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Abstract 

 

Location-Based Social Networking Data:  

Doubly-Constrained Gravity Model Origin-Destination  

Estimation of the Urban Travel Demand for Austin, TX 

 

Meredith Kimberly Cebelak, M.S.E. 

The University of Texas at Austin, 2013 

 

Supervisor:  C. Michael Walton 

 

Populations and land development have the potential to shift as economies change 

at a rate that is faster than currently employed for updating a transportation plan for a 

region.  This thesis uses the Foursquare location-based social networking check-in data 

to analyze the origin-destination travel demand for Austin, Texas.  A doubly-

constrained gravity model has been employed to create an origin-destination model.  

This model was analyzed in comparison to a singly-constrained gravity model as well as 

the Capital Area Metropolitan Planning Organization’s 2010 Urban Transportation 

Study’s origin-destination matrices through trip length distributions, the zonal origin-

destination flow patterns, and the zonal trip generation and attraction heat maps in an 

effort to validate the methodology.  
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Chapter 1:  Introduction 

Trip distribution is a significant portion of the four-step transportation planning 

process.  The data used for the creation of origin-destination (O-D) matrices 

conventionally come from the traditional household survey.  These surveys are often 

time consuming and can be an expensive endeavor.  The use of traffic counts is another 

data collection method that can be implemented, but requires a detector infrastructure that 

can be expensive to install and maintain.  This method is an O-D matrix updating 

method that assumes the existence of a baseline O-D matrix generated by other methods. 

Additionally, to properly gather the data needed, detectors would need to be on all viable 

routes between O-D pairs.  Current technological advances in positioning technologies 

allow for use of global positioning systems (GPS), cell phones, and Bluetooth for data 

collection.  However, these technologies have limitation as well.  GPS is limited by 

sample size biases, concerns about privacy, as well as the time and labor costs for data 

collection.  Cell phone based tracking is subject to significant privacy concerns from 

which only anonymous location information is available.  This issue, in combination 

with the location error, makes it very difficult to confirm trip purposes for a cell phone 

trajectory.  Bluetooth requires a dense number of readers and suffers from a low 

sampling rate penetration attributed to the willingness of users to turn on or off the 

technology. 

In tandem with the current technological advances in positioning technologies, 

location-based services features have become available with smartphones and tablets.  

These devices have seen an increase in accessibility and affordability to a variety of 

income levels in recent years.  Additionally, the rapid development of social networking 
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sites, like Twitter© and Facebook©, has led to the availability of location-based social 

networking (LBSN) data.  Recent research efforts have studied the spatial patterns of 

LBSN user behavior through the mining of social networking sites.  LBSN data has the 

potential to provide O-D estimates with a higher temporal resolution at a lower cost when 

compared to traditional methods.  This data also has the ability to confirm trip purposes 

making it superior to pure trajectory based methods. 

1.1 PROBLEM STATEMENT 

Populations and land development have the potential to shift as economies change 

at a rate that is faster than rate for updating a transportation plan for a community. 

However, current methodologies for data collection used in transportation planning often 

take a year to gather into a useable format and can be costly efforts. 

This thesis will use Foursquare location-based social networking check-in data to 

analyze the origin-destination travel demand for the urban area in Austin, Texas.  

Foursquare is an application (or app) that allows individuals to share the places that are 

visited with friends via checking-in.  Using the check-in data collected, a doubly-

constrained gravity model will be used to estimate the origin-destination demand.  The 

evaluation of this effort will be conducted using businesses and other locations 

throughout the area in and around the city of Austin, Texas 

The results of the doubly-constrained gravity model will be compared to the 

Capital Area Metropolitan Planning Organization’s (CAMPO) 2010 Urban 

Transportation Study’s origin-destination data through the analysis of the trip length 

distributions, the zonal origin-destination flow patterns, and the zonal trip generation and 

attraction heat maps.  The results of this analysis will verify the functionality of the use 
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of the singly- and doubly-constrained gravity model methodologies for demand 

generation from check-in data. 

1.3 THESIS SUMMARY 

This thesis uses a fourth-generation programing language, MATLAB (Matrix 

Laboratory) for the calculations of the origin-destination demand based on Foursquare 

check-ins for the city of Austin, Texas to evaluate the validity of using location-based 

social networking data via a doubly-constrained gravity model for the creation of O-D 

matrices. Chapter 2 provides an introduction into the background of the trip generation 

models as well as existing and proposed data collection methods.  Chapter 3 describes 

the experimental framework including the procedures and methods for the data 

processing, the preliminary analysis of the characteristics of the check-ins collected, and 

the calibration of the model.  Chapter 4 discusses the resulting origin-destination 

demand matrix, examines the origin-destination patterns, and compares the resulting 

singly- and doubly-constrained matrices to the CAMPO matrix for evaluation of the 

methodology.  Chapter 5 provides the conclusion of this effort. 
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Chapter 2:  Background/Literature Review 

2.1: TRANSPORTATION PLANNING 

Transportation planning has a fundamental role in the future of a community; the 

earliest highway planning grew out of a need for information on the increased usage of 

automobiles and trucks (Weiner, 1999).  In the era prior to World War II, the focus of 

transportation planning was on the gathering and analyzing of factual information.  

Most urban areas did not use urban travel studies in their planning efforts and post-World 

War II saw a boom in demand for automobiles. However, the existing highway 

infrastructure was ill equipped to the increased demand.  This boom in demand, the lack 

of improvements in the existing highway system, and the growth of suburban 

developments lead to renewed efforts in transportation planning. Trip origins and 

destinations studies were needed to address the complex urban street systems which lead 

to the development of the home-interview origin-destination survey in 1944 (Weiner, 

1999).   

The 1950s brought new ideas and techniques to urban transportation planning 

including M. Earl Campbell’s Route Selection and Traffic Assignment and Thomas 

Fratar’s computer method, known as the Fratar method, used the distribution of future 

origin-destination travel data using growth factors.  In 1954, Robert B. Mitchell and 

Chester Rapkin established a link between travel and activities in a landmark study that 

called for a thorough framework for and explorations into travel behavior (Mitchell, 

1954).  From this study, an initial development of a trip generation, distribution, and 

diversion model lead to the first application of the four-step model which was first 

applied in 1950 in the Chicago Area Transportation Study (McNally, 2008). 
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 Trip generation: This step measures trip frequency providing the magnitude of 

total daily travel in the form of productions and attractions within the system 

at the zonal and household level for the trip purposes. 

 Trip Distribution: This step distributes the productions to match the attractions 

distribution reflecting the underlying travel impedance resulting in trip tables 

of person-trip demands for each trip purpose.  

 Mode Split: This step factors the trip tables from trip distribution to produce 

mode-specific trip tables reflecting the choice probabilities of individual trip 

makers.  The disaggregate results must be aggregated to the zonal level prior 

to the traffic assignment step. 

 Traffic Assignment: This step applies the mode split trip matrices to the modal 

network under the assumption of user equilibrium where all paths utilized 

have equal impedance. 

Federal legislation in the 1960s required “continuous, comprehensive, and 

cooperative” urban transportation planning (McNally, 2008).  In the 1970s, 

environmental concerns and multimodal elements were brought into planning efforts.  

The modern day transportation planning process is designed to analyze potential 

strategies through an evaluation process that incorporates the viewpoints of 

transportation-related agencies, organizations including Metropolitan Planning 

Organizations (MPO) and the general public (The Transportation Planning Process, 

2007). The process includes steps to monitor existing conditions, forecast the future 

population and employment growth including accessing project land uses and identifying 

major growth corridors, identifying current and future transportation problems and needs, 

the development of long-range plans and short-range programs, the estimation of the 



6 

impacts of recommended future improvements, and the development of a financial plan 

for the implementation of strategies. Figure 1 provides FHWA’s view of the overall 

process.   

D 

Figure 1: FHWA’s Transportation Planning Process (The Transportation Planning 

Process, 2007). 

To aid in the decision making process, transportation planning models are 

employed by MPOs.  These models are used to simulate the impacts of changes to the 

transportation system (i.e. adding a roadway, increasing populations) based on “real 

world” conditions.  Models used include the traditional land use, emissions, activity-

based, and four-step models.  Land use models are often employed for forecasting future 

development patterns, while emissions models examine the key pollutants emitted within 

the exhaust of vehicles.  Activity-based models have been gaining popularity recently in 

the United States (US); they examine travel through multiple trip legs by chaining trips 

into tours.  This approach is more disaggregated in time, space, and activities which are 

better suited for analyzing complex policy alternatives, such as flexible work hours and 

http://www.planning.dot.gov/documents/briefingbook/D.htm#fig1
http://www.planning.dot.gov/documents/briefingbook/D.htm
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variable pricing schemes. The traditional four-step model, which this thesis will utilize, is 

still commonly used at MPOs for the prediction of the demand for transportation services 

and is made up of the following four steps: trip generation, trip distribution, mode split, 

and network assignments.  The trip generation and trip distribution steps within the four-

step model will be the focus areas for this thesis.  

2.1.1: Trip Generation 

Trip generation is the first step within the four-step model and measures trip 

frequencies, which are developed by providing the inclination to travel.  The earliest trip 

generation effort was in 1948 in San Juan, Puerto Rico (Weiner, 1999).  This 

transportation study used trip generation to forecast trips and rates were developed for a 

series of land use categories that were arranged by location, intensity, and type of 

activity.  Following this initial effort, in 1955, the Detroit Metropolitan Area Traffic 

Study developed trip generation rates by land use category for each zone within their 

study area.  

The Trip Generation Committee of the Institute of Transportation Engineers (ITE) 

developed a report on trip generation rates in 1972.  This committee was tasked with 

collecting existing trip generation rate data to be compiled into a single source.  The first 

edition of this endeavor was published in 1976 and contained data from nearly 80 

sources.  The Trip Generation’s 5th edition (1991) was considered the first and most 

comprehensive data base and contained generation rates for 121 land use categories from 

over 3,000 studies. The current edition, the 9
th

 edition published in 2012, contains data 

from more than 5,500 studies and 172 land uses (ITE, 2013).  The ITE Trip Generation 

reports are the most widely used reference for transportation professionals for trip 

generation data for site level planning and analysis (Weiner, 1999). 
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Within the trip generation process, the goal is to determine the magnitude of total 

daily travel at the household and zonal level for the trip purposes included within the 

study.  These trip purposes typically include a minimum of three types: home-based 

work, home-based non-work, and non-home-based (McNally, 2007).  Trip end points 

are modeled as either productions or attractions for use within the model.   

