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Abstract 

 

Effects of sample size, ability distribution, and the length of Markov 

Chain Monte Carlo burn-in chains on the estimation of item and testlet 

parameters 

 

 

 

Aline Pinto Orr, M.A. 

The University of Texas at Austin, 2011 

 

Supervisor:  Barbara G. Dodd 

 

Item Response Theory (IRT) models are the basis of modern educational 

measurement. In order to increase testing efficiency, modern tests make ample use of 

groups of questions associated with a single stimulus (testlets). This violates the IRT 

assumption of local independence. However, a set of measurement models, testlet 

response theory (TRT), has been developed to address such dependency issues. This 

study investigates the effects of varying sample sizes and Markov Chain Monte Carlo 

burn-in chain lengths on the accuracy of estimation of a TRT model’s item and testlet 

parameters. The following outcome measures are examined: Descriptive statistics, 

Pearson product-moment correlations between known and estimated parameters, and 

indices of measurement effectiveness for final parameter estimates. 
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Introduction 

This study focuses on the methods used to estimate item parameters when groups 

of multiple-choice questions are associated to a single stimulus. This set up has appeared 

in standardized tests for decades and has been commonly referred to as context-

dependent item sets (Haladyna, 1992a), item bundles (Rosenbaum, 1988), and testlets 

(Wainer & Kiely, 1987). One of the main reasons for the use of testlets is the efficiency 

that such groups of items provide in the testing context (Wainer & Kiely, 1987) and the 

increase in validity that can be achieved with this set up (Haladyna, 1992b). However, 

when items are associated with a single stimulus, a subject’s response to one item may 

not be independent of his/her responses to the other items in the testlet. In other words, a 

dependency effect may arise that violates the Item Response Theory (IRT) assumption of 

local independence between items (Bradlow, Wainer, & Wang, 1999). 

IRT models provide a method for obtaining student ability estimates that are 

independent of the items being used, and test statistics (such as item difficulty) that are 

independent of the sample of examinees used to calibrate the test (Hambleton & Cook, 

1977). However, most IRT models make two fundamental assumptions, the assumption 

that all items on a test are locally independent and the assumption that there is only one 

latent trait being measured. The violation of these assumptions can interfere with 

estimation of the item characteristics and affect the estimation of the latent trait being 

measured. 

In educational measurement, IRT defines the probability of a correct response as a 

function of the item statistics and the ability level of an examinee (Embretson & Reise, 
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2000). In addition, based on this probability, IRT provides a method for estimating how 

much information a specific item contributes to the overall information a test provides 

about an examinee’s ability level (Lord, 1980). However, optimal estimation of item 

information functions depends on accurate item parameter estimation (Hambleton, 1994). 

A consequence of ignoring the violation or local independency is the inaccurate 

estimation of item parameters and information functions which results in erroneous 

estimation of the precision of measurement (Hambleton, 1994). In order to address this 

dependency issue, testlet response theory (TRT) models were developed as modifications 

of IRT models, and include a person parameter (Wainer, Bradlow, & Wang, 2007) that 

addresses the dependency between items. Hence the TRT models not only include the 

parameters present in the IRT models but also an extra parameter to be estimated per 

testlet for each examinee. The estimation of item and person parameters for the TRT 

models is conducted within a Bayesian framework, and prior information about the items 

and the examinees’ ability is combined with the observed data to obtain a joint posterior 

probability distribution for the parameters of interest. A Markov Chain Monte Carlo 

(MCMC) algorithm is then used to randomly sample from this posterior distribution and 

to estimate item and person parameters (Novick & Jackson, 1974).  

However, several aspects of the MCMC method can affect the accuracy of the 

estimation. The selection of the probability distributions (representing our prior 

knowledge of the students’ ability and of characteristics of the items), the size of the 

calibration sample, and the length of the Markov chain (Gilks, Richardson, & 

Spiegelhalter, 1998) are important for the successful construction of the posterior 
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distribution and for accurate estimation of item and person parameters. A prior 

distribution that does not correctly reflect the distribution of item characteristics (such as 

difficulty and discrimination) or the examinees’ ability will hinder the accuracy of item 

and person parameter estimation. This is especially true when the calibration sample size 

is small and the prior distribution is extreme (Gao & Chen, 2005; Gifford & 

Swaminathan, 1990). 

In addition, in the early iterations of the Markov chain the item and person 

parameter values sampled in consecutive iterations suffer from high auto correlation. The 

high correlation may result in the initial values of the chain having a large influence on 

the final parameter estimates, and in biased Monte Carlo standard error estimates (Gilks, 

et al., 1998). Researchers have suggested two main ways of addressing the initial 

autocorrelation issue. The first recommendation has been to obtain a large number of 

iterations (what ensures that the posterior distribution of interest has been thoroughly 

sampled from) and to keep every n
th

 iteration of the chain. This procedure would 

simultaneously reduce the autocorrelation between initial chain values and reduce the 

final amount of data to be stored and processed. However, evidence indicates that using 

every n
th

 iteration of the chain may negatively affect the precision of the parameter being 

estimated (MacEachern & Berliner, 1994).  

The second recommendation involves discarding the set of iterations prior to 

chain convergence (referred to as the burn-in phase of the MCMC chain) before final 

estimation of parameters. However, the identification of chain convergence and the 

choice of the number of iterations to discard are not always easily discerned. In addition, 
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the specific effect that non-convergent Bayesian chains have on item parameter 

estimation has not yet been investigated. 

 The main purpose of this study is to investigate the effects of different sample 

sizes, examinee ability distributions, and MCMC chain lengths on the estimation of item 

parameters for the 3PL TRT model. 
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Integrative Analysis and Interpretation 

 The purpose of this integrative analysis and interpretation is to provide the 

theoretical framework for investigating the effects of several conditions on the accuracy 

of item and testlet parameters estimation for the 3PL TRT model. This section is divided 

into four parts: item response theory (IRT), testlet response theory (TRT), an overview of 

parameter estimation using a Bayesian method, and the statement of research purpose. 

 

Item Response Theory 

In classical test theory, a measurement of ability is dependent on the instrument 

used for measuring. Hence, a harder set of questions may result in lower scores whereas 

an easier set of questions may result in higher scores. In addition, the determination of 

whether a test is hard or easy depends on the sample of examinees taking the test and 

their ability level. For example, for a sample of examinees with higher average ability, a 

test may be characterized as easy, whereas the same test being administered to a sample 

of examinees with lower average ability may be characterized as harder. IRT on the other 

hand, provides us with parameter invariance. This means that, within a linear 

transformation, the same estimate of an item’s parameters will be obtained regardless of 

the examinee’s ability level, and the same ability estimate will be obtained regardless the 

item’s parameters (Lord, 1980). 

 IRT is a collection of mathematical models that outline the relationship between a 

person’s probability of a given response and the trait level assumed to underlie that 

performance (Hambleton & Cook, 1977). This relationship can be represented 
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graphically in the form of item characteristic curves (ICC). In the context of educational 

tests, an ICC plots the probability of responding correctly to an item as a function of the 

latent trait level (in this case ability). When IRT is applied to responses that can only be 

scored as right or wrong, ICCs tend to assume an S shape, corresponding to a 

monotonically increasing probability function  

 

IRT Models 

IRT models can be grouped into two families, defined by the way in which items 

are scored. The first family consists of dichotomous models, which treat item responses 

as binary possibilities and estimate the probability of a response in one of the two 

categories. For example, the response to an item can be correct or incorrect, agree or 

disagree, or success or failure. The second family consists of polytomous models, which 

allow scoring of items with multiple response categories. For example, in attitude surveys 

a subject can select one of several response options. Another example would be the 

scoring of essays, where the rubric often allows for partial credit and more points are 

awarded to better responses.  These models take into consideration the probability of an 

examinee responding in each category of an item when calculating the total item response 

probability. This study focuses on dichotomous items. Therefore, while the dichotomous 

models are discussed in detail in this document, only a brief and superficial discussion of 

polytomous models is provided in the context of polytomous IRT scoring of testlets. 
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IRT Assumptions 

There are three fundamental assumptions made by dichotomous IRT models. The 

first one is the assumption of unidimensionality. This occurs when only one construct or 

factor is expected to account for the variance in the responses to items in a test.  

The second assumption is that a mathematical function can be derived to model 

the probability of a given response to an item conditional on trait level (Hambleton & 

Swaminathan, 1985). In other words, it assumes that an ICC describes the true 

relationship between the latent trait (ability) and the item responses, that is, as the ability 

level increases the probability of a correct response increases monotonically.  

