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Chapter 1

Introduction

Here we provide motivation for the topics studied in this dissertation as

well as a brief summary of background material, and main results. We provide

full definitions in Chapter 2.

1.1 Background

Let G be a group. A subgroup H ≤ G is separable in G if H is

equal to the intersection of all subgroups of finite-index in G containing H .

A group G is residually finite (RF) if the trivial subgroup is separable in

G. G is locally extended residually finite (LERF) if all finitely generated

subgroups are separable in G. Subgroups of RF and LERF groups are RF

and LERF, respectively. Also, both RF and LERF are virtual properties: if

H ≤f G is a subgroup of finite index, and K is separable in H , then K is

separable in G.

Many groups are known to be RF: for example, Mal’cev’s Theorem

(sometimes called Selberg’s Lemma) asserts that all finitely generated linear

groups are RF. LERF is a much stronger property—for example, the linear

group SLnZ is not LERF for any n ≥ 3 [20]. However, several important
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classes of infinite groups are LERF: a celebrated theorem of Marshall Hall

Jr. is that free groups are LERF [15]; a well-known theorem of Peter Scott

asserts that the fundamental group of a closed surface is LERF [25]; and Henry

Wilton has recently shown that fully residually free groups (also known as limit

groups; see Section 2.3) are LERF as well [28]. Compact Seifert fiber spaces

are LERF ([25] and [26]). An important class of hyperbolic 3-manifold groups

that are LERF is the class of Bianchi groups, PSL(2, Od); see [20].

The main connection between subgroup separability and topology is

Scott’s criterion (see [25], and Sections 4.2 and 5.2 below), which allows one

to promote π1-injective immersions to embeddings in finite-sheeted covers.

Indeed, some of our motivation for studying these topics comes from hyperbolic

3-manifolds: suppose M is a closed, hyperbolic 3-manifold, so

M = H3/Γ

where Γ is a discrete, torsion-free subgroup of Isom+(H3) ∼= PSL2(C). The

Virtual Haken Conjecture states that there is a finite-sheeted cover M ′ → M

and a closed, homeomorphically embedded, π1-injective surface S →֒ M ′ with

χ(S) < 0. There is a famous two-step program to approach this conjecture:

1. The Surface Subgroup Conjecture: There exists a closed hyperbolic

surface group π1S ≤ π1M . This yields an immersion S # M .

2. The LERF conjecture: π1M is LERF.
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Scott’s criterion yields an embedding of S in a finite-sheeted cover M ′ →

M :

M ′

��
S

>>}
}

}
}

// M

The surface subgroup conjecture was proven in 2009 by Kahn-Markovich [18],

but as of the writing of this thesis, the LERF conjecture remains open.

As mentioned above, RF and LERF are preserved by subgroups and

supergroups of finite index. These properties are also preserved under free

product ([13], [4]). An important distinction is that RF is preserved under

direct product, but LERF is not; for example, F2, the nonabelian free group on

two generators is LERF, but F2×F2 has unsolvable generalized word problem,

and so is not LERF [23].

1.2 Main results

In [1], Agol defines a property of groups called RFRS, and he proves

that if the fundamental group of an irreducible 3-manifold M has this property,

then M is virtually fibered, that is, M has a finite-sheeted cover M ′ → M such

that M ′ is a fiber bundle over S1. He shows that finitely generated right-angled

Coxeter groups are virtually RFRS, and it follows that closed surface groups

are virtually RFRS as well. Motivated by the theory of subgroup separability

and Agol’s RFRS condition on groups, we make the following definition in

Chapter 2:
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Definition 1.2.1. A subgroup H ≤ G is RS-separable (denoted H ≤RS G)

if there is a descending tower of subgroups · · ·⊳f G2 ⊳f G1 ⊳f G0 := G whose

intersection is H and

Gi+1 ≥ (Gi)
(1)
r = {x ∈ Gi|x

d ∈ G
(1)
i , some 0 6= d ∈ Z}

where G
(1)
i denotes the commutator subgroup of Gi. The collection {Gi} is

called an RS tower over H .

A group G is residually finite and rationally solvable (RFRS)

if 1 ≤RS G; see [1]. Agol’s primary interest is in groups that are virtu-

ally RFRS, that is, those groups G that contain a subgroup of finite index

K ≤f G such that 1 ≤RS K. Thus, if H ≤ G, we will say that H is virtually

RS-separable in G (denoted H ≤V RS G) if there is a finite-index subgroup

K ≤f G such that H ≤RS K. In the spirit of [12], we will call a group G lo-

cally virtually RS-separable (LVRSS) if every finitely generated subgroup

H ≤ G satisfies H ≤V RS G. This is a very strong property; for example,

LVRSS implies both virtually RFRS and LERF (see Proposition 2.5.4), so in

particular, if a hyperbolic 3-manifold M has LVRSS fundamental group, then,

by recent work of Agol [2] using work of Haglund and Wise [14], M is virtually

fibered, has large fundamental group, and is cubulated.

As an aside, we mention that the subgroup G
(1)
r ≤ G appears elsewhere

in the literature as the first term in the rational derived series of G; see, for

example, [7], [8], and [16].
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Agol proves that the trivial subgroup of a surface group is virtually

RS-separable [1]. One of the main results of this thesis is that, in fact, all

finitely generated subgroups of surface groups are virtually RS-separable:

Theorem A. Let Σ = Σg,n be a compact, orientable surface of genus g ≥ 0

with n ≥ 0 boundary components. Then π1(Σ) is LVRSS.

The proof of Theorem A in the case that n ≥ 1 appears in Chapter 4

and uses a theorem on bases of subgroups of free groups due to Federer and

Jónsson [10]. The main technical tool that we use to prove the n = 0 case of

Theorem A in Chapter 5 is the following geometric result, which is reminiscent

of the Federer and Jónsson theorem:

Theorem B. Let (Σ, x) be an oriented hyperbolic surface with basepoint x.

Let AΣ denote the set of geodesic loops based at x that are not homotopic to a

product of shorter loops based at x. Then:

1. For every α ∈ AΣ, α is simple.

2. For every α, β ∈ AΣ, α ∩ β = {x}.

3. 〈[AΣ]〉 = π1(Σ, x).

In particular, if π1(Σ, x) is finitely generated, then AΣ is finite.

This collection of simple, minimally intersecting loops based at x gives

us just enough control to build certain abelian covers separating subgroups of
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surface groups. It is well known that every essential (π1-injective and non-

boundary parallel) closed curve on a hyperbolic surface is freely homotopic

to a unique closed geodesic. However, this fact is not useful to us in prov-

ing Theorem A because infinitely many distinct elements in π1(Σ) are freely

homotopic to the same closed geodesic; indeed, closed geodesics correspond

uniquely to conjugacy classes in π1(Σ). Thus, we cannot proceed as we did in

the free group case, even though there are only finitely many closed geodesics

on Σ of length less than a given finite number. The key observation is that

every based closed loop is homotopic (rel x) to a unique shortest loop based

at x, and in fact it is a geodesic loop; this is a special case of a theorem in [5].

And, in addition, there are only finitely many geodesic loops based at x of

length less than a given number, and thus, given Theorem B, we may proceed

in a manner similar to the one used in the case that n ≥ 1.

In developing a new property of groups—for example, RF, LERF, LR,

or RFRS—it is imperative to understand how it behaves under various natural

group operations. In Chapter 3, we show that the relationship H ≤RS G is

preserved under several natural group operations:

Theorem C. Suppose that H1 ≤RS G1, H2 ≤RS G2, K1 ≤ G1, and ϕ : G → G1

is surjective. Then H1 ∩K1 ≤RS K1, H1×H2 ≤RS G1 ×G2, and ϕ−1(H1) ≤RS

G. If, in addition, G1 is LVRSS, then K1 is LVRSS, that is, LVRSS behaves

well under subgroups.
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Chapter 2

Definitions and Notation

Here we collect some definitions and notation we will use throughout

the rest of this thesis.

2.1 Classical group theory

Let G be a group. An endomorphism is a self-homomorphism ϕ :

G → G, and an automorphism of G is an endomorphism ϕ : G → G that

is a bijection on the level of sets. An automorphism ϕ : G → G is an inner

automorphism if ϕ(x) = xg := g−1xg for some fixed g ∈ G. We use the

notation H ≤f G to denote that H is a finite-index subgroup of G. Similarly,

for a normal subgroup of finite index, we use the notation N ⊳f G. We will

focus on finitely generated groups, which are those groups G that contain

a finite subset X ⊂ G such that any element of G is represented by a product

of elements in X.

A commutator in G is an element of the form [x, y] := x−1y−1xy for

elements x, y ∈ G. The commutator subgroup G(1) of a group G is the set

of all products of commutators in G; the fact that this is a subgroup follows

from the observation that [x, y]−1 = [y, x] ∈ G(1). Furthermore, G(1)
⊳ G, so
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we may consider the (abelian) quotient group G/G(1), and we remark that if

N ⊳G, then G/N is abelian if and only if G(1) ≤ N . Given a subgroup H ≤ G,

we may consider the set

H(1)
r := {h ∈ H : hd ∈ H(1) for some d 6= 0}

This is, in fact, a normal subgroup of H ; the easiest way to verify this is to

see that it is the kernel of the natural map

H → Q ⊗Z H/H(1)

In fact, given a group G, the normal subgroup G
(1)
r —which we will refer to as

the radical commutator subgroup of G—is the first term in the rational

derived series, which is defined inductively by

G(n+1)
r := (G(n)

r )(1)
r

For some results in low-dimensional topology involving the rational derived

series, see [7], [8], and [16].

