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Using Implicit Cues from Image Tags

Sung Ju Hwang, M.A.

The University of Texas at Austin, 2010

Supervisors: Kristen Grauman
Matthew Lease

Current uses of tagged images typically exploit only the most explicit

information: the link between the nouns named and the objects present some-

where in the image. We propose to leverage “unspoken” cues that rest within

an ordered list of image tags so as to improve object localization. We define

three novel implicit features from an image’s tags—the relative prominence of

each object as signified by its order of mention, the scale constraints implied by

unnamed objects, and the loose spatial links hinted by the proximity of names

on the list. By learning a conditional density over the localization parameters

(position and scale) given these cues, we show how to improve both accuracy

and efficiency when detecting the tagged objects. We validate our approach

with 25 object categories from the PASCAL VOC and LabelMe datasets, and

demonstrate its effectiveness relative to both traditional sliding windows as

well as a visual context baseline.
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Chapter 1

Introduction

Photo sharing web services, captioned news photo archives, and social

networking websites all offer an abundance of images that have been manually

annotated with keywords (“tags”). Often tags mark physical things shown in

the photo (such as names of objects, locations, landmarks, or people present),

which allows users to retrieve relevant photos within massive collections using

a simple text-based search. Today millions of people provide such tags, and

many more benefit from them when organizing their photos or searching for

images. Computer vision researchers in particular regularly exploit tagged

images, harvesting datasets that can then be pruned or further annotated to

train and test object recognition systems [6, 11].

Those image tags that are nouns serve naturally as “weak supervision”

for learning object categories: they flag the presence of an object within the

image, although which pixels actually correspond to the object remains am-

biguous. A number of techniques have been developed to learn from such

loosely labeled data, typically by designing learners that can cope with high

label noise [13, 21, 25, 30], or can discover the correspondence between multiple

words and the image’s regions [2, 3, 18].
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Figure 1.1: Main idea: the list of tags on an image may give useful information
beyond just which objects are present. The tag lists on these two images indicate
that each contains a mug. However, they also suggest likely differences between the
mug occurrences—even before we see the pixels. For example, the relative order of
the words may indicate prominence in location and scale (mug is named first on the
left tag list, and is central in that image; mug is named later on the right tag list,
and is less central in that image), while the absence of other words may hint at the
total scene composition and scale (no significantly larger objects are named in the
left image, and the mug is relatively large; larger furniture is named on the right,
and the mug is relatively small).

In this work we introduce the idea of “reading between the lines” of

image tags. We propose to look beyond image tags as merely offering names

for objects, and consider what implicit cues a human tagger additionally gives

(perhaps unknowingly) based on the way he or she provides the tags. The

intuition is that a number of factors besides object presence influence how a

person looks at an image and generates a list of tags—for example, the seman-

tic importance of the objects or their centrality in the image can affect which

is mentioned first; the spatial proximity of objects can affect their sequence

in the tag list; low-level attentional cues can steer gaze patterns. While the

existence of such behavior effects has been studied to some extent in the user

interface and psychology communities [1, 9, 10], object detection methods have
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yet to capitalize on them.

Our main idea is to learn a model to predict how likely a given object

location and scale are given an image’s ordered tag list. To do this, we de-

fine three new implicit features computed directly from the image’s tags—the

relative prominence of each object as signified by its order of mention, the

scale cues implied by unnamed objects, and the loose spatial links hinted by

the proximity of names on the list (see Figure 1.1). Having learned how these

unspoken cues map to object localization, we can prime the object detectors

to search the most likely places first in a novel tagged image, or prefer de-

tections that are plausible according to both the subregion’s appearance as

well as its agreement with the tag-based predictor. In this way, we intend to

improve both the accuracy and efficiency of object localization within weakly

human-labeled images.

We demonstrate the effectiveness of our approach on a wide variety of

categories in real images tagged by anonymous annotators. Our results show

good gains relative to both a traditional sliding window method as well as an

alternative location priming baseline that uses visual cues.
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Chapter 2

Related Work

Sliding window object detectors test subregions at multiple scales and

locations to find a target object, classifying each image window as to whether

it contains the category of interest. Due to the expense of classifying each pos-

sible window, some techniques aim to reduce the number of windows scanned,

either by priming the detector based on global context [22, 29], or directing

the search with cascades [31] or branch-and-bound techniques [20]. We also

intend to prioritize scanning of those regions that are most likely to contain

the object of interest, however we do so based on priming effects learned from

implicit image tag features.

