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Recent advances in travel demand modeling have concentrated on adding 

behavioral realism by focusing on an individual’s activity participation.  And, to account 

for trip-chaining, tour-based methods are largely replacing trip-based methods.  

Alongside these advances and innovations in dynamic traffic assignment (DTA) 

techniques, however, time-of-day (TOD) modeling remains an Achilles’ heel.  As 

congestion worsens and operators turn to variable road pricing, sensors are added to 

networks, cell phones are GPS-enabled, and DTA techniques become practical, accurate 

time-of-day forecasts become critical.  In addition, most models highlight tradeoffs 

between travel time and cost, while neglecting variations in travel time.  Research into 

stated and revealed choices suggests that travel time variability can be highly 

consequential.   

 

This dissertation introduces a method for imputing travel time variability information as a 

continuous function of time-of-day, while utilizing an existing method for imputing 
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average travel times (by TOD).  The methods employ ordinary least squares (OLS) 

regression techniques, and rely on reported travel time information from survey data 

(typically available to researchers), as well as travel time and distance estimates by 

origin-destination (OD) pair for free-flow and peak-period conditions from network data.   

 

This dissertation also develops two models of activity timing that recognize the imputed 

average travel times and travel time variability.  Both models are based in random utility 

theory and both recognize potential correlations across time-of-day alternatives.  In 

addition, both models are estimated in a Bayesian framework using Gibbs sampling and 

Metropolis-Hastings (MH) algorithms, and model estimation relies on San Francisco Bay 

Area data collected in 2000.   

 

The first model is the continuous cross-nested logit (CCNL) and represents tour outbound 

departure time choice in a continuous context (rather than discretizing time) over an 

entire day.  The model is formulated as a generalization of the discrete cross-nested logit 

(CNL) for continuous choice and represents the first random utility maximization model 

to incorporate the ability to capture correlations across alternatives in a continuous choice 

context.  The model is then compared to the continuous logit, which represents a 

generalization of the multinomial logit (MNL) for continuous choice.  Empirical results 

suggest that the CCNL out-performs the continuous logit in terms of predictive accuracy 

and reasonableness of predictions for three tolling policy simulations.  Moreover, while 

this dissertation focuses on time-of-day modeling, the CCNL could be used in a number 

of other continuous choice contexts (e.g., location/destination, vehicle usage, trip 

durations, and profit-maximizing production). 

 

The second model is a bivariate multinomial probit (BVMNP) model.  While the model 

relies on discretization of time (into 30-minute intervals), it captures both key dimensions 

of a tour’s timing (rather than just one, as in this dissertation’s application of the CCNL 

model), which is important for tour- and activity-based models of travel demand.  The 
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BVMNP’s ability to capture correlations across scheduling alternatives is something no 

existing two-dimensional choice models of tour timing can claim.   

 

Both models represent substantial contributions for continuous choice modeling in 

transportation, business, biology, and various other fields.  In addition, the empirical 

results of the models evaluated here enhance our understanding of individuals’ time-of-

day decisions.  For instance, average travel time and its variance are estimated to have a 

negative effect on workers’ utilities, as expected, but are not found to be that practically 

relevant here, probably because most workers are rather constrained in their activity 

scheduling and/or work hours.  However, correlations are found to be rather strong in 

both models, particularly for home-to-work journeys, suggesting that if models fail to 

accommodate such correlations, biased application results may emerge.   
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Chapter 3: 

 and :  Choice bounds for continuous choice model 

:  BVMNP’s degree of closeness measure between implied duration of arrival 
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h:  CCNL’s nest size parameter 

:  Identity matrix of dimension  
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:  BVMNP’s systematic arrival time-specific utility for arrival time alternative j 

:  BVMNP’s systematic return time-specific utility for return time alternative  

:  BVMNP’s degree of closeness measure between arrival or return specific 

alternatives j and q 

:  BVMNP’s row vector of individual-specific attributes interacted with cyclical 

functions of arrival time j for individual i 

:  BVMNP’s row vector of individual-specific attributes interacted with cyclical 

functions of return time  for individual i 
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CHAPTER 1:  INTRODUCTION 
 

1.1 Overview and Motivation 
Travel demand forecasting has been widely used over the past 40 years.  The earliest 

models of travel demand sought to inform long-term infrastructure investments, 

rendering models of trip timing less important than trip generation, mode, and destination 

choices.  But the focus of decision-making has shifted from long-term capital investments 

to shorter-term policies, such as congestion management, promotion of alternative 

transport modes, and demand management (Bhat and Koppelman 1999).  This is due in 

part to the onset of environmental and transportation legislation, like the 1990 Clean Air 

Act Amendment and the Intermodal Surface Transportation Efficiency Act (ISTEA), but 

also due to rising financial costs of such investments, as practical space limits are reached 

in many urban areas.   

 

In addition, our understanding of travel behavior and the tools available for computing 

have progressed tremendously since the earliest models.  As policy decisions and tools 

have changed, so too have the questions posed to our travel demand forecasting models, 

and behavioral travel theory has become an increasingly important component.  With 

improvements in dynamic traffic assignment (DTA) techniques and applications (see, 

e.g., Hobeika 2005, Lin et al. 2008, and DYNASMART-P 2009), better models of travel 

timing are needed, compatible with the relatively fine time resolution used in DTA 

methods.  Even with recent advances in travel demand theory and DTA techniques, 

models of activity scheduling, a fundamental aspect of any trip or tour, are typically 

greatly simplified in model specifications and applications, particularly when compared 

to the treatment of mode and destination choices.  In fact, Vovsha et al. (2005) and TRB 

(2007) point to time-of-day (TOD) modeling as a major weakness of most travel demand 

model systems.   
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In addition to the need for better models of activity timing, the importance of travel time 

variability and its affect on travel behavior is becoming more prominent.  Most models 

emphasize travel time and travel cost, while ignoring travel time variability, though it can 

be highly consequential (Vovsha et al. 2005).  In some instances, estimates of the value 

of travel time reliability (measured as the difference between the 80th or 90th and 50th

 

 

percentile travel times) exceed the value-of-travel-time (see, e.g., Lam and Small 2001,  

Small et al. 2005, and Bhat and Sardesai 2006), suggesting that travel time reliability 

considerations are very important for forecasting travel, along with average travel times.  

DTA techniques offer a natural method for capturing travel time variability in models.   

These issues are of great consequence when examining road pricing policies, which have 

become more common in recent years (Schofer 2005).  Vovsha et al. (2005) suggests that 

accounting for reliability and dealing with individuals’ TOD choices are among the most 

important modeling challenges in road pricing policy evaluation (as well as accounting 

for heterogeneity among users’ values-of-travel-time).  For peak period pricing policies, 

TOD variations are of particular importance, since such policies are generally intended to 

shift travelers’ TOD choices to off-peak or shoulder periods.  Given the current modeling 

weaknesses in these areas, it is not surprising that toll road traffic and revenue forecasts 

suffer from great amounts of uncertainty, and are often biased high1

 

 (see, e.g., Bain and 

Wilkins 2002, George et al. 2003, Bain and Plantagie 2003 and 2004, Bain and Polakovic 

2005, Lemp and Kockelman 2009).  In order to accommodate these uncertainties in 

traffic and revenue forecasts, credit agencies often take a conservative approach, reducing 

growth rate expectations and carefully examining future toll schedule increases (Bain et 

al. 2006).  While understanding and accommodating uncertainty in forecasts is certainly 

necessary, improving the quality of forecasts is also important. 

                                                
1 For instance, the average ratio of actual-to-forecast traffic volumes for the first year of toll road operation 
is about 0.77 (Bain and Polakovic 2005).  In other words, forecasts tend to over-predict traffic volumes by 
about 30%, on average. 
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Of course, modeling activity timing has other important applications as well.  For 

instance, activity timing models could help transit agencies to optimally schedule transit 

vehicles.  Understanding the times in which people are most likely to choose to travel as 

well as the effect of transit quality of service (e.g., access, egress, wait, and travel times, 

costs, and reliability) with respect to competing transport modes (like the automobile) has 

important consequences in constructing transit vehicle schedules.   

 

This dissertation develops models of activity timing that allow travel time variability (as 

well as other level-of-service variables) to be incorporated into the model specification, 

and each model is developed in random utility theory.  The first two models (the 

continuous logit and continuous cross-nested logit [CCNL]) consider time-of-day choice 

in a continuous choice context, while the third model (the bivariate multinomial probit 

[BVMNP]) considers discrete time intervals.  However, the BVMNP considers the two-

dimensional activity scheduling context of a travel tour, rather than the one-dimensional 

context of the continuous logit and CCNL.  Model specifications are discussed in great 

detail in Chapter 3.  In the following section, existing methods for modeling activity 

scheduling behavior are introduced. 

 

1.2 Existing Methods of Activity Scheduling 
Existing methods for modeling activity scheduling behavior can essentially be broken 

into two subclasses:  those that rely on discretization of the TOD element and those that 

treat it as a continuous response variable.  Here, a brief summary of these two methods is 

offered.  Chapter 2 details the methods in greater detail. 

 

1.2.1 Discrete Methods 
Supporting applications of random utility maximization theory, the GEV class of models 

(McFadden 1978) has become a mainstay in travel behavior analysis of discrete choice 

behaviors.  McFadden’s (1973) multinomial logit (MNL) model represents the most 

familiar and straightforward of these models.  However, the MNL suffers from the 
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independence of irrelevant alternatives (IIA) property, which results in equivalent cross-

elasticities across each pair of choice alternatives2

 

.   

The nested logit model (Williams 1977, McFadden 1978, and Daly and Zachary 1979) 

relaxes this assumption, allowing correlations to emerge across similar alternatives.  

However, choice alternatives in common nests still retain the IIA property.  Vovsha 

(1997) introduced the cross-nested logit (CNL) model (later generalized by Ben-Akiva 

and Bierlaire [1999], Wen and Koppelman [2001] and Papola [2004]3

 

), which allows 

choice alternatives to appear in multiple nests, thereby, offering more flexible correlation 

patterns than the nested logit.  Small’s (1987) ordered GEV (OGEV) model represents a 

special case of the CNL, where alternatives are ordered in nature (e.g., departure time 

choice).  Thus, each nest in the OGEV contains consecutive alternatives in a sequence. 

While the models described above all have important applications in travel behavior 

research, a number of travel-related decisions are inherently continuous in nature, 

including TOD choice4

 

.  Of course, one can discretize these choices and employ discrete 

choice methods. In fact, this is often done in activity scheduling research (see, e.g., 

Abkowitz 1981, Small 1982 & 1987, Hendrickson and Plank 1984, Chin 1990, Vovsha 

1997, Bhat 1998a & b, Steed and Bhat 2000, Vovsha and Bradley 2004, Abou Zeid et al. 

2006, Popuri et al. 2008, among others). 

1.2.2 Continuous Methods 
Other research has treated departure time as a continuous response variable.  The usual 

approach involves a hazard function (see, e.g., Wooldridge 2002).  The hazard function 

defines the probability that an agent will leave its current state at some particular time.  

                                                
2 In other words, if one alternative’s attributes improve (e.g., travel time under the alternative decreases), 
the probability of that alternative draws probability away from each other alternative equally (in a relative 
sense). 
3 These generalizations reformulated the model to allow each nest to have its own nesting (or inclusive 
value) parameter. 
4 Other examples include residential location choice, travel destination choice, and vehicle usage. 
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There are a number of hazard function forms, including the proportional hazard 

specification, non-parametric hazard forms, and accelerated hazard functions (see, e.g., 

Bhat and Pinjari 2008). 

 

Since continuous methods do not require discretization of the time continuum, they may 

be preferable in certain applications.  For instance, DTA may require departure time data 

at a very fine temporal resolution, something that continuous methods can provide.  Most 

of the existing activity scheduling applications of continuous time methods have focused 

on activity duration (e.g., Ettema et al. 1995, Niemeier and Morita 1996, Bhat 1996, Yee 

and Niemeier 2000, Srinivasan and Guo 2003, Lee and Timmermans 2007, among 

others), though there has been limited application of such models in a departure time 

analysis setting (e.g., Wang 1996, Bhat and Steed 2002, Komma and Srinivasan 2008, 

and Gadda et al. 2009). 

 

1.3 Limitations of Existing Methods 
While there are many advantages to the discrete and continuous response models 

described above, all suffer from some limitations.  Bhat and Steed (2002) indicate a 

number of weaknesses of discrete choice methods.  First, discrete choice models require 

that interval boundaries be set, which is usually done in an arbitrary manner.  If interval 

boundaries are changed, different model results emerge5

                                                
5 In a departure time setting, for instance, one could build an AM peak interval (from 6am to 9am).  If 
instead, this interval was split into two separate intervals (e.g., one from 4:30am to 7:30am and another 
from 7:30am to 10:30am), one could not presume application results (and certainly not calibration results) 
would be the same. 

.  Second, discretization always 

results in points that are very close lying on either side of an interval boundary.  Such 

points may be viewed as very similar options from the decision-maker’s perspective, but 

cannot be treated adequately with discrete choice methods.  Allowing for correlation 

across alternatives in discrete models can alleviate this issue to some extent, but 

continuous treatment of departure time seems preferable.  Discrete treatment of time also 

results in a loss of temporal resolution, and, as DTA methods become more common, 
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value of such models is diminished.  Smaller intervals can alleviate this difficulty to some 

extent, but issues will remain unless continuous models are pursued.   

 

In addition, to the inherent weaknesses of using discrete choice methods for continuous 

response variables, there are four other key issues to recognize.  First, some models have 

taken the approach of modeling TOD choice for only a small portion of the day (e.g., the 

AM peak period).  There are certainly advantages to taking this approach, but such 

models may not be applicable in large-scale travel demand model systems.  Second, 

models that employ relatively large TOD choice alternatives over the entire day choice 

context (e.g., early morning, AM peak, midday, PM peak, and evening) may not be so 

valuable either.  Third, as activity-based modeling has taken center stage over the last 

several years, there is a need for models that offer a two-dimensional choice construct 

(since travel tours have [at least] two timing dimensions).  And finally, there is a need for 

models that allow correlations to emerge across similar alternatives.  Clearly, one would 

expect correlations to be present across adjacent discrete time intervals.  Currently there 

are no such applications in which all four of these ideas are integrated cohesively.  While 

there have been applications to consider each of the first three of these considerations 

(e.g., 30-minute or 1-hour time intervals over the entire day for two time choice 

dimensions [see, e.g., Vovsha and Bradley 2004, Abou Zeid et al. 2006, and Popuri et al. 

2008]), there have been none to integrate the correlations and two timing dimensions.  

And, those that have incorporated correlations have only done so over a limited temporal 

context or have used broad TOD choice alternatives (see, e.g., Small 1987, Chin 1990, 

Bhat 1998a, and de Jong et al. 2003).   

 

Although discretization of continuous response variables may be inappropriate, one of the 

main advantages of the GEV class of models is that they are based in random utility 

theory.  Random utility theory is a mainstay of travel choice modeling and provides a 

solid foundation for estimation of economic welfare, which can be used for project 

evaluation and policy analysis.  In addition, it can provide meaningful relationships 
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between activity scheduling behavior and other traveler choices (e.g., destination, mode, 

and route).  

 

Existing continuous response models are not based in random utility theory, and thus, 

offer none of the advantages of such models.  In addition, there do not appear to be any 

applications of such models incorporating the two timing dimensions of a travel tour.  

However, continuous models do not suffer from the interval boundary issues of discrete 

choice models, and offer no loss in temporal resolution.  In the next section, some 

strengths of Bayesian statistical techniques are explored. 

 

1.4 Advantages of Bayesian Techniques in TOD Modeling 
Since Bayesian statistics are used to estimate the TOD models developed in this 

dissertation, this section highlights comparisons between these methods relative to 

classical techniques. 

 

Bayesian statistics offer more straightforward parameter estimation and interpretation as 

compared to classical (or frequentist) statistics (Wagenmakers et al. 2008).  For instance, 

Bayesian methods avoid reliance on sample size asymtotics (needed with typical 

maximum likelihood estimation) and offer richer distributional inference of estimated 

parameters (e.g., the multivariate distributions of all parameters are estimated rather than 

point estimates of means and covariance).  In addition, if the likelihood function is 

multimodal, classical maximum likelihood methods face issues relating to local maxima 

convergence.  Since Bayesian methods do not search for parameter values that attain the 

maximum likelihood (draws from the posterior distribution are taken instead), this is not 

an issue (Huber and Train 2001).  Of course, assessing convergence with Bayesian 

methods can be problematic, since parameter draws converge to a distribution rather than 

a point (Train 2009). 
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Bayesian methods are typically more flexible than classical techniques since they rely on 

Markov chain Monte Carlo (MCMC) simulation with conditional distributions for model 

estimation.  Reliance on these conditional distributions allows models to be decomposed 

into smaller sub-problems that are often simpler to manage.  Moreover, Bayesian 

methods can estimate non-trivial variables of interest, such as latent utilities.  Classical 

methods generally must deal with the whole model directly, and such latent variables 

must be integrated out to obtain unconditional likelihood distributions.  Often such 

integration is analytically and/or numerically complex.   

 

Bayesian methods also offer the opportunity for the analyst to specify prior beliefs 

regarding model parameters.  In practice, however, it is often useful to assume little prior 

knowledge about the parameters, but in some circumstances, the specification of the prior 

can be critical.  In this dissertation, very little prior knowledge will generally be assumed. 

 

Also, hierarchical modeling in Bayesian statistics offers great advantages over classical 

techniques.  While hierarchical methods are not examined in this dissertation, it is useful 

to understand their value in TOD modeling.   Vovsha et al. (2005) notes the importance 

of understanding the heterogeneity in users’ values-of-travel-time.  Bayesian methods can 

handle such heterogeneity with ease through hierarchical model specification of relevant 

parameters (i.e., those related to cost, travel time, and/or reliability), while classical 

techniques generally must rely on maximum simulated likelihood techniques.  Of course, 

to achieve simplicity in such hierarchical models with Bayesian methods, the analyst is 

often limited to a narrower subset of distributional assumptions than with classical 

methods (Huber and Train 2001).  Nonetheless, other distributional assumptions can be 

used with Bayesian methods; they may simply complicate the analysis.   

 

Finally, Bayesian estimation offers clear opportunities for examining uncertainty in 

predictions.  This is because Bayesian estimation results in obtaining the actual 

distribution of relevant parameters, rather than point estimates.  Uncertainty in traffic 
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forecasts (as pointed out in Section 1.1) is of great importance, especially for toll road 

projects where traffic directly leads to revenue.  While one may be able to make informed 

guesses about the distribution of parameters using classical methods (e.g., via confidence 

intervals), such approximations would not be ideal, particularly when parameters exhibit 

high degrees of correlation among one another.  In the following section, the main 

objectives of this dissertation are outlined. 

 

1.5 Study Objectives 
There are five key objectives for the models of activity scheduling developed in this 

dissertation.  First, and foremost, the model should be developed within the random 

utility theory construct.  While this is rather limiting in terms of the types of models one 

may conceive (e.g., no continuous models of TOD choice have been developed in 

random utility theory), it offers a number of advantages.  For instance, it forms a basis for 

which consumer surplus and economic welfare calculations can be performed.  In 

addition, it offers opportunities to relate TOD choice to other travel choices within a 

large-scale travel demand model system.  The models developed in this dissertation each 

have a basis in random utility theory. 

 

The second objective is to develop models that recognize the continuous nature of 

activity timing adequately and across the entire 24-hour day period.  While this does not 

necessitate the treatment of activity timing in a continuous context, time intervals should 

be sufficiently small to capture relatively small changes in time choice behavior.  This is 

particularly important from a practical standpoint.  As the policies being investigated 

have become more focused on demand and congestion management (particularly peak-

period tolling policies), TOD choices occurring on relatively small scales have become 

increasingly important to recognize in model systems.  Moreover, the advancement of 

DTA techniques relies (at least in some part) on the ability to capture relatively small 

shifts in demand over time.  
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The third objective of this dissertation is to develop a model that recognizes correlations 

across very similar TOD choice alternatives.  Certainly one would expect adjacent 15-

minute time interval alternatives to exhibit some degree of correlation, but in practice, 

correlations are often ignored to simplify the model and streamline estimation 

procedures.  Realistically, such specifications assume that all of the dependence between 

alternatives is captured within alternative-specific utility specifications, which is 

unreasonable.  

 

The fourth objective is to develop a model of tour scheduling behavior.  A tour has (at 

least) two dimensions of travel timing (i.e., one for the outbound journey of travel and 

one for the inbound journey).  Thus, the model should accommodate simultaneous choice 

of two alternatives.  Often in practice, joint choices such as these are handled by 

describing the model in a single dimension and representing each model alternative as a 

pair of actual alternatives.  Of course, in a two-dimensional activity timing model with 

small time intervals across the entire day, the number of alternatives to consider increases 

dramatically in two dimensions.  For instance, if 30-minute intervals are considered, there 

are 48 alternatives in a single dimension and 1,176 in two dimensions (restricting joint 

alternatives to ones where inbound time is identical to or after outbound time).  With 

certain model specifications, handling large numbers of alternatives is not necessarily so 

problematic (e.g., the multinomial logit), but with more complex models, large numbers 

of alternatives may be prohibitive.  Thus, special techniques will be needed here. 

 

Finally, the model should include transportation level-of-service variables.  Since data on 

such variables is generally only available through network skims relevant to broad TOD 

periods (such as peak and off-peak), special methods are needed to thoughtfully impute 

these variables as they vary continuously over time.  And, since data on reliability is 

generally not available at all, a new method for imputing travel time (un)reliability is 

introduced (which also varies continuously over time).  For the automobile mode, simple 

regressions (a la Cambridge Systematics 2005, Abou Zeid et al. 2006, Popuri et al. 2008, 
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and Komma and Srinivasan 2008) are estimated to obtain time-varying travel times and 

reliability measures.  For the transit mode, similar regressions are estimated to obtain 

reliability measures, though these measures do not vary continuously over time for the 

transit mode.  Each of the activity timing models presented in this dissertation utilizes 

these imputed level-of-service (LOS) measures. 

 

Three models of travel timing are introduced in this dissertation, though the first is only 

new in the context of activity scheduling and represents a special case of the second.  The 

first two models are formed in random utility maximization theory, in a continuous 

choice context, and employ the imputed network LOS variables.  In addition, the second 

model allows for correlations across similar alternatives.  However, neither model is 

formulated in the context of tour scheduling decisions.  The final model meets objectives 

one, three, four, and five, but represents time as 30-minute choice alternatives, which is 

not ideal, but sufficient in many contexts.   

 

1.6 Organization 
The remainder of this dissertation is organized as follows.  Chapter 2 offers a detailed 

examination of the relevant literature, including that related to TOD modeling, reliability 

measures, and Bayesian statistics.  Chapter 3 develops the three models investigated in 

this dissertation: the continuous logit, the continuous cross-nested logit (CCNL), and the 

bivariate multinomial probit (BVMNP).  This chapter also details the Bayesian estimation 

procedures adopted for each model.  In Chapter 4, the methods and estimation results for 

imputing time-varying LOS variables used in the TOD choice models are presented.  

Chapter 5 details the empirical results of the first two continuous choice models.  In 

Chapter 6, empirical results of the BVMNP model for tour scheduling are discussed.  

And finally, Chapter 7 offers some concluding remarks and opportunities for future 

research. 
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1.7 Chapter Summary 
As the questions posed to our travel demand models have changed over the past several 

decades, many model enhancements have emerged, such as activity- and tour-based 

methods and dynamic traffic assignment techniques.  However, time-of-day modeling 

components of these models remain a major weakness.  This dissertation contributes to 

the growing body of research on time-of-day modeling, by developing and applying three 

new models. 
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CHAPTER 2:  LITERATURE REVIEW 
 

As discussed in Chapter 1, there are several elements to the research presented in this 

dissertation.  This chapter explores the related literature, emphasizing key methodological 

techniques, including models of travel timing.  Over the past two decades, much research, 

and a variety of models have been devoted to uncovering the key determinants of 

travelers’ trip timing behavior.  Understanding the effect of travel time reliability 

represents a core element of such work.  This chapter compares reliability measures 

identified in the literature, and concludes with a discussion of Bayesian statistical 

techniques, which are used for this dissertation’s empirical analysis. 

 

2.1 Travel Timing Models 
Travel timing models developed in the literature can generally be broken into two broad 

categories:  discrete choice methods and continuous techniques.  Discrete choice methods 

require that the time dimension be discretized to provide a set of discrete alternatives.  

For instance, the 24-hour day may be discretized into 24 1-hour interval alternatives, or 

the 2-hour morning peak period may be broken into twelve 10-minute intervals.  Such 

methods usually take a random utility maximization (RUM) model form in which 

travelers are assumed to choose the alternative that offers the greatest benefit (or utility).  

Continuous models generally do not take the form of a RUM model, but do not require 

discretization of the time dimension.  The following sections discuss these two 

approaches, highlighting the advantages and weaknesses of each. 

 

2.1.1 Discrete Choice Models 

Discrete choice models offer a convenient form for time-of-day (TOD) modeling, since 

destination, mode, and other travel dimensions typically take discrete choice forms and 

such models are based on the behavioral premise that individuals seek to maximize their 

own utility when choosing alternatives.  Moreover, if models of the generalized extreme 

value (GEV) family (such as the multinomial and nested logits) can be developed for 
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these purposes, relatively straightforward calculations for traveler welfare can emerge 

(see, e.g., de Jong et al. 2007, Zhao et al. 2008, and Kockelman and Lemp 2009).  

Traveler welfare is important for a variety of reasons, including environmental justice 

considerations, cost-benefit analyses, and project ranking and evaluation.  Of course, 

such models require that the time dimension be broken into discrete intervals, for which 

interval boundaries are often set rather arbitrarily.  Nonetheless, the convenient structural 

form of discrete choice models (GEV models in particular) offers many advantages in 

both model estimation and application, and they have been used a great deal in the 

literature to identify the determinants of departure time choice and activity durations, as 

described below. 

 

Some of the earliest models of travel timing examined departure time choices, often 

focusing on commuter trips.  The multinomial logit (MNL) model (McFadden 1973 and 

1978), in particular, was widely used in the early years of trip timing research.  Abkowitz 

(1981) and Small (1982) modeled departure times in this way, both using twelve 5-

minute departure time intervals (spanning one hour during the AM peak period).  These 

studies illuminated key demographic (e.g., age, income, and occupation) and network 

level-of-service (LOS) effects on departure time choice.  Using broader TOD periods 

(e.g., peak, before peak, and after peak), McCafferty and Hall (1982) also modeled 

commuter departure time choice in a MNL framework.  Similar TOD alternatives were 

considered by Saleh and Farrell (2005), finding that individuals with flexible work 

schedules are much more likely to shift the timing of their travel, which has important 

implications for many transportation policies, including congestion pricing. 

 

All of the models discussed above use a MNL structure, which has well known 

limitations, including the assumption of independence across irrelevant alternatives (IIA).  

Such limitations have led to the use of more flexible model structures for departure time 

choice.  For instance, Chin (1990) compared the MNL with the nested logit model (which 

relaxes the MNL’s independence of irrelevant alternatives [IIA] assumption).  The nested 
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logit model contained three nests for very early morning, early morning, and morning 

slots, thus allowing for correlations across alternatives in common nests.  However, their 

estimation results yielded inclusive value parameter estimates that were inconsistent with 

random utility theory.  This is probably due to the fact that the nested logit does not 

adequately describe the types of correlations one would expect in the context of departure 

time choice.  For example, an alternative at the very end of the early morning period and 

one at the very beginning of the morning period would likely be correlated in some way, 

since they are adjacent over the time spectrum.  However, the nested logit does not allow 

such correlations, and it presumes that the first alternative in the morning nest is as 

correlated with the last alternative in the morning nest as it is with the second alternative 

in the nest.  Again, this simply does not seem an adequate representation of the 

correlation structure one would expect in a departure time choice context.  Small (1987) 

introduced a more flexible model specification, the ordered generalized extreme value 

(OGEV) model.  The OGEV model can be viewed as a generalization of the nested logit 

for ordered alternatives, allowing correlations to emerge between alternatives in order to 

reflect the ordered nature of those alternatives.  However, Small’s (1987) empirical 

investigation with twelve 5-minute time slots suggested the model was no better than the 

conventional MNL specification. 

 

While the above models all focused on work-related travel, several research efforts have 

examined non-work travel.  For instance, Okola (2003) investigated the determinants of 

TOD choice for elderly persons’ recreational activities using six broad times of day.  

Estimation results suggested a propensity for choice of the morning peak and midday 

time periods.  Using similarly broad periods, Steed and Bhat (2000) investigated MNL 

and OGEV model structures to reveal determinants of social, recreational, and shopping 

trip timing.  It is questionable whether a great deal of correlation would exist between 

broad TOD intervals (such as the ones used here), and results of the study confirm these 

suspicions.  The OGEV model did not perform any better than the MNL. 
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Other research has studied departure time choice in a joint setting with mode choice.  In a 

joint choice model of mode and departure time, with four mode and seven 10-min 

departure time alternatives, Hendrickson and Plank (1984) found that commuters are less 

likely to shift modes than departure times.  Contrary to these findings, Tringides et al. 

(2004) used bivariate probit models of mode and departure time, finding that workers are 

more constrained in their trip timing choice than mode, while non-workers are more 

likely to shift times than modes.  However, with the broad time periods used here (peak 

vs. off-peak), such results are not so surprising.  In another joint choice application, Bhat 

(1998a) developed a MNL-OGEV model, essentially nesting the ordered departure time 

choice dimension within an upper-level mode choice dimension.  Empirical results 

indicated that the model outperforms both the nested logit and MNL formulations.  Bhat 

(1998b) compared mixed multinomial logit (MMNL) models with the MNL model in a 

joint choice setting (of mode and departure time).  Results indicated that the mixed 

models offer smaller value-of-travel-time estimates than the MNL, and if random utility 

components are introduced along both choice dimensions (i.e., mode and departure time), 

one obtains the best model fit.  However, the analytical intractability of the MMNL 

model creates challenges for estimation and application. 

 

As tour- and activity-based travel demand models have become more common in 

practice, models of tour timing (as opposed to trip timing) have taken center stage.  Of 

course, tours have two timing dimensions (departure time and duration).6

                                                
6 Note that tours may potentially have many timing dimensions, one for each trip made.  Usually this is 
resolved by selecting a “primary” activity from the collection of tour activities, with an activity having a 
start and end time.  The timing of the primary activity is then modeled rather than the timing of the entire 
collection of activities.  The other activities’ timings may then be handled via other methods. 

  The problem 

becomes more complex with a second timing dimension, especially since such models 

must account for individuals’ scheduling constraints when more than one tour is 

undertaken during the day (e.g., tours cannot overlap in time).  Vovsha and Bradley 

(2004) modeled tour timing in this way using a joint MNL framework.  In this case, the 

time dimension was split into 1-hour intervals (over the entire day).  The authors used a 
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rather innovative approach in specifying the utility in order to recognize the ordered 

nature of the alternatives.  In particular, four utility components were present:  one each 

related to departure, return, and duration time, and one related to the maximum expected 

mode utility7

 

.  The first three of these components were computed using shift variables, 

where demographic characteristics of the individual were interacted with departure time, 

return time, and duration (each treated as continuous variables).  Thus, the utility function 

is allowed to vary continuously over time, even though tour timing is not modeled in a 

continuous way.  Abou Zeid et al. (2006) and Popuri et al. (2008) used similar methods 

of analysis with 30-minute intervals.  In addition, both studies developed a unique utility 

function form, where demographic and other time-invariant covariates were interacted 

with cyclical functions, allowing for highly flexible utility shapes to emerge as a function 

of time.  Practically, however, the model structures are identical to that of Vovsha and 

Bradley (2004).  While this method offers advantages in terms of computational 

tractability and incorporation of multiple timing dimensions, it does not recognize likely 

correlations between adjacent (and possibly non-adjacent) time intervals and durations, as 

other methods do.  The method is, however, useful for integrating these time choice 

dimensions rather seamlessly for activity-based model systems. 

Using stated preference data, de Jong et al. (2003) estimated MMNL models for joint 

choice of mode and departure and return times.  Because only four alternatives were 

included in the stated preference design, utility functions were constructed carefully.  The 

findings suggested that arriving early or late by one minute was valued higher by 

commuters than one minute of travel time.  In addition, simulation results implied that a 

travel time or cost increase during peak periods would indeed shift travelers to off-peak 

periods, a factor important in policy design and decision-making.  However, the study 

relied on four choice alternatives presented in the stated preference experiment, where 

tradeoffs could be evaluated in terms of a specific tour that respondents actually made.  
                                                
7 This was computed using logsums over mode choice alternatives specific to departure and arrival times in 
the activity scheduling model.  It essentially serves as a method for nesting mode choice under TOD 
choice. 
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Generalizing these results for broader tour scheduling (e.g., choice sets over an entire 

day) would be challenging.  And, while not entirely prohibitive, the computational 

intractability of the MMNL model is undesirable, though the MMNL does allow for a 

highly flexible error structure, and can be used to approximate any GEV-type model 

(McFadden and Train 2000). 

 

2.1.2 Continuous Models 

The second broad type of travel timing models treat time as a continuous response 

variable.  While such models have not taken the form of a RUM model, they do not 

require special treatment of the time dimension (i.e., time is not discretized as it is with 

discrete choice methods).  These models (usually) utilize what is called a hazard function.  

The hazard function defines the probability that an agent leaves its current state in a time 

interval with boundaries t and t + h, given that the agent has remained in its current state 

until time t (Wooldridge 2002).  More specifically, the hazard function is the limit of this 

probability as h goes to zero.  The hazard function can take a number of different forms, 

including non- and semi-parametric forms.  This section highlights some key 

methodologies and results found in the literature. 

 

The simplest form of the hazard model is the Cox proportional hazards model (Cox 

1972).  Such models assume that covariates affect the hazard function in a proportional 

way, and have been used by a number of researchers to investigate activity durations.  

For instance, Niemeier and Morita (1996) observed differences in the duration of trip-

making activities for men and women, Yee and Niemeier (2000) examined how activity 

durations changed for households over a period of years using panel data, Srinivasan and 

Guo (2003) studied activity durations for shopping trips, and Zhong and Hunt (2005) 

explored weekend activity durations.  While proportional hazard models are convenient, 

the restriction that covariates affect the hazard in a proportional manner is limiting.  To 

allow for a more flexible structure, Ettema et al. (1995) suggested accelerated hazards, 

which allow covariates to have time-varying effects on the hazard function.  In other 
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words, the accelerated hazard specification captures an individual’s propensity to remain 

in his/her current state for more or less time depending on the time already allocated to 

the individual’s current state.  Using a similar approach, Popkowski Leszczyc and 

Timmermans (2002) found that the choice and timing of activities depends in some ways 

on the type and durations of previously conducted activities, which is not surprising. 

 

Another neglected attribute of these models is that of unobserved heterogeneity across 

durations.  Heckman and Singer (1984) established that failure to control for such 

unobserved heterogeneity may produce large biases in model estimation results.  In the 

context of activity durations, Bhat (1996) was among the first to incorporate unobserved 

heterogeneity directly into model specification.  In that study, non parametric 

proportional hazards were used (with heterogeneity controlled non-parametrically) in an 

examination of shopping activity durations.  Results indicated significant effects of 

unobserved heterogeneity and that using parametric forms for the baseline hazard and 

unobserved heterogeneity can lead to estimation bias.  Lee and Timmermans (2007) used 

latent class specifications with an accelerated hazard model to capture heterogeneity in 

activity durations for five activity types, finding a strong relationship between 

heterogeneity and demographics. 

 

While the models discussed above emphasize activity durations, there is also a large 

amount of literature related to departure time modeling in a continuous time setting.  For 

instance, Wang (1996) used a parametric proportional hazard rate specification to model 

activity start times.  Somewhat differently, Bhat and Steed (2002) developed a non-

parametric hazard model using Gamma mixing distributions to account for unobserved 

heterogeneity in shopping trip departure times.  Travel time and travel cost were 

introduced in the model, though results suggested these had little effect on departure 

times, likely due to travel times and costs varying only between peak and off-peak 

periods (rather than continuously).  Komma and Srinivasan (2008) used a similar model 

specification for commute trip departure time, but included continuously varying travel 
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times.  Their findings suggested that travel time had an appropriate effect on departure 

time choice.  Thus, it seems likely that travel time plays a role in TOD choice; one simply 

needs to appropriately characterize it. 

 

In contrast to these earlier applications, Gadda et al. (2009) used Bayesian estimation 

techniques to model departure times for four trip types.  This represents one of the few 

attempts to utilize Bayesian techniques in models of TOD choice.  Gadda et al. (2009) 

used accelerated hazard functions with and without unobserved heterogeneity to model 

departure times of home-based work and non-home-based trips.  However, the absence of 

time-varying travel time and cost data limited the models’ abilities to predict how 

transportation LOS changes affect departure time choice. 

 

2.1.3 Time-of-Day Modeling Summary 
The continuous and discrete approaches for TOD modeling offer respective advantages 

and weaknesses.  For instance, the main advantage of continuous time models is that they 

avoid arbitrary time interval selection required by discrete choice methods.  Time interval 

selection creates a number of issues that are described in greater detail below.  However, 

network LOS data are often unavailable over continuous time, and typically only 

estimated for broad TOD periods (e.g., peak and off-peak periods).  If such variables are 

of interest for the continuous model, special techniques must be used to impute these 

continuously over time.  In addition, continuous time models are not based in random 

utility theory.  Random utility theory is an integral part of many travel demand model 

systems and offers a meaningful technique for estimating user benefits.  Moreover, 

integrating such continuous time models (like those described here) with other travel 

choice dimensions in an econometrically meaningful way presents many challenges.  

Thus, hazard-based models of trip/tour timing have gone largely unused in large-scale 

transportation model systems. 
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On the other hand, discrete choice models (usually) are based in random utility theory, 

and offer all the benefits derived therein.  However, they require discretization of the time 

dimension, which produces a number of issues as discussed by Bhat and Steed (2002).  

First, interval boundaries are often set in an arbitrary manner, and if boundaries are 

changed, different model results emerge.  Second, two points very close in time may be 

classified in two different intervals with discrete models, when, in reality, these points 

may be perceived as very similar options.  Allowing for correlations in discrete models 

can help alleviate this issue to some extent, but continuous treatment of departure time 

can alleviate this issue fully.  Third, discrete treatment of time results in loss of temporal 

resolution in the model, and as dynamic traffic assignment (DTA) methods (which rely 

on input demand from origin-destination pairs across very small time increments) 

become more popular, this issue will become more critical.  And last, discrete intervals 

set in model calibration must also be used in model application, which can limit the 

policies that can be evaluated (for instance, variable congestion charging and other traffic 

control measures). 