The third one is the assumption of local independence. According to this 

assumption, conditional on the ability level, the probability of responding to an item is 

statistically independent of the probability of responding to any other item (Embretson & 

Reise, 2000). For example, the content provided in one item should not aide an examinee 

in answering any other items. In other words, taking an examinee’s ability level into 

account, the examinee’s response to one item should not influence his/her responses to 

any other items in the test. When items are locally independent, the probability of a 

response pattern for a set of items (at a given ability level) is equal to the product of the 

probabilities of the examinee’s response to each item (Hambleton & Swaminathan, 

1985). Violation of this assumption occurs when examinees' responses to test items are 

conditionally correlated (Wainer, Bradlow, & Du, 2000). In which case, the probability 

of a response pattern is less than the product of the probabilities of responses to the 

individual items (Devore, 2007). 



 8 

Dichotomous IRT Models 

 Dichotomous IRT models are appropriate for questions whose responses can be 

classified as either correct or incorrect, resulting in a binary scoring of 1 (for a correct 

response) and 0 for an incorrect response. The dichotomous IRT models are the one 

parameter logistic (1PL), the two parameters logistic (2PL), and the three parameters 

logistic (3PL), each being a generalization of the previous one. 

The 1PL model (Rasch, 1960) takes into consideration the ability level of the 

examinee and the difficulty of the item when estimating the probability of a correct 

response to that item. For this model it is assumed that all items in a test have the same 

level of discrimination and that no guessing occurs when an examinee responds to the 

items. For the 1PL model, the probability that an examinee i, with a certain ability level 

will respond correctly to an item j of a certain difficulty, 



Pij (y j 1|i) , is given by the 

following expression, 
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Where yj=1 corresponds to a correct response to item j,  represents the ability 

level of a given examinee and bj represents the item difficulty. The difficulty parameter 

indentifies the relative easiness of an item and places it on the same scale as ability. An 

item’s difficulty is defined as the point along the ability scale at which the slope of the 

probability function (the ICC) reaches its maximum (the point of inflection). For the 1PL 

model this corresponds to a .50 probability of giving a correct response.  
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The 2PL model (Birnbaum, 1958, 1968) is an extension of the 1PL model that 

takes into account the examinee’s ability level, the difficulty of the items, and the 

discrimination capacity of each item. The discrimination parameter indicates how well an 

item distinguishes lower ability examinees from higher ability examinees. In addition, 

this model assumes that no guessing occurred when the examinees provided their 

answers. For the 2PL model, the probability that an examinee i, with a certain ability 

level will respond correctly to an item j of a certain difficulty, 



Pij (y j 1|i) , is given by 

the following expression, 
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Where yj=1 corresponds to a correct response to item j, 



i  represents the ability 

level of a given examinee, 



b j  represents the item difficulty, and 



a j  represents the 

discrimination capacity of the item. For the 2PL, an items’ difficulty is defined in the 

same way as for the 1PL model. The item discrimination is proportional to the slope of 

ICC at the point of inflection, consequently the higher the slope of the probability 

function the higher the item discrimination. 

Finally, the 3PL model (Birnbaum, 1968) is an extension of the 2PL model. In 

addition to the examinee’ ability level, the item difficulty, and the discrimination of the 

item, this model includes a pseudo-guessing parameter that accounts for the possibility 

that examinees will answer an item correctly by guessing. This is likely to occur when an 

individual encounters an item that is more difficult than his/her ability level, a scenario 
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that is more probable for individuals at the low end of the ability scale. Consequently, by 

introducing a guessing parameter, the 3PL model accounts for the performance of 

individuals in the low end of the ability scale. For this model, the probability that an 

examinee i, with a certain ability level will respond correctly to an item j of a certain 

difficulty, 



Pij (y j 1|i) , is given by the following expression, 
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Where yj=1 corresponds to a correct answer to item j, i represents the ability 

level of a given examinee i, 



b j  represents the difficulty of item j, 



a j  represents the item 

discrimination capacity of item j, and 



c j  represents the pseudo guessing parameter for 

item j. The item discrimination (



a j ) is defined in the same way as for the 2PL model. i.e., 

it is proportional to the slope of the item characteristic curve at the point of inflection. For 

the 3PL model, the item difficulty parameter corresponds to the ability level at which the 

probability of a correct response equals 2/)1( jc  . The pseudo guessing parameter 

represents a non-zero probability of success for examinees with low ability and is 

indicated by the lower asymptote of the item characteristic curve. 

 

Item Information Function 

 The item information function quantifies the precision of measurement for  at 

each level on the ability scale. It is denoted )(jI  and is expressed as 
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Ii() 
Pi '()2

Pi()Qi()    

for i = 1, 2, …, n    

 (4) 

Where Pi() is the probability of a correct response by examinee i given an ability 

level . The term )(iQ  corresponds to the probability of an incorrect response 



(1P())  

by examinee i and 



Pi '()2  is the first derivative of the item response curve evaluated at a 

particular level squared. The higher the information function at a particular  value, the 

more precisely the item can measure examinees at that  level. The first derivative of a 

function corresponds to the slope of that function, what indicates that the precision 

contributed by the item is closely related to the slope of the item characteristic function at 

a particular  level. This is important because the discrimination of an item is 

proportional to the slope of the item characteristic function at the point of inflection, 

indicating a close relationship between the amount of information an item can provide 

and the discrimination parameter for that item (Embretson & Reise, 2000). 

Item information functions can be added to create a test information function, 

TI(), 

 )()(  ITI          

 (5)

 
The test information function can be used to evaluate the measurement precision of a test 

at different levels of the ability scale. This is done by calculating the standard error of the 
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ability estimate, SE(), at each ability level. The standard error of  estimate is related to 

the test information function by the following formula: 



SE() 
1

TI()          

 (6) 

This knowledge can be used in the construction of tests. For example, if we 

assume the examinees’ ability will be normally distributed, we might desire a test that 

provides most information, and highest precision of measurement, at the center of the 

ability scale, rather than on the lower or upper ends of the scale. The test items would 

then be selected based on the items’ information functions to provide most precision of 

measurement at the center of the  scale. 

 The use of item information functions in test development relies on the 

appropriate estimation of the item parameters and on the fit of the IRT model to the data. 

When item calibration and model fit are poor, the item information functions will be 

misleading and will result in inappropriate test construction (Hambleton, Swaminathan, 

& Rogers, 1991). 

 

Person Parameter Estimation  

 IRT scoring methods attempt to estimate an examinee’s ability based on that 

examinee’s pattern of responses to items on a test and based on the characteristics of 

those items. In such cases, the item parameters are assumed to be known and the 

estimation error is ignored when calculating the examinees’ ability. Three popular IRT 
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strategies for scoring dichotomous or polytomous items are the maximum likelihood 

estimation (MLE), the maximum a posteriori (MAP), and the expected a posteriori 

(EAP). 

 The MLE procedure finds the examinee’s ability level that maximizes the 

likelihood of an examinee’s response pattern. In other words, if finds which ability level 

has the highest likelihood of producing a specific response pattern. This can be thought of 

as a graph of a likelihood function, with the ability scale represented in the x-axis and the 

likelihood of a particular response pattern on the y-axis.  For each ability value, we can 

calculate the likelihood that a specific response pattern would occur, and the maximum 

likelihood of this function is the ability value (the value on the x-axis) for which the 

graphed function corresponds to the highest y value (the highest likelihood). 

 The likelihood function of an examinee’s response pattern corresponds to the 

product of the response functions for each individual item. For example, if a subject 

responds correctly to the first 2 items on a sequence a wrong to the third item (1,1,0), we 

can find the likelihood function of this pattern by multiplying the individual item 

response curves P1( ), P2( ), and Q3( ). Or the natural logarithm of the item response 

curves can be taken and instead of being multiplied, the item response curves are added 

to each other. One common way of finding the maximum point in a log-likelihood 

function is by using an iterative procedure called the Newton-Raphson procedure.  

 This algorithm finds the mode of each examinee’s log-likelihood function.  It 

starts at an arbitrary trait level and calculates the first and second derivatives of the log-

likelihood function at this  value. The first derivative of the log-likelihood function 
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represents the slope of the function, whereas the second derivative corresponds to the rate 

of change in the first derivative ( i.e., the rate of change in the slope). The ratio of the first 

derivative to the second derivative is calculated and subtracted from the initial ability 

estimate to generate a new updated ability estimate. Since the first derivative is the slope 

of the function, and we are interested in the highest point of this function (i.e. the point at 

which the slope is zero), we will find the final ability estimate when the change between 

the current and the new estimated theta is negligible (such as a difference of less than 

0.001). 