Given a group G, a tower of subgroups {Hi}i≥0 is a collection of

subgroups Hi ≤ G such that Hi+1 ≤ Hi for all i ≥ 0. The limit of a tower

{Hi} in G is

lim
i

Hi =
⋂

i

Hi ≤ G

A tower {Hi} is a subnormal tower if Hi+1 ⊳Hi for all i, and it is a normal

tower if, in fact, Hi ⊳ G for all i.

8



2.2 Classical algebraic topology.

A topological surface S is a 2-manifold, possibly with boundary,

that is, a Hausdorff, second-countable space such that every point x ∈ S

has a neighborhood x ∈ U ⊂ S that is homeomorphic with either R2 or

{(x, y) ∈ R2 : y ≥ 0}. A subsurface T ⊂ S is a connected subspace such

that T is a surface. An essential subsurface T ⊂ S is a subsurface that is

π1-injective and no component of S \ T is an annulus.

Now we recall a few classical facts about covering spaces from [17]. We

will only be applying these results to surfaces, and thus, to ease the exposition

below we assume that all spaces are path-connected, locally path-connected,

and semi-locally simply connected. A covering space of a space X is a

space X ′ along with a local homeomorphism p : X ′ → X. The induced map

p∗ : π1(X
′, x′) → π1(X, x) is injective, and the image subgroup p∗(π1(X

′, x′)) ≤

π1(X, x) consists of the homotopy classes of loops in X based at x whose lifts

to X ′ starting at x′ are loops (Proposition 1.31 in [17]).

We will also use the lifting criterion (Proposition 1.33 in [17]): sup-

pose that we have a covering space p : (X ′, x′) → (X, x) and a map f : (Y, y) →

(X, x). Then a lift f ′ : (Y, y) → (X ′, x′) exists if and only if f∗(π1(Y, y)) ≤

p∗(π1(X
′, x′)). In particular, a given group element g ∈ π1(X, x), represented

by a loop αg : (S1, y) → (X, x), is contained in π1(X
′, x′) if and only if αg lifts

to a loop (rather than a path) in (X ′, x′).

In Section 5.2, we will use implicitly the following classical results on
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the existence and uniqueness of covers corresponding to subgroups: given a

subgroup H ≤ π1(X, x), there is a covering space p : XH → X such that

p∗(π1(XH , xH)) = H for a suitably chosen basepoint xH ∈ XH (Proposition

1.36 in [17]). In fact, this covering XH → X is unique up to isomorphism of

covering spaces: two covering spaces p′ : (X ′, x′) → (X, x) and p′′ : (X ′′, x′′) →

(X, x) are isomorphic via f : (X ′, x′) → (X ′′, x′′) if and only if p′∗(π1(X
′, x′)) =

p′′∗(π1(X
′′, x′′)) (Proposition 1.37 in [17]).

2.3 Residual properties.

Let P be a property of groups. A group G is residually P if for every

nontrivial element g ∈ G there is a homomorphism ϕ : G → FP where FP has

property P and ϕ(g) 6= 1. Thus, a group G is residually finite if, for every

nonidentity element g ∈ G, there exists a homomorphism ϕ : G → F onto a

finite group such that ϕ(g) 6= 1; this definition is easily seen to be equivalent

to the one given previously. Similarly, a group G is residually free if, for

every nonidentity element g ∈ G, there exists a homomorphism ϕ : G → F to

a nonabelian free group such that ϕ(g) 6= 1, and G is called fully residually

free (or a limit group) if, for any finite collection of nontrivial elements

g1, . . . , gn ∈ G, there is a homomorphism ϕ : G → F to a nonabelian free

group such that ϕ(gi) 6= 1 for all 1 ≤ i ≤ n.

Let H ≤ G. Recall that H is separable in G if H is equal to the

intersection of all finite-index subgroups of G containing H . We will borrow
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some notation from [19]: if H ≤ G, then define H∗ ≤ G to be

H∗ :=
⋂

H≤K≤fG

K

In general, we clearly have H ≤ H∗, and H is separable in G if H = H∗. As

mentioned in Chapter 1, a group is LERF (locally extended residually finite),

or subgroup separable if every finitely generated subgroup H is separable

in G.

We recall a definition from [1], which is a strong form of residual finite-

ness:

Definition 2.3.1. A group G is RFRS if there is a descending tower of

subgroups · · ·⊳f G2 ⊳f G1 ⊳f G0 := G whose limit is the trivial subgroup and

(Gi)
(1)
r ≤ Gi+1

for all i ≥ 0.

2.4 Virtual and locally virtual properties.

Let G be a group, and let P be a property of groups. G is said to be

virtually P if G contains a finite-index subgroup K ≤f G such that K has

property P . For example, G is virtually RFRS if there is a K ≤f G such

that K is RFRS.

Given a property P of subgroups (denoted by H ≤p G)—for example,

H could finite-index in G (H ≤f G) or RS-separable in G (H ≤RS G)—G

11



is said to be locally virtually P (or LVP) if, for every finitely generated

subgroup H ≤ G, there exists a finite-index subgroup K ≤f G containing H

such that H ≤P K.

Another local virtual property that has garnered attention recently

involves retractions in groups. Let H ≤ G. We say that G retracts onto H

(and we call H a retract of G) if there exists an endomorphism ϕ : G → G

such that ϕ(G) = H and ϕ|H ≡ idH . We will often abuse notation and write

the retraction as ϕ : G → H without emphasizing that H ≤ G. Similarly, we

say that G virtually retracts onto (and we call H a virtual retract of G) if

there is a finite-index subgroup K ≤f G and a retraction ϕ : K → H . A group

G admits locally virtual retractions (or local retractions, or LR) if every

finitely generated subgroup of G is a virtual retract of G. A group G admits

virtual retractions over Z (or local retractions over Z, or LR over Z)

if every infinite cyclic subgroup of G is a virtual retract. These notions were

introduced and explored in [20] and [19].

2.5 Some new group theoretical notions

We begin this section with a natural generalization of Agol’s RFRS

condition as defined in Section 2.3:

Definition 2.5.1. A subgroup H ≤ G is RS-separable (rationally solv-

ably separable), which we denote by H ≤RS G, if there is a descending tower
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of subgroups · · ·⊳f G2 ⊳f G1 ⊳f G0 := G whose limit is H and

(Gi)
(1)
r ≤ Gi+1

for all i ≥ 0. The collection {Gi} is called an RS tower over H .

Thus, a group G is RFRS if 1 ≤RS G. And, if H ≤RS G with {Gi} an

RS tower over H , then since Gi ≤f G with ∩Gi = H , clearly

∩Gi = H ≤ H∗ ≤ ∩Gi

and thus H = H∗, that is, H is separable in G. We also note that G ≤RS G.

In this dissertation, we focus on groups whose subgroups all have torsion-

free abelianization, and thus we may use the following proposition to simplify

our arguments:

Proposition 2.5.1. Let H ≤ G, and suppose that H/H(1) is torsion-free.

Then H(1) = H
(1)
r .

Proof. Clearly H(1) ⊂ H
(1)
r , so it is enough to show that H(1) ⊃ H

(1)
r . Suppose

this fails, that is, there is an element g ∈ H
(1)
r \ H(1). So, gd ∈ H(1) for

some |d| ≥ 2 but g /∈ H(1). Then 1 6= g ∈ H/H(1), but 1 = gd ∈ H/H(1),

contradicting the fact that H/H(1) is torsion-free.

Since both LERF and RFRS are natural extensions of residual finite-

ness, we would like to combine them, naturally, into a single property. To do

this, we recall that for Agol’s purposes in [1], it is more important for a group
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to contain a finite-index subgroup that is RFRS rather than require that the

group itself is RFRS. In other words, Agol is interested in those groups G

that are virtually RFRS, that is, there exists K ≤f G such that 1 ≤RS K.

Thus, in order to generalize this in a natural way, we borrow some ideas from

Section 2.4; for one, we will say that a subgroup H ≤ G is virtually RS sep-

arable (denoted H ≤V RS G) if there exists a finite-index subgroup K ≤f G

such that H ≤RS G. For example, all finite-index subgroups H ≤f G are

virtually RS separable because H ≤RS H ≤f G. The main focus of this thesis

is an investigation of the following property:

Definition 2.5.2. A group G is LVRSS (locally virtually RS-separable)

if, for every finitely generated subgroup H ≤ G, there exists a finite-index

subgroup K ≤ G such that H ≤RS K.