 

In addition to model selection, this dissertation seeks a better understanding of the 

relationship between travel time reliability and trip timing.  In the following section, 

reliability measures are explored. 

 

2.2 Reliability Measures 
One key element of the proposed work is the incorporation of travel time (un)reliability 

measures.  This is particularly challenging since there is no consensus regarding how 

reliability should be measured.  Two main approaches currently exist:  travel time 

distributions and schedule delay methods. 

 

2.2.1 Travel Time Distribution 
Travel time distribution approaches assume that travel times have some underlying 

distribution (on a single route at the same time-of-day for the same origin-destination pair 
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across days of the week/month), which can be measured.  Based on that distribution, it is 

possible to obtain standard deviations, variances, and 80th, 90th, or 95th

 

 percentile travel 

times, each of which can be used to measure travel time variability.  In the case of 

percentiles, usually the difference is taken between some upper percentile travel time and 

the mean or median travel time as the measure.  Many studies have used these types of 

measures.  For instance, Small et al. (1999) used the standard deviation of travel times in 

a stated preference survey, and estimated binary route choice models.  Their findings 

suggested that a minute of added standard deviation in travel times is valued more than 

an added minute of average travel time.  However, critics argue that standard deviation is 

not such a useful measure because it does not relate well to everyday commuting 

experiences and it is not well understood by non-technical audiences (TTI and CS 2006). 

Hensher (2001), Small et al. (2005), Brownstone and Small (2005), and Bhat and 

Sardesai (2006) all measured travel time reliability as the difference between some upper 

travel time percentile and median or mean travel time.  While application settings and 

results vary over these studies, all found values of travel time reliability to be sizable in 

their choice contexts.  The measurement of reliability using percentiles has several 

advantages over standard deviations.  Not only does it relate explicitly to a travel time 

threshold for which there is some specific probability of higher travel times, but it is 

much easier for non-technical audiences to understand (TTI and CS 2006).  In addition, 

van Lint et al. (2008) have shown that the distribution of travel times may in fact exhibit 

some skew, but standard deviations simply cannot capture that dimension.   

 

Distributional measures of reliability, however, may not be the most appealing for models 

of travel timing.  These measures will typically enter the utility function just as travel cost 

or travel time might, which presumes that the possibility of additional delay is what 

causes the disutility.  In reality, the disutility associated with unreliable travel may be in 

arriving late (or early) to an activity location.  In other words, some of the planned 

activity participation is lost, and distributional measures of reliability can only proxy for 
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the disutility of this lost activity participation.  Schedule delay approaches take a step 

toward capturing this idea of lost activity participation. 

 

2.2.2 Schedule Delay Methods 
First introduced by Small (1982), schedule delay approaches capture the effect of travel 

time variability by entering a penalty term in the utility function for arriving earlier or 

later than the preferred arrival time.  Only one of these costs will come into play at a 

time, since an individual cannot arrive early and late simultaneously.  The penalties for 

late and early arrivals can take any number of analytical forms.  A number of studies 

have employed these measures in a variety of contexts for both stated and revealed 

preference (see, e.g., Noland and Small 1995, Small et al. 1999, Lam and Small 2001, 

Bates et al. 2001, de Jong et al. 2003, and Tseng and Verhoef 2008).   

 

The main advantage of this approach is that it provides valuable behavioral insight, in the 

sense that disutility associated with unreliable travel times is quantified by penalties for 

arrival at non-preferred times.  In comparison to distributional methods, it more 

appropriately captures the real source of disutility.  Of course, the schedule delay 

approach has its limitations as well.  It requires knowledge of individuals’ preferred 

arrival times.  For model application, preferred arrival times could be simulated or 

otherwise specified; but, for model calibration, stated preference data are probably 

needed in most cases.  In this regard, distributional measures may have an advantage 

since they are based on data supplied by the transportation network, though obtaining 

these distributional measures (even with network data in hand) is no simple task.   

 

The previous two sections of this chapter have detailed literature specifically related to 

the TOD modeling context of this dissertation.  In the next section, methods of Bayesian 

inference (which are used in the empirical work of this dissertation) are introduced. 
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2.3 Bayesian Statistics 
As compared to many applications of classical (or frequentist) statistics to complex 

model specifications, parameter estimation and interpretation can be much more 

straightforward with Bayesian inference (Wagenmakers et al. 2008).  While classical 

methods rely on asymptotics to suggest that parameter estimates converge properly as 

sample size becomes very large, Bayesian methods yield estimates of parameter 

distributions for any sample size.  These distributions can suggest intervals on which 

parameters have a high probability of being bounded.  Classical methods offer point 

estimates and confidence intervals, which must be strictly interpreted as long run 

frequencies (Gelman et al. 2004). 

 

In practice, Bayesian statistics are generally more flexible since they rely on model 

estimation via Markov chain Monte Carlo simulation with conditional distributions 

(Wagenmakers et al. 2008).  Such conditional distributions allow models to be 

decomposed into smaller sub-problems, which are generally easier to handle.  Classical 

methods, however, must deal directly with the entire problem.   

 

Finally, the specification of prior distributions offers analysts the opportunity to include 

any established intuition regarding parameters directly in the model.  In fact, Bayesian 

methods can be viewed as a way of optimally combining such intuition or prior 

knowledge with observed data.  Of course, in practice, it is often useful to assume as little 

as possible about the parameters (i.e., the idea of letting the data speak for itself).  And, in 

this dissertation, this latter approach will typically be used.  However, it is useful to note 

that such opportunities exist when using Bayesian statistics.  In the following subsections, 

many fundamental techniques for applications of Bayesian methods are discussed. 

 

2.3.1 Bayesian Theory 
Bayesian inference is based on Bayes’ theorem, which states that the joint distribution of 

two random quantities, A and B, is equal to the conditional distribution of A given B 
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multiplied by the marginal distribution of B.  Suppose that our data is composed of Y and 

X, where Y represents a vector (or matrix in a multivariate setting) of dependent variables, 

and X represents a matrix of explanatory variables.  Let  be a vector of unknown 

parameters in the model.  Bayes’ theorem then states that the joint distribution of Y and  

given X can be written as follows: 

 

     (2.1) 

 

Here,   (since  is generally taken to be independent of X) is the density of 

the prior distribution, which represents the analyst’s beliefs about the distribution of 

parameters before examining the data;  is the likelihood function, representing 

the probability of obtaining the actual sample of dependent variables, Y, given X and 

choice of ;  is the density of the parameters’ posterior distribution, 

representing the analyst’s updated beliefs about the distribution of , given the 

occurrence of Y and X; and,  is the marginal density of the data, which does not 

depend on , and, thus, is simply a constant.  The posterior distribution can be rewritten 

as follows: 

 

        (2.2) 

 

Thus, Bayesian statistics can be viewed as a mechanism for combining one’s beliefs and 

observed data.  The following subsections detail some important techniques in 

applications of Bayesian statistics that will be used in this dissertations empirical work. 

 

2.3.2 Prior Choice 
One key piece of Bayesian analysis is the prior distribution.  In theory, the prior can be 

chosen as anything one likes.  And, as sample size grows, the effect of the prior on the 

posterior becomes smaller, regardless of the choice of prior (Gelman et al. 2004).  

However, there are some practical considerations here.  If the prior density is zero for 
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some values of , the posterior density for such values must also be zero, regardless of 

sample size and likelihood function.   

 

When an analyst has little or no intuition regarding the parameters before examining the 

data, it is common to employ non-informative priors.  Generally, such priors come from 

improper distributions.  For instance, a uniform prior on  or a normal prior with 

 represent two non-informative prior choices.  In neither case does the density 

function integrate to 1, but in both cases one can treat the density values as constant.  

Thus, the posterior distribution becomes proportional to the likelihood alone.  However, 

this can sometimes lead to improper posterior distributions (i.e., functions that are not 

actually density functions), which is problematic (Gelman et al. 2004).  Alternatively, one 

could represent one’s lack of prior knowledge with vague proper priors (e.g., a normal 

distribution with very large variance).  In this dissertation, vague proper priors are used 

regularly. 

 

When the prior and posterior distributions come from the same family of distributions, 

the prior is said to be conjugate to the posterior.  For example, if the prior was chosen to 

be distributed normal, and the posterior was also normal (with different parameters 

values, of course), the prior is conjugate.  Fully conjugate priors are often not achievable 

with more complex models, but conditional conjugacy is often very helpful.  This refers 

to a prior that is conjugate to the conditional posterior distribution of some parameter 

subset, given all other parameters.  As will become evident in the next subsection, such 

conditional posteriors are often very important in Bayesian statistics applications. 

 

2.3.3 MCMC Simulation 

Modern Bayesian inference relies heavily on Markov chain Monte Carlo (MCMC) 

simulation, including Gibbs sampling and the Metropolis-Hastings (MH) algorithm (see, 

e.g., Gelfand and Smith 1990, Smith and Roberts 1993, Gelman et al. 2004, and 
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Gamerman and Lopes 2006).  The objective is to generate random draws from a Markov 

chain whose stationary distribution is the posterior.   

 

Suppose one is interested in a random process that evolves over iterations.  Further, say 

that the state of the process is  at iteration n.  Here, it will be assumed that the state 

space is discrete, since the results are the same for continuous distributions.  A Markov 

chain is a sequence of random variables (e.g., ) where the distribution of  

given all previous values of  ( , …, ) only depends on .  That is, given 

the state of the process at iteration n-1, the distribution of  is independent of all other 

previous states.  Suppose the state space is discrete with states given by {1,2,…,Q}, and 

the transition probabilities are written as .  Thus,  

is the probability of transitioning from state a to state b, and .  The 

transition matrix is given by the following: 

 

         (2.3) 

 

Now suppose that , where  is a vector of probabilities (that sum to 1).  By 

definition, .  If it is assumed that , and given that there are a 

finite number of states, then there is a unique stationary distribution, , such that , 

and .  In fact, these conditions are more than 

sufficient to show these results.  One need only show the chain to be irreducible, positive 

recurrent, and aperiodic, in which case the chain is said to be ergodic (Gamerman and 

Lopes 2006). 

 

Irreducibility and positive recurrence are somewhat related.  A Markov chain is said to be 

irreducible if every state b, can be transitioned to from any other state a, for all state pairs 

a and b, though the transition need not be direct (Gamerman and Lopes 2006).  A Markov 
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chain is positive recurrent if all its states are positive recurrent.  The probability of 

returning to a recurrent state, starting at any other state is 1; and for a positive recurrent 

state, the expected number of iterations required before returning to it is finite 

(Gamerman and Lopes 2006).   Finally, while a periodic chain may have a unique 

stationary distribution, aperiodicity establishes the convergence of transition probabilities 

for a large number of iterations (Gamerman and Lopes 2006). 

 

Consider again a Markov chain transition matrix P (as in equation 2.3), with some fixed 

number of states Q, and that each element is strictly positive.  Suppose, however, that 

instead of drawing  conditional on all previous draws,  is drawn conditional on all 

future draws.  Using Bayes’ theorem, the probability of  taking state b is defined as 

follows: 

 

  (2.4) 

     

      

          (2.5) 

 

Thus, the reverse process is a Markov chain, where .  Here,  is the 

stationary distribution of the forward Markov chain process,  is the transition matrix of 

the forward Markov chain process, and  is the transition matrix of the reverse Markov 

chain process.  Moreover, a Markov chain is defined to be time reversible if the following 

conditions holds (Gamerman and Lopes 2006): 

 

         (2.6) 
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In words, a Markov chain is time reversible if the probability of obtaining an a to b 

transition is the same as the probability of obtaining a b to a transition.  This is not 

equivalent to the condition where the one-step probability of transitioning from a to b is 

the same as the probability of transitioning from b to a, which would imply that  must 

equal .  Time reversibility is a property needed to construct the MH algorithm, 

discussed later. 

 

Although the discussion in this section focused on discrete random variables, the methods 

and results hold in a continuous setting as well.  In the next subsection, MCMC results 

are extended to illustrate their applicability in Bayesian statistics and to Gibbs sampling, 

in particular.  

 

2.3.3.1 Gibbs Sampling 

The Gibbs sampler results from defining a Markov chain in the parameter space so that 

the posterior density is the stationary distribution of the Markov chain.  Suppose the full 

conditional posterior density of  is given by , where  denotes the 

full set of parameters with  (which may be a vector or scalar) removed.  Suppose also 

that initial values are given for each parameter so that .  The Gibbs 

sampler is defined as a Markov chain where, at each iteration, each parameter is drawn 

from its full conditional posterior distribution.8

 

   

 Step 1: Draw  from . 

 Step 2: Draw  from . 

   

 Step k: Draw  from . 

 

                                                
8 Note that this does not mean that each parameter is from the correct joint posterior distribution, at least 
not for the first number of iterations.  A “burn-in” period is required for parameters to converge to the 
correct joint posterior. 
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Since  comes from the correct conditional posterior for all i,  must be from the 

correct joint posterior (for large enough n).  In fact, only mild regularity conditions are 

need to show that draws of  converge to the correct joint posterior distribution (see, e.g., 

Roberts and Smith 1994 and Tierney 1994). 

 

This is an important result because often (particularly for complex models) the full joint 

posterior distribution cannot be recognized as coming from a familiar family of 

distributions and cannot be drawn from directly.  The Gibbs sampler allows one to draw 

from a series of (simpler) conditional distributions instead, and these usually are 

constructed to be “easy” to draw from.  This is typically accomplished through 

specification of conditionally conjugate priors.  Such priors are conjugate to the 

conditional posterior distribution (rather than the full joint posterior).  Of course, this is 

not always the case.  The following subsection details the Metropolis-Hastings algorithm 

for drawing from distributions with unfamiliar and/or difficult forms. 

 

2.3.3.2 Metropolis-Hastings 

The Gibbs sampler presented above allows an analyst to draw parameters using a series 

of conditional distributions.  Usually it is convenient to build a model in which each set 

of parameters is conditionally conjugate, to facilitate drawing from the conditional 

posteriors.  However, in many cases, it may not be possible to construct the model in this 

way, and certain groups of parameters may have non-standard distributions (that are 

typically more difficult to draw from directly).  The Metropolis-Hastings (MH) algorithm 

provides a rather simple method for generating such draws.  Metropolis et al. (1953) first 

proposed the algorithm, which was later extended by Hastings (1970). 

 

As with the Gibbs sampler, the goal is to construct a Markov chain with stationary 

distribution equal to the posterior distribution.  However, suppose that draws of  

cannot be easily obtained (e.g.,  is some unknown density), but draws from 

the density  are easy to generate.  Here, q could be any density one likes.  
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Clearly, since choice of q is somewhat arbitrary, the Markov chain defined simply with 

transition density q will generally not converge to the posterior distribution of interest.  

Gamerman and Lopes (2006) discuss how, if the Markov chain is constructed to be time 

reversible, with q acting as a “proposal density,” then the chain will converge to the 

correct posterior distribution.  The MH algorithm works as follows: 

 

 Step 1: Draw  from . 

 Step 2: Compute . 

 Step 3: With probability , . 

  With probability , . 

 

Thus, each proposed draw of  can either be accepted or rejected, where the probability 

of acceptance is given by .  Here,  and  represent the posterior densities (or 

conditional posterior densities, as the case may be) of a and b, respectively.  One need 

only be able to compute the ratio of , not necessarily the posterior density itself, which 

can be important in some applications.  The transition density of this Markov chain is 

given by the following:  

 

       (2.7) 

  

  

 

Thus, the transition density is time reversible with stationary distribution .  Roberts and 

Smith (1994) show that under mild regularity conditions for  and , the Markov chain’s 

stationary distribution is equivalent to the correct posterior distribution. 

 

One simplifying technique for choosing transition densities is to construct a symmetric 

chain (Gamerman and Lopes 2006).  A chain is symmetric if for every pair of states, the 
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density is symmetric in its arguments (i.e., ).  Thus, the transition 

densities cancel and so do not matter in computing the acceptance probability, .  

The acceptance criterion only depends on whether the proposal is more or less likely 

under the posterior distribution than the current set of parameters. 

 

Random-walk chains represent another reasonable choice here.  The proposal for a 

random walk chain takes the following form: 

 

         (2.8) 

 

Here,  is the proposed parameter draw at iteration n,  is the current draw of , and 

 is a random disturbance term with density , generally taken to be independent and 

identically distributed (IID) across iterations (Gamerman and Lopes 2006).  Though  

need not be symmetric, it should allow for both negative and positive values.  If  is 

symmetric about 0, then the chain is symmetric.  Symmetric random walk chains are 

most common for practical applications, usually assuming  is a normal density 

(Gamerman and Lopes 2006).  One reason for using a random walk MH algorithm (rather 

than an independence chain, where the proposal is independent of previous draws) is that 

it can be simpler to calibrate in practice.  Most MH algorithms require some degree of 

calibration to work properly, since it is not always clear what types of parameter values 

are most likely under the posterior.  In this dissertation, the normal random walk proposal 

is used in all cases, and proposal variances are tuned to facilitate speedy convergence. 

 

2.3.4 Convergence Assessment 
One key element of most Bayesian applications is assessing convergence of generated 

draws.  While one would typically like to obtain independent draws, neither the Gibbs 

sampler nor the MH algorithm will generate independent draws9

                                                
9 By definition, the Markov chains are defined to dependent on previous draws.  Thus, each draw will show 
some signs of dependence. 

.  One simple approach 
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for reducing dependence is to drop draws (e.g., keep every 5th or 10th

 

 draw).  However, 

even with independent draws, there is generally no simple or conclusive way to identify 

when a Markov chain has converged (Gamerman and Lopes 2006), though a couple of 

methods are described here. 

Gelfand and Smith (1990) suggest graphical techniques as informal checks of 

convergence.  For instance, if an analyst obtains 1,000 draws he/she thinks are from the 

posterior density, estimated parameter densities using the first 200 could be plotted 

against estimated parameter densities for the last 500.  If these parameter densities are 

indistinguishable, convergence is accepted.  Alternatively, one might plot parameter 

draws as a function of the draw number (see, e.g., Gamerman 1997).  If clear trending is 

evident in any parameters, it can be used as a reasonable indication that convergence has 

not been reached (Gamerman and Lopes 2006). 

 

Others have attempted to provide more formal convergence diagnostics.  One rather 

simple method was proposed by Geweke (1992).  Suppose the analyst has n draws for 

which convergence will be tested.  If A represents the set of draws from 1 to nA, and B 

represents the set of draws from n-nB

 

+1 to n, with no overlap between sets A and B, 

Geweke’s (1992) diagnostic compares the ergodic averages of the two sets, which should 

be very similar if convergence has been reached.  Formally, the diagnostic is computed as 

follows: 

       (2.9) 

 

Here,  and  are the means over sets A and B, respectively, and  and  

are estimated variances over the two sets.  As nA and nB grow in size, the distribution of 

 approaches standard normal if the chain has converged.  Geweke (1992) recommends 

nA = 0.1n and nB = 0.5n. 
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Other diagnostics have also been proposed.  Gelman and Rubin (1992) used multiple 

chains starting at different points to formalize convergence criteria, and Zellner and Min 

(1995) proposed a method based on conditional distributions.  Of course many others 

exist as well (see, e.g., Gamerman and Lopes 2006).  However, no method can 

definitively prove convergence, and different problems may have different convergence 

criteria acceptance considerations (Gamerman and Lopes 2006).  In this dissertation, 

informal graphical techniques and Geweke’s (1992) convergence diagnostic (e.g., 

equation 2.9) are used, but more as informal checks of convergence rather than definitive 

measures. 

 

2.4 Chapter Summary 
This chapter reviewed a variety of literature related to this dissertation work.  Section 2.1 

offered a detailed examination of the methods used in TOD modeling research, 

discussing important considerations needed for such work as well as highlighting some 

key strengths and weaknesses of existing continuous- and discrete-response methods.  

Section 2.2 investigated different measures used to quantify travel time (un)reliability.  

Finally, Section 2.3 presented the fundamentals of Bayesian inference, with particular 

attention given to those methods used in this dissertation.  In the next chapter, the 

statistical methods used in this dissertation’s empirical work are presented. 
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CHAPTER 3:  TIME-OF-DAY MODELING METHODS 
 

In this chapter, one existing and two new time-of-day (TOD) model specifications are 

developed in detail.  All of the methods presented here derive from principles of random 

utility, where each individual is assumed to make decisions in order to maximize his/her 

utility.  A key reason for developing such models is that random utility theory offers a 

strong basis for economic welfare calculations, which can be important for project 

evaluation and cost-benefit analyses.  In addition, all models consider the choice context 

of an entire 24-hour period.  Three other desirable features also were sought.  First, the 

models should allow for continuous choice (since the timing of travel is inherently 

continuous in nature).  Second, the models should allow correlations across similar 

choice alternatives (i.e., those close on the temporal continuum).  Finally, the models 

should allow for both outbound and inbound TOD choice of an activity or tour.  While 

none of the models developed here is able to offer all three components, all are based on 

random utility maximization (RUM) and represent advances in behavioral modeling. 

 

In Section 3.1, the continuous logit model is developed for departure time choice.  The 

continuous logit offers a continuous choice setting, though it does not allow for 

correlations or two dimensions of travel timing10.  While the continuous logit model is 

nothing new, the literature offers no applications of the model in a departure time setting, 

and its derivation here is important for derivation of the continuous cross-nested logit 

(CCNL) model.  Section 3.2 presents the CCNL model formulation, also for departure 

time choice only.  The CCNL offers a continuous choice setting and allows correlations 

to emerge across timing choices, but like the continuous logit, the model is developed for 

a single timing dimension11

                                                
10 While the continuous logit is presented here for a single timing dimension, adding a second timing 
dimension would not be too difficult (as done by Ben-Akiva and Watanatada [1981] and Ben-Akiva et al. 
[1985] in two-dimensional spatial applications) and would be computationally feasible to estimate. 

.  In Section 3.3, a bivariate multinomial probit (BVMNP) 

11 Like the continuous logit, adding a second timing dimension to the CCNL is theoretically possible, but 
estimation is computationally prohibitive (at this age of computing). 
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model is developed.  Unlike the logit models, the BVMNP offers two-dimensional tour 

timing choice.  In addition, the model allows correlations across alternatives to emerge.  

However, the model is not continuous in its choice contexts. 

 

3.1 Continuous Logit 
McFadden (1978) developed the GEV class of models for discrete choice applications to 

make use of random utility theory.  Every GEV model is derived from a function 

G(y1,…,yJ

 

), where j = 1,…,J indexes the set of alternatives (with G satisfying some 

regularity conditions [see, e.g., McFadden 1978 and Small 1987]).  If random utility for 

any alternative j is defined as a systematic component plus a random error component 

(where the joint density of all error components is distributed according to the extreme 

value distribution), as shown in equation 3.1, then the probability that alternative k is 

chosen (i.e., alternative k offers the maximum utility) is given by equation 3.2. 

          (3.1) 

         (3.2) 

 

Here,  denotes the partial derivative of G with respect to , and , 

for all j.  For the MNL model, G is given by equation 3.3 and the choice probability of 

alternative k takes equation 3.4’s familiar form. 

 

        (3.3) 

         (3.4) 

 

3.1.1 Continuous Logit Specification 
The continuous logit model represents a generalization of the MNL model for a 

continuous response variable (McFadden 1976, Ben-Akiva and Watanatada 1981, and 
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Ben-Akiva et al. 1985).  The model can be derived directly from the random utility 

assumption.  For instance, consider again the utility equation 3.1, but assume that utility 

varies continuously over departure time choice, t.  The utility expression can thus be 

written as follows (for observation i): 

 

         (3.5) 

 

Suppose the continuous response variable of interest, t, is bounded by  and , 

discretize t such that tj denotes the jth discrete alternative (where j = 1,…,J), and let t1 = 

 and tJ = .  Also, suppose that  (the error component for the jth

 

 discrete alternative) 

is independent and identically distributed over all J alternatives.  Now, suppose J (the 

number of discrete alternatives) is computed as , where s denotes the 

distance between each discrete alternative.  Since t has been discretized, the model can 

now be written as a MNL, with generating function given by equation 3.3 and choice 

probabilities given by equation 3.4.  As s decreases in size, the number of discrete 

alternatives grows, but the generating function and choice probabilities remain of the 

same form.  However, in the limit as , one obtains the continuous logit generating 

function and choice density function shown in equations 3.6 and 3.7, respectively.   

       (3.6) 

         (3.7) 

 

Here,  and  define the bounds of the choice space.  The choice density shown in 

McFadden (1976), Ben-Akiva and Watanatada (1981), and Ben-Akiva et al. (1985) 

appears slightly different than that shown in equation 3.7.  Their derivations include an 

additional additive component in the utility equation, called the opportunity density 

(formulated as the natural logarithm of an attractiveness function), which describes the 
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density of choice alternatives at a particular point in space.  The authors use this function 

in the context of location choice, since some locations have more opportunities than 

others (e.g., a body of water will have no household locating opportunities while a 

densely populated urban area may have many).  Essentially this is done to reflect another 

dimension and ensure no aggregation biases.  In the context of departure time choice, one 

may view this opportunity density function as a zero-one indicator.  If an individual has 

already scheduled an activity during some particular time interval, the opportunity 

density will be zero over that interval, and the opportunity density will be one elsewhere.  

Here, the opportunity density will be ignored (i.e., it is assumed equal to one 

everywhere).   

 

As developed above, the continuous logit model represents a generalization of the MNL 

model.  Such a model of tour timing was described by Ettema and Timmermans (2003), 

except the denominator of the density function was discretized, and the model was 

estimated as a MNL.  Moreover, since time-varying travel times and costs were not 

available to Ettema and Timmermans, such time-dependent covariates were not included 

in their tour scheduling model.  Time-dependent covariates are developed for the models 

in this dissertation, as described in Chapter 4. 

 

Since utility is arguably (smoothly) continuous in departure time choice, it deserves 

special attention here.  Similar to the typical MNL model, covariates that do not vary 

over time alternatives (e.g., an individual’s gender or age) cannot be introduced in the 

normal way.  One could imagine any number of continuous utility forms to use in this 

context.  For instance, Abou Zeid et al. (2006) and Popuri et al. (2008) specified 

systematic utility in a continuous framework12

 

, both using cyclical functions of departure 

time choice interacted with covariates.  A similar systematic utility specification is 

adopted here, as shown in equation 3.8. 

                                                
12 Note that the models in these applications were discrete choice models, not continuous ones. 
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       (3.8) 

  (3.9) 

 

Here, X is a row vector of K individual specific variables;  is a matrix of parameters to 

be estimated with size K x 2 ; and  is a 2  x 1 column vector consisting of cyclical 

functions of the departure time t.  Note that some covariates may be interacted with fewer 

than 2  cyclical functions by restricting the applicable elements of  to be zero.  Time-

varying variables (such as travel time, travel time variability, and cost) are represented by 

, and there are  of these variables, with parameters given by .  Since these 

variables vary over time, they need not enter the systematic utility in any special form.  

There are a couple of reasons for selecting this utility form.  First, it allows utility to take 

on a rich assortment of shapes, including multimodal ones.  In addition (and as pointed 

out by Abou Zeid et al. [2006] and Popuri et al. [2008]), 24 hours is a multiple of the 

period of each cyclical function, which offers day-to-day consistency in the utility 

function (e.g., utility at 0 and 24 hours is identical). 

 

3.1.2 Continuous Logit Parameter Estimation via MCMC Simulation 
In order to estimate the continuous logit’s parameters, Bayesian methods are employed.  

In this work, the  prior is chosen to be independent (i.e., each parameter in  is 

independent of each other parameter in  under the prior) and normally distributed with 

vague prior information (i.e., large variance).  Since one expects network variables to 

affect the utility function in a negative way, the  prior is chosen to be independent and 

distributed according to a log-normal multiplied by minus one, again with vague prior 

information.  Given the large dataset (n = 997), the priors should play little role in the 

posterior distribution.   

 

Draws from the posterior distribution of parameters are obtained by constructing a 

Markov Chain with stationary distribution equal to the posterior distribution, as described 
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in Chapter 2.  Here, a one-step Metropolis-Hastings (MH) algorithm can be employed to 

draw all parameters simultaneously.13

 

  A MH algorithm is needed here since the posterior 

distribution of parameters cannot be drawn from any standard distributions.  The proposal 

density is chosen to be multivariate normal with mean given by the previous parameter 

draw (i.e., a normal random walk proposal).  The  parameter deserves special attention 

here.  Instead of drawing  directly in the proposal density, a transformation variable, 

, is drawn.  By transforming  in this way,  can take on negative or positive 

values and a normal proposal distribution is appropriate.   

Initially, the covariance matrix is set to zero on all off-diagonal elements, and very small 

values on all diagonal elements.  This ensures a high rate of acceptance during initial 

stages of the process.  After 2,000 draws were obtained using the MH algorithm (and for 

every 20th

 

 draw thereafter), the proposal density’s covariance matrix was updated (i.e., 

set to equal the estimated covariance matrix from previous draws, not including the 

current draw).  Note that the covariance matrix used to generate proposals is actually 

deflated to increase the probability of proposal acceptance.  Gelman et al. (2004) suggests 

a deflation factor of 5.8 / d, where d is the number of parameters drawn.  Here, the 

deflation factor was initially set to 0.2, and adjusted accordingly every 1,000 draws 

depending on the rate of proposal acceptance over the previous 1,000 draws.  Finally, 

after 5,000 draws were obtained, and thereafter, the covariance matrix was estimated 

from the previous 5,000 draws (not including the current draw).  Since the adaptive MH 

algorithm does not include information from the current value of the parameters (other 

than the mean of the proposal density), the algorithm will converge to the proper 

posterior distribution (Holden et al. 2009).   

After it appeared the draws have converged to the posterior distribution, additional draws 

were obtained from the posterior, with only every 50th

                                                
13 Gibbs sampling is not needed here, since all parameters can be drawn simultaneously from a single 
multivariate proposal distribution.   

 draw being retained for inference.  
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With an MH process such as this, it is inevitable for consecutive draws to be correlated.  

By dropping draws, this autocorrelation is reduced.  Convergence was diagnosed using 

informal graphical techniques14

 

 as well as Geweke’s (1992) diagnostic.  Results are 

presented in Chapter 5. 

3.2 Continuous Cross-Nested Logit 
The continuous cross-nested logit (CCNL) model represents a generalization of the cross-

nested logit (CNL)15

 

 for a continuous response variable; much like the continuous logit 

represents a generalization of the MNL.  In formulating the CCNL here, it is convenient 

to first discuss the CNL for discrete choice. 

3.2.1 (Discrete) Cross-Nested Logit 
The CNL model for discrete alternatives has been well documented in the literature (see, 

e.g., Small 1987, Vovsha 1997, Ben-Akiva and Bierlaire 1999, Wen and Koppelman 

2001, and Papola 2004, among others) and offers a rather flexible correlation structure 

for discrete alternatives.  The CNL is formulated here to aid in the notation and 

formulation of the continuous cross-nested logit (CCNL) detailed in Section 3.2.2.  The 

CNL’s generating function and choice probabilities are shown in equations 3.10 and 3.11, 

respectively. 

 

      (3.10) 

      (3.11) 

 

                                                
14 In other words, the draws were plotted and investigated for patterns/trends.  The absence of such trends is 
an indicator of convergence (see, e.g., Gamerman and Lopes 2006).  
15 When not explicitly stated otherwise, the term cross-nested logit (or CNL) will refer to discrete choice 
contexts here. 
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Here, m = 1,…,M indexes the set of nests,  is an allocation parameter defining the 

degree to which alternative j is a member of nest m,  denotes the inclusive value 

parameter for nest m, and  is the subset of alternatives in nest m.  To be consistent 

with random utility theory, .  Furthermore,  should satisfy the conditions 

 and  (Wen and Koppelman 2001, Bierlaire 2006, Abbe 

et al. 2007, and Marzano and Papola 2008).  As a practical matter, each subset of 

alternatives, , should be distinct (ie.., ) for model identification 

purposes. 

 

3.2.2 Continuous Cross-Nested Logit 

Similar to the way in which the MNL is generalized for continuous response, the CNL 

can be generalized, though some additional support is needed, as discussed here.  Of 

great importance is nest composition.  It makes good sense to think of these nests as 

small, contiguous intervals of the continuous spectrum of alternatives.  And, since the 

response variable (departure time) is continuous, it seems reasonable to restrict attention 

to the case of ordered alternatives.  Thus, each nest should be constructed so that it 

contains a set of sequential elemental alternatives.  

 

The set of nests could be structured in a couple of different ways.  For instance, one could 

construct a finite number of nests, similar to the discrete CNL model.  However, a more 

general approach is to consider the set of nests in the same manner as the set of 

alternatives, effectively infinite.  Such treatment requires parameterization of the 

inclusive value and allocation parameters, as discussed in more detail below. 

 

As before, suppose the continuous response variable of interest, t, is bounded by  and 

 (e.g., 0 and 24 hours for trip departure time); t is discretized so that tj denotes the jth 

discrete alternative; and J is the total number of choice alternatives, computed as 

.  In addition, suppose the number of nests equals the number of alternatives 
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(i.e., ), and the nest interval is given as 2h (i.e., each nest, m, is composed of 

elemental alternatives ranging from alternative tm – h to alternative tm

 

 + h).  Let  

denote the allocation parameter for alternative j in nest m and let , the 

exponent of systematic utility for alternative j.  Like the parallel between MNL and 

continuous logit, it is now possible to write the generating function and choice 

probabilities for this discretized model as they appear in equations 3.10 and 3.11.  As 

before, taking the limit,  (and ), results in the generating function and 

choice density function for the CCNL model, as shown in equations 3.12 and 3.13, 

respectively. 

     (3.12) 

     (3.13) 

 

Here, a single inclusive value parameter, , is considered instead of allowing each nest to 

have a different parameter (which would require further parameterization).  In the context 

of continuous response, this seems reasonable since one may expect similar amounts of 

correlation across every pair of alternatives separated by a common distance (e.g., 

alternatives 5 minutes apart in the AM share the same amount of latent information as 

alternatives 5 minutes apart in the PM).  Of course, such correlations may differ at 

different points along the continuous spectrum and relaxation of this assumption may 

offer added model flexibility.  As with the discrete CNL model,  is bounded below by 1, 

to be consistent with random utility theory.  Unlike , the allocation parameters, , 

are parameterized here, though they could be taken as constant over the nest interval.   

 

Suppose that for any nest m and alternative j, the allocation parameter, , is 

parameterized such that, if m = j, then  takes on its greatest value.  And define h 
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so that, if , then ; otherwise, .  In other words, 

the allocation parameter is zero if alternatives m and j are more than h units apart (e.g., 

one hour apart), and strictly positive otherwise.  (Remember that the number of nests 

equals the number of alternatives.)  Finally,  must be normalized as shown in 

equation 3.14, just as it was for the CNL (for unbiased results [Abbe et al. 2007]). 

 

        (3.14) 

 

With this constraint it can be shown that equations 3.12 and 3.13 reduce to equations 3.6 

and 3.7 for  (i.e., the CCNL collapses to the continuous logit), similar to the manner 

in which the CNL collapses to the MNL for inclusive value parameters of 1.  Even with 

these restrictions, the analyst retains a great deal of flexibility in the parameterization of 

the allocation parameters.  Here, a simple triangular formulation is proposed, as shown in 

equation 3.15 (and illustrated graphically in Figure 3.1). 

 

      (3.15) 

 

Here, it is assumed that time rolls over at midnight, meaning that 0 hours and 24 hours 

are identical.  This ensures that condition 3.14 holds for  “close to” (i.e., within h units 

of) either limit,  or .  In addition, it allows for correlations to emerge across these 

times, which seems reasonable given the cyclical nature of a day period.  (Essentially, 

those reporting trips in the sample view an 11:59 pm departure time virtually the same as 

12:01 am.  Most travel surveys start and end trip reporting at 3 am anyhow.)  By 

formulating  in this way, correlations across alternatives separated by a common 

distance are identical.  Moreover, it allows a single parameter, h, to control behavior of 

the allocation parameters.   
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Figure 3.1:  Allocation Parameter Illustration 

 

Of course, other formulations could be used here as well, to allow for other shapes (e.g., 

normal or uniform) or for skew.  However, adding further complexity to the model may 

add estimation challenges.  Another option is to specify  as constant across alternatives 

present in each nest.  While this formulation seems simpler, it would not reduce the 

number of parameters to be estimated in the model (the nest size, h, must still be 

estimated) and allocation parameters for alternatives at nest boundaries would not be 

well-defined16

 

.   

To facilitate comparisons with the continuous logit model, equation 3.8’s and 3.9’s same 

systematic utility functions are used for the CCNL.  In the next section, properties of the 

CCNL are investigated and model behavior is compared to that of the continuous logit, to 

illustrate the roles of the allocation and inclusive value parameters.  

 

                                                
16 For instance, if the nest parameter h is 1, then the allocation parameter for the 8 am alternative in the nest 
centered at 9 am is ill-defined.  For the left, it would take a value of zero, while from the right, it would 
take a value of .  Since numerical integration is required in model estimation, which relies on evaluation 
of discrete density values, either treatment of such boundary points will affect estimation results, and 
neither will be correct. 

tk tk+htk-h
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3.2.3 CCNL Model Behavior and Properties 
Recently, several papers have investigated the correlation structure implied by the 

(discrete) CNL model.  Here, those results are applied and extended in the continuous 

context to illuminate correlation structures of the CCNL model. 

 

The covariance between any two discrete CNL random error components can be 

expressed as follows (for derivation, see, e.g., Papola and Marzano 2005 and Abbe et al. 

2007): 

 

    (3.16) 

 

Here,  represents the joint cumulative distribution function (CDF) for error 

terms,  and ,  is Euler’s constant, and  is the scale parameter (set to one in this 

case as is typical to identify the model).  This representation is rather complex, and 

Marzano and Papola (2008) have shown that equation 3.16 can be rewritten as follows: 

 

    (3.17) 

 

While equation 3.17 still involves integration over the domain of the error terms, the 

partial derivative of the joint CDF has been eliminated (which is particularly important 

for extending these results for application in the CCNL context).  Here,  and  

denote the marginal CDFs of the error terms, which, thanks to the normalization of the 

allocation parameters (so that they sum to 1 across all nests for each alternative), can be 

written as follows: 

 

  (3.18) 
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The right-hand side of equation 3.18 results from the normalization of the allocation 

parameters.  Note here that nests are indexed from 1 to M.  The joint CDF can be written 

as follows: 

 

   (3.19) 

 

Here,  is the inclusive value parameter corresponding to nest m.  Note that 

 under the CCNL specification of Section 3.2.2.  Moreover, the summation in 

equation 3.19 is analogous to an integral under the CCNL specification, which allows 

ease in writing the joint CDF for the CCNL as follows: 

 

  (3.20) 

 

Here, the allocation parameters, , take the functional form shown in equation 3.15.  

