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ABSTRACT 

Statistical Mechanics of 2-D Fluids 

by 

Nikhil Padhye, M.A. 

The University of Texas at Austin, 1994 

SUPERVISOR: Philip J. Morrison 

Various approaches to study the turbulent relaxation of 2-D fluids are 

discussed. The results are compared to an experiment on electrons in a 

magnetized column. 
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Chapter 1 

Introduction 

Two dimensional fluid flows are realized in situations where one dimension 

is much smaller than the other two or if symmetry allows the neglect of one 

of the dimensions. Other factors, too, can contribute to result in effectively 

two dimensional {henceforth 2-D) flows. An example is the planetary at­

mospheric and oceanic flow where rotation of the fluid about the planet's 

axis locks it into 2-D motion {Taylor-Proudman theorem). See Greenspan 

{1968) for the dynamics of rotating fluids. A constant magnetic field per­

pendicular to a layer of plasma has a similar locking effect (Kraichnan and 

Montgomery, 1980) which is why there is some interest in 2-D magnetohy­

drodynamics. One of the interesting features of 2-D flows is the formation of 

coherent structures, an example of which is the Great Red Spot of Jupiter. 

An experiment by Sommeria, Meyers and Swinney (1988) demonstrated the 

formation of coherent structures in 2-D turbulent shear by creating a "Great 

Red Spot" in a rotating tank of fluid. The problem of 2-D flows is also in­

teresting purely from the point of view of studying the dynamics, hence the 

wish to study 2-D fluid flows. 

Various approaches to study the turbulent relaxation of 2-D flows are 

discussed in this thesis. We begin by setting up the basic equations and by 

reviewing the Hamiltonian formulation of the dynamics in Chapter 1. In 
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Chapter 2 we discuss statistical approaches to solve the problem of turbu­

lent relaxation. These approaches include the point vortex approximation 

and the method of maximizing entropy. While the fluid is approximated by 

a collection of point vortices in the former case, the latter approach allows 

us to deal with continuous vorticity distributions, although, in practice, one 

discretizes the vorticity in order to compute the results numerically. Chapter 

3 is devoted to the study of a selective decay hypothesis based on arguments 

of cascade of energy and enstrophy to different scales. After having discussed 

these three different approaches, we then compare their predictions to the 

observations in an experiment on electrons in a magnetized column in Chap­

ter 4. The possibility of a simple monotonic restacking of the vorticity is also 

discussed in Chapter 4. 

1.1 The 2-D Euler Equation for the Ideal 
Fluid 

The Euler equation for an inviscid and incompressible fluid is 

av VP 
-+v·Vv= -- (1.1)at P 

where v(r) is the fluid velocity at position r, pis the density, assumed con­

stant everywhere in the fluid, P(r) is the pressure and it is assumed that 

there are no external forces acting on the fluid (Landau & Lifshitz, 1959). 

One can eliminate the pressure (and any external forces which can be written 

as the gradient of a potential) by taking the curl of eq. (1.1) to get 

aw 
-+v·Vw = w·Vv (1.2)at ' 

where w := V x v is the vorticity. This equation simplifies further in the case 

where the velocity is restricted to two dimensions, i.e. where one component 

of the velocity is constant and there is no variation of the two other com­

ponents in that direction. For such two dimensional flows, the vorticity lies 
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entirely along the ignorable direction; thus the right hand side of eq. (1.2) is 

zero. Explicitly, the resulting vorticity equation is 

aw - +v · '\lw = 0, (1.3)
&t 

where w is now the scalar vorticity defined by w := z · '\! x v and we assume 

that the velocity has a zcomponent which is constant and variation is in the 

x and y directions only. Henceforth we restrict our attention to such 2-D 

flows. 

For incompressible fluids, 

V·v=O, (1.4) 

which motivates us to define a strearnfunction, t/J, such that 

v = '\lt/J x z' (1.5) 

thus ensuring a divergenceless velocity field. In terms of the streamfunction 

the scalar vorticity may now be expressed as 

(1.6) 

and the equation of motion (1.3) can now be written as 

aw
Ft = [t/J,w] ' (1.7) 

where the square bracket is defined by 

] ·= a18g - a18g[! (1.8)'g . ax 8y 8y ax . 

Having expressed the equation of motion in the form of eq. (1.7), in the rest 

of this chapter we review the Hamiltonian formulation for this equation of 

motion. 
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1.2 Hamiltonian Description of the 2-D Ideal 
Fluid 

The energy of the 2-D, inviscid fluid is purely kinetic. Thus one may write 

the Hamiltonian as 

(1.9) 

where H[v] indicates that H is a functional of v and D is the domain, 

r = (x, y) E D. In terms of the streamfunction the Hamiltonian can be 

expressed as 

(1.10) 

The boundary condition is that the component of v normal to the boundary 

vanishes. This implies that '\1¢ is normal to the boundary, i.e. ,,P is constant 

on the boundary. Hence the first term on the right-hand side of eq. (1.10) 

vanishes after integrating by parts. Then using eq. (1.6) the Hamiltonian 

can be written as 

H[w] = ~l w,,P d2r = ~ j j w(r)G(r, f)w(f) d2rd2f, (1.11) 

where G(r, f) is a Green's function which inverts eq. (1.6), i.e. 

,,P(r) = l G(r,f)w(f)d2f. (1.12) 

We now define the noncanonical Poisson bracket (Morrison, 1981) as 

hF hG] 2
{F, G} := J,D w [hw' hw d r ' (1.13) 

where hF/ hw is the functional derivative of F with respect to w and the 

square bracket inside the integral is as defined earlier by eq. (1.8). For a 

Hamiltonian structure we require that the bracket be antisymmetric, that is 

{F,G} = -{G,F}, (1.14) 

4 



be linear in one of the arguments, 

{F, aG + /3H} = a{F, G} + /3{F, H} for constants a and /3, (1.15) 

and satisfy the Jacobi identity: 

{{F,G},H} + {{G,H},F} +{{H,F},G} = 0. (1.16) 

Note that equations (1.14) and (1.15) together imply that the bracket is bi­

linear. For the bracket defined by eq. (1.13) antisymmetry follows from the 

fact that the square bracket is antisymmetric. Linearity follows from the lin­

earity of the square bracket and of the integral operator. The Jacobi identity 

requires more work, but it can be shown that it is satisfied. For the mean­

ing of noncanonical Hamiltonian structure and details of the Hamiltonian 

description of fluids see Morrison (1994). In the next section we obtain the 

equation of motion and constants of motion. 

