784 (1) 4 4 4 100 100 53 7 2 29
2 82429 (2) 16 13 12 92 75 81 9 9 100
3 114007 (3) 4 4 4 100 100 100 6 6 100
4 139329 (3) 6 2 2 100 33 74 6 3 50
5 142947 (6) 12 12 12 100 100 100 1 1 100
6 91937 (2) 3 3 3 100 100 95 5 3 60
7 103863 (5) 7 7 7 100 100 100 34 34 100

*8 129314 (3) 3 4 4 100 100 100 2 2 100
9 134091 (4) 4 4 4 100 100 73 24 24 100

10 139329 (3) 3 4 3 75 100 100 1 1 100
11 139329 (3) 3 3 3 100 100 88 12 12 100
12 142947 (6) 9 9 9 100 100 83 6 6 100
13 76182 (2) 6 6 6 100 100 90 6 6 100
14 77194 (3) 3 3 3 100 100 97 13 13 100
15 86079 (3) 3 3 3 100 100 100 25 25 100

*16 95409 (3) 7 9 9 100 100 78 4 4 100
17 97981 (2) 4 3 3 100 75 100 3 3 100

Average 6 5 5 98 93 89 10 9 91

18 74139 (3) 5 5 5 100 100 100 1 1 100
19 76391 (3) 6 3 3 100 50 100 3 3 100
20 89785 (3) 5 5 5 100 100 95 5 3 60
21 79107 (2) 3 2 2 100 67 92 4 4 100
22 86079 (4) 4 2 2 100 50 100 8 8 100
23 95116 (4) 5 4 4 100 80 100 3 3 100

*24 98198 (2) 9 15 15 100 100 95 3 3 100
Average 5 5 4 100 78 97 4 4 94

Total Average 6 5 5 99 89 91 8 7 92

* Lase suggests edits missed by developers.

82

3 fixes (starred in Table 5.1) and applied correct edits that they missed! When

Lase produces the same results as developers do in later patches, it indicates

that Lase will help programmers detect edit locations earlier, reduce errors

of omission, and make systematic edits.

We give Lase as input two random changed methods in the first patch.

If there is only one changed method in the first patch, we randomly select the

second one from the next patch. Lase generates an edit script from these

two examples, finds edit locations, customizes the edit for each location, and

applies the customized edit to suggest a new version. Table 5.1 shows the

results. The table lists the Bug identifier, the number of patches, and number of

methods mi that developers changed. For each Edit Location, we present Σ: the

number of methods that Lase identifies as change locations; X: the number of

methods correctly identified; precision P%: the percent of correctly identified

edit locations compared to all found locations; recall R%: the percentage of

correct locations out of all expected locations; and accuracy A%: the syntactic

similarity between the tool-suggested version and the expected version, only

for edited methods. The Operation columns present E: the number of edit

operations shared among repetitive fixes for the same bug, i.e., operations

we expect Lase to infer; C: the number of operations correctly inferred by

Lase; and AE: the percentage of operations correctly inferred over expected

operations.

Lase locates edit positions with respect to the oracle data set with

99% precision, 89% recall, and performs edits with 91% accuracy. We check

accuracy by visual inspection and compilation. Most of the inferred edits

are nontrivial and Lase handles these cases well. For instance, edit case 7

requires 34 operations. Lase correctly infers all 34 of them, correctly suggests

83

7 edit locations, and correctly applies customized edits with 100% accuracy. In

three edit cases (8, 16, and 24), Lase suggests 9 edits that developers missed.

Note that the number of methods correctly identified for each is larger than the

number of methods developers changed. We confirmed all these omission errors

with the Eclipse developers and mark the cases with an asterisk in Table 5.1.

These results indicate that Lase will help developers make systematic edits

consistently and help reduce errors of omission.

Lase cannot guarantee 100% edit application accuracy for four reasons.

First, the inferred edit is sometimes a subset of the exemplar edits and Lase

cannot suggest edits specific to a single location. For instance in edit case 2,

Lase infers all 9 edit operations shared among repetitive fixes for the same

bug, but it misses some specific edits and does not achieve 100% accuracy.

Second, abstract identifiers may not have corresponding concrete identifiers in

the edit location. For example, if an abstract identifier is only used by inserted

statements, Lase cannot decide how to concretize it. Third, based on string

similarity, Lase’s AST differencing algorithm cannot always infer edits oper-

ations correctly. For instance, if trailingComments != null is updated

to trailingPtr >= 0 in one method, and rComments != null is up-

dated to rPtr >=0 in another method, the inferred operation for the former

is an update operation while the inferred operations for the later include an in-

sert and a delete since the two strings are not similar enough for Lase to infer

an update operation. When Lase compares an update operation to the insert

and delete operations, the edit types do not match and it does not extract a

common edit operation. Fourth, Lase’s LCEOS algorithm cannot always find

the best longest common edit operation subsequence between two sequences

because it does not enumerate or compare all possible longest common sub-

84

Table 5.2: Lase’s effectiveness when learning from multiple examples

of
P % R % A %exemplars

Index 4

2 100 51 72
3 100 82 67
4 100 96 67
5 100 100 67

Index 5

2 100 80 100
3 100 84 100
4 100 91 100

Index 7

2 100 83 100
3 100 84 100
4 100 88 100
5 100 92 100
6 100 96 100

Index 12

2 78 90 85
3 49 98 83
4 31 100 82

Index 19

2 100 66 100
3 100 94 100
4 100 100 100
5 100 100 100

Index 23
2 100 72 100
3 100 88 100
4 100 96 100

sequences to choose the best one. Although each of these problems occurred,

none occurs frequently.

The number of exemplar edits influences effectiveness. To determine

how sensitive Lase is to the number and choice of exemplar edits, we randomly

pick 6 cases in the oracle data set and enumerate subsets of exemplar edits,

e.g., all pairs of two exemplar methods. We evaluate the precision, recall,

and accuracy for each choice of exemplars and calculate the average for each

cardinality to determine how sensitive Lase is to the choice and number of

exemplar edits.

Table 5.2 shows that precision P does not change as a function of the

number of exemplar edits for these examples, except for case 12, where two

exemplars are the most accurate. Recall R is more sensitive to the choice and

85

number of exemplar edits, increasing as a function of exemplars. The more

exemplar edits provided, the less common context is likely to be shared among

them, and the easier it is to match. However, the context will still be specific,

resulting in high precision. Precision can go down when more diverse examples

are given, but this case (case 12) only occurred once in these tests.

In theory, Accuracy A can vary inconsistently with the number of ex-

emplar edits, because it strictly depends on the similarity between edits. For

instance, when exemplar edits are diverse, Lase extracts fewer common edit

operations, which lowers accuracy. When exemplar edits are similar, adding

exemplar methods may not decrease the number of common edit operations,

but may induce more identifier abstraction and result in a more flexible edit

script, which increases accuracy.

5.3.2 Sensitivity of Edit Scripts

This section explores how sensitive the results are to edit script fea-

tures. We first compare learning from multiple examples to learning from a

single example. We use Lase to generate edit scripts from example pairs and

Sydit to generate edit scripts from single examples. Sydit does not find

edit locations but relies on developers to choose locations, so we use Lase to

find locations for Sydit’s scripts and apply edits. The experiments show that

using multiple examples finds locations with higher precision and recall than

using one example, and motivates using two or more examples.

We measure precision and recall of edit location suggestion and accu-

racy of edit application on the Sydit test suite. This suite contains 56 pairs of

exemplar changed methods. We remove the simple cases, e.g., edits on initially

empty methods or only one statement, resulting in 37 pairs. For each pair,

86

we extend the oracle set of exemplar edits as follows. We first apply Lase to

infer the systematic edit demonstrated by both methods and search for edit

locations in the program’s original version. Then we manually examine all

found locations. If a location is indeed edited similarly in the next version but

not in the known pairs, we include it in the oracle set.

Table 5.3 shows the results. On average, learning from one example

has lower precision and recall when looking for edit locations as compared to

learning from two examples, but has higher accuracy when suggesting edits

for correctly identified locations. Several reasons explain these results.

• Inferring a common context from two examples results in a mix of con-

crete and abstract identifiers. Searching with a partially abstract context

is more precise than a fully abstract context, which matches more meth-

ods. The partially abstract context recalls more than a concrete context

does, which matches fewer methods.

• Using two examples reduces the edit to a common subset, so the derived

edit is likely to be less accurate for any one target location, since it may

lack some edit operations.

• Lase includes all nodes transitively depended on by any edited node

in the inferred context, deriving a more precise context as compared to

Sydit’s context, which is based on direct dependence relations.

• Lase matches context differently than Sydit.

Table 5.4 shows the average sensitivity of Lase to the abstraction and context

algorithms by comparing their average precision, recall, and accuracy on all

37 systematic edits.

87

Table 5.3: Learning from one example versus multiple examples

ID mi
Two Examples One Example

Σ X P % R % A % Σ X P % R % A %

1 5 6 5 83 100 100 10 5 50 100 100
2 2 3 2 67 100 80 7 2 29 100 100
3 5 7 5 71 100 100 277 1 0 25 100
4 2 3 2 67 100 96 596 2 0 100 97
5 5 6 5 83 100 100 5 3 60 60 100
6 2 73 2 3 100 100 3354 2 0 100 100

Average 4 18 4 62 100 94 708 3 23 81 100

7 2 2 2 100 100 92 24 2 8 100 83
8 2 2 2 100 100 100 76 2 3 100 100
9 3 3 3 100 100 100 4 2 50 67 100

10 2 2 2 100 100 100 8 2 25 100 100
11 2 2 2 100 100 100 3 2 67 100 100
12 2 2 2 100 100 100 2 1 50 50 100
13 2 2 2 100 100 96 5 1 20 50 100
14 2 2 2 100 100 99 3 2 67 100 100

Average 2 2 2 100 100 98 16 2 36 83 98

15 2 2 2 100 100 100 2 2 100 100 100
16 2 2 2 100 100 100 2 2 100 100 100
17 2 2 2 100 100 100 1 1 100 50 100
18 2 2 2 100 100 96 1 1 100 50 100
19 2 2 2 100 100 100 2 2 100 100 100
20 2 2 2 100 100 100 2 2 100 100 100
21 2 2 2 100 100 100 2 2 100 100 100
22 2 2 2 100 100 75 1 1 100 50 100
23 4 4 4 100 100 100 4 4 100 100 100
24 2 2 2 100 100 100 2 2 100 100 100
25 2 2 2 100 100 86 1 1 100 50 100
26 2 2 2 100 100 87 1 1 100 50 100
27 5 5 5 100 100 100 5 5 100 100 100
28 2 2 2 100 100 100 1 1 100 50 100
29 2 2 2 100 100 74 2 2 100 100 99
30 2 2 2 100 100 88 1 1 100 50 100
31 2 2 2 100 100 100 2 2 100 100 100
32 2 2 2 100 100 100 2 2 100 100 100
33 2 2 2 100 100 84 1 1 100 50 100
34 6 6 6 100 100 100 6 6 100 100 100
35 6 6 6 100 100 100 6 6 100 100 100
36 6 6 6 100 100 100 6 6 100 100 100
37 6 6 6 100 100 100 6 6 100 100 100

Average 3 3 3 100 100 95 3 3 100 83 100

88

Table 5.4: Comparison between Lase and its variants

P % R % A %

Lase 94 100 96
Lase AbsAll 75 100 96
Lase SigCon 98 60 100
Lase SigAbs 78 88 97
Lase Sydit 74 82 99
Lase DirDep 94 100 96

Lase AbsAll differs from Lase by abstracting all identifiers instead of

only abstracting identifiers when necessary. Therefore, Lase AbsAll’s inferred

context is more general than context inferred by Lase and it matches more

methods, causing more false positives and lower precision.