Visual features can provide a form of scene-level context that improves

the detection of foreground objects [8, 16, 17, 22, 29], and recent work shows

how to improve object detection using learned inter-object co-occurrence or

spatial relationships [7, 14, 15]. Our approach also seeks cues about total scene

composition and layout; however unlike previous work, our information is

based solely on implicit associations learned from seeing many tagged im-

ages with ground truth bounding boxes, not from visual cues. Aside from the

potential advantage of bypassing image feature computation, our tag-based
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features can also capture correlations with localization parameters not always

evident in the visual scene context, as we will discuss below.

Researchers frequently use keyword-based search as a first step to col-

lect candidate images for datasets [6, 11]. Given the expense of hand-annotating

images, a number of techniques have been designed to learn visual category

models directly from Web images with no human intervention [13, 21, 25, 30].

To exploit images associated with multiple words or captions, methods have

been developed to automatically recover correspondences between the words

and image regions [2, 3, 18].

Also relevant to this project is work studying how people look at images,

what affects their attention, and what factors determine the words they will

generate if asked to tag a photo [1, 9, 10, 27, 28, 33]. Saliency operators use

bottom-up visual cues to find interesting image points, e.g. [19]. Such low-

level cues have been shown to coincide often with those objects that people find

interesting and therefore choose to label [10], though the top-down saliency

of recognized objects also plays a role [9]. The authors of [27] explore the

notion of “importance” in images, as reflected by what objects people tend

to name first. They design a statistical model for the naming process, and

demonstrate a regressor that takes hand-segmented images and predicts a list

of the most important keywords based on the visual cues. We are essentially

tackling the inverse problem—given the human-generated keywords, we want

to localize (segment) the objects. For our proposed method to work, it must

be the case that people often agree on what objects to name in an image, and
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in what order; the success of the ESP Game [32] is encouraging evidence for

this premise.

No previous work considers exploiting the information implied by how

a person assigns words to an image for the sake of actually strengthening

object detection, as we propose here. Perhaps most related to our theme in

spirit is the Bayesian expert system for medical diagnosis designed in [23]

that captures biases in how patients report symptoms. The authors note that

faster diagnoses can be made if inference relies on both what is and is not

reported to a doctor, and in what order. They therefore adjust the model to

reflect the human knowledge that people prefer to report present symptoms

over absent ones, and more severe problems before less severe ones. We see

some neat (rough) analogies between this doctor-patient interchange and our

tagger-image interchange, since both can benefit from relative importance and

noticeability of symptoms/objects. However, in our approach these patterns

are learned from data, and of course the image annotation problem has unique

challenges.
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Chapter 3

Approach

We aim to exploit implicit tag-based features to strengthen object de-

tectors. First, we collect tagged images online, and encode features for each

image’s tag list. Then we model the conditional probability distribution for

each object category’s image position and scale given the cues implied by the

tags. Separately, we train appearance-based object detectors using state-of-

the-art techniques [5, 12]. Given a novel image tagged by an unknown user,

our method can perform in one of two modes: either we (1) prioritize search

windows within the image based on the learned distribution, thereby speeding

up the search relative to the usual sliding-window detector, or else we (2) com-

bine the models to perform more accurate object localization based on both

the tags and the pixels.

Below we first define our implicit tag features (Section 3.1), and then

describe how we represent the conditional densities (Section 3.2); finally, we

describe how we integrate them into the detection process (Section 3.3).
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3.1 Implicit Tag Feature Definitions

We propose three implicit features that can be extracted from an im-

age’s tags. We specify each descriptor and what it is intended to capture in

turn below.

Word Presence and Absence. This feature is a traditional bag-of-

words representation, extracted from a single image’s list of tags. An image

is mapped to a histogram W = [w1, . . . , wN ], where wi denotes the number

of times that tag-word i occurs in that image’s associated list of keywords,

for a vocabulary of N total possible words. We assume that synonyms and

misspellings are resolved to map to the same token (e.g., car and auto map

to a single word). For most tag lists, this vector will consist of only binary

entries saying whether each tag has been named or not.