1.3 Constants of Motion 

Upon integrating by parts and neglecting the boundary terms one can show 

that 

(1.17) 

for functions f, g and h defined on the domain, D, and assuming that the 

behavior off, g and h allows the neglect of the boundary terms. Eq. (1.17) 

will be now be used to obtain both the equation of motion and the constants 

of motion. To obtain the equation of motion we note from equations (1.11) 

and (1.12) that 

(1.18) 

and thus see that 

ow [ 6HlFt= {w,H} = - w, 6w = [t/i,w], (1.19) 
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which is the same as eq. (1.7). In obtaining eq. (1.19) we have made use of 

both, eq. (1.17) and that 

b<.U(r) _ 
(1.20)b<.U(f) = 6(r - r) . 

Now suppose there exists a constant of motion, C[<.U]. Then its bracket 

with the Hamiltonian should vanish since 

ac
0 = - = {C,H}.at (1.21) 

Making use of eq. (1.17) we see that this is satisfied if 

(1.22) 

which is true if 6C / 6<.U is any function of"'· In fact, then the bracket of C with 

any functional of "' vanishes. In particular, its bracket with the Hamiltonian 

vanishes which makes it a constant of the motion. Such constants of motion 

originate in the structure of the bracket (the kinematics), rather than the 

dynamics and are called "Casimirs". For the 2-D Euler equation we have the 

Casimirs expressed by 

C["'] = l C("') d?r, (1.23) 

where C(<.U) is an arbitrary function of the vorticity,"'· 
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Chapter 2 

Statistical Methods 

The nonlinearity in the Euler equation makes it impossible to solve analyti­

cally in a general case. The study of the dynamics using numerical techniques 

is also awkward since one requires finer and finer grids as time increases. 

One way to approach the problem is to explore a statistical technique to 

find the state to which the fluid might relax, if any. In this chapter we 

study two such statistical techniques which have been developed. The first 

approach, Point Vortex Approximation, approximates the vorticity distribu­

tion by a collection of point vortices and exploits the resulting finite degree­

of-freedom canonical Hamiltonian system. The second approach, Maximum 

Entropy Flows, allows a continuous vorticity distribution and conserves all 

the Casimirs. 

2.1 Point Vortex Approximation 

A finite degree-of-freedom, canonical Hamiltonian description of the 2-D fluid 

can be obtained when the vorticity field is approximated by a collection of 

moving point vortices: 

n 

w(r) = LWi o(r - ri)' (2.1) 
i=l 
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where ri(t) is the position of the ith vortex which has circulation Wi and w 

obtains its dependence on time through the r;'s. We now follow Morrison 

(1981) to obtain the canonical Hamiltonian description for this system of 

discrete vortices starting with the noncanonical Poisson bracket defined by 

eq. (1.13). 

When w depends on an independent variable, µ, in addition to r then one 

has 

(2.2) 

where F is considered to be some function of µ on the left and as a functional 

of won the right. Using eq. (2.1) in the above equation and integrating by 

parts gives 

(2.3) 

and similarly for the YiS where we are now using r = (x, y). Making use of 

equations (2.1) and (2.3) in (1.13) allows us to write the bracket as 

{F,G} = t~ (aF aG - aF aG) ' (2.4) 
i=l Wi 8Xi 8yi 8yi 8xi 

which is a canonical Poisson bracket, with coordinates Wi Xi and Yi canon­

ically conjugate to each other. Thus the phase space coincides with the 

configuration space. The equations of motion are given by 

dxi = {x;, H} = ~ 8H ; dy; = {y;, H} = -~ 8H . (2.5)
dt Wi 8yi dt Wi 8x; 

Using eq(2.l) in (1.11) shows that the Hamiltonian may be expressed as 

H = ! t WiWj G(rij), (2.6) 
2 i,j=l;i"#j 

where rij = j(xi - x;)2 +(Yi - Y;)2• If the domain is the real plane (infinite 

domain) then the Green's function has the form 

1 
G(ri;) = - 7r log rij .

2
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For a finite domain one can express the energy in terms of a sum over the 

log ri/s but then, just as in electrostatics, one has to include image terms 

arising from the boundary as well. Instead we choose to express the energy 

in terms of the Green's function. Note that we avoid the singularity when 

i = j, that is, we subtract the infinite self-energy of the vortices. 

Before proceeding to use statistical mechanics to calculate the distribution 

for a specific case, we present an argument due to Onsager (1949) which 

points out a peculiarity of the statistical mechanics for this system which 

arises due to the finiteness of phase space. The phase space element is d( = 
dx1dy1 • • • dxndYn and the phase volume which corresponds to energies less 

than a given value, E, is defined to be 

cp(E) := f d( =: jE cp'(E) dE,
}H<E -oo 

where cp'(E) is the structure function. The energy, E, takes all values from 

-oo to +oo and clearly we have 

cp(-oo)=O 

where A is the area of the domain. Also, it must be true that cp'(E) is 

positive for all E. This, together with the finite value of the integral over all 

energies, implies that cp'(E) must assume its maximum value for some finite, 

critical value of energy, Ee. Hence 

cp"(E) is positive for E < Ee and negative for E > Ee. Note that it is 

possible to have more than one maximum, in which case there are more than 

one energy-intervals which correspond to negative temperatures. Assuming 

equal a priori probability of occupying the available phase space for a given 

energy we use the usual definition of the entropy and temperature for a 

microcanonical ensemble: 
1 as 1 cp'

S := k log cp' T = 8E = k cpn . 
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Thus we see that 

T > 0 for E <Ee T < 0 for E > Ee . 