Lase SigCon learns from a single example and uses all concrete iden-

tifiers which makes Lase SigCon’s inferred edit very specific to the example.

Consequently, Lase SigCon’s derived context is too specific to find all edit loca-

tions. Its average recall is just 60% with many false negatives. In many cases,

Lase SigCon’s context can only find the method from which it is inferred and

cannot detect any other edit location. In contrast, Lase has 100% recall on

these examples.

Lase SigAbs learns from a single example and abstracts all identifiers.

The resulting context is too general and it suggests edit locations with lower

precision and higher recall, but applies edits with lower accuracy than context

from LaseSigCon.

Lase Sydit differs from Lase by using Sydit’s context matching algo-

rithm to search for locations instead of MCESE. Sydit’s algorithm assumes

that developers specified the target method and it matches. The comparison

shows that Lase Sydit results in lower precision and recall, but higher accuracy.

89

MCESE is much better at identifying the correct locations.

Lase DirDep uses direct dependence relations to include unchanged

nodes for edit context, instead of using the transitive closure of dependence

relations. In many cases, this algorithm produces the same context as Lase.

Even when Lase DirDep produces smaller context, excluding the extra depen-

dences in edit context does not affect precision, recall, or accuracy. This result

suggests that the direct control and data dependences are often sufficient to

position the edit relative to all the dependences.

5.4 Summary

Lase helps developers perform systematic editing in multiples loca-

tions efficiently and correctly. Similar to Sydit, Lase does not guarantee the

correctness of transformed code partially because (1) some systematic edits

are inadequate to produce correct programs, and (2) Lase does not synthe-

size identifiers to concretize newly introduced identifiers. The systematic edit

Lase produces for multiple similarly changed methods captures the shared

commonality of edit and relevant context. As a result, the common edit may

contain a subset of edit operations needed for all methods, missing edits for

individual locations. The common relevant context may serve as a necessary

condition instead of a sufficient condition for edit application, and thus re-

quires extra programmer effort to make the generated program correct. Lase

focuses on how to infer, locate, and apply systematic edits based on multi-

ple exemplar edits. It does not explore how to check the correctness of a

systematically edited program or rectify an incorrect program.

When making similar edits to multiple locations, programmers may

need help in both finding edit locations and applying the edits. However,

90

providing a single exemplar edit is not enough for any tool to assist in both

tasks because one exemplar edit only tells what is changed, without indicating

which parts to generalize and how to generalize them. Programmers need

to provide at least two examples to demonstrate the generalization, which is

critical to finding edit locations. Although developers are required to provide

more than one exemplar edit for Lase, they benefit by receiving more accurate

suggestions on edit locations and edit applications.

Systematic edits on multiple locations may indicate a good opportunity

for clone removal refactoring so that duplicated code is removed and redundant

code changes are eliminated. Blindly automating systematic edits without the

awareness of potential refactoring opportunities can produce code clones, and

compromise software maintainability, readability, and correctness. The next

chapter explores the relationship between systematic editing and refactoring.

91

Chapter 6

Refactoring Systematically Edited Code

When developers make similar changes to multiple locations, system-

atic editing tools automate the process to reduce the programming burden.

On the other hand, similar changes may indicate that developers should in-

stead refactor code to eliminate redundancy. Automating the editing process

may encourage developers to duplicate code or maintain duplicated code. If

programmers should always refractor, then systematic editing tools may be

encouraging poor practices. To examine whether automated refactoring can

obviate systematic edits, we design and implement a new automated refactor-

ing approach Rase, which takes as input two or more methods with systematic

edits to scope target code, and then performs clone removal.

Rase combines extract method (pg. 110 in [28]), add parameter (pg.

275 in [28]), introduce exit label, parameterize type, form template method (pg.

345 in [28]), and introduce return object refactorings to extract and remove

similar code. It creates an abstract refactoring template that abstracts differ-

ences in identifiers of types, methods, variables, and expressions from multiple

locations. Based on this template, as well as control and data flow, Rase cre-

ates new types and methods; inserts and assigns return objects and exit labels;

adds parameters to the new extracted method; and introduces customized calls

to it.

To our knowledge, Rase implements state-of-the-art refactoring with

92

respect to its capability to factor and generalize code. Existing clone removal

refactoring tools [7, 41, 46, 57, 89] only implement some, but not all of the refac-

toring techniques in Rase. Furthermore, prior work that does study clone

removal [5, 11, 32, 48, 52] did not actually construct an automated refactoring

tool to investigate the refactoring of systematically changed code. The lack of

automation in prior work introduces the possibility of subjectivity bias. By au-

tomating refactoring, our study substantially improves on prior methodology

for determining the feasibility of refactoring.

We evaluate Rase on 56 real-world systematically edited method pairs

(n=2) from prior work [70, 71] and 30 systematically edited method groups

(n≥3) drawn from two open source projects. Rase automatically refactors

30 of 56 method pairs (54%) and 20 of 30 (67%) method groups when scoped

with systematic edits. Rase applies sophisticated refactorings with all six

techniques and in multiple different combinations of up to four techniques

at once. On average, Rase automatically applied 41 lines of edits in our

examples, ranging from 6 to 285, with modest code size increases of up to 18

lines of code, and reductions of up to 149 lines. Not surprisingly, Rase is most

effective at reducing code size for multiple methods. Manual transformation

to attain the same results would be as cumbersome as inserting or deleting

285 and 211 lines of code, which reduces the resulting code by 47 and 149

lines—all of which Rase automates for developers. These results add to the

evidence that removing common code with variations is challenging in practice

and needs automated tool support.

We compare Rase scoped by systematic edits to Rase scoped by meth-

ods: scoping with systematic edits improves the feasibility of automatic clone

removal compared to method-level scoping: Rase scoped by systematic edits

93

for method pairs refactors 54% compared to 34% for method-level only refac-

toring, and for method groups, increases opportunities for refactoring to 67%

compared to 30% for method-level only refactoring. Systematic edits thus are

a good clue for refactoring, rather than being obviated by method refactor-

ing. However, Rase cannot automate refactoring in 46% of pairs and 33% of

groups mainly because of language limitations, semantic constraints, and lack

of common code. We manually check software version history after systematic

edits and find that in many cases, systematically edited methods are unrefac-

tored. They either co-evolve, diverge, or stay unchanged. Our tool evaluation

and repository observation indicate that developers need to perform both sys-

tematic editing and refactoring during software evolution, and that automated

tools can help them for both tasks.

6.1 Motivating Example

This section overviews our approach with an example based on revi-

sions to org.eclipse.compare.CompareEditorInput on 2006-11-20

and 2006-12-18. In Figure 6.1, the two methods perform very similar in-

put processing and experience similar edits: adding a variable declaration

and updating statements. However, the changes involve using different type,

method, variable names: IActionBars vs. ISLocator; getActionBars

vs. getServiceLocator; findActionBars vs. findSite; offset vs.

offset2; and actionBars vs. sLocator.

Given two changed methods, Rase invokes Lase to create an ab-

stract edit script, as shown in Figure 6.2. With the edit script, Rase iden-

tifies edited statements related to the systematic changes in the new version

of each method. For Figure 6.1, Rase identifies lines 9-10 and 14 in the

94

1. public class CompareEditorInput {
2. private ICompareContainer fContainer;
3. private boolean fContainerProvided;
4. private Splitter fComposite;
5. public IActionBars getActionBars (int offset) {
6. if (offset == -1)
7. return null;
8. - if (fContainer == null) {
9. + IActionBars actionBars = fContainer.getActionBars();
10.+ if (actionBars==null&&offset!=0&&!fContainerProvided){
11. return Utilities.findActionBars(fComposite, offset);
12. }
13.- return fContainer.getActionBars();
14.+ return actionBars;
15. }
16. public ISLocator getServiceLocator (int offset2) {
17. if (offset2 > fComposite.getSize())
18. return null;
19.- if (fContainer == null) {
20.+ ISLocator sLocator = fContainer.getServiceLocator();
21.+ if(sLocator == null&&offset2!=0&&!fContainerProvided){
22. return Utilities.findSite(fComposite, offset2);
23. }
24.- return fContainer.getServiceLocator();
25.+ return sLocator;
26. }
27.}

Figure 6.1: An example of systematic changes based on revisions to org.-
eclipse.compare.CompareEditorInput on 2006-11-20 and 2006-12-18

getActionBarsmethod and lines 20-21 and 25 in the getServiceLocator.

Rase uses the ranges of edits to scope its automated factorization and general-

ization, extracting the maximum common contiguous code which encompasses

all systematically edited statements. If similar edits are surrounded by cloned

statements, Rase expands the refactoring scope to the entire method. In this

way, we remove cloned methods by keeping only one copy of the common code.

If similar edits are not surrounded by cloned statements, Rase starts from the

common edited code, expands refactoring scope, and extracts as much com-

monality as it can. In Figure 6.1, lines 9-12, 14, 20-23, and 25 are marked

for factorization and generalization. Note that Rase includes the unchanged

95

1. … …method_declaration(… …) {!
2. … …!
3. INSERT: T$0 v$0 = fContainer.m$0(); !
4. UPDATE: if (fContainer == null) {!!
5. TO: if (v$0==null && v$1!=0 && !fContainerProvided){!
6. … …!
7. } !
8. UPDATE: return fContainer.m$0();! !
9. TO: return v$0;!
10.}

Figure 6.2: Abstract edit script inferred by Lase

lines 11-12, 22-23 in order to extract syntactically valid if statements and

statement groups.

Next, Rase creates an abstract refactoring template for extracted code

by establishing matches between statements, expressions, and identifiers among

multiple methods. This step matches statements based on their AST types,

such as ReturnStatement or ExpressionStatement. It then matches

expressions and identifiers used in matched statements. Rase uses the orig-

inal code as is, if the matched statements are identical (e.g., fContainer

vs. fContainer), and otherwise abstracts expressions or identifiers in the

matched statements (e.g., offset vs. offset2).