While this feature certainly specifies what was said about the image—

which words were named—it also indirectly implies attributes for the named

objects based on what was not said. The known presence of multiple objects

serves as a sketch of the total scene composition, which constrains the type

of layout or scales those objects may have. Further, those objects that are

not named suggest what the total scale/scope of the scene may be, given the

tendency to name prominent or large objects in favor of smaller ones [27].

For example, it is more likely that when one tags “flower, spider”, the

flower is prominent in the field of view; whereas if one tags “flower, garden,

wheelbarrow”, it is likely the flower region is smaller. Thus we get information

from what is not reported by the human labeler that may aid in localization.
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Note that the tag list need not completely cover all objects present

for such correlations to be discovered. Additionally, the vocabulary need not

contain only nouns. The presence or absence of certain adjectives and verbs

could also convey composition and relative scale; however, we have not yet

tested this, primarily since our data happens to consist of nouns.

In a sense, the word-count feature explicitly states that which global

image descriptors designed to prime object detectors hope to capture indi-

rectly [22, 29]. Both say something about total scene content. However, tag-

based features can actually reveal correlations with object placement or scale

not captured by a visual scene feature: people may provide similar keywords

for images where the localization parameters are common, yet the surround-

ing visual context varies (for example, consider an image like the left image

in Figure 1.1, and a second image where the mug is at a similar scale, but

set amidst other randomly placed desk clutter). At the same time, the scene

structure revealed by global visual cues can offer better location cues in cases

where the tags are less reliable. Thus the two channels can be complementary;

we demonstrate this in experiments.

Tag Rank. Our second feature captures the prominence of the named

object as implied by its order of mention in the list. The idea is that people do

not suggest tags in an arbitrary order; rather, multiple factors bias us towards

naming certain things before others, including relative scales and centrality

within the image, object significance, and attentional cues [9, 10, 28, 33].

To encode the named objects’ order and relative ranking simultane-
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ously, we map the tag list to the vector R = [r1, . . . , rN ], where ri denotes

the percentile of the rank for tag i in the current image, relative to all pre-

vious ranks observed in the training data for that word (note that i indexes

the vocabulary, not the tag list). The higher the value, the more this word

tops the list relative to where it typically occurs in any other tag list; if the

tag is not present, the percentile is 0. Some objects have context-independent

“noticeability”—such as baby or fire truck—and are often named first re-

gardless of their scale or position in that particular image. Thus, by using the

tag-specific percentile rather than raw rank on the list, we attempt to account

for semantic biases that occur in tagging.

For this cue, we expect to benefit most from the central fixation bias [28]

and the fact that something named sooner than usual may be atypically promi-

nent in this view. Put simply, we expect bigger or more centrally located ob-

jects to often be named first, which should help the windowed detector home

in on proper scales and positions.

Mutual Tag Proximity. When scanning an image, people generally

do not systematically move their eyes from one corner of the image to another.

In fact, their sequence of attention to multiple objects is influenced in part

by the objects’ spatial proximity [10]. Thus, an image tagger may name a

prominent object first, and then, as her eyes travel, note some other objects

nearby.

Our third implicit cue therefore attempts to capture the rough lay-

out and proximity between objects based on the sequence in which tags are
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given. We map the tag list to a vector encoding the mutual nearness of each

pair of words: P = [ 1
p1,2

, 1
p1,3

, . . . , 1
p1,N

, . . . , 1
p2,3

, . . . , 1
pN−1,N

], where pi,j denotes

the (signed) rank difference between tag-words i and j for the given image.

The entry is 0 when the pair is not present. (Dimensionality: P ∈ Z
N2

2 .)

Whereas the tag rank feature R defined above captures the individual (word-

normalized) orders of mention, this one records nearness in the list and relative

order between words.

3.2 Modeling the Localization Distributions

Having defined the features, next we describe how to relate them to

the object detection task. Localization entails three parameters—the scale

of the window, and its center position in image coordinates. Denote this as

X = (s, x, y). We want to model the conditional probability density Po(X|T ),

where O denotes the target object category, and T denotes one of the tag-based

features defined above: T = W, R, or P (or some combination thereof). That

is, we want to estimate the probability a given window contains the object of

interest, conditioned only the image’s tags.