Note that it is possible to have more than one maximum of ~', in which 

case there are more than one energy-intervals which correspond to negative 

temperatures. The possibility of having negative temperatures gives rise 

to some interesting behavior. Negative temperatures correspond to high 

energy configurations which, in turn, correspond to clusters of vortices of the 

same sign. Thus we see that such clusters are a possible outcome of this 

approach. This matches well, qualitatively, with observations of small scale 

eddies combining to form long lived regions of vorticity in 2-D turbulence 

(Sommeria, Meyers and Swinney, 1988). It is also borne out by numerical 

simulations of the dynamics (Marcus, 1988). 

We now calculate vorticity distribution in the canonical ensemble when, 

in addition to energy, the angular momentum is conserved, i.e. we consider 

an axisymmetric system. Furthermore, the system is a collection of point 

vortices all of which have the same sign. (We shall later discuss an experiment 

to which this calculation applies.) Montgomery and Joyce (1974) showed that 

one can make use of the Gibb's measure even in the negative temperature 

regime. Thus we have 

< w(x,y) > = 

where {3 and I arise as Lagrange multipliers for the energy and the angular 

momentum respectively, G;j := G(r;j), r[ := x[ +y[ and Z is the partition 

function defined by 

Z = j exp [-r\f,w;w,G;•) -i<t.w1(R
2 -rill] l} dxm dym. {2.8) 

1 
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Note that the angular momentum, fr x v <Pr, can be written as f w( R2 
­

r 2)/2 <Pr after integrating by parts. Then using the expression for the vor­

ticity, eq. (2.1), one gets the sum as shown in the integrals above. The 

expression for the distribution of the vorticity can then be reduced to the 

following: 
2< w >=I:

n 

C;w; exp[-,Bw;t/J - ~w;(R2 - r )] , (2.9) 
i=l 

where C; 's are constants which can be determined once one knows .B and / 

and the Green's function. Eq. (2.9), alongwith V 2 t/J = - < w > allows us to 

solve for t/J(x, y). The Green's function depends on the boundary conditions 

for the particular domain while .B and / can be determined from the initial 

energy and angular momentum. Usually one assumes that all the point 

vortices are of the same strength in order to simplify matters. 

Having illustrated the point vortex approach by means of the preceding 

example we now proceed to study another statistical approach. More ex­

amples and details of calculations involving the point vortex approximation 

may be found in Smith (1991) and Edwards & Taylor (1974). 

2.2 Maximum Entropy Flows 

The maximum entropy approach involves coarse graining and preserves all 

the invariants of motion. It was first proposed by Lynden-Bell {1967) in 

the context of violent relaxation of star clusters and has been rediscovered 

independently by others in recent years (Miller, 1990; Robert and Sommeria, 

1991). 

We assume that the vorticity takes on discrete values but is piecewise 

continuous initially. Thus w E (wi, w2, · · ·, wn)· The vorticity equation (1.3) 

may also be expressed as 
dw 
-=0 (2.10)
dt ' 

where the derivative is the total (or Lagrangian) derivative, which means that 

11 



in a frame which moves with a fluid element there is no change in the vorticity. 

This makes it clear that the effect of the dynamics is to relocate the vorticity. 

We assume that some time later the boundaries of the constant vorticity 

regions are intricately spread over the domain. The spatial fluctuation of 

vorticity is very rapid, but on small enough scales we still have piecewise 

continuous vorticity. Thus we have two scales - the piecewise continuous 

vorticity on small scales and the mean flow on a larger scale. We define a 

"cell" on the larger scale to consist of a large number, N, of "subcells". We 

also define Pi to be the total number of subcells with vorticity w; and Mµ.; 

to be the number of subcells, with vorticity wi, present in the µth cell. (Note 

that the Greek subscript labels the cell while the Latin subscript labels the 

value of vorticity.) Evidently, P and M are related by 

Lynden-Bell (1967) now counts the number of ways, WL, of distributing 

the subcells among the cells as: 

(2.11) 

The first part in the above formula represents the number of ways in which 

Pi sub cells can be distributed into groups of M1i, M2;, etc. The second part 

represents the distribution within a single cell. (N - Li Mµ.;) are the number 

of "empty" subcells in the µth cell. Thus the counting, within a cell, considers 

the subcells (particles) as being distinguishable (irrespective of whether or 

not they possess the same value of the vorticity) and only one subcell can 

occupy a site; there can only be N subcells in a cell. In this sense the statistics 

may be thought of as being like Maxwell-Boltzmann counting in considering 

distinguishable particles, yet resembling Fermi-Dirac statistics in the sense 

that there is an exclusion principle. However, it is interesting to note that 

the first part of the distribution (i.e. P; subcells distributed into groups of 
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M 1i, M 2i, etc.) considers the subcells to be indistinguishable. Also note that 

within a cell the empty subcells are considered indistinguishable. 

Empty cells made sense in the stellar context in which the statistics were 

derived, but in the fluid context there are no empty subcells. Alternatively, 

Miller (1990) and Robert and Sommeria (1991) count the number of states 

as follows: 

w =IT { N! } . (2.12)
"' TiiMµi! 

This counting is easier to interprete. The part inside the curly bracket is the 

number of ways of distributing the subcells within a cell. Here, in contrast to 

Lynden-Bell's counting, we consider subcells with the same value of vorticity 

to be indistinguishable. Then one takes the product of the distributions over 

each of the cells to get the total number of ways to distribute the subcells. 

lnspite of the difference in interpretation, the two ways of counting are, in 

fact, identical. This can be seen by setting (N - Li Mµi) either equal to zero 

or including it as being one of the Mµi's in eq. (2.11) and by interchanging 

the product over µ and i. Then one has the result 

WL 
(2.13)W=TI·P· 1 ' 

I I' 

i.e. the two ways of counting are related simply by a constant which depends 

on the initial conditions. 