1. T$0 v$0 = fContainer.m$0();
2. if (v$0==null && v$1!=0 && !fContainerProvided) {
3. return Utilities.m$1(fComposite, v$1);
4. }
5. return v$0;

Figure 6.3: Abstract refactoring template of common code created by Rase

Figure 6.3 shows the resulting abstract template. Based on the tem-

plate, Rase determines the extracted method’s arguments and return vari-

able, and performs additional refactoring transformations. Figure 6.4 shows

96

Newly created classes and methods through generalization

1. public abstract class TemplateClass<T0> {
2. public T0 extractMethod(int v1, Splitter fComposite,
3. ICompareContainer fContainer, boolean fContainerProvided){
4. T0 v0 = m0(fContainer);
5. if (v0 == null && v1 != 0 && !fContainerProvided) {
6. return m1(fComposite, v1);
7. }
8. return v0;
9. }
10. public abstract T0 m0(ICompareContainer fContainer);
11. public abstract T0 m1(Splitter fComposite, int v1);
12.}
13.public class ConcreteTemplateClass0 extends
14. TemplateClass<IActionBars> {
15. public IActionBars m0(ICompareContainer fContainer) {
16. return fContainer.getActionBars();
17. }
18. public IActionBars m1(Splitter fComposite, int v1) {
19. return Utilities.findActionBars(fComposite, v1);
20. }
21.}
22.public class ConcreteClass1 extends TemplateClass<ISLocator> {
23. public ISLocator m0(ICompareContainer fContainer) {
24. return fContainer.getServiceLocator();
25. }
26. public ISLocator m1(Splitter fComposite, int v1) {
27. return Utilities.findSite(fComposite, v1);
28. }
29.}

Modifications to the original methods

1. public class CompareEditorInput {
2. private ICompareContainer fContainer;
3. private boolean fContainerProvided;
4. private Splitter fComposite;
5. public IActionBars getActionBars (int offset) {
6. return new ConcreteTemplateClass0().extractMethod(offset,
7. fComposite, fContainer, fContainerProvided);
8. }
9. public ISLocator getServiceLocator (int offset2) {
10. return new ConcreteTemplateClass1().extractMethod(offset2,
11. fComposite, fContainer, fContainerProvided);
12. }
13.}

Figure 6.4: Code refactoring based on inferred systematic program transfor-
mation

97

the refactored version for our example. Rase performs a parameterize type

refactoring because the type variation T$0 must be handled to work correctly

for the different type variables. The method variations m$0 and m$1 require

a form template method refactoring to invoke the correct methods depending

on the callers. The variation in the use of a variable name v$1 requires the

corresponding variable to be passed as a parameter to the extracted method.

The variable wildcard v$0 does not need such processing, because the vari-

able is locally defined and used, and thus invisible to the extracted method’s

callers. Rase performs a static analysis to differentiate these cases.

6.2 Approach

Rase takes systematic changes or methods as input and extracts com-

mon code among the multiple methods. It works in two phases. Phase 1

determines the scope of refactoring for systematic edits or methods, analyzes

variations, and outputs an abstract refactoring template. This template en-

codes the scope and content of code to extract and serves as a basis for deter-

mining concrete transformations. Phase 2 constructs an executable refactoring

plan by handling type, method, variable, and expression variations and by an-

alyzing control flow, data flow, and class hierarchy of original methods. Rase

currently uses a combination of six different refactoring operations.

6.2.1 Abstract Template Creation

We use Lase to create an abstract edit script that describes the input

systematic changes [70]. Lase represents the difference between before- and

after- versions with AST node inserts, deletes, updates, and moves. Lase

identifies the largest common subsequence edits and then extracts the common

98

context with control and data dependence analysis. It produces an abstract

edit script, which includes both a code pattern containing abstract syntax

subtrees and a list of tree edit operations to apply. In the abstract edit script,

Lase uses the original concrete code when the different methods use the same

concrete identifiers. When they use different identifiers, Lase abstracts the

identifiers. Figure 6.2 shows an exemplar edit script.

Rase takes the output of Lase as an input and marks all edited state-

ments. It marks the maximum common contiguous region of AST statements

that enclose all edits. Rase requires

• The AST statements are contiguous.

• The AST statements either form a subtree or contiguous subtrees under

the same parent node, such that there is only one entry to the region

and the code snippet can be extracted as a method.

Starting with all edited statements in the new version, Rase first iden-

tifies all subtrees rooted at the edited statements. It then merges subtrees

until there is a single subtree left or a sequence of adjacent subtrees under the

same parent node. The merging algorithm picks two subtrees, T1 and T2, with

the longest paths from the tree root, identifies the lowest common ancestor R

between them, and substitutes R’s subtree for T1 and T2 in the identified sub-

tree set. Rase may include some unchanged code into the refactoring scope

to extract syntactically valid statements. If there are no edited or added state-

ments in the new methods, only deleted code, then we do not proceed with

code extraction.

Rase then tries to create an abstract template to guide further refac-

toring. To successfully create such a template, Rase requires that (A) the

99

number of marked statements in the target methods is the same, and (B)

the statements are syntactically similar between methods, although the state-

ments may differ in their use of types, method invocations, variables, and

expressions. Requirement (A) guarantees that the template reflects the code

skeleton of marked statements in every method. Requirement (B) guarantees

that we extract syntactically similar code.

Rase abstracts away the use of different type names, method invoca-

tions, variable names, and expressions by using wildcards T$, m$, v$ and u$

respectively. It attempts to establish mapping between each concrete identifier

and the abstract version, making sure all methods consistently use and define

these identifiers. If not, Rase does not refactor them. This analysis checks

for semantic equivalence between the methods. Rase then uses the resulting

abstract template, control and data flow analysis, and identifier maps to

determine how to factorize and generalize the code, as described in the next

section.

6.2.2 Clone Removal Refactoring

Rase next plans concrete refactoring transformations and then trans-

forms code accordingly. Rase implements the following six types of refactoring

operations:

• extract method extracts common code into a method.

• add parameter handles variations in different uses of variables and

expressions.

• parameterize type handles variations in used types.

• form template method handles variations in method calls.

100

• introduce return object handles multiple output variables of extracted

code.

• introduce exit label preserves control flow from the original code

Type Variations Given a type wildcard (T$) in the abstract template,

Rase applies a parameterize type refactoring. It declares a generic type

for the newly created class and modifies each original location to call the

extracted method with type parameters. We define this new term because

Fowler’s catalog does not include it and current refactoring engines, such as

Eclipse, do not support it. Figure 6.5 shows an example. When the target

code differs in terms of type identifiers, Rase adds explicit type parameters

to the new extracted method. The applicability of this refactoring is affected

by language support for generic types. In our implementation for Java, the

refactoring is not applicable when any parameterized type creates an instance

by calling its constructors (e.g., new T()), to perform an instanceof check

(e.g., v instanceof T) or gets the type literal (e.g., T.class), because

Java does not support these cases. Even if developers may handle such cases

manually with smart tricks, the resulting refactored code would have poor

readability.

Method Call Variations Given a method wildcard (m$) in the abstract

template, Rase applies the form template method (pg. 345 in [28]) refac-

toring. It creates uniform APIs that encapsulate the variations and changes in

the extracted method to invoke these APIs instead. Figure 6.6 shows an ex-

ample. Rase declares an abstract class which contains the extracted method

and a sequence of abstract methods. Each abstract method corresponds to a

101

public void mA(IC c){ !
 …!
 Insert e = getEdit(c);!
 …!
}!
public void mB(RC c){!
 …!
 Remove e = getEdit(c);!
 …!
}

Code to extract

Code to extract

class C<T0, T1>{!
 public void extractMethod(!
 T1 c){!
 …!
 T0 e = getEdit(c);!
 …!
 }!
}!
public void mA(IC c){!
 new C<Insert,IC>()!
 .extractMethod(c);!
}!
public void mB(RC c){!
 new C<Remove, RC>!
 .extractMethod(c);!
}

T$1 e = getEdit(c);

Generalize

Figure 6.5: Parameterize type refactoring

public void add(){ !
 …!
 input.addCompareInput();!
 …!
}!
public void remove(){!
 …!
 input.removeCompareInput();!
 …!
}

abstract class Template{!
 public void extractMethod(!
 …){!
 …!
 m(input);!
 …!
 }!
 public abstract void m(!
 Input input);!
}!
class Add extends Template{!
 public void m(Input input){!
 input.addCompareInput();!
 }  
}!
class Rem extends Template{!
 public void m(Input input){!
 input.removeCompareInput();  
 }!
}!
public void add(){!
 new Add().extractMethod(…);!
}!
public void remove(){!
 new Rem().extractMethod(…);!

Code to extract

Code to extract

input.m$1();

Generalize

Figure 6.6: Form template method refactoring

102

method wildcard. For each original location, the refactoring declares a con-

crete class extending the abstract class so that all abstract methods are im-

plemented to call the correct corresponding concrete methods. Each original

location is modified to invoke the extracted method with the corresponding

concrete class.

When a method wildcard represents a non-static method and is invoked

via an object (e.g., input.m$1()), the corresponding method is declared

to place the receiver object (e.g., input) as an argument (e.g., m1(Input

input)). Then the actual method (e.g., input.addCompareInput() or

input.removeCompareInput()) is invoked correctly inside each newly

defined method. If any of the variant methods does not have a modifier

public in its method declaration, the refactoring is not applied, because

the method is not accessible by newly defined methods in the template class. If

variant methods have different numbers of parameters, e.g., foo(int offset)

vs. bar(Object obj, boolean flag), the refactoring is not applied.

Although it is possible to create a long method signature by merging different

input signatures, we believe the resulting code is ugly and too hard to read.

Variable and Expression Variations Given variations in variable names

and expressions, Rase uses an add parameter (pg. 275 in [28]) refactoring.

We use data dependence analysis to identify variables which have local uses

but no local definitions in the extracted code. We consider variable wildcards

(v$) as candidates for input arguments of the extracted method. For each

variable wildcard, we check whether it is purely local to the extracted code,

meaning that it is declared, defined, and used only in the extracted code. If

so, there is no need to promote the variable as an input parameter, since it is

103

invisible to caller methods. Assigning it a concrete identifier is enough. For

example, Rase promotes the variable v$1 shown in the template in Figure 6.3

to an input parameter but does not promote the variable v$0 because it is

defined and used only locally.

We consider expression wildcards (u$) as candidates for input argu-

ments of the extracted method. Since the wildcards map to different AST node

type expressions in different methods, each caller can pass appropriate expres-

sions as arguments. For instance, if u$ is mapped to getConfiguration()

in one method, but is mapped to fCompareEditorInput.getConfigura-

tion() in another method, Rase compares the types of both expressions.