2.1.2: Trip Distribution 

After attaining the trip generations for the study area, a process to recombine the 

production and attraction rates for each traffic analysis zones (TAZs) into trips is 

undertaken.  This process is called trip distribution and creates a model, or matrix, of the 

number of trips occurring between each origin and destination zone (McNally, 2007).  

To recombine the productions and attractions, models are employed.  These models 

include but are not limited to logit, entropy, growth and gravity.  Gravity models will be 

discussed in depth within the next sections.  

The logit models include the multinomial logit destination choice model used 

commonly for activity-based models and the singly constrained logit destination choice 

models.  In 1976, Wilson established a new method of constructing distribution models 

called the entropy maximizing method.  This effort was further clarified in Wilson’s 

“The Use of Entropy Maximising Models in the Theory of Trip Distribution, Mode split 

and Route Split” (1969) which relates the probability of the distribution of trips occurring 

in an origin-destination (O-D) pair to the number of states of the system.  The growth 

models are comprised of two variations: uniform and doubly constrained.  For the 

uniform growth model, the only information needed is a general growth rate for the entire 

study area, which is a simplistic method useful for short-term planning but is limited by 

the assumption that the growth factor is the same for all zones and attractions. The doubly 
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constrained growth factor model uses information on the growth of the number of trips 

originating and terminating in each zone, thus different factors can be implemented.  

Similar to the uniform model, this model has the advantages of simplicity, but is heavily 

dependent on observed trip patterns and does not include changes in travel costs within 

its trip distribution.   

2.1.2.1: Gravity Model 

The aggregate gravity model originated from an analogy with Newton’s 

gravitational law (Mathew, 2006). Newton’s gravitational law states that force (F) is 

related to the gravitational constant, G, the masses of two objects (m1, m2), and the 

distance between the objects (d). The formula for the relationship is as follows: 

  
       

 
          

This formula is analogous the trip distribution formula, as shown below in the 

general form, with the number of trips per O-D pair (   ) component relating to force (F), 

the   relating to the gravitational constant (G), the productions from zone i (  ) and the 

attractions from zone j (  ) relating to the mass entries (m1, m2), and the travel cost 

between O-D pairs (    ) relating to the distance between objects (d). 

     
       

    
          

In an effort to ensure that the total number of productions and attractions are 

equal, a balancing factor (b) is added to the previous formula to either the productions or 

attraction factors making the equation (below) a singly constrained model, which 

attempts to preserve zonal inputs for the productions only (TMIP, 2010).   
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              (   )          

Additionally, a friction function (        to de-incentivize travel based on time 

via distance or cost increases replaces the general travel cost term (    ).  Friction 

functions are discussed in more detail in a subsequent section of this chapter.   

2.1.2.2: Doubly Constrained Gravity Model 

The doubly constrained gravity used within this thesis attempts to preserve zonal 

inputs for the productions and attractions (TMIP, 2010).  This model builds upon the 

singly constrained model and encompasses balancing factors for both the productions and 

the attractions (Mathew, 2006): 

                  (   )          

The balancing factor for the productions is defined by   , while the balancing 

factor for the attractions is defined by   .  Using the principle that the sum of the total 

trips for each destination is equal to the sum of the combination of productions, 

attractions, the balancing factors, and friction functions for each destination, the above 

formula can be manipulated to give formulas for the balancing factors as shown. 

∑   

 

 ∑                  

 

          

which is equivalent to 

∑   

 

              

Thus, 
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        ∑       (   )

 

           

from which the balancing factors (  ,   ) can be found 

   
 

∑        (   ) 

           

Similarly, for each destination zone, the balancing factors become the following. 

   
 

∑        (   ) 

           

Using these factors and separate singly constrained models, the following formulas can 

be used to find the     for each O-D pair from this model.   

       
    (   )

∑     (   ) 

            

 

       
    (   )

∑     (   ) 

            

These formulas can be solved via an iteration process similar to the Furness method 

(Mathew, 2006).   

2.1.2.3: Atomistic Gravity Model 

The atomistic gravity model, as currently implemented by CAMPO, is a triply-

constrained model with constraints on the productions, attractions, and the trip length 

frequency.  The trip length frequency constraint makes the model self-calibrating for 

both intra-zonal and inter-zonal trips. Within this model, the TAZs are represented by an 

abstract discrete spatial surface made up of 400 “atoms” that are evenly disbursed 

throughout the TAZ (TTI 2001). The model uses travel time rather than distance for the 
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zonal radii, which are then used along with the zonal centroid-to-centroid travel times for 

the estimation of the spatial distribution of the atom pairs.  The basic formula used for 

the atomistic model is as follows: 

       
∑ ∑             

 
  
   

  
       

∑ ∑ ∑        
     

     
  
   

  
   

 
   

            

For this equation     is the trips produced by atom v of zone i,    is the relative 

attraction factor for atom q of zone j,     
 is the relative trip length factor for the 

estimated separation between atom pair vq,     
 is the bias factor for sector pair 

containing zones i and j,    is the number of atoms in zone y, and   is the number of 

zones. In order to calculate the  , the following formula is used: 

   ∑    

  

   

            

2.1.2.4: Friction Functions 

A friction function (        de-incentivizes travel based on time via distance or 

cost increases and is included within the gravity models previously discussed.  This 

“deterrence function” (Mathew, 2006) can use a variety of formulations to appropriately 

calculate the impedance.  The potential formulas include the linear function, negative 

exponential, power, and gamma function as shown in generic form below (Bossard, 1993, 

Mathew, 2006). 

Linear:   (   )                     

Negative exponential:   (   )                      

Power:  (   )      
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Gamma:  (   )        
                    

where A is a positive scaling factor that controls the overall range of the function values, 

B is either a positive or negative constant value that affects the distribution of shorter 

trips, n is a positive or negative constant value that affects the distribution of trips, γ is a 

parameter of transport friction relating to the efficiency of the transportation system 

between two locations and always negatively affects the distribution of longer trips, and 

    is the Manhattan distance between the centroids of origin zone i and destination zone 

j in miles. 

2.2: ORIGIN-DESTINATION DATA COLLECTION 

Data collection is a fundamental component for the creation of O-D matrices.  

Currently, there are a variety of methodologies employed for data collection.  These 

include the traditional household survey, traffic counts, position technology, “big” data 

and LBSN sources. 

2.2.1:  Household Survey Methods 

Conventionally, data for O-D matrices has come from traditional household travel 

behavior surveys.  This survey type collects data on trip purpose, mode of transportation 

used, duration of trip, time of day and day of the week the trip took place, vehicle 

occupancy for personal vehicles, as well as personal information which includes age, sex, 

employment status, income, and education level (NHTS, 2013).  This data can be 

collected via personal home interviews, telephone interviews, by mail, or by internet.  

Personal home interviews require an interviewer to visit the respondent’s home or 

office to administer questions in a face-to-face interview (Sharp, 2005).  In comparison 
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to other methods covered within this section, it provides the most complete data set with 

the highest response rate, 60-70% according to Giaimo et al (2010).  While the data 

attained from this method is of the highest quality compared to other methods, 

conducting this type of survey is the most expensive and time consuming.  

The telephone interviews require interviewers to contact individuals and 

administer the survey over the telephone.  Coverage for this method is limited to only 

households with telephones inducing a sample bias.  For this method, the response rate, 

reported as 25-40% by Giaimo et al. (2010), is intermediate as is the quality of the data 

and the cost.  

The mail survey format requires a questionnaire to be mailed out to respondents 

with the results returned either by mail or telephone.  While the coverage for this 

method is similar to that of the personal home interview method, it has the lowest 

response, 20-30% (Giaimo, 2010), and data quality rates for this survey method.  The 

cost for this method is one of the least expensive of the deployment methods for the 

household surveys. 

The internet method of survey deployment is similar to the mail format, but places 

the survey on the internet for respondents to complete.  However, only households with 

internet access are able to participate once again limiting the coverage of the survey.    

The response rate is similar to that of the mail survey methodology and the data quality is 

intermediate.  Costs for this method are low, but there are higher startup costs in 

comparison to the other data-collection cost.  

2.2.2: Traffic Count Methods 

The use of traffic counts is another data collection method that be implemented 

for data collection.  According to Abrahamsson (1998), the assignments within an O-D 



15 

matrix gives the traffic volumes for each transportation link. However, Abrahamsson 

concedes that there are a large number of different O-D matrices that can reproduce the 

observed traffic counts. In 1979, Erlander, Nguyen, and Stewart were able to show that if 

traffic counts were available for all links within the study area a unique O-D matrix could 

be calculated. This method requires the deployment of detector infrastructure throughout 

the study area on all viable routes between O-D pairs.   

Further research was conducted throughout the 1980s within this area.  Fisk and 

Boyce (1983), in recognizing only a sample of traffic count data is typically available, 

proposed a procedure for estimating the link cost functions and formulated a doubly 

constrained distribution-assignment model which was then extended by Kawakami, Lu, 

and Hirobata (1992) to include two travel modes.  Fisk (1989) further expanded her 

research within this area to examine the congested network scenario, which examined 

three different formulations for the O-D matrix formulation.  O-D matrix estimation 

from observed traffic data was conducted with applications on networks having more 

than 70 links by Van Zuylen and Willumsen (1980) and by LeBlanc and Farhangian 

(1982).   In 1988, Cascetta and Nguyen utilized traffic counts for both cars and transit 

to estimate an O-D matrix.  The study used classical and Bayesian statistical inference 

techniques providing a framework for models and algorithms to be developed from.  

While in recent years this method has been shown to be feasible in practice 

(Watson 2006, Doblas 2005), to achieve this feasibility, detectors would need to be 

installed for full coverage of the network to prevent large data gaps leading to operation 

and maintenance costs, which are an expensive in the long term commitment. Detectors 

provide data at fixed locations and there are concerns with the accuracy of the estimated 

traffic conditions between detectors (Fontaine, 2007). Additionally, as stated in 
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Abrahamsson’s work, a “target” O-D matrix, typically from prior information on the 

anticipated or existing O-D matrix, is often need to verify this methodology.   

2.2.3: Positioning Technology Methods 

Advances in position technologies have made GPS, cellular phone, and Bluetooth 

technologies viable data sources for traffic flow monitoring, traveler information 

provision, and advanced traffic and demand management.  These technologies have 

been employed by survey researchers both in simulation efforts and field deployments.  

Currently, research has begun to examine the use of credit card data, navigation services, 

and the potential for vehicle-to-infrastructure to be used as viable data sources. 