Remember that under the CCNL representation,  and  represent the error components 

related to elemental alternatives k and j, where alternatives k and j represent departure 

times of  and .  Moreover, 17 is an implicit assumption. 

 

With this information, it is not difficult to numerically compute correlation coefficients 

across random error components of the CCNL.  However, a couple of observations can 

be made without computation.  First, suppose j = k + 1, and  is one elemental time unit 

greater than .  In words, suppose the limit as  is taken.  The joint CDF then 

reduces to the following (thanks to the normalization of allocation parameters):  

 

                                                
17 While  need not be less than , this is assumed to ensure bounds on the integral in equation 3.20 are 
stated correctly.  This does not result in a loss of generality. 
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      (3.21) 

 

This is exactly the joint CDF of nested logit random errors sharing a common nest, with 

correlation coefficient given by .  And, since the correlation across any other 

alternatives separated by a distance greater than zero must be smaller,  

represents the maximum correlation across any pair of alternatives under the CCNL 

specification.  Of course, one would expect near perfect (or perfect) correlation between 

alternatives separated by an infinitesimally small time step.  One could accommodate 

such correlations by setting  to be arbitrarily large, and not estimating it at all.  For 

instance, if  was set to a value of 10 or more, the maximum correlations would be 0.99 

or greater. 

 

Another observation that can be made is that the time interval between alternatives need 

only be measured in units of h (where 2h represents the nest interval size).  In other 

words, the correlation across any two alternatives separated by a distance h, where  is 

some constant, will be the same, even if h changes.  This results from the joint CDF 

(equation 3.20) only depending on the shared area between the respective allocation 

parameter functions. 

 

To illustrate the range of correlation coefficients one can achieve under the CCNL model, 

numerical computation was used.  Table 3.1 shows the correlation coefficient for 

alternatives separated by a variety of distances (measured in units of h) for a variety of 

inclusive value parameters, . 
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Table 3.1: Correlation Coefficients for Varying  and Distance Variables18

  

 

    
    1.1 1.25 1.5 2 3 5 10 

Distance 
between 

Alternatives 

0 0.173 0.360 0.555 0.750 0.889 0.960 0.990 
0.2h 0.165 0.341 0.524 0.705 0.831 0.894 0.920 
0.4h 0.145 0.299 0.457 0.610 0.713 0.763 0.782 
0.6h 0.119 0.245 0.372 0.491 0.571 0.607 0.622 
0.8h 0.091 0.186 0.281 0.368 0.425 0.451 0.461 

h 0.064 0.129 0.194 0.254 0.292 0.309 0.315 
1.2h 0.041 0.082 0.123 0.160 0.184 0.195 0.199 
1.4h 0.023 0.046 0.069 0.089 0.102 0.108 0.110 
1.6h 0.010 0.020 0.030 0.039 0.045 0.048 0.049 
1.8h 0.002 0.005 0.008 0.010 0.011 0.012 0.012 
2h 0 0 0 0 0 0 0 

 

Clearly, as the distance between alternatives grows, the correlations shrink, and 

correlations grow with increasing .  One may note that even for very large values of , 

error term correlations die off rather quickly as the distance between the alternatives 

exceeds h units. 

 

To illustrate differences between the continuous logit and CCNL specifications, suppose 

that all parameters of the systematic utility are known (and are the same under the 

continuous logit and CCNL), and temporarily exclude time-varying covariates from the 

utility specification.  Further, suppose that the only covariate in X is a constant and  

is given by the following: 

 

  

 

Two examples are presented here.  In Example 1, the parameter vector is assumed to be 

, and in Example 2, the parameter vector is assumed to be 

                                                
18 While not shown in Table 3.1, when , the model reduces to the continuous logit and correlations 
are zero for all distances between alternatives. 
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.  Figure 3.2 shows the systematic utility profiles over 

departure time alternatives for Examples 1 and 2.  In addition, 90% confidence intervals 

around the systematic utilities are also plotted under the assumption of standard Gumbel 

distributed error terms19

 

.   

 
Figure 3.2:  Utility Profiles and 90% Confidence Intervals for Examples 1 and 2 

 

Figure 3.3 presents differences in predictive densities for departure time choice between 

the continuous logit and CCNL under Example 1’s utility specification for h = 0.5 (30 

minutes) and  varying from 1 to 15.  Clearly, there is very little difference in the 

predictive densities between the two models, which is largely due to the relatively low 

value of h here.  However, some important conclusions can be drawn from this example.  

For instance, under this utility specification (for both models), this individual would be 

very unlikely to choose departure times outside of 6 am to 11 am.  In addition, even 

though the utility function (Figure 3.2a) has three local maxima (occurring at about 2 am, 

9 am, and 5 pm), only the 9 am peak has substantial effects on the predictive distribution.  

This is because the 9 am utility peak represents utility values that are much greater (in a 

                                                
19 Note that error terms in the random utilities have variances given by .  
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relative sense) than other utility values.  So, while a 5 pm departure may be more 

probable for this individual than a 9 pm departure, a 9 am departure is much more 

probable than both.  Of course, if the size of utility values during the AM peak period 

were closer in magnitude to utility values in the early morning and/or midday or evening, 

then very different predictive densities would emerge.  In Chapter 5’s empirical analysis, 

the size of these utility values emerges via parameter estimation. 
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Figure 3.3:  Predictive Densities with h of 0.5 and Varying Values of  for Example 1 

 

Figure 3.4 shows similar predictive densities, but with h chosen as 1.0 (rather than Figure 

3.3’s ).  Like Figure 3.3, the differences in predictive densities between the 

continuous logit and CCNL are not very large, though some difference is perceivable.  In 

particular, the heights of the CCNL’s predictive density peaks are slightly higher as  

grows in value.  This is, in fact, a property of the CCNL.  One cannot achieve peak 
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heights less than the continuous logit’s peak heights for identical systematic utility 

functions. 

 

 
Figure 3.4:  Predictive Densities with h of 1.0 and Varying Values of  for Example 1 

 

Figure 3.5 plots predictive densities for Example 1’s utility specification with h chosen as 

2.0.  With the larger value of h here, very noticeable differences between continuous logit 

and CCNL predictive densities emerge.  But again, like Figure 3.4, predictive density 
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peaks only grow (with increasing values of ) in relation to the continuous logit density 

peaks. In addition, Figure 3.5 depicts how, relative to the continuous logit, the base of the 

peak density shrinks in size with increasing values of , and the peaks become more 

rounded.  In fact, with , there is a noticeable valley within the peak portion of the 

density.   

 

 
Figure 3.5:  Predictive Densities with h of 2.0 and Varying Values of  for Example 1 
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Example 2 illustrates a slightly different utility specification.  Figure 3.6 shows predictive 

densities for the continuous logit and CCNL (with h of 2.0 and a variety of  values).  

The only difference between Examples 1 and 2 is the utility profile, as shown in Figure 

3.2.  Example 2’s utility profile represents a bimodal peak utility situation.20

Figure 3.6

  This is 

evident in the predictive density profiles of .  As with Example 1, one can 

again notice that the two peaks in the predictive densities are higher under the CCNL 

specification (with increasing values of ), not surprisingly.  Moreover, as in Example 1, 

the base (or spread) of the peaks shrinks in size with increasing values of , unlike the 

continuous logit. 

 

                                                
20 While Example 1’s utility profile also exhibits bimodality, because the relative difference between 
utilities from the highest peak and the other peaks were so large, they did not contribute in any meaningful 
way to the shape of predictive densities. 
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Figure 3.6:  Predictive Densities with h of 2.0 and Varying Values of  for Example 2 

 

3.2.4 CCNL Parameter Estimation via MCMC Simulation 
Like the continuous logit of Section 3.1, the CCNL is estimated here using Bayesian 

techniques.  And like the continuous logit, the  prior is chosen to be independent and 

normally distributed and the  prior follows a log-normal distribution multiplied by 

minus one, both with vague (i.e., large variance) parameters.  The CCNL contains two 

additional parameters (h and ) for which a normal prior would not be reasonable.  
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Instead, priors for h and  are chosen as independent gamma distributions, bounded 

below by 0.25 and 1.0, respectively21.  Shape and scale parameters for the prior 

distributions are chosen as 1.0 and 0.5 for both.  These priors offer the model information 

on h and  (unlike the vague priors selected for  and ), which has the effect of pulling 

them closer to their respective left-side bounds.  This is quite reasonable for h, since h 

specifies the minimum time interval between uncorrelated alternatives (and one would 

not expect correlations between alternatives a great distance apart).  While similar 

expectations may not exist for , its prior can be viewed as follows:  unless the data offer 

significant proof for another value, the prior guides  to a value of one, thereby reducing 

the model to the continuous logit.  Also, while h is not required to be at least 0.25 in 

model formulation, this restriction aids in numerical integration computations.  For small 

h, a large number of function evaluations would be required to obtain reasonable integral 

estimates using Simpson’s rule (Press et al. 1989).22 Figure 3.3  As shown in , when h is 

equal to 0.5, there appears to be very little difference between the continuous logit and 

CCNL anyway (though Figure 3.3 illustrates the difference only for a specific utility 

function specification).  Additionally, since values of  close to 1 will effectively 

eliminate the impact of h on the model, this should not be a sizable issue in model 

estimation.  However, this means that if correlations exist in departure time choice (i.e., 

), departure time alternatives a minimum of 0.5 hours apart will exhibit some 

amount of correlation. 

 

The Bayesian inference proceeds in much the same way as the continuous logit, where a 

one-step MH algorithm is employed.  Of course, with the CCNL there are two additional 

parameters, h and .  While it may seem logical to draw the utility parameters,  and , 

separately from the structural parameters, h and  (i.e., a two-step algorithm with two 

MH proposals), this was not sought here because with each step of the algorithm, the 

                                                
21 The lower bound on h was chosen to aid in numerical integration computations.  In the case of , values 
less than its lower bound of 1.0 are not consistent with random utility theory. 
22 With fixed integration bounds and more function evaluations, errors in numerical integration estimates 
will be smaller.   
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likelihood must be computed, which requires a great deal of computational effort.  The 

proposal density is again constructed as a multivariate normal density with mean equal to 

the current draw’s parameter values (i.e., the normal random walk proposal).  Also, like 

the continuous logit, the covariance matrix of the proposal is initially set to zeroes on the 

off-diagonal elements and very small values for the diagonal elements to ensure high 

acceptance rates early in the estimation process.  After 2,000 draws are obtained, the 

covariance matrix is estimated from the previous draws (not including the current draw); 

and, after 5,000 draws are obtained, the covariance matrix is estimated from the previous 

5,000 draws (not including the current draw).  It has been shown that an adaptive MH 

algorithm of this kind should generate draws that converge to the correct posterior 

distribution (Holden et al. 2009). 

 

It should be noted that using this proposal density, it is possible to draw values of  less 

than 1.0 and/or values of h less than 0.25.  In such cases, the entire set of parameters is 

re-drawn from the same proposal density until an acceptable set of parameters is 

obtained.  In other words, the proposal density essentially amounts to a truncated normal 

distribution, where  is truncated from below by 1.0 and h is truncated from below by 

0.25.  

 

Finally, like the continuous logit, only every 50th

 

 draw is used for inference after draws 

appear to have converged, which reduces the autocorrelation across draws.  Again, 

convergence here is diagnosed by a combination of informal graphical techniques as well 

as Geweke’s (1992) diagnostic. 

3.3 Bivariate Multinomial Probit 
Like the MNL, the multinomial probit (MNP) relies on a latent random utility 

specification.  However, unlike the MNL, the random error terms are not distributed 

according to a type I extreme value distribution (i.e., a gumbel); instead, they follow a 

normal distribution.  Of course, normality results in open-form expressions for alternative 
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probabilities (unlike the MNL), which is why the MNP has not been utilized to a greater 

extent in the literature.  Thanks to Bayesian and other sophisticated statistical methods, 

one need not assume error terms are independent and identically distributed with the 

MNP.  In this section, a bivariate MNP (BVMNP) model specification for tour TOD 

choice is formulated, where the twin variables of interest are a tour’s home-to-work 

arrival time and work-to-home departure time.  Unlike the continuous logit and CCNL 

models, these two components are treated as discrete alternatives rather than continuous 

ones.  However, the BVMNP here offers the ability to capture both timing dimensions of 

a tour, rather than a single timing dimension characterized by the continuous logit and 

CCNL models developed in previous sections of this chapter.23

 

 

3.3.1 Random Utility Framework and Model Specification 
The MNP model is a random utility model, like the MNL and other GEV-type models.  

One assumes that each alternative has a (latent) random utility, and the decision-maker 

always chooses the alternative offering the greatest underlying utility value.  However, 

unlike the GEV class of models, the random error components are distributed according 

to a multivariate normal distribution, rather than an extreme value distribution.   

 

Moreover, the MNP model places no restrictions on the covariance structure of random 

error components across alternatives (though some restrictions are needed for statistical 

identification in model estimation).  Most closed-form GEV models, on the other hand, 

rely on some specific covariance structures, generally predetermined by the analyst 

through specification of the GEV generating function.  Of course, restrictions on the 

covariance structure are not always unwelcome.  For instance, in the case of departure 

time choice with discrete time-interval alternatives, one expects adjacent alternatives to 

                                                
23 It should be noted that both the continuous logit and CCNL models could (theoretically) be reformulated 
to accommodate TOD choice for two dimensions of a travel tour.  In the case of the continuous logit, model 
estimation for two dimensions may be feasible; however, model estimation of the CCNL with two timing 
dimensions would be computationally prohibitive due to its multidimensional integration required for each 
timing dimension. 
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be more correlated than non-adjacent ones, similar to the correlation structure imposed 

with the CCNL in a continuous choice setting (Section 3.2.3).  Nonetheless, implied 

correlations for the GEV class of models are rarely straightforward, largely because 

model estimation utilizes the generating function to compute choice probabilities, so the 

underlying distribution of correlated error terms is unnecessary (not to mention that 

covariance between correlated extreme values does not in itself define a multivariate 

extreme value distribution).  Conversely, the MNP model relies on explicit estimation of 

the covariance matrix.  Thus, error term correlations are easily recognizable.  This 

represents a key motive for choosing the MNP here, rather than a GEV-type model.  The 

MNP allows the analyst to posit a specific relationship between error terms first, and then 

derive the implied covariance structure. 

 

Since the MNP model developed here is intended to offer a format for the two-

dimensional TOD choice of a travel tour, the choice context needs special attention.  One 

reasonable way to approach the problem is to consider it in a single dimension.  Instead 

of choosing tour arrival times and tour return times, one may assume that individuals 

jointly choose tour arrival and return times, and the analyst need only consider a single 

choice dimension.  This is exactly how many researchers have modeled tour TOD choice 

(see, e.g., Vovsha and Bradley 2004, Abou Zeid et al. 2006, and Popuri et al. 2008, 

among others)24

 

.  In a TOD choice context, this method makes good sense, since the 

analyst need only consider a single set of utility functions for a single choice context and 

can directly include tour duration-specific elements in the utility function.  For instance, 

consider the following joint utility specification: 

     (3.22) 

 

                                                
24 Note that all existing models of this type have been estimated in a MNL setting, ignoring correlations 
across arrival and return times.   
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Here,  is the systematic utility component related to arrival time ,  is the 

component related to return time , and  is the component related to duration .  

A key difficulty of this method is that one is usually interested in rather small time 

intervals as alternatives; and, in two dimensions, the number of alternatives can become 

quite large.  For instance, if 1-hour intervals are used across the 24-hour day, the number 

of alternatives becomes 24 x 25 / 2 = 300 (assuming one cannot return earlier than one 

departs).  If 30-minute intervals are used, one has 1,176 alternatives.  For a MNP model, 

this produces a covariance matrix of size 1,176 x 1,176, presenting a number of 

computational difficulties in model estimation (which worsens if interval size is less than 

30 minutes).  With this in mind, a bivariate multinomial probit (BVMNP) model is 

developed here, where tour arrival time represents one choice dimension and tour return 

time represents another choice dimension.  While the BVMNP model has been used in 

previous studies (see, e.g., Chib and Greenberg 1998, Golob and Regan 2002, and Zhang 

et al. 2008), no previous work has investigated choice contexts with more than 3 or 4 

alternatives.  In addition, the estimation procedure used here varies from traditional 

methods to accommodate the large number of alternatives.  In this bivariate context, one 

must specify two separate utility functions (one for tour arrival and another for tour 

return), as follows: 

 

         (3.23) 

         (3.24) 

 

Here,  and  denote latent utilities for arrival and return time alternatives j and ,  

and  are systematic utility components, and  and  are random error components.  

The set of arrival time alternatives is identical to the set of return time alternatives, with 

arrival time alternatives indexed by  and return time alternatives indexed by 

.  While this specification does not allow for a utility component specifically 

related to tour/activity duration, it does significantly reduce the number of choice 

alternatives.  For instance, if time-of-day is modeled in 30-minute intervals over the 24-
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hour day period (as it is here), this results in 96 alternatives (and utility values), rather 

than the 1,176 needed for the joint choice model.  Note that no assumptions regarding the 

error terms (  and ) have yet been made here, other than normality. 

 

3.3.2 Error Correlation Structure 
Since one cannot reasonably assume independence of alternatives, the correlation 

structure of the error components deserves some attention.  While it is theoretically 

feasible to estimate the entire covariance matrix without imposing any pre-specified 

structure, this is likely to result in some strange parameter estimates due to the high 

number of alternatives (relative to the sample size of 997 used here).  In addition, there is 

a clear ordering of alternatives, which evokes certain expectations for covariance 

properties.  With this in mind, a specific structure is imposed here. 

 

One can imagine a variety of correlation structures.  For instance, an autoregressive (AR) 

process suggests that each error term is a function of earlier (in time) error terms and a 

random noise component.  While such a process suggests that the utility of each 

alternative is realized in sequence (rather than viewed simultaneously), it does offer a 

rather simple covariance matrix structure.  However, it does not offer a method of 

introducing correlations between arrival time and return time error components.  

Alternatively, one could turn to simultaneous autoregressive (SAR) or conditional 

autoregressive (CAR) processes, both of which have been used in the spatial 

econometrics literature (see, e.g., Smith and LeSage 2004 and Kissling and Carl 2008 for 

SAR, and Cressie 1995, Lichstein et al. 2002, and Parent and LeSage 2008 for CAR).  

One could also turn to specification of the covariance matrix components explicitly 

(rather than relying on a data generating process, like AR, SAR, or CAR processes).  

Here, two formulations are pursued:  the CAR specification and a pseudo AR 

specification of covariance components.  The CAR specification is used (over AR or 

SAR) largely because it is simpler to interpret and it offers advantages for Bayesian 
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estimation.  With the CAR specification, relationships between error components can be 

written as follows: 

 

  (3.25) 

  (3.26) 

 

Here, , , and  are parameters to be estimated; and  and  are 

independent random error terms for alternatives j and , respectively, distributed normally 

with zero means and variances of  and  for arrival and departure time 

alternatives, respectively.   measures the degree of “closeness” between alternatives p 

and q, and  measures the degree of “closeness” of the duration implied by arrival and 

departure time alternatives p and q to some baseline/preferred duration.  Note that  

and  represent weights chosen by the analyst.  For , it is assumed that conditional 

on all error terms, only alternatives adjacent to the alternative of interest are needed.  In 

other words,  is conditionally independent of all other arrival times except those 

adjacent to the jth

 

 arrival time, and likewise for  and other return times.  Formally,  

is expressed as follows: 

       (3.27) 

 

Note that the conditional error structure is the same for arrival time and return time sets 

(i.e.,  is the same regardless of whether p and q denote arrival times or return times).  

Also, it is important to note that this specification does not mean that correlations 

between non-adjacent alternatives are zero.  For , one does not necessarily expect 

conditional independence.  Instead,  is specified to fall as the time between the 

implied duration of the joint alternatives and the baseline/preferred duration.  In addition, 
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these terms are set to zero for joint alternatives that are not possible (i.e., when ), 

as shown in equation 3.28. 

 

    (3.28) 

 

Here,  represents the baseline duration at arrival time choice , and 

 and  are parameters to be estimated.  For notational convenience, one can 

define the following: 

 

  

  

  

 

Here,  and  represent the matrices of  elements multiplied by  or ,  

is the matrix of  elements multiplied by ,  is a vector of correlated random 

error terms beginning with arrival time alternatives (ordered from the first to the last), 

and  is a vector of independent random error terms (ordered in the same way as ).   

denotes the number of 30-minutes intervals.  With the CAR specification, the distribution 

of  can now be written as follows: 

 

          (3.29) 



65 
 

  

        (3.30) 

 

 is the identity matrix of dimension  and  is the identity matrix of dimension .  

Note that  and  are included in the diagonal elements of  to ensure that 

 is symmetric, since  is only symmetric if  (Parent and LeSage 

2008).  Furthermore,  must be positive definite and is only positive definite for 

certain ranges of , , and .  Parent and LeSage (2008) show that  

and  must lie between  and , where  and  are the smallest and 

largest eigenvalues of .  Since only positive correlations are expected here,  is 

replaced with 0.  For , there is seemingly no simple restriction like this.  But it can 

be shown that, if , then , and, if 

 (where  is the maximum eigenvalue of ), then the maximum value of  

is .25

 

  The issue of parameter value bounds for , , and  is 

discussed in more detail in the next section. 

One last element needing attention here is the role of  and  (which define the 

“baseline” duration on which elements of  are based).  Essentially, the model posits that 

some activity duration may be highly desired (e.g., 8 hours for full-time workers), and 

this term allows correlations across arrival and return time utilities to be highest for such 

durations.  It is not reasonable to view  and  as only two parameters, since 

one expects differences across individuals or classes of individuals.  This is particularly 

important since duration is ignored in the systematic utility equations.  Here,  and 

 are taken to be two separate parameters each, two for full-time workers making no 

                                                
25 Here it is assumed that . 
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additional tours during the day (  and ) and two for part-time workers 

and/or those making additional tours (  and ), adding a layer of 

observed heterogeneity to the model.26

 

  Of course, this is a rather simplistic formulation 

since one may expect preferred durations to vary with other traveler attributes.  The 

reason  and  are only differentiated between full-time workers with no 

additional tours and part-time workers and those making additional tours is that this 

distinction seems most important.  Adding other segments and/or estimating  and 

 as functions of individual attributes is preferred, but will add complication to the 

estimation process.  For instance, if  and  differed for each individual,  

would also differ for each individual, requiring computation of distinct ’s for each 

observation, which can be computationally expensive.  By allowing  and  to 

vary over only two traveler groups, the estimation process is more streamlined, with only 

two covariance matrices,  and , and facilitates demonstration of the 

model here.   

In the second specification, components of the covariance matrix are formulated directly, 

with the upper left and lower right quadrants taking on forms similar to a typical AR1 

process (though it is worth noting that the formulation cannot be directly interpreted as an 

AR1 process).  Off-diagonal quadrants are formulated slightly different, though 

covariance components appear similar to those of an AR1 process.  While the 

specification is not a typical AR1 process, it will be referred to as the AR1 specification 

here.  The covariance matrix is specified as follows: 

 

         (3.31) 

                                                
26 The distinction here was chosen because average travel durations for full-time workers in the data sample 
were found to be about 8.2 hours, while average travel durations for both part-time workers and those 
making additional tours during the day were found to be about 6 hours. 
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Like in the CAR specification,  and  are segmented by traveler type (i.e., full-

time workers with no additional tours and part-time workers and/or those with additional 

tours).  While the AR1 specification does not offer a simple relationship between error 

components (like the CAR specification does), it does offer greater ease in understanding 

the covariance matrix components.  In addition, the structure implies that correlations 

between arrival and return time alternatives that are not possible (i.e., when return time is 

earlier than arrival time) will be zero.  With the CAR specification, these alternatives will 

exhibit some amount of correlation, though it will be much lower than correlations 

between alternative combinations that are feasible. 

 

Finally, the systematic utility specification for arrival time and return time utilities takes 

the form shown in equation 3.8.  Since each alternative represents a discrete time interval, 

t in the utility equation is taken to be the midpoint of the time interval.  For notational 

convenience, the systematic utilities for arrival time and return time alternatives are 

rewritten as follows: 

 

       (3.32) 

       (3.33) 

 

Here,  and  represent network characteristics of type p (such as travel 

time and reliability) for arrival and return time intervals  and ; and , , , and  
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are parameters to be estimated.    and  represent row vectors of individual-specific 

attributes interacted with cyclical functions of the form shown in equation 3.9 (like the 

utility formulations of Popuri et al. 2008) .  That is,  and  have the following forms: 

 

  

  

         (3.34) 

 

The number of individual-specific attributes is , with each individual attribute interacted 

with  cyclical functions (  for sine functions and  for cosine functions).  By 

construction, the systematic utilities are linear in unknown parameters.  The following 

section details the estimation procedure for the BVMNP model. 

 



69 
 

3.3.3 BVMNP Parameter Estimation via MCMC Simulation 
Estimation of the BVMNP model is performed via MCMC simulation, like the CCNL 

and continuous logit models.  For brevity and since both estimation procedures are 

identical in nearly every way, no distinction between the CAR and AR1 covariance 

specifications is made here.  Bayesian techniques are particularly well-suited for 

estimation of the BVMNP (or any MNP for that matter) since classical methods generally 

rely on simulated maximum likelihood estimation (MSLE) to avoid numerical evaluation 

of multi-dimensional integrals involved in the likelihood (McFadden 1989 and Geweke et 

al. 1994).  McCulloch and Rossi (1994) note that MSLE approaches have been found to 

be sensitive to choice probability estimation methodology. 

 

In the standard Bayesian construction of the MNP model (see, e.g., Albert and Chib 

1993, McCulloch and Rossi 1994, and Zhang et al. 2008, among others), one need not 

evaluate choice probabilities at all.  For the MNP model, the dependent variable, , can 

take on values 1, 2, …, , where ’s value simply indexes the chosen alternative.  With 

the latent random utility specification of the model, the probability of  taking on a value 

q is given by the following: 

 

       (3.35)  

 

In other words, the choice probability of alternative q is equivalent to the probability that 

the latent utility associated with alternative q is the maximum utility value.  Here,  is 

treated as a random (nuisance) parameter to be estimated and is normally distributed 

(under the MNP model specification), with mean given by the systematic utility, , and 

variance given by .  For the BVMNP model,  is simply taken to be bivariate, with joint 

choice probability of arrival time  and return time  given by the following: 

 

  (3.36) 
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The joint choice probability of arrival time  and return time  is equivalent to the 

probability that the latent utility associated with arrival time alternative  is the 

maximum utility across all arrival time alternatives and that the latent utility associated 

with return time alternative  is the maximum utility across all return time alternatives.  

Bayesian estimation (for both covariance matrix specifications) proceeds via a three-step 

Gibbs sampler as follows: 

 

Step 1:  Draw  

Step 2:  Draw  

Step 3:  Draw  

 

Here,  is taken to be either  or  depending on whether individual i is a full-time 

worker with no additional travel tours ( ) or a part-time worker or an individual with 

additional tours ( ).  In addition, the Gibbs sampler does not generate draws for  

or  here.  It is well known that the MNP requires one element of  to be fixed for 

identification purposes (see, e.g., McCulloch and Rossi 1994).  However, with the 

BVMNP, one element of  must be fixed for each nominal measure (Zhang et al. 2008).  

Thus,  or  are fixed at 1 for identification purposes.   

 

In step 1, drawing from the conditional distribution of  is no trivial task.  While  is 

distributed multivariate normal, when one conditions on , the elements of  that must 

represent the maximum utilities are known.  Thus, conditional on , (the actual choice), 

the distribution of  is truncated multivariate normal (i.e., ).  Drawing 

from a multivariate truncated normal distribution is no simple task.  However, if instead 

one draws each element of  individually (conditional on all other elements), it can be 

shown that each is from a truncated univariate normal distribution.  Typically, when 

MNP models are estimated in a Bayesian setting, each alternative-specific utility value is 

drawn sequentially, conditional on all other alternatives’ utility values (see, e.g., Albert 
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and Chib 1993, McCulloch and Rossi 1994, and Zhang et al. 2008).  However, this 

method is not used here because it was found to be computationally unstable, probably 

due to the large number of alternatives.  Instead, a normal random walk MH step is used 

here to draw an individual’s utility values simultaneously. 

 

The proposal density for the MH step is a multivariate normal, with mean equal to the 

current utility values, and covariance given by .  Here,  is the utility covariance 

matrix for individual i, computed from the current values of covariance parameters, and 

 is a deflation factor to increase the probability of proposal acceptance.  The deflation 

factor was set to , after calibrating the parameter to achieve approximately 25% 

proposal acceptance.  The reason for the relatively low value of  is because of the 

truncation of utilities.  When utility values are allowed to shift by larger amounts, there is 

a greater likelihood that truncation restrictions will be violated, resulting in proposal 

rejection.  It was found that this MH algorithm is much more computationally stable than 

the typical Gibbs sampling algorithm, and it also reduces computation time per iteration 

by nearly one half.  Unfortunately, since utility values are more restricted in their 

movements from one iteration to the next, the algorithm is slow to converge.   

 

In the second step of the Gibbs sampler, a draw of the covariance matrix parameters is 

generated.  This procedure is the same for both covariance matrix specifications, so no 

distinction is made here.  Priors on , , and  (for both specifications) are specified 

to be independent uniform distributions over the interval from 0 to 1, reflecting a belief 

that there should be positive correlation across alternative utilities.  Priors on  and 

 are specified to be independent normal distributions with means of 9 and 6 (hours), 

respectively, and variances of 2 each, while priors on  and  are specified to be 

normal distributions, each with means and variances of 0 and 1, respectively.  Thus, the 
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full conditional posterior distribution of the variance parameters can be written as 

follows27

 

: 

  

 (3.37) 

where, 

  

 

Since the density here is not in any standard form (with respect to the parameters), a MH 

step is used to draw these parameters.  The proposal density is assumed to be normal, 

with mean given by the current draw of the parameters (i.e., a normal random walk) and 

variance initially taken to be very small.  Like the MH steps for the CCNL and 

continuous logit, the covariance matrix for the proposal density is updated during the 

estimation process to aid in generating good proposals.  While one would not reasonably 

expect , , and  to be from a normal distribution, the normal proposal offers ease in 

generating draws and capturing correlations across parameters in the proposal.  

Furthermore, there are certain restrictions on these parameters to ensure  and  are 

positive definite matrices.  To enforce these restrictions, if a draw of , , , , 

, , and  generate  or  that are not positive definite, a new draw is 

generated28

 

.  

In the last step of the Gibbs sampler, a draw of , , and  is generated from the full 

conditional posterior distribution.  For notational convenience, write .  

Here, the prior for these parameters is chosen to be multivariate normal with mean  and 

                                                
27 When conditioned on  and , , , , , and  are independent of  and . 
28 This is not considered a rejected draw for the MH step.  The proposal for the MH step is the first draw 
from the proposal that results in  and  being positive definite. 
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covariance matrix .  Thus, the full conditional posterior is proportional to the 

following29

 

: 

  

  (3.38) 

 

Suppose  and  are given by the following: 

 

        (3.39) 

       (3.40) 

 

Expression 3.38 suggests that  is proportional to a multivariate normal distribution with 

mean given by  and covariance matrix .  Thus,  is drawn from a multivariate 

normal distribution.  Here, vague prior parameters are specified, with  taken to be a 

vector of zeroes, off-diagonal elements of  taken to be zeroes, and diagonal elements of 

 set to be very large.  That is all that is needed to generate the MCMC draws for this 

BVMNP model. 

 

3.4 Chapter Summary 
This chapter detailed three models for time-of-day choice, including the Bayesian 

methods needed for their parameters’ estimation.  Each of the three models is based in 

random utility theory, a key objective of this dissertation’s model development.  

However, none of the three meets each of the other four goals here.  Nonetheless, each 

offers something new relative to existing models.  No existing continuous TOD models 

are derived from random utility theory, like the continuous logit and CCNL.  In addition, 

the CCNL allows for correlations across alternatives, something not yet realized in any 

                                                
29 Note that conditional on , , , and ,  is independent of . 
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continuous random utility model.  While the BVMNP model may not represent time in a 

continuous context, it does allow correlation across alternatives in a two-dimensional tour 

TOD choice setting.  No existing two-dimensional tour TOD choice models allows for 

such correlations.  Each of the methods described in this chapter offer promise for 

advancing the state-of-the-art of TOD modeling.  In Chapter 4, methods for imputing 

continuously varying network attributes are discussed. 
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CHAPTER 4:  IMPUTING TIME-VARYING NETWORK VARIABLES 
 

In practice, many advanced tour- and activity-based travel demand model systems use 

only a handful of broad time-of-day periods to generate network-level variables in model 

application (see, e.g., San Francisco’s SFCTA model [Jonnalagadda et al. 2001], New 

York’s NYBPM [PB Consult 2005a], Columbus, Ohio’s MORPC model [PB Consult 

2005b], and Sacramento’s SACOG model [Bowman et al. 2006], among others).  

However, many of these model systems treat time-of-day (TOD) choice at a much finer 

resolution (like the 1-hour intervals of the MORPC model [PB Consult 2005b] and the 

30-minute intervals of the SACOG model [Bowman et al. 2006]).  Network attributes can 

only play a limited role in such TOD models since they only vary across particular 

subsets of the alternative choice set.  Better results could be obtained if network attributes 

varied over all alternatives, either by directly modeling these over time or by assuming 

some distribution for them.  This dissertation seeks to employ continuously varying (over 

time) network attributes (at least by automobile, for which many data points exist).  This 

chapter details the methods, data, and empirical findings of this work. 

 

4.1 Methodology 
The data used for this dissertation’s empirical work does not contain network attributes at 

the desired temporal resolution.  In fact, the only network attributes contained in the 2000 

San Francisco Bay Area data are travel time, distance, and tolls for five broad times of 

day (and no reliability information is available).  However, one key element of 

incorporating network attributes as explanatory variables in this dissertation’s activity 

timing models lies in deriving reasonable measures from available data.  This section 

details the methodology used for imputing such measures on a continuous scale from 

individual trip-making reports. 
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4.1.1 Automobile Travel Times 
The literature offers several instances where ordinary least squares (OLS) regression 

models have been employed for travel time prediction of automobile trips on a 

continuous scale (see, e.g., Cambridge Systematics 2005, Abou Zeid et al. 2006, Popuri 

et al. 2008, and Komma and Srinivasan 2008).  This method assumes that reported travel 

times are correct, on average.30

 

  Komma and Srinivasan (2008) created a dependent 

variable equal to the ratio of reported travel times to free-flow travel times, while Abou 

Zeid et al. (2006) used the ratio of reported to free-flow speeds as the dependent variable.  

To ensure non-negativity, Popuri et al. (2008) modeled the natural logarithm of the ratio 

of reported to free-flow automobile trip speeds.  In each case, a number of origin- and 

destination-specific variables were used as explanatory variables (such as distance, origin 

and destination area types, and peak travel delay).  A similar approach is employed here 

for automobile trips. 

Like Popuri et al.’s (2008) models, the dependent variable here is chosen as the natural 

logarithm of the ratio of reported to free-flow trip speeds.  The model is formulated as 

follows: 

 

  (4.1) 

 

Here,  is a vector of covariates related to trip i and origin-destination (OD) pair q, 

which includes a constant, the natural logarithm of trip distance, area type indicator 

variables for origin and destination zones (with rural area type as the base), day-of-week 

indicator variables (with Monday as the base), and mode indicator variables31

                                                
30 It is well known that reported travel times are often not that accurate due to misreporting and rounding 
error (Stopher et al. 2008).  In fact, the 1996 North Central Texas Council of Governments Household 
Travel Survey suggests that only 13% of survey respondents report travel times to the nearest minute, while 
over 50% report times to the nearest 30 minutes or more (Stopher et al. 2008). 

 (with drive 

31 Note that these models only consider automobile trips, so the mode indicator indicates vehicle occupancy 
(1, 2, and 3 or more occupants). 
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alone as the base).  , , and  are parameters to be estimated and  is the random 

error term, assumed to be independent and identically distributed across observational 

units (reported auto trips).  The  variable is very important since it describes the 

typical peak level of congestion versus the analyst’s estimate of free-flow conditions.  For 

instance, if a particular origin-destination pair sees little or no congestion across the day, 

the  variable takes a value close to zero, and predicted speeds will exhibit very 

little variation across different TODs.  Similar to Popuri et al. (2008), the delay variable 

is defined as follows: 

 

        (4.2) 

 

Here, peak speed represents the analyst’s estimate of speed when congestion is at its 

worst for OD pair q.  The main reason for this variable (rather than simply a constant) is 

to account for differences in speed profiles across different OD pairs.  For instance, 

network links connecting some OD pairs may enjoy little or no delay across the entire 

day, while links connecting other OD pairs may exhibit extreme congestion during peak 

periods.  The  variable accounts for these differences in a systematic way.  As 

shown in equation 4.1, the coefficient on this delay variable is made up of a number of 

terms, and describes how speeds vary over time t.  The functions , , , 

and  are the following non-negative cyclical functions (similar to Popuri et al.’s 

[2008] formulation): 

 

   

     (4.3) 

 

Clearly, this specification ensures smooth speed prediction profiles across time, which is 

a desirable property.  In addition, there are a total of  sets of these cyclical functions in 



78 
 

the regression equation (as shown in equation 4.1), where , , , and 

 are taken to powers 1, 2, …,  with a parameter related to each.  The value of  

in equation 4.1 is determined through empirical investigation by comparing the 

reasonableness of the implied speed profiles for different  values (and the statistical 

significance of associated parameters). 

 

After estimates of equation 4.1’s parameters are obtained, predictions for the dependent 

variable can be made and corresponding travel times computed.  These travel time 

predictions can be best viewed as average (or expected) travel times for a particular OD 

pair at a particular TOD (rather than predictions of actual travel times).  This notion leads 

to formulation of travel time variability measures developed in the following section. 

 

4.1.2 Automobile Travel Time Variability 
A natural measure of travel time variability/unreliability is the variance or standard 

deviation of travel times for a given OD pair at a given TOD (i.e., distributional 

measures).  The methods of Section 4.1.1 offer travel time predictions, which represent 

predictions of average travel time.  Assuming reported travel times, on average, are equal 

to actual travel times (as before), one can reasonably argue that travel time residuals32 

provide a measure of reliability.  As discussed in Chapter 2, schedule delay methods may 

really be preferred in a TOD model context33

 

, but without appropriate data to measure 

schedule delay (i.e., travelers’ preferred arrival times), the distributional approach seems 

reasonable. 