If the types are the same, it declares an input parameter with the common

type. If the types are different, Rase records the type mapping and later

applies parameterize type refactoring to accommodate the variation. Com-

pared with prior work [7, 46], which solves expression variations by declaring

new methods, our approach creates cleaner code by avoiding extra method

declarations and invocations.

Return Value We use data dependence analysis to check which variables

have local definitions and external uses. We convert them to output variables

of the extracted method. When there is more than one such variable, we

apply introduce return object refactoring. As shown in Figure 6.7, we

encapsulate all return values into one object and insert code at each call site

to read appropriate fields of the returned object. Fowler’s catalog does not

include this refactoring and current refactoring engines do not support it.

104

public void foo(){ !
 …!
 String str1 = …;!
 …!
 String str2 = …;!
 System.out.println(str1 + str2);!
}

Code to extract

class RetObj{!
 public String str1;!
 public String str2;!
 public RetObj(String str1, String
str2){!
 this.str1 = str1;!
 this.str2 = str2;!
 }!
}!
public RetObj extractMethod(…){!
 …!
 return new RetObj(str1, str2);!
}!
public void foo(){!
 RetObj retObj = extractMethod(…);!
 String str1 = retObj.str1;!
 String str2 = retObj.str2;!
 System.out.println(str1 + str2);!

Figure 6.7: Introduce return object refactoring

public void bar(){ !
 while(!stack.isEmpty()){!
 … !
 elem = stack.pop();!
 if(elem == null)!
 continue;!
 if(elem.equals(known))!
 break;!
 push(elem.next());!
 }!
}

Code to extract

enum Label{CONTINUE, BREAK, FALLTHRU};!
public Label extractMethod(…){!
 …!
 elem = stack.pop();!
 if(elem == null)!
 return Label.CONTINUE;!
 if(elem.equals(known))!
 return Label.BREAK;!
 return Label.FALLTHRU;!
}!

public void bar(){!
 while(!stack.isEmpty()){!
 Flag flag = extractMethod(…);!
 if(flag.equals(Label.CONTINUE))!
 continue;!
 else if(flag.equals(Label.BREAK))!
 break;!
 push(elem.next());!
 }!
}

Figure 6.8: Introduce exit label refactoring

105

Control Flow We use control flow analysis to determine the statements

that exit the code in addition to the fall-through exit in the extracted code,

such as a return, break, or continue. These non-local jump nodes either

terminate execution or jump execution from one location to another. Naively

putting them in the extracted method may cause compiler errors or incorrect

control flow. Rase applies introduce exit label refactoring to correctly

implement non-local jumps. It replaces non-local jumps with exit label return

statements and modifies each original location to interpret the returned labels.

Fowler’s catalog does not include this refactoring nor is it implemented in

current refactoring engines, such as Eclipse. We borrow the approach from

Komondoor and Horwitz’s prior work on automated procedure extraction [55].

Figure 6.8 shows an example with multiple exits. Rase replaces a non-local

jump statement with a return statement to terminate the execution of the

current method and adds a return label indicating the exit type. Rase inserts

code at each call site to handle non-local jumps correctly.

Placing Extracted Code We use class hierarchy analysis to discover the

relation between classes declaring the originally edited methods. The relation-

ships help Rase decide where to put the extracted method, and which input

parameters or output variables to add. For instance, if the systematically

changed methods are in the same class and when no method or type wildcards

is in the abstract template, Rase places the extracted method in the same

class. If the methods are in sibling classes extending the same super class,

Rase puts the extracted method into their common super class. If the meth-

ods are in classes which do not have any type hierarchy relation, Rase must

put the extracted method into a newly declared class. All fields that the ex-

tracted code reads from or writes to should be passed as input parameters and

106

output variables separately, since they may not be accessible to the extracted

method defined by the newly defined class. Rase checks that all methods

invoked by the extracted method are declared as public for correctness.

6.3 Evaluation

This section evaluates Rase with systematic editing tasks. It explores if

automated refactoring eliminates the need for systematic editing; if systematic

editing guides refactoring better or worse than methods alone. It also takes a

first look at whether automated refactoring is desirable when it is feasible.

Our data set consists of 56 similarly changed method pairs and 30

similarly changed method groups. These real-world systematic editing tasks

are drawn from version histories of JEdit, Eclipse compare, jdt.core,

core.runtime, debug, JFreeChart and elasticsearch. The method

pairs are drawn from prior evaluation of systematic editing [70, 71]. Each

method pair have at least 40% syntactic similarity and share at least one

common AST edit operation. Each method group contains at least three

similarly changed methods.

We use four variants of refactoring for our evaluation. The default Rase

refactors as much code as possible given a systematic edit. Rasemin chooses

the smallest amount of code that includes the systematic edit. RaseMA refac-

tors the entire method after the edit and RaseMB refactors the entire method

before the edit. We apply Rase and its variants to the test suites. For each

refactoring task, we report if refactoring is automated. If so, we report the

applied refactoring types, the number of edit operations, and the code size

change. Table 6.1 and Table 6.2 present the results.

107

In the tables, each method pair has a unique identifier ID. The refac-

toring characterization includes edit operations (edits), refactoring types, and

resulting code size change (∆code). Rase applies the following six refactoring

types: E: extract method, R: introduce return object, L: introduce exit label,

T: parameterize type, F: form template method, and A: add parameter. N/A

means Rase could not refactor. We omit pairs with no refactoring in any

configuration. In ∆ code size column, a positive number means refactoring

increases the code size and a negative number means code size decreases.

6.3.1 Method Pairs

By extracting the maximum common code enclosing systematic edits,

Rase (columns 2-4 on the left) automatically refactors 30 out of 56 cases. By

comparing Rase against RaseMA (columns 5-7 in the middle) and RaseMB

(columns 8-10 on the right), we find scoping refactoring based on systematic

edits increases refactoring opportunities. RaseMA automates refactoring for

only 19 cases, all of which are refactored by Rase. For these cases, RaseMA

refactors the entire method because the changed methods are clones of each

other. Rase refactors 11 more cases than RaseMA by limiting refactoring

scope with systematic edits, when the methods are less similar to each other.

RaseMB refactors 18 cases, all of which are also refactored by Rase

and RaseMA. In these cases, the old versions of the method pair are clones

and experience similar changes, producing clones afterward. Case 2 is not

handled by RaseMB, because the original version has no statements in the

method and thus no clones can be extracted. These comparisons imply that

systematic edits better scope refactoring and increase refactoring opportunities

compared to applying clone removal to the entire methods either before or after

108

Table 6.1: Method pairs: Clone removal refactorings

Rase Rase min Rase MA Rase MB

ID edits types ∆code edits types ∆code edits types ∆code edits types ∆code

2 15 E, A -1 15 E, A -1 15 E, A -1 N/A
4 6 E, A 2 6 E, A 2 6 E, A 2 6 E 2
6 14 E, F 10 14 E, F 10 14 E, F 10 31 E, F 11
9 77 E, R -7 61 E -15 N/A N/A
10 24 E -4 20 E, L 8 24 E -4 15 E -1
11 20 E, F 8 20 E, F 8 20 E, F 8 14 E, F 10
12 31 E, F 11 31 E, F 11 31 E, F 11 14 E, F 10
13 38 E, F 2 32 E, F 4 38 E, F 2 29 E, F 5
18 42 E -10 7 E 3 N/A N/A
19 61 E -15 21 E, R 13 61 E -15 61 E -15
22 285 E, F -47 285 E, F -47 285 E, F -47 288 E, F -48
29 56 E, L, R 4 45 E, L, R 9 N/A N/A
32 9 E, A 1 6 E 2 N/A N/A
34 24 E, A -4 24 E, A -4 N/A N/A
35 9 E 1 9 E 1 N/A N/A
36 36 E, A -8 36 E, A -8 N/A N/A
38 16 E 0 12 E 0 N/A N/A
40 20 E, L 8 20 E, L 8 N/A N/A
45 6 E 2 6 E 2 N/A N/A
46 6 E, A 2 6 E, A 2 6 E, A 2 6 E 2
47 20 E, L, R 8 20 E, L, R 8 N/A N/A
48 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
49 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
50 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
51 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
52 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13 25 E, F, T 13
53 31 E, F 11 31 E, F 11 31 E, F 11 28 E, F 12
54 31 E, F 11 31 E, F 11 31 E, F 11 28 E, F 12
55 31 E, F 11 31 E, F 11 31 E, F 11 28 E, F 12
56 31 E, F 11 31 E, F 11 31 E, F 11 28 E, F 12

Average 35.5 2.4 31.5 4.1 39.4 4.0 38.9 4.9

Total automated 30 30 19 18

Cases IDs from Meng et al. Rase by default includes as much code as possible. Rase min chooses the
smallest scope that includes the systematic edit. Rase MA refactors the entire method after the edit and
Rase MB refactors the entire method before the edit. The edits column is AST statement edit operations
for refactoring. Refactoring types are: E: extract method, R: introduce return object, L: introduce exit
label, T: parameterize type, F: form template method, and A: add parameter. Rase uses all the refactoring
types in many combinations. Both tables show Rase automates refactoring in many cases: 30 out of 56
pairs, and 20 out of 30 method groups, but not all. Systematic edits scope refactoring opportunities better
(Rase and Rase min) than methods (Rase MA and Rase MB).

109

edits.

Rasemin extracts the minimum common code enclosing systematic ed-

its, as opposed to the maximum common code in default Rase. If we mark

the minimum common code for extraction, we may have fewer variations be-

tween counterparts which require adding extra code for specialization. On the

other hand, we may extract less code than the actual commonality shared be-

tween changed methods, leaving redundant code after refactoring. Comparing

Rasemin and Rase shows that Rasemin performs differently from Rase in 8

cases. In 7 of the 8 cases, Rasemin is less effective at reducing code size be-

cause less common code is extracted. However in case 9, Rasemin eliminates

more code, because the smaller extracted method does not include control flow

jumps, which requires no extra code to interpret flow jumps.

In 6 out of the 30 cases, Rase only uses the extract method to perform

its refactoring task. All the other cases need a combination of different types

of refactoring. The code size change varies between an increase of 11 lines and

a decrease of 47 lines. Rase’s automated refactoring reduces the code size in

8 cases (27%) for the method pairs.

6.3.2 Method Groups

To explore whether our conclusions based on method pairs generalize

to multiple similarly changed methods, we apply Rase to 30 systematically

edited method groups. Each group contains at least 3 methods and at most

9 methods. We apply RaseMA, RaseMB and Rasemin to the same data set

and compare refactoring capabilities. The results are mostly similar comparing

Table 6.1 and Table 6.2. Column # in Table 6.2 shows the number of changed

methods in each group. Rase refactors 20 out of 30 cases. Similar to Ta-

110

T
ab

le
6.