 The ML method has the advantage of not being biased, and consequently the 

estimated value of  is a close reflection of the true . In addition, this is an efficient 

estimator with errors that are normally distributed. However, these qualities are true for 

large samples (reflecting longer tests), and depend on the assumption that the examinees’ 

responses fit the model (Bock & Mislevy, 1982). In addition, a problem with MLE is that 

a trait level can not be estimated for examinees with all-correct or all wrong response 

patterns. In such cases the likelihood function tends to infinity and the function does not 

have a mode (Baker & Kim, 2004). One way of addressing this issue is by incorporating 

prior information about the examinees’ ability distribution into the estimation algorithm. 

Two methods that use prior information in the estimation of students’ ability, and are 

considered Bayesian estimation procedures, are the Maximum a Posteriori (MAP) and the 

Expected a Posteriori (EAP). 

 The MAP method addresses this issue by incorporating prior information about 

the examinees ability into the likelihood function. The prior distribution is a hypothetical 
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probability distribution from which it is assumed that the examinees are a random 

sample. It is commonly assumed that examinees are sampled from a normal distribution 

with a mean ability of zero and a variance of 1.0. In MAP the prior distribution is 

multiplied by the likelihood function to create a posterior distribution, and the mode of 

this distribution is used as the ability estimate. In MAP, because the prior distribution is 

incorporated into the likelihood function, the shorter the test the more influence the prior 

will have on the final ability estimate. Two advantages of MAP are the fact that this 

method can produce ability estimates for extreme responses (such as all right or all 

wrong) and the fact that, because there is more information about examinees, the 

estimates have lower standard errors. However, because a prior distribution is 

incorporated into the likelihood function, the MAP estimates are biased towards the mean 

of the prior distribution. This is especially problematic in short tests and when the prior 

distribution assumed does not correspond to the real ability distribution of the examinees. 

 The EAP method is similar to MAP in the sense that it uses a prior distribution in 

estimating examinees’ ability levels. However, EAP is a non-iterative method that finds 

the mean of the posterior distribution (instead of the median). In EAP, for each set of test 

items, a fixed number of  values are specified (these  levels are referred to as 

quadrature nodes) and a probability or weight is computed at each of these pre-specified 

levels. These weights serve as a discrete (as opposed to continuous) prior distribution. 

Once the quadrature nodes and the weights are established, a trait level estimate is 

calculated (and corresponds to the mean of the posterior distribution). 
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 Both MAP and EAP produce  level estimates and standard errors that are similar 

because both make use of prior information in their  estimation.  In addition, both MAP 

and EAP can estimate extreme response strings such as all correct or all wrong. However, 

both methods have a tendency for the ability estimate to be biased towards the mean of 

the prior distribution, which is referred to as regression towards the mean (Lord, 1986). 

In addition, in order for both methods to produce accurate estimates, it is assumed that 

the prior distribution being used is an accurate representation of the examinees ability 

distribution. This is especially true for short tests. 

 

Item Parameter Estimation 

Item parameters are estimated from the data during test standardization and when 

new tests are being implemented. Two commonly used MLE methods are the joint 

maximum likelihood estimation (JMLE) and the marginal maximum likelihood 

estimation (MMLE). The two methods differ in the way the probability of the observed 

response patterns is conceptualized. 

The JMLE method maximizes the joint likelihood function of both person and 

item parameters in order to simultaneously estimate the trait level and the item 

parameters. The likelihood function is the probability of a person’s responses to a test. In 

other words, it is the product of an examinee’s response probabilities (conditional on the 

examinee’s ability level and item parameters) across all items on a test. The joint 

likelihood function is the product of likelihood functions across all examinees, and 

represents the encounter of each examinee with each particular item. 
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In the first step, the algorithm starts with arbitrary provisional values for the 

examinees’ , such as the mean of an assumed ability distribution, and uses these 

provisional values to estimate the item parameters. The estimation of item parameters is 

done with the MLE method. It takes place first because typically there are a larger 

number of examinees than items and therefore there is more information for estimating 

the item parameters. In the next step, the item parameters are treated as known and are 

used in the MLE procedure to estimate the examinees’  level.  In the next iteration of the 

procedure, the item parameters are re-estimated using the newly estimated person 

parameters followed the person parameters being re-estimated using the new item 

parameter estimates. This back and forth process continues until successive 

improvements in the examinee’s ability estimates and the item parameter estimates are 

less than a pre-established convergence criterion. 

The JMLE is applicable to several IRT dichotomous models and is 

computationally efficient. However, the JMLE item parameter estimates tend to be biased 

for short length tests, and consequently, the standard errors are difficult to interpret. In 

addition, the item parameter estimates are inconsistent for fixed length tests. This means 

that the addition of more examinees to the procedure does not result in improved 

estimates because as we add more examinees we also add more parameters to be 

estimated. Last, the JMLE procedure (as  well as all other MLE procedures) can not 

estimate item or person parameters for extreme response patterns, such as all right or all 

wrong answers(Embretson & Reise, 2000). 
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The MMLE method separates the process of estimating item parameters from the 

process of estimating person parameters. It first estimates only item parameters and once 

a satisfactory model-data fit is obtained, it proceeds to estimate the person parameters. 

The MMLE procedure can be divided into two stages, the expectation and the 

maximization stages. In the expectation stage, the algorithm handles the unknown person 

parameters by expressing the probability of response patterns as expectations (or means) 

from a population trait distribution. In other words, the probability of the examinees’ trait 

level is specified by a probability distribution that is based on knowledge of the 

population or on the test data. For example, for each response pattern, the number of 

persons with the pattern is noted. Then for each particular ability level, the probability of 

a response pattern can be computed from the IRT model being used. Hence, the algorithm 

assumes an ability distribution for the population, and the expected number of persons 

passing each particular item is computed for each trait level.  

In the maximization stage, these expectations are used to obtain item parameters 

estimates that maximize the likelihood functions. A second expectation step uses the item 

parameters to re-calculate the expectations that are then used in a second maximization 

stage to re-estimate the item parameters. This back and forth procedure is employed until 

changes in the item parameter estimates are smaller than a pre-specified convergence 

criterion. After the final item parameter estimates are obtained, a separate algorithm such 

as the MLE, the MAP, or the EAP can be employed to estimate the examinees’ ability 

level. 
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Some of the advantages of the MMLE method are that it can be applied to all 

types of IRT models, it is efficient for both long and short tests, and estimates can be 

obtained for extreme response strings. However, this method must assume an ability level 

distribution and consequently, the item parameter estimates are contingent on the 

appropriateness of this assumption. 

In order to estimate item parameters, both methods make the assumption of local 

independence. Local independence means that given an ability level, the response to an 

item is unrelated to the responses to any other item in the test. Hence, after controlling for 

the trait level, local independence implies that no relationships remain between the test 

items. However, this assumption may be violated when several test items refer to one 

common stimulus. For example, when a passage is presented in a reading and 

comprehension test and the following questions refer to the passage. In such situations an 

alternative estimation method has been suggested. The next few sections of this 

document will discuss the use of testlets and the methods that have been employed in 

estimating item parameters when a test is composed of testlets. 

 

Testlets 

 The term testlet refers to a group of items that is developed as a unit, relates to a 

single concept area, and contains a fixed and predetermined number of paths that an 

examinee can follow. For example, a testlet may consist of a group of multiple choice 

questions referring back to a single passage, or a group of math questions referring to a 

single diagram (Wainer & Kiely, 1987). One advantage of using testlets is that they 
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increase efficiency in situations where the ability to understand a stimulus (such as a 

passage or a diagram) is being examined and a substantial amount of time is necessary 

for processing the stimulus. In such cases, it seems inefficient to use a large amount of 

testing time for a student to process a stimulus and to ask only one question about it 

(Wainer, et al., 2007). In addition, testlets can be used to examine multistep problem 

solving behaviors, which permits a more meaningful and valid interpretation of higher 

order thinking (Haladyna, 1992b). For example, context dependent item sets have been 

used for examining and scoring mathematical problem solving and for relating the 

observed item responses to stages of cognitive development (Biggs & Collis, 1982). 

 However, grouping questions around a single stimulus may result in dependency 

between the items. This is a possibility because all items within the set require 

appropriate analysis and interpretation of a single stimulus in order for the correct answer 

to be selected. Hence, a misinterpretation can result in more than one incorrect response. 