2.2.3.1: Global Positioning Systems 

The US Military initiated an effort for a satellite-based positioning system in the 

1970s, which became the fully operational GPS in 1995 (Sen and Bricka, 2009).  Rapid 

improvements along with the relative low-cost, high accuracy solution to the positioning 

requirements for travel surveys within the technology lead to the quick adoption by 

researchers both in the US and internationally (Bricka 2008). The first travel survey effort 

that utilized GPS was the 1996 proof-of-concept survey in Lexington, Kentucky 

(Murakami and Wagner, 1999).  This study utilized Personal Digital Assistants (PDA) 

with GPS capabilities to capture vehicle based daily trip information for 100 households 

over a six day period.  The intent of the study effort was to identify an alternative to trip 

diaries that was cost effective and to determine the willingness of individuals to 

participate in this data collection strategy.  The study demonstrated the additional ability 

to collect information on route choice as well as travel speed.   
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Since the initial proof-of-concept effort, numerous studies have examined the use 

of GPS technology as a data collection tool.  Two studies have specifically examined 

the feasibility of using GPS to replace the traditional data collection survey efforts. Wolf 

et al. (2001) noted that while several studies had used GPS as a supplement to the 

traditional data collection efforts, the effort to examine the feasibility of using GPS as a 

replacement data collection effort had not been done.  Their small scale proof-of-

concept effort collected personal vehicle travel data via GPS and used a geographic 

information system (GIS) to derive the traditional diary elements.  This GPS data was 

then compared with the paper diary data elements and was found to match or surpass the 

paper diary elements indicating the feasibility of the method.    The second effort was 

the 2010 proof-of-concept for the Greater Cincinnati Household Travel Survey (Giaimo 

et. al.).  This study examined the replacement of travel diaries with a large-scale 

multiday GPS survey and was the first effort of this kind.  The survey was made up of a 

fully representative sample (household size, number of automobiles, income, age, 

geographic region, etc.) that recorded data for up to three days of travel.  The results of 

this effort showed that completion rates of the survey via GPS were adequate as well as 

representative and participants were not burdened to carry the devices.  It was noted that 

significant incentives, as well as additional efforts, were needed to conduct the survey 

effort. Furthermore, there were a number of logistical issues identified.  These included 

the timely retrieval of GPS units, the GPS unit loss rate of 2.7% which was noted mostly 

among low-income, urban households, and battery outages that resulted in incomplete 

data.  The effort also noted that there were limitations based on the software used with 

the data.  The map editing process required the training of staff to review the data to 

ensure it was incorporated appropriately.  Some discrepancies were the inclusion of 
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stops within a trip that were misidentified as a single trip, and trips that incorrectly split 

into two trips due to a loss in GPS signal.   

In addition to these pilot studies, research has been conducted using GPS to 

determine the characteristic of underreporting that occurs within traditional surveys.  A 

study by Bricka and Bhat (2006) conducted a comparative examination of GPS with the 

traditional household travel survey to determine the likelihood and the level of 

underreporting.  This study concluded that individuals under 30, men, individuals with 

less than a high school education, unemployed individuals, individuals who make many 

trips, travel long distances, and trip chain were affiliated more with underreporting.  

Bricka (2008) identified additional challenges with non-response in GPS surveys, 

specifically the burden to respondents.  These burdens include the length of the survey 

since the units can be deployed for longer survey durations, privacy concerns, and 

equipment complications; for appropriate deployment, these burdens would need to be 

mitigated to the greatest degree possible. Non-responses were found to be from older, 

less educated, and lower income participants which follows the trend of those more likely 

to accept technology being male, young, highly educated, and of a higher income status.  

This non-response has the potential to lead to a sampling bias of younger and 

nonminority participants, as was shown in the Oregon Household Travel Survey test 

pilot, suggesting other methods of data collection may be more appropriate (Bricka et al., 

2009). This same study also indicated that costs for a GPS-based survey were over twice 

as expensive as the traditional survey method.  However, the study did note that these 

costs would be expected to decrease as the data collection process was streamlined, new 

technology became available, and development costs were able to be allocated to a larger 

sample within a full study. 
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2.2.3.2: Cellular Phones 

As of December 2012, there are 326.4 million wireless active devices, which 

included smartphones, tablets, and hotspots, within the US (U.S. Wireless Quick Facts, 

2013).  Moreover, as of May 2013, 91% of US adults age 18 and older have a cellular 

phone (Brenner, 2013).  In addition, wireless location technologies (WLT) are available 

from wireless carriers.  WTL fall into two main categories: mobile based, where the 

location is determined from signals received from base stations or from GPS, and 

network based, which relies on an existing network to determine the location by 

measuring signal parameters at the base station (Sayed, 2005).  The Federal 

Communication Commission (FCC) mandated E911 for all cellular carriers which 

required that carriers be able to provide a 911 caller’s phone number for return calls as 

well as the location of callers via WTL (Revision, 1997).  This ability has inspired 

transportation researchers to investigate the feasibility of extracting traffic data from the 

location data of cellular phones.   

Yim (2003) examined cellular probe technologies noting that the use of E911 for 

probe activities introduced privacy concerns and additionally suggested improvements in 

cellular geolocation technologies would need to be conducted to fully realize the 

capabilities of the technology.  Pan et al. (2006) examined a cellular-based data-

extracting method for trip distribution, which was theoretically proven to be feasible as 

well as experimental feasible.  The study showed the method was advantageous in its 

ability to directly attain the spatiotemporal information about travelers via mobile carrier 

thus requiring minimal costs and labor.  Similarly, Caceres, Wideberg, and Benitez 

(2007) developed a technique to use the global system for mobile communications 

(GSM) to derive O-D data.  The study used simulated data and produced reasonably 
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precise estimation results.  However, the study did note that data collection can only be 

done while the phone is powered on.  In 2007, Fontaine and Smith found that the 

simulated effects of using WTL for monitoring traffic overestimated the capabilities of 

the system when two case studies were simulated.  Dense networks with mixed 

congestion and free flow were show to have mixed results when simulated. The study 

also noted that WLT data collection would need to be tailored to the specific localized 

parameters including frequency rates for sampling which may need to be adjusted to 

account for traffic conditions. 

In 2010, two studies showed further promise of WTL.  Schlaich, Otterstätter, 

and Fiedrich developed a method to generate time-space trajectories for travelers through 

the analysis of cellular phone data from location-area-updates.  These location-area-

updates are recorded from mobile phones while in the standby-mode.  One limitation 

with using location-area data is that short trips cannot be detected as they may not move 

between location areas.  Another limitation noted within the study was the need to attain 

the data from only one mobile service providers, which may create a skew within the 

data. Finally, the trajectories that were able to be produced from this study are only 

representative of SIM-cards and not vehicles, of particular importance since a vehicle 

may have any number of SIM-cards onboard. The second study examined the 

deployment of GPS-enabled mobile phones for traffic monitoring as a proof-of-concept 

effort (Herrera et al., 2010).  With an average penetration rate between 2 and 3% in the 

study, higher accuracy for velocities were achieved in comparison to loop detectors and it 

was noted that the data collected could also be used for planning purposes.  The 

penetration rates seen in the study would be sufficient to achieve the spatiotemporal 

coverage of a network since sensors would be moving throughout the system. 
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Additionally, it was noted that the costs associated with installation and maintenance 

were minimal. 

Recently, cellular probe data has evolved rapidly over the last decade with 

upgrades in the wireless communication standards into 3G and 4G, the rise of market 

domination of smartphones, and integration within social media and cloud computing. 

Companies, such as AirSage, have partnered with cellular companies to receive wireless 

signals using them to anonymously determine location (AirSage, 2013). This aggregated 

location data is time- and date-stamped which can be used to model, evaluate, and 

analyze the movements and flows of commuters for almost every city in the nation.  

While this data has good temporal and special coverage, the cost of the data may make it 

cost prohibitive for usage by many municipalities. Additionally, trip purpose information 

is not available for this data. 

2.2.3.3: Bluetooth 

The Bluetooth technology capitalizes on the short-range personal wireless 

connectivity technologies that allow personal devices to communicate with each other 

directly without the need for the line of sight requirements of radio frequency based 

connectivity (Bisdikian, 2001).  Since its development 1998, Bluetooth technology has 

been noted to be a low cost, user friendly way of collecting data (Blogg et al., 2010, 

Brennan et al., 2010, Hainen et al., 2011). The technology uses a unique media access 

control (MAC) for each device that makes device tracking possible.  These MACs are a 

unique 48-bit, 12 alphanumeric character address that is assigned to each device by the 

device’s manufacturer, which are not affiliated with a user alleviating privacy concerns.   

Research has been conducted to determine the effectiveness of using Bluetooth 

technology to collect data that can be utilized for O-D matrices.  Blogg et al. (2010) 
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found that the technology was effective in collecting O-D data in small and controlled 

networks demonstrating the technology compared favorably to video and automated 

number plate recognition data.  This result was substantiated by the 2011 study by 

Hainen et al., which compared the technology with license plate matching.  The Blogg 

et al. study did note that there were cautions and limitations with the technology, 

including the requirement of appropriate detector placement, the short ping cycle 

(approximately 0.1 second), which could lead to a device being detected multiple times 

as it passed a single detector, and the possibility that multiple MAC addresses could be 

within a single vehicle.   

The 2010 study by Brennan et al. looked to address the concerns with detector 

placement.  The study noted that there were no existing design guidelines for detector 

placement and the variation in placement locations, both in height and distance from the 

facility to be monitored, lead to high variance in the number of addresses captured.  The 

study noted that between 5 and 10% of the vehicle population had discoverable MAC 

addresses that were able to be collected.  Additionally, it was noted that there was no 

relationship between the traffic volume and the efficiency of collection, rather the height 

of the detector influenced the collection efficiency.     

Barceló et al. (2010) examined using Bluetooth technology for dynamic O-D 

estimations for freeways.  This study noted that the variability of the Bluetooth sample 

collected yielded objectionable expansion errors and subsequently using the technology 

independent of other methods was too risky to create a straightforward estimation of an 

O-D matrix.  
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2.2.4: Additional Methods 

Bricka (2013) stated that synthetic data, “Big” data, smartphone data sources were 

potential sources for travel survey data. Additional areas that are currently being 

examined include credit card, navigation technologies, and vehicle-to-infrastructure (V2I) 

data. 

Synthetic data is data that is comprised of synthetic households that are generated 

typically for a block group within a census tract (TMIP, 2013).  Each synthetic 

household is made up of “individuals” that have an associated set of demographics that 

closely match to the demographics of real households using census data.  This data can 

then be used to estimate trips within the study area.   