2:
M

et
h
o
d

gr
ou

p
s:

C
lo

n
e

re
m

ov
al

re
fa

ct
or

in
gs

R
a
se

R
a
se

m
in

R
a
se

M
A

R
a
se

M
B

ID
#

ed
it
s

ty
p
es

∆
co

d
e

ed
it
s

ty
p
es

∆
co

d
e

ed
it
s

ty
p
es

∆
co

d
e

ed
it
s

ty
p
es

∆
co

d
e

1
6

1
3
7

E
,

A
,

F
,

T
-7

1
3
7

E
,

A
,

F
,

T
-7

1
3
7

E
,

A
,

F
,

T
-7

1
3
7

E
,

A
,

F
,

T
-7

2
4

3
0

E
-1

0
3
0

E
-1

0
3
0

E
-1

0
1
0

E
2

4
3

1
7

E
-1

1
0

E
,

A
4

N
/
A

N
/
A

5
7

3
6

E
,

T
-6

1
6

E
2

N
/
A

N
/
A

6
8

4
2

E
,

T
-6

4
2

E
,

T
-6

N
/
A

N
/
A

8
3

4
4

E
,

A
,

F
-4

4
4

E
,

A
,

F
-4

4
4

E
,

A
,

F
-4

3
2

E
,

A
,

F
2

9
5

5
8

E
,

L
,

R
1
8

5
8

E
,

L
,

R
1
8

N
/
A

N
/
A

1
0

3
3
8

E
,

F
1
4

3
8

E
,

F
1
4

3
8

E
,

F
1
4

1
9

E
,

A
,

F
1
3

1
1

4
2
0

E
-4

1
0

E
2

N
/
A

N
/
A

1
3

3
9

E
3

9
E

3
N

/
A

N
/
A

1
5

3
3
2

E
,

A
-1

0
2
8

E
-8

N
/
A

N
/
A

1
7

3
2
1

E
-3

9
E

3
N

/
A

N
/
A

1
8

3
3
7

E
-1

1
3
7

E
-1

1
3
7

E
-1

1
2
5

E
-5

1
9

3
9
6

E
,

F
6

4
8

E
,

F
,

R
2
4

9
6

E
,

F
6

2
9

E
,

A
,

F
,

T
1
3

2
4

3
5
9

E
,

R
-1

5
9

E
,

R
-1

5
9

E
,

R
-1

8
E

2
2
5

3
2
6

E
,

R
1
4

2
6

E
,

R
1
4

N
/
A

N
/
A

2
7

4
2
0

E
,

A
-4

2
0

E
,

A
-4

N
/
A

N
/
A

2
8

3
2
4

E
,

T
0

2
4

E
,

T
0

2
4

E
,

T
0

1
2

E
,

A
,

T
0

2
9

9
2
1
1

E
-1

4
9

2
1
1

E
-1

4
9

N
/
A

N
/
A

3
0

4
2
6

E
,

A
-6

2
6

E
,

A
-6

2
6

E
,

A
-6

1
5

E
,

A
,

T
7

A
v
er

a
g
e

4
9
.2

-8
.4

4
4
.1

-6
.1

5
4
.5

-2
.1

3
1
.9

3
.0

T
o
ta

l
a
u

to
m

a
te

d
2
0

2
0

9
9

111

ble 6.1, we observe that Rase automates refactoring more than RaseMA and

RaseMB. Rase produces more concise code than Rasemin in 6 out of 30 cases.

One difference from the method pair results is that Rase decreases code size

more consistently and frequently, reducing code size in 14 of the 20 refactored

cases (70%) and on average reducing code by 8 lines. This result is expected

because the refactored code appears in just two methods with method pairs,

whereas for method groups the refactored code originally appears in three or

more methods.

6.3.3 Reasons for Not Refactoring

We examined by hand the 26 cases that Rase did not refactor and

found four reasons, which Table 6.3 summarizes. For 7 cases, Rase failed to

refactor due to Java’s limited support for generic types. It is very difficult

to convert some generalized statements like v instanceof T$, T$.m$(),

and v = new T$(), into code that compiles.

For 5 cases, Rase did not refactor because some statements cannot

be moved correctly into an extracted method. For instance, the super con-

structor super(...) is only valid in constructors and cannot be moved

to any other method. Another example is, when attempting to put an ex-

tracted method into a newly declared class, calls to private methods by the

extracted method are not semantically valid because private methods are

only accessible for methods defined in the same class.

For 8 cases, no edited statement is identified in the new version of each

changed method. Rase depends on Lase to create an abstract edit script

representing the input systematic changes. If Lase fails to create such an

edit script or the edit script only deletes statements from old versions, Rase

112

Table 6.3: Reasons Rase does not refactor 26 cases: Method pairs

Reason number of cases

Limited language support for generic types 7
Unmovable methods 5

No edited statement found 8
No common code extracted 6

Table 6.4: Reasons Rase does not refactor 10 cases: Method groups

Reason number of cases

Limited language support for generic types 2
Unmovable methods 0

No edited statement found 2
No common code extracted 6

cannot locate the code to extract based on the output of Lase, nor can it

automate refactorings.

In 6 cases, the marked code snippets in different methods are not

generalizable to create an abstract template. Four possible reasons explain

this result. First, the code snippets contain different numbers of statements,

which prevent Rase from creating an abstract template. Although some exist-

ing clone removal refactoring techniques [41, 57] leverage program dependence

analysis and some heuristics to shift irrelevant variant code and put together

extractable code, these techniques cannot handle all the cases in this category

either, indicating the difficulty of fully automated factorization and parame-

terization. Second, the AST node types of some extracted statements do not

match, such as ExpressionStatement vs. ReturnStatement. Third,

the number of parameters in method calls do not match, such as foo(v)

113

vs. bar(a, b, c). Although we can create a single method by merging

input signatures of different methods, the resulting code may have poor read-

ability. Fourth, there is at least one identifier mapping conflict. For instance,

identifier v is mapped to an identifier a in one statement, but mapped to

another identifier x in another statement. Ignoring these conflicts to apply

refactoring would incorrectly modify the program semantics. Similar to Ta-

ble 6.3, Table 6.4 shows that limited language support for generic types, no

edited or added statement, and no common code extracted are the three main

reasons why automated refactoring is infeasible.

In summary, the above sections make the following observations.

• Method based refactoring before or after systematic editing does not

eliminate the need for systematic editing.

• Scoping refactoring based on systematic edits improves refactoring ap-

plicability over refactoring the entire methods, either before or after the

edits.

• Extracting the maximum common code instead of the minimum common

code creates a refactored version with a smaller code size.

6.3.4 Examination of software evolution after systematic edits

To understand how Rase’s refactoring recommendations correlate with

developer refactorings, we manually examine how developers evolved methods

after these systematic edits by going through the version histories. The av-

erage time interval in the version history, after systematic edits in our test

114

suite, is 1.3 years. Table 6.5 shows the results for method pairs and Table 6.6

shows method groups. In the tables, the Feasible column corresponds to cases

when Rase automates refactoring, while Infeasible corresponds to the other

cases. The Refactored row shows cases when developers either by hand or

with the help of some other tool refactored code later in the version history.

The other rows show break down cases without developer refactoring. Co-

evolved means the methods are systematically edited at least one more time

in later versions, and may indicate that refactoring is desirable. Divergent

means the methods evolved in divergent ways, and may indicate that refactor-

ing is undesirable. For example, one method was deleted or only one method

changed. Unchanged means the methods did not get changed after system-

atic edits, indicating that it may not be worthwhile to refactor because these

methods are quite stable, or it is premature to state refactor desirability due

to lack of information.

Table 6.5 shows that developers only refactored 4 out of 56 cases. Rase

automates refactoring for all 4 of these cases. Additionally, Rase refactors 26

cases which were not refactored by developers. Among these 26 cases, 21 cases

had no code changes. However, 9 of these 21 cases were specially crafted in

prior work [71] to evaluate Sydit and they do not have any version history.

When code does not need to change to fix bugs or add features, developers are

unlikely to aggressively remove clones. In 3 out of 26 cases, developers evolved

code differently by either changing both methods differently or deleting one

method while maintaining the other one. In 2 out of 26 cases, developers did

not refactor code for some reason but actually similarly changed code once

again. Such repetitive systematic edits on method pairs may indicate a desire

for refactoring.

115

Table 6.5: Manual evaluation of version history after systematic edits: Method
pairs

Feasible Infeasible

Refactored 4 0

Unrefactored
Co-evolved 2 6
Divergent 3 10

Unchanged 21 10

Table 6.6: Manual evaluation of version history after systematic edits: Method
groups

Feasible Infeasible

Refactored 1 0

Unrefactored
Co-evolved 2 1
Divergent 4 0

Unchanged 13 9

There are 6 cases in which methods were co-evolved by developers but

are not automatically refactored by Rase. The major reason is some methods

either invoke certain methods which are not accessible by an extracted method,

contain non-contiguous cloned code, or have conflicting identifier mappings

between each other. It is not easy to automatically refactor these cases. If

developers want to refactor them, they need to first apply some tricks to make

the common code extractable.

Table 6.6 summarizes the version history for systematically edited method

groups, and show similar results to the method pairs in Table 6.5. Except for

the unchanged cases, developers refactored one case, which Rase also handles.

Methods co-evolved in 2 cases and diverged in 4 cases, all of which Rase can

refactor. There is one case where methods were co-evolved by only deleting

116

code, but Rase does not refactor because it does not suggest refactoring when

the only change is deleted code.

Manually observing the version history reveals that there is no obvi-

ous correlation between Rase’s automatic refactoring recommendation and

manual refactorings done by developers for systematically edited methods,

although there are cases when automatic refactoring overlaps with manual

refactoring. When developers refactor or not, they do not base their decision

solely on code similarity and similar edits, but also based on other factors.

Although Rase cannot decide for developers whether to refactor, it conducts

an executable refactoring plan when developers decide to refactor, which helps

reduce developer burden of code transformation.

To explore the reasons developers do not refactor while performing

systematic edits, we randomly pick several examples and ask project owners

for their expert opinion.

One developer is conservative about aggressive refactoring and merging

commonality between methods: “(I will not refactor the method pair because)

this pair of methods is not a pain point during maintenance/evolution of JDT.

That particular class is very stable, and the readability of the code as it is

now outweighs potential benefits of refactoring. We have other duplications,

that are more likely to cause pain, e.g., by being forgotten during maintenance.

. . . In these classes, potential gain might be greater, but then a refactoring to

avoid redundancy would certainly introduce a significant amount of additional

complexity. We don’t typically refactor unless we have to change the code for

some bug fix or new feature.”

Another developer refactors more proactively to reduce cloned code,

but prefers reducing four duplicated methods to two, instead of the single

117

method that Rase suggests to simplify the class hierarchy. This feedback

from developers illustrates that the decision to apply clone removal depends on

many criteria in addition to code similarity and co-evolution events, including

the effectiveness of cloned code in bug fix and feature additions, the software

architecture, readability, and maintainability of the resulting refactored code.