This characteristic of testlets allows for the possibility of correlated errors of 

measurement within the testlet (Crehan, Sireci, Haladyna, & Henderson, 1993), which 

would violate the IRT assumption of local independence. It has been demonstrated that 

ignoring the dependency between items, and scoring the test according to a dichotomous 

IRT model, may result in overestimation of the precision of proficiency estimates and in 

a bias in the estimation the difficulty and discrimination parameters (Sireci, Thissen, & 

Wainer, 1991; Thissen, Steinberg, & Mooney, 1989).  

The next session discusses two methods that have been used to address the 

dependency effect in testlets. The first method uses polytomous IRT models to score the 



 21 

items in a testlet as a single unit, whereas the second method implements a derivation of 

the 3PL IRT model and takes into account the dependency between the items in a testlet. 

 

Polytomous IRT Scoring of Testlets 

Previous studies have shown that applying dichotomous IRT models to data 

where local dependency is present results in overestimation of the precision of 

measurement (Sireci, et al., 1991). This issue arises because the probability of two or 

more dependent events occurring is less than the probability of two or more independent 

events occurring. One approach to managing local dependence proposed by Thissen and 

coleagues (1989) has been to consider the whole testlet as the unit of measurement and to 

apply a polytomous IRT response model. Several polytomous IRT response models have 

been developed and studied, however only a few of these models have been used in 

testing programs. This section of the document gives a general description of polytomous 

models and how these models can be used to score testlets.  

 Polytomous IRT models allow for scoring of partially correct answers and are used 

when item responses are allowed to have multiple categories. In such cases, the model 

represents the nonlinear relationship between an examinee’s trait level and the probability 

of responding in a particular category. When used to score testlets, polytomous models 

consider the testlet as the unit of measurement. In other words, instead of calibrating each 

item that composes the testlet individually using a dichotomous IRT model, the items in 

the testlet are combined and calibrated as a single polytomous item. The testlet, 

represented as a polytomous item, is scored from zero to the total number of items 
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associated with the common stimulus. This approach is considered a practical method for 

accounting for the dependency across the items in the testltet (Wainer, 1995) but it 

doesn’t provide information about examinees’ response patterns within the testlets. 

Because the testlet is scored as the total number of items correct, there is no distinction 

about which items were answered correct. 

 

Testlet Response Theory 

Testlet response theory (TRT) was designed as an extension of IRT dichotomous 

models that accounts for the local dependency between items within a testlet. This 

method treats the items in a testlet as independent units of measurement (Wainer, et al., 

2007) and estimates a testlet effect for each examinee. The testlet effect, measured by the 

gamma parameter, represents the interaction of person i with item j that is nested within a 

specific testlet. The dependency between items in a testlet (for a given examinee) is 

modeled by the gamma parameter, and all items in a testlet share the same gamma 

parameter in their scoring equation. 

 

Dichotomous TRT models 

Two dichotomous models have been created as generalizations of the 2PL and the 

3PL IRT models, the two parameter and three parameter TRT models (Bradlow, et al., 

1999; Wainer, et al., 2000). The study proposed in this document involves the 3PL TRT 

model and consequently only this model will be discussed in detail. 
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In order to account for the local dependency between items in a testlet, the 3PL 

TRT model includes as random effect parameter to account for the shared variance 

among items within a testlet. This is referred to as the testlet effect parameter. The model 

includes the 3 item parameters present in the 3PL IRT model, difficulty (b), 

discrimination (a), and pseudo-guessing (c), and two person-specific parameters, ability 

() and the testlet effect (id(j)).  

The testlet effect parameter models the local dependency between testlet items by 

including the same random effect for each item within a testlet. This common random 

effect across items accounts for the communality created by the items’ association with 

the same stimulus (Wainer, et al., 2000). When items are calibrated for the TRT model, 

the gamma parameter retrieved for each testlet corresponds to the estimated variance of 

the testlet effect and can be used as a measure of local item dependence. The testlet effect 

parameter used in the TRT model is a random variable selected from a normal 

distribution with mean of zero and standard deviation equal to the square root of the 

variance of the testlet effect (for a given testlet). 

The probability of person i, with ability level i, correctly answering item j within 

testlet d(j) was denoted as  

     

 (7) 
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where the parameters aj, bj, and cj represented the item discrimination, item difficulty, 

and pseudo-guessing parameter respectively for item j. The additional parameter id(j) 

modeled the dependency for person i responding to item j nested within testlet d(j). 

 Wainer et al. (2000) compared the performance of the 3PL IRT and the 3PL TRT 

models when applied to Graduate Record Examination (GRE) data. The authors found 

evidence of substantial testlet effect variance that was not accounted for by the 3PL IRT 

model. Consequently, the IRT model produced significantly larger discrimination 

estimates for the discrimination parameter (



 j) than the 3PL TRT mode,l which resulted 

in inflation of item and test information functions and in the under estimation of the 

standard error of ability estimation (Wainer, et al., 2007). 

 The 3PL TRT model was implemented within a Bayesian probability model that 

provides a joint probability distribution for all observable and unobservable quantities. 

This means that prior information about the test items and the characteristics of the 

examinees can be incorporated into the test calibration and into the examinees’ ability 

estimation by assigning a probability distribution for each of the parameters of interest. In 

TRT calibration, a Markov Chain Monte Carlo algorithm combined with Gibbs Sampling 

is used to produce a posterior distribution for each of the parameters of interest. The 

posterior distributions can then be used to compute summary statistics for the parameters 

such as mean and standard deviation. 
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Probabilities 

 Before discussing the MCMC method for estimating the TRT item parameters, 

some consideration is given to probability theory and how it fits in the Bayesian 

methodology. 

A probability is defined as the numerical likelihood, measured between 0 and 1, 

that an uncertain event will occur. In order to determine the probability of an event, we 

must define the sample space that includes the outcome of interest. For example, the 

outcome of interest might be obtaining a head after a flip of a coin. So, if we have a 

course of action (referred to as a random experiment) whose outcome is uncertain but 

includes the event of interest, we can create a list of all possible and mutually exclusive 

outcomes for that course of action. This list is the sample space of our random 

experiment.  

Once the sample space is determined, the probabilities for each possible outcome 

are typically assigned based on certain assumptions (such as independence) and based on 

previously observed data. For example, considering the flip of a coin, our sample space is 

head or tail. After repeating the coin flip an infinite number of times we come upon the 

observation that we get heads ½ of the times and tails ½ of the times. Hence, we assign a 

probability of .5 to heads, and the same probability to tails. In this example, each coin 

toss is an independent event (because obtaining a head in one coin toss, does not affect 

the likelihood of obtaining a head on the next coin toss) and heads and tails have equal 

likelihood.  
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It is important to note that an event does not have to correspond to a single 

outcome, an event can be defined as a collection of one or more individual outcomes. For 

example, an event can correspond to obtaining three heads out of five coin-tosses, and the 

likelihood of different numbers of heads out of n coin-tosses can be described by a 

probability distribution. For continuous variables, the likelihood of the variable assuming 

certain values is described by a density function, and is calculated by integrating the area 

under the density curve. 

 

Bayesian Theory 

We are typically interested in the probability of outcomes that result from 

combining various events in various ways. For example, the joint probability of event A 

and B, correspond to the probability of the event of A and B occurring together, and is 

denoted



P(AB) . Whereas the conditional probability is used to determine how two 

events are related, or in other words, the probability that an event will occur, given that a 

related event has occurred. For example, if we are interested in the probability of event A 

happening given event B has occurred, this is denoted by P(A|B) and is calculated as: 



P(A |B) 
P(AB)

P(B)          (8) 

By moving the terms of the equation above, we also have: 



P(AB)  P(A |B)P(B)        (9) 

Whereas the probability of event B occurring given A has taken place is calculated as: 
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P(B | A) 
P(AB)

P(A)          (10) 

By moving the terms of the equations above we obtain the following: 



P(AB)  P(B | A)P(A)        (11) 

Since the right side of equations 9 and 11 are both equal to 



P(AB) , we can combine 

both equations to obtain: 



P(A |B)P(B)  P(B | A)P(A)         (12) 

Equation 12 is important because it give us Bayes’ rule, which constitutes the core 

of Bayesian inference. Bayes’ rule indicates how probabilities change in the light of new 

data. In practice, it states that the probability of event A given event B, is equal to the 

conditional probability of event B given event A multiplied by the prior probability of 

event A, and divided by the sum of the conditional probability of B under all possible 

events of A. This is expressed as:  



P(A |B) 
P(B | A)P(A)

P(B | A)P(A)
        (13) 

The denominator in the equation above corresponds to the marginal probability of 

the observed data, and acts as a normalizing constant that allows the posterior distribution 

to integrate to one. Because the denominator is simply scaling the posterior distribution, 

Bayes’ Theorem can be re-stated as a proportionality, where we say that the posterior 

distribution of interest is proportional to the likelihood of the data times the prior 

distribution. 
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In IRT, the goal is to estimate examinees’ ability level given the examinees’ 

responses to the items on a test (the ability being estimated is referred to as the posterior 

distribution of interest). Following Bayes’ Theorem, we can multiply the sampling 

distribution of the observed responses (which represents the likelihood of the data given 

the model’s parameters) by the probability distribution assigned to the parameters 

(corresponding to our prior knowledge or belief about the students’ ability distribution) to 

obtain a posterior distribution.  