“Big” data includes transactions, interactions, and observations (Bricka, 2013).  

Transaction data includes credit card data in the form of purchase and payment records, 

product/service logs, and dynamic pricing data.  Interaction data includes support 

contacts, web logs, and social interactions and feeds. Observation data includes sensors, 

spatial and GPS coordinates, and user click stream.  It has been noted that this data 

source will have challenges for incorporation into transportation planning, namely with 

data capture, sharing, and management and storage. Additionally, Bricka (2013) noted 

that the data attained may have biases, and investigations into its function as a 

complement or substitute would need to be done.  

In 2006, Utsunomiya et al. examined the potential use of automated fare 

collection systems via transaction data, similar to credit card data, to improve transit 

planning.  This study noted that the current market penetration was insufficient to 

provide a representative sample of the population with a bias toward higher income and 

younger individuals being noted.  Additionally, privacy concerns as well as errors with 
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transactions and/or routing assignments were acknowledged with this method.  

Similarly, the 2012 study by Macfarlane and Garrow, considered the use of targeted 

marketing records that are sold by credit reporting agencies as a data source to estimate 

regional travel demand.  The study showed that use of the targeted marketing data in 

conjunction with vehicle registration data was successful when considering age, noting 

that additional variables should be considered in the future.  

In 2010, INRIX issued a press release concerning their partnering with the Ford 

Motor Company and MapQuest who would be implementing their SpeedWaves
TM

 

technology.  This technology falls under the navigation umbrella and would provide 

increased accuracy of more than 70% for real-time travel time information through the 

partners systems for over 260,000 miles of roadways. This data capability could provide 

a potentially useful platform for the creation of O-D matrices.  However, this method is 

limited by sampling biases. 

The 2012 Tornero, Martinez, and Castello study explored the potentials of the V2I 

communication technologies as a new data source to be used in the creation of O-D 

matrices.  The study states that the use of dedicated short-range communication 

connecting vehicles via on-board units to infrastructure via roadside units would have the 

potential to collect data on every vehicle connected to the system creating an accurate, 

instantaneous, and dynamic O-D matrix in real-time.  This would effectively eliminate 

the need for an estimation O-D matrix method.  The study did note that there were 

potential privacy concerns with this method.  Moreover, V2I has not been deployed, 

with the exception of testbeds, and is not currently a viable option for data collection.  
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2.2.5: Location-Based Social Networking 

Within the study of sociology, a social network is defined as a social structure 

comprised of a set individuals or organizations and the interaction ties between these 

individuals or organizations (Wasserman, 1994).  Social networking sites, traditionally 

web-based, build up these actor/interaction ties by building networks or relations among 

individuals with similar interest, activities, backgrounds, and other types of connections.  

According to eBizMBA.com, popular social networking sites include Facebook©, 

Twitter©, and LinkedIn®.  Facebook©, founded in 2004, is currently ranked as the 

number one site for global web traffic and second for the United States according to 

Alexa, a website analytics company, and has over one billion active users (Key Facts, 

2013). 

Location-based services (LBS) are location and time data used as control features 

within computer programs.  LBS can be used in everything from a cell phone to control 

systems to smart weapons (Wikipedia, 2013).   Location-based social networking 

(LBSN) is the combination of social networking and LBS.  According to Zheng (2012), 

A location-based social network (LBSN) does not only mean adding a location to 

an existing social network so that people in the social structure can share location-

embedded information, but also consists of the new social structure made up of 

individuals connected by the interdependency derived from their locations in the 

physical world as well as their location-tagged media content, such as photos, 

video, and texts. Here, the physical location consists of the instant location of an 

individual at a given timestamp and the location history that an individual has 

accumulated in a certain period. Further, the interdependency includes not only 

that two persons co-occur in the same physical location or share similar location 

histories but also the knowledge, e.g., common interests, behavior, and activities, 

inferred from an individual’s location (history) and location-tagged data. 

LBSN services include geo-tagged-media-based, point-location-driven, and 

trajectory-centric.  Geo-tagged-media-based services are media focused and include 
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Twitter.  Point-location-driven services are focused on point location providing instant 

real-time information and include Foursquare. While trajectory-centric services are 

focused on trajectories providing rich data and include GeoLife.    

Recently, researchers have begun to data mine LBSN sites to comprehend the 

spatial patterns of users.  The 2009 study by Li and Chen was the first large-scale 

quantitative analysis of a real-world commercial LBSN.  The study examined 

Brightkite, which allows users to share their location, post notes, and upload photos, and 

used the Markov-based location predictor to determine future locations of users resulting 

in a median accuracy of 49%.  Following this initial effort, Cho, Myers, and Leskovec 

(2011) investigated the relationship between geographic human movement, the temporal 

dynamics of human movement, and the social network ties using Brightkite and Gowalla, 

which allows users to check-in to their current locations.  This study showed that while 

short-ranged travel was periodic in nature both spatially and temporally, long-distance 

travel was influenced by social networking ties.  Additionally, it was shown that social 

relationship could explain approximately 10 to 30% of human movements and a model 

was proposed to predict the locations and dynamics of future human movements.  Other 

research includes Zheng, Xie, and Ma (2010) and Karimi (2010), which explored 

GeoLife and Genetic Location-Based Social Networks (G-LBSM), respectively.  

Backstrom, Sun, and Marlow (2010) determined that a network of a user’s 

Facebook friends could be used to predict the user’s location within 25 miles for 69.1% 

of the users with 16 or more friends.  Concurrently, Cheng, Caverlee, and Lee (2010) 

used Twitter to estimate a user’s city-level location using only the content of the user’s 

tweets.  The study was able to place 51% of the users within 100 miles of their actual 

location.  
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2.3.4.1: Foursquare Data 

Foursquare is an application (or app), created by Dennis Crowley and Naveen 

Selvadurai in 2008 and launched in Austin, TX at the annual South by Southwest 

(SXSW) Interactive event in March 2009, allowing individuals to share and save the 

places that they visit with friends via check-ins.  As of January 2013, Foursquare had 

over 30 million users worldwide with over three billion check-ins.  Users of the app 

include individuals as well as businesses.  Check-ins are encouraged by the app with 

“badges” begin able to be earned through frequent checking-in at locations.  Through 

the app, businesses can engage with customers promoting news, events, and discounts.  

Research has been conducted using Foursquare recently, demonstrating its 

viability as a data source.  These efforts include the 2011 study by Cheng et al. that used 

check-ins from various LBSN sites, the majority coming from Foursquare, to examine 

human mobility patterns quantitatively across spatial, temporal, social, and textual 

aspects.  Contemporarily, Scellato et al. (2011) conducted the first large-scale effort to 

unravel the socio-spatial properties of LBSN users among three main LBSN sites 

(Brightkite, Foursquare, and Gowalla).  The study found that the socio-spatial structure 

could not be explained solely from the geographic factors or social mechanisms, but 

proposed gravity models as a more accurate way of modeling the networks. Yang et al. 

(Yang, 2014) used Foursquare LBSN data to estimate an O-D matrix for non-commuting 

trips in the Chicago urban area resulting in the promising potential for the methodology.  

Jin et al. (2013) examined using check-in data from Foursquare to analyze the O-D 

demand for Austin, TX using a singly-constrained gravity model with a two regime 

friction factor.  This study was able to illustrate the potential of using LBSN data for 

travel demand analysis and monitoring.   
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Chapter 3:  Methodology 

3.1: EXPERIMENTAL DESIGN 

3.1.1: Study Area 

According to the United States Census Bureau, Austin, TX had an estimated 

population of 842,592 in 2012 and is the fourth largest city in Texas and the 11
th

 largest 

city in the US. Austin serves as the capital city for the state of Texas, and is home to the 

University of Texas at Austin.  Additionally, many Fortune 500 companies are 

headquartered or have an office within the Austin metropolitan region including Dell, 

Whole Foods Market, and Advanced Micro Devices Inc. (CNN Money, 2013). 

Simultaneously, Austin is known as “The Live Music Capital of the World” and as such 

hosts more than 250 music venues and festivals, including SXSW, and Austin City 

Limits.  These music festivals and other social events, comprising of the Circuit of the 

Americas Formula 1
TM

 and the Austin Film Festival, bring to Austin over 19 million 

visitors annually (Austin, 2013). 

The city of Austin has an area of 272 square miles (U.S. Census Bureau, 2013).  

For the purpose of this thesis, the study area included the 520 TAZs within the City of 

Austin’s jurisdictions, Figure 2. These boundaries are the same that were used in the Jin 

et al. study (2013). 
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Figure 2: Map of Study Area. (Bing, 2012) 

3.1.2: CAMPO 

In 2010, Austin’s metropolitan planning organization, CAMPO, published their 

Urban Transportation Study.  This document provided the 2005 base year Travel 

Demand Model (TDM) calibration summary for the updating of the 2035 Long Range 

Plan which was recalibrated and validated in 2009.  The study area for this report 

includes Williamson, Travis, Hays, Bastrop, and Caldwell counties.  The internal TAZs 

used in the study totaled 1,413.  In addition to these internal TAZ, 49 external stations 

were included within the study for a grand total of 1462 zones.  
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3.1.2.1: CAMPO Origin-Destination Data 

The 2005 Travel Demand Model (TDM) was comprised of seventeen trip 

purposes made up of eleven “person” trips (1-11) and six “vehicle” trips (12-17).  These 

trips were defined as: 

1. Home Based Work Person Trips Direct 

2. Home Based Work Person Trips Strategic 

3. Home Based Work Person Trips Complex 

4. Home Based Non-work Retail Person Trips 

5. Home Based Non-work Other Person Trips 

6. Home Based Non-work Primary Education Person Trips 

7. Home Based Non-work University/College Person Trips 

8. Home Based Non-work UT-Austin Education Person Trips 

9. Home Based Non-Work/Non-home Based (non-work) Airport Person Trips 

10. Non-home Based Work-related Person Trips 

11. Non-home Based Other Person Trips 

12. Non-home Based External Commuter/Visitor Vehicle Trips 

13. Commercial Truck/Taxi Vehicle Trips 

14. External Local Auto Vehicle Trips 

15. External Local Truck Vehicle Trips 

16. External Through Auto Vehicle Trips 

17. External Through Truck Vehicle Trips 

For their study, CAMPO split the Home Based Work trips into three categories. The 

Direct Home Based trip is defined as a trip that is made up of both direct home-to-work 

and direct work-to-home trips.  The Strategic Home Based trip is defined as a trip that 
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includes an intermediate destination involving the dropping off or picking up of a child at 

a childcare facility, which includes daycare, nursery school, babysitter, pre-school, 

elementary or secondary school.  The Complex trip is defined as a trip that involves an 

intermediate stop at any destination between the home and work places. 