We hasten to point out that this is not a trivial definition. All finite

groups are LVRSS because, if G is a finite group and H is a (finitely generated)

subgroup of G, then H ≤f G and H ≤RS H . As a slightly less trivial example,

we prove here that the infinite cyclic group is LVRSS:

Proposition 2.5.2. Suppose that G = 〈x〉 is infinite cyclic. Then G is

LVRSS.

Proof. Let H be a finitely generated subgroup of G. Then either H is the

trivial subgroup, or H ≤f G. By the above observation, H ≤f G implies

H ≤V RS G, so it is enough to show that 1 ≤RS G. But clearly

· · · ⊳f 8Z ⊳f 4Z ⊳f 2Z ⊳f G

14



is an RS tower with trivial limit, as required. Therefore, since every finitely

generated subgroup of G is virtually RS separable, G is LVRSS.

In fact, it’s not hard to see that all finitely generated abelian groups

have this property:

Theorem 2.5.3. Suppose that G is a finitely generated torsion-free abelian

group. Then G is LVRSS.

Proof. Let H ≤ G be finitely generated such that [G : H ] = ∞. By the funda-

mental theorem of finitely generated abelian groups, G ∼= Zn for some n < ∞.

These groups are known to be LERF, and for any descending tower of finite-

index subgroups {Ki} intersecting in H , the successive quotients are abelian,

which, since G is torsion-free and abelian, implies that H is RS separable in

G by Proposition 2.5.1.

Although LVRSS clearly implies virtually RFRS, it is not completely

obvious that LVRSS implies LERF, so we provide justification for this fact.

Proposition 2.5.4. Suppose that G is LVRSS. Then G is LERF.

Proof. Let H ≤ G be a finitely generated subgroup of G. We must show

that H is separable in G. Since G is LVRSS, there is a finite-index subgroup

K ≤f G such that H ≤RS K, and therefore, by the above observation, H

is separable in K. But this implies that H is separable in G because every

subgroup of finite index in K also has finite index in G, so the intersection of
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all subgroups of finite index in K containing H contains the intersection of all

subgroups of finite index in G containing H . Thus, H is separable in G.

This new property of groups, LVRSS, fits into the existing literature in

a few ways. On the one hand, it is a very strong form of residual finiteness.

On the other hand, since it implies both LERF and virtually RFRS, it may

be thought of as a certain combination of those two properties, each of which

imply residual finiteness as well. To justify the legitimacy of these new defini-

tions, we prove in Chapter 3 that RS separability is well-behaved under some

natural operations on groups, and we compare the behavior to that of RFRS

and subgroup separability. Furthermore, we show in Chapters 4 and 5 that

free groups and closed (orientable) surface groups are LVRSS, and so LVRSS

shares the property of generalizing “freeness” with residual finiteness, LERF,

and (virtually) RFRS.
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Chapter 3

Behavior of RS Separability

In this chapter, we prove some basic results on the preservation of RS

separability and LVRSS under various natural operations on groups. Through-

out this chapter, we provide comments on the analogous results for subgroup

separability and RFRS.

3.1 Intersection and subgroups

We start with a basic observation, which, since we will use it repeatedly

throughout this thesis, we record as a lemma:

Lemma 3.1.1. Suppose that G1, G2 ≤ G such that (G1)
(1)
r ≤ G2, and let

K ≤ G. Then

(G1 ∩ K)(1)
r ≤ G2 ∩ K

Proof. If x ∈ (G1 ∩K)
(1)
r , then x ∈ G1 ∩K ≤ K, and xd ∈ (G1 ∩K)(1) ≤ G

(1)
1

for some d 6= 0. Thus x ∈ (G1)
(1)
r ∩ K ≤ G2 ∩ K.

LERF is well known to be preserved by subgroups; see, for example,

Lemma 1.1 in [25]. It is easy to see that RFRS is preserved by subgroups as
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well; see the remarks following Definition 2.1 in [1]. Now we use Lemma 3.1.1

to show that, perhaps as expected, the same is true of RS separability:

Proposition 3.1.2. Suppose that H ≤RS G and K ≤ G. Then H∩K ≤RS K.

Proof. Let {Gi} be an RS tower over H in G, so (Gi)
(1)
r ≤ Gi+1 for i ≥ 0 and

· · ·⊳f G2 ⊳f G1 ⊳f G0 := G

such that H = ∩Gi. Set Ki := Gi ∩K. Then ∩Ki = H ∩K, and Lemma 3.1.1

yields Ki+1 ≥ (Ki)
(1)
r . Therefore {Ki} is an RS tower over H∩K, so H∩K ≤RS

K.

By setting H = 1 in Proposition 3.1.2, we recover the observation that

RFRS passes to subgroups. A fortiori, LVRSS passes to subgroups as well;

this is the content of the following:

Corollary 3.1.3. Suppose that G is LVRSS, and let H ≤ G. Then H is

LVRSS as well.

Proof. Let L ≤ H be a finitely generated subgroup of H . Then L is a finitely

generated subgroup of G, and thus, since G is LVRSS, there exists a finite-index

subgroup K ≤f G such that L ≤RS K. But H ∩K ≤f H , and L ≤ H ∩K, so

by Proposition 3.1.2,

L = L ∩ (K ∩ H) ≤RS K ∩ H ≤f H,

that is, L is RS separable in K ∩ H ≤f H , and thus L ≤V RS H . Since L was

an arbitrary finitely generated subgroup of H , it follows that H is LVRSS.
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As another application of Lemma 3.1.1, we prove an element-wise char-

acterization of RS separability. This is analogous to the fact that a subgroup

H is separable in G if and only if, for every g ∈ G\H there exists a finite-index

subgroup K ≤f G such that H ≤ K and g ∈ G \ K.

Proposition 3.1.4. Let G be finitely generated. Then H ≤RS G if and only

if the following condition holds:

(∗) For every g ∈ G \ H, there exists an n = ng ≥ 0 and a finite subnormal

tower G = G0 ⊲f G1 ⊲f · · ·⊲f Gn such that g /∈ Gn ≤f G, H ≤ Gn, and

Gi+1 ≥ (Gi)
(1)
r for all 0 ≤ i ≤ n − 1.

Proof. First suppose that H ≤RS G, and let Gi be an RS tower over H with

∩Gi = H . Then if g ∈ G\H , there is an n such that g /∈ Gn, so G0 ≥ · · · ≥ Gn

is the desired tower.

Now suppose that (∗) holds, and list the elements of G\H = {g1, g2, . . .}.

By (∗), there is a subnormal tower G = G0 ≥ G1 ≥ · · · ≥ Gn1
that is an RS

tower over Gn1
such that g1 /∈ Gn1

and H ≤ Gn1
. Let i be minimal such that

gi ∈ Gn1
\ H . By (∗), there is a tower G = G′

0 ≥ G′
1 ≥ · · · ≥ G′

n2
such that

g /∈ G′
n2

and H ≤ G′
n2

. Then

G0 ≥ G1 ≥ · · · ≥ Gn = Gn ∩ G′
0 ≥ Gn ∩ G′

1 ≥ · · · ≥ Gn ∩ G′
n2

is a subnormal RS tower over Gn1
∩ G′

n2
because G′

i+1 ≥ (G′
i)

(1)
r implies

Gn ∩ G′
i+1 ≥ (Gn ∩ G′

i)
(1)
r by Lemma 3.1.1. Furthermore, gi /∈ Gn1

∩ G′
n2

,
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so continuing this process with the first element gj ∈ (Gn1
∩ Gn2

) \ H , we get

an RS tower Gi over H such that ∩Gi = H as needed (because gk /∈ Gnk
).

3.2 Direct product

One might hope that a property such as LVRSS would be preserved

by such a natural group operation as the direct product; that is, one might

expect that if G1 and G2 are LVRSS, then G1 ×G2 is LVRSS as well. Indeed,

other related properties—such as residual finiteness, RFRS, LR, and LR over

Z—are preserved by direct product. However, things are not quite so simple

for LERF (and, consequently, for LVRSS) because, for example, although the

free group of rank two F2 is LVRSS (see Chapter 4), F2×F2 is not even LERF,

and hence by Proposition 2.5.4, F2 ×F2 is not LVRSS. However, we can prove

that RS separable subgroups are preserved under direct product:

Proposition 3.2.1. If H1 ≤RS G1 and H2 ≤RS G2, then H1×H2 ≤RS G1×G2.

Proof. Let · · · ⊳f G1,1 ⊳f G1,0 := G1 be an RS tower for H1 ≤ G1, and let

· · ·⊳f G2,1 ⊳f G2,0 := G2 be an RS tower for H2 ≤ G2. As noted in [1],

(G1,i × G2,i)
(1)
r = (G1,i)

(1)
r × (G2,i)

(1)
r ≤ G1,i+1 × G2,i+1

Furthermore,

⋂

(G1,i × G2,i) = ∩G1,i × ∩G2,i = H1 × H2 (3.2.1)

Thus, G1,i × G2,i is an RS tower over H1 × H2.
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Note that Equation 3.2.1 is essentially the proof that if H1 is separable

in G1 and H2 is separable in G2, then H1 × H2 is separable in G1 × G2.