We now define the entropy of the µth cell to be 

1 
N logWµ, 

where 
- N!Wµ- (2.14)

TiiMµi 

Then, assuming N is large, we can use Stirling's formula to write 

1 
N logWµ = - ~Pi log Pi, (2.15) 

I 
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where the probability, Pi, of finding vorticity, Wi, in the µth macrocell is 

defined by 
_ Mµi 

( )Piµ =N· 
Now we take the limit as the size of the subcells and of the cells goes to 

zero, but such that there always are N subcells in a cell. Then the cell 

may be labelled by the position, r, and the product over µ in eq. (2.12) is 

transformed into an integral over the domain to get the total entropy, 

S[p] = - l ~Pi(r) log Pi(r) d?r. (2.16) 

' 
Our goal, now, is to maximize the entropy subject to the constraints of 

constant energy and Casimirs. The energy may be expressed as 

(2.17) 

where t/J, as earlier, is the streamfunction, which is assumed to be smooth al­

though the vorticity is not. (This is plausible since the vorticity is the Lapla­

cian of the streamfunction.) The conservation of the Casimirs is equivalent 

to the conservation of the areas of each of the vorticity patches (Morrison, 

1987; Robert and Sommeria, 1991). This may be expressed as 

(2.18) 

In the limit that the vorticity distribution is continuous, there are an infinite 

number of constraints. These correspond to the infinite number of Casimirs 

of the form shown in eq. (1.23). Crudely, one may see that the conditions, 

eq. (2.18) and eq. (1.23), are equivalent by thinking of eq. (2.18) as saying 

that w as well as d?r are constant for a fluid element. That would then 

imply that the integral of an arbitrary function of w is conserved. Another 

constraint, that of probability conservation, is 

:l: Pi( r) = 1 'V r E D . (2.19) 
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For an axisymmetric system we have another constraint, that of conser­

vation of angular momentum. For a region of radius R, we may write the 

angular momentum as 

(2.20) 

just as was defined in the previous section, except that we have now replaced 

the vorticity by its local average. This is justified because (R2-r2 ) is smooth. 

Variation of (S - 1L - {JH - Li aiAi) with respect to Pi gives 

(2.21) 

as the condition for an extremum, where /, f3 and ai 's are Lagrange multi­

pliers. Using equations (2.16), (2.17), (2.18) and (2.20) in eq. (2.21) we get 

the result 

Pi = ~ exp[-ai - {3w(1p - /Wi(R2 - r 2 )/2] , (2.22) 

with the partition function, Z, given by 

Z =L exp[-ai - /3w(1p - /Wi(R2 - r 2 )/2] ; (2.23) 
i 

Pi and Z obtain their dependence on r through t/J in addition to the Gaussian 

dependence on r. The solution is not complete until we find t/J(r) for the 

relaxed state. This can be accomplished by solving the equation 

_ "'2 ·'· =~ . . = _..!_ dlogZ(t/J) 
v 'f/ 7 w,p, f3 dt/J . (2.24) 

The Lagrange multipliers, O'.i 's, f3 and /, are found from the initial conditions 

using the constraints stated in equations (2.17) and (2.18) and (2.20). 

Although the above results appear very similar to the results in the pre­

vious section, of the point vortex approximation, note that the point vortex 

approximation does not have any ai's in it, which arose in this (maximum 

entropy) approach due to the conservation of the Casimirs. In the continuum 

limit, Oi -+ a(w), thus conserving an infinite number of Casimirs. 
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Chapter 3 

The Selective Decay 
Hypothesis 

In this chapter we consider the effect of viscosity on 2-D fluid dynamics. 

It is shown, from the structure of the noncanonical Poisson bracket in eq. 

(1.13), that on Fourier decomposing the vorticity and truncating the system 

to neglect high k-values, only one out of the infinite number of Casimirs 

survives as a constant of motion, in general. We indicate why this particular 

Casimir, the enstrophy, might selectively dissipate more than the energy and 

present the resulting principle of minimizing enstrophy at constant energy to 

obtain the equilibrium flow. 

3.1 Effects of Viscosity and Truncation 

On modifying eq. (1.3) to allow viscosity we get 

8w 
fJt +v · V'w - vV'2w. (3.1) 

Multiplying the above equation by w and integrating we get an expression 

for the rate of change of the enstrophy: 

(3.2) 
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where the enstrophy, n, is a Casimir which is defined to be 

(3.3) 

To obtain eq. (3.2) we used the incompressibility condition and assumed 

that the boundary condition is either periodic over the domain or that the 

perpendicular component of the velocity vanishes at the boundary. From 

eq. (3.2) it is clear that the enstrophy definitely decreases on introducing 

viscosity. Similarly it is seen for the energy that 

(3.4) 

We see that the energy is conserved in the absence of viscosity but decreases 

otherwise. In the Fourier transformed space, equations (3.2) and (3.4) may 

be written as: 
dfl "'""" 2 2 d H "'""" 2 (3.5)dt = -v~ k wk ; dt = -v~wk ' 

where we have Fourier decomposed the vorticity as 

w(r) = LWkeik-r, (3.6) 
k 

with 
Wk= _1_ f w(r)e-ik·r d2r. 

(27r)2 lv (3.7) 

Periodic boundary conditions are assumed and the summation in eq. (3.6) 

is an infinite summation, ranging over all k values. 

From eq. (3.5) it is seen that the enstrophy decays much more rapidly 

at the high k-values than the energy. This is the basis of the selective decay 

hypothesis which we shall discuss in section 3.3. In this section, we now 

proceed to find the implications of a truncation of the Fourier modes on the 

constants of motion. The reason for contemplating such a truncation of the 

Fourier modes is the strong effect of viscosity at the high k-values that we 
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expect from eq. (3.1 ). A couple of other reasons why one might wish to 

truncate the modes are mentioned in the concluding section. 

The energy may be expressed in terms of the Fourier modes of the vor­

ticity as: 

H = 211"2L 1~12. (3.8) 
k 

Neglecting the factor of 211"2 , we may write 

dH 
dt = 

1 dwk_ 
~ k2 {w1cdt- +c.c.}' (3.9) 

where the star indicates complex conjugation. We shall show below that 

is zero. The same argument can also be applied to the complex conjugate 

term. Since the energy is real, we have 

(3.10) 

To obtain the equations of motion we observe that functional derivatives 

with respect to the vorticity can be expressed as a sum of terms involving 

derivatives with respect to the wk's as: 

hF """" BF hWk 1 """" BF -ik·r- = L.J---- = --L.J--e (3.11)
hw k BWJc, hw (27r)2 k BWJc. · 

Thus the Poisson bracket for the 2-D Euler equation can be expressed as: 

1 BF fJGA 

{F,G} = (2 )2 L:-BWJc.+tZ. (f x k)-B . (3.12) 
11" k,l Wk Wt 

Hence the equations of motion in terms of the Fourier modes are 

dWk z. (k x f)
dt = {WJc.,H} = L f2 WtWJc.-l. (3.13) 

l 
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Thus we get 

W}c z . ( -k x l) z . ( l x k)
0 =L k2 L £2 WtW-k-l =L k2f2 W}cWtW-k-l. (3.14) 

k l k,l 

It is clear that the expression which is being summed on the right-hand side 

of eq. (3.14) is antisymmetric under interchange of k and l (due to the vector 

product) and hence the sum is zero irrespective of the range over which the 

indices run. The energy is thus seen to be invariant for a truncated system. 