As described earlier, IRT item parameters are usually calibrated with an MMLE 

approach. Whereas the MLE, EAP or MAP methods are used to estimate the students’ 

ability. In EAP and MAP, the likelihood of the data given the model’s parameters, is 

multiplied by a probability distribution representing prior knowledge or belief about the 

students ability. The multiplication of these two distributions gives us a posterior 

distribution, and the mean or mode of this posterior distribution is used to estimate the 

students’ ability level. 

For TRT models, a different method is used for the estimation of parameters. The 

TRT models were designed within a Bayesian probability frame that provides a joint 

probability distribution for the data, the person parameters ( and the item parameters 

(a, b, c). This method uses a Markov Chain Monte Carlo (MCMC) algorithm combined 

with Gibbs sampling to produce a posterior distribution for each of the parameters being 

estimated. These posterior distributions are used to compute summary statistics for each 

of the parameters, such as mean and standard deviation. The summary statistics are then 

used as estimates for the parameters of interest. 
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Markov Chain Monte Carlo 

The Markov Chain Monte Carlo (MCMC) method provides a practical way of 

estimating multivariate posterior distributions. The Monte Carlo algorithm evaluates the 

true mean of random variables by drawing samples from a proposed posterior distribution 

and approximating the expectation by adding the obtained values and dividing by the 

number of draws. Thus, the means of a large number of samples are used to approximate 

the population mean. According to the law of large numbers, when the samples are 

independent and the number of draws is large, the mean of the sample means 

approximates the true population value. The Monte Carlo algorithm uses a Markov chain 

(ran for a long series of iterations) and a sampling mechanism based on the Metropolis-

Hasting algorithm to draw values from the posterior distribution (Gilks, et al., 1998). 

The Markov Chain performs its sampling by drawing random values throughout 

the space of the posterior distribution. In Markov Chains, once the procedure is 

initialized, the transition probabilities between sample values depend only on the most 

recent value of the chain, and this quality is what characterizes the sampling chain as a 

Markov Chain (Gilks, et al., 1998). 

 

Metropolis-Hastings and Gibbs Sampling 

The Metropolis-Hastings algorithm provides a transition kernel that evaluates the 

probability of the newly drawn value given the immediately previous one, and decides 

whether the chain will assume the new state or keep the previous one (Chib & Greenberg, 

1995). In simple terms, if the jump from the present state x to the new state y goes 
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“uphill” on the density function, i.e., the probability of y occurring is higher than the 

probability of x occurring, the jump is always accepted, and the Markov chain assumes a 

new value for the parameters being estimated. If it goes “downhill”, the jump is accepted 

with some nonzero probability. 

The Gibbs sampler is a special case of the Metropolis-Hasting method where the 

chain updating consists of sampling from a fully conditional distribution (Gilks, et al., 

1998). This means that the Gibbs sampler iteratively draws values from the conditional 

distribution of one component of a vector of parameters given the current values of all 

other parameters (Casella & George, 1992).  

 

Chain Convergence 

After a sufficiently large number of draws, the chain will gradually assume a 

unique stationary distribution, where the probability values are independent of the actual 

starting value. A stationary distribution is one in which the unconditional probability of 

moving from a present state x to a new state y is the same as the unconditional 

probability of moving from y to x (Chib & Greenberg, 1995). 

The process of achieving a stationary distribution is referred to as chain 

convergence, and the set of iterations from the beginning of the chain to this point is 

sometimes called the burn-in portion of the chain. The term “burn-in” refers to the 

practice of discarding an initial portion of a Markov chain sample so that the effect of 

initial values on the posterior inference is minimized.  
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Issues affecting the MCMC estimates 

Autocorrelation 

In the early stages of the Markov chain, parameter values being sampled in 

consecutive iterations are highly correlated (typically referred to as auto correlation). This 

can result in the initial values of the chain having a large influence on the final parameter 

estimates and in the underestimation of the Monte Carlo standard error (Gilks, et al., 

1998).  

Researchers have suggested two main ways of addressing this autocorrelation 

issue: One advice has been to run the MCMC algorithm for a very large number of 

iterations (in order to ensure that the entire posterior space has been sampled from) while 

only saving every n
th

 iteration of the chain (where n is a value larger than 1). This process 

is sometimes referred to as thinning the chain. However, evidence indicates that thinning 

a Markov chain can reduce the precision of the parameter estimation (MacEachern & 

Berliner, 1994). Another suggestion has been to discard the set of iterations prior to chain 

convergence before obtaining final parameter estimates. Neither discarding the burn-in 

phase, nor thinning the chain are mandatory practices, however both are capable of 

drastically reducing the amount of data saved from a MCMC run. 

The number of iterations to be discarded as burn-in is not always easy to identify. 

It typically depends on the starting point of the chain and the rate of convergence of the 

sampling distribution into the stationary distribution (Gilks, et al., 1998). This is 

important because the reliability and accuracy of the MCMC estimation depends of the 

certainty that the algorithm is drawing samples from the stationary posterior distribution. 
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Several methods have been proposed in order to assess chain convergence, the following 

are the most commonly used methods: Graphical methods include history plots, which 

chart parameter value at a time t against the iteration number, and autocorrelation plots, 

which show the correlation between parameter values over a range of chain iterations. 

The history plot allows the visual inspection of whether the chain is sampling around the 

mode of the distribution (an indication of convergence). The autocorrelation plot allows 

the visual inspection of the serial correlation present in the sampling chain, and a 

decrease in autocorrelation indicates that the chain may be closer to convergence.  

Another commonly used method is to run and monitor multiple parallel chains, 

and use some diagnostic procedure to compare the parallel chains. Two well know 

procedures are the Brooks, Gelman and Rubin method, and the Raftery and Lewis indices 

(Cowles & Carlin, 1996). According to the Brooks, Gelman and Rubin method, the 

variance within the chains should be very similar to the variance across the chains. 

Hence, if the chains have converged, the two variances should be equal and an analysis of 

variance should be used to test this equality. The Raftery and Lewis method takes into 

consideration the autocorrelation present in the chains and provides an index that 

indicates the increase in the number of iterations necessary to reach convergence. In 

addition, some authors suggest that researchers create a habit of discarding the first 2% of 

the full chain (Geyer, 1992), and run some parallel estimation method (other than the 

Bayesian one) that can be used as a comparison base (Sinharay, 2004). The techniques 

mentioned above are typically used in combination and tend to provide some guidance 
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for the number of iterations to run, however a fail proof method to diagnose convergence 

has not yet been identified. 

 

Prior characteristics, sample size, test length 

Issues associated with the characteristics of priors, the examinee sample size, and 

the length of the test being administered will be discussed together in this session. The 

effects of these three variables are related to each other and apply to MCMC estimation 

as well as other Bayesian estimation methods, and consequently can be better understood 

when presented together. 

Several studies have indicated that when prior distributions are a good 

representation of the real parameters, Bayesian methods produce estimates that are more 

accurate than the estimates produced by MLE based methods. This is the case because 

Bayesian methods add prior knowledge about the parameters of interest to the observed 

data, which results in more information being available for the estimation of parameters. 

However, a loss in accuracy can be observed when prior distributions do not match the 

real distribution of the parameters being estimated. 

For example, in a simulation study using the 3PL model, Gao and Chen (2005) 

compared item parameter estimates obtained by MMLE (described earlier in this 

document) with the ones obtained by marginal Bayes modal estimation (MBME). In 

general terms, MBME is a Bayesian method that adds prior information about the item 

parameters to the likelihood function that the MMLE estimator maximizes. The results of 

their study indicated that when a prior distribution matched (or closely resembled) the 
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distribution of the true parameters, the Bayesian method provided more accurate 

estimates than the MMLE method for all three item parameters. But when priors were not 

well matched, the Bayesian parameter estimates were less accurate than the MMLE 

estimates. This decrease in estimation accuracy is due to regression towards the mean 

(also referred to as bias or shrinkage). Regression towards the mean corresponds to the 

tendency of parameter estimates to be pulled towards the mean of the prior distribution. 