3.3 Preimages of homomophisms.

We would like to know to what extent RS separability is preserved

under preimages of homomorphisms. We begin with an auxiliary lemma that

says that the commutator radical is preserved by homomorphisms as well as

their inverse images.

Lemma 3.3.1. Suppose that ϕ : G → H is a homomorphism. Then ϕ(G
(1)
r ) ≤

H
(1)
r , so G

(1)
r ≤ ϕ−1(H

(1)
r ) ≤ G.

Proof. Suppose that x ∈ G
(1)
r , so xd =

∏

i[yi, zi] ∈ G(1) for some d 6= 0 and

some yi, zi ∈ G. Now compute:

(ϕ(x))d = ϕ(xd) = ϕ
(

∏

[yi, zi]
)

=
∏

[ϕ(yi), ϕ(zi)]

Thus, (ϕ(x))d ∈ H(1), and hence ϕ(x) ∈ H
(1)
r as needed. The second claim

follows since G
(1)
r ≤ ϕ−1(ϕ(G

(1)
r )).

An elementary corollary of this lemma is that RS-separable subgroups

are preserved under inverse images:

Corollary 3.3.2. Suppose that ϕ : G → H is a homomorphism, and K ≤RS

H. Then ϕ−1(K) ≤RS ϕ−1(H). In particular, preimages of RS towers over

K ≤ H are RS towers over ϕ−1(K) ≤ ϕ−1(H).
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Proof. Let · · ·⊳fH1⊳f H0 := H be an RS tower over K, and set Gi := ϕ−1(Hi).

Since pre-images preserve intersections, we have

⋂

Gi =
⋂

ϕ−1(Hi) = ϕ−1(∩Hi) = ϕ−1(K)

Furthermore, by applying Lemma 3.3.1 to ϕ|ϕ−1(Hi) : ϕ−1(Hi) → Hi, we find

Gi+1 = ϕ−1(Hi+1) ≥ ϕ−1((Hi)
(1)
r ) ≥

(

ϕ−1(Hi)
)(1)

r
= (Gi)

(1)
r

and therefore · · ·⊳fϕ
−1(H1)⊳fϕ

−1(H0) = ϕ−1(H) is an RS tower over ϕ−1(K).

It is a fact known to Agol (and communicated to the author by Henry

Wilton) that all residually free groups are RFRS; however, no proof exists in

the literature. As another application of Lemma 3.3.1, we provide a proof

here.

Proposition 3.3.3. Finitely generated residually free groups are RFRS.

Proof. Suppose that G is residually free; note that all subgroups of G are

residually free as well. List the elements of G = {1 = g0, g1, g2, . . .}. Since

G0 := G is residually free, there is a homomorphism ϕ0 : G0 → F0 (where F0 is

free) such that ϕ0(g0) 6= 1. Free groups are RFRS (see [1]), so there is a RFRS

tower · · · ⊳f F0,1 ⊳f F0,0 := F0. Since ∩F0,i = {1}, there is a minimal r0 such

that ϕ0(g0) ∈ F0,r0−1 \ F0,r0
. Now set G0,i := ϕ−1(F0,i) for 1 ≤ i ≤ r0, and set

G1 := G0,r0
. By Lemma 3.3.1, G0,i+1 ≥ ϕ−1

0 ((F0,i)
(1)
r ) ≥ (G0,i)

(1)
r . For k ≥ 1,

apply this procedure to the residually free group Gk (and the next gi ∈ Gk) to

get ϕk : Gk → Fk. Then gk /∈ Gk+1 for each k, so ∩Gk = {1}.
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Chapter 4

Free groups are LVRSS

In Chapter 2, we provided some examples of LVRSS groups. In partic-

ular, in Proposition 2.5.2, we showed that the free abelian group Z is LVRSS.

The main result of this chapter is that free nonabelian groups are also LVRSS

(Corollary 4.4.2). The main ingredients in the proof are Marshall Hall’s The-

orem [15], a theorem on bases of subgroups of free groups due to Federer

and Jónsson [10], and some techniques inspired by the theory of local retrac-

tions [19].

4.1 Free groups and graphs.

Let X be a set. We will denote by FX the free group on X, which

means that there is a map ι : X → FX such that, for any set map f : X → G

to any other group G, there exists a unique group homomorphism ϕ : FX → G

that makes the following diagram commute:

X //

f
!!B

BB
BB

BB
B

FX

ϕ

���
�

�

G

This is known as the universal property of free groups. Alternatively, one

may define FX to be the group of equivalence classes of words in X∗, where
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two words w, v are equivalent if and only if w may be obtained from v by a

sequence of insertions and deletions of parts of the form xx−1 for x ∈ X±1. We

call X a basis (or free basis) of FX ; more generally, we call a subset S ⊂ FX

a free basis if FS
∼= FX . This is not to be confused with a generating set,

which is a subset S ⊂ FX such that 〈S〉 = FX . Another alternative is to define

FX by a group presentation, which is a collection of generators X and a

collection of relators R (words in X±1 that represent the trivial element in

G), and we use the notation

〈X | R〉

The free group FX is uniquely presented (up to isomorphism) by 〈X|R〉 where

R = ∅.

Let A and B be groups. We define the free product of A and B to

be the group A ∗ B that is the coproduct of A and B; that is, for any group

G and any homomorphisms A → G, B → G, there is a unique homomorphism

u : A ∗ B → G such that the following diagram commutes:

A //

##FFF
FFF

FF
F A ∗ B

u

���
�

� Boo

{{xxx
xx

xxx
x

G

This is known as the universal property of free products.

It is a standard fact that any element of A ∗ B has a unique so-called

“reduced form,” and, as a consequence, A, B →֒ A ∗ B. We will require a

notion of reduced form just in free groups, and for this, we follow section 1

of chapter 1 of [21]. Let FX be a free group with basis X. A word in X
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is called reduced if contains no part xx−1 for x ∈ X±1. Each equivalence

class of words contains a unique reduced word. We will let LX(w) denote the

X-length of a reduced word w ∈ F over X±1—that is, LX(w) is the length

of the reduced word representing w, and we will write w = w(1)w(2) · · ·w(n)

with each w(i) ∈ X±. We will sometimes use the notation Fr to denote FX

with |X| = r.

We observe that, using the universal property of free groups, it is not

difficult to show that FX⊔Y
∼= FX ∗ FY . However, using group presentations

is even easier, since each of these is presented 〈X, Y | −〉. For this reason, we

may think of FX , FY ≤ FX⊔Y . As the following elementary example shows,

retracts occur naturally in free groups:

Proposition 4.1.1. There exists a canonical retraction FX⊔Y → FX .

Proof. Let i : X → FX be the set inclusion given by the definition of FX and

define a set map f : X ⊔ Y → FX by

f(a) =

{

i(a) a ∈ X
1 a ∈ Y

By the universal property of free groups, there is a unique homomorphism

FX⊔Y → FX corresponding to f . The induced map FX⊔Y → FX is clearly the

identity on FX ≤ FX⊔Y .

4.2 Marshall Hall’s Theorem and retractions.

In this section, we recall the well-known theorem of Marshall Hall Jr.

on subgroups of free groups. We begin this section with a useful topological
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criterion (due to Scott [25]) for testing whether a subgroup is separable:

Proposition 4.2.1. (Scott’s Criterion, [25]) Let X be a Hausdorff topolog-

ical space and G = π1(X, x). Let (X ′, x′) → (X, x) be a covering and H =

π1(X
′, x′). Then H is separable in G if and only if for any compact subset

∆ ⊂ X ′, there exists an intermediate finite-sheeted cover X ′ → X̂ → X such

that X ′ → X̂ embeds ∆ into X̂.

Proof. See Lemma 1.4 in [25].

Scott’s Criterion may be applied to covering spaces of graphs, as in

Stallings’ proof that free groups are LERF (Marshall Hall’s Theorem), and in

Chapter 5, we will apply Scott’s Criterion to covering spaces of closed surfaces.

We note that Stallings’ proof tells us that H ≤ Fr is a free factor of a finite-

index subgroup of Fr. By Proposition 4.1.1, this implies that free groups

admit local retractions: for any finitely generated H ≤ Fr, there is a finite-

index subgroup K ≤f Fr such that K = H ∗ F ′ for some F ′ ≤ Fr, and the

natural quotient ϕ : K → H is a retraction.

4.3 Orderings and free bases.

The goal of this section is to make sense of a certain result (recorded as

Lemma 4.3.2 below) on free bases of subgroups of free groups due to Federer

and Jónsson [10]. We first recall some definitions of orderings on sets.

A binary relation ≤ is a total order on a set X if the following three

conditions are satisfied for all a, b, c ∈ X:
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1. if a ≤ b and b ≤ a, then a = b (anti-symmetry);

2. if a ≤ b and b ≤ c, then a ≤ c (transitivity); and

3. either a ≤ b or b ≤ a (totality).

To any total order ≤ is associated a strict total order <, which may be

defined as a < b if and only if a ≤ b and a 6= b. A total order ≤ on a set X is

a well-ordering if every nonempty subset of X has a least element under ≤.