We model this as a mixture of Gaussians, Po(X|T ) =
∑m

i=1 αi N(X ;µi,Σi),

since we expect most categories to exhibit multiple modes of location and scale

combinations. We compute the mixture model parameters αi, µi, and Σi us-

ing a Mixture Density Network (MDN) [4] trained from a collection of tagged

images with bounding box ground truth for the target object. The MDN is

a neural network trained with instances of tag-list features {T1, . . . , TM} and
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Figure 3.1: The top 30 most likely places for a car in several tagged images, as
computed by our method. These bounding boxes are sampled according to Po(X|T );
the actual image appearance is not yet being used. Note how our predictions change
depending on what the tag list implies. The bottom right example shows a failure
case, where the absence of larger objects leads our method to overestimate the scale.

their associated target parameters {X1, . . . , XM} to output the mixture den-

sity model parameters that define Po(X|T ). Given a novel tagged image that

lacks bounding boxes, the MDN provides a mixture model representing the

most likely locations for the target object. This allows us to prime a detector

based only on what the tags suggest. Other models are of course possible; our

choice is motivated by MDNs’ efficiency, as well as their past successful use

for primed detection in [22].

3.3 Modulating or Priming the Detector

Once we have the function Po(X|T ), we can either combine its pre-

dictions with an object detector that computes Po(X|A) based on appearance

cues A, or else use it to rank sub-windows and run the appearance-based detec-

tor on only the most probable locations (“priming”). The former has potential

to improve accuracy, while the latter will improve speed.

We can integrate any existing window-based detector into our method;

we experiment with two state-of-the-art methods: the HOG detector of [5],

12



which works well for rigid textured objects, and the part-based detector of [12],

which can also accommodate deformable or articulated objects. Both detectors

perform multi-scale windowed detection and return an SVM decision value

d(x, y, s) for the input window. We use a sigmoid function to map the score

to a probability: Po(X = (x, y, s)|A) = 1
1+exp (−d(x,y,s))

, where the score d is

computed at the window centered at (x, y) and with diagonal length s.

Modulating the detector: To balance the appearance- and tag-

based predictions so as to improve detection accuracy, we treat the component

conditional density estimates as scalar features and train a logistic regression

classifier:

Po(X|A, T ) = σ
(

wT [1 Po(X|A) Po(X|T )]
)

. (3.1)

Here Po(X|T ) is as defined in the previous section; to use all our tag cues in

combination, this breaks out into Po(X|T ) = [Po(X|W) Po(X|R) Po(X|P)],

and a weight is learned for each component feature. Similarly, to optionally

incorporate an external context cue, we expand the vector; in some experi-

ments below we insert Po(X|G) for the Gist descriptor G to compare against

the global scene visual context [29]. To learn the weights w, we use the detec-

tion scores for the true detections in the training set together with an equal

number of randomly sampled windows pulled from the background.

Generally we expect this combination to eliminate false positives that

may occur when using an appearance-based detector alone, particularly for

objects whose texture is less distinctive. Similarly, we hope to correct false

negatives, particularly when the target object occurs at low resolution or is

13



Dataset LabelMe PASCAL VOC 2007

Number of training images 3799 5011
Number of testing images 2553 4952
Number of classes 5 20
Number of keywords 209 399
Number of taggers 56 758
Average number of tags / image 23 5.5
x variance 0-98.8% (23.8%) 1.3-99.6% (23.5%)
y variance 0.5-90.6% (12.9%) 1.5-98.3% (17.9%)
s variance 0.9-77.1% (11.7%) 11.6-99.8% (25.2%)

Figure 3.2: Dataset statistics. Last three columns show the ranges of posi-
tions/scales present in the images, averaged per class, as a percentage of image
size.

partially occluded. With a strong enough model for the tag-based cues, we

will prefer only those detections that seem plausible according to both what

is seen as well as what the human tagger has (implicitly) reported.

Priming the detector: To improve the detector’s efficiency, we let

the implied tag cues prime the search for the target object. Unlike typical

detection tasks, we have tags on the test images, so we presume that the ob-

ject is indeed present; what’s left to estimate is the best set of localization

parameters (x, y, s). Thus, instead of scanning the whole image, our method

prioritizes the search windows according to Po(X|T ), and stops searching with

the appearance-based detector once a confident detection is found. (See Fig-

ure 3.1 for real examples of locations we’d search first.)