Based on our experience with software version history and communi-

cation with developers, we envision Rase as a refactoring recommendation

tool when developers think about refactoring duplicated code. It should serve

to complement existing systematic editing tools because developers do not al-

ways aggressively reduce duplicated code but often maintain redundant code

for various reasons.

6.4 Threats to Validity

Our results are based on 86 systematic editing examples. Further eval-

uation with more subject systems, longer version histories, and larger scope of

systematic edits beyond the method level remains as future work.

The refactoring capability of Rase is affected by the systematic editing

tool—Lase—it uses. Given multiple similarly changed methods, if Lase fails

to generalize an abstract edit script for them, Rase cannot provide any refac-

toring suggestion. The six types of refactorings implemented in Rase do not

cover all possible code transformations applicable to clone removal. However,

it is the state-of-the-art in terms of the number of refactorings it automates.

Rase determines concrete refactoring transformations based on an ab-

stract template without considering the global context such as the extent of

code duplication across the entire codebase, the class relationship among meth-

118

ods with and without systematic edits. Therefore, Rase may not suggest the

best possible transformation. However, Rase is the first automated tool that

mechanically examines if systematic edits in multiple locations indicate refac-

toring opportunities. We believe that Rase will be useful and enable further

research on recommendations and cost/benefit analysis of refactoring.

Our results focus on automated refactoring feasibility instead of de-

sirability. We leave developers to decide whether to refactor or not. We

believe that it is difficult to choose between systematically editing methods

and reducing clones to edit a single copy. To assess refactoring desirability,

the refactoring cost/benefit analysis must account for multiple factors such as

how frequently future systematic edits will occur to fix bugs or add features,

if complexity increases, if it is worthwhile to reduce future edits, and if the

related methods are likely to change and/or diverge in the future.

6.5 Summary

Similar edits in similar code may indicate that refactoring should be

applied to reduce code duplication. By designing and implementing Rase,

an automated refactoring tool which combines six refactoring techniques, we

show it is difficult to obviate systematic editing with automated refactoring.

Furthermore version history examination reveals that developers do not always

refactor code to eliminate systematic edits. These observations indicate that

both systematic editing and automatic refactoring tools can help software

development and maintenance.

While Rase automates clone removal based on systematic edits, the

decision of whether to refactor or not depends on multiple complex factors

such as readability, maintainability, and types of anticipated changes. Sys-

119

tematic edits serve as only one among those factors. Therefore, they are not

sufficient to indicate clone removal opportunity. We envision Rase’s auto-

mated refactoring capability will support further research on refactoring cost

benefit analysis and refactoring opportunity recommendations.

120

Chapter 7

Conclusion

Developing and maintaining software is challenging and time-consuming.

As computing becomes more ubiquitous and complex, more and more program-

mers open source their projects to share resources and computation. Devel-

opers are encouraged to reuse and modify existing software to build their own

applications instead of coding everything from scratch. When codebases are

widely shared among developers, code changes will also be shared intentionally

or unintentionally. Different from open source projects which are conveniently

available in software repositories, systematic edits—similar code changes to

different locations—are not well recognized, organized, or utilized. Therefore,

there is a great opportunity to pursue further research in systematic editing to

help developers modify software more efficiently for better software reliability.

In the following sections, we will first summarize insights we have learnt

by automating program transformation. We divide future work into two cat-

egories: (1) next steps for improving and evaluating systematic editing and

refactoring tools (Section 7.2), and (2) broader implications of these results for

open questions in software development (Section 7.3). Section 7.2 elaborates

how we would like to generalize the definition of systematic edits and prompt

developers for their expertise, in order to automate more diverse code changes

and validate transformation correctness. Section 7.3 discusses interesting re-

search questions about mining systematic edits and synthesizing code changes.

121

We finally conclude with the prospects of our research impact.

7.1 Summary

Based on the observation that many similar edits are applied to loca-

tions containing similar code snippets, we argue that automatic program trans-

formation based on code change examples can improve programmer produc-

tivity and software correctness. We show that unlike most prior approaches,

ours only require exemplar edit(s) from developers to propagate similar ed-

its or to refactor similarly edited code. Our systematic editing approaches

demonstrate that the edit relevant context, which is extracted from exemplar

edit(s) based on control and data dependence analysis, enables the inferred

edits to consistently modify program syntax and semantics. Although the

approaches do not check or guarantee correctness of transformed code, our

consistent code transformation capability facilitates developers to do correct-

ness checking. Our refactoring approach demonstrates that scoping with sys-

tematic edits improves the feasibility of automatic clone removal compared to

method-level scoping. Although it is not always feasible or desirable to refac-

tor systematically edited code, our research takes the first step to explore the

relationship between systematic editing and refactoring, and to furthermore

predict refactoring desirability based on the relationship. Different from the

usual refactoring tools, this approach can serve as an intelligent agent to notify

developers of clone removal opportunities by providing a detailed refactoring

plan and transformed code after witnessing similar edits applied to similar

code.

122

7.2 Future Work

In the process of test suite construction, we find that there are many

code changes which do not fall into the category of systematic editing. While

some research has revealed some common bugs that cross projects, for exam-

ple, not checking for null, forgetting to free resources, and incorrectly invoking

libraries, most of these patterns are not sophisticated [49]. We observe dif-

ferent developers have different coding styles. In particular, different projects

target different functionalities, and it is not surprising to find few system-

atic editing patterns that span different projects. For example, Kim et.al [49]

mined common fix patterns from 62656 human-written bug fixes for Eclipse

JDT, by identifying commonly shared single line bug fixes. Among the eight

simple patterns they found, five patterns are single statement changes such as

Altering method parameters and Initializing an object. The other three fix pat-

terns add conditional checks before accessing certain objects, such as adding

a null checker. The study corroborates our experience.

Nevertheless, as developers build their applications by reusing code

from open source projects, frameworks, and libraries, they do have good rea-

sons to share code changes. In order to find these common “niddles” in the vast

sea code changes, we need a more diverse definition for “systematic editing”,

to effectively extract relevant code changes, specially identify their common

features, and properly recommend applicable code changes to developers. The

paradigm of our automatic program transformation will be that the system au-

tomatically collects human-written code changes, categorizes similar changes

based on some metrics, characterizes each group of changes together with the

edit relevant context, and finally locates code containing the relevant context

in users’ code to suggest corresponding code changes. Each possible definition

123

of “systematic editing” will provide a way to instantiate the paradigm by de-

scribing what kind of code changes are similar, what edit relevant context is

shared, and how to modify code which contains the edit context but misses

the edit.

There can be different ways to define systematic edits. In addition

to the definition provided in Chapter 2, one possible definition can be code

changes which syntactically diverge but implement the same algorithm. For

each definition, we may explore different strategies to identify, recommend, and

check code changes. For instance, for systematic code changes written in the

same language which implement the same algorithm, we may use symbolic ex-

ecution and a constraint solver to reason about their semantic equivalence, to

infer preconditions of applying these changes, and later to recommend similar

code changes to locations that meet the preconditions. Such code changes can

be applied to fix bugs, refactor code, add new features, and parallelize sequen-

tial programs. Furthermore, for code changes written in multilingual programs

which are semantically equivalent, we may also need a way to combine both

static analysis and code generation for different programming languages in or-

der to use the expertise encoded in programs developed in another language

for reference. The approach will help maintain legacy systems, propagate se-

mantically equivalent code changes across languages, and translate programs

from one language to another language.

To help tools better understand program semantics and the purposes

of code changes, developers may be required to provide more hints other than

code via annotations, commit messages, or interactive inputs. For each multi-

line code change, the developer input can describe (1) the change’s purpose,

such as bug fix, feature addition, refactoring, and parallelizing, (2) the involved

124

patches and affected code regions, and (3) the oracles to demonstrate expected

behaviors of the modified code when the semantics is not preserved. The de-

veloper input will not only enhance change understanding, but also guide

automatic testing for modified code. For bug fixes and refactoring changes,

tools may not need to create new test cases, because existing tests can be

sufficient to check whether bugs are fixed or semantics are preserved without

introducing new bugs. However, for feature addition changes, tools will auto-

matically create new test cases or modify existing test cases to validate new

features. The extra input may burden developers so much that developers are

discouraged from submitting code changes in a short term. However, develop-

ers will benefit from the effort when having automatic programming support

for higher quality code. On the other hand, we will also explore ways to ease

the burden of specifying code changes.

Our existing systematic editing approaches do not check or guarantee

correctness of transformed code, although they guarantee consistency of pro-

gram transformations. There is a gap between consistency and correctness,

which should be filled with code changes specific to each systematically edited

location. The oracles, which we expect from developers describing correct

program behaviors, may help tools create those specific changes. The ora-

cles can be described in terms of input/output pairs, predicate annotations,

or program skeletons. With input/output pairs, tools may leverage machine

learning algorithms to train a fitting function [24], which can be applied to

adjust the output of systematically edited code. With predicates, tools could

check program status against the specified invariants, generate extra state-

ments or modify existing statements if any invariant is violated [20]. Given

possible program statements included in the resulting code, we can use pro-

125

gram sketching technique to correctly fill in the statement content [87].

Our existing refactoring approach identifies refactoring opportunities

solely based on similar edits applied to similar code. However, with more

diverse systematic editing definitions, we may recognize more refactoring op-

portunities for divergent edits applied to dissimilar code and produce more

understandable refactored code. With developers’ expertise input about code

change types, we may better predict automatic refactoring applicability and

desirability. For instance, when we detect refactoring code changes in a version

history, we can check which bug fixes or feature additions are made before and

after the refactoring. Some prior work [15, 53] shows that developers usually

apply refactoring together with other types of changes, such as bug fixes and

feature additions. By observing the evolution patterns between different types

of changes, we can more precisely predict possible refactorings to apply and

what they should be like.

7.3 Open Questions

In the thesis, we have explored automatic program transformation

based on exemplar edits given by developers. One future direction would

be to explore different ways to define and automate systematic edits based

on annotations, commit messages, and oracles provided by developers. Below

we list some more open issues and challenges for expanding and enhancing

automatic program transformation.