In other words, when the prior distribution doesn’t reflect the true distribution of the 

parameter, the mean of the prior distribution will not reflect the true mean of the 

parameter being estimated, and regression towards the mean will pull the estimates away 

from their true value.  

Similar results were observed by Sheng (2010) in a simulation study that 

investigated the effect of sample sizes, test length, prior variances, and the extent of 

match between priors and true item parameter distributions on the accuracy of parameter 

estimation for the 3 parameter normal-ogive model (3PNO). The 3PNO and the 3PL 

models produce near equivalent values and interpretations of item parameters when the 

3PL model is scaled by a constant. The study combined a MCMC algorithm with Gibbs 

sampling to estimate item parameters. The sample sizes ranged from 100 to 1000 

examinees and the item parameter priors had means between 1 and 6 standard deviations 

from the true item parameter means. This choice of prior distributions ranged from being 

appropriate to being severely mismatched to the true item parameters. The study 

demonstrated that well matched priors (with means no more than two standard deviations 
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from the true parameter means), combined with larger sample sizes and/or longer tests 

resulted in more accurate estimates and faster Markov chain convergence.  

Sheng’s study (2010) also indicated that when priors were well matched to the 

true parameters, the use of more informative priors contributed to the increase in 

estimation accuracy. This indicates that the contribution of a prior to parameter 

estimation also depends on the variance of the prior distribution (larger variances result in 

less informative priors). This is the case because when the variance of a prior distribution 

is small, that prior will be narrowly distributed around its mean. In such case, the peak of 

the prior distribution will have a larger influence in the posterior distribution and 

consequently on the estimation of item parameters. In addition, final parameter 

estimation is also influenced by the sample size (i.e., the number of examinees), and by 

the length of the test being administered. When a large sample and/or a long test is used, 

the observed data (the examinees’ responses) will have more influence on item parameter 

estimation and prior distributions will be less influential. Conversely, in the presence of 

small samples and/or short tests, the prior distributions attributed to the model parameters 

will have more influence on the final parameter estimates. 

The literature on the consequences of choosing inappropriate priors and of the 

effect of sample size and test length on item parameter calibration spans several decades. 

Earlier studies using other Bayesian methods provide similar evidence. Gifford and 

Swaminathan (1990) used a Bayesian procedure that obtained joint modal estimates of 

the posterior distribution and used the Newton-Raphson procedure to solve the modal 

equations. The authors observed that bias in item parameter estimates was stronger for 
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priors that were more informative and where more mismatched to the real parameter 

distributions. In addition, Gifford and Saminathan’s study showed that the detected bias 

could be attenuated or reinforced by the sample size and by the length of the test (Gifford 

& Swaminathan, 1990). Together, the studies mentioned above indicate that several 

factors can affect the accuracy and efficiency of the MCMC algorithm and should be 

taken into consideration when calibrating item parameters. 

 

Summary and statement of problem 

 The main focus of this study is to investigate the impact that different sample 

sizes, mismatched prior distributions for the ability parameter, and the number of 

iterations discarded from the Markov chain will have on the 3PL TRT person parameter 

() and item parameters ( a, b, c) estimation. 

 Accurate item parameter estimation plays a fundamental role in test item analysis, 

test construction, and ability estimation. In fact, successful application of IRT methods 

depends on the availability of reliable and accurate methods for estimating item 

parameters. Previous simulation studies that have compared maximum likelihood and 

Bayesian methods indicated that the Bayesian methods produced item parameter 

estimates that had a higher correlation with and lower root mean squared deviation from 

the true parameters (Gao & Chen, 2005; Sheng, 2010; Swaminathan & Gifford, 1986; 

Tsutakawa, 1990). However, the accuracy of Bayesian item parameter estimates can be 

impacted by the characteristics of the priors chosen to represent knowledge about the 

parameters. Moreover, test length and sample size have also been shown to affect the 
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accuracy of item and person parameter estimates. 

Several studies have demonstrated that informative priors that do not correctly 

match the true parameter distribution result in regression towards the mean (Gao & Chen, 

2005; Gifford & Swaminathan, 1990). This shrinkage of the estimates corresponds to a 

tendency of parameter estimates to be pulled towards the mean of the prior distribution. 

Gao and Chen (2005) investigated the 3PLitem parameter estimation with the MBME 

method. In this study, the authors compared the accuracy of estimation when priors were 

non informative, informative and matched, and informative but mismatched. In addition, 

the authors compared the accuracy of estimation for various sample sizes (100, 500, 

2000) and various test lengths (10, 30, 60). Gao and Chen’s (2005) study demonstrated 

that mismatched priors negatively impacted the estimation of all item parameters but 

were most detrimental to the estimation of the pseudo guessing parameter. In addition, 

this effect was lessened when the sample size being used for the calibration and the test 

length increased. 

These findings were confirmed by another study that investigated the MBME 

Bayesian method. Tsutakawa and Johnson’s (1990) study indicated that when sample 

sizes used for calibrating the 3PL item parameters are smaller than 1,000, the accuracy of 

the estimates decreased noticeably. Most importantly, when the inadequate item 

parameter values where used to estimate examinees’ ability levels, the variance of the 

estimated theta values was increased. This indicated a lower level of precision in the 

ability parameter estimation (Tsutakawa & Johnson, 1990). Furthermore, a study by 

Sheng (2010) confirmed the effect of mismatched priors on the MCMC estimation of the 
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3PL item parameter estimate. More interestingly, Sheng’s study demonstrated that 

informative priors that are mismatched to the true item parameter distributions can 

decrease the rate of convergence of the Markov Chain and render the MCMC estimation 

procedure less efficient. 

Another set of concerns are related to the MCMC method. The accuracy of the 

MCMC estimation relies on the assumption that the Markov Chain has converged onto a 

stationary distribution (Gilks, et al., 1998). Some researchers suggest that anywhere 

between the first 300 iterations to the first 20,000 iterations should be eliminated because 

the chain has not yet converged (Bradlow, et al., 1999; Sinharay, 2004). While other 

researchers suggest running several parallel chains, and using a combination of 

convergence detection methods (Cowles & Carlin, 1996; Kim & Bolt, 2007) in order to 

decide on a number of burn-in iterations to discard. In reality, the questions of how to 

detect chain convergence and how to decide on a correct burn-in length are closely tied to 

the question of efficiency. The longer the burn-in chain, the longer it will take for the 

algorithm to produce an estimate. Hence, from the perspective of computer processing 

time, it seems advantageous to discard fewer iterations. However, the effect of varying 

the length of burn-in has not yet been investigated. 

 Together, these studies indicate that several factors can affect the Bayesian 

estimation of item parameters when using the MCMC method, and consequently can 

impact inferences made about the examinees taking a test. However, no study has 

investigated the impact of these factors when using TRT models. This study will 

investigate the effects of different sample sizes, examinee ability distributions, and 
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MCMC burn-in chain lengths on the estimation of item parameters for the 3PL TRT 

model. 

 

  



 40 

Proposed Research Study 

The following proposed research study section contains an overview of the 

research focus followed by a proposed methods section that details the design of the 

study and a discussion of anticipated outcomes. 

The 3PL TRT model will be used to evaluate the impact of sample size, examinee 

ability distribution, and the MCMC burn-in chain length on the accuracy of testlet item 

parameters estimation. Two sample sizes, two ability distributions, and 3 MCMC burn-in 

chain lengths were combined to create a total of 12 study conditions. 

 

Examinee Ability Distribution 

 Two underlying simulated examinee ability distribution will be used in this study: 

normal (with a mean of zero and standard deviation of one) and a skewed, beta 

distribution (with an  parameter of 5.0 and  parameter of 1.8). The normal distribution 

represents the ability distribution that is typically assumed for the examinee population in 

most educational measurement settings and research studies. A beta distribution with 

these specific  and  parameter values has been used previously (Gorin, Dodd, 

Fitzpatrick, & Shieh, 2005) and results in a negatively skewed distribution with a mean of 

.74, a standard deviation of .16, a skew of -.73, and a kurtosis of zero. The sampled 

ability values will then be transformed to center the distribution on zero and produce a 

standard deviation of 1, resulting in a mean ability of 1.5 (Gorin, et al., 2005). This 

skewed distribution represents a test-taking population that is, on average, more 

proficient in the trait being measured by the test. One possible scenario in which this may 
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occur is when, after several years in an assessment program, instructional improvements 

and familiarity with the test format leads to growth in students’ achievement on the test 

Gorin (2005).  