We now turn our attention to the enstrophy in a truncated system. From 

the structure of the bracket in eq. (3.12) it is seen that a Casimir, C, must 

satisfy 
80 

LWk+t z. (t x k) = o for all k, (3.15) 
l 8Wt 

so that its bracket with an arbitrary function of the Fourier modes vanishes. 

We now specify the Casimir as being the enstrophy, n, given by 

(3.16) 

Then, neglecting numerical factors, we note that 

an 
OWt =W_l' 

whereby the left-hand side of eq. (3.15) may now be expressed as 

A 

cl>:= L z·(lxk)Wic+tW-t. (3.17) 
l=-A 

In the above equation, we have allowed for the possibility of truncation by 

introducing A:= (e, 17) as a limit on the summation. eand 17 are the limits 

in the two different directions and we allow all modes between -A and +A. 

Now changing the label in eq. (3.17) from l to -l we get 

A 

cI> = L -z ·(l x k)wk-tWt. (3.18) 
t=-A 
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We transform eq. (3.17), again, in a different manner: we change the label 

from I to i :=I+ k and get 

A+k 
~ = L Z · ( l X k) Wk_jWj . (3.19) 

i=-A+k 

In the complete system (i.e. non-truncated) e, T/ -+ 00 and it is clear that 

the right-hand sides of equations (3.18) and (3.19) have opposite signs, hence 

~ = 0. However, for the truncated case it might seem at first that the ranges 

of summation are different and hence ~ might not be zero. But on closer 

inspection one notices that the same terms contribute to the sum in either 

case. For example, if k is positive (i.e. both of its components are positive) 

then the effective range for either summation is from k - A to A. This is 

because all other modes are zero due to the truncation. Hence the enstrophy 

is invariant in a truncated system. 

We now adopt a different approach which enables us to see the effect of 

truncation more generally on all the Casimirs. A function, J(r) , may be 

expressed in terms of a Fourier series as 

J(r) =L fkeikr' (3.20) 
k 

where 
1 f J( ) -ikr d2!:k = (27r)2 JD r e r. (3.21) 

To see the effect of a truncation ink space on J(r) we use eq. (3.21) in eq. 

(3.20) to get 

j{r) = _1_ f d2r' J(r') L eik(r'-r) . (3.22)
(27r)2 JD k 

If the summation over k in eq. (3.22) is infinite then 

L eik(r'-r) = (27r )2 6(r' - r) (3.23) 
k 
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and one recovers j (r) = f (r) as expected. However, for a truncated system, 

assuming the box is large, one might approximate the sum by an integral as 

(3.24) 

where W(kx, k11 ) is defined to be a window: 

W(kx k ) = { 1 if lkxl < eand lk11I < 1/ 
' 

11 0 elsewhere. 

Using the well known Fourier transform of the window, one gets the result 

j{r) = _!._ J, d2r' /(r') sin e(x' - x) sin 11(y' - y) . (3.25) 
11" 2 D (x' - X) (y' - Y) 

Thus the process of truncation in the transformed space has its equivalent 

in the untransformed space of operating on /(r) by the integral operator as 

shown above to get j(r). It is no surprise that j(r) =j:. J(r) in general. 

We now recall the condition for the Casimir, eq. (1.22), which is restated 

here: 

[w, ~~] = 0. (3.26) 

This condition is satisfied if 

bC 
bw = g(w)' 

where g(w) is an arbitrary function of the vorticity, w, and depends on r 

through w. On setting f(r) = w(r) in eq. (3.25) we see how w transforms 

under truncation and call it w. Similarly, g changes to g. Now, in the 

truncated system we require that a Casimir, C[w], satisfy 

(3.27) 
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which implies that SC/Sw be an arbitrary function of w. Moreover, if the 

Casimir is to survive the truncation, i.e. C = C, then SC/Sw must be the 

same function, g. However, in general, 

g(w) # g(w). 

An obvious exception is if g(w) = w (or some multiple of w). This is 

precisely why enstrophy survives the truncation while the other Casimirs 

do not. (Note that the enstrophy, n, has 60/6w = w.) Actually, some of 

the other Casimirs that we had for the non-truncated system can possibly 

survive the truncation, but from eq. (3.25) one sees that these would have 

to depend on the particular truncation. Also, one has new Casimirs for 

the truncated system (arbitrary functions of w) but these too depend on the 

particular truncation due to the dependence of won the particular truncation. 

It must also be noted that we retained all the modes below a certain cutoff 

in obtaining eq. (3.25). Other truncation schemes are also possible. Hald 

(1976) gives some interesting examples of constants of motion that survive 

certain truncation schemes. On the other hand, it is clear that the invariance 

of the enstrophy does not depend on any particular truncation and hence we 

call it a "rugged" invariant. 

Thus we can infer the ruggedness of the enstrophy from eq. (3.26), which, 

in turn, stems from the structure of the Poisson bracket in eq. (1.13) and 

the property mentioned in eq. (1.17). 

3.2 Energy and Enstrophy Spectra 

In the preceding section we have seen that the energy and the enstrophy are 

rugged invariants. We now construct a statistical argument using these two 

invariants and obtain their equilibrium spectra. From eq. (3.13) it is seen 

that 
8Wic - 0 (3.28)8Wk, - ' 
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where the dot indicates differentiation with respect to time. Hence, Liou­

ville's theorem, which is 

Eawk =O, (3.29) 
k awk 

is satisfied. In fact, eq. (3.28) is stronger than eq. (3.29) since it shows 

that each phase space coordinate is volume preserving independently of the 

others and is sometimes referred to as the detailed Liouville theorem. The 

advantage in having the detailed Liouville theorem satisfied is that one can 

truncate the modes and yet have a volume preserving phase space. However, 

it should be noted that a truncation upsets the Hamiltonian structure and 

the bracket defined by eq. (3.12) no longer satisfies the Jacobi identity. 