Here, the dependent variable is computed as the natural logarithm of squared residuals (or 

the difference between reported and predicted travel times34

                                                
32 Note that travel time residuals are not direct residuals from the model, but rather residuals computed as 
the difference between reported and predicted travel times.  Model residuals would be in the form of the 
natural logarithm of reported to free-flow speeds. 

).  The set of explanatory 

33 For instance, schedule delay measures reflect the real source of disutility associated with reliability. 
34 Predicted travel times come from the speed regression model of Section 4.1.1. 
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variables for automobile travel time variability (i.e., unreliability) are very similar to 

those used for the speed regression, detailed in Section 4.1.1.  Moreover, the model can 

be estimated using OLS techniques.  The model is formulated as follows: 

 

 –  (4.4) 

   

Here,  is an identical set of covariates used in equation 4.1,  is the same as in 

equation 4.2,  is the same as in equation 4.3, , , and  are parameters to be 

estimated, and  is an independent and identically distributed (across observational 

units) error term.  As in the speed regression (equation 4.1),  is determined by 

comparing the reasonableness of the implied TOD effect on travel time variance. 

 

Since equation 4.4’s dependent variables (i.e., the travel time residuals) rely on reported 

travel times, they not only capture variations in travel times, but also respondent 

mistakes/errors in reporting (due to misreporting and rounding [see, e.g., Stopher et al. 

2008]).  Thus, model estimates will likely be biased a bit high.  However, a great deal of 

uncertainty is controlled for via explanatory variables specific to the OD pair (including 

travel distance, origin and destination characteristics, vehicle occupancy, and day-of-

week), which many travelers may not perceive, thereby lowering these estimates. 

 

One key attribute of the models in equations 4.1 and 4.4 is that travel time and variance 

profiles of different trips will share the same underlying shape (as predicted by the delay 

coefficient).  While relative heights of these profiles’ peaks and valleys will differ 

(depending on the value of ), the location and relative shape will be the same.  

For instance, under the variance regression, all trips will share the feature that the 

maximum variance occurs at some specific time (presumably during either the AM or 

PM peak).  Of course, the models’ search for a set of single parameters neglects the fact 

that different trips (with different free-flow speeds, travel distances, OD attributes, etc.) 
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may have wholly different travel time and variance profiles – due to specific link 

characteristics and demand profiles over times.  Nonetheless, without actual network 

data, quantifying such differences in a meaningful way is difficult (e.g., inbound versus 

outbound to the central business district [CBD]).  Such link-specific delay and travel time 

information, by TOD, may emerge through better instrumentation of highways, detailed 

dynamic traffic assignment estimates, controlled route-choice experiments, and the like.  

Alternatively, one could investigate variable interaction effects with the cyclical TOD 

functions.35

 

  However, investigating such effects could be quite time-consuming, 

depending on how many interactions the analyst chooses to examine, though new 

emerging methods exist for just this purpose.  Bayesian Additive Regression Trees 

(BART) are one such method that have been used in just such an application (see, 

Chipman et al. 2009). 

4.1.3 Transit Level-of-Service Attributes 
While the previous two sections examined trips made by the automobile mode, this 

section details methods used for transit trips.  Unlike the automobile models, where 

network attributes are modeled continuously over time, transit attributes are assumed 

constant over broad TOD periods.  The reason for taking a different approach here is two-

fold.  First, the data used here (and described in Section 4.2) do not contain information 

that could be regarded as free-flow transit times.  So, one cannot formulate equation 4.1 

as a model for transit trips.  Second, the dataset’s observational units do not offer 

information on the form of transit used (e.g., train, express bus, local bus), though (at 

least) four different transit modes are available to San Francisco Bay Area travelers.  

Presumably each form of transit has its own unique characteristics, which could 

potentially lead to bias in estimation. 

 

                                                
35 For instance, one may interact origin- or destination-specific variables with those TOD functions.  This 
would allow for differential TOD predictions across OD pairs. 
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Since the data contain transit level-of-service (LOS) attributes for each of five TOD 

periods, those are used here for travel times, distances, and fares.  However, these 

attributes are available for each of four transit modes.  In the absence of information on 

the actual transit mode chosen from these four, the mode offering the lowest travel time 

was assumed to be the mode chosen for those travel units made by the transit mode.  In 

addition, and like the automobile network attributes, reliability information is not present.  

Thus, transit travel time variance regression models are needed.   

 

Two models are used here, one for drive-to-transit mode and one for walk-to-transit 

mode.  Like the automobile variance regression, the response variable is chosen to be the 

squared difference between reported and skimmed travel times36

 

.  Analysis of the San 

Francisco Bay Area transit trip data suggested that the drive-to-transit mode would be 

best modeled as in equation 4.5, while the walk-to-transit mode would be best modeled as 

shown in equation 4.6.  Essentially, the response variable of travel time variance is 

normalized by the average motorized travel time.  The main reason for the difference 

between the two models is that the majority of travel time variability for the walk-to-

transit mode should be in-vehicle, since access and egress times should be fairly stable by 

the walk mode. 

    (4.5) 

    (4.6) 

 

Here,  refers to the network-based estimate (or average) of a trip’s total travel 

time (including access and egress times), and  refers to the network-based 

estimate (or average) of in-vehicle travel time (excluding access and egress times).  As 

                                                
36 Here, skimmed travel times refer to network-based estimates of travel times.  These are akin to the 
predicted travel times from speed regressions.  However, instead of coming from a separate regression 
model, they come directly from the data. 



82 
 

described earlier, one may expect very different behaviors for different transit options.  

The models shown in equations 4.5 and 4.6 cannot capture such variations, which is an 

unfortunate limitation of the data.  In Section 4.2, a more detailed description of the data, 

its limitations, and needed assumptions are presented. 

 

4.2 Data Description 
The data used here (and in the time-of-day models presented later) come from the 2000 

San Francisco Bay Area Travel Survey (BATS).  The survey collected travel information 

for roughly 17,000 households over a 2-day period.  The observational unit of the data is 

the travel tour37 (over 100,000 recorded tours), with network attributes provided for each 

of five TOD periods38 and seven modes39.  In addition, network attributes are available 

for both the outbound tour journey and the inbound tour journey.  In other words, each 

tour is associated with an origin (or base location) and a primary destination40

                                                
37 Travel tours represent a collection of trips beginning and ending at the same base location.  The base 
location can either be home or work.  Work-based tours represent sub-tours within a home-based tour.  For 
instance, if an individual travels to work, then heads to lunch at noon and returns to work, before finally 
returning home that evening, a separate work-based sub-tour would be coded in the data along with the 
higher level home-based tour. 

.  The 

outbound tour journey corresponds to travel from the origin to the primary destination, 

while the inbound tour journey corresponds to travel from the primary destination to the 

origin.  Network attributes include travel time, travel distance, and tolls for automobile 

modes, and access, egress, wait, transfer, and in-vehicle times along with fares for transit 

modes.  Chosen modes reported in the data reflect the main transport mode used over all 

trip segments within a tour.  And, as stated earlier, transit tour modes are coded as walk-

to-transit and drive-to-transit, not by the actual form of transit used.  Thus, the transit 

38 These include early morning (EM) from 3 am to 6 am, AM peak (AM) from 6 am to 9 am, midday (MD) 
from 9 am to 3:30 pm, PM peak (PM) from 3:30 pm to 6:30 pm, and evening (EV) from 6:30 pm to 3 am. 
39 These include automobile, local bus, municipal bus, premium bus, and the Bay Area Rapid Transit 
(BART) rail mode. 
40 Since multiple activities can be undertaken on any tour, a set of rules is established to define activity 
characteristics of each tour.  To this end, a hierarchy of activities was established and used to assign one 
activity on each tour as the primary activity.  In general, mandatory type activities exist at the top of this 
hierarchy (including work, school, and university type activities).  Thus, if a tour contains a work, school, 
or university activity, that activity is specified as the primary activity.  The primary destination is defined as 
the location where the primary activity is undertaken. 
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network attributes were condensed into single measures by selecting the network 

attributes with the lowest travel times if multiple transit types were available for the 

observational unit.   

 

Since the regression models of this chapter require trip-level data, special considerations 

are needed.  Fortunately, network attributes recorded in the dataset reflect trip-based 

travel.  Specifically, network attributes correspond to travel characteristics for a trip 

between the tour origin (or base location) and primary destination (regardless of whether 

stops are made on the actual tour journey).  Thus, one can reasonably consider any tour 

journey for which no stops are made to be a trip between the tour origin and primary 

destination.  Reported travel times for such tour journeys should correspond to trip travel 

times.  Therefore, regression models of this chapter only consider tour journeys where no 

additional stops were made between the origin and primary destination.41

 

 

Several other considerations are needed.  First, free-flow speeds are not available in the 

dataset.  Instead, speeds during the early morning (EM) TOD period were substituted, 

since one would likely experience near free-flow speeds in the early morning hours of the 

day.  Second, peak-period speeds are not explicitly reported in the data.  Instead, peak-

period speed was taken as the lowest across the five TOD periods for each OD pair 

(typically from the PM peak period).  Third, to alleviate issues with misreporting and 

rounding of travel times, automobile mode observations were removed if the ratio of 

reported to free-flow speed exceeded 2.0 or if the ratio of reported to peak speed was less 

than 0.25 (totaling 17% of records).  For transit variance regressions, observations were 

removed if the ratio of reported to average travel times was less than 0.5 or greater than 

2.0.  These cutoffs may seem (and are) rather arbitrary.  Of course, there is no fool-proof 

way of determining the accuracy of reported travel times.  The chosen cutoffs are not 

likely to result in many accurate reported speeds being dropped, though many inaccurate 

                                                
41 Note that if an individual makes a stop on the way to the primary destination, but returns home directly, 
only the outbound tour journey need be dropped from the analysis. 
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reported speeds likely remain.  Finally, only tours with relevant network attribute data 

and tours made on weekdays were considered. 

 

The above considerations resulted in sample sizes of 86,358, 3,297, and 4,981 for 

automobile, drive-to-transit, and walk-to-transit modes, respectively.  Table 4.1, Table 

4.2, and Table 4.3 present descriptive statistics for a number of relevant variables in the 

automobile, drive-to-transit, and walk-to-transit mode regressions, respectively.   
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Table 4.1: Descriptive Statistics for Variables Used in Automobile Mode Regressions 

Variable Mean Standard 
Deviation Minimum Maximum 

Dependent Variable,  -0.366 0.484 -2.744 0.693 

Departure Time (hours after midnight) 13.45 4.857 0.033 26.75 
Arrival Time (hours after midnight) 13.82 4.857 0.083 26.92 
ln(Travel Distance) 1.630 1.068 -2.996 4.882 
Indicator for Tuesday 0.239 0.426 0 1 
Indicator for Wednesday 0.217 0.412 0 1 
Indicator for Thursday 0.192 0.394 0 1 
Indicator for Friday 0.169 0.375 0 1 
Indicator for Regional Core Origin Zone 0.008 0.087 0 1 
Indicator for CBD Origin Zone 0.029 0.169 0 1 
Indicator for Urban Business Origin Zone 0.070 0.255 0 1 
Indicator for Urban Origin Zone 0.178 0.383 0 1 
Indicator for Suburban Origin Zone 0.671 0.470 0 1 
Indicator for Regional Core Destination Zone 0.009 0.096 0 1 
Indicator for CBD Destination Zone 0.033 0.178 0 1 
Indicator for Urban Business Destination 
Zone 0.075 0.264 0 1 

Indicator for Urban Destination Zone 0.184 0.388 0 1 
Indicator for Suburban Destination Zone 0.656 0.475 0 1 
Indicator for Shared Ride Mode w/2 
Occupants 0.246 0.430 0 1 
Indicator for Shared Ride Mode w/3 or more 
Occupants 0.224 0.417 0 1 

Delay Variable,  0.267 0.190 0 0.838 
Observations 86,358 
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Table 4.2: Descriptive Statistics for Variables Used in Drive-to-Transit Mode Regression 

Variable Mean Standard 
Deviation Minimum Maximum 

Dependent Variable,  -2.473 2.579 -15.20 1.39 

Indicator for Regional Core Origin Zone 0.271 0.444 0 1 
Indicator for CBD Origin Zone 0.095 0.293 0 1 
Indicator for Urban Business Origin Zone 0.079 0.270 0 1 
Indicator for Urban Origin Zone 0.151 0.358 0 1 
Indicator for Regional Core Destination Zone 0.279 0.449 0 1 
Indicator for CBD Destination Zone 0.108 0.310 0 1 
Indicator for Urban Business Destination Zone 0.073 0.260 0 1 
Indicator for Urban Destination Zone 0.133 0.339 0 1 
Indicator for AM Peak Period 0.445 0.497 0 1 
Indicator for Midday Period 0.106 0.308 0 1 
Indicator for PM Peak Period 0.355 0.478 0 1 
Indicator for Evening Period 0.093 0.290 0 1 
Total Travel Time 47.23 20.30 11.12 242.9 
Observations 3,297 
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Table 4.3: Descriptive Statistics for Variables Used in Walk-to-Transit Mode Regression 

Variable Mean Standard 
Deviation Minimum Maximum 

Dependent Variable,  -0.198 2.898 -20.94 8.48 

Indicator for Regional Core Origin Zone 0.189 0.392 0 1 
Indicator for CBD Origin Zone 0.179 0.384 0 1 
Indicator for Urban Business Origin Zone 0.173 0.379 0 1 
Indicator for Urban Origin Zone 0.260 0.439 0 1 
Indicator for Regional Core Destination Zone 0.209 0.407 0 1 
Indicator for CBD Destination Zone 0.190 0.393 0 1 
Indicator for Urban Business Destination 
Zone 0.168 0.374 0 1 

Indicator for Urban Destination Zone 0.243 0.429 0 1 
Indicator for AM Peak Period 0.384 0.487 0 1 
Indicator for Midday Period 0.223 0.416 0 1 
Indicator for PM Peak Period 0.283 0.451 0 1 
Indicator for Evening Period 0.104 0.305 0 1 
In-Vehicle Travel Time 16.88 15.01 0.65 175.3 
Observations 4,981 

 

Figure 4.1 shows the distribution of the dependent variables (excluding the automobile 

variance regression, which requires predictions from the automobile speed regression).  

As shown in Figure 4.1a, a large number of observations are positive, meaning reported 

speed was greater than free-flow speed.  While this may seem strange, it is certainly 

possible, since every traveler will drive differently in free-flow conditions, with some 

exceeding assumed free-flow speeds.  Of course, one would not expect many drivers to 

travel at twice free-flow speed.  Some of these respondents have likely misreported their 

travel times, but others may be accurate as free-flow speeds only represent the analyst’s 

estimates.  Figure 4.1b and Figure 4.1c suggest a large portion of negative transit 

dependent variables.  This makes sense, since the dependent variable is measured by the 

variance divided by squared in-vehicle or total travel time. 
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Figure 4.1: Distributions of Dependent Variables for (a) Automobile Speeds, (b) Drive-

to-Transit Variances, and (c) Walk-to-Transit Variances 

 

4.3 Empirical Results 
The model estimates from equation 4.1 (i.e., automobile speed regressions) are shown in 

Table 4.4.  Two models are shown here: one based on departure times and the other based 

on arrival times.42

                                                
42 The difference here is the time component entered into the cyclical functions of the model.  The reason 
two separate models are desired here has to do with the activity timing models.  For the BVMNP model, 
both outbound timing and return timing of travel (for a tour) are considered.  Moreover, the outbound time 
is defined by the arrival time at the destination while the inbound time is defined by the departure time 
from the destination.  In this way, the implied durations of stay at the primary destination are bounded 
below by 0. 

  While not all of the parameters are statistically significant, all have 

expected signs and similar effects for both models.  Of the parameters not appearing in 

the delay coefficient, the most practically significant are indicators for regional core and 

central business district (CBD) zones (both origin and destination) and the natural 

logarithm of distance, not surprisingly, since longer distance trips will typically enjoy 

higher speeds.   
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Table 4.4: Automobile Mode Speed Regression Model Estimates for Departure Time- 

and Arrival Time-Based Models 

Variable 
Departure Time-

Based Model 
Arrival Time-
Based Model 

Coeff. t-stat Coeff. t-stat 
Constant -0.3205 -30.08 -0.3195 -29.96 
ln(Travel Distance) 0.2008 94.02 0.1987 93.16 
Indicator for Tuesday -0.0052 -1.10 -0.0055 -1.15 
Indicator for Wednesday -0.0143 -2.96 -0.0141 -2.89 
Indicator for Thursday -0.0154 -3.08 -0.0154 -3.08 
Indicator for Friday -0.0069 -1.33 -0.0054 -1.04 
Indicator for Regional Core Origin Zone -0.2015 -10.48 -0.1949 -10.13 
Indicator for CBD Origin Zone -0.1974 -16.66 -0.1875 -15.81 
Indicator for Urban Business Origin Zone -0.1608 -16.71 -0.1554 -16.14 
Indicator for Urban Origin Zone -0.1382 -16.32 -0.1346 -15.89 
Indicator for Suburban Origin Zone -0.0603 -7.75 -0.0611 -7.84 
Indicator for Regional Core Destination Zone -0.1998 -11.18 -0.2155 -12.06 
Indicator for CBD Destination Zone -0.2032 -17.63 -0.2083 -18.05 
Indicator for Urban Business Destination Zone -0.1529 -15.99 -0.1555 -16.26 
Indicator for Urban Destination Zone -0.1363 -16.01 -0.1381 -16.20 
Indicator for Suburban Destination Zone -0.0643 -8.16 -0.0633 -8.04 
Indicator for Shared Ride Mode w/2 Occupants -0.0361 -9.45 -0.0308 -8.04 
Indicator for Shared Ride Mode w/3 or more 
Occupants -0.0429 -10.71 -0.0392 -9.77 

Delay -3.5696 -7.46 -1.5538 -3.33 
Delay*  -0.2308 -0.30 5.0125 6.44 
Delay*  6.0955 6.64 -1.7428 -2.02 
Delay*  -1.9896 -7.50 -0.4177 -1.63 
Delay*  2.0779 5.17 -0.0788 -0.20 
Delay*( ^2) 0.0906 0.18 -3.5170 -6.79 
Delay*( ^2) -3.5927 -5.73 1.4730 2.50 
Delay*( ^2) 1.2948 7.25 0.4008 2.30 
Delay*( ^2) -0.8263 -3.75 -0.2123 -1.00 
Delay*( ^3) 0.0015 0.02 0.7151 7.35 
Delay*( ^3) 0.5920 4.90 -0.3310 -2.92 
Delay*( ^3) -0.2434 -6.95 -0.0932 -2.70 
Delay*( ^3) 0.1438 3.51 0.0644 1.64 
          
Observations 86,358 86,358 
R-Squared 0.137 0.136 
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The shape of the delay coefficients, as they vary over departure and arrival time choices, 

appears reasonable, as shown in Figure 4.2.  Also shown in Figure 4.2, speeds are 

predicted to be lowest (and travel times highest) during typical AM peak times 

(approximately 6 to 8 am) and PM peak times (approximately 3 to 6 pm), and the arrival 

time-based model predictions appear to mimic those of the departure time-based model 

with a rightward shift.  While the slowest speeds are expected during these peak TODs, it 

is worth noting that the location of speed profile peaks and valleys are assumed to be the 

same across all OD pairs (i.e., the slowest speeds will occur around 5 pm for all OD 

pairs). 

 

 
Figure 4.2: Delay Coefficient Variation in Automobile Mode Speed Regressions across 

Departure and Arrival Times 

 

Figure 4.3 further details speed predictions from the model, by employing mean variable 

values for each time-invariant covariate.  Profiles differ based on the value of the delay 

variable (i.e., the measure of typical peak congestion levels).  Figure 4.3’s y-axis 

represents coefficients by which free-flow speed is multiplied to obtain average speed 

estimates.  When the delay variable is zero, the average speed prediction does not vary 

across time.  As the delay variable increases from zero, peaks and valleys of the profiles 

become more pronounced, again with lowest speeds predicted near typical AM and PM 
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peak periods.  As shown in Figure 4.3, speed coefficients have a maximum of about 0.8 

(approximately a 20% speed reduction), even when no delay is present.  This is an 

unfortunate consequence of the formulation here (free-flow speeds will not necessarily be 

realized at any TOD for a particular OD pair).  It should be recognized, however, that this 

maximum coefficient will vary across OD pairs depending on origin and destination area 

types, travel distance, day-of-week, and vehicle occupancy.  Figure 4.3 represents an 

average OD pair’s attributes. 

 

 
Figure 4.3:  Automobile Mode Free-Flow Speed Coefficient Variation for Different 

Delay Variable Values 
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Parameter estimates of the model shown in equation 4.4 (i.e., the automobile travel time 

variance regressions) are shown in Table 4.5.  Like the speed regressions, two models are 

estimated: a departure time-based model and an arrival time-based model.  The most 

practically significant parameter is that associated with the natural logarithm of travel 

distance, which captures the effect of longer trips exhibiting higher travel time variance.  

As with the speed models, not all parameter estimates of the travel time variance models 

are statistically significant.  In addition, several signs are not so intuitive.  For instance, a 

trip originating in a regional core zone is predicted to exhibit greater travel time 

variability (less reliability) than one originating in a rural zone (all else equal), while trips 

originating in urban and suburban zones are predicted to enjoy lower travel time variance 

than those originating in rural zones (all else equal).  Nonetheless, the results do not seem 

unreasonable, and more importantly, the fluctuations associated with the delay coefficient 

for these models (over TODs) appear as one would expect, as shown in Figure 4.4:  travel 

time variances are highest during normal AM and PM peak periods.  The differences 

between the departure time- and arrival time-based models shown in Figure 4.4 also 

appear reasonable, with the arrival time-based model predictions shifted to the right, 

relative to departure time.  
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Table 4.5: Automobile Mode Travel Time Variance Regression Model Estimates for 

Departure Time- and Arrival Time-Based Models 

Variable 
Departure Time-

Based Model 
Arrival Time-
Based Model 

Coeff. t-stat Coeff. t-stat 
Constant 1.4239 25.64 1.4768 26.80 
ln(Travel Distance) 0.7743 69.67 0.7774 70.65 
Indicator for Tuesday 0.0036 0.15 0.0128 0.52 
Indicator for Wednesday -0.0175 -0.69 -0.0253 -1.01 
Indicator for Thursday 0.0067 0.26 0.0091 0.35 
Indicator for Friday 0.0161 0.60 -0.0032 -0.12 
Indicator for Regional Core Origin Zone 0.5173 5.17 0.5809 5.85 
Indicator for CBD Origin Zone 0.1732 2.81 0.1443 2.36 
Indicator for Urban Business Origin Zone 0.0078 0.16 -0.0518 -1.04 
Indicator for Urban Origin Zone -0.0670 -1.52 -0.0976 -2.23 
Indicator for Suburban Origin Zone -0.0795 -1.96 -0.0823 -2.04 
Indicator for Regional Core Destination Zone 0.4950 5.32 0.4823 5.22 
Indicator for CBD Destination Zone 0.0619 1.03 -0.0015 -0.03 
Indicator for Urban Business Destination Zone -0.1760 -3.53 -0.2020 -4.09 
Indicator for Urban Destination Zone -0.1424 -3.21 -0.1948 -4.42 
Indicator for Suburban Destination Zone -0.1540 -3.75 -0.2087 -5.12 
Indicator for Shared Ride Mode w/2 Occupants 0.1900 9.54 0.1828 9.25 
Indicator for Shared Ride Mode w/3 or more 
Occupants 0.1617 7.75 0.1530 7.39 

Delay 1.8612 13.97 3.0368 23.04 
Delay*  -0.1509 -4.57 -0.6832 -19.00 
Delay*  -0.7945 -14.17 -0.7361 -13.78 
Delay*  0.1838 4.53 -0.4294 -10.01 
Delay*  -0.3127 -8.73 -0.1838 -5.37 
          
Observations 86,358 86,358 
R-Squared 0.147 0.151 
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Figure 4.4:  Delay Coefficient Variation in Automobile Mode Travel Time Variance 

Regressions across Departure and Arrival Times 

 

Figure 4.5 shows travel time variance predictions for a trip with all time-invariant 

variables evaluated at mean covariate values, and a variety of delay coefficient values.  

Like the speed regressions, when the delay variable is zero, travel time variance does not 

vary over time.  As the delay variable increases from zero, variations in travel time 

variance predictions become more pronounced.  As with Figure 4.4, Figure 4.5’s variance 

predictions are highest near the typical AM and PM peak periods. 
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Figure 4.5:  Automobile Mode Travel Time Variance Variation for Different Delay 

Variable Values and Mean Time-Invariant Covariates 

 

As noted earlier, a key attribute of the automobile mode models presented in Section 4.1 

is that travel time and variance profiles of different trips will share the same underlying 

shape (as predicted by the delay coefficients).  Of course, different trips with different 

OD pairs may have very different profiles because of differing demand profiles and/or 

link characteristics.  This is certainly a limitation of these models. 
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Model estimation results of the transit travel time variance regressions are shown in 

Table 4.6.  It is clear that the smallest predicted travel time variances tend to occur during 

the early morning TOD period for drive-to-transit mode, and during early morning and 

evening periods for the walk-to-transit mode43

 

.  For both models, travel time variances 

are predicted to be highest during the PM peak period, which seems very reasonable. 

Table 4.6: Transit Mode Travel Time Variance Regression Model Estimates 

Variable 
Auto-Transit-Walk 

Model 
Walk-Transit-Walk 

Model 
Coeff. t-stat Coeff. t-stat 

Constant -0.1656 -0.14 1.8097 10.71 
Indicator for Regional Core Origin Zone -0.8284 -5.56 -0.6344 -4.74 
Indicator for CBD Origin Zone -0.8248 -4.64 -0.7108 -5.56 
Indicator for Urban Business Origin Zone 0.2899 1.68 -0.6192 -4.90 
Indicator for Urban Origin Zone 0.2034 1.59 -0.5489 -4.92 
Indicator for Regional Core Destination Zone -0.7507 -4.99 -0.5245 -4.04 
Indicator for CBD Destination Zone -0.5704 -3.32 -0.4949 -3.91 
Indicator for Urban Business Destination Zone -0.0319 -0.17 -0.3951 -3.10 
Indicator for Urban Destination Zone 0.1764 1.31 -0.1457 -1.27 
Indicator for AM Peak Period 0.3246 0.28 0.3531 2.51 
Indicator for Midday Period 0.5217 0.44 0.1685 1.20 
Indicator for PM Peak Period 0.7685 0.65 0.3630 2.75 
Indicator for Evening Period 0.5286 0.45 n/a n/a 
Total Travel Time (from skim) -0.0493 -23.46 n/a n/a 
In-Vehicle Travel Time (from skim) n/a n/a -0.0877 -35.23 
          
Observations 3,297 4,981 
R-Squared 0.185 0.204 

 

 

                                                
43 Note that an alternative specific constant for the evening TOD period was not included in the walk-to-
transit mode model specification, since very few observations occurred during that period. 
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4.4 Chapter Summary 
This chapter detailed the analytical methods and empirical results of the network variable 

imputation procedures.  While the imputation techniques are not perfect, they do provide 

network variable measures on a continuous scale, which is an important input for the 

activity timing models developed in this dissertation.  Existing methods were utilized to 

impute average travel times (by TOD), but travel time variance regressions represent a 

new technique for imputing travel time (un)reliability information using OLS regressions.  

Unfortunately, this technique also captures misreporting and rounding error (along with 

the actual variance), but considering the data limitations, the measures seem very 

reasonable.  

 

In the following two chapters, the empirical results of the TOD models are presented.  

The empirical results of this chapter serve to inform the TOD models with network 

attribute variables.     
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CHAPTER 5:  EMPIRICAL RESULTS OF CONTINUOUS TOD 

MODELS 
 

This chapter details the empirical results of the continuous logit and continuous cross-

nested logit (CCNL) model specifications.  As discussed in Chapter 3, the models are 

estimated using Bayesian estimation techniques on work-tour outbound (i.e., from home 

to work) departure time choice data.  For comparison purposes, the same data is used to 

estimate both the continuous logit and CCNL.  The following section details the data 

used in this empirical work. 

 

5.1 Work-Tour Departure Time Data 
Like the data used for the speed and variance regressions of Chapter 4, the data here 

come from the 2000 Bay Area Travel Survey (BATS).  Since observational units in the 

dataset represent travel tours (rather than trips), tour home-to-work departure time choice 

is analyzed here.  Each tour record includes demographic variables (such as household 

and person characteristics), tour characteristics (such as origin and primary activity44 

destination attributes), tour mode chosen45, and the timing of tour departure and return 

journeys (as well as the transportation level-of-service [LOS] data discussed earlier).   

The departure time analysis undertaken here uses only home-based tours made on 

weekdays and for which the primary activity was work46.  Further, if multiple home-

based work tours existed for any individual in the data, only the first one was used in the 

sample47

                                                
44 Primary activities were coded in the data using an activity hierarchy, with work-related activities being 
highest in this hierarchy for any tours involving multiple activities. 

.  Thus, each record in the sample represents the first weekday work tour made 

over the 2-day survey period for all individuals.  The sample was further restricted to 

observations where relevant transportation LOS data was available:  tours with origins 

45 Tour mode reflects the main transport mode used over all trip segments within a tour. 
46 Work activities were selected thanks to relatively predictable timing, and extensive existing literature on 
this type of trip-making.  Of course, the methodology applies for any activity purpose. 
47 It is assumed here that the first work tour occurring in the survey period is scheduled first.  To avoid 
correlations across tour records made by a single individual, only one work tour per individual is used. 
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and destinations outside the region did not have LOS data and so could not be used.  

After restricting attention to such tours, 17,820 tour records remained.  However, because 

the CCNL model is computationally expensive, in terms of obtaining each draw, a 

random sample of 997 observations (about 6% of the 17,820 total) is used in the analyses 

here. 

 

In this analysis, outbound work-tour departure time choice is considered.  Alternatively, 

outbound arrival time choice could have been chosen as the dependent variable.  

Conditional on travel times, arrival times and departure times are essentially 

interchangeable if no intermediate stops are made between the home and work location.  

In addition, the inbound tour journey (i.e., from work to home) time-of-day (TOD) choice 

could have been considered.  While the choice of outbound departure time choice is 

somewhat arbitrary, it does offer certain expectations in terms of the expected model 

behavior.  For instance, one would expect individuals with longer travel distances to 

depart earlier and part-time workers to depart later.  Of course, the techniques could 

apply equally well to other timing dimensions. 

 

The explanatory variables used in this analysis include the (departure time-based) time-

varying LOS attributes discussed in Chapter 4, as well as a time-varying cost variable.  

Of course, travel distances will not vary much across TODs, making it difficult to obtain 

time-varying costs.  Here, travel costs vary (slightly) by TOD period (not continuously 

over time) and are computed as the travel distance multiplied by $0.15/mile (the assumed 

operating cost of automobiles) plus any applicable tolls, and divided by the number of 

vehicle occupants for automobile modes.  For transit modes, the transit fare (by TOD) is 

used, and for walk and bike modes, the cost is assumed to be zero. 

 

In addition to time-varying LOS attributes, eight other individual/tour-specific variables 

plus a constant are interacted with the cyclical functions in the systematic utility equation.  

These variables include an indicator for males, age of the individual, an indicator for part-
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time workers, an indicator for high income households (greater than $75,000), household 

size, the number of tours undertaken by the individual over the entire day (excluding the 

modeled tour), travel distance to the primary destination, and a variable indicating 

whether the destination zone is coded as central business district (CBD).  Table 5.1 offers 

descriptive statistics for these variables within the larger sample (of 17,820) of all work 

tours and within the smaller 6% sample (of 997) used in model estimation.  As shown in 

Table 5.1, the differences between descriptive statistics for the two samples are very 

small.  Figure 5.1 shows outbound departure time choice distributions for the full sample 

and the 6% sample.  Again, there is little difference between the full and 6% samples, 

with departure times centered around 8 am, which is very reasonable. 

 

Table 5.1: Descriptive Statistics of Explanatory Variables Used in Continuous TOD 

Models 

Variable 
Full Sample 6-percent Sample 

Mean St. 
Dev. Min Max Mean St. 

Dev. Min Max 

Outbound Departure 
Time 8.03 2.15 3 23.2 8.08 2.22 3.25 18.5 

Male Indicator 0.528 0.499 0 1 0.526 0.500 0 1 
Age 42.7 11.8 18 97 42.8 11.8 18 80 
Part-Time Worker 
Indicator 0.018 0.134 0 1 0.022 0.147 0 1 

High-Income HH 
Indicator 0.535 0.499 0 1 0.547 0.498 0 1 

Household Size 2.64 1.27 1 9 2.70 1.30 1 9 
Number of Other 
Tours 0.345 0.624 0 5 0.337 0.622 0 4 

Free-Flow Travel 
Distance 13.6 12.5 0.08 119.5 13.1 12.1 0.1 94.8 

CBD Indicator 0.110 0.313 0 1 0.101 0.302 0 1 
 

 



101 
 

 
Figure 5.1: Estimated Density of Outbound Departure Time 

 

5.2 Model Estimation Details 
The Bayesian methods for model estimation were described in detail in Chapter 3.  Here, 

some additional details are provided. 

 

For the continuous logit, starting values of all parameters were set to zero.  After 

approximately 200,000 draws from the posterior distribution of the model, it seemed 

fairly clear that draws had converged.  Another 100,000 draws were obtained after 

convergence.  As indicated in Chapter 3, only every 50th draw (from these 100,000) was 

used for inference to eliminate correlation between successive draws (which is inevitable 

using the MH algorithm here).  Thus, the posterior distribution is characterized by 2,000 

draws from that distribution.  Using both informal graphical convergence diagnostics and 

Geweke’s (1992) convergence diagnostic, convergence was checked and results were 

found to be acceptable.   
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Because obtaining draws from the CCNL’s posterior is much more computationally 

burdensome (about 30 times slower), the CCNL Markov chain was initialized with mean 

parameter estimates obtained for the continuous logit model.  Structural parameters, h 

and , were initialized with values of 0.8 and 1.1, respectively.  This allowed the CCNL’s 

posterior draws to converge after only 100,000 draws.  An additional 50,000 draws were 

obtained after convergence, again using only every 50th

 

 draw (from these 50,000) for 

inference (for a total of 1,000 posterior parameter draws).  Like the continuous logit, 

convergence was checked using informal graphical techniques as well as Geweke’s 

(1992) diagnostic, and results were found to be acceptable.   

As the reader may note from Chapter 3, each time-invariant covariate (i.e., 

individual/tour-specific variables) is interacted with a collection of cyclical functions in 

the systematic utility equation.  While no formal methods for variable selection were used 

here, initial results from the continuous logit estimation were examined to identify 

covariates with the most important effects.  Those found to have the most substantial 

effects were then interacted with a larger collection of cyclical functions.  This procedure 

was performed by estimating the continuous logit with each of the nine time-invariant 

covariates interacted with exactly eight cyclical functions.  For those variables with less 

substantial effects in the model, either two or four of the interaction terms were removed, 

beginning with those cyclical interactions having the greatest variation over the 24-hour 

day.  The following section describes the empirical results in detail. 

 

5.3 Empirical Findings 
Table 5.2 and Table 5.3 present the estimation results for the two models.  Mean 

parameter estimates are generally consistent across the two models.  The mean 

coefficient estimates on average travel time, travel time variance, and travel cost have 

negative signs for both models, by prior construction.  Mean values of travel time 

(VOTTs) implied from the models’ draws are $7.34 and $2.97 per hour for the 
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continuous logit and CCNL models, respectively.  These values are rather low compared 

to expectations, since VOTTs are often estimated to be much greater (e.g., around $8 to 

$25 per hour [Brownstone and Small 2005]).  Mean values of reliability (VOR) for the 

two models are almost identical, with estimates of $0.028 and $0.029 per squared minute 

(or $9.95 and $10.30 per hour of travel time’s standard deviation). 

 

The intervals are rather wide on all travel cost parameters, which is likely due to less 

variation in the travel cost variable across departure time alternatives, relative to average 

travel time and travel time variance.  This is particularly true for the continuous logit 

estimates, and results in 90% VOTT intervals that range from $0.03 to $30.00 per hour 

(with a median of $1.43 per hour) and VOR intervals from $0.05 to $22.13 per hour (with 

a median of $2.64 per hour).  The CCNL’s parameter estimates suggest tighter 90% 

intervals, ranging from $1.20 to $6.01 per hour for VOTT (with a median of $2.28 per 

hour) and from $6.58 to $14.04 per hour for VOR (with a median of $9.81 per hour).  Of 

course, people may not trade off time and money (or even reliability so much) in their 

departure time choices, due to ignorance or constraints on departures (like child drop off 

or fixed work times).  So these VOTT and VOR estimates cannot really be compared to 

those coming from route or mode choice models.  Moreover, these estimates are specific 

to the imputed network variables used here, which are imperfect.  As discussed in 

Chapter 4, this dissertation’s reliability measures not only capture travel time variances, 

but also misreporting and rounding errors in reported travel times, which could bias 

unreliability estimates high (or low potentially), resulting in lower or higher VOR 

estimates. 

 

The mean estimates of the CCNL’s correlation parameters appear quite reasonable, and 

statistically significant.  For instance, h’s mean estimate is about 0.75, indicating that the 

minimum time between uncorrelated alternatives is 1.5 hours.  While there is nothing 

special about this particular value, one certainly does not expect correlations to exist 

across alternatives very far apart (e.g., several hours in time).  Of course, the mean 
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estimate of  (of 2.40) seems lower than expected.  As noted in Chapter 3, the expression 

 defines the correlation between alternatives separated by an infinitesimally 

small distance, and one would expect near-perfect correlation between such alternatives.  