To collect the necessary data for the TDM, CAMPO performed travel surveys.  

These consisted of household surveys that included 1,500 household samples, workplace 

surveys made up of 210 business samples, a special generator survey-component of 

workplace survey, external survey that included vehicle classification sites, a commercial 

vehicle survey, an on-board transit ridership survey via Capital Metro, and a roadway 

congestion analysis report. Table 1 provides a description of the 2005 demographic data 

for the study area. 

 

Population 1,458,641 

Households 559,423 

Household Size 2.61 

Median Household Income $53,627 

Automobiles Owned 859,021 

Automobiles per Household 1.50 

Automobiles per Person 0.60 

Total Employment 713,136 

Basic Employment 181,361 

Retail Employment 133,952 

Service Employment 299,936 

Educational Employment 43,279 

Airport Employment 17,804 

Population/Employment Ratio 2.05 

Table 1: CAMPO 2005 Demographic Data. 

The CAMPO model structure will be used to create the base or ground truth for 

the proposed model from this thesis.  The first 13 categories from the listed 17 
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categories will be combined to attain the trips taken with the Home Based Work trips 

combined into one category for this study.  

3.1.3: Data Collection 

Due to the popularity, comprehensive functionality, and easy of data attainment, 

Foursquare was selected as the main data source for this thesis.  Figure 3 shows the 

comparative demographic characteristics of Foursquare users (Ignite Social Media, 

2013), Austin, TX, (USCB, 2013, CLRSearch, 2012) and the US (Howden, 2011).  It 

should be noted that the Foursquare users have a higher proportion of individuals 

between the ages of 25 and 54, which constitutes 80% of the sites users.  This age group 

also has a higher distribution than is seen in Austin, TX and the US.  Additionally, there 

are significantly more female users of Foursquare (65% women compared to 35% men), 

which is also notably different than the distribution of gender within Austin and the US.  

Examining the educational and income trends of the Foursquare user, it is noted that 

within the income categories of $25,000 through $74,999 as well as within the “Some 

College” category there is an over representation when compared to the Austin and US 

data.  Finally, it should be noted that Foursquare prohibits users under the age of 13, 

which is shown in the percentages of 17 and under and “Less than High School” users. 
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Figure 3: Comparative Demographic Characteristics 

Jin et al. (2013) provided the initial framework for the data collection, which will 

be documented in detail within this section.  Data was collected from Tuesday, June 11 

through Tuesday, July 2, 2012 for the calibration and analysis of the model.   

3.1.2.1: Trolling Algorithm 

The developers of Foursquare provide free access to their data through an API 

(Application Programming Interface) via OAuth2 (Open Authorization 2.0).  Through 
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the API, venues endpoints, which include homes, business, parks, and other sites, are able 

to be accessed without user authentication.  The real-time API provides real-time views 

into check-ins.  Foursquare has a venue push API that pushes, or sends, data each time a 

user checks into a venue; however, a venue manager must authorize the push request for 

each location.  This limitation makes this feature impractical for data collection.  

Instead, venues were identified within the study area and a computer program was 

developed that would create a snapshot of the total number of check-ins for each of the 

venues.  The computer programs snapshots are taken at 45 to 50 minute intervals and an 

hourly rate is calculated using the following formula: 

    (
     

     
)               

where     is the check-ins per hour,    is the number of check-ins at the two time 

intervals, and    is the time in minutes for each of the intervals.  

Using this trolling method, the data collected included: venue ID, venue name, 

category, latitude, longitude, the number of check-in per hour, and the number of unique 

users.  Data collection was done for each hour during the study period using the trolling 

method.  

3.1.2.2: Preliminary Analysis of Collected Data 

For the data collected June 11 through July 2 an initial analysis was conducted to 

verify the type of data that was collected.  For use within the doubly-constrained gravity 

model, the data was examined to confirm that categories were assigned via Foursquare to 

each of the check-ins.  When venues are created within Foursquare, a category can be 

assigned as well as subcategories.  Categories that Foursquare uses include: Arts & 

entertainment, College & University, Food, Professional & Other Places, Nightlife Spots, 
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Residences, Great Outdoors, Shops & Services, and Travel & Transport. Foursquare does 

provided secondary and tertiary categories, but these were not included in the study as the 

primary category classification provides the information needed.  It should be noted that 

categories are assigned by venue creator and is optional, for some of the venues included 

within the study, no category was assigned.  For these venues, a key word search was 

performed to assign the appropriate primary category where possible.   

Table 2 shows a breakdown of the number of venues and check-ins collected 

during the study period for each category.  The majority of the venues within the study 

area come from the Shops & Services category, while the least number of venues can be 

found in the Nightlife Spots category.  Check-ins are most commonly associated with 

the Shops & Services and the Food categories, which account for 51.3% of all of the 

check-ins.  The Residences category has the least number of check-ins at 2.7% and a 

moderately low number of venues within the sample size.    

 

Category 
# of 

Venues 
Percentage 

# of  

Check-ins 
Percentage 

Avg.  

Check-ins 

Colleges & Universities 719 3.8% 367866 5.5% 512 

Shops & Services 5187 27.1% 1389636 20.9% 268 

Food 2809 14.7% 2021897 30.4% 720 

Nightlife Spots 547 2.9% 669712 10.1% 1224 

Arts & Entertainment 592 3.1% 324249 4.9% 548 

Travel & Transport 792 4.1% 479305 7.2% 605 

Professional & Other Places 4679 24.4% 832999 12.5% 178 

Great Outdoors 1596 8.3% 278065 4.2% 174 

Residences 711 3.7% 182825 2.7% 257 

Unclassified 1538 8.0% 102692 1.5% 67 

Table 2: Foursquare Category Venue and Check-in Statistics. 
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The average number check-ins was also calculated for each venue with the largest 

average number of check-ins coming from the Nightlife Spots category (1224 check-ins) 

and the least coming from the Unclassified category (67 check-ins).  It should be noted 

that the top three average check-ins where in the previously mentioned Nightlife Spots, as 

well as the Food and Travel & Transport categories.  While the Nightlife Spots and 

Food categories are to be expected as they are social activities, the large number of 

Travel & Transport check-ins is initially unexpected, which may be explained by the 

frequent check ins at these locations by visitors. Additionally, due to the low percentage 

(1.5%) of check-ins for the Unclassified category, it was determined to be a small enough 

to be removed from the study without impacting the travel demand analysis results 

negatively. 

Using the latitude and longitude data, venues were assigned to their respective 

TAZ. The 19,170 venues are shown in Figure 4 individually and in Figure 5 by density.  

These figures demonstrate the spatial coverage within Austin for the LBSN data.  

Moreover, the figure shows the venues are concentrated within the central business 

district (CBD) located near the center of the map.  Additionally, the majority of the 

venues are located within the densely populated areas of the study area, as is to be 

expected.  Furthermore, venues with check-ins exist in almost every TAZ within the 

study area, only the three highlighted TAZ shown in Figure 4 do not have any venues, 

demonstrating the spatial coverage available by this method.  
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Figure 4: Venue Locations 
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Figure 5: Venue Locations by Density 

To better explore the temporal characteristics of the check-in data, check-ins in 

the various categories were aggregated for weekdays and weekends.  Figure 6 shows the 

most frequent check-ins during weekdays were in the categories of Food, Shops & 

Services, and Professional & Other Places.  For the weekends, the most frequent check-

ins occurred in the Food, Shops & Services, and Nightlife Spots.  Additionally, the data 

shows weekday check-ins are significantly more predominant when compared to 

weekend check-ins for Colleges & Universities, Professional & Other Places and 

Residence.  In should also be noted that Shops & Services and Nightlife Spots have 

significantly more frequent check-ins on the weekends than on the weekdays.   
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Figure 6: Weekday and Weekend Check-in Comparison by Category 

3.1.4: Origin-Destination Modeling 

Jin et al. (2013) examined the use of Foursquare check-in data for the Austin area 

for use in the creation of an O-D matrix and used the singly-constrained gravity model.    

This thesis looks to continue the effort and further validate the use of check-in data by 

utilizing the doubly-constrained gravity model. MATLAB software was used to create 

and evaluate the model.  The MATLAB codes used in this effort have been included in 

the Appendices of this thesis.  

3.1.4.1: Trip Generation Modeling 

As previously mentioned, the CAMPO O-D data from the CAMPO Urban 

Transportation Study (2010) was used as the ground truth.  This data, first, had to be 
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manipulated to only include the 520 City of Austin TAZs that are within the boundaries 

of this study.  To accomplish this effort, a text file was created that contained the 

numbers of the TAZs to be included called tazid.txt.  Using the tazid.txt file and the 

2010 Person Trip Table.txt, MATLAB assigned the trip table data to each of the 13 

categories as previously defined, see Appendix A for the code.  The focus of this study 

eliminated the Home-based Non-work Primary Education and University/College 

categories in an effort to focus exclusively on the University of Texas at Austin trips.  

The result of this effort was the assignment of the CAMPO trip data into 520x520 

matrices with the following eight categories: 

1. Home-based Work (HBW) 

2. Home-based Non-work Retail (HBR) 

3. Home-based Non-work Other (HBO) 

4. Home-based Non-work UT (HBUT) 

5. Non-work Airport (NWAir) 

6. Non-home Based Work (NHBW) 

7. Non-home Based Other (NHBO) 

8. Non-home Based External (NHBE) 

For the weekday Foursquare check-in data, a 10x1462 matrix was created with 

the weekday Foursquare check-in data.  This file, called ‘weekday’, was used to create 

the ‘tripdist’, ‘totalOD’, and ‘checkins’ matrices via MATLAB, see Appendix B for code. 

The ‘tripdist’ matrix used the Manhattan distance between the centroids of origin zone i 

and destination zone j to create a 520x520 matrix.  The ‘totalOD’ matrix combined the 

CAMPO trips per category into a single 520x520 matrix. This matrix will serve as the 

ground truth matrix for future comparisons.  The ‘checkins’ matrix restructured the 
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‘weekday’ matrix removing the data associated with TAZs not included within this study 

creating a 10x520 matrix.  