If now F is a group and G ≤ F with well-ordering ≤ and strict total

ordering < on a subgroup G ≤ F of a group F , define for any element g ∈ G:

Gg := 〈{h ∈ G | h < g}〉 ≤ G

That is, Gg is the subgroup of G generated by all elements of G that are

strictly less than g under the well-ordering ≤. For example, if G is generated

by X, and x < g for all x ∈ X, then Gg = G. As another example involving

Gg, we state a basic fact which we will use below:

Proposition 4.3.1. If H < G is a proper subgroup of G and g is the least

element in the set G \ H, then Gg ≤ H. In particular, g /∈ Gg.

Proof. By the choice of g, if h ∈ G is such that h < g, then h ∈ H . Thus

Gg ≤ H . The second assertion clearly follows from the first.

Recall from Section 4.1 that, for an element g ∈ G, LX(g) is the length

of the unique reduced word in X±1 representing g. The definition of Gg is
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central to the following result of Federer and Jónsson (see Theorem 4.2 in [10],

or Proposition 2.10 in [21]), and we will use this to show that free groups are

locally virtually RS separable:

Lemma 4.3.2. Let G be a subgroup of the free group F , and let G be well

ordered by any relation < such that g < h implies LX(g) ≤ LX(h). Then the

set

A = AG = {g ∈ G | g /∈ Gg}

is a free basis for G.

In the situation of Lemma 4.3.2, it is not difficult to see that 〈A〉 = G:

if 〈A〉 is a proper subgroup of G and g is the least element of G \ 〈A〉, then

Proposition 4.3.1 implies that g /∈ Gg, so g ∈ A, a contradiction. Hence, the

content of the lemma is that A is a free basis for G; however, this set clearly

generates its associated subgroup in an arbitrary (that is, not necessarily free)

group. We record this observation as a proposition to which we will refer in

Chapter 5:

Proposition 4.3.3. Let (G, <) be a group G with a well-ordering <, and let

H ≤ G. For any g ∈ H, define

Hg = 〈{h ∈ H : h < g}〉

Then the set

AH = {h ∈ H : h /∈ Hh}

generates H.
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We list a basic consequence of Lemma 4.3.2 for convenience.

Corollary 4.3.4. Let G be a subgroup of the free group F , and let G be well

ordered by any relation < such that g < h implies LX(g) ≤ LX(h), and let

H < G be a proper subgroup of G. Then the least element g in G \H is in the

basis A = {g ∈ G | g /∈ Gg} of G.

Proof. This is an immediate consequence of Proposition 4.3.1 and Lemma 4.3.2.

We will apply this result by building a well-ordering on F = FX with

the desired property; this is the content of the following basic lemma:

Lemma 4.3.5. Any strict total order < on the finite set X may be extended to

a well-ordering < on the free group FX such that u < v implies LX(u) ≤ LX(v)

and such that any x ∈ X is less than any nontrivial element in FX \ X.

Proof. Relabel elements of X so that x1 < x2 < · · · < xn ∈ X. Extend this to

the symmetric set X±:

x1 < · · · < xn < x−1
1 < · · · < x−1

n

Define the relation ≤ on reduced words in u, v ∈ FX by: u ≤ v if and only

if LX(u) < LX(v) or, if LX(u) = LX(v), then u(i) < v(i) for the minimal i

where u and v differ, or u = v.

First, we argue that this is a total order. If u ≤ w and w ≤ u, then

LX(u) = LX(w) and u(i) = w(i) for all i, so u = w. If u ≤ w and w ≤ v, then
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we may assume LX(u) = LX(v), u 6= w, w 6= v. But u and w are equal words

through the i-th letter (for some i), and w and v are equal words through the

j-th letter for some j. So if i < j, then u and v are equal through u(i) <

w(i) = v(i), hence u ≤ v. Similarly, if i > j or i = j, then u ≤ v, as needed.

To complete the proof that ≤ is a total order, suppose LX(u) = LX(w). If

u 6= w, then u and w differ at some letter, hence u ≤ w or w ≤ u.

To show that ≤ is a well-ordering, we must show that every nonempty

subset Y ⊆ FX has a least element. But this follows from the definition of

≤ and the fact that there are only finitely many elements in FX of a given

(positive, finite) word length.

The last assertion is obvious by the definition of ≤ since

{g ∈ FX : LX(g) = 1} = X±1.

4.4 RS separating subgroups of free groups.

Now we will apply the results of Section 4.3 to find certain elements

of free bases of subgroups of a free group, and we will use these elements to

construct an RS tower.

Theorem 4.4.1. Suppose that X, Y are finite sets. Then FX ≤RS FX ∗ FY .

Note: It is not enough to consider the composition of the natural maps

FX ∗ FY → FY → Z|Y | because this kills all conjugates of FX , so intersecting
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kernels would yield at least the normal closure of FX in FX ∗ FY , which is

much bigger than FX . A fortiori, for the same reason it is not enough to pull

back a RFRS tower via FX ∗ FY → FY ; its pre-image would intersect in the

kernel of the homomorphism, a normal subgroup of FX ∗ FY .

Proof. We may assume that X and Y are nonempty. Set F := FX ∗ FY ,

and fix a strict total ordering < on X ⊔ Y such that elements of X± are less

than those of Y ±. By Lemma 4.3.5, this extends to a well-ordering ≤ on

FX⊔Y
∼= FX ∗ FY such that u < v implies LX⊔Y (u) ≤ LX⊔Y (v) and such that

elements of X⊔Y are less than nontrivial elements in F \(X⊔Y ). Throughout

this proof, given a subgroup Fi ≤ F , let Ai denote the basis of Fi resulting

from Lemma 4.3.2, where word length LX⊔Y (w) is calculated over X ⊔ Y in

F , and the well-ordering on Fi ≤ F is the restriction of the well-ordering ≤

on F . Note that if any such subgroup Fi contains X, then the elements of X

will be the least elements in Fi, and therefore in this situation, X ⊂ Ai.

Set F0 = F , and let g0 be a least element of the subset F0 \FX ⊂ F0 of

the well-ordered set F0. Then g0 ∈ A0 by Corollary 4.3.4, and thus X ⊔{g0} ⊂

A0. Let F1 be the kernel of the natural map F0 → 〈g0〉 → 〈g0〉/〈g
2
0〉; in

particular, X ⊂ FX ⊂ F1. Thus we have an RS tower F0 > F1 with F1 ≥ FX .

Assume that we have built an RS tower F0 > F1 > · · · > Fi with

Fi ≥ FX . Let gi be a least element in Fi \ FX , so gi ∈ Ai by Corollary 4.3.4,

and let Fi+1 be the kernel of Fi → 〈gi〉 → 〈gi〉/〈g
2
i 〉. Repeating in this fashion,

we get a tower F0 > F1 > F2 > · · · over FX . By the construction of the tower,
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the function

f(n) = min{LX⊔Y (u) : u ∈ Fn \ FX}

is non-decreasing, and gi /∈ Fi+1 for each i ≥ 0. Thus, since there are only

finitely many reduced words in F0 of a given finite length, for any N ≥ 1 there

is a number mN such that f(mN) > N , so we have ∩Fi = FX . Additionally,

since the abelianization of each Fi is torsion-free, the tower {Fi} is an RS

tower because Fi/Fi+1
∼= Z/2Z for each i. Thus, we conclude that FX ≤RS

FX ∗ FY .

Corollary 4.4.2. If H is a finitely generated subgroup of a finitely generated

free group F , then H ≤V RS G. In other words, finitely generated free groups

are LVRSS.

Proof. By Hall’s theorem [15], there is a finite-index subgroup K ≤f F con-

taining H as a free factor, K = H ∗ F ′. Apply Theorem 4.4.1 to H ≤ K.

Thus, finitely generated free groups are LVRSS. In some sense, this

result is as strong as possible because not all finitely generated subgroups of

free groups are RS-separable. To see this, let H ≤ G0 = G (where G is a

free group) with H surjecting Gab, and suppose that G1 is the first term in a

potential RS tower over H :

H ≤ G1 ⊳f G0 = G
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with G0/G1 abelian. Then we have the following diagram:

H
�

� i //

%% %%KKKKKKK
KKKK G0

p

&& &&NNNNNNNNNNNN

����
G0/[G0, G0] // // G0/G1

If ker(p) = G1 < G0 were a proper subgroup, then H ∩ G1 = ker(p ◦ i) < H

would be a proper subgroup of H , contradicting the assumption H ≤ G1.

Thus, G1 = G0. Therefore, a proper subgroup that surjects F/[F, F ] is not

RS-separable; we record this observation in the following:

Proposition 4.4.3. Let F be a nonabelian free group. If H < F is a proper

subgroup such that the composition H →֒ F → F/[F, F ] is surjective, then H

is not RS separable in F .

In Chapter 5, we will show that closed, orientable surface groups are

also locally virtually RS-separable.
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Chapter 5

Surface groups are LVRSS

In this chapter, we prove that all finitely generated subgroups of an

orientable surface group are virtually RS separable (Theorem 5.4.2). This,

along with Corollary 4.4.2 implies that all orientable surfaces of finite type

have LVRSS fundamental groups.