The correlation for such alternatives implied by the mean estimate of  is 0.83, not 1 (or 

something closer to one).  However, given that  (along with h) defines correlations 

between other alternatives as well, the estimate seems reasonable.  In order to truly 

achieve the near-perfect correlation between alternatives separated by a very small 

distance, a more flexible correlation structure would likely be needed. 
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Table 5.2:  Continuous Logit and CCNL Model Estimation Results 

Variable Continuous Logit CCNL 
LOS Variables Mean 

Estimate 95% Interval Mean 
Estimate 95% Interval 

Average Travel Time -0.00095 (-0.0178, 0) -0.0042 (-0.0135, -0.0011) 
Travel Time Variance -0.00004 (-0.0063, 0) -0.0025 (-0.0064, -0.0008) 
Cost -0.04754 (-0.3633, -0.0038) -0.0954 (-0.1992, -0.0434) 
Departure Time Functions         
Sin(2*pi*t/24) 3.6977 (1.7867, 6.0541) 2.1785 (1.2983, 3.0339) 
Sin(4*pi*t/24) 2.4269 (0.2672, 5.0664) 0.6261 (0.2759, 0.937) 
Sin(6*pi*t/24) 2.4645 (0.8885, 4.1858) 1.5397 (1.1058, 1.9953) 
Sin(8*pi*t/24) 0.5528 (-0.2218, 1.3142) 0.4923 (0.1411, 0.8538) 
Cos(2*pi*t/24) -4.7262 (-8.0947, -1.9919) -2.8292 (-3.391, -2.3379) 
Cos(4*pi*t/24) -0.5141 (-1.9731, 0.8283) -0.3064 (-0.8347, 0.2194) 
Cos(6*pi*t/24) 2.4113 (1.3118, 3.5476) 1.5987 (1.0785, 2.0579) 
Cos(8*pi*t/24) 1.3434 (0.5838, 2.1487) 0.7941 (0.3889, 1.2113) 
Male Indicator Interactions         
Sin(2*pi*t/24) 0.7372 (0.1533, 1.3411) 0.7580 (0.3246, 1.206) 
Sin(4*pi*t/24) 0.6996 (0.2083, 1.1869) 0.7346 (0.4706, 1.0062) 
Cos(2*pi*t/24) -0.1548 (-1.2793, 0.9883) -0.3178 (-0.7462, 0.1223) 
Cos(4*pi*t/24) 0.2382 (-0.2816, 0.7504) 0.1479 (-0.2071, 0.4989) 
Age Interactions         
Sin(2*pi*t/24) 0.0583 (-0.0073, 0.1269) 0.0735 (0.0342, 0.1178) 
Sin(4*pi*t/24) 0.0600 (-0.0213, 0.1427) 0.0762 (0.0302, 0.1281) 
Sin(6*pi*t/24) 0.0107 (-0.0437, 0.0656) 0.0193 (-0.0126, 0.0565) 
Sin(8*pi*t/24) 0.0175 (-0.0035, 0.0387) 0.0138 (0.0011, 0.0279) 
Cos(2*pi*t/24) -0.2124 (-0.3635, -0.072) -0.2027 (-0.3129, -0.1094) 
Cos(4*pi*t/24) -0.1242 (-0.2073, -0.0428) -0.1037 (-0.1676, -0.0493) 
Cos(6*pi*t/24) -0.0666 (-0.1054, -0.0291) -0.0433 (-0.0698, -0.0197) 
Cos(8*pi*t/24) -0.0267 (-0.046, -0.0081) -0.0145 (-0.0262, -0.0033) 
Part-Time Indicator 
Interactions         
Sin(2*pi*t/24) -3.1017 (-4.8199, -1.4657) -2.4492 (-3.032, -1.9058) 
Sin(4*pi*t/24) -2.3430 (-4.1796, -0.4361) -1.5309 (-2.0617, -1.0047) 
Sin(6*pi*t/24) -0.7430 (-2.0028, 0.5482) -0.4138 (-1.0535, 0.2374) 
Cos(2*pi*t/24) -0.3411 (-4.946, 3.4978) -1.8135 (-2.3856, -1.324) 
Cos(4*pi*t/24) -0.8122 (-3.7006, 1.5505) -1.5343 (-1.9832, -1.0824) 
Cos(6*pi*t/24) -0.6394 (-1.9494, 0.5628) -0.7680 (-1.1835, -0.3127) 
High Income HH Indicator 
Interactions         
Sin(2*pi*t/24) -0.1619 (-0.6706, 0.3492) -0.1105 (-0.4649, 0.2569) 
Sin(4*pi*t/24) -0.6585 (-1.0927, -0.2146) -0.5793 (-0.8003, -0.3479) 
Cos(2*pi*t/24) 0.3320 (-0.7165, 1.3286) 0.1772 (-0.1772, 0.5688) 
Cos(4*pi*t/24) 0.0923 (-0.3726, 0.5582) 0.0300 (-0.2049, 0.2567) 
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Table 5.3:  Continuous Logit and CCNL Model Estimation Results (Cont’d) 

Variable Continuous Logit CCNL 
HH Size Interactions Mean 

Estimate 95% Interval Mean 
Estimate 95% Interval 

Sin(2*pi*t/24) -0.2642 (-0.4788, -0.0432) -0.2304 (-0.3905, -0.0608) 
Sin(4*pi*t/24) -0.0519 (-0.2373, 0.1416) -0.0158 (-0.1391, 0.1111) 
Cos(2*pi*t/24) 0.4706 (0.039, 0.8958) 0.3622 (0.0602, 0.6185) 
Cos(4*pi*t/24) -0.0110 (-0.1986, 0.1645) -0.0382 (-0.1763, 0.0965) 
No. of Other Tours 
Interactions         
Sin(2*pi*t/24) -0.8870 (-1.2404, -0.5448) -0.8571 (-1.1497, -0.5676) 
Sin(4*pi*t/24) -0.4643 (-0.7912, -0.1508) -0.3929 (-0.6774, -0.104) 
Cos(2*pi*t/24) 0.7624 (-0.0748, 1.6177) 0.5722 (-0.0927, 1.1643) 
Cos(4*pi*t/24) 0.2327 (-0.1372, 0.6069) 0.1470 (-0.1048, 0.3997) 
Travel Distance Interactions         
Sin(2*pi*t/24) 0.0241 (-0.0126, 0.0683) 0.0293 (-0.0055, 0.072) 
Sin(4*pi*t/24) -0.0374 (-0.088, 0.0167) -0.0292 (-0.079, 0.024) 
Sin(6*pi*t/24) -0.0053 (-0.0329, 0.0233) -0.0065 (-0.0318, 0.0195) 
Cos(2*pi*t/24) 0.0644 (-0.0359, 0.1499) 0.0652 (-0.0208, 0.1541) 
Cos(4*pi*t/24) -0.0035 (-0.0606, 0.0495) 0.0041 (-0.0451, 0.0554) 
Cos(6*pi*t/24) -0.0489 (-0.0695, -0.0288) -0.0408 (-0.0645, -0.0179) 
CBD Destination Zone 
Indicator Interactions         
Sin(2*pi*t/24) -0.7472 (-1.6973, 0.1987) -0.6528 (-1.1057, -0.2365) 
Sin(4*pi*t/24) -0.7457 (-1.4699, 0.0221) -0.7339 (-1.0776, -0.3483) 
Cos(2*pi*t/24) 1.6963 (0.3099, 3.0539) 1.4181 (0.8338, 2.0036) 
Cos(4*pi*t/24) 0.6503 (0.0173, 1.3087) 0.5738 (0.3014, 0.8679) 
CCNL Structural Parameters         
h n/a n/a 0.7504 (0.5, 1.4) 

  n/a n/a 2.3958 (1.0675, 4.6205) 
          
Observations 997 997 

 

To better understand behavioral differences suggested by the two models and the effects 

each time-invariant covariate has on departure time choice (since parameter estimates for 

these variables are difficult to interpret on their own), Figure 5.2 and Figure 5.3 show 

density profiles for example individuals.  In each plot, covariate values are taken to be the 

average over all individuals within the sample for all but one of the covariates.  For the 

final covariate, two representative values are chosen to demonstrate the covariate’s effect 
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on departure time choice48

 

.  Note here that level-of-service variable effects are identical 

across all plots. 

 
Figure 5.2:  Gender, Age, Worker Status, and Income Effects on Average Individuals’ 

Predictive Densities for Continuous Logit and CCNL 

 

Figure 5.2a shows the differences in predictive densities for males and females, Figure 

5.2b illustrates the age effect on departure time choice, Figure 5.2c reveals predictive 

densities for full-time versus part-time workers, and Figure 5.2d demonstrates departure 

time choice differences between individuals from high- and low-income households 
                                                
48 For instance, if the final covariate is an indicator variable, the two representative values are 0 and 1.  For 
other covariates, a low value and a high value are chosen to illustrate differences across individuals. 
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(where high income is defined as $75K per year or more).  Clearly, men and older 

individuals tend to depart earlier than women and younger persons.  In the case of the age 

variable, similar results were noted by Komma and Srinivasan (2008) and Gadda et al. 

(2009).  Komma and Srinivasan (2008) also found those from high income households 

tend to depart later, similar to the results presented here49

 

.  Presumably this results from 

such individuals having more flexible work schedules.  Finally, both models predict part-

time workers to depart later, relative to full-time workers, consistent with the findings of 

Abou Zeid et al. (2006), Popuri et al. (2008), and Gadda et al. (2009).  Since part-time 

workers work schedules often do not conform to those of full-time workers, and they 

presumably work shorter shifts, in general, this result seems very reasonable.  

Figure 5.3 shows the effect of the four remaining covariates on departure time choice, 

including household size (1 versus 5 in Figure 5.3a) the number of other tours (0 and 3 in 

Figure 5.3b), the travel distance (2 mi versus 35 mi in Figure 5.3c), and the effect of 

traveling to a central business district (CBD) destination (Figure 5.3d).  Individuals from 

larger households tend to depart earlier (similar to results found by Komma and 

Srinivasan [2008]), which is not so surprising since they may have additional obligations, 

such as dropping off a child at school.  The number of additional tours an individual 

undertakes tends to result in later departures, thanks to added scheduling constraints and 

shorter work-activity durations50.  Not surprisingly, the longer the distance traveled, the 

earlier one departs51

                                                
49 Popuri et al. (2008) noted later departures for individuals from households with 2 or more vehicles, 
which are generally higher income households.  Conversely, Gadda et al. (2009) found the opposite affect 
for high income households, though parameter estimates in that case were not statistically significant for 
the variable. 

, presumably in order to arrive on time.  Travelers destined for the 

CBD tend to depart a bit later, which is in contrast to the findings of Komma and 

Srinivasan (2008).  In fact, one may expect such individuals to depart earlier, since one 

would typically find lower speed roadways and higher congestion in such areas during 

50 Note that average work-activity durations for those with additional tours is only about 6 hours, while 
durations for those with no additional tours is just a bit greater than 8 hours. 
51 Komma and Srinivasan (2008) and Gadda et al. (2009) obtained similar results. 
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the AM peak.  However, the model controls for congestion and speed effects through the 

time-varying covariates.  Those working in the CBD may have particular job types, 

which allow for later work start times.  Komma and Srinivasan (2008) controlled for two 

occupation types, finding that those in “professional” occupations depart a fair bit later 

than others, so those working in the CBD may largely be working in “professional” 

occupations.   

 

 
Figure 5.3:  Household Size, Number of Tours, Travel Distance, and CBD Effects on 

Average Individuals’ Predictive Densities for Continuous Logit and CCNL 

 

Interestingly, the differences in predictive densities from the continuous logit and CCNL 

appear negligible in each case.  This is a bit odd since the continuous logit assumes 
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independent and identically distributed error terms.  Perhaps the continuous form of the 

systematic utility equation plays a role here.  Since the systematic utility equation is 

defined as a smoothly continuous function, systematic utilities for alternatives separated 

by only small distances cannot have largely different systematic components.  And, since 

one would only expect error term correlations between alternatives when similarities 

between alternatives are not systematically controlled for, it is possible that the smoothly 

continuous utility specification actually controls for these similarities in a systematic 

way.  Of course, this is only one explanation.  Perhaps the departure time choice context 

here is not as suitable for demonstrating the usefulness of the CCNL specification as 

some other choice contexts (e.g., location or destination choice, activity durations, or 

vehicle usage).  Alternatively, the data may be to blame.  It is no secret that departure 

time data often suffers from rounding error and misreporting (Stopher et al. 2008), which 

could cause clustering in the data.  Such clustering may cause difficulty in resolving the 

underlying correlations for the CCNL in model estimation.  Further comparisons between 

the two models, via out-of-sample predictive accuracies, are provided in the following 

section. 

 

5.3.1 Out-of-Sample Predictions 
In order to evaluate the models’ abilities to capture variation in departure time choice, 

out-of-sample prediction provides a number of benefits.  Furthermore, it aids in 

illustrating the merits of Bayesian methods.  The out-of-sample data is composed of 

3,550 records, representing about 20% of the total data.  Since Bayesian estimation 

output offers a collection of parameter draws from the posterior distribution, each draw is 

used to compute the likelihood each model would predict the actual departure time 

outcome for each individual.  The distribution of individual-level likelihoods and total 

log likelihoods can then be characterized.  Here, each of the 2,000 continuous logit and 

1,000 CCNL posterior draws are employed.  Figure 5.4a shows the total log likelihood 
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(across all individuals) distributions and Figure 5.4b shows the individual-level 

likelihood distributions for the two models52

 

. 

 
Figure 5.4:  Out-of-Sample Likelihood Predictions for Continuous Logit and CCNL 

 

As shown in Figure 5.4a, the CCNL out-performs the continuous logit, with a difference 

in mean log likelihoods of about 23.  Figure 5.4b shows almost no differences between 

the two models, not surprisingly, since this plot is over individuals, and not the aggregate.  

If the average aggregate log likelihood difference is 23 across 3,550 individuals, this 

suggests just a 0.006 average contribution per individual for the CCNL over the 

continuous logit.   

 

Good (1958) proposed Bayes factors (BFs) for testing whether differences between two 

models are significant.53

Figure 5.4

  And, the BF here is the exponent of the difference between the 

mean log likelihoods of a.  Kass and Raftery (1995) propose a test statistic of 

, suggesting values between 2 and 6 provide positive evidence of rejecting the 
                                                
52 In other words, the density value for each individual was computed, and the distribution of these density 
values across all individuals and all parameter draws is plotted in Figure 5.4b. 
53 Other measures have been proposed to evaluate model fit in Bayesian contexts as well, including the 
Bayesian information criterion (Schwartz 1978), the Akaike information criterion (Akaike 1974), and the 
deviance information criterion (Spiegelhalter et al. 2002). 
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null hypothesis (i.e., the continuous logit in this case), values between 6 and 10 provide 

strong evidence, and values over 10 offer very strong evidence for rejecting the null 

hypothesis.  In this case, the test statistic takes a value of 48, offering strong evidence that 

the continuous logit model is inferior to the CCNL in terms of model prediction.  Kass 

and Raftery (1995) also note that  serves as the Bayesian equivalent of a 

likelihood ratio test statistic for classical methods.  Thus, if the test statistic value of 48 is 

scaled for the observations in the estimation sample (i.e., multiplied by ), 

the equivalent likelihood ratio statistic here is about 13.  With two degrees of freedom 

(since the CCNL adds two parameters to the continuous logit), the test statistic is 

statistically significant. 

 

Alternatively, one could think of measuring how often the CCNL beats the continuous 

logit (in terms of its predictive ability).  For instance, if random pairs of parameter values 

are drawn from their respective posterior distributions (i.e., one from the continuous logit 

and one from the CCNL), the CCNL’s corresponding likelihood beats the continuous 

logit’s about 65% of the time.  Of course, the practical benefit of the CCNL over the 

continuous logit does not appear as meaningful as these results suggest (and as noted in 

the previous section).  In the next section, some example policy simulations are 

examined, demonstrating how economic welfare calculations can be made for the two 

models. 

 

5.3.2 Economic Welfare Demonstration 

To illustrate how economic welfare change can be handled for the continuous logit and 

CCNL models, an example is formulated here.  Ben-Akiva and Watanatada (1981) 

showed that consumer surplus (CS) for the continuous logit can be computed as the 

limiting formula for the MNL, as follows: 

 

        (5.1) 
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Moreover, one can convert differences in CS into monetary terms by dividing the term in 

equation 5.1 by the estimated cost coefficient.  CS for the discrete cross-nested logit is 

computed as follows (Hunt et al. 2007): 

 

      (5.2) 

 

It follows that the CS for the CCNL can be computed as follows: 

 

      (5.3) 

 

As a base scenario, travelers are assumed to face the conditions provided in the data.  

Three tolling policy simulations are investigated here.  In the first, it is assumed that 

$0.15/mile tolls are assessed on all roads during the peak periods, resulting in peak-

period travel time delay reductions of 50%.  The $0.15/mile toll represents a doubling in 

travel costs for most travelers (since operating costs are assumed to be $0.15/mile), 

though some roadways in the San Francisco region are already tolled.  So the additional 

$0.15/mile toll represents less than a doubling of costs for travelers incurring other tolls.  

In the second simulation, $0.15/mile tolls are assessed during peak periods, with assumed 

peak-period travel time delay reductions of only 10%.  And in the final simulation, 

$0.30/mile tolls during peak periods are assumed to reduce peak-period travel time delay 

by 50%.  Clearly, there is some discrepancy here between the three scenarios (e.g., 

$0.15/mile tolls cannot simultaneously reduce peak period travel time delay by 50% and 

10%).  However, these scenarios should be viewed simply as potential outcomes of the 

tolling policies.  In order to truly understand the tolls’ effects, a feedback mechanism 

would be required.  Here, the purpose is not necessarily to obtain a good guess of the 
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tolls’ effects, but instead to illustrate how CS change calculations are performed and to 

examine the continuous logit and CCNL model behavior.   

 

Using these assumptions, an individual’s CS change is measured by the difference in CS 

values across the base scenario and the tolling policy scenarios, divided by the cost 

coefficient from the model.  Since this is a Bayesian analysis, CS change is computed for 

each of 100 parameter draws from the posterior distribution for the two models.  The 

same random draws are used in computations for each of the three simulations.  The 

sample used here is identical to the sample used in model estimation (with 997 tour 

observations).  Because individuals choosing transit modes would not be expected to 

incur such tolls (nor would those traveling by walk and bike modes), only those sample 

tours made by the automobile mode are considered here (for 821 sample records). 

 

Figure 5.5a shows the distribution of aggregate CS change (over all sample individuals) 

under the continuous logit specification for the three policy simulations, while Figure 

5.5b shows the aggregate CS change distribution under the CCNL specification.  

Simulations 1 and 2 (with the only difference being the assumed reduction in peak travel 

time delay) have similar CS distributions under both model specifications, with 

simulation 1’s density shifted to the right.  Since travel times are lower and more reliable 

under simulation 1, it is not surprising that the estimated CS change is greater.  The 

$0.15/mile tolls during the peak periods (where the AM peak period is highly preferred) 

essentially result in a doubling of total costs for most individuals (since operating costs 

are assumed to be $0.15/mile as well).  Thus, it is not surprising to see the large drop in 

CS change for the first two simulations.  It is also not surprising to see simulation 3’s CS 

reduction is about twice as large as that of simulation 1, on average.   
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Figure 5.5:  Distribution of Consumer Surplus Change for Continuous Logit and CCNL 

under Three Tolling Policy Simulations 

 

Figure 5.6 shows the same information as Figure 5.5, but is presented by scenario to offer 

ease in comparisons across the two models.  In each policy simulation, the general shape 

of CS change distributions is very similar for the two models, though the CCNLs’ 

distributions have smaller variances than those of the continuous logit.  Mean CS changes 

per traveler (across the 821 travelers) under the continuous logit are about -$0.88, -$1.04, 

and -$1.84 for simulations 1, 2, and 3, respectively, while under the CCNL, mean CS 

changes are about -$0.89, -$1.03, and -$1.81.  Not surprisingly, these mean CS changes 

are very similar across the two models.  However, standard deviations (at the traveler 

level) for the three policy simulations are $0.20, $0.05, and $0.22 under the continuous 

logit and $0.06, $0.03, and $0.10 under the CCNL.  Thus, CS estimates under the 

continuous logit specification suffer from greater uncertainty, which is due to the larger 

interval estimates for the network variable parameters (i.e., the parameters related to 

travel time, variance, and cost) under the continuous logit specification.  It should be 

noted that even though CS is negative under each tolling policy simulation, total 

economic welfare is not, since one must also consider toll revenues.  After accounting for 

toll revenues, the mean of total economic welfare change at the traveler level is estimated 
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to be $0.33, $0.17, and $0.40 for simulations 1, 2, and 3, respectively, under the 

continuous logit model; and $0.36, $0.22, and $0.41 for the three simulations under the 

CCNL model.  Of course, these are only three examples, and drawing firm conclusions at 

this stage may be unwise; but the example does illustrate how CS is computed for the 

CCNL, while illustrating a key advantage of the Bayesian approach (i.e., obtaining the 

distribution of CS rather than simply a point estimate). 

 

 
Figure 5.6:  Distribution of Consumer Surplus Change for Three Tolling Policy 

Simulations under Continuous Logit and CCNL Specifications 

 

Another interesting evaluation can be made with these simulations with regard to how the 

models predict departure time choice changes at an aggregate level.  Figure 5.7 shows the 

aggregate (over all individuals) departure time choice distributions for each of the 

simulations along with the status quo (or baseline scenario).  As expected, the predictive 

distributions are wider (and less peaked) under each of the simulations as compared to the 

status quo scenario for both models.  In addition, there appears to be some evidence of 

grouping near the left- and right-side shoulders of the AM peak period, particularly under 

simulation 3.  This seems very reasonable since these shoulders represent times right 

before and after tolling is assumed to begin.   
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Figure 5.7:  Distribution of Travelers’ Departure Time Choices for Four Simulations 

under Continuous Logit and CCNL 

 

Figure 5.8 shows the same plots as Figure 5.7, but with the densities grouped by 

simulation rather than by model.  Figure 5.8 suggests that the two models predict very 

similar results under the status quo scenario, which is not surprising.  But for each of the 

toll policy simulations, the aggregate predictive densities are slightly different.  This is 

particularly evident with simulation 3, where two new peaks in the distribution emerge 

just before and just after the AM peak period.  Under the CCNL specification, the height 

of these peaks appears to be a bit more pronounced than under the continuous logit 

specification.  Since the correlations under the CCNL essentially allow areas of higher 

utility to draw probability away from areas of lower utility, it is not surprising to see such 

behavior.  In fact, this behavior seems very reasonable, since given the choice between 

driving to work at 5:55 with no tolls or at 6:05 with tolls, most people would likely 

choose the earlier time.   
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Figure 5.8:  Distribution of Travelers’ Departure Time Choices for Continuous Logit and 

CCNL by Simulation Exercise 

 

To further investigate these predictive distributions, Table 5.4 presents the proportion of 

individuals choosing each of five TOD periods for each simulation and both models.  The 

TOD periods include before 5 am, 5 to 6 am, 6 to 9 am (the AM peak), 9 to 10 am, and 

after 10 am.  These were specifically chosen to examine the shoulder periods one hour 

before and one hour after the tolled AM peak period.  While the status quo simulation 

proportions are similar between the two models, the CCNL predicts larger percentage 
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drops in AM peak period travelers in each of the three toll policy simulations relative to 

the status quo.  More importantly, however, are the predicted changes relative to the peak 

change.  These are computed as the difference in TOD-specific shares between the toll 

policy simulations and status quo simulation, divided by the status quo simulation’s TOD 

share.  As shown in Table 5.4, the continuous logit predicts larger share increases in the 

“before 5 am” TOD period than in the “5 to 6 am” period for each simulation, while the 

CCNL predicts the opposite.  In contrast to the continuous logit, the ability of the CCNL 

to capture correlations across alternatives allows this very reasonable behavior to emerge.  

This behavior is also evident in comparison of the “after 10 am” and “9 to 10 am” 

periods, where “9 to 10 am” share increases under the CCNL are relatively larger than 

“after 10 am” share increases when compared to the continuous logit.  Of course, these 

results seem very reasonable, since one would expect travelers to shift toward shoulder 

peak periods more so than to other periods. 
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Table 5.4:  Predicted Departure Time Proportions for Five TOD Periods and Four 

Simulations 

  Proportion Proportional Increase 
from Base 

Status Quo Cnt. Logit CCNL Cnt. Logit CCNL 
Before 5 am 0.031 0.030 n/a n/a 
5 to 6 am 0.074 0.070 n/a n/a 
6 to 9 am (Peak) 0.700 0.691 n/a n/a 
9 to 10 am 0.079 0.087 n/a n/a 
After 10 am 0.116 0.123 n/a n/a 
Simulation 1         
Before 5 am 0.036 0.033 0.155 0.101 
5 to 6 am 0.084 0.079 0.135 0.135 
6 to 9 am (Peak) 0.671 0.652 -0.041 -0.056 
9 to 10 am 0.086 0.100 0.086 0.148 
After 10 am 0.123 0.136 0.060 0.107 
Simulation 2         
Before 5 am 0.036 0.033 0.166 0.101 
5 to 6 am 0.084 0.080 0.136 0.136 
6 to 9 am (Peak) 0.670 0.651 -0.043 -0.058 
9 to 10 am 0.085 0.101 0.081 0.168 
After 10 am 0.124 0.136 0.072 0.107 
Simulation 3         
Before 5 am 0.040 0.036 0.284 0.220 
5 to 6 am 0.092 0.090 0.243 0.279 
6 to 9 am (Peak) 0.643 0.613 -0.082 -0.113 
9 to 10 am 0.093 0.114 0.182 0.313 
After 10 am 0.132 0.148 0.137 0.204 

 

Figure 5.9 further details these shifts in departure time choices by displaying the portion 

of travelers shifting from peak periods to combined shoulder periods (i.e., “5 to 6 am” 

and “9 to 10 am”) and to combined off-peak periods (i.e., “before 5 am” and “after 10 

am”) for both models.  In other words, of those travelers no longer choosing peak periods 

under the simulations’ tolls, Figure 5.9 shows the share of those travelers shifting to peak 

shoulders versus off-peak periods.  In some sense, this assumes that only peak-period 

travelers shift their departure times in the face of tolls, and either shift to peak shoulders 
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or off-peak periods.  One would expect most peak-period travelers to shift to similar 

departure time alternatives (i.e., peak shoulders) in the face of peak-period tolls.  In 

comparison to the continuous logit’s predictions, the CCNL generally predicts larger 

shifts to peak shoulders (though shifts under simulation 1 are nearly identical), as 

expected.  Of course, this comes from the CCNL’s ability to capture correlations across 

departure time choices. 

 

 
Figure 5.9:  AM Peak Period Arrival Time Shifts to Shoulder and Off-Peak Periods for 

Three Tolling Policy Simulations under Continuous Logit and CCNL Models 

 

While the added ability to capture correlations across choice alternatives under the CCNL 

model (in contrast to the continuous logit) appears to have only minor implications on 

individual-level predictive densities (as illustrated in Figure 5.2 and Figure 5.3), out-of-
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sample predictions are better (and statistically significant) for the CCNL.  In addition, the 

empirical results suggest the CCNL offers reasonable choice behavior in the departure 

time choice context while providing added model flexibility (and a more defensible 

behavioral basis) over the continuous logit specification. 

 

5.4 Chapter Summary 
A number of choice contexts may be best handled using continuous response variables 

(e.g., departure time, location, activity duration, and vehicle usage).  This chapter has 

presented empirical results of a new GEV model for continuous response, the CCNL.  

The model represents a generalization of the discrete cross-nested logit for continuous 

response, much like the continuous logit represents a generalization of the MNL.  And, 

like any in the GEV class, the model conforms to random utility theory, offering a strong 

basis by which to estimate the economic welfare implications for evaluation of policy 

alternatives, as demonstrated in Section 5.3.2.   

 

Empirical results suggest that the CCNL performs better than the continuous logit model, 

in terms of out-of-sample prediction of departure times, and the CCNL offers more 

flexible choice behavior to emerge (as illustrated through three tolling policy 

simulations), along with welfare estimates. However, the CCNL model is much more 

computationally burdensome in estimation.  Here, generating draws from the CCNL’s 

posterior distribution took on the order of 30 times longer than those for the continuous 

logit.  Moreover, the numerical integration procedure for generating likelihood values 

suffered from more error in the CCNL context than in the continuous logit setting.  

Reducing such error is likely to result in even greater estimation time.  In the next 

chapter, empirical results of the BVMNP model (developed in Chapter 3) are presented. 
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CHAPTER 6:  EMPIRICAL RESULTS OF DISCRETE TOD 

MODELS 
 

In this chapter, empirical results of the bivariate multinomial probit (BVMNP) model 

specifications are presented.  The models were estimated using Bayesian estimation 

methods (as discussed in Chapter 3) on work-tour arrival- and return-time choice data.  

For consistency in model estimates, the same data used in Chapter 5’s continuous model 

estimations is used here.  Section 6.1 discusses this data in more detail as it relates to 

bivariate choice of tour timing. 

 

6.1 Work-Tour Scheduling Data 
As mentioned above, the sample used here represents the same sample used in the 

estimation of the continuous logit and CCNL.  In other words, the same random sample 

of 997 observations is used in this analysis.  Instead of only a single dimension of tour 

timing investigated for the previous models, two timing dimensions are considered:  

arrival time at work and return time from work.  These were chosen to provide simplicity 

in defining choice alternatives that are not possible.  With these choice definitions, 

alternatives that are not possible are those where the return time alternative is earlier than 

the arrival time alternative.  Figure 6.1a shows the distributions of home-to-work arrival 

times for the full sample (of 17,820) and the 6% sample used in model estimation, and 

Figure 6.1b shows the distribution of work-to-home return times.  Only minor differences 

between the samples are evident, though the peak of the distribution for return times is 

slightly lower for the 6% sample as compared to the full sample.  This is likely due to 

work-to-home timing dimension being more variable (i.e., having higher variance) than 

the home-to-work timing dimension. 
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Figure 6.1:  Densities of Home-to-Work Arrival Times and Work-to-Home Departure 

Times 

 

As discussed in Chapter 3, 30-minute time intervals serve as the choice alternatives here.  

Since there are very few individuals choosing times very early in the day and very late in 

the day (for both arrival and return choice dimensions), boundary alternatives were 

created, essentially grouping many 30-minute alternatives into a single alternative.  

Boundaries were set here to achieve about 10 observations within each boundary 

category.  For work arrival times, this resulted in an early morning period from midnight 

to 5 am (9 observations) and an evening period from 6 pm to midnight (12 observations).  

For work return times, an early morning period from midnight to 10 am (15 observations) 

and an evening period from 11 pm to midnight (16 observations) were created.  As the 

utility equations for the BVMNP model rely on cyclical functions of time (arrival time or 

return time), assumptions regarding the time implied by each boundary alternative were 

needed.  Assumed arrival times for work arrival boundary alternatives are 4:30 am and 

7:00 pm, and assumed return times for work return boundary alternatives are 8:30 am and 

11:30 pm.  These assumed times represent average arrival/return times recorded for the 

observations within each category.  To accommodate that these boundary intervals may 
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exhibit very different properties than non-boundary alternatives, variances and 

correlations for these boundary alternatives were adjusted.  These adjustments are 

detailed in Section 6.2 below. 

 

Explanatory variables considered in this analysis are identical to those evaluated in the 

previous time-of-day (TOD) choice models.  For descriptive statistics on these variables, 

readers may refer to Table 5.1 in the previous chapter.  Like the earlier models, monetary 

travel costs are computed as follows: for automobiles, they are $0.15/mile (the operating 

cost) plus any applicable tolls, divided by the number of vehicle occupants for 

automobile modes; for transit, they are the transit fare (by TOD); and for walk and bike 

modes, they are zero.  In the following section, model estimation details are presented. 

 

6.2 Model Estimation Details 
While Chapter 3 discusses the Bayesian estimation procedure in detail, some additional 

details are needed here.  First, to ensure the time-varying covariates of travel time, travel 

time variance, and travel cost have the expected (negative) effect on utility functions, the 

priors on parameters related to time, variance, and cost variables were chosen to be 

truncated normal (i.e., truncated from above at zero).  Second, since very few individuals 

in the sample choose very early or very late arrival and return time periods, “boundary” 

alternatives were created (as discussed above).  Of course, this simplifies the model in the 

sense that fewer alternative-specific utilities need to be drawn in model estimation.  

However, it creates problems in that one could not reasonably expect the error structures 

for these alternatives to be the same as those of other alternatives.  Thus, several 

modifications of the covariance matrix are specified here. 

 

First, each of the four boundary alternatives’ error terms is allowed to have its own 

variance parameter, while the variance parameters for other alternatives were set to one 

for identification purposes (as discussed in Section 3.3).  Independent gamma priors are 

used for these parameters with shape and scale parameters of 2 and 1, respectively.  
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Second, for the CAR covariance specification, the  terms (which control the correlation 

across alternatives) are assumed to be inversely related to each alternative’s interval size. 

More specifically, these parameters are assumed to vary across each pair of alternatives 

as follows: 

 

      (6.1) 

      (6.2) 

      (6.3) 

 

Here,  is 30 minutes (the default interval size), and  and  are the interval 

sizes of alternatives p and q (measured in minutes).  , , and  are the 

same as described in Chapter 3, and  and  are two new (non-negative) 

parameters to be estimated.  The assumption of non-negativity presumes that correlations 

between boundary alternatives and other alternatives are smaller than those across non-

boundary alternatives.  It should be clear that the size terms only come into play when 

one or both of the alternatives are boundary alternatives.  Moreover, these size terms 

reduce to the original model specification if  or  are zero.  Finally, it is 

worth noting that  affects both the correlations across arrival alternatives and those 

across departure alternatives.  Thus, it is assumed that the way in which the interval size 

affects correlation patterns across arrival times is the same as the way it affects 

correlation patterns across return time alternatives.  Independent gamma priors are 

assumed for  and  with prior shape and scale parameters of 1 each. 

 

For the AR1 covariance specification, actual correlations between alternative utilities are 

scaled by the size of the alternatives.  This is similar to the above concept, but realized in 

a slightly different way.  The correlations between any two alternatives are formulated as 

follows: 
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     (6.1) 

     (6.1) 

   (6.3) 

 

Thus, correlations are assumed to be directly related to these size terms, unlike the CAR 

model where actual parameters of the model were re-parameterized.  In both cases, 

however, the effect should be similar in that correlations will be smaller between 

boundary alternatives and non-boundary alternatives than they will be between two non-

boundary alternatives, unless, of course, the  parameters are estimated to be zero, in 

which case alternative size will have no effect on correlations.  Like the CAR 

specification, prior distributions for  and  are assumed to be independent 

gamma distributions with shape and scale parameters of 1 each. 

 

The draws of the covariance parameters within the Gibbs sampler remain largely 

unchanged, except there are six additional parameters.  The MH proposal density is a 

multivariate normal distribution, and parameters are redrawn if the resulting  or 

 do not emerge to be positive definite.  The MH acceptance probability also is 

updated to include the prior densities of the additional parameters. 

 

Initial values of all parameters in the utility function were set to zero as were all 

correlation parameters.  Initial values of the boundary alternative variances were set to 

one (consistent with the fixed variances of the non-boundary alternatives), and initial 

values of the baseline duration parameters were set to 6 and 0 for part-time workers and 

those undertaking additional travel tours, and to 9 and 0 for full-time workers with no 

additional travel tours (consistent with average work-activity durations for these groups).  

The model was run to achieve about 500,000 draws from the parameters’ posterior 
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distribution for both covariance specifications.  To reduce autocorrelation across draws, 

only every 200th

Figure 6.2

 draw from the last 100,000 is used for inference.  Thus, the posterior 

distribution here is characterized by 500 MCMC draws.  Unlike the models of Chapter 5, 

it was clear that even after 500,000 draws, the models had not converged.  This is largely 

a result of the slow-converging MH process used to draw random utilities in the first step 

of the Gibbs sampler.  In  and Figure 6.3, non-convergence of posterior draws 

for the BVMNP models is illustrated for four selected parameters, with parameter values 

on the y-axis and iteration number on the x-axis.  Despite non-convergence, parameter 

draws did appear to offer very reasonable conclusions, and so are used here (even though 

convergence was not reached).   
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Figure 6.2:  Trace Plot of Parameter Draws versus Iteration Number for Four Selected 

CAR Model Parameters (Every 200th

 

 Draw from Last 100,000) 
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Figure 6.3:  Trace Plot of Parameter Draws versus Iteration Number for Four Selected 

AR1 Model Parameters (Every 200th

 

 Draw from Last 100,000) 

Like the model of Chapter 5, no formal variable selection methods were used.  Instead, a 

similar set of covariates from the models of Chapter 5 were used.  Of course, in the 

context of the BVMNP model, there are two parameters for each covariate in the utility 

equations rather than one, since the BVMNP model uses two separate utility functions for 

its two choice dimensions.  To facilitate convergence, several covariate interaction terms 

were removed from the analysis.  All of the same individual/tour-specific variables 

remain, but some of the interactions with higher-order cyclical functions were removed.  

Empirical results of the BVMNP are discussed in the following section. 
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6.3 Empirical Findings 
Table 6.1, Table 6.2, and Table 6.3 show estimates of arrival time utility parameters, 

return time utility parameters, and covariance parameters for the two BVMNP models.  

Since parameters on time-varying covariates were constrained to be negative (through 

prior specification), those parameters all have negative signs (as shown at the end of 

Table 6.1 and Table 6.2).  Moreover, implied values of travel time (VOTTs) for the two 

models are very similar: median arrival VOTTs for CAR and AR1 specifications are 

$3.92/hour and $5.41/hour, and return VOTTs are $5.06/hour and $4.74/hour, 

respectively.  While arrival VOTTs are generally consistent with the estimates of such 

values for the continuous logit and CCNL models and return VOTTs have similar 

magnitudes, estimates are not consistent with expectations, since VOTTs are often 

estimated to be much higher (e.g., around $8 to $25 per hour [Brownstone and Small 

2005]).  Of course, these VOTT estimates are context-specific (for activity timing 

choices), and people may not trade off time and money in this time choice decisions (due 

to ignorance or scheduling constraints) like they do in route or mode choice contexts.  

Implied values of reliability (VORs) for the CAR and AR1 models are $0.063 and $0.047 

per squared minute (about $15.03 and $13.02 per hour of standard deviation), 

respectively, on the home-to-work journey, and $0.003 and $0.004 per squared minute 

(about $3.10 and $3.75 per hour of standard deviation), respectively, on the work-to-

home journey.  While the actual estimates are not exactly the same across the two models 

(possibly due to non-convergent results), the two models are consistent in that reliability 

is much more important for the home-to-work journey than the work-to-home journey.  

Thus, it appears that commuters are more sensitive to travel time reliability in their home-

to-work journeys than their work-to-home journeys, but less sensitive to travel time in 

their home-to-work journeys, relative to work-to-home.  This seems rather intuitive, since 

workers are usually constrained in their working hours.  Consider a worker that needs to 

arrive for work at 9 am.  If this worker is late (or late on a regular basis), that may affect 

his or her job security.  Thus, there is some incentive for leaving a buffer period to ensure 

arrival at or before work is scheduled to begin.  In other words, it may be more 
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acceptable to the individual to arrive 10 minutes early than to arrive 10 minutes late, and 

so that individual may depart from home in order to arrive nearly 10 minutes early, on 

average.54

 

  On the other hand, most workers presumably do not need to be home from 

work at any particular time, though they may wish to arrive home as quickly as possible.  