How to recognize and leverage unknown code change patterns? A

lot of existing bug finding and fixing tools identify and fix bugs based on pre-

defined matching patterns or code change patterns [42, 45, 63, 88]. The change

126

patterns can be as simple as replacing new Integer(*).toString() with

Integer.toString(*) [42], or as complicated as checking the access-control

implementation in Web applications against predefined access-control policies

to recommend candidate fixes for access-control errors of omission [88]. Gen-

erally speaking, these tools all have their separate “systematic edit” definition

to automate code transformation. Different from our approach, instead of

inferring patterns, these tools implement code patterns based on developers’

experience of bug symptoms and solutions. Although coding very compli-

cated patterns is challenging, time-consuming, and error-prone, we do not see

an easy way to automatically mine the patterns. The reasons is that some

patterns, such as access-control patterns, are application and implementation

specific. They require a deep understanding of the application rather than the

shallow semantics revealed by any complex inter-procedural analysis. Without

the deep insight of developers, it is impossible for any automatic approach to

identify or leverage sophisticated patterns. Compared with the uninferrable

patterns, some simple patterns, such as replacing an API with another API,

are inferrable. It is important and worthwhile to investigate the boundary

between inferrable code change patterns and uninferrable ones. For the in-

ferrable ones, we may design scalable algorithms to fully automate common

code change identification and application. For the uninferrable ones, we may

design tools to simplify the programming task of specifying patterns.

Is it possible to synthesize a general-purpose program given a high-

level specification, and a well-organized code and change database?

Theoretically, if every feature described in the specification has a correspond-

ing code implementation in the database, and all possible interactions between

features can be well captured by stored code changes, it may be possible to

127

automatically forge an arbitrary program out of a high-level specification, us-

ing a process similar to, but more generalized than, feature-oriented program-

ming [8]. However, realistically, it is difficult to construct such a comprehensive

database which covers everything to program and every possible interaction

between programmed components. A very important part of developers’ daily

life is to invent programs to solve problems never posed or solved before.

Therefore, it is unrealistic to assume the existence of such codebase. However,

researchers have explored different ways to narrow down the problem space

in order to make program synthesis applicable to specific programming sce-

narios. For instance, Gulwani et al. have developed a series of techniques to

synthesize programs for self-defined domain-specific languages [2, 81, 86]. They

limit the number of syntactic elements in each language and possible ways to

program with the elements. By limiting the search scope, they make it possi-

ble to automatically enumerate all possible solutions for constraints described

in the high-level specification and then pick the best one. Weimer et.al use

genetic programming to synthesize candidate bug fixes for an executable pro-

gram which contains a single bug [61, 99]. The buggy program is expected to

pass some tests while failing other tests. They randomly generate candidate

bug fixes by inserting, deleting, or updating code in the program until they

find a program variant passing all tests. Genetic programming limits solution

search scope to program elements contained by the buggy program and all

possible combinations between them. However, the assumption that the solu-

tion lies in existing elements in the program is too strong to always lead to a

valid bug fix. There may be other ways to define a specific problem and thus

limit the solution space. It is worth furthermore investigation to explore prin-

cipled ways to limit solution space with problem specialization. When tools

can identify the scope of synthesizable programs and synthesize a program for

128

each problem in the scope, programmers will concentrate their time and ef-

forts on problems that have never been solved before or hard to solve, relying

on automatic program transformation to implement the other parts with high

quality.

7.4 Impact

Our tools and techniques have implications for tool developers and

programmers. Tool developers can adopt and improve our approach, building

automated repair tools that can spread bug fixes within the same project and

sometimes across different projects. They may also build new types of auto-

mated refactoring tools, which are no longer limited to conducting whatever

developers command them to do, but instead proactively recommend refactor-

ing opportunities to developers. Programmers may use these tools to apply

systematic edits to multiple locations with less effort, and to achieve high

precision and recall for edit location search. The result will be correct pro-

gram transformations. We believe this automation will substantially improve

programmer productivity.

129

Bibliography

[1] George W. Adamson and Jillian Boreham. The use of an association

measure based on character structure to identify semantically related

pairs of words and document titles. Information Storage and Retrieval,

10(7-8):253–260, 1974.

[2] Umair Z. Ahmed, Sumit Gulwani, and Amey Karkare. Automatically

generating problems and solutions for natural deduction. In Proceed-

ings of the Twenty-Third International Joint Conference on Artificial

Intelligence, 2013.

[3] Jesper Andersen, Anh Cuong Nguyen, David Lo, Julia L. Lawall, and

Siau-Cheng Khoo. Semantic patch inference. In International Con-

ference on Automated Software Engineering, page (Tool Demo Paper),

2012.

[4] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold.

A differencing algorithm for object-oriented programs. In ASE ’04:

Proceedings of the 19th IEEE International Conference on Automated

Software Engineering, pages 2–13, Washington, DC, USA, 2004. IEEE

Computer Society.

[5] Lerina Aversano, Luigi Cerulo, and Massimiliano Di Penta. How clones

are maintained: An empirical study. In CSMR ’07, pages 81–90, 2007.

130

[6] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague,

and Kostas Kontogiannis. Measuring clone based reengineering oppor-

tunities. In METRICS, page 292, 1999.

[7] Magdalena Balazinska, Ettore Merlo, Michel Dagenais, Bruno Lague,

and Kostas Kontogiannis. Partial redesign of java software systems

based on clone analysis. In WCRE, page 326, 1999.

[8] Don Batory and Sean O’Malley. The design and implementation of

hierarchical software systems with reusable components. ACM Trans.

Softw. Eng. Methodol., 1992.

[9] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and

Lorraine Bier. Clone detection using abstract syntax trees. In ICSM

’98: Proceedings of the International Conference on Software Mainte-

nance, page 368, Washington, DC, USA, 1998. IEEE Computer Society.

[10] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore

Merlo. Comparison and evaluation of clone detection tools. IEEE

Transactions on Software Engineering, 33:577–591, 2007.

[11] Nicolas Bettenburg, Weyi Shang, Walid Ibrahim, Bram Adams, Ying

Zou, and Ahmed E. Hassan. An empirical study on inconsistent changes

to code clones at release level. In WCRE, pages 85–94, 2009.

[12] Marat Boshernitsan, Susan L. Graham, and Marti A. Hearst. Aligning

development tools with the way programmers think about code changes.

In CHI ’07: Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 567–576, New York, NY, USA, 2007. ACM.

131

[13] Magiel Bruntink, Arie van Deursen, Tom Tourwe, and Remco van Enge-

len. An evaluation of clone detection techniques for identifying crosscut-

ting concerns. In ICSM ’04: Proceedings of the 20th IEEE International

Conference on Software Maintenance, pages 200–209, Washington, DC,

USA, 2004. IEEE Computer Society.

[14] S. Burson, G.B. Kotik, and L.Z. Markosian. A program transformation

approach to automating software re-engineering. In Computer Software

and Applications Conference, 1990. COMPSAC 90. Proceedings., Four-

teenth Annual International, pages 314 –322, 31 1990.

[15] Dongxiang Cai and Miryung Kim. An empirical study of long-lived code

clones. In FASE, 2011.

[16] James R. Cordy, Charles D. Halpern, and Eric Promislow. Txl: A

rapid prototyping system for programming language dialects. Computer

Languages, 16:97–107, 1991.

[17] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman,

David Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch

what I do: programming by demonstration. MIT Press, 1993.

[18] Brian Demsky and Martin Rinard. Automatic detection and repair of

errors in data structures. SIGPLAN Not., page 18, 2003.

[19] Ekwa Duala-Ekoko and Martin P. Robillard. Tracking code clones in

evolving software. In ICSE, pages 158–167, 2007.

[20] Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid.

Assertion-based repair of complex data structures. In Proceedings of

132

the Twenty-second IEEE/ACM International Conference on Automated

Software Engineering, 2007.

[21] Bassem Elkarablieh and Sarfraz Khurshid. Juzi: a tool for repairing

complex data structures. juzi: a tool for repairing complex data struc-

tures. juzi: a tool for repairing complex data structures. In Wilhelm

Schäfer, Matthew B. Dwyer, and Volker Gruhn, editors, ICSE, pages

855–858. ACM, 2008.

[22] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Ben-

jamin Chelf. Bugs as deviant behavior: A general approach to inferring

errors in systems code. In ACM Symposium on Operating Systems Prin-

ciples, pages 57–72, 2001.

[23] Martin Erwig and Deling Ren. A rule-based language for programming

software updates. In RULE ’02: Proceedings of the 2002 ACM SIG-

PLAN workshop on Rule-based programming, pages 67–78, New York,

NY, USA, 2002. ACM.

[24] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.

Neural acceleration for general-purpose approximate programs. In Pro-

ceedings of the 2012 45th Annual IEEE/ACM International Symposium

on Microarchitecture, 2012.

[25] Asger Feldthaus, Todd Millstein, Anders Møller, Max Schäfer, and Frank

Tip. Tool-supported refactoring for javascript. In OOPSLA ’11. ACM,

2011.

[26] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. Change

distilling—tree differencing for fine-grained source code change extrac-

133

tion. IEEE Transactions on Software Engineering, 33(11):18, November

2007.

[27] Stephen R. Foster, William G. Griswold, and Sorin Lerner. Witchdoc-

tor: Ide support for real-time auto-completion of refactorings. In ICSE

’12, 2012.

[28] Martin Fowler. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional, 2000.

[29] Mark Gabel, Lingxiao Jiang, and Zhendong Su. Scalable detection of

semantic clones. In Proceedings of the 30th international conference on

Software engineering, ICSE ’08, pages 321–330, New York, NY, USA,

2008. ACM.

[30] Alejandra Garrido and Ralph E. Johnson. Refactoring c with condi-

tional compilation. In ASE, 2003.

[31] Xi Ge, Quinton L. DuBose, and Emerson Murphy-Hill. Reconciling

manual and automatic refactoring. In ICSE ’12, 2012.

[32] Nils Göde. Clone removal: Fact or fiction? In IWSC, pages 33–40,

2010.

[33] Akira Goto, Norihiro Yoshida, Masakazu Ioka, Eunjong Choi, and Kat-

suro Inoue. How to extract differences from similar programs? a cohe-

sion metric approach. In IWSC, pages 23–29. IEEE, 2013.

[34] William G. Griswold. Program Restructuring as an Aid to Software

Maintenance. PhD thesis, University of Washington, 1991.

134

[35] William G. Griswold, Darren C. Atkinson, and Collin McCurdy. Fast,

flexible syntactic pattern matching and processing. In WPC ’96: Pro-

ceedings of the 4th International Workshop on Program Comprehension,

page 144, Washington, DC, USA, 1996. IEEE Computer Society.

[36] Sumit Gulwani. Dimensions in program synthesis. In ACM Symposium

on Principles and Practice of Declarative Programming, pages 13–24,

2010.

[37] William R. Harris and Sumit Gulwani. Spreadsheet table transfor-

mations from examples. In Proceedings of the 32nd ACM SIGPLAN

conference on Programming language design and implementation, PLDI

’11, pages 317–328, New York, NY, USA, 2011. ACM.

[38] Yoshiki Higo and Shinji Kusumoto. Identifying clone removal opportu-

nities based on co-evolution analysis. In IWPSE, pages 63–67, 2013.

[39] Yoshiki Higo, Shinji Kusumoto, and Katsuro Inoue. A metric-based

approach to identifying refactoring opportunities for merging code clones

in a java software system. J. Softw. Maint. Evol., 20(6):435–461, 2008.