This chapter is organized as follows: Section 5.1 contains some topo-

logical lemmas that allow us to build cyclic covers to which some curves lift

but others do not; Section 5.2 details the way in which we find the nice finite-

index subgroup G′ and is analogous to Section 4.2 in Chapter 4; in Section 5.3,

we record some facts about the geometry of hyperbolic surfaces and geodesic

loops, including the fact that the collection AS of geodesic loops based at x

that are not products of shorter loops consists of simple, minimally intersect-

ing loops, and in fact generates π1(S, x). Finally, in Section 5.4, we prove the

main theorem.

5.1 Surface groups and topology.

In this section, we accomplish two things: first, we give a sufficient

condition for constructing a double cover of a surface that kills a particular non-
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separating curve. Second, we construct a double cover to which a particular

separating curve lifts to a non-separating curve. These results are used in the

proof of Theorem 5.4.2 in Section 5.4.

Let S = Sg,n be a compact, orientable, connected surface of genus g

with n boundary components. Let γ : [0, 1] → S be a closed curve, that is,

γ is a smooth map such that γ(0) = γ(1). We will often abuse notation and

let γ ⊂ S denote the image of the curve γ. γ is a simple closed curve if γ

has no self-intersections (that is, γ(x) 6= γ(y) for all 0 ≤ x < y ≤ 1). If γ is a

simple closed curve, we call γ a non-separating curve if S \ γ is connected,

and otherwise call γ a separating curve. A multicurve is a collection of

disjoint simple closed curves.

Given a closed curve γ, the homology class (with Z coefficients) of γ is

denoted γ. A closed curve γ that is not null-homotopic is called primitive

if it is simple and γ is primitive in H1(S). So, if γ is primitive, then either

γ is non-separating or γ is boundary parallel and n > 1. If α, β are closed

curves on S, then i(α, β) is the geometric intersection number of α and β. For

multicurves µ, ν ⊂ S, we define intersection additively:

i(µ, ν) =
∑

α∈µ,β∈ν

i(α, β)

We also note that every non-separating curve γ is primitive. This is

because there is a dual curve δ (which is easy to find after cutting along γ,

for example) such that T = N(γ ∪ δ) ∼= S1,1 with H1(T ) = 〈γ〉 ⊕ 〈δ〉. And,
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in this case H1(S) = H1(T )⊕ H1(S \ T ), so γ is primitive in H1(S) since it is

obviously primitive in H1(T ). More generally:

Lemma 5.1.1. Let K →֒ S be an essential subsurface, and let γ ⊂ S be a

non-separating simple closed curve such that γ ⊂ S \ K, or i(γ, ∂K) = 2 and

γ intersects two distinct components of ∂K. Then there is a map f : H1(S) →

Z/2Z such that the induced π1(K) → H1(S) → Z/2Z is trivial but f(γ) is

nonzero. In other words, there is a double cover S ′ → S to which K lifts but

γ does not.

Proof. If γ ⊂ S \ K, then the proof follows from the above observation, with

f equal to the composition of the natural projection onto H1(T ), followed by

projection onto 〈γ〉, and finally by the projection onto Z/2Z; here, we may

take T ⊂ S \ K.

Now suppose that i(γ, ∂K) = 2 and γ intersects two distinct compo-

nents k1, k2 of ∂K. Note that since K is essential, k1 and k2 are primitive

in H1(S), so there is a map φ : H1(S) → Z defined by algebraic intersection

number with k1, say. Notice that α ·k1 = 0 for any α ⊂ K, so φ(K) = 0. How-

ever, γ · k1 = ±1 (depending on the orientations), so we find the desired map

f : H1(S) → Z/2Z by composing φ with 〈γ〉 → 〈γ〉/〈γ2〉. The last statement

follows by the lifting criterion.

In order to apply Lemma 5.1.1, we may need to lift a separating curve
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outside of an essential subsurface to a nonseparating curve outside the lifted

subsurface in a double cover:

Lemma 5.1.2. Suppose that Σ is a closed surface with a π1-injective subsur-

face K ⊂ Σ. Let γ be a simple closed curve in a component S of Σ \ K that

is essential and separating on S. Then there exists a double cover Σ′ → Σ

where K and γ lift to K ′ and γ′ such that γ′ is not separating on its connected

component of Σ′ \ K ′.

Proof. We consider two cases depending on the number of components in ∂S.

If ∂S has one component, then S \ γ ∼= Sk,2 ⊔ Sg−k,1 with 0 < k < g (since γ

bounds neither a disk nor an annulus in S). Thus there is an essential simple

closed curve δi in the i-th component of S \ γ (i = 1, 2), such that neither

δ1 nor δ2 is separating on Σ. Cut Σ along δ1, δ2 and glue two copies of the

resulting (connected) surface appropriately to find the desired double-cover;

see Figure 5.1.

If ∂S has more than one component, then each component of S \ γ

either has positive genus or has at least three boundary components, and in

either case we find nontrivial (but possibly boundary parallel, in the genus 0

case) simple closed curves δi in the i-th component of S \ γ, neither of which

is separating on Σ, and we cut and glue two copies of the connected surface

Σ \ (δ1 ∪ δ2) to find the desired cover; see Figure 5.2.

Lemma 5.1.3. Let (Σ, x) be a based closed surface of genus g ≥ 2. Let

(K, x) →֒ (Σ, x) be a π1-injective subsurface. Let (β, x) be a simple loop based
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Σ′

γ′

∂K ′

K ′

p

δ1

δ2

Σ

γ

∂K

K

Figure 5.1: Constructing a double-cover p : Σ′ → Σ where γ′ is not separating
in Σ′ \ K ′ and ∂K has one component.

at x such that β /∈ π1(K, x) and β is freely homotopic into a component S of

Σ \K. Then there is a tower of no more than three double covers such that K

lifts to the largest cover but β does not.

Proof. Throughout this proof, let γ ⊂ S denote the simple closed curve in S

to which β is freely homotopic.

First assume that γ is non-separating on S. Then applying Lemma 5.1.1

yields the desired double cover.

Next, assume that γ is separating but not essential on S. Then Lemma 5.1.2
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Σ′

γ′

∂K ′

K ′

p

δ1 δ2

Σ

γ

∂K

K

Figure 5.2: Constructing a double-cover p : Σ′ → Σ where γ′ is not separating
in Σ′ \ K ′ and ∂K has at least two components.

yields a double cover to put us in the above case, so we find a tower of two

double covers that achieves the goal.

Finally, assume that γ is separating and nonessential on S, that is,

γ is freely homotopic to ∂S. In this case, ∂S has at least two components

because, by the assumption that β /∈ π1(K, x), β is not freely homotopic to

the component of ∂S that it intersects. Cut along the boundary component

to which it is homotopic and glue two copies to find a double cover where β

lifts to a separating essential simple closed curve on S; the picture is similar to

Figure 5.2. This puts us in the previous case, and thus β does not lift although

K does in some tower of three double covers, as claimed.
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5.2 Scott’s theorem.

Here we record a theorem due to Peter Scott (Theorem 3.1 in [25]):

Theorem 5.2.1. Let G be the fundamental group of a closed surface. Then

G is LERF.

In fact, Theorem 2.6 from [19] tells us a bit more:

Theorem 5.2.2. Suppose that G is the fundamental group of a closed surface

of negative Euler characteristic. Then G is LR.

The main idea from the proof of Theorem 5.2.1 that we will use again in

the proof of Theorem 5.4.2 is the notion of a compact core. Let S be a closed

surface. Let H be a finitely generated subgroup of G. There is a compact

core C ⊂ SH , that is, C is a compact, essential subsurface of SH .

Theorem 5.2.1, along with Scott’s Criterion (Proposition 4.2.1 in Chap-

ter 4) immediately yield the following:

Proposition 5.2.3. Let S be a closed, hyperbolic surface and G = π1(S, x).

Let H ≤ G be finitely generated, and let (SH , xH) → (S, x) be the associated

covering. Then for any compact subset C ⊂ SH , there exists an intermediate

finite-sheeted cover SH → S ′ → S such that SH → S ′ isometrically embeds C

into S ′.

In Chapter 4, we used Scott’s Criterion with the fact that free groups

are LERF (Hall’s Theorem) to pass to a finite-index subgroup F ′ ≤ F where
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a given finitely generated H ≤ G appears as a free factor and we proved that

free factors are RS separable in free groups. In the present chapter, we will use

Proposition 5.2.3 to find a finite-sheeted cover S ′ → S that contains a large

compact set C that carries H ≤ π1(S, x).

5.3 Geometry of hyperbolic surfaces.

The hyperbolic plane H2 is a complete, simply connected Riemannian

surface such that K ≡ −1, and it is unique up to isometry. A geodesic is a

curve that is everywhere locally distance minimizing. The hyperbolic plane is

also a unique geodesic metric space, meaning that between any two points

x, y ∈ H2, there is a unique geodesic arc from x to y. S is a hyperbolic

surface if and only if any of the following (equivalent) conditions are true:

• S is a complete, Riemannian surface such that K ≡ −1

• S = G\H2 such that G acts freely, properly discontinuously by isometries

on H2

• S = G \ H2 such that G ≤ Isom(H2) is torsion-free and discrete (i.e.