Thus, it would make sense for average travel time to be more important for the work-to-

home journey than the home-to-work journey.  Thus, the implied VOTTs and VORs 

appear reasonable, relative to one another, but VOTTs are low in comparison to other 

studies. 

Of course, the effect of these variables also depends on the variability in them.  For 

instance, the average standard deviation of average travel time across TODs for sample 

individuals is about 4.4 minutes, while the average standard deviation of travel time 

variances across TODs is 22.2 squared minutes.  Thus, if average travel times and travel 

time variances were to have the same effect on utilities, parameter coefficients on travel 

time should be about five times greater in magnitude than coefficients on variance.  It 

turns out that conclusions remain the same here.  Coefficients on times and variances for 

arrival time choice are similar in magnitude, suggesting reliability is more practically 

significant for the home-to-work journey, but coefficients on travel times for return time 

choice are on the order of 20 to 30 times greater than those on variances, meaning travel 

times are more practically significant for the work-to-home journey.  One should again 

note, however, that these VOTT and VOR estimates are context-specific (for activity 

scheduling), and may not be valid for other choice contexts (e.g., mode or route choice) 

or under different network variable imputation assumptions. 

 

                                                
54 Small et al. (1999) estimated that the marginal costs of early arrival increase from about 0.028/min at 5 
minutes early up to about $0.128/min at 15 minutes early.  The marginal cost of late arrival, however, was 
estimated to be 2.5 to 11 times greater at $0.31/min. 
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Table 6.1:  BVMNP Parameter Estimation Results for Arrival Time Variables 
Arrival Time Variables CAR Specification AR1 Specification 

Variable Interaction 
Term 

Mean 
Estimate 95% Interval Mean 

Estimate 95% Interval 

Constant 

 sin(2 /24) 0.6730 (-0.1897, 1.6178) 0.2760 (-0.3667, 0.8177) 
 sin(4 /24) -1.0107 (-1.6965, -0.3341) -1.0812 (-1.5824, -0.7299) 
 cos(2 /24) -3.9473 (-5.0264, -2.9246) -1.3839 (-2.5713, -0.3558) 
 cos(4 /24) -1.3027 (-1.9116, -0.4098) -0.3193 (-1.0473, 0.2298) 

Male Indicator 

 sin(2 /24) 0.5664 (0.2417, 0.9221) 0.2574 (0.0203, 0.4377) 
 sin(4 /24) 0.5806 (0.3191, 0.8805) 0.3170 (0.1493, 0.4936) 
 cos(2 /24) -0.1422 (-0.8963, 0.9342) 0.2555 (-0.1428, 0.6539) 
 cos(4 /24) 0.0573 (-0.3515, 0.4605) 0.1481 (-0.0989, 0.3872) 

Age 

 sin(2 /24) 0.0005 (-0.0106, 0.0132) 0.0013 (-0.0095, 0.011) 
 sin(4 /24) 0.0017 (-0.009, 0.0138) 0.0015 (-0.0058, 0.0097) 
 sin(6 /24) -0.0092 (-0.0135, -0.0052) -0.0085 (-0.0109, -0.0059) 
 cos(2 /24) 0.0340 (0.0134, 0.0615) 0.0114 (-0.0134, 0.0324) 
 cos(4 /24) 0.0227 (0.0102, 0.0354) 0.0105 (-0.0026, 0.0201) 
 cos(6 /24) 0.0175 (0.0126, 0.022) 0.0127 (0.0089, 0.0157) 

Part-Time Worker 
Indicator 

 sin(2 /24) -1.9855 (-2.6685, -1.0937) -1.5943 (-2.2234, -0.9971) 
 sin(4 /24) -0.7703 (-1.46, -0.0306) -0.5840 (-1.1752, 0.0051) 
 cos(2 /24) -0.1136 (-1.7462, 1.6577) -1.6182 (-3.3973, 0.056) 
 cos(4 /24) -0.1822 (-0.9828, 0.6103) -0.7873 (-1.7212, 0.1405) 

High-Income HH 
Indicator 

 sin(2 /24) -0.1031 (-0.3988, 0.2918) -0.0403 (-0.276, 0.1824) 
 sin(4 /24) -0.1972 (-0.4967, 0.1118) -0.1293 (-0.3049, 0.0485) 
 cos(2 /24) -0.5877 (-1.2117, 0.1857) -0.2214 (-0.7011, 0.1801) 
 cos(4 /24) -0.2208 (-0.4683, 0.1058) -0.0285 (-0.2683, 0.2006) 

Household Size 

 sin(2 /24) -0.0752 (-0.2283, 0.0629) -0.0317 (-0.116, 0.0408) 
 sin(4 /24) -0.0011 (-0.1285, 0.1108) 0.0180 (-0.0422, 0.0786) 
 cos(2 /24) 0.3685 (0.0878, 0.7311) 0.0820 (-0.0573, 0.2134) 
 cos(4 /24) 0.0741 (-0.1274, 0.2787) -0.0322 (-0.1161, 0.0469) 

Number of Other 
Tours 

 sin(2 /24) -0.4858 (-0.6803, -0.2642) -0.3450 (-0.4888, -0.1933) 
 sin(4 /24) -0.1215 (-0.2905, 0.0815) -0.0845 (-0.2107, 0.0446) 
 cos(2 /24) 0.4128 (0.0194, 0.8854) 0.1616 (-0.1414, 0.5264) 
 cos(4 /24) 0.1641 (-0.0426, 0.367) 0.0863 (-0.0787, 0.31) 

Free-Flow 
Distance 

 sin(2 /24) 0.0277 (0.0147, 0.0424) 0.0192 (0.0057, 0.0296) 
 sin(4 /24) 0.0112 (0.0025, 0.0215) 0.0047 (-0.0059, 0.012) 
 cos(2 /24) 0.0415 (0.013, 0.0658) 0.0372 (0.0188, 0.0615) 
 cos(4 /24) 0.0307 (0.0149, 0.0462) 0.0245 (0.0139, 0.0379) 

CBD Destination 
Indicator 

 sin(2 /24) -0.3770 (-0.8408, 0.1825) -0.2380 (-0.5849, 0.1159) 
 sin(4 /24) -0.3229 (-0.6963, 0.047) -0.1935 (-0.5072, 0.1121) 
 cos(2 /24) 1.3178 (0.0678, 2.5269) 0.7014 (-0.1569, 1.6148) 
 cos(4 /24) 0.7145 (0.0349, 1.4205) 0.4703 (-0.0477, 0.8976) 

Average Travel Time -0.0047 (-0.0122, -0.0001) -0.0039 (-0.0097, -0.0004) 
Travel Time Variance -0.0035 (-0.0053, -0.001) -0.0022 (-0.0038, -0.0005) 
Travel Cost -0.0723 (-0.2152, -0.0018) -0.0468 (-0.1187, -0.0008) 
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Table 6.2:  BVMNP Parameter Estimation Results for Return Time Variables 
Return Time Variables CAR Specification AR1 Specification 

Variable Interaction 
Term 

Mean 
Estimate 95% Interval Mean 

Estimate 95% Interval 

Constant 

 sin(2 /24) -1.8787 (-3.7698, -0.6809) -2.1569 (-2.6371, -1.6381) 
 sin(4 /24) -0.3494 (-1.1085, 0.2225) -0.5066 (-0.9239, -0.062) 
 cos(2 /24) 0.2008 (-0.5113, 0.9734) -0.1751 (-0.6624, 0.3258) 
 cos(4 /24) -0.5984 (-1.096, 0.0905) -0.0291 (-0.3726, 0.279) 

Male Indicator 

 sin(2 /24) 0.4327 (-0.1097, 0.9983) 0.1220 (-0.1078, 0.3368) 
 sin(4 /24) 0.1635 (-0.1388, 0.4256) 0.0261 (-0.1191, 0.1571) 
 cos(2 /24) 0.4822 (0.1167, 0.7888) 0.2035 (-0.0155, 0.4049) 
 cos(4 /24) -0.1461 (-0.4282, 0.1229) -0.0609 (-0.2202, 0.1105) 

Age 

 sin(2 /24) 0.0208 (-0.0087, 0.0499) 0.0379 (0.0291, 0.0502) 
 sin(4 /24) 0.0296 (0.0135, 0.0482) 0.0316 (0.0236, 0.0398) 
 sin(6 /24) 0.0159 (0.0123, 0.0192) 0.0132 (0.01, 0.0165) 
 cos(2 /24) -0.0011 (-0.0164, 0.0128) 0.0110 (0.0008, 0.0198) 
 cos(4 /24) 0.0079 (-0.0052, 0.0212) -0.0021 (-0.0089, 0.0055) 
 cos(6 /24) -0.0041 (-0.0099, 0.0005) -0.0044 (-0.0072, -0.0019) 

Part-Time Worker 
Indicator 

 sin(2 /24) 1.0923 (-1.2257, 2.9789) 1.2840 (0.3705, 2.0983) 
 sin(4 /24) 0.7050 (-0.0488, 1.4918) 0.7089 (0.1941, 1.154) 
 cos(2 /24) 1.7009 (0.945, 2.721) 1.2802 (0.6692, 1.79) 
 cos(4 /24) -0.2847 (-1.2995, 0.8873) -0.3608 (-0.9345, 0.2627) 

High-Income HH 
Indicator 

 sin(2 /24) -0.4165 (-1.1156, 0.4435) -0.4598 (-0.7878, -0.1984) 
 sin(4 /24) -0.2732 (-0.6867, 0.0234) -0.2629 (-0.4333, -0.0868) 
 cos(2 /24) -0.4033 (-0.9891, 0.0025) -0.3832 (-0.6045, -0.1852) 
 cos(4 /24) 0.0658 (-0.361, 0.3225) 0.0920 (-0.0559, 0.2249) 

Household Size 

 sin(2 /24) -0.0223 (-0.264, 0.3485) 0.0444 (-0.0324, 0.1121) 
 sin(4 /24) 0.0432 (-0.0687, 0.1946) 0.0465 (-0.0164, 0.1042) 
 cos(2 /24) 0.0833 (-0.0217, 0.2072) 0.0806 (0.0095, 0.1543) 
 cos(4 /24) 0.1013 (-0.0547, 0.2231) 0.0510 (0.0013, 0.1096) 

Number of Other 
Tours 

 sin(2 /24) 0.5508 (0.1755, 0.943) 0.1766 (-0.0053, 0.3967) 
 sin(4 /24) 0.1097 (-0.1019, 0.2833) 0.0224 (-0.0954, 0.1762) 
 cos(2 /24) -0.3056 (-0.5042, -0.0974) -0.2784 (-0.4348, -0.0851) 
 cos(4 /24) 0.1561 (-0.0331, 0.3487) 0.1429 (0.0412, 0.2542) 

Free-Flow 
Distance 

 sin(2 /24) -0.0005 (-0.0296, 0.0211) -0.0091 (-0.0303, 0.0114) 
 sin(4 /24) 0.0053 (-0.0067, 0.0148) 0.0022 (-0.0061, 0.0101) 
 cos(2 /24) -0.0021 (-0.0181, 0.0121) -0.0034 (-0.013, 0.0038) 
 cos(4 /24) 0.0023 (-0.0084, 0.014) 0.0045 (-0.0042, 0.0149) 

CBD Destination 
Indicator 

 sin(2 /24) -1.5180 (-2.5096, -0.4648) -2.3921 (-3.0222, -1.5625) 
 sin(4 /24) -0.6283 (-1.208, -0.1105) -0.7920 (-1.2791, -0.3899) 
 cos(2 /24) -0.5795 (-1.3496, 0.1055) -0.8624 (-1.514, -0.361) 
 cos(4 /24) 0.1104 (-0.3065, 0.4727) 0.5756 (0.2502, 0.9174) 

Average Travel Time -0.0132 (-0.0276, -0.0019) -0.0119 (-0.0177, -0.0055) 
Travel Time Variance -0.0005 (-0.0021, 0) -0.0006 (-0.0014, 0) 
Travel Cost -0.1338 (-0.2296, -0.0187) -0.1362 (-0.2303, -0.044) 
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Table 6.3:  BVMNP Parameter Estimation Results for Covariance Parameters 

Covariance Parameters 
CAR Specification AR1 Specification 

Mean 
Estimate 95% Interval Mean 

Estimate 95% Interval 

Sigma (First Arrival Alt) 2.4683 (1.6973, 3.4494) 1.2665 (0.9355, 1.6774) 
Sigma (Last Arrival Alt) 3.6735 (2.2952, 5.6019) 1.9052 (0.3248, 4.6787) 
Sigma (First Return Alt) 4.0875 (2.7775, 5.4247) 3.1108 (2.2882, 3.9976) 
Sigma (Last Return Alt) 1.0011 (0.5939, 1.6616) 1.8897 (0.2903, 5.2299) 
Lambda (Arrival) 0.3157 (0.2173, 0.3939) 0.6039 (0.5581, 0.6403) 
Lambda (Return) 0.3755 (0.31, 0.4298) 0.1499 (0.0841, 0.2117) 
Lambda (Duration) 0.0926 (0.0564, 0.1381) 0.5566 (0.5224, 0.5982) 
Lambda (First/Last Arr/Ret Alts) 1.4142 (0.2127, 3.4442) 0.4493 (0.0067, 1.319) 
Lambda (First/Last Dur Alts) 0.3066 (0.0067, 0.9576) 0.0637 (0.0041, 0.214) 
Gamma1 (Full) 8.6026 (8.0641, 9.0473) 9.5766 (9.1953, 10.0273) 
Gamma1 (Part) 6.1580 (4.5539, 8.0324) 10.3693 (9.7848, 10.9077) 
Gamma2 (Full) 0.0581 (0.0029, 0.1207) -0.0416 (-0.0906, -0.0047) 
Gamma2 (Part) 0.3972 (0.1834, 0.6228) -0.1257 (-0.1902, -0.0555) 
            
Observiations 997 997 

 

Parameters relating to the covariance matrix (Table 6.3) do not seem as consistent across 

the two models, but these two sets of parameters do not have the exact same meaning 

(i.e., the correlation parameters, , , and , have different meanings across the two 

models).  For the CAR specification, the largest correlations are estimated to be between 

return time alternatives, and the lowest are estimated for the duration component, while 

for the AR1 specification, the highest correlations are estimated for the arrival time 

component and the lowest for return time alternatives.  Since it is expected that workers 

would be more constrained in their arrival times (due to normal work start times), the 

AR1 estimates (with high arrival time correlations) appear more reasonable.  The low 

duration correlation parameter estimates of the CAR model are also rather unexpected.  

Of course, the duration component is also very much related to baseline durations implied 

by the estimates of the ’s.  With the CAR specification, baseline durations are predicted 

to start at about 9.0 hours for full-time workers and 6.3 hours for part-time workers.  For 

both worker types, baseline durations are predicted to increase with increasing arrival 

time, which is counterintuitive and a possible explanation for the low duration-specific 

correlation parameter estimate of the CAR specification.  It can be expected that as 

arrival time moves later in the day, the duration of the work activity becomes shorter, 
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since there are fewer hours left in the day.  In fact, just such behavior is realized with the 

estimates of the AR1 specification, suggesting the AR1 specification to be more 

reasonable.  Variances of boundary alternatives (i.e., , , , and ) 

are estimated to be greater than one (the fixed variance of non-boundary alternatives) for 

both models, with CAR estimates generally greater than AR1 estimates.  This result is 

certainly expected, since there is less information in the models for the boundary 

alternatives (e.g., assumed arrival/return times for these alternatives are approximations).  

In the following section, effects of individuals’ attributes are examined. 

 

6.3.1 Individual-Specific Covariate Effects 
As shown in Table 6.1 and Table 6.2, the majority of individual-specific parameters are 

very similar between the two specifications, with only a couple of exceptions, which is 

not surprising since the only difference between the models is their covariance structures.  

To fully understand the effect of these variables, predictive density plots are presented for 

average individuals (i.e., covariates evaluated at the average over the sample) with the 

exception of one covariate, where the values of that covariate are varied to understand its 

effect on arrival and return time choices.  Figure 6.4 and Figure 6.5 show arrival time 

predictive densities for each of the 8 individual-specific covariates of the models.  Not 

surprisingly, effects of these covariates are quite similar across the two BVMNP models.  

Moreover, the effects are similar to the effects found for departure time profiles in 

Chapter 5’s CCNL and continuous logit models.  One notable difference is the effect of 

travel distance (Figure 6.5c).  For continuous logit and CCNL models, those individuals 

with greater travel distances were predicted to departure earlier, all else being equal.  For 

the BVMNP models, travel distance appears to have only minor effects on arrival time 

profiles.  This is largely because the BVMNP models consider arrival times, rather than 

departure times, and workers would be expected to be more constrained in their arrival 

time choice due to regular work hours.  Thus, for models of departure time, workers 

traveling longer distances must depart earlier in order to arrive on time.  However, the 

commute distance plays little role in determining when they must arrive for work. 



137 
 

 

 
Figure 6.4:  Gender, Age, Work Status, and Income Effects on Arrival Time Profiles for 

BVMNP Models 
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Figure 6.5:  Household Size, Other Tours, Travel Distance, and CBD Effects on Arrival 

Time Profiles for BVMNP Models 

 

In Figure 6.6 and Figure 6.7, return time predictive densities are plotted for each of the 8 

individual-specific covariates of the model.  While males are only predicted to return 

slightly later than females (Figure 6.6a), it is interesting to note that they are also 

predicted to arrive slightly earlier.  Thus, work durations are slightly longer for males 

than females.  Maybe men are more likely to work overtime than women, or females are 

more likely to have other responsibilities, such as dropping children off at and picking 
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them up from school.  Older individuals are predicted to return earlier than younger ones 

(Figure 6.6b), which is not so surprising given that they are also predicted to arrive 

earlier.  Interestingly, part-time workers’ return time profiles (Figure 6.6c) seem to mimic 

their arrival time profiles (Figure 6.4c) with return times shifted to later hours, of course.  

This is very reasonable considering such workers may have very different work 

scheduling constraints, as compared to full-time workers. 
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Figure 6.6:  Gender, Age, Work Status, and Income Effects on Return Time Profiles for 

BVMNP Models 
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Figure 6.7:  Household Size, Other Tours, Travel Distance, and CBD Effects on Return 

Time Profiles for BVMNP Models 

 

Both income (Figure 6.4d and Figure 6.6d) and household size (Figure 6.5a and Figure 

6.7a) appear to play only small roles in both arrival and return time profiles of workers.  

Of course, one would not necessarily expect such variables to have important 

consequences here.  However, the presence of additional tours undertaken in the day for a 

worker has very important effects on a worker’s return time (Figure 6.7b).  In particular, 

such individuals are predicted to return from work much earlier as the number of such 
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additional tours increases.  Since these workers obviously have other scheduling 

considerations for the day, this seems very reasonable.  Like the effect of travel distance 

on arrival times, its effect on return times does not appear to be all that substantial 

(Figure 6.7c), as expected.  Finally, the effect of traveling to work in the central business 

district (CBD) is to push return times later in the day (Figure 6.7d).  As arrival times for 

such individuals also appear to be a bit later in the day than others (Figure 6.5d), this 

seems reasonable.  Maybe those traveling to the CBD are more often in particular lines of 

work where there is a preference for slightly later work schedules.  In summary, the 

effects of each of these covariates appear to be reasonable and consistent with prior 

expectations. 

 

6.3.2 Out-of-Sample Predictive Performance 
To better appreciate the predictive ability of the BVMNP models, out-of-sample 

prediction (using the same 20% sample as in Chapter 5) was performed for them along 

with a simple joint-choice multinomial logit (MNL) model.  In the case of the MNL, each 

choice alternative represents the arrival and return time alternative pair, unlike the 

BVMNP models, which represent arrival times and return times as distinct choices.  The 

MNL model was estimated using BIOGEME software and employed 50 randomly 

chosen alternatives from the set of all 621 joint choice alternatives along with the chosen 

alternative55

                                                
55 McFadden (1978) shows that one can use a simple random sample of alternatives for MNL estimation 
and still obtain consistent parameter estimates. 

.  Since the MNL model represents arrival and return time choice jointly, an 

additional utility component related to alternatives’ implied durations and the duration 

taken to the power of two was included in the model, similar to the specification of 

Popuri et al. (2008).  For consistency with the duration components of the BVMNP 

models, the sample was segmented by full-time workers with no additional tours for the 

day and all other workers (i.e., part-time workers and those with additional tours).  Since 

the MNL model is estimated using classical techniques, the predictive likelihood is 

simply a fixed value.  For the BVMNP models (like any MNP), predictive densities and 
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likelihoods are difficult to compute due to open form likelihood expressions.  Instead, 

using random parameter draws from the posterior, utilities are drawn from their 

corresponding distribution for each individual, taking the maximum utilities to be the 

predicted value.  The probability of accurate prediction is then averaged over all 

individuals.  Figure 6.8a shows aggregate out-of-sample predictive densities for arrival 

times under the BVMNP and MNL models, Figure 6.8b shows aggregate densities for 

return times, and Figure 6.8c shows the implied activity or tour duration profiles.  In 

Figure 6.8d, the predictive accuracy of the MNL (a point estimate) is plotted against the 

distribution of predictive accuracies for the BVMNPs. 
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Figure 6.8:  Out-of-Sample Predictions for MNL versus BVMNP Models 

 

As shown in Figure 6.8a and Figure 6.8b, aggregate out-of-sample predictive 

distributions of arrival and return times are nearly identical for the three models and 

closely match estimated densities of the actual data.  This is not surprising since each of 

the models has a number of utility components specifically related to arrival and return 

time choice.  However, predictive duration profiles differ slightly between each (Figure 

6.8c), with neither the MNL nor CAR specifications matching the actual duration profiles 

so well.  This is likely because the duration-related components of each model are not as 
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rigorously specified.  Nonetheless, it does appear the BVMNP models (particularly the 

AR1 specification) perform better here.  Moreover, predictive accuracies of the BVMNP 

models are clearly superior to the MNL (Figure 6.8d).  In fact, the CAR BVMNP 

specification beats the MNL about 81% of the time and the AR1 BVMNP specification 

beats the MNL about 97% of the time.  Alternatively, one could measure model 

performance by the amount of error in predictions (i.e., how close predicted arrival and 

return times and durations are to actual ones).  Table 6.4 shows mean squared errors 

(MSEs)56

Table 6.4

 in predicted arrival times, return times, and durations for each of the models.  

According to , the MSE in arrivals is nearly the same for both BVMNP 

specifications, while it is more than 1 squared hour greater for the MNL.  For returns, the 

MSE is very similar across the models, but for durations, the MNL out-performs both 

BVMNP specifications by a rather wide margin.  This is a bit surprising considering the 

predictive duration profiles for the two BVMNP models appear to more closely match 

actual duration densities (Figure 6.8c) than does the MNL.  Of course, since BVMNP 

parameter estimates do not necessarily represent posterior draws (due to non-

convergence), it is difficult to draw firm conclusions.   

 

Table 6.4:  MSEs of MNL and BVMNP Model Predictions 

Measure MNL BVMNP (CAR) BVMNP (AR1) 
Arrival Time MSEs (hrs2 10.3 ) 9.1 9.1 
Return Time MSEs (hrs2 12.2 ) 12.2 12.5 

Duration MSEs (hrs2 13.5 ) 14.9 14.8 
Total 36.0 36.2 36.3 

 

Overall, it appears that both BVMNP specifications are superior in terms of model fit to 

the MNL, particularly for the AR1 model.  In the following section, toll policy 

simulations are examined. 

 

                                                
56 The error for a single observation is computed as the difference between predicted time and actual 
(observed) time for that observation.  MSE is the summation of squared errors over all observations, 
divided by the total number of observations. 
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6.3.3 Economic Welfare Demonstration 
Similar to Chapter 5, an economic welfare exercise is demonstrated here.  Consumer 

surplus (CS) for the MNL is computed using typical logsums.  For the BVMNP models, 

CS can be estimated by recognizing that CS (in a random utility maximization model) is 

measured by expected maximum utility achieved over all alternatives.  Since it is not 

difficult to obtain utility draws in the BVMNP context, one can simply obtain a number 

of utility draws from the posterior distribution of utilities for each individual, take the 

maximum utility for each draw, and average these over draws.  The average for an 

individual then serves as an estimate of the expected maximum utility for that individual.  

Like in Chapter 5, CS can be divided by the cost coefficients from the model to obtain a 

measure in monetary units. 

 

With the sample of 821 automobile mode tours used in model estimation57

 

, the same set 

of highly idealized scenarios from Chapter 5 is used again here.  The first is the base (or 

status quo) scenario, where travelers are assumed to face travel conditions found in the 

actual data.  In the first and second tolling policy simulation, $0.15/mile tolls are assessed 

on all roads during peak periods (6 to 9 am and 3:30 to 6:30 pm), and in the last tolling 

simulation, $0.30/mile tolls are assessed on all roads during peak periods.  In the first and 

third tolling policy simulations, it is assumed the tolls reduce peak period travel time 

delay by 50%, while in the second simulation, tolls are assumed to reduce such delay by 

only 10%. 

Since the MNL model was not estimated using Bayesian methods, CS changes represent 

point estimates, rather than the distributional estimates from the BVMNP models.  For 

BVMNP models, CS is computed for each of 1000 random parameter draws from the 

respective posterior distributions.  The same random parameter draws are used in each of 

the policy simulations. 

                                                
57 There are actually 997 tours in the estimation sample, but only 821 are tours where the automobile mode 
is chosen. 



147 
 

 

Figure 6.9a shows the distribution of CS change (measured as the difference in CS 

between tolling policy simulation and status quo simulation) for the three tolling policy 

simulations under the CAR model specification, and Figure 6.9b shows the distribution of 

CS change under the AR1 model specification.  Under both model specifications, CS 

change under simulation 1 is estimated to be greatest, not surprisingly since its 

combination of tolls and delay reductions should offer the greatest value to travelers.  In 

addition, both models predict the CS change under tolling policy simulation 3 to be about 

twice as negative as simulation 1, which makes good sense since delay reductions are 

identical for the two simulations, but tolls are twice as large in simulation 3.  Based on 

the differences between simulations 1 and 2 under both model specifications, it appears 

that the peak period delay reduction does have a significant effect on CS change.  Tolls 

under these simulations are identical, but peak travel delay is reduced by 40% more in 

simulation 1 as compared to simulation 2.     

 

 
Figure 6.9:  Consumer Surplus Change Distribution for CAR and AR1 Specifications 

under Three Tolling Policy Simulations 
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Figure 6.10 shows the same plots as Figure 6.9, but grouped by simulation.  In addition, 

the MNL’s point estimates of CS change are displayed in Figure 6.10.  For each tolling 

policy simulation, the magnitude of CS change across the three models is similar, though 

in each case, MNL estimates are lower than both BVMNP model estimates.  Mean CS 

change estimates per traveler were -$0.82, -$0.94, and -$1.40 for simulation 1 under the 

CAR, AR1, and MNL models, respectively, -$1.57, -$1.57, and -$1.76 for simulation 2, 

and -$2.18, -$2.25, and -$3.01 for simulation 3.  For each simulation, the mean CS 

change for the MNL model is much lower than those for the CAR and AR1 

specifications.  This could be because the BVMNP models recognize the similarities 

between alternatives near peak periods (but not within them) and peak periods (via error 

term correlations).  In other words, peak shoulder periods may not be viewed as poorly 

by travelers under the BVMNP specifications compared to the MNL, where correlations 

do not exist.  The distribution of CS change under the CAR specification is wider and 

less peaked than that of the AR1 specification.  In fact, the standard deviation of CS 

change per traveler for the CAR specification ranges from $0.60 to $1.15, while CS 

change standard deviations of the AR1 specification are only in the range of $0.47 to 

$0.89.  This is probably because the bounds on parameters related to network attribute 

variables in the CAR specification were estimated to be wider than in the AR1 

specification.  While CS change is very important, it is also important to understand the 

effects of these tolls on travelers’ scheduling choices.   

 



149 
 

 
Figure 6.10:  Consumer Surplus Change Distribution for Three Tolling Policy 

Simulations under CAR, AR1, and MNL Model Specifications 

 

To appreciate the tolls’ effects on traveler behavior, Table 6.5 presents the proportions of 

workers choosing arrival times during each of five TOD periods:  before 5 am, 5 to 6 am, 

6 to 9 am (the AM peak), 9 to 10 am, and after 10 am.  For each scenario, predictions for 

the two BVMNP models are similar within each TOD period.  And, while MNL 

predictions are fairly different in each scenario, similar changes in TOD shares emerge in 

comparison to both BVMNP models.  One other interesting observation that can be made 

here is that the proportion of travelers within each TOD period is almost identical across 

tolling policies 1 and 2 for each model specification.  The only difference between these 

two simulations is that peak period travel delay reduction is 40% greater for simulation 1, 

which affects the imputed average travel times and travel time variances.  Thus, for a 

40% decrease in peak period travel delay reduction (which is fairly substantial), there is 

almost no change in predicted arrival times, suggesting that the practical effects of travel 

time and its variance in the models may not be so large.  Of course, this could also be a 

result of the imputation methods for these variables.  Travel times and variances are not 

predicted to vary a tremendous amount even under status quo conditions, so perhaps 
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better methods for imputing these variables are needed to fully appreciate their effects on 

workers’ TOD choices. 

 

Table 6.5:  Predicted Arrival Time Proportions for Three TOD Periods and Four 

Simulations under CAR, AR1, and MNL Model Specifications 

  Proportion Proportional Increase from 
Base 

Status Quo CAR AR1 MNL CAR AR1 MNL 
Before 5 am 0.015 0.016 0.011 n/a n/a n/a 
5 to 6 am 0.020 0.024 0.029 n/a n/a n/a 
6 to 9 am 0.630 0.624 0.612 n/a n/a n/a 
9 to 10 am 0.167 0.167 0.159 n/a n/a n/a 
After 10 am 0.167 0.170 0.189 n/a n/a n/a 
Simulation 1             
Before 5 am 0.017 0.017 0.013 0.106 0.097 0.146 
5 to 6 am 0.024 0.029 0.032 0.191 0.211 0.098 
6 to 9 am 0.589 0.586 0.579 -0.066 -0.061 -0.054 
9 to 10 am 0.187 0.187 0.172 0.118 0.119 0.086 
After 10 am 0.183 0.182 0.204 0.098 0.070 0.078 
Simulation 2       
Before 5 am 0.018 0.018 0.013 0.167 0.133 0.186 
5 to 6 am 0.025 0.029 0.033 0.224 0.233 0.123 
6 to 9 am 0.589 0.586 0.579 -0.066 -0.061 -0.054 
9 to 10 am 0.186 0.186 0.172 0.115 0.115 0.084 
After 10 am 0.182 0.181 0.203 0.092 0.066 0.074 
Simulation 3       
Before 5 am 0.019 0.019 0.014 0.222 0.201 0.308 
5 to 6 am 0.028 0.034 0.036 0.390 0.415 0.235 
6 to 9 am 0.551 0.551 0.547 -0.125 -0.118 -0.106 
9 to 10 am 0.205 0.206 0.185 0.227 0.236 0.165 
After 10 am 0.197 0.191 0.217 0.178 0.123 0.150 

 

Table 6.5 also reports the proportional change in TOD shares from the status quo 

simulation for each TOD period.  This is computed as the difference in the proportions 

for a TOD period from status quo scenario to tolling policy, divided by the share 

predicted under the status quo scenario for that TOD period.  One would expect peak 
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shoulder periods to enjoy a relatively large increase in shares, as compared to off-peak 

periods (i.e., before 5 am and after 10 am).  Under the MNL specification, the opposite 

result emerges in comparing the “Before 5 am” period to the “5 to 6 am” period, while 

both MNP specifications exhibit share changes more in line with expectations.  Of 

course, this is due to the correlations offered under the MNP specifications.  A similar 

result is found when comparing the “After 10 am” period to the “9 to 10 am” period, 

where the MNL model predicts small share increases during the shoulder period relative 

to predictions of the MNP models under each tolling simulation.   

 

Figure 6.11 further details these share changes by illustrating the share of travelers 

shifting from the AM peak period to combined shoulder periods (i.e., “5 to 6 am” and “9 

to 10 am”) and to combined off-peak periods (i.e., “before 5 am” and “after 10 am”).  In 

other words, of those workers shifting away from the AM peak in the face of tolls, Figure 

6.11 shows the share of those workers shifting to the shoulder periods and off-peak 

periods.  Again, one would expect larger shifts toward shoulder periods than off-peak 

periods, since the shoulder periods are more similar to the AM peak than off-peak 

periods.  The MNL specification predicts approximately equal shoulder and off-peak 

period shifts for each simulation, while under both BVMNP models, peak-period 

travelers are predicted to shift more toward shoulder periods, with the greatest shoulder 

period shifts under simulation 3, not surprisingly.  In addition, the AR1 specification 

predicts the largest shoulder period shifts, which also is not surprising, since the AR1 

correlation parameters specific to arrival time alternatives were estimated to be so high. 
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Figure 6.11:  AM Peak Period Arrival Time Shifts to Shoulder and Off-Peak Periods for 

Three Tolling Policy Simulations under CAR, AR1, and MNL Models 

 

Table 6.6 shows aggregate TOD period prediction proportions for return time choices 

under the four simulations and three models.  Like arrival time choices, all three models 

predict similar return time choices for the status quo scenario.  However, the AR1 

specification predicts much fewer PM peak period travelers under each tolling policy 

simulation than either of the other two models, while the MNL predicts the most peak-

period travelers.  This is somewhat strange since travel cost parameters across the three 

models are similar.  This could be resulting from the AR1’s strong duration specific 

correlation parameter, which is translating shifts in arrival times to return time choices.  

Similar to the results for arrival times, return times are predicted to be quite similar under 

each model for simulations 1 and 2 (i.e., comparing simulation 1 results to simulation 2 
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results for each model).  Again, this is an indication that average travel times and travel 

time variances may have little practical significance on return time choice.   

 

Table 6.6:  Predicted Return Time Proportions for Three TOD Periods and Four 

Simulations under CAR, AR1, and MNL Model Specifications 

  Proportion Proportional Increase from 
Base 

Status Quo CAR AR1 MNL CAR AR1 MNL 
Before 2:30 pm 0.165 0.172 0.183 n/a n/a n/a 
2:30 to 3:30 pm 0.085 0.084 0.089 n/a n/a n/a 
3:30 to 6:30 pm 0.548 0.538 0.531 n/a n/a n/a 
6:30 to 7:30 pm 0.108 0.110 0.104 n/a n/a n/a 
After 7:30 pm 0.094 0.096 0.093 n/a n/a n/a 
Simulation 1             
Before 2:30 pm 0.182 0.199 0.191 0.104 0.158 0.044 
2:30 to 3:30 pm 0.103 0.105 0.096 0.205 0.245 0.076 
3:30 to 6:30 pm 0.483 0.451 0.498 -0.119 -0.161 -0.061 
6:30 to 7:30 pm 0.127 0.133 0.113 0.178 0.209 0.082 
After 7:30 pm 0.105 0.112 0.102 0.119 0.167 0.098 
Simulation 2       
Before 2:30 pm 0.184 0.201 0.192 0.112 0.172 0.052 
2:30 to 3:30 pm 0.102 0.104 0.096 0.193 0.228 0.074 
3:30 to 6:30 pm 0.479 0.446 0.496 -0.125 -0.171 -0.066 
6:30 to 7:30 pm 0.128 0.134 0.114 0.188 0.221 0.091 
After 7:30 pm 0.107 0.115 0.102 0.139 0.197 0.099 
Simulation 3       
Before 2:30 pm 0.197 0.221 0.199 0.190 0.289 0.090 
2:30 to 3:30 pm 0.118 0.120 0.102 0.379 0.427 0.145 
3:30 to 6:30 pm 0.423 0.379 0.466 -0.227 -0.295 -0.123 
6:30 to 7:30 pm 0.147 0.152 0.122 0.358 0.381 0.173 
After 7:30 pm 0.116 0.127 0.111 0.233 0.327 0.189 

 

Like Table 6.5, Table 6.6 also shows the proportional change in TOD shares from the 

status quo simulation for each TOD period.  These results are further detailed in Figure 

6.12, which shows the share of PM peak period travelers shifting to the combined 

shoulder periods (i.e., “2:30 to 3:30 pm” and “6:30 to 7:30 pm”) and the combined off-
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peak periods (i.e., “before 2:30 pm” and “after 7:30 pm”).  The MNL model does not 

predict very large shifts to shoulder periods, as compared to off-peak periods.  Similar 

results emerge for the AR1 specification (though shifts to shoulder periods are larger than 

those of the MNL), which is likely due to the rather low estimate of the model’s return 

correlation parameter, but could also be resulting from the relatively high share 

reductions during peak periods.  Since workers may be more affected by work duration 

under this model, shifts in arrival times could be playing a large role here.  Under the 

CAR specification, one sees the largest share increases during the peak shoulders.  Of 

course, it is not surprising that the CAR specification predicts the largest share of 

travelers to shift to peak shoulders, since the return-specific correlation parameter 

estimate of the CAR specification is relatively high. 
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Figure 6.12:  PM Peak Period Return Time Shifts to Shoulder and Off-Peak Periods for 

Three Tolling Policy Simulations under CAR, AR1, and MNL Models 

 

6.4 Chapter Summary 
This chapter presents the empirical results of the BVMNP models.  All of the utility-

specific parameter estimates appear reasonable and generally consistent across the two 

models, as well as with Chapter 5’s continuous choice model results.  Despite the 

differences in covariance structures between the two BVMNP models (CAR and AR1), 

their predictive abilities appear very similar.  While not completely unexpected, it seems 

strange that the CAR and AR1 specifications could have such different covariance 

parameter estimates and yet produce similar predictions.  Nonetheless, it is clear that both 

BVMNP specifications offer added flexibility over a simple MNL model (since they can 

capture correlations across arrival and return time alternatives), and predictive 
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performance of the BVMNPs appear to be at least as good as the MNL, and possibly 

much better – depending on the measure of performance used.  If one considers that the 

BVMNP model estimates here are not yet converged, it does not seem unreasonable to 

say that the BVMNP models offer added model performance capabilities relative to the 

MNL.  In addition, there are numerous opportunities for extending the BVMNP to 

capture even more variability in the data through refinement of the covariance structure.   