The next step was to obtain the production and attraction rates from the check-in 

data.  The ‘checkins’ matrix was employed and the first nine of the ten rows were 

assigned to the following categories:  Professional, Shops, Universities, Residence, 

Travel spots, Entertainment, Food, Nightlife, and Outdoor.  The tenth row was the 

uncategorized data and was eliminated from the study as described previously.  

Productions and attractions for each zone were calculated by the following formulas for 

the singly- and doubly-constrained models: 

Singly-Constrained -  

                   

          [
 

 
∑        

 
]            

Doubly-Constrained -  

                   

           
  

 

∑   
 

 
∑        

 
            

where    is the total check ins in zone i found by ∑                      

                                                                

        ,   and   are adjustment factors created from a genetic optimization 

algorithm in an effort to appropriately scale the trip productions to Foursquare check-ins,   
 

 
∑          and 

  
 

∑   
 

 
 are the residual terms that guarantees the total number of 
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productions are equal to the total number of attractions. The genetic optimization 

algorithm and its results will be discussed in more details in the next section.   

3.1.4.2: Trip Distribution Modeling 

After attaining the productions and attractions, the process to recombine the 

productions and attractions into trips via a trip distribution model is undertaken.  The 

previously studied singly-constrained gravity model used in the Jin et al. study 

demonstrated the effectiveness of the methodology.  However, there were limitations in 

this previous effort.  The zonal production and attraction model typically resulted in 

symmetric patterns from the extremely small residual term which may be a factor of 

taking an average values and not zone-specific values.  Additionally, the singly-

constrained model only adjusts the zonal attractions and converges comparatively slowly.  

For this thesis, the doubly-constrained gravity model will be employed for further 

validation of the methodology and will be compared to the singly-constrained model’s 

results.  

3.1.4.2: Gravity Models 

The TDM used for the CAMPO study is the ATOM2, an atomistic model which 

is a triply constrained model.  While the singly-constrained gravity model used in the 

Jin et al. study showed the check-in method for O-D matrix creation was functional, the 

doubly-constrained gravity model is a near approximation to the modeling effort used in 

the CAMPO study for the estimation of the O-D matrix.  The doubly-constrained 

gravity model constrains both the productions and attractions.   

  As discussed in Chapter 2, the singly- and doubly-constrained model uses the 

following formulas: 
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Singly-Constrained -  

        
    (   )

∑     (   ) 

            

Doubly-Constrained -  

                  (   )           

To calculate the       , the two-regime function found by Jin et al. was used. 

This function accounts for the different trends for short and long distance trips and is 

structured as such: 

   (   )     
   (   )       

    
   (   )       

            

where the  [      ] is an indicator function for a logic clause that equals one if 

true and zero otherwise, s and l are the short and long distance trip regime, and    is the 

threshold that determines the regime. Jin et al. explored various combinations of the 

linear, negative exponential, and gamma friction factor functions and found the linear 

model achieved the best results for short distance trips, while the negative exponential 

model was best for long distance trips: 

   (   )  {
                

              
              

To calculate the    and    factors that constrain the productions and attractions, 

at MATLAB was used, see Appendix E for code. 

3.2: MODEL CALIBRATION 

For the calibration of the proposed model, a genetic algorithm was implemented.  

This algorithm within MATLAB optimizes through the mimicking of the principles of 
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biological evolution via the repeated modification of a population of individual points 

using rules modeled on gene combinations in reproduction (MATLAB, 2013).  This 

optimization strategy was selected for the improved chances of finding a global solution 

due to the algorithm’s random nature. Within the algorithm’s calculations, “individuals” 

are randomly selected from the current “population” and used as “parents” of the 

“children” for the next generation. Meanwhile, between two generations, each 

“individual” is allowed to “mutate” at a given probability which ensures the ability of 

jumping out of local optimal. This process is repeated and the population eventually 

“evolves” toward an optimal solution.  Table 3 compares the genetic algorithm to a 

classical algorithm highlighting two main differences between the algorithms. 

 

Genetic Classic 

Generation of a population of points for 

each iteration with the best point within the 

population approaching an optimal 

solution. 

Generation of a single point for each 

iteration with the sequence of points 

approaching an optimal solution 

Next population is selected by computation 

using random number generators. 

Next point in sequence is selected via a 

deterministic computation. 

Table 3: Algorithm Comparison (MATLAB, 2013). 

The genetic algorithm was used to obtain parameters for the friction function, the 

productions, and the attraction calculations that would in turn minimize the mean 

absolute error (MAE) between the modeled O-D matrix and the ground truth CAMPO O-

D matrix.  To evaluate the performance of these parameters, a coincidence ratio (CR) 

was used.  The CR measures the percent of the area that “coincides” for the two 

curves/distributions that are being compared (Martin, 1998).  The CR uses the following 

formula: 
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∑    (  

    
 ) 

∑    (  
    

 ) 

            

where   
  is the percentage of trips within the interval i in the predicted trips from the 

check-in data, and   
  is the percentage of trips within the interval i in the survey trips 

from CAMPO.  The value for the CR ranges from zero, when the distributions are 

completely different, and one, when the distributions are exactly the same. The goal for 

the model validation is to have a CR that is close to one.   

Using the genetic algorithm, MATLAB produced nine parameters that are used 

within the singly- and doubly-constrained gravity model; see Appendices D, E, F, and G 

for code.  The attraction formulas accounts for the adjusted symmetry of the distribution 

of check-ins by adding the exponential portion of the equation, which includes a location-

based ratio for the doubly-constrained model. This location based ratio assigns the 

residuals based on the check in intensity.  The genetic algorithm parameters for the 

equations for the attractions, production, and friction factors can be found in Table 4.  

Additionally, the genetic algorithm calculated the CR and MAE for singly- and doubly-

constrained models. It should be noted that under the standard evaluation framework for 

machine learning algorithms, the calibration dataset and the evaluation dataset should be 

separated which mimics the use of those learning algorithms in practice. However, in our 

study, only the 2010 CAMPO O-D matrix is available and dividing it to fit the 

calibration-evaluation framework is difficult. Therefore, calibration and evaluation is 

based on the same matrix. The actual model performance may vary with separated 

calibration and evaluation datasets. 
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Parameter Singly-Constrained Doubly-Constrained 

  1.02690 0.47334 

  1.74412 0.66967 

η N/A 0.21198 

  0.00100 0.16755 

  0.01252 0.04407 

  1.51817 2.05600 

  0.00283 0.00438 

    11.18205 5.22909 

CR 0.7456 0.9523 

MAE 15.9348 10.2134 

Table 4: Genetic Optimization Parameters  
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Chapter 4:  Results and Analysis 

4.1: O-D MATRIX COMPARISON 

Using the genetic algorithm factors discussed in Chapter 3, a Foursquare check-in 

based O-D matrices were created for the singly- and doubly-constrained gravity models.  

The matrices were compared to the CAMPO O-D matrix to determine the validity of the 

proposed doubly-constrained model.  This comparison was done with three different 

methods trip length distribution comparison, zonal trip generation and attraction heat 

maps, zonal O-D flow patterns.   

The first effort compares the trip length distributions for the Foursquare check-in 

gravity model matrices with the CAMPO matrix. Figure 7 shows the trip length 

distributions (a) and the cumulative trip length distributions (b) for the singly-constrained 

(7a) and doubly-constrained (7b) models.  Examination of the Trip Length Distribution 

portion of figure 7b, shows the doubly-constrained model is relatively constant with 

respect to the general curvature.  However for Figure 7a, under estimation is occurs for 

short trips and slight over estimation occurs for long trips.  For the cumulative 

distribution figure, slight under estimation is consistently shown for the doubly-

constrained curve.  While the curves do follow generally the same paths, the deviations 

indicated lend themselves to further fine tuning of this method.  
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(a) Singly-Constrained Model Trip Length Frequency Results 

 

(b) Doubly-constrained Model Trip Length Frequency Results 

Figure 7: Trip Length and Cumulative Trip Length Distributions 

The next comparison examined was the zone based production and attraction heat 

maps.  These maps use a gradient based color scheme to differentiate the number of 

productions and attractions generated for each zone for each of the models.  In an effort 

to keep the comparisons consistent, all zonal maps use the same scaling factor for the 
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gradients.  Figure 8 compares productions generated from the CAMPO model, and from 

the Foursquare for the singly- and doubly-constrained gravity models demonstrating 

where the methodology excels and where there are limitations.  Using the CAMPO 

production map as the ground truth model, the singly-constrained model shows high 

production areas that are significantly less in number.  Additionally, the singly-

constrained model shows mid-level production area through the study region while the 

CAMPO map is more polarized.  Conversely, the doubly-constrained map shows 

production rates with similar magnitude to the CAMPO map through the study region.  

TAZs that include the central business district, airport, as well as areas dense with living, 

entertainment, retail, and food venues are consistently depicted as large production 

generators 

 

Figure 7: Production Comparison Maps 

Figure 8 compares the attractions of the two models with respect to the CAMPO 

OD matrix and highlights where the methodology excels and where there are limitations.  

Once again using the CAMPO production map as the ground truth model, the singly-

CAMPO Singly-Constrained Doubly-Constrained 
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constrained model predicts attraction rates similar to the CAMPO model for many areas, 

but suffers again from the inability to associate high attraction rates to all of the TAZs 

identified within the CAMPO map.  The doubly-constrained map demonstrates the 

models ability to better identify areas with high attraction rates.  However, the map 

highlights areas where over estimation occurs, namely in the northwestern portion of the 

map. 

 

Figure 8: Attraction Comparison Maps 

The final comparison effort between the two models examines the flow patterns 

between the origins and destinations for both the CAMPO ground truth O-D matrix and 

the singly- and doubly-constrained gravity model O-D matrices.  The figures below 

show the zonal comparison of the O-D patterns for the CAMPO matrix, the singly- 

(Figure 8) and doubly-constrained (Figure 9) Foursquare matrices using the Log10 

intensity, which is calculated using the following formula. 

         (
   

∑ ∑      
)            

CAMPO Doubly-Constrained Singly-Constrained 
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Using the intensity formula, the graphic uses the horizontal axes as the origins and the 

vertical axes as the production zones in ascending order.  Additionally, the O-D MAE 

matrices for the singly- and doubly-constrained models are included. 

Figure 9 demonstrates the similarities between the singly-constrained model and 

the CAMPO model.  The darker the color within the figure, the higher the O-D flow.  