G · x0 discrete for any x0 ∈ H2)

In this section, let (S, x) be a hyperbolic surface with basepoint x, and

let p : H2 → S denote the universal covering map. A closed geodesic is

the unique shortest closed curve in the homotopy class of some closed curve,

provided that such a thing exists (i.e. γ is not homotopic to a cusp). A
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geodesic loop based at x is the image under p of a geodesic arc from x̃ to

g · x̃ (for some x̃ ∈ p−1(x), g ∈ π1(S, x)). Note that a geodesic loop α based at

x is not necessarily a closed geodesic. However, in certain special cases α may

be a closed geodesic, and in this case α will be the unique closed geodesic in

the free homotopy class of α.

If (γ, x) is a loop based at x, we use the notation L(γ) for the length of γ,

and ℓ(γ) = ℓx(γ) = ℓ(S,x) for the length of the (unique) shortest geodesic loop

based at x that is homotopic to γ leaving the basepoint fixed—this notation

is justified by Lemma 5.3.3 below. In particular, note that ℓx(γ) ≤ L(γ)

with equality holding precisely when γ is a geodesic loop based at x. Let

Br(x) = {y ∈ S : d(x, y) ≤ r} denote the closed metric ball of radius r around

x; note that this may not be a topological ball.

Recall from [5] that a closed, connected subset A ⊂ S is admissible if

either A consists of exactly one point or else A is a compact connected subset

of ∂S. For completeness, we record the result from [5] that we apply below:

Theorem 5.3.1. Let S be a hyperbolic surface, let A, B ⊂ S be admissible

subsets, and let c : [a, b] → S with c(a) ∈ A, c(b) ∈ B be a curve from A to B

(A and B need not be different or disjoint). Then the following hold:

1. In the homotopy class of c with endpoints gliding on A and B there exists

a shortest curve γ. This curve is a geodesic arc.

2. If A and B are points, then γ is unique.
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Theorem 5.3.1 is Theorem 1.5.3, parts (i) and (vi) from [5]. The follow-

ing fact is a direct consequence of Theorem 5.3.1 and says that every element

of π1(S, x) may be uniquely represented by a geodesic loop based at x.

Lemma 5.3.2. Let g ∈ π1(S, x) be nontrivial. Then up to based homotopy,

there is a unique shortest loop α based at x such that [α] = g. Furthermore, α

is a geodesic loop.

Proof. Every such g ∈ π1(S, x) may be represented by some loop c : [a, b] → S

with c(a) = c(b) = x ∈ S. Let A = B = {x}, so A and B are admissible.

Applying Theorem 5.3.1 in this situation yields a unique shortest loop α based

at x, and this loop is a geodesic loop.

Thus, each element of π1(S, x) has a unique shortest representative

(α, x) ⊂ (S, x) and α is a geodesic loop. This allows us to identify group

elements with certain curves (not homotopy classes of curves) on S. We save

this in the following lemma for future reference.

Lemma 5.3.3. Every element g ∈ π1(S, x) has a unique shortest representa-

tive (αg, x) ⊂ (S, x), and αg is a geodesic loop based at x. In particular, we

may abuse notation and write αg = [αg] = g ∈ π1(S, x).

Recall that there are only finitely many closed geodesics of length less

than N for any given N < ∞; see, for example, 1.6.11 in [5]. There is an

analogous statement for geodesic loops based at x ∈ S, and we provide the

elementary proof here:
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Proposition 5.3.4. Let N < ∞ be given. Then the set

{α ∈ π1(S, x) : ℓ(α) < N}

is finite.

Proof. Although one could mimic the proof of 1.6.11 in [5], we provide our

own proof. Fix a preferred lift x̃ ∈ H2 of x ∈ S. Let Γ ≤ PSL2(R) be a

representation of G in Isom(H2), so Γ acts discontinuously on H2. In particular,

every closed metric ball BN (x̃) of radius N centered at x̃ contains only finitely

many lifts of the basepoint x ∈ S. A geodesic loop based at x lifts to a geodesic

segment between x̃ and another lift of x. But such a geodesic loop has length

≤ N if and only if such a lift is contained in BN(x̃) ⊂ H2, which contains only

finitely many lifts of x. Thus, there are only finitely many geodesic loops of

length ≤ N .

To prove that subgroups are RS-separable in closed surface groups, we

will need the following fact about collections of geodesic loops in S.

Lemma 5.3.5. Let (S, x) be an oriented hyperbolic surface with basepoint x.

Let AS denote the set of geodesic loops based at x that are not products of

shorter loops based at x. Then:

1. For every α ∈ AS, α is simple.

2. For every α, β ∈ AS, α ∩ β = {x}.

3. 〈AS〉 = π1(S, x).
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In particular, if π1(S, x) is finitely generated, then AS is finite.

Remarks:

1. This result is comparable to Lemma 4.3.2 in Chapter 4 (Theorem 4.3

in [10]), and in particular, condition (3) essentially follows from Propo-

sition 4.3.3.

2. On a hyperbolic surface, the intersection (away from the basepoint x)

of two geodesic loops must be transverse because, upon lifting a neigh-

borhood of the intersection to the universal cover H2 → S, we see that

if two geodesics have parallel tangent vectors at their intersection point

then they must coincide.

Proof of Lemma 5.3.5. First we prove (1). Suppose α is not simple and let

c ∈ α be a self-intersection point adjacent on α to x. We will write α as the

composition of two shorter loops based at x, which will lead to a contradiction.

Let η ⊂ α be one of the two arcs connecting x to c in α, and let β be the other

one. Without loss of generality, assume L(η) ≤ L(β). Denote the subloop of

α based at c by δ; see Figure 5.3.

Now write

α = η ◦ δ ◦ β

= η ◦ δ ◦ (η−1 ◦ η) ◦ β

= γ1 ◦ γ2
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Figure 5.3: Decomposing α into a product of shorter closed loops based at x.

where γ1 = η ◦ δ ◦ η−1 and γ2 = η ◦ β are loops based at x. Note that

L(γ1) = 2L(η) + L(δ) ≤ L(α), although γ1 is not a geodesic loop based at

x since there is a corner at c. Replacing γ1 with its unique shortest geodesic

loop representative, we find that ℓ(γ1) < ℓ(α). Similarly, ℓ(γ2) < L(γ2) =

L(η) + L(β) < L(α). This implies α /∈ AS, a contradiction. Therefore α is

simple, which proves (1).

Now we prove (2). Assume that L(α) ≤ L(β). Suppose that α and β

intersect somewhere other than x, say at a point c ∈ S, and write α = α1 ◦ α2

and β = β1 ◦ β2 where each arc αi and βi has endpoints x and c. Assume

further that L(α1) ≤ L(α2) and L(β1) ≤ L(β2). Note that since α and β are

geodesic loops, the intersection at c must be transverse. There are two cases:
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Case 1: L(α1) < L(β1). Then ℓ(β1α
−1
1 ) < L(β1α

−1
1 ) < L(β) = ℓ(β) and

L(α1β2) < L(β). But then β = (β1α
−1
1 )(α1β2) is a product of shorter loops, a

contradiction.

Case 2: L(β1) ≤ L(α1). Then ℓ(β1α2) < L(β1α2) ≤ ℓ(α) and ℓ(α1β
−1
1 ) <

ℓ(α). So we find that α = (α1β
−1
1 )(β1α2) is a product of shorter loops, a con-

tradiction.

Finally, we prove (3). If (3) does not hold, let β ∈ π1(S, x) \ 〈AS〉 be a

shortest geodesic loop. But then, since the only curves on S that are shorter

than β represent elements of 〈AS〉, we find β ∈ AS, a contradiction. If π1(S, x)

is finitely generated, say by X = {x1, . . . , xn}, then each xi = wi([αi,j]) for

some αi,j ∈ AS, and the collection {αi,j} is finite. Let L = maxi,j L(αi,j). If

α ∈ AS with L(α) > L, then since {[αi,j]} generate, α is a product in αi,j,

which implies α /∈ AS. Therefore AS is finite by Proposition 5.3.4.

If (K, x) ⊂ (S, x) is an essential subsurface, then let AK denote the

geodesic loops (α, x) ⊂ (K, x) which are not products of shorter loops in

(K, x). In certain important cases, AK ⊂ AS, and sometimes we may even

have AK = AS ∩ K, but this is not true in general; for example, if K is

an annular neighborhood of a simple closed loop α not in AS, then α ∈ AK

although α /∈ AS.
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5.4 RS separating subgroups of surface groups.

Here we prove that orientable surface groups are LVRSS (Theorem 5.4.2).

The proof is in two main steps: first we use Scott’s Theorem to show that,

given any finitely generated subgroup H of a surface group, there is a finite-

sheeted cover that contains a “large” essential subsurface whose fundamental

group is H , and then we show that these large essential subsurfaces are RS

separable in that cover.

Theorem 5.4.1. Let (Σ, x) be a closed, orientable, hyperbolic surface, and let

H ≤ π1(Σ, x) be a finitely generated infinite-index subgroup. Then there exists

a finite-sheeted cover (Σ′, x′) → (Σ, x) such that H ≤RS π1(Σ
′, x′).