 

Results of three tolling policy simulations demonstrate how consumer surplus can be 

estimated for the BVMNP models.  They also reveal how BVMNP arrival and return 

correlations are realized, while highlighting the independence of irrelevant alternatives 

assumption of the MNL.  The following chapter summarizes Chapter 5’s and Chapter 6’s 

findings, and offers a review of the models’ specifications, their benefits and limitations, 

and some potential extensions. 
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CHAPTER 7:  CONCLUSION 
 

7.1 Summary 
The need for better methods of modeling travelers’ time-of-day (TOD) choices is clear.  

A key weakness of existing continuous models of departure time and duration is that they 

do not offer a defensibly or econometrically rigorous connection to microeconomic 

theories of behavior (e.g., Wang 1996, Bhat and Steed 2002, Komma and Srinivasan 

2008, and Gadda et al. 2009).  Current travel demand model systems rely heavily on 

random utility maximization for other travel choices (such as destination and mode), 

often integrating such choices in a behaviorally consistent fashion.  Moreover, utility 

models offer a basis for calculating consumer surplus change, which is useful for policy 

and project evaluation (including, for example, environmental justice concerns).  In 

addition to behavioral and welfare considerations, existing continuous methods do not 

seem capable of consistently incorporating multivariate features of tour timing.   

 

Of course, existing discrete methods also suffer from a number of weaknesses.  For 

instance, the only discrete choice models offering a two-dimensional choice framework 

across a 24-hour period with relatively small time intervals fail to allow for correlations 

across alternatives close in time (e.g., Ettema and Timmermans 2003, Vovsha and 

Bradley 2004, Abou Zeid et al. 2006, and Popuri et al. 2008).  Certainly, one cannot 

expect such alternatives to exhibit independence in their error terms.  Discrete choice 

models that do account for such correlations fail to recognize the two-dimensional choice 

context of the tour, do not consider the full 24-hour day period, and/or consider rather 

coarse TOD alternatives (e.g., Small 1987, Chin 1990, Bhat 1998a, Steed and Bhat 2000, 

and de Jong et al. 2003).   

 

This dissertation established two new methods (the CCNL and the BVMNP) for 

examining travelers’ timing decisions, and turned to Bayesian methods for these new 

models’ estimation and application.  This work first generalized the continuous logit to 
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release its independence of irrelevant alternatives assumption.  The continuous cross-

nested logit (CCNL) model develops random utility theory in a continuous choice 

context, while offering the ability to capture correlations across alternatives close in time 

(or space or some other dimension).  Of course, the model was estimated for only one 

timing dimension here, neglecting the return time dimension of a travel tour.  While the 

model specification can be formulated to accommodate two timing dimensions without 

great difficulty, estimating the model in two dimensions presently appears 

computationally prohibitive.   

 

Parameter estimates of this new model (using San Francisco Bay Area data) were 

generally consistent with expectations and with continuous logit parameter estimates.  

For instance, results suggest that males, older individuals, and those from households 

with many members are more inclined to depart earlier in the day, all else being equal, 

while high income individuals, part-time workers, and those working in the central 

business district are more likely to depart later in the day.  Not surprisingly, those with 

longer travel distances are found to depart earlier, presumably to arrive at work on time.  

Those with additional tours during the day are found to depart significantly later, 

probably because these individuals have more scheduling constraints than others.  While 

values of travel time (VOTTs) were estimated to be quite low (median values of $1.43 

and $2.28 per hour for continuous logit and CCNL models, respectively), this is probably 

at least partially due to the higher (and more practically important) estimated value of 

reliability (VOR), at least in the case of the CCNL.  It could also be that workers do not 

trade off time and money in their departure time decisions (like they do for mode or route 

choice decisions), for various reasons (ignorance or other scheduling considerations) as 

noted earlier. 

 

While empirical results of the CCNL suggest that predictive densities for specific 

individuals can appear very similar between it and the continuous logit, the CCNL 

performs better than the continuous logit model in terms of out-of-sample prediction of 
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departure times, while allowing more flexible choice behavior to emerge.  Consumer 

surplus changes were estimated for several simple road pricing scenarios and found to be 

very similar in both models, though departure time predictions exhibited some 

differences.  The CCNL’s predictions appear more reasonable in the simulation 

examples, since they concentrate time-of-day shifts to peak-period shoulders, just before 

and after times where tolls were employed.  Of course, the CCNL model is more 

computationally burdensome to estimate.  Here, generating draws from the CCNL’s 

posterior distribution took on the order of 30 times longer than those of the continuous 

logit.  Moreover, the numerical integration procedure for generating likelihood values 

suffered from more error in the CCNL context than in the continuous logit setting.  

Reducing such error is likely to result in longer estimation times, though the benefits of 

the model may be more apparent.  

 

Like the CCNL, the bivariate multinomial probit (BVMNP) model is built on random 

utility theory and allows for correlations across alternatives.  Moreover, it incorporates 

two dimensions of choice (outbound and return times, in the case of trip/tour scheduling).  

While the choice context is discrete, the level of temporal resolution used here (30 

minutes) is fairly reasonable, especially considering the rounding error prevalent in 

reported departure and return times (Stopher et al. 2008).  In addition, no existing bi-

dimensional tour timing models have recognized any sort of correlation across 

alternatives (see, e.g., Ettema and Timmermans 2003, Vovsha and Bradley 2004, Abou 

Zeid et al. 2006, and Popuri et al. 2008).   

 

Two BVMNP covariance structures were formulated and empirical results offer similar 

inference regarding variables’ effects.  In addition, variables’ effects on arrival time 

choice were found to be consistent with effects on departure time choice for continuous 

logit and CCNL models.  The only exception here was the effect of travel distance (as 

expected), which was estimated to have very little effect on arrival times.  Return time 

choice was found to be most influenced by an individual’s age (with older individuals 
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returning earlier in the day), worker status (with part-time workers returning later in the 

day), and the number of other travel tours undertaken for the individual (with those 

having other travel tours departing much earlier, on average), each of which seems 

reasonable.  Like the continuous models of departure time, VOTTs for the home-to-work 

journey were estimated to be quite low, but VOTTs for the work-to-home journey were 

estimated to be much higher (and more reasonable).  VORs were estimated to be much 

higher for the home-to-work journey as compared to the work-to-home journey, which 

seems reasonable, since the cost of late arrival at work should be higher than late arrival 

returning home.   

 

Empirical evidence suggests that the predictive ability of the two BVMNP models is 

better than a relatively straightforward multinomial logit (MNL) model of all paired 

timing choices jointly.  In addition, the BVMNP models offer more reasonable 

scheduling predictions under various tolling policy simulations.  While the MNL 

predicted very small changes in the number of travelers choosing peak periods for the 

work-to-home journey, both BVMNP models predicted much more substantial peak-

period travel reductions.  In addition, the BVMNP models consistently predicted 

relatively large share increases for peak-period shoulders (consistent with expectations), 

whereas MNL predictions varied greatly over the  three simulations, often predicting 

much larger share increases for very different times of day (rather than peak shoulders).  

Unfortunately, the BVMNP parameter estimates did not converge, which highlights the 

only real weakness of Bayesian methods and casts some doubt on the validity of results. 

 

In addition to models of travelers’ scheduling choices, this dissertation also developed a 

new method for imputing travel time variance by TOD.  The method built on existing 

methods for imputing average travel time by TOD using regression models.  These 

models allowed a measure of reliability to be incorporated in the scheduling choice 

models.  While empirical results suggest that reliability (as well as travel time) may have 
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little practical significance on timing decisions, it was found to be at least as important as 

average travel time. 

 

The models developed here were estimated using Bayesian techniques.  Such methods 

seem particularly advantageous in estimating the BVMNP model, where conditional 

posterior distributions were derived for latent utility variables, covariance components, 

and utility function parameters separately.  Such methods allow these utility variables and 

parameters to be drawn from standard distributions.  While covariance components could 

not be drawn from standard distributions, and standard methods for drawing utility 

variables were not used due to computational instability, Metropolis-Hastings (MH) 

algorithms were developed using standard Bayesian methods, allowing for relative ease 

in drawing these parameters.  R code was developed to draw from each of these models’ 

posterior distributions.  In addition, Bayesian methods provide great flexibility in model 

specification, and other (possibly more appropriate) specifications can be examined with 

relative ease.   

 

Of course, complex-model estimation is not the only advantage of Bayesian methods.  As 

noted in Chapter 1, one key area of concern in TOD modeling is the ability to capture 

heterogeneity across travelers, particularly variations in value-of-time (Vovsha et al. 

2005).  While this was not sought here, incorporating such heterogeneity in a Bayesian 

framework is not difficult, and can be accomplished through hierarchical modeling.  On 

the other hand, classical methods must rely on maximum simulated likelihood estimation 

(MSLE) methods to estimate such models.  In this context, Huber and Train (2001) point 

out that MSLE techniques can have difficulty locating the global maximum (particularly 

when many local maxima exist), computational difficulties can arise with MSLE if the 

dimension of the random parameters is large, and statistical identification issues are more 

likely under MSLE (since that method does not allow for inclusion of prior information).  

In addition, Bayesian estimation provides draws from the multivariate posterior 

distribution of all parameters.  In terms of risk and uncertainty analysis (which is 
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particularly important for toll road analyses), posterior draws offer a natural setting for 

capturing such uncertainty in demand modeling and other systems.58

 

  The scenario 

analyses provided in this dissertation illustrate how uncertainty passes through the model 

into welfare estimates.   

7.2 Opportunities for Future Research 
This research sought methods to capture correlation structures inherent across time-of-

day choice alternatives, while reflecting random utility theory in one- and two-

dimensional continuous choice contexts.  Although these goals were generally achieved 

(in separate model settings), several opportunities exist for model enhancements.  This 

section discusses some of the limitations and extensions of this dissertation’s models. 

 

One limitation of this analysis stems from the regression models used to impute average 

travel times and travel time variances continuously over time.  Clearly, it would be 

preferable to have such time-varying network data available, rather than imputing it.  

While traffic monitoring equipment (such as loop detectors, roadside receivers, or 

cellular towers) may be able to provide such information in some areas on some 

roadways, it is unlikely one could obtain such data for all roadways in a region.  Of 

course, other methods for imputing such variables may be preferred, including dynamic 

network simulations (assuming good network data and reasonable demand profiles by 

TOD are available).  This would indeed be favored over the methods used here, since 

network simulations need not rely on traveler estimates.  Given the limitations of the data 

available for this dissertation research, the methods used to obtain network variables 

appear reasonable.  However, the travel time variance computed may be, to some extent, 

reflecting the degree of misreporting and rounding error contained in the data, rather than 

actual, day to day, recurring or non-recurring travel time variability.  This is certainly a 

concern and could be inflating travel time variance estimates to some extent.  On the 

                                                
58 Capturing uncertainty in model inputs is also important for risk analyses (see, e.g., Lemp and Kockelman 
2009). 
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other hand, the models control for day-of-week and other variables, which many travelers 

do not perceive, so uncertainty estimates may be lower than those perceived by travelers. 

 

As is typical practice, the model specifications pursued in this dissertation do not 

recognize heterogeneity across preference parameters and values of travel time (and its 

reliability), though the Bayesian methods applied here quickly lend themselves to such 

added flexibility.  More controlled data sets (i.e., those with better covariate estimates) 

also would be useful for evaluating such heterogeneity.  (As noted above, the methods for 

imputing average travel times and travel time variances were not ideal, and the cost 

variable only varied by TOD period.)  In the case of the CCNL, mean estimates for the 

parameters relating to these variables were negative, but with large 95% intervals that 

contained zero.  In the case of the BVMNP, these variables were restricted to be negative 

through prior specification.  Intuitively, these variables should have negative effects on 

utility, but such results did not emerge definitively.  Several factors may be at work here.  

For instance, the methods for imputing these variables are imperfect, and may be biased 

or incorrect, typically resulting in greater uncertainty in parameter estimates.  

Alternatively, the models may not be controlling for enough other variables and the time-

varying variables may be playing the role of proxy for some uncontrolled variables.  

Maybe travelers do not have much flexibility in their work start times, which leads them 

to be unaffected by travel times and variances during other times of day.  Of course, most 

travelers probably do not have a precise understanding of how travel times vary over the 

day.  In order to satisfactorily assess heterogeneity, highly controlled data sets are really 

desired.  

 

The models estimated in this dissertation are computationally burdensome for most 

computers (model estimation can take days to obtain satisfactory convergence) and so 

necessitated the use of a relatively small sample in model estimation (997 observations, 

or 6% of the original sample).  While working with smaller samples may not create 
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biases in parameter estimation, it certainly leads to wider distributions for parameter 

estimates.  Longer run times with larger samples would address this issue. 

 

One also can imagine a number of ways to formulate the utility function used in the 

CCNL and BVMNP models.  The formulation used here was chosen for its familiarity, 

for the fact that it offers continuity in utility profiles across days, and because it allows 

for multi-modality in TOD choice.  However, other functional forms (such as quadratic 

interactions [rather than the cyclical interactions used in this dissertation] or linear shift 

variables) may allow better models to emerge.  

 

A number of opportunities also exist for the BVMNP model.  For instance, the 

covariance structures of alternative-specific utilities are very specific.  One major reason 

for choosing the AR1 correlation structure is to allow easy interpretation of the 

covariance parameters.  On the other hand, the main reason for choosing the CAR 

correlation structure is to offer a clear relationship between utility error terms.  However, 

any number of correlation structures could be imagined.  For instance, one could turn to 

an AR2-type covariance specification rather than AR1 or a simultaneous autoregressive 

(SAR) structure rather than CAR.  Maybe most critical are the parameters relating to 

correlations between arrival and return time alternatives.  These correlations are 

controlled by just three parameters in both the CAR and AR1 specifications here:  one 

directly related to correlations and two related to some baseline durations for which 

correlations should be highest.  Since the current utility specifications do not recognize 

duration explicitly, the baseline duration parameters are of particular importance.  Here, 

these parameters only vary across two groups of individuals (full-time workers with no 

additional travel tours and part-time workers and/or those with other tours).  Moreover, 

there may be a number of factors that influence each worker’s chosen activity duration.  

One may allow for these baseline durations to be a function of individual-specific 

variables, though this will lead to distinct covariance matrices for each individual, adding 



165 
 

to computational burden in model estimation.  Of course, there may be other ways to 

formulate covariance parameters, as functions of individual-specific variables. 

 

Other model extensions also exist.  The set of individual-specific variables used in the 

models could be expanded to include any number of other effects (e.g., number of 

household vehicles, presence and number of children in the household [and their school 

start and end times], whether the individual has flexible work hours, occupation, and 

additional origin- and destination-specific variables).  The CCNL could be extended to 

accommodate the two-dimensional timing choice of a travel tour, though this would be 

computationally burdensome.  The time interval size of alternatives in the BVMNP 

model could be reduced, but again, this would add computational difficulty.  Obviously, 

many opportunities for extending such work exist.  There are many applications that 

await such random utility and random profit-maximizing specifications in a continuous 

choice context, and different data environments will apply. 

 

7.3 Concluding Remarks 
As activity-based travel demand modeling and DTA techniques advance, TOD modeling 

remains a key weakness of model systems.  Moving toward continuous-time models 

(such as the continuous logit or CCNL), or at least toward discrete choice methods that 

recognize rather small time intervals and allow for thoughtful correlations across 

proximate alternatives, will enhance the temporal resolution of such models.  Almost no 

continuous models have a solid behavioral basis, while the continuous logit and CCNL 

provide direct measures of utility and allow for correlations in unobserved heterogeneity.  

All these attributes are important for prediction, project evaluation, policy analysis, and 

welfare calculations, and can be used to link TOD models to other travel choice 

dimensions (such as destination and mode).  Of course, the CCNL is not just limited to 

the context of TOD choice.  A number of other transportation-related choices can best be 

handled in a continuous choice setting (e.g., location or destination choice and vehicle 
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usage).  And countless opportunities lie outside transportation, in modeling human 

response, firm choices, and biological processes, among others. 

 

Until now, no two-dimensional TOD discrete choice models had incorporated 

correlations across nearby alternatives (adjacent or otherwise).  Clearly, one would not 

expect independence across such similar alternatives.  Thus, in both models developed 

here, a much needed element has been added to the set of existing models of travelers’ 

timing decisions.  

 

In addition, this dissertation has illustrated how one can impute reliability measures for 

use in activity scheduling models.  While the methods of imputing these measures are 

imperfect, they appear to provide reasonable estimates.  Moreover, the effect of these 

variables was found to be as or more practically significant than average travel time, 

which demonstrates how important travel reliability can be.   

 

The work undertaken here represents a meaningful step in the wide field of behavioral 

modeling.  Superior methods for handling individuals’ continuous choices are needed, 

and CCNL and BVMNP models offer two promising techniques.  However, more 

research and experimentation is needed to fully appreciate their relative merits and 

limitations. 
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APPENDIX A:  R CODE FOR CCNL MODEL ESTIMATION 
 

This appendix details R code used for the estimation of the continuous cross-nested logit 

model.  This part of the code represents only the main estimation module.  Code not 

presented here includes those modules for reading data, generating results figures, and 

obtaining simulation results.   

 

#mfact used in factoring covariance matrix of parameters 
mfact = 0.2 
 
#s is the length between discrete times where likelihood evaluated 
s = 0.05 
 
ttot = seq(0,24,s) 
dim11 = length(ttot) 
simpfac2 = matrix(rep(48,length(ttot)),ncol=1) 
simpfac2[1] = 17 
simpfac2[length(ttot)] = 17 
simpfac2[2] = 59 
simpfac2[length(ttot)-1] = 59 
simpfac2[3] = 43 
simpfac2[length(ttot)-2] = 43 
simpfac2[4] = 49 
simpfac2[length(ttot)-3] = 49 
 
G = matrix(rep(0,length(ttot)*count),ncol=length(ttot)) 
Grow = matrix(rep(0,length(ttot)*count),ncol=length(ttot)) 
GG = matrix(rep(0,count),ncol=1) 
F = matrix(rep(0,count),ncol=1) 
 
 
#code is set to run for sets of 5000 iterations (i.e., k) 
#j represents the number of 5000 iteration sets to run 
 
for(j in 1:20){ 
 
for(k in 1:5000){ 
 
  #***************************************************** 
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  # get proposal parameter values 
  #***************************************************** 
  L = try(chol(Sigma_prop1),TRUE) 
  if(length(L) == 1){ 
    L=sechol(Sigma_prop1) 
  } 
  L = t(L) 
 
  #ensure valid h & rho values 
  #hprop is h proposal 
  #rowprop is rho proposal 
  #index500 is the size of groups in main computations (memory problems with large h 
and whole sample) 
  #ncovtot is the total number of parameters 
  test_index = 0 
  while(test_index==0){ 
    tmp1 = rnorm(ncovtot,0,1) 
    dim(tmp1) = c(ncovtot,1) 
    hpropt = h + L[ncovtot-1,]%*%tmp1 
    hpropt = s*round(hpropt/s) 
    hprop = hpropt[1,1] 
    rowpropt = row + L[ncovtot,]%*%tmp1 
    rowprop = rowpropt[1,1] 
    if(hprop <= 0.8) { 
      index500 = count 
    } else if(hprop <= 1.7) { 
      index500 = 500 
    } else if(hprop <= 2.5) { 
      index500 = 334 
    } else if(hprop <= 3.4) { 
      index500 = 250 
    } else if(hprop <= 4.3) { 
      index500 = 200 
    } else if(hprop <= 5.3) { 
      index500 = 170 
    } else if(hprop <= 6.4) { 
      index500 = 145 
    } else if(hprop <= 7.4) { 
      index500 = 125 
    } else {index500 = 115} 
    if(hprop>=0.25 & rowprop>=1 & hprop<=8.5 & rowprop<=10.0) test_index = 1 
  } 
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  #individual-specific interaction term parameters 
  #theta is current parameter vector 
  #ncovar is number of individual-specific variables 
  thetaprop3 = theta + L[1:(ncovtot-2),]%*%tmp1 
  for(i in 1:ncovar){ 
    if(i == 1){ 
      id2 = 1 
    } else { 
      id2 = sum(id1[1:(i-1)]) + 1 
    } 
    id3 = sum(id1[1:i]) 
    temp5 = thetaprop3[id2:id3] 
    if(id1[i] == 8){ 
      thetaprop[i,1:8] = temp5 
    } else if(id1[i] == 6){ 
      thetaprop[i,1:3] = temp5[1:3] 
      thetaprop[i,5:7] = temp5[4:6] 
    } else if(id1[i] == 4){ 
      thetaprop[i,1:2] = temp5[1:2] 
      thetaprop[i,5:6] = temp5[3:4] 
    } 
  } 
 
  #network variables parameters 
  thetaprop2 = rep(0,3) 
  for(i in 1:3){ 
    thetaprop2[i] = (-1)*exp(thetaprop3[ncovtot-5+i]) 
  } 
 
  #constant added to utility functions to prevent overflow 
  util_const = -20 
 
  #***************************************************** 
  # get new proposal covariance matrix (Sigma_prop1) 
  #***************************************************** 
  if(j >= 2){ 
    if(k == 5000){ 
      count1_id = 0 
      count2_id = theta_store[1,1] 
      for(ii in 2:5000){ 
        if(count2_id == theta_store[ii,1]){ 
          www1 = 0 
        } else { 
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          count1_id = count1_id + 1 
          count2_id = theta_store[ii,1] 
        } 
      } 
      acceptrate = count1_id / 4999 
      if(acceptrate >= 0) {mfact = 0.5*mfact + 0.5*mfact / (0.25/acceptrate)} else {mfact = 
0.25} 
    }  
    if(floor(k/20)==k/20){ 
      for(ii in 1:ncovtot){ 
        for(jj in 1:ncovtot){ 
            Sigma_prop1[ii,jj] = mfact*cov(theta_store[,ii],theta_store[,jj]) 
        } 
      } 
    } 
  } else if(k >= 1000){ 
    if(floor(k/20)==k/20){ 
      for(ii in 1:ncovtot){ 
        for(jj in 1:ncovtot){ 
            Sigma_prop1[ii,jj] = mfact*cov(theta_store[1:k,ii],theta_store[1:k,jj]) 
        } 
      } 
    } 
  } 
 
  #***************************************************** 
  # set up arrays based on new parameter values of h & row 
  #***************************************************** 
  dim1 = floor(24/s + 1.01) 
  dim2 = floor(2*hprop/s + 1.01) 
  t1 = rep(0,dim1*dim2) 
  dim(t1) = c(dim1,dim2) 
  t2 = matrix(rep(0,dim1*dim2),ncol=dim1*dim2) 
  t3 = matrix(rep(0,dim1*dim2),ncol=dim1*dim2) 
  trev = seq((0-hprop),(24+hprop),s) 
  dummy4 = matrix(rep(1,length(trev)),ncol=length(trev)) 
  dummy1 = matrix(rep(1,dim1*dim2),ncol=dim1*dim2) 
  dummy2a = matrix(rep(1,index500),ncol=1) 
 
  #tv_cov is network variables 
  #i_unavail is a dummy network variable for unavailable alternatives (for transit only) 
  #cyc_fxn is the collection of cyclical functions interacted with ind-specific vars 
  tv_cov2 = rep(0,(length(trev))*count*3) 
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  dim(tv_cov2) = c(count,length(trev),3) 
  i_unavail2 = rep(1,(length(trev))*count) 
  dim(i_unavail2) = c(count,length(trev)) 
  cyc_fxn2 = matrix(rep(0,length(trev)*8),ncol=length(trev)) 
  startindex = 1 + floor(hprop/s + 0.01) 
  endindex = length(trev) - floor(hprop/s + 0.01) 
  tv_cov2[,startindex:endindex,] = tv_cov 
  i_unavail2[,startindex:endindex] = i_unavail 
  cyc_fxn2[,startindex:endindex] = cyc_fxn 
 
  startindex2 = dim11 - startindex + 2 
  endindex2 = length(trev) - endindex 
  tv_cov2[,1:(startindex-1),] = tv_cov[,startindex2:dim11,] 
  tv_cov2[,(endindex+1):(length(trev)),] = tv_cov[,1:endindex2,] 
  i_unavail2[,1:(startindex-1)] = i_unavail[,startindex2:dim11] 
  i_unavail2[,(endindex+1):(length(trev))] = i_unavail[,1:endindex2] 
  cyc_fxn2[,1:(startindex-1)] = cyc_fxn[,startindex2:dim11] 
  cyc_fxn2[,(endindex+1):(length(trev))] = cyc_fxn[,1:endindex2] 
 
  for(i in 1:dim2){ 
    t1[,i] = ttot - hprop + (i-1)*s 
    for(ii in 1:dim1){ 
      index9 = (ii-1)*dim2 + i 
      t3[index9] = t1[ii,i] 
      t2[index9] = ttot[ii] 
    } 
  } 
  simpfac1 = matrix(rep(48,dim2),ncol=1) 
  simpfac1[1] = 17 
  simpfac1[dim2] = 17 
  simpfac1[2] = 59 
  simpfac1[dim2-1] = 59 
  simpfac1[3] = 43 
  simpfac1[dim2-2] = 43 
  simpfac1[4] = 49 
  simpfac1[dim2-3] = 49 
 
  g = matrix(rep(0,dim1*dim2*index500),ncol=(dim1*dim2)) 
  g2 = matrix(rep(0,dim2*count),ncol=dim2) 
  f = matrix(rep(0,dim2*count),ncol=dim2) 
 
  #***************************************************** 
  # Main computations section 
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  #***************************************************** 
 
  # compute alpha 
  height1 = 1 / hprop 
  alpha = (hprop - abs(t3 - t2) + 0.0000000000001) / (hprop*hprop) 
 
  # compute utilities and g (a count x dim1*dim2 matrix) 
  v_g = exp(rowprop*((util_const)-
20000*i_unavail2+thetaprop2[1]*tv_cov2[,,1]+thetaprop2[2]*tv_cov2[,,2]+thetaprop2[3
]*tv_cov2[,,3]+X%*%thetaprop%*%cyc_fxn2)) 
 
  temp3 = round(Y/s) + 1 - (dim2 - 1) / 2 
  index11 = ceiling(count/index500 - 0.0001) 
  for(i in 1:index11){ 
    # get correct indices for individuals 
    startt = (i-1)*index500+1 
    if(i == index11){ 
      endv = count - (index11-1)*index500  
      endt = count 
      dummy2a = matrix(rep(1,endv),ncol=1) 
    } else { 
      endv = index500 
      endt = i*index500 
    } 
 
    for(ii in 1:dim1){ 
      index8 = (ii-1)*dim2 + 1 
      index9 = ii*dim2 
      index19 = dim2 + ii - 1 
      g[1:endv,index8:index9] = (dummy2a%*%((alpha[index8:index9])^rowprop)) * 
(v_g[startt:endt,ii:index19]) 
    } 
 
    # locate and store alternative specific g elements for each individual 
    index7 = dim1*dim2 + 0.5 
    for(ii in startt:endt){ 
      index10 = ii - index500*floor((ii-0.1)/index500) 
      for(jj in 1:dim2){ 
        index8 = jj - 1 
        index9 = (temp3[ii] + index8)*dim2 - index8 
        if(index9 >= 0.5 & index9 <= index7){ 
          g2[ii,jj] = g[index10,index9] 
        } else if(index9 <= 0.5){ 
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          index9 = index9 + dim1*dim2 - dim2 
          g2[ii,jj] = g[index10,index9] 
        } else if(index9 >= index7){ 
          index9 = index9 - dim1*dim2 + dim2 
          g2[ii,jj] = g[index10,index9] 
        } else { 
          g2[ii,jj] = 0 
        } 
      } 
    } 
 
    # integrate over nests 
    for(ii in 1:dim1){ 
      index8 = (ii-1)*dim2 + 1 
      index9 = ii*dim2 
      G[startt:endt,ii] = (s / 48) * g[1:endv,index8:index9] %*% simpfac1 
    } 
  } 
 
  # compute generating function 
  Grow = G^(1/rowprop) 
  GG = (s / 48) * (Grow %*% simpfac2) 
 
  #************************* 
  # compute densities for individuals 
  temp1 = floor((Y - hprop)/s + 1.01) 
  temp2 = floor((Y + hprop)/s + 1.01) 
  temp4 = matrix(rep(1,count),ncol=1) 
  temp5 = matrix(rep(dim2,count),ncol=1) 
  Grow2 = g2[1,] 
  G22 = g2[1,] 
  for(i in 1:count){ 
    if(temp1[i] <= 0.5){ 
      index1 = 1 - temp1[i] 
      Grow2[(1+index1):dim2] = Grow[i,1:temp2[i]] 
      Grow2[1:index1] = Grow[i,(dim1-index1+1):dim1] 
      G22[(1+index1):dim2] = G[i,1:temp2[i]] 
      G22[1:index1] = G[i,(dim1-index1+1):dim1] 
    } else if(temp2[i] >= (24/s+1.5)){ 
      index1 = temp2[i] - floor(24/s + 1.01) 
      Grow2[1:(dim2-index1)] = Grow[i,temp1[i]:dim1] 
      Grow2[(dim2-index1+1):dim2] = Grow[i,1:index1] 
      G22[1:(dim2-index1)] = G[i,temp1[i]:dim1] 
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      G22[(dim2-index1+1):dim2] = G[i,1:index1] 
    } else { 
      Grow2 = Grow[i,temp1[i]:temp2[i]] 
      G22 = G[i,temp1[i]:temp2[i]] 
    } 
    f[i,] = (Grow2 / GG[i]) * (g2[i,] / G22) 
    F[i] = (s / 48) * (f[i,] %*% simpfac1) 
  } 
 
  # compute log likelihood 
  ll_prop = log(F) 
  loglik_prop = sum(ll_prop) 
 
  #prior log likelihoods 
  prior_prop1 = (-1/2)*t(thetaprop3-thetabar)%*%(solve(Sigma_bar))%*%(thetaprop3-
thetabar) 
  prior_prop2 = log(dgamma(hprop-0.5,eta_h[1],eta_h[2])) 
  prior_prop3 = log(dgamma(rowprop-1.0,eta_row[1],eta_row[2])) 
  loglik_prop2 = loglik_prop 
  loglik_prop = loglik_prop + prior_prop1 + prior_prop2 + prior_prop3 
 
  #MH proposal acceptance step 
  ratio1 = loglik_prop[1] - loglik[1] 
  alpha1 = try(if(ratio1 >= 0) {1} else {exp(ratio1)}, TRUE) 
  if(is(alpha1,"numeric")){ 
    temp11 = runif(1,0,1) 
    if(temp11 <= alpha1){ 
      loglik = loglik_prop 
      loglik2 = loglik_prop2 
      theta = thetaprop3 
      h = hprop 
      row = rowprop 
    } 
  } 
 
#Store new theta values for iteration k 
tmp1 = ncovtot-2 
for(i in 1:tmp1){ 
  theta_store[k,i] = theta[i] 
} 
theta_store[k,tmp1+1] = h 
theta_store[k,tmp1+2] = row 
loglik_store[k] = loglik2 
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} 
} 
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APPENDIX B:  R CODE FOR BVMNP MODEL ESTIMATION 
 

This appendix details R code used for the estimation of the bivariate multinomial probit 

(BVMNP) model.  This part of the code represents only the main estimation module.  

Code not presented here includes those modules for reading data, generating results 

figures, and obtaining simulation results.  In addition, only the code used for the AR1 

specification is detailed here, though it is almost identical to that used for estimation of 

the CAR specification. 

 

mfact = 0.2 
factf = 0.05 
factp = 0.05 
 
for(j in 141:160){ 
 
for(k in 1:5000){ 
 
  #********************************************************************* 
  #********************************************************************* 
  # Step 1: Draw Utilities 
  #********************************************************************* 
  #********************************************************************* 
 
  utils2 = utils 
  nkern_prop = rep(0,count) 
  nkern_act = rep(0,count) 
 
  Lfull = t(chol(factf*Sigmafull)) 
  Lpart = t(chol(factp*Sigmapart)) 
 
  delta1 = utils - V 
  delta2 = delta1 
 
  nkern_act[1:nfull] = diag(delta1[1:nfull,]%*%Sigmafulli%*%t(delta1[1:nfull,])) 
  nkern_act[(nfull+1):count] = 
diag(delta1[(nfull+1):count,]%*%Sigmaparti%*%t(delta1[(nfull+1):count,])) 
 
  for(i in 1:count){ 
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    if(i <= nfull){ 
      L11 = Lfull 
      Sigmai11 = Sigmafulli 
    } else { 
      L11 = Lpart 
      Sigmai11 = Sigmaparti 
    } 
    check11 = 1 
    while(check11 == 1){ 
      rand11 = rnorm(dim1,0,1) 
      utils2[i,] = utils[i,] + L11%*%rand11 
      maxua = max(utils2[i,1:dim2]) 
      maxur = max(utils2[i,(dim2+1):dim1]) 
      actua = utils2[i,Y2[i,1]] 
      actur = utils2[i,Y2[i,2]] 
      if(maxua == actua & maxur == actur){ 
        check11 = 0 
        delta2[i,] = utils2[i,] - V[i,] 
        nkern_prop[i] = (t(delta2[i,]))%*%Sigmai11%*%delta2[i,] 
      } 
    } 
    ratio11 = (-0.5)*(nkern_prop[i] - nkern_act[i]) 
    alpha11 = try(if(ratio11 >= 0) {1} else {exp(ratio11)}, TRUE) 
    if(is(alpha11,"numeric")){ 
      temp11 = runif(1,0,1) 
      if(temp11 <= alpha11){ 
        utils[i,] = utils2[i,] 
        utilmax[i,1] = maxua 
        utilmax[i,2] = maxur 
      } 
    } 
  } 
 
 
  #********************************************************************* 
  #********************************************************************* 
  # Step 2: Draw Elements of Covariance Matrices 
  #********************************************************************* 
  #********************************************************************* 
 
  #********************************************************************* 
  # Step 2.1: Obtain satisfactory draw for covariance matrix elements (one that 
  #           results in Sigma's being pos def, parameters positive, & rhos < 1) 
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  #********************************************************************* 
  L = try(chol(Sigma_prop1),TRUE) 
  if(length(L) == 1){ 
    L=sechol(Sigma_prop1) 
  } 
  L = t(L) 
  cov_param_prop = cov_param 
  check = 1 
  while(check == 1){ 
    rnd_tmp1 = rnorm(ncovsig-2,0,1) 
    cov_param_prop[3:ncovsig] = cov_param[3:ncovsig] + L%*%rnd_tmp1 
 
    # Are parameters postive? If not, redraw. 
    if(min(cov_param_prop[1:(ncovsig-4)]) < 0){ 
      check = 1 
    } else { 
      sig2a_prop = cov_param_prop[1] 
      sig2r_prop = cov_param_prop[2] 
      sig2a1_prop = cov_param_prop[3] 
      sig2a2_prop = cov_param_prop[4] 
      sig2r1_prop = cov_param_prop[5] 
      sig2r2_prop = cov_param_prop[6] 
      rhoa_prop = cov_param_prop[7] 
      rhor_prop = cov_param_prop[8] 
      rhod_prop = cov_param_prop[9] 
      rhoar2_prop = cov_param_prop[10] 
      rhod2_prop = cov_param_prop[11] 
      gfull1_prop = cov_param_prop[12] 
      gpart1_prop = cov_param_prop[13] 
      gfull2_prop = cov_param_prop[14] 
      gpart2_prop = cov_param_prop[15] 
      for(i in 1:dim2){ 
        if(i >= 2 & i <= dim2){ 
          Wa_prop[i,i] = 1 
          Wr_prop[i,i] = 1 
        } else if(i == 1){ 
          Wa_prop[i,i] = sig2a1_prop 
          Wr_prop[i,i] = sig2r1_prop 
        } else { 
          Wa_prop[i,i] = sig2a2_prop 
          Wr_prop[i,i] = sig2r2_prop 
        } 
      } 
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      for(i in 1:dim2){ 
        for(ii in 1:dim2){ 
          if(i == ii){ 
            www = 1 
          } else { 
            tmp1 = (abs(ta[i]-ta[ii])) 
            tmp2 = (abs(tr[i]-tr[ii])) 
            tmp3 = ((ta3[i] / s)^((-1)*rhoar2_prop)) * ((ta3[ii] / s)^((-1)*rhoar2_prop)) 
            tmp4 = ((tr3[i] / s)^((-1)*rhoar2_prop)) * ((tr3[ii] / s)^((-1)*rhoar2_prop)) 
            tmp5 = sqrt(Wa_prop[i,i] * Wa_prop[ii,ii]) 
            tmp6 = sqrt(Wr_prop[i,i] * Wr_prop[ii,ii]) 
            Wa_prop[i,ii] = tmp5 * tmp3 * (rhoa_prop^tmp1) 
            Wr_prop[i,ii] = tmp6 * tmp4 * (rhor_prop^tmp2) 
          } 
 
          tmp1 = (abs(tr[ii]-ta[i]-(gfull1_prop + gfull2_prop * ta[i])) + 1) 
          tmp2 = (abs(tr[ii]-ta[i]-(gpart1_prop + gpart2_prop * ta[i])) + 1) 
          tmp3 = ((ta3[i] / s)^((-1)*rhod2_prop)) * ((tr3[ii] / s)^((-1)*rhod2_prop)) 
          tmp5 = sqrt(Wa_prop[i,i] * Wr_prop[ii,ii]) 
 
          if(ta2[i] <= tr2[ii]){ 
            Caf_prop[i,ii] = tmp5 * tmp3 * (rhod_prop^tmp1) 
            Cap_prop[i,ii] = tmp5 * tmp3 * (rhod_prop^tmp2) 
            Crf_prop[ii,i] = tmp5 * tmp3 * (rhod_prop^tmp1) 
            Crp_prop[ii,i] = tmp5 * tmp3 * (rhod_prop^tmp2) 
          } else { 
            Caf_prop[i,ii] = 0 
            Cap_prop[i,ii] = 0 
            Crf_prop[ii,i] = 0 
            Crp_prop[ii,i] = 0 
          } 
        } 
      } 
 
      #Proposed covariance matrices for full & part 
      Sigmaf_prop[1:dim2,1:dim2] = Wa_prop 
      Sigmaf_prop[1:dim2,(dim2+1):dim1] = Caf_prop 
      Sigmaf_prop[(dim2+1):dim1,1:dim2] = Crf_prop 
      Sigmaf_prop[(dim2+1):dim1,(dim2+1):dim1] = Wr_prop 
      Sigmap_prop[1:dim2,1:dim2] = Wa_prop 
      Sigmap_prop[1:dim2,(dim2+1):dim1] = Cap_prop 
      Sigmap_prop[(dim2+1):dim1,1:dim2] = Crp_prop 
      Sigmap_prop[(dim2+1):dim1,(dim2+1):dim1] = Wr_prop 
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      tmpf1 = eigen(Sigmaf_prop,only.values=TRUE) 
      tmpp1 = eigen(Sigmap_prop,only.values=TRUE) 
      if(is.complex(tmpf1$values)){ 
        tmpf2 = -10 
      } else { 
        tmpf2 = min(tmpf1$values) 
      } 
      if(is.complex(tmpp1$values)){ 
        tmpp2 = -10 
      } else { 
        tmpp2 = min(tmpp1$values) 
      } 
 