 This condition is important because several studies have demonstrated that in 

Bayesian estimation, the adequacy of the prior distributions assigned to the parameters of 

interest influences the accuracy of the estimation (Gao & Chen, 2005; Gifford & 

Swaminathan, 1990). SCORIGHT, the software that will be used in this study for 

parameter estimation, automatically assigns normal prior distributions to ability and item 

parameters (Wang, 2004). Therefore, the MCMC algorithm should handle estimation 

from simulated samples coming from a normal distribution better than from a skewed 

distribution. In addition, the effect of inaccurate priors seems to interact with the effect of 

sample size on parameter estimation (Gao & Chen, 2005). Consequently, the conditions 

with inadequate prior and smaller examinee sample size will be of particular interest. 

 

Examinee Sample Size 

Two sample sizes, one composed of 1,000 and another of 7,000 simulated 

examinees will be used in this study. According to previous research, a sample of at least 

1000 examinees is necessary to estimate item parameters with the 3PL model (Hulin, 

Lissak, & Drasgow, 1982) and an even larger sample is sometimes recommended (Gao & 

Chen, 2005). In addition, Gao and Chen (2005) have demonstrated that when examinee 

sample sizes are not large and the prior distribution being used is not appropriate, 

parameter estimation tends to be less accurate when compared with the real parameter 
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values. A group of 1,000 simulees will serve as the small sample size condition. Whereas 

a group of 7,000 simulees will serve as the large calibration sample. This specific number 

of simulees was selected in order to match the original study that provided item 

parameter values for the present study. The item parameters were originally calibrated 

from a sample of close to 7,000 examinees taking a national test (Boyd, 2003). 

 

Burn-in Length 

The choices of burn-in chain lengths were based of previous studies. Wainer et. 

al. (2000) reported chain convergence for a 3PLTRT model in 4,000 iterations, and 

indicated that even shorter chains might have been enough for the MCMC algorithm to 

reach a stationary distribution (Patz & Junker, 1999; Wainer, et al., 2000). However, 

burn-in chains of 7,000 iterations were used in Keng’s (2008) and Boyd’s (2003) studies 

and even longer burn-in chains of 20,000 iterations were recommended in Sinharay’s 

study (Sinharay, 2004). Hence, the following burn-in chain lengths will be used: 4000, 

7000, and 20,000 iterations. 

 

Known Item Parameters 

The item parameter values used to simulate examinee responses in this study will 

come from a previous study by Boyd (2003). In this study, item parameter values were 

calibrated from examinee responses to 22 forms of a nationally administered test. The 

average number of examinees per form was 7,234 examinees with a minimum of 2,510 

and a maximum of 14,439 examinees. Each form contained 55 multiple-choice items 
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distributed across 8 reading passages. The passages differed in the number of associated 

items (6, 7, 8, or 10 items per passage) and in the content of the passages. The testlet 

parameters for each test form were calibrated using the SCORIGHT software (Wang, 

Bradlow, & Wainer, 2001). 

In order to simulate a test form used by Boyd (2003), this study will use a test 

containing eight testlets and their calibrated parameters from the data set used by Boyd. 

The test will be composed of 55 questions distributed into 8 testlets. The test content will 

correspond to approximately 37.5% Area I, 37.5% Area II, and 25% Area III. In terms of 

the number of items per passage, five of the passages will have 6 items, one will have 7 

items, one will have 8 items, and one will have 10 items associated with it. 

 

Data Simulation 

The testlet response data will be generated using the 3PL-TRT SAS data 

generation program developed by Boyd (2003). Response data will be generated for forty 

samples, twenty with 1,000 simulees each, and another twenty with 7,000 simulees each. 

For each of the twenty samples, half will correspond to a sample of examinees from a 

normal ability distribution, and the other half will correspond to a sample of examinees 

from a negatively skewed ability distribution. In summary, there will be ten samples of 

1,000 subjects from a normal  distribution, 10 samples of 1,000 subjects from a 

negatively skewed  distribution, 10 samples of 7,000 subjects from the same normal  

distribution, and 10 samples of 7,000 subjects the same negatively skewed  distribution. 
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Sets of 10 samples per condition have been used in previous studies (Boyd, 2003; Gorin, 

et al., 2005; Keng, 2008). 

For the purposes of generating data, each simulee will be assigned a theta value 

by randomly selecting a number from a normal distribution (with mean of zero and 

standard deviation of one, as described above) or from a negatively skewed beta 

distribution (with parameters  = 5.0 and  = 1.8, as described above). The probability of 

an examinee responding to an item is based on the randomly selected theta value, the 

item parameters obtained from Boyd’s study, and a generated person specific testlet 

effect parameter, , for each testlet. For each examinee, the  parameter will be randomly 

generated from a normal distribution with mean of zero and a variance equal to the 

variance of the testlet effect ( ). In order to introduce random error, the simulee’s 

response will be compared to a randomly selected number form a uniform distribution 

ranging from zero to one. The simulee will receive a correct response (assigned a value of 

one in the response string) if the random number is less than the simulee's estimated 

probability and an incorrect response otherwise (assigned a value of zero). This process 

will be repeated for each item and every examinee in each of the forty samples. 

 

Parameter Estimation Procedures 

All parameters will be estimated from the simulated data using the SCORIGHT 

software (Wang, et al., 2001). This process will generate three parameter estimates per 

item (difficulty (b), discrimination (a), guessing (c)), and an effect parameter (jd(i)), 
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representing the interaction of an examinee with the stimulus in a testlet, and an ability 

parameter () for each examinee. The testlet dependency effect will be allowed to vary 

from testlet to testlet because in real test data it is likely that some passages exhibit more 

context effects than others (Wainer, Bradlow, & Du, 2000). 

The parameters will be estimated using a MCMC algorithm with Gibbs sampling 

to draw random values from the posterior distribution of the model parameters and obtain 

final estimates for item and testlet parameters, and ability estimates for the examinees. 

There are 3 different conditions for the length of the burn-in chain: 4,000, 7,000, and 

20,000 iterations, and therefore the model and ability parameters will be estimated three 

times for each examinee sample. For each estimation run, after discarding the burn-in 

iterations, every 5
th

 iteration of the following1,000 iterations will be used to generate the 

posterior distribution of the model parameters. Hence, the three Markov chains will be 

run for a total of 5,000, 8,000, and 21,000 iterations. For each estimation procedure, two 

parallel chains will be produced and will allow SCORIGHT to calculate chain 

convergence diagnostics. 

The SCORIGHT program has a built in, non changeable, set of priors for the 

parameters being estimated. Accordingly, it assigns the following prior distributions to 

the examinee ability parameter and the item and model parameters: 
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i ~ N(0,1)

a j ~ N(a, a

2)

b j ~ N(b , b

2)

log(
c j

1 c j
) ~ N(c , c

2)

 id ( j ) ~ N(0, d ( j )

2 )
 

Where the prior for i is normally distributed, has a mean of zero, and a standard 

deviation of 1. The discrimination parameter, aj, was assigned a prior distribution that is 

normally distributed with a mean equal to the mean of the a (a) and a standard deviation 

equal to the variance of a. (



 a

2). The prior for the difficulty parameter, is a normal 

distribution, also with mean equal to the mean of the b parameter (b) and standard 

deviation equal to the variance of the b parameter (



 b

2). To better approximate normality, 

the cj parameter was re-parameterized to cj = (cj/(1-cj)) and was assigned a prior that is 

normally distributed, has a mean equal to the mean of the cj parameter (c), and standard 

deviation equal to the variance of the c parameter (



 c

2). Finally, the testlet effect 

parameter for each testlet and each person, d(j), was assigned a normally distributed prior 

with mean of zero and standard deviation equal to the variance of the  parameter (



 d ( j )

2 ). 

In order to express the uncertainty about the means and variances in the prior 

distributions above (



a,b,c,a
2,b

2,c
2,d( j )

2
), these parameters were also assigned 

distributions (or hyperpriors). The means were assigned non-informative normal 
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distributions, all with mean of zero and very large standard deviations. Whereas the 

variances were all assigned slightly informative inverse chi-square distributions with 

degrees of freedom equal to 0.5. 

 

Data Analysis 

The goal of this study is to examine the accuracy of estimation of the item 

difficulty, discrimination, and pseudo-guessing parameters, and the testlets’ effect 

parameter, and the examinees’ ability across several conditions. The data analysis will 

focus on comparing the estimated parameters to the true parameters used to simulate the 

data. For each sample it will also focus on examination of the Pearson product-moment 

correlation between the estimated and the true parameters, the root mean squared error 

(RMSE), and bias of the estimated parameters. These outcome measures have been used 

in previous studies of parameter estimation using the 3PL TRT model (Boyd, 2003; 

Keng, 2008; Wainer, et al., 2007). All measures will be averaged across the 10 sample 

replications for each of the study conditions. 