Proof. Consider the cover (ΣH , xH) → (Σ, x) corresponding to H ≤ π1(Σ, x).

Note that by Lemma 5.3.5, the collection AΣH
generates H and is finite. Let

L be bigger than the length of any element of AΣH
, so that KH = BL(xH)

contains a compact core of (ΣH , xH) and π1(KH , xH) = H . Then Propo-

sition 5.2.3 implies that there exists a finite-sheeted cover (Σ′, x′) → (Σ, x)

where (K, xH) →֒ (K ′, x′) ⊂ (Σ′, x′) embeds isometrically as an essential sub-

surface of Σ′.

For each b ∈ π1(Σ
′, x′) \ π1(K

′, x′), apply Lemma 5.3.2 to fix its unique

geodesic loop representative β, and call this collection of geodesic loops B. Let

(Σ0, x0) := (Σ′, x′) and K0 = K ′. Our goal is to find an RS tower

· · · → (Σn, xn) → (Σn−1, xn−1) → · · · → (Σ1, x1) → (Σ0, x0)
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such that ∩π1(Σn, xn) = π1(K0, x0) = H .

Since there are only finitely many geodesic loops based at x with length

less than any given finite number (Proposition 5.3.4), there exists a shortest

element β0 ∈ B. First, we claim that β0 is simple and intersects each α ∈ AK0

minimally. Since β0 /∈ π1(K0, x0), we know that β0 ∈ AΣ0
. Also, β0 /∈ AK0

because every α ∈ AK0
has α ∈ π1(K0, x0). The hypothesis implies that

K0 = BL(x0) implies AK0
= AΣ0

∩K0, and thus AK0
⊔ {β0} ⊂ AΣ0

. Therefore

Lemma 5.3.5 implies that β0 is simple and β0 ∩ α = {x} for all α ∈ AK0
.

Now β0 must exit K0, and thus i(β0 ∩ ∂K0) = 2n for some n > 0. If

n > 1, then, since geodesic arcs from x0 to ∂K0 = ∂BL(x0) have length L,

and general paths (including intersections of K0 with geodesic loops that exit

K0) from x0 to ∂K0 have length at least L, we could write β0 as the product

of loops shorter than β0 (some exiting K0 and others remaining inside K0), a

contradiction. Thus, |β0 ∩ ∂K0| = 2.

Now we work with β0. If β0 intersects two distinct components of ∂K0,

then apply Lemma 5.1.1 to find a double-cover Σ1 → Σ0 to which K0 lifts but

β0 does not. If β0 intersects a single component of ∂K0 twice, then write β0 =

α0γ0 for some simple α0 ∈ π1(K0, x0) and a simple closed curve (γ0, x0) freely

isotopic to γ ⊂ S0, a connected component of Σ0 \K0. We apply Lemma 5.1.3

to find a a sequence of at most three double covers Σ1 → Σ′′
0 → Σ′

0 → Σ0 such

that β0 = α0γ0 does not lift to Σ1 although K0 does.

Note that lengths of geodesic loops are preserved under taking covers,
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i.e. if (γ, x1) ⊂ (Σ1, x1) is a geodesic loop, and p1 : (Σ1, x1) → (Σ0, x0) is

the cover, then ℓ(Σ1,x1)(γ) = ℓ(Σ0,x0)(p1(γ)). Similarly, in any cover (Σn, xn)

to which K0 lifts, it lifts to Kn = BL(xn) in the cover. Now for n ≥ 1,

repeat the construction above with the shortest βn ∈ B ∩ Σn to get a tower

· · · → (Σn+1, xn+1) → (Σn, xn) → · · · → (Σ0, x0). By Proposition 5.3.4, for

every β ∈ B there is a cover in the tower to which β does not lift. Thus,

we have ∩π1(Σn, xn) = π1(K, x) as needed. Furthermore, this is an RS tower

because π1(Σn, xn)/π1(Σn+1, xn+1) is abelian for every n ≥ 0.

Theorem 5.4.2. Let Σ = Σg,n be an orientable surface of genus g ≥ 0 and

n ≥ 0 boundary components. Then G = π1(Σ) is LVRSS.

Proof. Let H ≤ G be finitely generated, where G is the fundamental group of

an orientable surface Σ. By Corollary 4.4.2, we may assume that Σ is closed,

that is, n = 0. By Theorem 2.5.3, we may further assume that g ≥ 2.

Thus, assume Σ is a closed, hyperbolic surface, set G := π1(Σ, x), and

let H ≤ G be a finitely generated subgroup. Since all finite-index subgroups

are virtually RS-separable, we may assume that H is infinite-index in G, and

thus Theorem 5.4.1 applies, which finishes the proof.
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Chapter 6

Conclusion

In this chapter, we list a basic application of our main results, and we

end with some questions to investigate in the future.

6.1 Applications.

There has been some recent interest in building covers of surfaces and

analyzing lifts of certain closed curves to those covers; see, for example, [22]

and [24]. In particular, it is interesting to note that, similar to the application

of the Federer and Jónsson theorem, the primary methods in [22] are applica-

tions of classical group theoretic tools developed by Fox et al. in a series of

papers, notably [11] and [6]. One of the main results in [22] is a lower bound

on the self-intersection number of closed curves in γk(π1(Σg,n)), the k-th term

of the derived series of a punctured surface group, and thus, as an example of

an application of Theorem B, we have:

Corollary 6.1.1. Let (Σ, x) and AΣ be as in Theorem B, and suppose that

π1(Σ, x) is free and nonabelian. Then for every α ∈ AΣ, [α] /∈ γk(G) for

k > 4g + n− 1. In other words, geodesic loops that are not products of shorter

loops are not contained in higher terms of the derived series.
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Proof. Theorem 1.1 in [22] states that, for all k ≥ 1,

mlcs(Σ, k) ≥
k

4g + n − 1
− 1

where

mlcs(Σ, k) = min{i(x) : x ∈ γk(π1(Σ)), x 6= 1}

and i(x) denotes the self-intersection number. Let α ∈ AΣ, and assume that

[α] ∈ γk(G). Since α is simple, this implies that mlcs(Σ, k) = 0, and thus

k ≤ 4g + n − 1

Therefore, if k > 4g + n − 1, then [α] /∈ γk(G).

6.2 Future research.

Local virtual RS separability is a strong property that implies LERF

and virtually RFRS, and therefore LVRSS has important implications in low-

dimensional topology. The collection of groups that are known to be both

LERF (or LR) and virtually RFRS is rather small, but it includes limit groups.

Thus, a natural question to ask is:

Question 1. Are all fully residually free groups LVRSS?

Note that, since F2 × F2 is residually free (see, for example, [3]), it is

not true that all residually free groups are LVRSS.

I would also like to understand better how RS-separable subgroups and

LVRSS are preserved under various other group operations. For example:
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Question 2. Suppose that H1 ≤RS G1 and H2 ≤RS G2. Is H1 ∗ H2 ≤RS

G1 ∗ G2? If so, does G1, G2 LVRSS imply that G1 ∗ G2 is LVRSS?

One possible attack on the first part of this problem is via an argument

involving Bass-Serre theory (see, for example, [27]) in the spirit of Agol’s proof

that free products of virtually RFRS groups are virtually RFRS [1]. Then,

assuming that the first part of Question 2 is true, one might be able to use

methods similar to those in [12] to conclude that the second part of the question

is true; more concretely, suppose that P is a property of a subgroup H in G,

denoted by H ≤P G. For example, P might be “separable” or “RS-separable”;

in [12], the authors are primarily concerned with malnormality: H ≤ G is

malnormal if for every g ∈ G \ H , H ∩ Hg = {1}, that is, H is “as far from

normal as possible”. The authors prove in [12] that the free product of locally

virtually malnormal (LVM), LERF groups is again LVM and LERF. In fact,

their proof shows that if P is any property that satisfies the following three

properties for all LERF groups G, then the free product of two LVP, LERF

groups is itself LVP and LERF:

1. H ≤P G and H ≤ K ≤ G implies H ≤P K;

2. H1 ≤P G1 and H2 ≤P G2 implies H1 ∗ H2 ≤P G1 ∗ G2;

3. 1 ≤P G and G ≤P G.

Suppose that P = V RS. Then the first property is contained in the proof of

Corollary 3.1.3. Unfortunately, the third property asks for all LERF groups
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to be virtually RFRS. However, our hope is this: if we knew that the first part

of Question 2 was true, then we could develop methods similar to the proof of

Theorem 1.5 from [12] to show that the free product of two LVRSS groups is

itself LVRSS.

Another question asks exactly how close LVRSS is to LERF and RFRS:

Question 3. Suppose that G is (virtually) RFRS and LERF. Is G LVRSS?

The nature of LVRSS suggests that the answer to this question is “no”,

but I do not know of such an example. Finally, one could ask for some evidence

against the LERF conjecture:

Question 4. Does there exist a closed, hyperbolic 3-manifold M such that

π1(M) is not LVRSS?
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