The idea of learning to constrain search for objects based on visual

features has been explored previously [17, 22, 29], and while we exploit novel

tag-based features, the technical machinery in our method draws inspiration

14



from that work. The important distinction, however, is that while the visual

context challenge considers how much information can be taken from the image

itself before running an object detector, our approach considers what can be

predicted before looking at the image at all.

We envision two scenarios where our method can be applied. The first

is the “weak supervision” scenario, where an image has been tagged intention-

ally to list objects that are present (perhaps by hire, e.g. [6, 26]). The second

is the “unaware tagger” scenario: the method processes publicly available im-

ages from sites such as Flickr, where users have tagged images for their own

purposes, but rarely draw a box around the specific instances. Training re-

quires obtaining manual bounding boxes in either case. At test time, however,

images are tagged but foreground pixels are not demarcated; from that mini-

mal human input, our method helps to rapidly and accurately localize named

objects.
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Chapter 4

Results

We evaluate our method on two datasets: LabelMe [24] and the PAS-

CAL VOC 2007 [11]. Both collections provide realistic snapshots taken by a

variety of people and containing various scenes and combinations of objects;

we use tags provided by (in total) hundreds of anonymous annotators who are

entirely unaware of the experiments we are doing.

We report results for both tasks described in Section 3.3, and also

include comparisons with a visual scene-based context model for reference.

Implementation details. We extract our proposed tag features as

defined above for each image. Figure 3.2 gives the dataset statistics, including

a summary of the ranges of the localization parameters (to show that they

do vary significantly per target object). We use the LabelMe tools to resolve

synonyms and purify labels. We fix the number of components in the mixture

models to m = 12 and 8, on LabelMe and PASCAL, respectively, and use 10

hidden units for the MDNs (we leave all parameters the same for all categories,

and did not attempt to tune them for better performance). We use Netlab

code for the MDNs.

On LabelMe we use the HOG detector for the base appearance-based
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detector [5], since the objects are generally amenable to the HOG descriptor;

on PASCAL we use the part-based detector [12], since it has been shown

to provide state-of-the-art results on that dataset. In both cases we use the

authors’ code1, only modifying it to optionally search windows in an arbitrary

order as specified by Po(X|T ). We use the standard definition to evaluate

detections: there is a “hit” if its area of overlap with the ground truth box

normalized by their union exceeds 50%.

4.1 LabelMe Dataset

In LabelMe, annotators label images online with both keywords and

object outlines, and the system maintains the order in which tags are added

to each image. We downloaded images for the person, car, screen, keyboard,

and mug categories—all of which show the object at a variety of scales and po-

sitions. We report the average results across five runs with random train/test

splits.

Priming Object Search: Increasing Speed. First, we compare our

detector’s speed to the standard sliding window baseline, priming as described

in Section 3.3. We measure performance by the portion of the windows that

must be scanned to obtain any detection rate while allowing a reasonable

number of false positives. Figure 4.1 (left) shows the results. Our method

significantly reduces the number of windows that must be searched; e.g., for

a detection rate of 0.6, our method considers only 1
3
of those scanned by the

sliding window. In fact, our method primes as well as the Gist visual scene

17
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Figure 4.1: LabelMe results. Left: Percentage of windows searched as a function
of detection rate, for all five categories. The numbers in the legend indicate the por-
tion of the windows searched averaged over all detection rates. Right: Localization
accuracy when the HOG detector is modulated with the proposed features. The
numbers in the legend indicate the AUROC. Adding our implicit tag features (bold
dotted lines) improves detection accuracy relative to the appearance-only HOG de-
tector (dark solid line). Accuracy can be further boosted in some categories when
the visual Gist context is also included (light dotted lines). Plot focuses on top left
quadrant of ROC.

context, which is known to be strong for this dataset [22]; with tags and Gist

combined, results are even a bit faster.

Modulating the Detector: Increasing Accuracy. Next, we evalu-

ate how our learned features can improve localization accuracy on LabelMe. In

this case, we search all windows, but modulate the scores of the HOG detector

according to Po(X|T ) (see Eqn. 3.1).