We now define the statistical average of a quantity, g, which is a function 

of the Wk's, as: 

< 9 >:= ~ f Il~g exp(-{JH - an), (3.30) 
k 

where the partition function, Z, is defined to be 

z := JIT dwk exp(-{JH - an). (3.31) 
k 

The average defined above may be thought of as an average over an ensemble 

of systems differing in energy and enstrophy, i.e. systems immersed in baths 

of energy and enstrophy. a may be thought of as the reciprocal "enstrophy 

temperature" and {J as the (usual) reciprocal "energy temperature". With 

this definition of the average, one finds the average enstrophy associated with 

the kth mode to be 

(3.32) 

and the average energy in the kth mode is 

1 
(3.33)< Hk >= ({J +ak2) 
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Notice that (3 ca.n be negative as long as ((3 +ok2) is positive. (If ((3 +ok2 ) 

is positive for the smallest value of k then it is positive for all k.) Thus, 

once again, negative energy-temperatures are allowed. Notice, also, that the 

enstrophy is uniformly distributed if (3 is zero while the energy is uniformly 

distributed if o is zero. 

Equation (3.13) shows that the modes are coupled. This suggests that 

there is a flow of energy and enstrophy between modes. Fjortoft (1953) 

investigated the energy transfer in a triad (three modes) and concluded that 

if there is a transfer of energy out of the central mode then it must be 

transferred into both of the outer modes. The conservation of energy and 

enstrophy can be simultaneously satisfied only by a transfer of energy to 

higher as well as lower k's. One can infer the dominant direction of energy 

and enstrophy transfer from the statistical result obtained above. Assume 

that most of the energy and enstrophy is concentrated in the kth mode to 

begin with. Then after a certain relaxation time the energy and enstrophy 

spectra take the form obtained above. The energy that has flowed to the 

(2k)th mode is then 
1 

((3 +4ok2 ) ' 

while 
1 

((3 +ok;) 

has flowed to the (k/2)th mode. If (3 is zero then it is clear that sixteen 

times as much energy has cascaded to the (k/2)th mode as compared to the 

(2k)th mode. Irrespective of the value of (3, more energy flows to the lower 

k values than higher. A similar argument for the enstrophy shows that it 

cascades to higher values of k when (3 is positive and to lower k-values for 

negative (3. Thus, again, we note the tendency to form large scale structures 

at negative temperatures. For positive temperatures, the energy flows to the 

larger length scales while the enstrophy flows to the smaller scales. (The 

scaling laws for such cascades are discussed by Kraichnan & Montgomery, 
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1980.) 

Note that in the limit that k becomes infinite, < nk > takes the value 

1/a. The total enstrophy, which is Lk nk, is infinite unless a truncation is 

made. 

3.3 Minimum Enstrophy Flows 

We have noted in the preceding section that the energy cascades to larger 

length scales while the enstrophy cascades to the smaller scales where it is 

removed by the action of viscosity. Based on this cascade argument, Brether­

ton and Haidvogel (1976) suggested that 2-D flow should be that one with 

minimum enstrophy for a given energy. Thus we assume a selective decay, 

i.e. out of two key integrals, one decays appreciably more than the other. 

(This may also be argued from eq. (3.5).) A similar argument was used by 

Taylor (1974) in plasma physics, where he considers the magnetic helicity to 

be constant while the magnetic energy is minimized. Hasegawa (1985) in­

terpretes such principles as exhibiting self-organization in one (the stronger) 

invariant and disorder in the other. 

Minimum enstrophy flows are best illustrated by giving an example of 

the calculation. Since we will be discussing an experiment with cylindri­

cal symmetry in the next section, we choose to calculate accordingly. The 

calculation follows on the lines of Leith (1984). 

We assume that the vorticity is contained within a radius R and is zero 

outside it. Furthermore we set the radial velocity to be zero. The cylindrical 

symmetry implies that the total angular momentum is conserved. We also 

treat the energy and the total vorticity as being conserved. So, in fact, we 

are treating the energy, angular momentum and the total vorticity as rugged 

invariants while the enstrophy decays to a minimum. Introducing the variable 

r 
s .- R' 
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we express the velocity and the vorticity as follows: 

ve(r) := u(r/R) = u(s) 

w(r) = ! d(rv9 ) = ..!_ ! d[su(s)] =: W(s) 
r dr Rs ds R 

Thus we may now express the energy as 

(3.34) 

and the total angular momentum as 

(3.35) 

The enstrophy can be written as 

2 d2n = ! /, w r = 7r I 
1 
w 2

( s) s ds (3.36)
2 D lo 

and, finally, the total vorticity can be written as 

V = r = 27rRu(l). (3.37)l wd2 

The variational principle is stated as 

c50 - ac5V - {3c5H - 1c5L = 0 , (3.38) 

where a, {3 and I are Lagrange multipliers. Variations are to be taken with 

respect to u and Rand we require that u(O) = 0 and u(l) = V/27rR which 

implies c5u(O) = 0 and c5u(l) = 0. Thus, 

/1 dW c5R 
-27r lo hu(s){ ds +{3R2u(s)+1R3s}sds -R{aV+2{3H+31L} =0. 