[40] Susan Horwitz. Identifying the semantic and textual differences be-

tween two versions of a program. In PLDI ’90: Proceedings of the

ACM SIGPLAN 1990 conference on Programming language design and

implementation, pages 234–245, New York, NY, USA, 1990. ACM.

[41] Keisuke Hotta, Yoshiki Higo, and Shinji Kusumoto. Identifying, tai-

loring, and suggesting form template method refactoring opportunities

with program dependence graph. 2011 15th European Conference on

Software Maintenance and Reengineering, 0:53–62, 2012.

135

[42] David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN

Not., 39(12):92–106, 2004.

[43] James W. Hunt and Thomas G. Szymanski. A fast algorithm for com-

puting longest common subsequences. CACM, 20(5):350–353, 1977.

[44] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.

Deckard: Scalable and accurate tree-based detection of code clones. In

ICSE, pages 96–105, 2007.

[45] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu.

Automated concurrency-bug fixing. In Symposium on Operating System

Design and Implementation, 2012.

[46] Nicolas Juillerat and Beat Hirsbrunner. Toward an implementation of

the form template method refactoring. SCAM, 0:81–90, 2007.

[47] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder: A

multilinguistic token-based code clone detection system for large scale

source code. TSE, pages 654–670, 2002.

[48] Cory Kapser and Michael W. Godfrey. cloning considered harmful

considered harmful. In WCRE ’06: Proceedings of the 13th Work-

ing Conference on Reverse Engineering, pages 19–28, Washington, DC,

USA, 2006. IEEE Computer Society.

[49] Dongsun Kim, Jaechange Nam, Jaewoo Song, and Sunghun Kim. Au-

tomatic patch generation learned from human-written patches. In

IEEE/ACM International Conference on Software Engineering (to ap-

pear), 2013.

136

[50] Miryung Kim and David Notkin. Discovering and representing system-

atic code changes. In ACM/IEEE International Conference on Software

Engineering, pages 309–319, 2009.

[51] Miryung Kim, David Notkin, and Dan Grossman. Automatic inference

of structural changes for matching across program versions. In ICSE

’07: Proceedings of the 29th International Conference on Software Engi-

neering, pages 333–343, Washington, DC, USA, 2007. IEEE Computer

Society.

[52] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. An

empirical study of code clone genealogies. In ESEC/FSE, pages 187–

196, 2005.

[53] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A

field study of refactoring challenges and benefits. In Proceedings of the

ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering, 2012.

[54] Raghavan Komondoor and Susan Horwitz. Semantics-preserving proce-

dure extraction. In POPL, pages 155–169, 2000.

[55] Raghavan Komondoor and Susan Horwitz. Effective, automatic proce-

dure extraction. In IWPC, pages 33–, 2003.

[56] Jens Krinke. Identifying similar code with program dependence graphs.

In WCRE, page 301, 2001.

[57] Giri Panamoottil Krishnan and Nikolaos Tsantalis. Refactoring clones:

An optimization problem. ICSM, 0:360–363, 2013.

137

[58] David A. Ladd and J. Christopher Ramming. A*: A language for

implementing language processors. IEEE Transactions on Software En-

gineering, 21(11):894–901, 1995.

[59] J. Landauer and M. Hirakawa. Visual awk: a model for text process-

ing by demonstration. In Proceedings of the 11th International IEEE

Symposium on Visual Languages, VL ’95, pages 267–, Washington, DC,

USA, 1995. IEEE Computer Society.

[60] Tessa Lau, Steven A. Wolfman, Pedro Domingos, and Daniel S. Weld.

Learning repetitive text-editing procedures with SMARTedit, pages 209–

226. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[61] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley

Weimer. A systematic study of automated program repair: Fixing 55

out of 105 bugs for $8 each. In Proceedings of the 34th International

Conference on Software Engineering, 2012.

[62] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley

Weimer. Genprog: A generic method for automatic software repair.

IEEE Trans. Softw. Eng., 38(1), January 2012.

[63] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-

Miner: A tool for finding copy-paste and related bugs in operating sys-

tem code. pages 289–302, 2004.

[64] Zhenmin Li and Yuanyuan Zhou. Pr-miner: automatically extracting

implicit programming rules and detecting violations in large software

code. In Proceedings of the 10th European software engineering con-

ference held jointly with 13th ACM SIGSOFT international symposium

138

on Foundations of software engineering, pages 306–315, New York, NY,

USA, 2005. ACM.

[65] Antoni Lozano and Gabriel Valiente. On the maximum common embed-

ded subtree problem for ordered trees. In String Algorithmics, Chapter

7. King’s College London Publications, 2004.

[66] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding appli-

cation errors and security flaws using PQL: A program query language.

pages 365–383, 2005.

[67] Toshiyuki Masui and Ken Nakayama. Repeat and predict: two keys to

efficient text editing. In CHI ’94, pages 118–130, 1994.

[68] Alexander Matzner, Mark Minas, and Axel Schulte. Efficient graph

matching with application to cognitive automation. In Andy SchÃrr,

Manfred Nagl, and Albert ZÃndorf, editors, Applications of Graph Trans-

formations with Industrial Relevance, volume 5088 of Lecture Notes in

Computer Science, pages 297–312. Springer Berlin / Heidelberg, 2008.

[69] David Maulsby and Ian H. Witten. Cima: An interactive concept learn-

ing system for end-user applications. Applied Artificial Intelligence,

11(7-8):653–671, 1997.

[70] Na Meng, Miryung Kim, and Kathryn McKinley. Lase: Locating and

applying systematic edits. In ICSE, page 10, 2013.

[71] Na Meng, Miryung Kim, and Kathryn S. McKinley. Systematic editing:

Generating program transformations from an example. In PLDI, pages

329–342, 2011.

139

[72] Robert C. Miller and Brad A. Myers. Interactive simultaneous editing

of multiple text regions. In 2002 USENIX Annual Technical Conference,

pages 161–174, 2001.

[73] Ivan Moore. Automatic inheritance hierarchy restructuring and method

refactoring. SIGPLAN Not., 1996.

[74] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr., Anh Tuan

Nguyen, Miryung Kim, and Tien N. Nguyen. A graph-based approach

to API usage adaptation. pages 302–321, 2010.

[75] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar Al-

Kofahi, and Tien N. Nguyen. Recurring bug fixes in object-oriented

programs. In ACM/IEEE International Conference on Software Engi-

neering, pages 315–324, 2010.

[76] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-

Kofahi, and Tien N. Nguyen. Clone-aware configuration management.

In ASE, pages 123–134, 2009.

[77] Robert Nix. Editing by example. In Proceedings of the 11th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages,

POPL ’84, pages 186–195, New York, NY, USA, 1984. ACM.

[78] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD

thesis, University of Illinois, Urbana-Champaign, IL, USA, 1992.

[79] Yoann Padioleau, Julia Lawall, René Rydhof Hansen, and Gilles Muller.

Documenting and automating collateral evolutions in linux device drivers.

In Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European

140

Conference on Computer Systems 2008, pages 247–260, New York, NY,

USA, 2008. ACM.

[80] Jihun Park, Miryung Kim, Baishakhi Ray, and Doo-Hwan Bae. An em-

pirical study of supplementary bug fixes. In IEEE Working Conference

on Mining Software Repositories, pages 40–49, 2012.

[81] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost.

Test-driven synthesis. In Proceedings of the 35th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, 2014.

[82] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan

Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios

Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst,

and Martin Rinard. Automatically patching errors in deployed software.

In ACM Symposium on Operating Systems Principles, pages 87–102,

2009.

[83] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for

Managing Your Software Investment. John Wiley & Sons, Inc., 1996.

[84] Baishakhi Ray and Miryung Kim. A case study of cross-system porting

in forked projects. In ACM International Symposium on the Founda-

tions of Software Engineering, page 11 pages, 2012.

[85] Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for

smalltalk. Theory and Practice of Object Systems, 3(4):253–263, 1997.

[86] Rishabh Singh and Sumit Gulwani. Learning semantic string transfor-

mations from examples. Proc. VLDB Endow., 5(8):740–751, 2012.

141

[87] Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis,

EECS Department, University of California, Berkeley, 2008.

[88] S. Son, K. S. McKinley, and V. Shmatikov. Fix Me Up: Repairing

access-control bugs in web applications. In Network and Distributed

System Security Symposium, 2013.

[89] Robert Tairas and Jeff Gray. Increasing clone maintenance support by

unifying clone detection and refactoring activities. Inf. Softw. Technol.,

54(12):1297–1307, 2012.

[90] G. Tassey. The Economic Impacts of Inadequate Infrastructure for Soft-

ware Testing. Diane Publishing Company, 2002.

[91] Frank Tip, Robert M. Fuhrer, Adam Kieżun, Michael D. Ernst, Ittai

Balaban, and Bjorn De Sutter. Refactoring using type constraints.

ACM Trans. Program. Lang. Syst., 2011.

[92] Michael Toomim, Andrew Begel, and Susan L. Graham. Managing

duplicated code with linked editing. In VLHCC, pages 173–180, 2004.

[93] Nikolaos Tsantalis. Identification of extract method refactoring oppor-

tunities for the decomposition of methods. J. Syst. Softw., 84(10):1757–

1782, 2011.

[94] Nikolaos Tsantalis and Alexander Chatzigeorgiou. Ranking refactoring

suggestions based on historical volatility. In Proceedings of the 2011

15th European Conference on Software Maintenance and Reengineering,

pages 25–34, Washington, DC, USA, 2011. IEEE Computer Society.

142

[95] E. Visser. Program transformation with Stratego/XT: Rules, strate-

gies, tools, and systems in StrategoXT-0.9. Domain-Specific Program

Generation, 3016:216–238, 2004.

[96] Daniel von Dincklage and Amer Diwan. Converting java classes to use

generics. SIGPLAN Not., 2004.

[97] Xiaoyin Wang, David Lo, Jiefeng Cheng, Lu Zhang, Hong Mei, and Jef-

frey Xu Yu. Matching dependence-related queries in the system depen-

dence graph. In IEEE/ACM International Conference on Automated

Software Engineering, pages 457–466, 2010.

[98] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand

Meyer, and Andreas Zeller. Automated fixing of programs with con-

tracts. In International Symposium on Software Testing and Analysis,

pages 61–72, 2010.

[99] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie

Forrest. Automatically finding patches using genetic programming. In

IEEE International Conference on Software Engineering, pages 364–374,

2009.

[100] Ian H. Witten and Dan Mo. TELS: learning text editing tasks from

examples, pages 183–203. MIT Press, Cambridge, MA, USA, 1993.

[101] Wuu Yang. Identifying syntactic differences between two programs.

Software – Practice & Experience, 21(7):739–755, 1991.

143