While the areas of lighter flow, shown with the lighter coloring, are reasonably consistent 

in the Foursquare model, the areas with higher flow are not as prevalent.  This is 

consistent with the less variegated productions and attractions shown within the singly-

constrained model as shown above.  Additionally, the MAE matrix is provided to 

demonstrate how closely the estimate Foursquare matrix matches the CAMPO matrix.   
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Figure 9: Zonal Comparison of Singly-Constrained Gravity Model O-D  

Figure 9 compares the O-D flow pattern between the CAMPO O-D matrix and the 

doubly-constrained gravity model matrix.  Comparing the CAMPO and Foursquare 

matrices, the flow patterns demonstrate similarities between the two models consistent 

with what was shown in the singly-constrained model.  The doubly-constrained model 

shows less flow along the inter-zonal 45º line when compared to both the CAMPO 

ground truth and the singly-constrained model.  Additionally, the doubly-constrained 
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model has a more variegated color pattern through the diagram, which more accurately 

reflects the ground truth model.  This coincides with the CR for the doubly-constrained 

model being closer to one than the singly-constrained model, which were 0.9523 and 

0.7456, respectively. Similar to the singly-constrained model, the MAE matrix is 

provided to demonstrate how closely the estimate Foursquare doubly-constrained matrix 

matches the CAMPO matrix.   

 

Figure 10: Zonal Comparison of Doubly-Constrained Gravity Model O-D   



54 

Chapter 5:  Conclusion 

5.1: CONCLUSION 

Trip distribution is a significant portion of the transportation planning process.  

Traditionally, the data used for the creation of O-D matrices comes from the household 

surveys.  This thesis examines the effectiveness of using LBSN data in the form of 

check-ins from the Foursquare application to calculate an O-D matrix for the Austin area.  

Previous studies by Yang et al. (2014) and Jin et al. (2013) explored the use of check-in 

data to create an O-D matrix using singly-constrained gravity model.  These previous 

efforts demonstrated the validity of the method.  As an expansion, this thesis explores 

the use of a doubly-constrained gravity model for the creation of an O-D matrix.  

Check-in data from Foursquare, a leading LBSN provider, was used to create production 

and attraction rates for the doubly-constrained model as well as the singly-constrained 

gravity model which was used in conjunction with the CAMPO ground truth matrix to 

examine the predictability of the proposed methodology.  Additionally, location-based 

ratios were used to calculate the productions and attractions for the singly- and doubly-

constrained models and a genetic optimization algorithm was employed to attempt to 

reach a global optimization for the models.  Furthermore, a combination friction factor 

that was comprised of a linear friction function for short distances (defined as less than 

11.18205 for the singly-constrained and 5.22909 for the doubly-constrained models for 

this effort) and a negative exponential function for long distances. 

In comparison to the traditional methods used for O-D estimation, this study 

shows that LBSN data has the potential to provide better spatial coverage, and benefits 

from build-in user verification, real-time updating potentials, and a significantly lower 

data collection cost compared to other methodologies.  To further evaluate the model, a 
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comparison of trip length distributions, zonal trip generation and attraction heat maps, 

zonal O-D flow patterns were conducted.  This effort related the Foursquare singly- and 

doubly-constrained models with the ground truth CAMPO model.  Comparing the 

CAMPO ground truth O-D matrix with the Foursquare singly- and doubly-constrained 

matrix, a coincidence ratios of 0.7456 and 0.9523, respectively, were established.  

Additionally, mean absolute errors of 15.9348 and 10.2134 were calculated.  Moreover, 

in comparison to the singly-constrained gravity model, the doubly-constrained model 

demonstrates better learning capabilities.  

There are some limitations with the proposed methodology that should be 

examined in future research.  Currently the matrices are still quite symmetric (although 

not exactly symmetric) and as shown in the intensity plots, there are deficiencies in the 

one to one comparisons between the Foursquare models and the CAMPO model.  

Further examination into the temporal aspects of the models as well as specific trip 

purposes should be researched to further validate this proposed methodology.   

Despite these initial short comings of the model, these initial efforts demonstrate 

that the use of LBSN check-in data is a viable method for creating an O-D matrix.  

Future research should examine different functions for associating the check-in data to 

productions and attractions with the intent of distributing the check-ins in a manner that is 

proportional to density of venues within the zone. Additionally, the use of the triply-

constrained atomistic model with the check-in data may produce O-D matrix that more 

nearly resembles the CAMPO matrix.  
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Appendix A 

CAMPO Data Processing (campoProcess.m) 
 

functioncampoProcess 

closeall 

data = csvread('2010 Person Trip Table.txt'); 

totalZone = 1462; 

 

zoneIdx = csvread('tazid.txt'); 

 

% 1. Home Based Work Person Trips Direct (HBW-Direct) 

HBWD = reshape(data(:,1+2),totalZone,totalZone)'; 

% 2. Home Based Work Person Trips Strategic (HBW-Strategic) 

HBWS = reshape(data(:,2+2),totalZone,totalZone)'; 

% 3. Home Based Work Person Trips Complex (HBW-Complex) 

HBWC = reshape(data(:,3+2),totalZone,totalZone)'; 

HBW = HBWD+HBWS+HBWC; 

 

% 4. Home Based Non-work Retail Person Trips (HBNW-R) 

HBR = reshape(data(:,4+2),totalZone,totalZone)'; 

% 5. Home Based Non-work Other Person Trips (HBNW-O) 

HBO = reshape(data(:,5+2),totalZone,totalZone)'; 

% 6. Home Based Non-work Primary Education Person Trips (HBNW-E1) 

HBEdu = reshape(data(:,6+2),totalZone,totalZone)'; 

% 7. Home Based Non-work University/College Person Trips (HBNW-E2) 

HBUniv = reshape(data(:,7+2),totalZone,totalZone)'; 

% 8. Home Based Non-work UT-Austin Education Person Trips (HBNW- UT) 

HBUT = reshape(data(:,8+2),totalZone,totalZone)'; 

% 9. HBNW/NHB (Non-work) Airport Person Trips (NW-Airport) 

NWAir = reshape(data(:,9+2),totalZone,totalZone)'; 

% 10. Non-home Based Work-related Person Trips (NHB-W) 

NHBW =  reshape(data(:,10+2),totalZone,totalZone)'; 

% 11. Non-home Based Other Person Trips (NHB-O) 

NHBO =  reshape(data(:,11+2),totalZone,totalZone)'; 

% 12. Non-home Based External Commuter/Visitor Vehicle Trips (NHB-Exlo) 

NHBE =  reshape(data(:,12+2),totalZone,totalZone)'; 

 

HBW = HBW(zoneIdx,zoneIdx); 

HBR = HBR(zoneIdx,zoneIdx); 

HBO = HBO(zoneIdx,zoneIdx); 

HBUT = HBUT(zoneIdx,zoneIdx); 

NWAir = NWAir(zoneIdx,zoneIdx); 

NHBW = NHBW(zoneIdx,zoneIdx); 

NHBO = NHBO(zoneIdx,zoneIdx); 

NHBE = NHBE(zoneIdx,zoneIdx); 

 

save('campo.mat','HBW','HBR','HBO','HBUT','NWAir','NHBW','NHBO','NHBE')

; 
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Appendix B 

Check-in Data Processing (foursquaredata.m) 
 

clearall; 

loadcampo 

loadcentroids 

loadweekday 

 

zoneIdx = csvread('tazid.txt'); 

 

fori=1:520 

for j=1:520 

    distance(i,j)=(abs(lat(i)-lat(j))+abs(lng(i)-lng(j)))*100; 

end 

end 

tripdist=distance+5.*eye(size(distance,1)); 

 

totalOD=HBO+HBR+HBUT+HBW+NHBE+NHBO+NHBW+NWAir; 

 

weekday = reshape(weekday(:,:),10,1462)'; 

 

checkin=weekday(zoneIdx,:); 

 

checkins=reshape(checkin(:,:),520,10)'; 
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Appendix C 

Doubly-Constrained Gravity Model Optimization (doubleGravityOpt.m) 
 

function doubleGravityOpt 
clear all 

  
load campo 
load centroids 
load weekday 
% global tripdist totalOD checkins 
zoneIdx = csvread('tazid.txt'); 
for i=1:520 
    for j=1:520 
        distance(i,j)=(abs(lat(i)-lat(j))+abs(lng(i)-lng(j)))*100; 
    end 
end 
tripdist=distance+5.*eye(size(distance,1)); 
totalOD=HBO+HBR+HBUT+HBW+NHBE+NHBO+NHBW+NWAir; 
weekday = reshape(weekday(:,:),10,1462)'; 
checkin=weekday(zoneIdx,:); 
checkins=reshape(checkin,520,10)'; 

  
algCells = {@dgravity,@sgravity}; 
algNames = {'Doubly','Singly'}; 

  
%%%%%%%%%%%%kp   ka   pow alpha beta alpha1 beta1 TD TUpperBd TLowBd 

adjMid 
lowerDBds = [1e-3 1e-3 0.1 1e-3  1e-3 1e-3   1e-3  5  5000     300    .1  

];      
upperDBds = [10   10   4   5     5    10     10    15 10000    1500   .8  ]; 

  
%%%%%%%%%%%%kp   ka   bp alpha beta alpha1 beta1 TD TUpperBd TLowBd 

adjMid 
lowerSBds = [1e-3 1e-3 1e-3 1e-3  1e-3 1e-3   1e-3  5  5000     300   .8  

];      
upperSBds = [10   10   1e-3 10    10   10     10    15 5000     300   .8  ]; 

  
lowerBdsCell = {lowerDBds,lowerSBds}; 
upperBdsCell = {upperDBds,upperSBds}; 

  
for a=2:2 
    alg = algCells{a}; 
    algName = algNames{a}; 
    lowerBds = lowerBdsCell{a}; 
    upperBds = upperBdsCell{a}; 

  
nVars = length(lowerBds); 
n = length(totalOD); 
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% options = gaoptimset('PlotFcns', 

@gaplotbestf,'Generations',100,'TolFun',1e-12); 
CR=0; 
swapRatio=0; 
params=[]; 
while abs(CR)<.7 
    [params,fav,exitflag,output] = ga(@(x) 

eva(x,checkins,'CR',totalOD,tripdist,n,alg),nVars,[],[],[],[],lowerBds,

upperBds) 
%     CR = -fav; 
%     swapRatio = fav; 
    [swapRatio,CR,FR,MAE,ME] = 

eva(params,checkins,'SwapRatio',totalOD,tripdist,n,alg) 
end 
truTSum = sum(sum(totalOD)); 
predictedTrips = dgravity(params,checkins,tripdist,n,truTSum); 
truT = reshape(totalOD,1,[]); 
algT = reshape(predictedTrips,1,[]); 

  
save(['res_' algName 

'_allpurpose.mat'],'params','CR','FR','ME','MAE','swapRatio','totalOD',

'predictedTrips'); 

  
csvwrite(['res_' algName '_ProAttHeatMap.csv'],[zoneIdx sum(totalOD,2) 

sum(predictedTrips,2) sum(totalOD)' sum(predictedTrips)']); 

  
display('optimization done.') 
 