Figure 4.1 (right) compares the accuracy of the detector when run alone

(HOG), the detector when augmented with our tag features (HOG+tags), and

when further augmented with the Gist context (HOG+tags+gist). Overall,
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class HOG [5] +Gist +W +R +P +Tags +Tags+Gist
screen 0.866 0.897 0.906 0.903 0.898 0.913 0.916

keyboard 0.890 0.912 0.922 0.916 0.916 0.929 0.932
person 0.855 0.886 0.877 0.870 0.871 0.881 0.884
mug 0.863 0.874 0.892 0.881 0.882 0.898 0.897

carside 0.879 0.913 0.906 0.901 0.903 0.912 0.919

Figure 4.2: LabelMe localization accuracy (as measured by the AUROC) of the
detectors modulated with each of the proposed feature types, compared with the
raw detector and Gist.

our features make noticeable improvements in accuracy over the raw detector.

This is exciting given the nature of the cues, which do not require even seeing

the test image itself to compute. On three of the five categories our features are

stronger than Gist, while for person and car (which occur in outdoor scenes)

Gist is slightly better, again indicating that our tag-based features are actually

quite competitive with a state-of-the-art representation for visual context for

this data. We find our method’s strength is often due to its accurate object

scale prediction, which especially helps in indoor scenes in the LabelMe images.

Figure 4.2 summarizes the results when using each of the proposed

features separately, showing that each one is indeed informative. For some

objects we see further accuracy improvements (though small) when combining

our features with Gist, suggesting the potential for using complementary visual

and tag cues in concert. Figure 4.3 shows images with example detections.
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(a) HOG (b) HOG+Gist (c) HOG+Tags (d) Tags

Figure 4.3: Example detections on LabelMe on five different target objects. Each
image shows the best detection found; scores denote overlap ratio with ground truth.
The raw appearance-only detector is confused by similar textures anywhere in the
image (rows 1 and 2), whereas the detectors modulated according to the visual
or tag-based context are more accurate. The Gist baseline usually gives good y

estimates, while our method often provides a better scale estimate, particularly for
indoor objects. When scene complexity (texture) is high throughout the image, Gist
tends to be misled into predicting a too-small scale for the target object (row 4).
Our approach can be misled on the scale prediction when the tags mention larger
objects that are only partly visible (row 5).
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4.2 Pascal VOC Dataset

The PASCAL VOC 2007 dataset is a benchmark for object detection

systems. It is a challenging and quite realistic testbed for our method, as it

consists of real user photos downloaded from Flickr, with a wide variety in

composition. From previous work, we expect that the “context” in the VOC

images is relatively weaker than LabelMe, meaning that there tends to be less

viewpoint consistency or common inter-object statistics across examples [8].

Though the dataset creators gathered the images from Flickr, the orig-

inal user tags were not kept. Thus, we collected tags using Mechanical Turk:

we posted each image online with a nearby textbox, and the anonymous work-

ers were instructed to name the objects or items in the image using nouns. In

an attempt at minor quality control, we disabled the textbox until the image

had been viewed by the tagger for 7 seconds, and required him/her to submit

after 30 seconds had passed. We refined the resulting tags as above, using

a spell checker and resolving synonyms. We use the trainval set to train

the MDN and logistic regression parameters, and test on the standard test

partition.

Priming Object Search: Increasing Speed. The procedure and

evaluation measure is the same here as the previous section, except that we

adopt the Latent SVM (LSVM) part-based windowed detector of [12] for this

dataset, since it consistently has top results on the VOC. Figure 4.4 (left) shows

the substantial speed improvements our method yields, over all 20 categories.

The LSVM sliding window is faster here than the HOG’s was on LabelMe,

21



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

detection rate

po
rt

io
n 

of
 w

in
do

w
s 

se
ar

ch
ed

Speed: All 20 PASCAL Classes

 

 
Sliding (0.223)
Sliding+tags (0.097)

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

Accuracy: All 20 PASCAL Classes

 

 

LSVM (AP=33.69)
LSVM+tags (AP=36.79)

Figure 4.4: PASCAL VOC results. Left: Percentage of windows searched as
a function of detection rate, for all 20 categories. Right: Precision-recall curve
drawn by pooling scored bounding boxes from all categories. Augmenting the LSVM
detector [12] with our tag features noticeably improves accuracy—increasing the
average precision by 9.2% overall.

mainly because PASCAL contains larger object instances, allowing the search

to begin at a larger scale.