(3.39) 

Since this must be true for any bu and any c5R we get the following conditions: 

(3.40) 
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and 
dW 
ds + {3R2u(s) +"'(Ifs= 0 . (3.41) 

Multiplying eq. (3.41) bys and then differentiating with respect to s gives 

us 
d2W 1 dW 2 2c 
ds2 + -; ds +a (W + a2) = O;' (3.42) 

2where a ={3R2
, which implies that we seek {3 > 0, and c =1R3

• The 

solution to the vorticity distribution is therefore given by 

2c 
W(s) = Jo(as) - 2, (3.43) 

a 

where J0 is the zeroth order Bessel function and the velocity profile is 

u(s) = aJ1(as) - cs, (3.44) 

where J1 is the first order Bessel function. Using the above expressions in 

the formula for the energy gives 

2 
TrR { 2 2( ) [ 2 J2(a) Ji(a)l 2 }

H = - 4- 2a J1 a 1 - ~ Ji(a) + Jf(a) + c - 8cJ2 (a) , (3.45) 

while the angular momentum is now 

(3.46) 

and the total vorticity is 

V =27rR[aJ1(a)- c]. (3.47) 

If we know the initial energy, angular momentum and the total vorticity then 

we can figure out the three unknowns, a, c and R, from equations (3.45), 

(3.46) and (3.47). The Lagrange multipliers, {3 and/, follow from a, c and 

Rand then a can be found using eq. (3.40). The minimized enstrophy can 

be found from eq. (3.36). 
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Chapter 4 

Experimental Results 

Having discussed various approaches which predict the state to which the 2-D 

turbulent fluid relaxes - point vortex approximation, maximum entropy flows 

and minimum enstrophy flows - we now compare them to the observations in 

a recent experiment on a non-neutral plasma. We discuss the possibility of a 

simple monotonic restacking of the vorticity and also consider the possibility 

that some functional of the vorticity, other than enstrophy, might be the one 

that is selectively extremized. 

4.1 An Experiment on Electrons in a Mag­
netized Column 

Magnetized electron columns provide a good opportunity to study 2-D tur­

bulence since the dissipation is low and the diagnostics are accurate. The 

Ex B guiding center drift in the (r, 0) plane is described by the drift-Poisson 

equations: 
an 
-+v·V'n =0 ( 4.1) at 
v = -~V'</> x z (4.2)

B 

V'2 </> = 47ren (4.3) 

28 



where v(r, 0) is the drift velocity, Bis the axial magnetic field perpendicular 

to the (r, 0) plane, n(r, 0) is the density of electrons, </>( r, 0) is the electrostatic 

potential and -e is the charge on an electron. The analogy between the mag­

netized electron column dynamics and 2-D fluid flows is seen by comparing 

the above equations to equations (1.3), (1.5) and (1.6). The transformation 

B B 
</> = --t/J, n = --w 

c 47rec 

makes equations ( 4.1 ), ( 4.2) and ( 4.3) identical to equations (1.3), (1.5) and 

(1.6). Thus the electron density corresponds to the vorticity in fluids and 

the electrostatic potential corresponds to the streamfunction. 

See Huang and Driscoll (1994) for the experimental details. In brief the 

experiment may be described as follows: Electrons are trapped in a cylindri­

cal region with an axial magnetic field and externally applied electric field 

at the two ends. Measurements of the density profile are made by dumping 

the electrons onto an endplate. Since the measurement is destructive, the 

experiment has to be repeated many times; measurement is made at different 

time intervals after the electrons are trapped during the different runs. The 

initial density profile is hollow, azimuthally symmetric and is very nearly the 

same for each run. It is then found that the column quickly relaxes to a 

low noise metastable state which is maintained for some time and is then 

destroyed by collisions. The relaxation to the metastable state is, however, 

almost collisionless (Dubin & O'Neil, 1987). 

On comparing the density profile of the metastable state to the predic­

tions of the approaches of maximizing entropy, minimizing enstrophy and the 

point vortex approximation, Huang and Driscoll (1994) find that minimizing 

enstrophy predicts best. We shall discuss the pros and cons of the three 

techniques in the concluding section and indicate why minimizing enstrophy 

seems to be a better technique than the other two. 
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4.2 Entropy Production and Restacking 

At this point we take the opportunity to point out a subtlety in defining the 

entropy in an experimental situation. Huang and Driscoll (1994) define the 

entropy as 
w

S := - l -
w 

log-Jlr, ( 4.4) 
D Wo Wo 

where w0 is a normalizing constant. Based on the above definition it is found 

that the entropy more than doubles in going from the initial to the metastable 

state. However, it can be shown that the definition, eq. (4.4 ), is ambiguous 

when the total vorticity is not conserved. To see that we rewrite eq. ( 4.4) as 

woS =log w0 k wd2r - kw logwd2r. (4.5) 

Then the difference between the final and the initial entropy can be written 

as 
1

hS = -(8V log w0 +8S), (4.6) 
Wo 

where the total vorticity is defined by 

V := kwd2 r 

and the quantity S is defined by 

S := - kw log w Jlr . 

Thus it is seen from eq. (4.6) that for a non-zero 8V, however small, the 

difference in entropies can take any value merely by adjusting w0 • In par­

ticular, an w0 can be chosen which makes the difference vanish. And since 

there is no natural value of w0 , the definition, eq. (4.4), is meaningless. In 

the experiment there was a small loss of electrons (total vorticity), i.e. 8V 

was not zero, thus making eq. (4.4) inapplicable anyway. 

Ideally, the entropy as defined by eq. ( 4.4) is a Casimir since it is a func­

tion of the vorticity alone and hence we expect it to be conserved; in the 
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absence of collisions there can be no increase in the entropy. One way to 

ensure that all the Casimirs, including entropy, are conserved is to monoton­

ically restack the vorticity in r 2 , as explained next. 

We define the free energy, F[w], (Morrison, 1987) by 

F=H+C, 

where C is a Casimir defined by eq. (1.23). Considering equilibria to be the 

stationary points of the free energy, we have a condition for equilibria, 

8F = 0 = 8H + 8C = t/J + ac . (4.7)
8w 8w 8w aw 

In order to obtain a solution for w(t/J), 8C/8w must be monotonic, which 

implies that its inverse is monotonic too. Thus we seek w( t/J) which is a 

monotonic function of t/J. Upon taking the second variation of F, we find 

that it is positive definite if 

1.e. w is a monotonically decreasing function of t/J. Thus a monotonically 

decreasing w( t/J) which satisfies eq. ( 4. 7) is a stable equilibrium. 