fig1=figure(1) 
interval=100; 
totalLength=3000; 
CR = 

compareTripLengthDist(totalOD,predictedTrips,tripdist,interval,totalLen

gth) 
saveas(fig1,'cr.fig') 

  
end 

  
end 
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Appendix D 

Evaluation of MAE, ME, and CR (eva.m) 
 

function [z,CR,FR,MAE,ME] = eva(x,checkins,obj,totalOD,tripdist,n,alg) 
% clc 
truTSum = sum(sum(totalOD)); 
predictedTrips = alg(x,checkins,tripdist,n,truTSum); 
% predictedTrips = predictedTrips/algTSum*truTSum; 
truT = reshape(totalOD,1,[]); 
algT = reshape(predictedTrips,1,[]); 

  
            if sum(isnan(algT) | (algT)<0)>0 
                z = 999999999; 
            else 

  
switch obj 
        case 'MAE' 
            MAE = mean(reshape(abs(truT-algT),1,[])); 
            z = MAE; 
        case 'Theil' 
            p=sqrt((sum((truT-algT).^2))/length(truT)); 
            

q=sqrt((sum((truT).^2))/length(truT))+sqrt((sum((algT).^2))/length(truT

)); 
             z = p/q; 
    case 'HybridAE' 
        z = 1/2*mean(reshape(abs(truT-

algT),1,[]))+1/2*max(reshape(abs(truT-algT),1,[])); 
        case 'CR' 
            z = -CoincidentRatio(totalOD,predictedTrips,tripdist); 
  case 'SwapRatio' 
            z = swapRatio(truT,algT); 
    case 'FreqRatio' 
            z = -

frequencyRatio(truT,algT,ceil(max(max(truT))/1000)*1000); 
    case 'CRFR' 
            z = -min(CoincidentRatio(totalOD,predictedTrips,tripdist),... 
                

4/5*frequencyRatio(truT,algT,ceil(max(max(truT))/1000)*1000)); 
    otherwise 
            MAE = mean(reshape(abs(truT-algT),1,[]));             
            z = MAE;             
end 
            end 
MAE = mean(reshape(abs(truT-algT),1,[])); 
ME = mean(reshape(algT-truT,1,[])); 
CR = CoincidentRatio(totalOD,predictedTrips,tripdist); 
SR = swapRatio(truT,algT); 
FR = frequencyRatio(truT,algT,ceil(max(max(truT))/1000)*1000); 
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% display(MAE) 
display(['z=' num2str(z) ', fr=', num2str(FR),  ', sr=' num2str(SR) ', 

params=' num2str(x(1)) ',' num2str(x(2)) ',' num2str(x(3)) ',' 

num2str(x(4)) ', freAdjParams=' num2str(x(end-2)) ',' num2str(x(end-1)) 

',' num2str(x(end)) ]) 
% display(['z=' num2str(z) ', mae=' num2str(MAE) ', params=' 

num2str(x(1)) ',' num2str(x(2)) ',' num2str(x(3)) ',' num2str(x(4))]) 

  
function fr = frequencyRatio(truOD,algOD,ub) 
    bin = 0:50:ub; 
    truHist = hist(reshape(truOD,1,[]),bin); 
    algHist = hist(reshape(algOD,1,[]),bin); 
    truPercent=truHist./sum(truHist); 
    algPercent=algHist./sum(algHist); 
    fr=sum(min(truPercent,algPercent))/sum(max(truPercent,algPercent)); 
end 

  

  
function cr = CoincidentRatio(trips,predictedTrips,tripdist) 
    interval=100; 
    totalLength=3000; 
    m=0:interval:totalLength; 

  
    y1=zeros(length(m),1); 
    y2=zeros(length(m),1); 

  
    for k=0:interval:totalLength 
      y1(k/interval+1)=y1(k/interval+1)+sum(sum(trips(tripdist>=k & 

tripdist<k+interval))); 
      

y2(k/interval+1)=y2(k/interval+1)+sum(sum(predictedTrips(tripdist>=k & 

tripdist<k+interval))); 
    end 

  
    tripsPercent=y1./sum(y1); 
    predictedTripsPercent=y2./sum(y2); 
   

cr=sum(min(tripsPercent,predictedTripsPercent))/sum(max(tripsPercent,pr

edictedTripsPercent)); 
end 

  
end 
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Appendix E 

Doubly-constrained Gravity Model (dgravity.m) 
 

function [Tcur]=dgravity(x,checkins,tripdist,n,truTSum) 
 

alpha=x(4); 
beta=x(5); 
alpha1=x(6); 
beta1=x(7); 
TD = x(8); 
TUpperBd = x(9); 
TLowBd = x(10); 
adjMid = x(11); 

  
kp = x(1); 
% bp = x(2); 
ka = x(2); 
pow = x(3); 

  
professional=checkins(1,:); 
shops=checkins(2,:); 
universities=checkins(3,:); 
residence=checkins(4,:); 
travelspots=checkins(5,:); 
entertainment=checkins(6,:); 
food=checkins(7,:); 
nightlife=checkins(8,:); 
outdoor=checkins(9,:); 

  
friction=(alpha+beta.*tripdist).*(tripdist<TD)+(alpha1*exp(-

beta1.*tripdist)).*(tripdist>=TD); 

 
inputCheckins = 

professional+residence+universities+entertainment+nightlife+shops+food+

travelspots+outdoor; 
production=inputCheckins.*(ka+kp); 
 

attraction=inputCheckins.*ka; 
ba = inputCheckins.^pow/sum(inputCheckins.^pow)*(sum(production)-

sum(attraction)); 
attraction = attraction + ba; 

 
alphaj=ones(1,n); %1*n 
betai=ones(1,n); %1*n 

  
prevAlphaj = zeros(1,n); 
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prevBetai = zeros(1,n); 
 

AS=alphaj.*attraction; %1*n 
PS=betai.*production; %1*n 

  
Tcur=(AS'*PS).*friction; % 
 

prevDif = 1; 
curDif = 0; 
stepCnt = 0; 
while abs(prevDif-curDif)>1e-3 && stepCnt<=20 
    Pi=sum(Tcur,2)'; %1*n 
    Aj=sum(Tcur,1); %1*n 

  
    prevAlphaj = alphaj; 
    prevBetai = betai; 

     
    betai=1./((alphaj.*Aj)*friction'); %summation over j 
    alphaj=1./((betai.*Pi)*friction); 
    AS=alphaj.*attraction; %1*n 
    PS=betai.*production; %1*n 
    Tcur=(AS'*PS).*friction; 
    prevDif = curDif; 
    curDif = max(max(abs(alphaj-prevAlphaj)),max(abs(betai-prevBetai))); 
    stepCnt = stepCnt+1; 
end     

  
Tcur = Tcur/sum(sum(Tcur))*truTSum; 
 

%%Frequency Bias Adjustment%% 
%for high frequency values 
orgTcur = Tcur; 
highIdx = Tcur>=TLowBd; 
Tcur(highIdx)= adjMid*Tcur(highIdx); 
%for extreme values 
Tcur(Tcur>TUpperBd)=TUpperBd; 
%obtain difference and redistribute 
dif = sum(sum(orgTcur(highIdx)-Tcur(highIdx))); 
Tcur(~highIdx) = 

Tcur(~highIdx)+dif*Tcur(~highIdx).^pow/sum(sum(Tcur(~highIdx).^pow)); 

 

  



64 

Appendix F 

Swap Ratio (swapRatio.m) 

 
functionsr = swapRatio(x,y) 

 

x=reshape(x,1,[]); 

y=reshape(y,1,[]); 

 

nonzeroX = x(x>0 | y>0); 

nonzeroY = y(x>0 | y>0); 

 

srVector = abs(atan2(nonzeroY,nonzeroX)/pi*180-45); 

 

sr = mean(srVector); 
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Appendix G 

Trip Length Distance Comparison (compareTripLengthDist.m) 
function 

[CR]=compareTripLengthDist(trips,predictedTrips,tripdist,interval,total

Length) 

  
% global y1 y2 

  
m=0:interval:totalLength; 

  
y1=zeros(length(m),1); 
y2=zeros(length(m),1); 

  
for k=0:interval:totalLength 
    for i=1:size(trips,1) 
        for j=1:size(trips,1) 
            if tripdist(i,j)>=k && tripdist(i,j)<=k+interval && i~=j 
                y1(k/interval+1)=y1(k/interval+1)+trips(i,j); 
                y2(k/interval+1)=y2(k/interval+1)+predictedTrips(i,j); 
            end 
        end 
    end 
end 

  
tripsPercent=y1./sum(y1); 
predictedTripsPercent=y2./sum(y2); 

  
tripsPercentCum=zeros(length(tripsPercent),1); 
predictedTripsPercentCum=zeros(length(predictedTripsPercent),1); 

  
for mm=1:length(y1) 
    for nn=1:mm 
       tripsPercentCum(mm)=tripsPercentCum(mm)+tripsPercent(nn);  
       

predictedTripsPercentCum(mm)=predictedTripsPercentCum(mm)+predictedTrip

sPercent(nn);  
    end 
end 
subplot(1,2,1) 
CR=sum(min(tripsPercent,predictedTripsPercent))/sum(max(tripsPercent,pr

edictedTripsPercent)); 
plot(m,tripsPercent,'o',m,predictedTripsPercent,'*') 
xlabel('Trip Length (mile)') 
ylabel('Percentage') 
set(gca,'XTickLabel',str2num(get(gca,'XTickLabel'))/100); 
hleg1 = legend('Survey Trips','Predicted Trips'); 
title('(a)Trip Length Distribution'); 
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subplot(1,2,2) 
plot(m, tripsPercentCum,'o',m,predictedTripsPercentCum,'*') 
xlabel('Trip Length (mile)') 
ylabel('Percentage') 
axis([0 3000 0 1]); 
set(gca,'XTickLabel',str2num(get(gca,'XTickLabel'))/100); 
hleg1 = legend('Survey Trips','Predicted Trips'); 
title('(b)Cumulative Trip Length Distribution'); 
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