The RMSE measures the difference between the parameters estimated by the 

model and the original parameters used to simulated the data. The formula for the RMSE 

is as follows: 

RMSE =  
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Where  symbolizes an estimated parameter,  symbolizes the original parameter value 

used for simulating the data, and n corresponds to the sample size. 

 Bias corresponds to the average difference between the known and estimated 

parameters. The equation for Bias is as follows: 



Bias 

(a
^

k ak )
k

n



n
 

Where 



a
^

 corresponds to an estimated parameter, a corresponds to the original parameter 

value used for simulating the data, and n corresponds to the sample size. 
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Expected Results 

Sample size 

A previous study that investigated the effect of sample sizes on the accuracy of 

the 3PNO item calibration, using the MCMC estimation method, indicated that samples 

smaller than 1,000 examinees may result in diminished estimation accuracy (Sheng, 

2010) Similar results were observed when the MBME estimation method was used to 

investigate the 3PL item parameter calibration (Gao & Chen, 2005; Tsutakawa & 

Johnson, 1990). The MCMC process for calibrating the 3PL TRT model parameters 

involves the combined estimation of 2 person parameters () and 3 item parameters (a, 

b, c). Therefore, as the sample size increases the number of parameters associated with 

the MCMC estimation process also increases. Despite this increased complexity, larger 

sample sizes represent more observed data and result in the likelihood of the data having 

a stronger influence on the final estimates. Consequently, it is anticipated that an increase 

in sample size will improve the calibrations accuracy. 

 

Skewed Ability distribution 

A previous study has investigated the effect of priors that were mismatched to the 

true item parameter distributions on the final item parameter estimation. Sheng (2010) 

used MCMC to estimate item parameters for the 3PNO model and demonstrated that 

mismatched priors can negatively impact the accuracy of item parameter estimation. 

However, the mentioned study did not investigate the effect of having a mismatched prior 

on the ability parameter In MCMC, each iteration of the Markov Chain involves the 
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estimation of each parameter conditional on all other parameters’ values in that iteration. 

Consequently, it is expected that an inappropriate prior for the ability distribution will 

affect the efficiency of the Markov Chain. In other words, it is expected that it will take 

the MCMC algorithm a larger number of iterations to converge onto a stationary 

distribution. 

 

Length of Burn-in 

No previous studies have examined the influence of varying burn-in lengths on 

parameter estimation. However, a study by Sinharay (2004) investigated the rate of chain 

convergence for the 3PL TRT model when using a sample size of 1600 examinees and a 

test with 60 items divided among 7 testlets. Sinharay’s study indicated that more than 

10,000 iterations were needed before the TRT  parameter distribution stabilized. Based 

on this evidence, it is anticipated that conditions with the shortest burn-in (4,000 

iterations) will produce parameter estimates that will have smaller correlation with the 

real parameters and larger RMSE estimates. Studies examining item and/or ability 

parameter estimation for the 3PL TRT model have used different values for burn-in. 

Keng (2008) and Boyd (2003) both used 7,000 iterations, whereas Sinharay (2004) 

suggested the need to discard at least the first 20,000 iterations. Based on these studies, it 

is anticipated that the conditions with 7,000 and the 20,000 iterations will produce better 

estimates than the condition with the smaller burn-in chain. In addition, the condition 

with a burn-in of 20,000 iterations is anticipated to provide better estimates than the 
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condition with 7,000 iterations. However, the differences in parameter estimates between 

these two conditions are expected to be small. 

 

Sample size, skewed distribution, and length of burn-in 

When all three factors are taken into account, it is anticipated that the condition 

with the small sample size, skewed prior, and short burn-in (4,000) will produce the least 

accurate parameter estimates. Whereas, the condition with the large sample size (7,000 

simulees), normal prior, and longest burn-in chain (20,000) is anticipated to produce the 

most accurate estimates. 

The contrast between the 7,000 and 20,000 burn-in conditions is anticipated to be 

small when the sample size is large and the prior distribution for the simulees’ ability 

matches the true distribution. However, it is anticipated that noticeable differences in the 

accuracy of parameter estimation will occur between all burn in conditions when the 

smaller sample size and the skewed ability distribution are combined. This is because the 

effects of a mismatched prior and a smaller sample size on the MCMC estimation may be 

partially compensated for by the longer chain. 
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Summary and conclusions 

Previous studies of Bayesian methods have stated the need for determining that 

the sampling chain has converged onto the posterior distribution, and have recommended 

that the pre-convergence iterations be discarded before proceeding to estimate the 

parameters of interest (Baker & Kim, 2004; Gilks, et al., 1998; Sinharay, 2004). 

However, no previous studies have investigated the direct effects of varying the length of 

burn-in on parameter estimation. 

In addition, several factors may affect chain convergence. For example, the priors 

selected for the parameters of interest, and whether they reflect the true probability 

distributions of such parameters, may influence how long a Bayesian chain takes to 

converge onto a stationary distribution. This is important because one of the main 

criticisms to the MCMC method is that it is very time consuming and consequently 

impractical for real life applications. In TRT, a large portion of the MCMC chain 

corresponds to the burn-in phase. Therefore it seems interesting to investigate whether it 

is possible to shorten the burn-in without affecting the accuracy of the estimation.  

Furthermore, the examinee sample size is another factor shown to influence 

parameter estimation in Bayesian methods. The sample size reflects the amount of data 

available to the algorithm. The more data available, the smaller the influence of the 

priors, and consequently the smaller the tendency for the parameter estimates to be 

shifted towards the mean of the prior distributions. The proposed study investigates how 

sample sizes, prior distributions, and the number of burn-in iterations discarded from the 

Bayesian estimation chain affect the accuracy of the MCMC parameter estimation. 
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In Boyd’s study (2003), the MCMC algorithm was allowed to run for 8,000 

iterations. Of those, 7,000 cycles were discarded as burn-in. Therefore, it will be 

interesting to examine the effects of a shorter (4,000 iterations) burn-in when the 

examinee’s ability distribution matches the distribution assigned by SCORIGHT (i.e., the 

normal distribution) and the examinee sample size is large (7,000 simulees). 

In addition, several studies have indicated that priors can have a biasing effect on 

parameter estimates. Therefore, it will be interesting to examine the accuracy of estimates 

when the large sample size (7,000 simulees) and the longest burn-in (20,000) chain are 

combined with the negatively skewed (and consequently mismatched) prior for the 

simulees’ ability distribution. Because the longer burn-in chain will afford the MCMC 

algorithm more iterations to stabilize onto a stationary distribution, and the large sample 

size will have more weight on the estimation than the prior, it is speculated that the effect 

of a mismatched prior will not be as pronounced in this condition. 

 

Limitations 

 There are several advantages of using an already developed, tested, and well 

established software for calibrating test data. However, it is important to note that 

SCORIGHT has a predetermined set of priors for the model parameters that can not be 

modified to fit the researcher’s needs. This may become a problem when the person 

parameter distributions do not match the priors in the program. For example, the 

examinee ability distribution may be skewed, or the test may be targeting a population 

with skewed ability distribution, in which case the majority of the items on the test may 
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be of higher (or lower) difficulty, resulting in the difficulty parameter not following a 

normal distribution either. Therefore, it would be useful to ensure that the priors assigned 

by SCORIGHT do fit what is known about the parameters real distributions, specially 

when small samples are being used in the calibration. 

 

Future directions 

Several studies have indicated a positive effect of test length on the accuracy of the 

Bayesian item parameter estimation. For example, in Tsutakawa and Johnson’s (1990) 

study of the 3PL model using the MBME method to estimate item parameters, the 

authors indicated that increasing the size of the calibrating sample alone would not 

increase the precision of the ability estimates, because the major component of the 

observed variance in estimates was the randomness of the examinees’ responses to the 

test items. Consequently, the authors concluded that increases in test length would be 

necessary to improve estimation precision In addition, other studies have indicated that 

the sample size and test length have an interactive effect on Bayesian parameter 

estimation accuracy (Baker, 1998) and this is even more pronounced for the 3PL model 

(Hulin, et al., 1982). Consequently, in future studies, it would be interesting to investigate 

the effects of the test length, a mismatched prior distribution for the ability parameter, 

and the length of burn-in. 
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