      # Are Sigmaf_prop and Sigmap_prop positive definite? If not, redraw. 
      if(min(tmpf2,tmpp2) < 0){ 
        check = 1 
      } else { 
        check = 0 
        Sigmaf_propi = solve(Sigmaf_prop) 
        Sigmap_propi = solve(Sigmap_prop) 
      } 
    } 
  } 
 
  #if we get to here, each parameter is postive and the corresponding covariance 
  # matrix is positive definite 
 
  #update Sigma_prop1 
  if(j >= 2){ 
    if(floor(k/1000) == k/1000){ 
      count1_id = 0 
      count2_id = theta_store[k-999,ncovtot2] 
      for(ii in (k-998):(k-1)){ 
        if(count2_id == theta_store[ii,ncovtot2]){ 
          www1 = 0 
        } else { 
          count1_id = count1_id + 1 
          count2_id = theta_store[ii,ncovtot2] 
        } 
      } 
      acceptrate = count1_id / 998 
      if(acceptrate >= 0) {mfact = 0.5*mfact + 0.5*mfact / (0.3/acceptrate)} else {mfact = 
0.3} 
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    }  
    if(floor(k/5)==k/5){ 
      for(ii in 1:(ncovsig-2)){ 
        for(jj in 1:(ncovsig-2)){ 
            Sigma_prop1[ii,jj] = 
mfact*cov(theta_store[,ii+ncovtot+2],theta_store[,jj+ncovtot+2]) 
        } 
      } 
    } 
  } else if(k >= 2000){ 
    if(floor(k/5)==k/5){ 
      for(ii in 1:(ncovsig-2)){ 
        for(jj in 1:(ncovsig-2)){ 
            Sigma_prop1[ii,jj] = 
mfact*cov(theta_store[1:k,ii+ncovtot+2],theta_store[1:k,jj+ncovtot+2]) 
        } 
      } 
    } 
  } 
 
  #********************************************************************* 
  # Step 2.2: Compute log posteriors under proposal and current 
  #********************************************************************* 
  delta1 = utils - V 
 
  # for proposal 
  nkernf1 = sum(diag(delta1[1:nfull,]%*%Sigmaf_propi%*%t(delta1[1:nfull,]))) 
  nkernp1 = 
sum(diag(delta1[(nfull+1):count,]%*%Sigmap_propi%*%t(delta1[(nfull+1):count,]))) 
  log_nkern1 = (-0.5)*(nkernf1 + nkernp1) 
  nkernf2 = (det(Sigmaf_propi)) 
  nkernp2 = (det(Sigmap_propi)) 
  log_nkern2 = (0.5*nfull)*log(nkernf2) + (0.5*npart)*log(nkernp2) 
  ll_prop = log_nkern1 + log_nkern2 
  prior_prop1 = log(dgamma(sig2a_prop,eta_sig[1],eta_sig[2])) + 
log(dgamma(sig2r_prop,eta_sig[1],eta_sig[2])) + 
log(dgamma(sig2a1_prop,eta_sig[1],eta_sig[2])) + 
log(dgamma(sig2a2_prop,eta_sig[1],eta_sig[2])) + 
log(dgamma(sig2r1_prop,eta_sig[1],eta_sig[2])) + 
log(dgamma(sig2r2_prop,eta_sig[1],eta_sig[2])) 
  prior_prop2 = log(dbeta(rhoa_prop,eta_rho[1],eta_rho[2])) + 
log(dbeta(rhor_prop,eta_rho[1],eta_rho[2])) + 
log(dbeta(rhod_prop,eta_rho[1],eta_rho[2])) + 
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log(dgamma(rhoar2_prop,eta_rho2[1],eta_rho2[2])) + 
log(dgamma(rhod2_prop,eta_rho2[1],eta_rho2[2])) 
  prior_prop3 = log(dnorm(gfull1_prop,gf_par[1],gf_par[2])) + 
log(dnorm(gpart1_prop,gp_par[1],gp_par[2])) + 
log(dnorm(gfull2_prop,g2_par[1],g2_par[2])) + 
log(dnorm(gpart2_prop,g2_par[1],g2_par[2])) 
  lpost_prop = ll_prop + prior_prop1 + prior_prop2 + prior_prop3 
 
  #for current 
  nkernf1 = sum(diag(delta1[1:nfull,]%*%Sigmafulli%*%t(delta1[1:nfull,]))) 
  nkernp1 = 
sum(diag(delta1[(nfull+1):count,]%*%Sigmaparti%*%t(delta1[(nfull+1):count,]))) 
  log_nkern1 = (-0.5)*(nkernf1 + nkernp1) 
  nkernf2 = (det(Sigmafulli)) 
  nkernp2 = (det(Sigmaparti)) 
  log_nkern2 = (0.5*nfull)*log(nkernf2) + (0.5*npart)*log(nkernp2) 
  ll_cur = log_nkern1 + log_nkern2 
  lpost_cur = ll_cur + prior1 + prior2 + prior3 
 
  #********************************************************************* 
  # Step 2.3: Accept or reject proposal 
  #********************************************************************* 
  ratio1 = lpost_prop[1] - lpost_cur[1] 
  alpha1 = try(if(ratio1 >= 0) {1} else {exp(ratio1)}, TRUE) 
  if(is(alpha1,"numeric")){ 
    temp11 = runif(1,0,1) 
    if(temp11 <= alpha1){ 
      #if proposal accepted, set values to proposal values 
      lpost_cur = lpost_prop 
      cov_param = cov_param_prop 
      sigma2a = sig2a_prop 
      sigma2r = sig2r_prop 
      sigma2a1 = sig2a1_prop 
      sigma2r1 = sig2r1_prop 
      sigma2a2 = sig2a2_prop 
      sigma2r2 = sig2r2_prop 
      rhoa = rhoa_prop 
      rhor = rhor_prop 
      rhod = rhod_prop 
      rhoar2 = rhoar2_prop 
      rhod2 = rhod2_prop 
      gammafull1 = gfull1_prop 
      gammapart1 = gpart1_prop 
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      gammafull2 = gfull2_prop 
      gammapart2 = gpart2_prop 
      prior1 = prior_prop1 
      prior2 = prior_prop2 
      prior3 = prior_prop3 
      Sigmafull = Sigmaf_prop 
      Sigmapart = Sigmap_prop 
      Sigmafulli = Sigmaf_propi 
      Sigmaparti = Sigmap_propi 
      Cafull = Caf_prop 
      Capart = Cap_prop 
      Crfull = Crf_prop 
      Crpart = Crp_prop 
      Wa = Wa_prop 
      Wr = Wr_prop 
    } 
  } 
  ii = floor(k/5) 
  if(ii == k/5){ 
    iii = (j-1)*1000 + ii 
    lpost_store[iii] = lpost_cur 
  } 
 
 
  #********************************************************************* 
  #********************************************************************* 
  # Step 3: Draw Betas 
  #********************************************************************* 
  #********************************************************************* 
 
  #preliminaries 
  utilsf = matrix(t(utils[1:nfull,]),nfull*dim1) 
  utilsp = matrix(t(utils[(nfull+1):count,]),npart*dim1) 
  i = nfull*dim1 
  ii = i + 1 
  iii = count*dim1 
 
  #compute variance 
  #full-time 
  test10 = Sigmafulli %*% matrix(X3[1:i,],dim1) 
  test11 = matrix(test10,nfull*dim1) 
  test12 = t(X3[1:i,]) %*% test11 
  #part-time 
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  test10 = Sigmaparti %*% matrix(X3[ii:iii,],dim1) 
  test11 = matrix(test10,npart*dim1) 
  test13 = t(X3[ii:iii,]) %*% test11 
  b_par13 = solve(test12 + test13 + Sigma_bari) 
 
  #compute mean 
  #full-time 
  test10 = Sigmafulli %*% matrix(utilsf,dim1) 
  test11 = matrix(test10,nfull*dim1) 
  test12 = t(X3[1:i,]) %*% test11 
  #part-time 
  test10 = Sigmaparti %*% matrix(utilsp,dim1) 
  test11 = matrix(test10,npart*dim1) 
  test13 = t(X3[ii:iii,]) %*% test11 
  b_par14 = b_par13 %*% (test12 + test13 + priorbar) 
 
  #draw beta 
  L_beta = t(chol(b_par13)) 
  check2 = 1 
  counter1 = 0 
 
  #this loop ensures network variable parameters are negative (prior is truncated normal) 
  while(check2 == 1){ 
    temp10 = rnorm(ncovtot,0,1) 
    beta = b_par14 + L_beta%*%temp10 
    temp20 = max(beta[(ncovtot-6):ncovtot]) 
    if(temp20 <= 0){ 
      check2 = 0 
    } else { 
      counter1 = counter1+1 
    } 
    if(counter1 >= 100){ 
      if(beta[ncovtot-6] >= 0){beta[ncovtot-6] = -0.0000001} 
      if(beta[ncovtot-5] >= 0){beta[ncovtot-5] = -0.0000001} 
      if(beta[ncovtot-4] >= 0){beta[ncovtot-4] = -0.0000001} 
      if(beta[ncovtot-3] >= 0){beta[ncovtot-3] = -0.0000001} 
      if(beta[ncovtot-2] >= 0){beta[ncovtot-2] = -0.0000001} 
      if(beta[ncovtot-1] >= 0){beta[ncovtot-1] = -0.0000001} 
      if(beta[ncovtot] >= 0){beta[ncovtot] = -200} 
      check2 = 0 
    } 
  } 
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  #recompute systematic utilities 
  for(i in 1:count){ 
    ii = (i-1)*dim1 + 1 
    iii = i*dim1 
    V[i,] = X3[ii:iii,]%*%beta 
  } 
 
  #********************************************************************* 
  #********************************************************************* 
  # Step 4: Store Draws 
  #********************************************************************* 
  #********************************************************************* 
 
  theta_store[k,1:ncovtot] = beta 
  theta_store[k,(ncovtot+1):ncovtot2] = cov_param 
 
} # for k 
 
} # for j 
 
 



186 
 

REFERENCES 
 

Abbe, E., M. Bierlaire, and T. Toledo (2007) Normalization and Correlation of Cross-

Nested Logit Models.  Transportation Research Part B, 41, 795-808. 

Abkowitz, M.D. (1981) An Analysis of the Commuter Departure Time Decision.  

Transportation, 10 (3), 283-297. 

Abou Zeid, M., T.F. Rossi, and B. Gardner (2006) Modeling Time of Day Choice in the 

Context of Tour and Activity Based Models.  Transportation Research Record, 

1981, 42-49. 

Akaike, H. (1974) A New Look at the Statistical Model Identification.  IEEE 

Transactions on Automatic Control, 19, 716-723. 

Albert, J.H. and S. Chib (1993) Bayesian Analysis of Binary and Polychotomous 

Response Data.  Journal of the American Statistical Association, 88, 669-679. 

Bain, R. and M. Wilkins (2002) Infrastructure Finance:  Traffic Risk in Start-Up Toll 

Facilities.  Standard & Poor’s, McGraw-Hill International (UK) Ltd., September 

2002. 

Bain, R. and J.W. Plantagie (2003) Traffic Forecasting Risk:  Study Update 2003.  

Standard & Poor’s, McGraw-Hill International (UK) Ltd., November 2003. 

Bain, R. and J.W. Plantagie (2004) Traffic Forecasting Risk:  Study Update 2004.  

Standard & Poor’s, McGraw-Hill International (UK) Ltd., October 2004. 

Bain, R. and L. Polakovic (2005) Traffic Forecasting Risk Study Update 2005:  Through 

Ramp-Up and Beyond.  Standard & Poor’s, McGraw-Hill International (UK) Ltd., 

August 2005. 

Bain, R., K. Forsgren, and P.B. Calder (2006) Credit FAQ:  Assessing the Credit Quality 

of Highly Leveraged Deep-Future Toll-Road Concessions, Standard & Poor’s, 

McGraw-Hill International (UK) Ltd., February 2006. 

Bates, J., J. Polak, P. Jones, and A. Cook (2001) The Valuation of Reliability for Personal 

Travel.  Transportation Research Part E, 37, 191-229. 



187 
 

Ben-Akiva, M. and T. Watanatada (1981) Application of a Continuous Spatial Choice 

Logit Model.  In Structural Analysis of Discrete Choice Data with Econometric 

Applications (C.F. Manski and D. McFadden, eds.), MIT Press, Cambridge, MA, 

320-343. 

Ben-Akiva, M., N. Litinas, and K. Tsunokawa (1985) Continuous Spatial Choice:  The 

Continuous Logit Model and Distributions of Trips and Urban Densities.  

Transportation Research Part A, 19 (2), 119-154. 

Ben-Akiva, M. and M. Bierlaire (1999) Discrete Choice Methods and Their Applications 

to Short-Term Travel Decisions.  In Handbook of Transportation Science (R. Hall 

ed.), Kluwer, 5-34. 

Bhat, C.R. (1996) A Hazard-Based Duration Model of Shopping Activity with 

Nonparametric Baseline Specification and Nonparametric Control for Unobserved 

Heterogeneity.  Transportation Research Part B, 30 (3), 189-207. 

Bhat, C.R. (1998a) Analysis of Travel Mode and Departure Time Choice for Urban 

Shopping Trips.  Transportation Research Part B, 32 (6), 361-371. 

Bhat, C.R. (1998b) Accommodating Flexible Substitution Patterns in Multi-Dimensional 

Choice  Modeling:  Formulation and Application to Travel Mode and Departure 

Time Chocie.  Transportation Research Part B, 32 (7), 455-466. 

Bhat, C.R. and F.S. Koppelman (1999) Activity-Based Modeling for Travel Demand.  

Handbook of Transportation Science, R.W. Hall (ed.), Kluwer Academic 

Publisher. 

Bhat, C.R. and J.L. Steed (2002) A Continuous-Time Model of Departure Time Choice 

for Urban Shopping Trips.  Transportation Research Part B, 36 (3), 207-224. 

Bhat, C.R. and R. Sardesai (2006) The Impact of Stop-Making and Travel Time 

Reliability on Commute Mode Choice.  Transportation Research Part B, 40 (9), 

709-730. 

Bhat, C.R. and A.R. Pinjari (2008) Duration Modeling.  In Handbook of Transport 

Modeling, 2nd edition, (D.A. Hensher and K.J. Button, eds.), Elsevier Science, 

105-132. 



188 
 

Bierlaire, M. (2006) A Theoretical Analysis of the Cross-Nested Logit Model.  Annals of 

Operations Research, 144, 287-300. 

Bowman, J.L., M.A. Bradley, and J. Gibb (2006) The Sacramento Activity-Based Travel 

Demand Model:  Estimation and Validation Results.  Proceedings of the European 

Transport Conference, Strasbourg, France, September 2006. 

Brownstone, D. and K.A. Small (2005) Valuing Time and Reliability:  Assessing the 

Evidence from Road Pricing Demonstrations.  Transportation Research Part A, 

39, 279-293. 

Cambridge Systematics, Inc. (2005) Forecasting Person Travel by Time of Day.  Final 

Report prepared for the Federal Highway Administration (FHWA). 

Chib, S. and E. Greenberg (1998) Analysis of Multivariate Probit Models.  Biometrika, 

85 (2), 347-361. 

Chin, A.T.H. (1990) Influences on Commuter Trip Departure Time Decisions in 

Singapore.  Transportation Research Part A, 24 (5), 321-333. 

Chipman, H., E. George, J. Lemp, and R. McCulloch (2009) Bayesian Flexible Modeling 

of Trip Durations.  Working paper, University of Texas at Austin. 

Cox, D.R. (1972) Regression Models and Life Tables.  Journal of the Royal Statistical 

Society, Series B, 34, 187-220. 

Cressie, N. (1995) Bayesian Smoothing of Rates in Small Geographic Areas, Journal of 

Regional Science, 35 (4), 659-673. 

Daly, A.J. and S. Zachary (1979) Improved Multiple Choice Models.  In Identifying and 

Measuring the Determinants of Mode Choice (D. Hensher and Q. Dalvi, eds.), 

Teakfield, London, 335-357. 

de Jong, G., A. Daly, M. Pieters, C. Vellay, M. Bradley, and F. Hofman (2003) A Model 

for Time of Day and Mode Choice Using Error Components Logit.  

Transportation Research Part E, 39 (3), 245-268. 

de Jong, G., A. Daly, M. Pieters, and T. van der Hoorn (2007) The Logsum as an 

Evaluation Measure:  Review of the Literature and New Results.  Transportation 

Research Part A, 41, 874-889. 



189 
 

DYNASMART-P (2009) Dynamic Network Assignment-Simulation Model for 

Advanced Roadway Telematics.  Website accessed July 20, 2009 at 

http://mctrans.ce.ufl.edu/featured/dynasmart/. 

Ettema, D., A. Borgers, and H.J.P. Timmermans (1995) Competing Risk Hazard Model 

of Activity Choice, Timing, Sequencing, and Duration.  Transportation Research 

Record, 1493, 101-109. 

Ettema, D. and H. Timmermans (2003) Modeling Departure Time Choice in the Context 

of Activity Scheduling Behavior.  Transportation Research Record, 1831, 39-46. 

Gadda, S., K.M. Kockelman, and P. Damien (2009) Continuous Departure Time Models:  

A Bayesian Approach.  Proceedings of the 88th

Gamerman, D. (1997) Efficient Sampling from the Posterior Distribution in Generalized 

Linear Mixed Models.  Statistics and Computing, 7, 57-68. 

 Annual Meeting of the 

Transportation Research Board, January 2009, Washington, D.C. 

Gamerman, D. and H.F. Lopes (2006) Markov Chain Monte Carlo:  Stochastic 

Simulation for Bayesian Inference, 2nd

Gelfand, A.E. and A.F.M. Smith (1990) Sampling-Based Approaches to Calculating 

Marginal Densities.  Journal of the American Statistical Association, 85, 398-409. 

 Edition, Chapman & Hall/CRC, Boca 

Raton. 

Gelman, A. and D. Rubin (1992) Inference from Iterative Simulation Using Multiple 

Sequences.  Statistical Science, 7, 457-511. 

Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin (2004) Bayesian Data Analysis, 2nd

George, C., W. Streeter, and S. Trommer (2003) Bliss, Heartburn, and Toll Road 

Forecasts.  Project Finance Special Report, Fitch Ratings, November 2003. 

 

Edition, Chapman & Hall/CRC, Boca Raton. 

Geweke, J. (1991) Efficient Simulation from the Multivariate Normal and Student t-

Distributions Subject to Linear Constraints and the Evaluation of Constraint 

Probabilities.  Proceedings of the 23rd Symposium on the Interface between 

Computer Science and Statistics, 571-578. 

http://mctrans.ce.ufl.edu/featured/dynasmart/�


190 
 

Geweke, J. (1992) Evaluating the Accuracy of Sampling-Based Approaches to the 

Calculation of Posterior Moments.  In Bayesian Statistics 4 (J.M. Bernardo, J.O. 

Berger, A.P. Dawid, and A.F.M. Smith, eds.), Oxford University Press, Oxford, 

169-193. 

Geweke, J., M. Keane, and D. Runkle (1994) Alternative Computational Approaches to 

Inference in the Multinomial Probit Model.  The Review of Economics and 

Statistics, 76 (4), 609-632. 

Golob, T.F. and A.C. Regan (2002) Trucking Industry Adoption of Information 

Technology:  A Multivariate Discrete Choice Model.  Transportation Research 

Part C, 10, 205-228. 

Good, I.J. (1958) Significance Tests in Parallel and in Series.  Journal of the American 

Statistical Association, 53, 799-813. 

Hastings, W.K. (1970) Monte Carlo Sampling Methods Using Markov Chains and their 

Applications.  Biometrika, 57, 97-109. 

Heckman, J. and B. Singer (1984) A Method for Minimizing the Impact of Distributional 

Assumptions in Econometric Models for Duration Data.  Econometrica, 52 (2), 

271-320. 

Hendrickson, C. and E. Plank (1984) The Flexibility of Departure Times for Work Trips.  

Transportation Research Part A, 18 (1), 25-36. 

Hensher, D.A. (2001) The Valuation of Commuter Travel Time Savings for Car Drivers:  

Evaluating Alternative Model Specification.  Transportation, 28, 101-118. 

Hobeika, A. (2005) TRANSIMS Fundamentals.  Travel Model Improvement Program, 

http://tmip.fhwa.dot.gov/resources/clearinghouse/docs/transims_fundamentals/, 

Accessed July 2009. 

Holden, L., R. Hauge, and M. Holden (2009) Adaptive Independent Metropolis-Hastings.  

The Annals of Applied Probability, 19 (1), 395-413. 

Huber, J. and K. Train (2001) On the Similarity of Classical and Bayesian Estimates of 

Individual Mean Partworths.  Marketing Letters, 12, 259-269. 

http://tmip.fhwa.dot.gov/resources/clearinghouse/docs/transims_fundamentals/�


191 
 

Hunt, L.M., P.C. Boxall, and B. Boots (2007) Accommodating Complex Substitution 

Patterns in A Random Utility Model of Recreational Fishing.  Marine Resource 

Economics, 22, 155-172. 

Jonnalagadda, N., J. Freedman, W.A. Davidson, and J.D. Hunt (2001) Development of 

Microsimulation Activity-Based Model for San Francisco:  Destination and Mode 

Choice Models.  Transportation Research Record, 1777, 25-35. 

Kass, R.E. and A.E. Raftery (1995) Bayes Factors.  Journal of the American Statistical 

Association, 90 (430), 773-795. 

Kissling, W.D. and G. Carl (2008) Spatial Autocorrelation and the Selection of 

Simultaneous Autoregressive Models.  Global Ecology and Biogeography, 17, 

59-71. 

Kockelman, K.M. and J.D. Lemp (2009) The Financing of New Highways:  

Opportunities for Welfare Analysis and Credit-Based Congestion Pricing.  

Proceedings of the 88th

Komma, A. and S. Srinivasan (2008) Modeling Home-to-Work Commute-Timing 

Decisions of Workers with Flexible Work Schedules.  Proceedings of the 87

 Annual Meeting of the Transportation Research Board, 

Washington, D.C. 

th

Lam, T.C. and K.A. Small (2001) The Value of Time and Reliability:  Measurement from 

a Value Pricing Experiment.  Transportation Research Part E, 37 (3), 231-251. 

 

Annual Meeting of the Transportation Research Board, January 2008, 

Washington, D.C. 

Lee, B. and H.J.P. Timmermans (2007) A Latent Class Accelerated Hazard Model of 

Activity Episode Durations.  Transportation Research Part B, 41 (4), 426-447. 

Lemp, J.D. and K.M. Kockelman (2009) Understanding and Accommodating Risk and 

Uncertainty in Toll Road Projects:  A Review of the Literature.  Forthcoming in 

Transportation Research Record. 

Lichstein, J.W., T.R. Simons, S.A. Shriner, and K.E. Franzreb (2002) Spatial 

Autocorrelation and Autoregressive Models in Ecology.  Ecological Monographs, 

72 (3), 445-463. 



192 
 

Lin, D.Y., N. Eluru, S.T. Waller, and C.R. Bhat (2008) Integration of Activity-Based 

Modeling and Dynamic Traffic Assignment, Transportation Research Record, 

2076, 52-61. 

Marzano, V. and A. Papola (2008) On the Covariance Structure of the Cross-Nested 

Logit Model.  Transportation Research Part B, 42, 83-98. 

McCafferty, D. and F.L. Hall (1982) The Use of Multinomial Logit Analysis to Model 

the Choice of Time to Travel.  Economic Geography, 58 (3), 236-246. 

McCulloch, R. and P.E. Rossi (1994) An Exact Likelihood Analysis of the Multinomial 

Probit Model.  Journal of Econometrics, 64, 207-240. 

McFadden, D. (1973) Conditional Logit Analysis of Qualitative Choice Behavior.  In 

Frontiers in Econometrics (P. Zaremmbka ed.), Academic Press, New York. 

McFadden, D. (1976) The Mathematical Theory of Demand Models.  In Behavioral 

Travel Demand Models (P.R. Stopher and A.H. Meyburg, eds.), Lexington Books, 

Lexington, MA, 305-314. 

McFadden, D. (1978) Modeling the Choice of Residential Location.  In Spatial 

Interaction Theory and Planning Models (A. Karlquist, L. Lundquist, F. 

Snickbars, and J.W. Weibull, eds.), North-Holland, Amsterdam, 75-96. 

McFadden, D. (1989) A Method of Simulated Moments for Estimation of Discrete 

Response Models without Numerical Integration. Econometrica, 57 (5), 995-

1026. 

McFadden, D. and K. Train (2000) Mixed MNL Models for Discrete Response.  Journal 

of Applied Econometrics, 15 (5), 447-470. 

Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller (1953) 

Equation of State Calculations by Fast Computing Machine.  Journal of Chemical 

Physics, 21, 1087-1091. 

Niemeier, D.A. and J.G. Morita (1996) Duration of Trip-Making Activities by Men and 

Women:  A Survival Analysis.  Transportation, 23 (4), 353-371. 



193 
 

Noland, R.B. and K.A. Small (1995) Travel Time Uncertainty, Departure Time Choice, 

and the Cost of Morning Commutes.  Transportation Research Record, 1493, 

150-158. 

Okola, A. (2003) Departure Time Choice for Recreational Activities by Elderly Non-

Workers.  Transportation Research Record, 1848, 86-93. 

Papola, A. (2004) Some Developments on the Cross-Nested Logit Model.  

Transportation Research Part B, 38, 833-851. 

Papola, A. and V. Marzano (2005) A Specification Procedure of the CNL Model 

Reproducing Any Homoskedastic Covariance Matrix.  Proceedings of the 

European Transport Conference, Strasbourg, France. 

Parent, O. and J.P. LeSage (2008) Using the Variance Structure of the Conditional 

Autoregressive Spatial Specification to Model Knowledge Spillovers.  Journal of 

Applied Econometrics, 23, 235-256. 

PB Consult (2005a) Transportation Models and Data Initiative:  General Final Report, 

New York Best Practice Model (NYBPM).  Prepared for the New York 

Metropolitan Transportation Council. 

PB Consult (2005b) The MORPC Travel Demand Model:  Validation and Final Report.  

Prepared for the Mid-Ohio Regional Planning Commission as part of the MORPC 

Model Improvement Project. 

Popkowski Leszczyc, P.T.L. and H. Timmermans (2002) Unconditional and Conditional 

Competing Risk Models of Activity Duration and Activity Sequencing Decisions:  

An Empirical Comparison.  Journal of Geographical Systems, 4 (2), 157-170. 

Popuri, Y., M. Ben-Akiva, and K. Proussaloglou (2008) Time of Day Modeling in a 

Tour-Based Context:  The Tel-Aviv Experience.  Proceedings of the 87th

Roberts, G.O. and A.F.M. Smith (1994) Simple Conditions for the Convergence of the 

Gibbs Sampler and Metropolis-Hastings Algorithms.  Stochastic Processes and 

their Applications, 49, 207-216. 

 Annual 

Meeting of the Transportation Research Board, January 2008, Washington, D.C. 



194 
 

Saleh, W. and S. Farrell (2005) Implications of Congestion Charging for Departure Time 

Choice:  Work and Non-Work Schedule Flexibility.  Transportation Research 

Part A, 39 (9), 773-791. 

Schofer, J.L. (2005) Summary Statement.  Proceedings of the USDOT Expert Forum on 

Road Pricing and Travel Demand Modeling, Alexandria, VA. 

Schwarz, G. (1978) Estimating the Dimension of a Model.  The Annals of Statistics, 6, 

461-464. 

Small, K.A. (1982) The Scheduling of Consumer Activities:  Work Trips.  The American 

Economic Review, 72 (3), 467-479. 

Small, K.A. (1987) A Discrete Choice Model for Ordered Alternatives.  Econometrica, 

55 (2), 409-424. 

Small, K.A., R. Noland, X. Chu, and D. Lewis (1999) Valuation of Travel-Time Savings 

and Predictability in Congested Conditions for Highway User-Cost Estimation.  

NCHRP Report 431, Transportation Research Board, Washington, D.C. 

Small, K.A., C. Winston, and J. Yan (2005) Uncovering the Distribution of Motorists’ 

Preferences for Travel Time and Reliability.  Econometrica, 73 (4), 1367-1382. 

Smith, A.F.M. and G.O. Roberts (1993) Bayesian Computation Via the Gibbs Sampler 

and Related Markov Chain Monte Carlo Methods.  Journal of the Royal 

Statistical Society B, 55, 3-102. 

Smith, T.E. and J.P. LeSage (2004) A Bayesian Probit Model with Spatial Dependencies.  

In Spatial and Spatiotemporal Econometrics (J.P. LeSage and R.K. Pace, eds.), 

Elsevier, Amsterdam, 127-160. 

Spiegelhalter, D.J., N.G. Best, B.P. Carlin, A. van der Linde (2002) Bayesian Measures 

of Model Complexity and Fit.  Journal of the Royal Statistical Society, Series B, 

64 (4), 583-639. 

Srinivasan, K.K. and Z. Guo (2003) Analysis of Trip and Stop Duration for Shopping 

Activities:  Simultaneous Hazard Duration Model System.  Transportation 

Research Record, 1854, 1-11. 



195 
 

Steed, J. and C.R. Bhat (2000) On Modeling the Departure Time Choice for Home-Based 

Social/Recreational and Shopping Trips.  Transportation Research Record, 1706, 

152-159. 

Stopher, P.R., R. Alsnih, C.G. Wilmot, C. Stecher, J. Pratt, J. Zmud, W. Mix, M. 

Freedman, K. Axhausen, M. Lee-Gosselin, A.E. Pisarski, and W. Brog (2008) 

Technical Appendix,  NCHRP Report 571:  Standardized Procedures for Personal 

Travel Surveys, National Cooperative Highway Research Program, 

Transportation Research Board, Washington, D.C. 

Texas Transportation Institute (TTI) and Cambridge Systematics (CS) Inc. (2006) Travel 

Time Reliability:  Making it There on Time, All the Time, Report prepared for the 

Federal Highway Administration. 

Tierney, L. (1994) Markov Chains for Exploring Posterior Distributions.  Annals of 

Statistics, 22, 1701-1762. 

Train, K. (2009) Bayesian Procedures.  Chapter 12 of Discrete Choice Methods with 

Simulation, 2nd

Transportation Research Board (2007) Metropolitan Travel Forecasting:  Current Practice 

and Future Direction.  TRB Special Report 288, Committee for Determination of 

the State of the Practice in Metropolitan Area Travel Forecasting, Washington, 

D.C. 

 Edition, Cambridge University Press, 282-314. 

Tringides, C.A., X. Ye, and R.M. Pendyala (2004) Departure-Time Choice and Mode 

Choice for Nonwork Trips.  Transportation Research Record, 1898, 1-9. 

Tseng, Y.Y. and E. Verhoef (2008) Value of Time by Time of Day:  A Stated-Preference 

Study.  Transportation Research Part B, 42 (7-8), 607-618. 

van Lint, J.W.C., H.J. van Zuylen, and H. Tu (2008) Travel Time Unreliability on 

Freeways:  Why Measures Based on Variance Tell Only Half the Story.  

Transportation Research Part A, 42, 258-277. 

Vovsha, P. (1997) Application of Cross-Nested Logit Model to Mode Choice in Tel-

Aviv, Israel, Metropolitan Area.  Transportation Research Record, 1607, 6-15. 



196 
 

Vovsha, P. and M. Bradley (2004) A Hybrid Discrete Choice Departure Time and 

Duration Model for Scheduling Travel Tours.  Transportation Research Record, 

1894, 46-56. 

Vovsha, P., W. Davidson, and R. Donnelly (2005) Making the State of the Art the State 

of the Practice:  Advanced Modeling Techniques for Road Pricing.  Proceedings 

of the USDOT Expert Forum on Road Pricing and Travel Demand Modeling, 

Alexandria, VA. 

Wagenmakers, E.J., M. Lee, T. Lodewyckx, and G.J. Iverson (2008) Bayesian Versus 

Frequentist Inference.  Chapter 9 of Bayesian Evaluation of Informative 

Hypotheses (H. Hoijtink, I. Klugkist, and P.A. Boelen, eds.), Springer, 181-210. 

Wang, J.J. (1996) Timing Utility of Daily Activities and Its Impact on Travel.  

Transportation Research Part A, 30 (3), 189-206. 

Wen, C.H. and F.S. Koppelman (2001) The Generalized Nested Logit Model.  

Transportation Research Part B, 35, 627-641. 

Williams, H.C.W.L. (1977) On the Formation of Travel Demand Models and Economic 

Evaluation Measures of User Benefit.  Environment and Planning A, 9, 285-344. 

Wooldridge, J.M. (2002) Econometric Analysis of Cross Section and Panel Data.  MIT 

Press, Cambridge, MA and London, UK. 

Yee, J.L. and D.A. Niemeier (2000) Analysis of Activity Duration Using the Puget Sound 

Transportation Panel.  Transportation Research Part A, 34 (8), 607-624. 

Zellner, A. and C.K. Min (1995) Gibbs Sampler Convergence Criteria.  Journal of the 

American Statistical Association, 90, 921-927. 

Zhang, X., W.J. Boscardin, and T.R. Belin (2008) Bayesian Analysis of Multivariate 

Nominal Measures Using Multivariate Multinomial Probit Models.  

Computational Statistics and Data Analysis, 52, 3697-3708. 

Zhao, Y., K.M. Kockelman, and A. Karlstrom (2008) Welfare Calculations in Discrete 

Choice Settings:  The Role of the Error Term Correlation.  Proceedings of the 87th 

Annual Meeting of the Transportation Research Board, Washington, D.C. 



197 
 

Zhong, M. and J.D. Hunt (2005) Modeling Household Weekend Activity Durations in 

Calgary.  Proceedings of the 2005 Annual Conference of the Transportation 

Association of Canada, Calgary, Alberta. 



198 
 

VITA 
 

Jason Lemp was born August 14, 1982 to Kent and Gloria Lemp in St. Louis, Missouri.  

He is married to Sarah Carnes-Lemp and attended the University of Missouri in 

Columbia, Missouri, where he graduated cum laude, earning his B.S. in civil and 

environmental engineering.  During that time he worked a research project, collecting and 

processing traffic data collected via mobile video cameras.  Following graduation he 

worked briefly for the Michigan Department of Transportation in the Traffic Signals 

Unit, before coming to the University of Texas at Austin to pursue graduate studies in 

Transportation Engineering. 

 

Jason started graduate studies at UT in the fall of 2005.  During his four and a half years 

of graduate study, he developed an interest in travel demand modeling and traveler 

behavior, which involves rigorous statistical training and data analysis.  He has 

contributed to several research projects during his time at UT, including projects 

sponsored by the Environmental Protection Agency (EPA), the National Cooperative 

Highway Research Program (NCHRP), and the Strategic Highway Research Program 

(SHRP).  He was also a recipient of the Dwight D. Eisenhower Graduate Fellowship in 

2007 and 2008.  Jason’s research interests include transportation economics, statistical 

methods for transportation data analysis, and risk assessment, and he is author of several 

published papers in these areas. 

 

Permanent Address: 

5127 Reynosa Drive 

Saint Louis, MO 63128 

 

This dissertation was typed by the author. 

 


	Chapter 1:  INTRODUCTION
	1.1 Overview and Motivation
	1.2 Existing Methods of Activity Scheduling
	1.2.1 Discrete Methods
	1.2.2 Continuous Methods

	1.3 Limitations of Existing Methods
	1.4 Advantages of Bayesian Techniques in TOD Modeling
	1.5 Study Objectives
	1.6 Organization
	1.7 Chapter Summary

	Chapter 2:  LITERATURE REVIEW
	2.1 Travel Timing Models
	2.1.1 Discrete Choice Models
	2.1.2 Continuous Models
	2.1.3 Time-of-Day Modeling Summary

	2.2 Reliability Measures
	2.2.1 Travel Time Distribution
	2.2.2 Schedule Delay Methods

	2.3 Bayesian Statistics
	2.3.1 Bayesian Theory
	2.3.2 Prior Choice
	2.3.3 MCMC Simulation
	2.3.3.1 Gibbs Sampling
	2.3.3.2 Metropolis-Hastings

	2.3.4 Convergence Assessment

	2.4 Chapter Summary

	Chapter 3:  TIME-OF-DAY MODELING METHODS
	3.1 Continuous Logit
	3.1.1 Continuous Logit Specification
	3.1.2 Continuous Logit Parameter Estimation via MCMC Simulation

	3.2 Continuous Cross-Nested Logit
	3.2.1 (Discrete) Cross-Nested Logit
	3.2.2 Continuous Cross-Nested Logit
	3.2.3 CCNL Model Behavior and Properties
	3.2.4 CCNL Parameter Estimation via MCMC Simulation

	3.3 Bivariate Multinomial Probit
	3.3.1 Random Utility Framework and Model Specification
	3.3.2 Error Correlation Structure
	3.3.3 BVMNP Parameter Estimation via MCMC Simulation

	3.4 Chapter Summary

	Chapter 4:  IMPUTING TIME-VARYING NETWORK VARIABLES
	4.1 Methodology
	4.1.1 Automobile Travel Times
	4.1.2 Automobile Travel Time Variability
	4.1.3 Transit Level-of-Service Attributes

	4.2 Data Description
	4.3 Empirical Results
	4.4 Chapter Summary

	Chapter 5:  EMPIRICAL RESULTS OF CONTINUOUS TOD MODELS
	5.1 Work-Tour Departure Time Data
	5.2 Model Estimation Details
	5.3 Empirical Findings
	5.3.1 Out-of-Sample Predictions
	5.3.2 Economic Welfare Demonstration

	5.4 Chapter Summary

	Chapter 6:  EMPIRICAL RESULTS OF DISCRETE TOD MODELS
	6.1 Work-Tour Scheduling Data
	6.2 Model Estimation Details
	6.3 Empirical Findings
	6.3.1 Individual-Specific Covariate Effects
	6.3.2 Out-of-Sample Predictive Performance
	6.3.3 Economic Welfare Demonstration

	6.4 Chapter Summary

	Chapter 7:  CONCLUSION
	7.1 Summary
	7.2 Opportunities for Future Research
	7.3 Concluding Remarks

	APPENDIX A:  R CODE FOR CCNL MODEL ESTIMATION
	APPENDIX B:  R CODE FOR BVMNP MODEL ESTIMATION
	REFERENCES
	VITA