In case of the 2-D fluid, we have seen earlier that the vorticity simply 

gets relocated. Hence one might wish to simply rearrange or "restack" the 

vorticity so that it is a monotonic function of the streamfunction. But the 

equilibrium streamfunction, itself, is an unknown. However, the geometry of 

the experiment comes to our rescue and suggests that the restacking should 

be carried out in r 2 , i.e. the initial vorticity be plotted as a function of r 2 and 

then rearranged to make it a monotonically decreasing function of r 2 • This is 

so that wd2r = wd(r2 ) is conserved on each element, thus conserving the in­

finite number of Casimirs (Gardner, 1963). (Note that the solution is unique; 

there is only one way to rearrange a function in a monotonically decreasing 

fashion.) This also implies that we expect the equilibrium streamfunction to 
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behave as r 2 • We carried out a couple of restackings using the initial data 

of Huang and Driscoll (1994). The restacking was carried out once in r 2 and 

once in the experimentally found equilibrium streamfunction. The results of 

both restackings were in excellent agreement. Not surprisingly, it was also 

found that the experimental equilibrium streamfunction behaved as r 2 in the 

critical region; the critical region being one in which restacking occurred. 

(Note that a portion of the vorticity does not undergo any restacking; it is 

already stacked.) The results are shown in figure ( 4.1) and are not very far 

off from the experimental results. Again, note that there is no change in 

entropy or in any other Casimir due to restacking. 

However, the major drawback of the restacking argument is that although 

it is a minimum of the free energy, F, the energy, H, actually increases. In 

this case the energy increased by about 8 percent. Hence we conclude that 

the monotonic restacking is not accessible unless there is some energy input 

from the boundary. The fact that we see a monotonic vorticity distribution 

in the experiment suggests that all the Casimirs are not being conserved and 

the losses are important. 

4.3 Conclusion 

Onsager (1949) suggested the use of statistical mechanics to deal with the 

problem of 2-D turbulence. This first approach, which was based on approx­

imating the vorticity field by a collection of point vortices, gives rise to a 

finite degree-of-freedom, canonical Hamiltonian description of the dynamics. 

Although this model gives good qualitative agreement with the observations 

of formation of coherent structures in turbulent shear flow, it suffers from 

the drawback of approximating a continuous vorticity field by point vortices; 

there is no unique way to accomplish it. 

The maximum entropy approach of Lynden-Bell and others is concep­

tually more pleasing than the point vortex approach since it allows one to 
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consider a continuous vorticity field and conserves all the (infinite) Casimir 

invariants. In practice, one performs the numerical computation after dis­

cretizing the continuous vorticity distribution and conserves as many Casimir 

invariants as the number of discrete bits that are considered. Despite con­

serving the Casimirs this method does not seem to predict the experimental 

outcome as well as the selective decay hypothesis does. This indicates that 

the Casimirs are not being conserved as well as the ideal dynamics suggests 

and that the non-ideal effects at large k-values are quite important. Another 

possibility is that our assumption of ergodic mixing is far from the truth. 

The large k region is definitely a delicate region which poses problems. 

Firstly, in any experiment there is bound to be some finite spatial resolution, 

d. This has the implication that in the measurement of any "initial" vorticity 

one has no information about modes with k > 1/d. So one hopes that these 

modes, if they exist, do not contribute much to the dynamics of the observable 

lower modes. In fact, from the equation of motion, it cannot altogether be 

ruled out that sufficiently strong high k modes will not affect the behavior 

of the low k modes. And since one bases one's calculations on such data, 

truncation cannot be much worse. Secondly, there is a scale length below 

which viscous effects are important. This may be estimated as .jvwmax· 

Thirdly, there is the scale length, approximately the molecular size, below 

which the fluid approximation breaks down and discrete particle effects gain 

importance. Also, at these small scales one cannot really consider 2-D motion 

any longer, one must consider 3-D motion. Due to all these reasons one is not 

really interested in the exact solution to the 2-D Euler equation if one wants 

to explain observations. (The mode coupling of the 2-D Euler equation does 

not allow solutions with no contribution from the high k modes.) 

The success of the selective decay hypothesis is probably because it treats 

the high k region differently from the low k region. As we have seen in 

chapter 3, truncation leads, generally, to the loss of all the constants of 

motion except energy and enstrophy. This is the key feature of the selective 
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decay hypothesis. On the other hand, truncation is clearly artificial and one 

loses some information. The truncated modes could have had some influence 

on the modes which have been retained and vice versa. What is the best 

way to truncate? Perhaps one should carry out many truncation schemes 

and find the average behavior or find the cutoffs for which a small change in 

the cutoffs makes no difference to the dynamics. Another drawback of the 

selective decay scheme is that it does not satisfactorily explain the choice 

of the invariants which are to be considered rugged. For example, in the 

calculation that was carried out in Chapter 3, it was assumed that the energy, 

total angular momentum and the total vorticity were rugged invariants while 

enstrophy was not. 

When they hypothesised the minimum enstrophy flows, Bretherton and 

Haidvogel (1976) also discussed the possibility that some other functional of 

the vorticity might actually be the one extremized instead of the enstrophy. 

Using data from the experiment on magnetized electrons, we calculated, a 

posteriori, the Casimir which was extremized for that flow. That is, we 

found the function, C(w), which satisfies eq. (4.7). The result is shown in 

figure ( 4.2). The lowest order polynomial that fits C(w) is quadratic. This 

corresponds to the Casimirs used in the minimization of enstrophy - total 

vorticity and enstrophy - and is not entirely surprising since according to 

Huang and Driscoll's calculation the minimum enstrophy method did fit the 

data closely. 

The selective decay hypothesis has been used in a variety of situations 

with some success. However, the experiment described in this Chapter prob­

ably has the most accurate diagnostics and more such experiments with a 

wide variety of initial conditions are required before one can be sure that the 

selective decay hypothesis is the key to the problem of 2-D turbulence. 
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Figure 4.1 
The vorticity, monotonically restacked in r2, is 
plotted against s ( =r I R). The final experimental 

vorticity is also plotted for comparision. 
Data from Huang & Driscoll (1994) has been used 

in our calculation. 
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Figure 4.2 
The extremiz.ed Casimir is plotted versus the 

vorticity. The vorticity is measured in units in 
which the maximum value is 1. 

A quadratic polynomial fit is superimposed. 
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