Modulating the Detector: Increasing Accuracy. Finally, we

evaluate the accuracy boosts our features can provide for the state-of-the-

art detector. As before, we pose a localization task, where the target object

is known to be somewhere in the image, and the system must say where.

Please note that this differs from the VOC standard evaluation, which requires

methods to also make a decision about object presence. Since our method has

access to image tags naming objects, it is trivial for it to reject false detections;

thus, for a fair comparison, we score only the images that do have the object.

We found that because the LSVM detector performs so well for this
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class LSVM [12] LSVM+tags LSVM+Gist Our gain
aeroplane 38.86 39.12 38.03 0.67%
bicycle 64.47 64.31 64.51 -0.11%
bird 11.79 12.74 12.06 8.06%
boat 18.79 19.65 18.57 4.58%
bottle 35.67 35.59 35.38 -0.22%
bus 55.62 56.96 55.26 2.41%
car 55.10 55.14 54.96 0.07%
cat 27.01 29.04 27.24 7.52%
chair 22.31 22.23 22.10 -0.36%
cow 32.27 32.88 32.70 1.89%

diningtable 44.24 42.50 43.31 -0.47%
dog 14.04 16.23 14.85 15.60%
horse 60.98 60.07 60.36 -1.49%

motorbike 52.90 53.30 52.46 0.76%
person 38.95 39.00 39.17 0.13%

pottedplant 18.81 21.37 19.13 13.61%
sheep 31.64 31.23 31.64 -1.30%
sofa 36.73 37.72 37.44 2.70%
train 48.77 49.03 49.03 0.53%

tvmonitor 51.58 51.34 51.41 -0.47%

Figure 4.5: AP scores on the PASCAL VOC 2007. Our method improves the
localization accuracy of the state-of-the-art detector [12] for 13 out of 20 categories.
Note the task is localization only, since the tags specify whether the object is present
or not.

dataset, we can make the most useful accuracy improvements if we allow our

features to re-rank the detector’s most confidently scored windows, follow-

ing [8]. Specifically, we rescore the top 500 detections (after non-maxima sup-

pression) in a test image. We measure performance with the average precision

(AP), the standard metric used in the VOC challenge [11].
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Figure 4.4 (right) shows the precision-recall curve for the test images

from all 20 categories, for which we obtain an overall 9.2% gain in AP. Fig-

ure 4.5 breaks down the per-class results. Our method improves the LSVM

detector on 13 of the 20 categories. For a number of objects (bird, boat,

bus, cat, dog, pottedplant, and sofa) we see quite good improvements. For

others, gains are smaller (or negative). Using previous visual context-based

detection results on VOC data as a reference point [7, 8], we believe the mag-

nitudes of the improvements achieved are significant.

Figure 4.6 shows some qualitative examples (good and bad), comparing

the top detection window according to LSVM (dotted red) vs. the top detection

window according to LSVM+tags (solid green). Often the improvements our

method makes are due to its accurate scale prediction.

We also observed some common properties of the categories for which

our method works best: they tend to have examples with various other objects

present/absent in different scales per instance, which gives context cues to our

method about the target. For example, the dog image in the first row has the

tag hairclip but mentions no other major objects, suggesting (through our

features) that it may be a closeup shot. In contrast, the dog in the second row

has tags for person and other objects, restricting the likely position and scale

of the target. On the other hand, for an object like diningtable, our method

is not useful—perhaps because the tag list tends not to differ, and the table is

generally in the foreground if tagged at all.

We found that Gist does not perform as well on the VOC dataset as it
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(a) Aeroplane (b) Boat (c) Bottle (d) Dog

Figure 4.6: Example detections on the PASCAL VOC. Red dotted boxes denote
most confident detections according to the raw detector (LSVM); green solid boxes
denote most confident detections when modulated by our method (LSVM+tags).
For each category, the first two rows show good results, and third row shows failure
cases. Most improvements come from our accurate scale prediction for the target
object (e.g., see the bottle example in top row, or the two dog examples). Failure
cases occur when the scene has an unusual layout according to those previously
tagged in a similar way (e.g., see bottom-left aeroplane: we predict a large scale
given the building tag, which usually implies the plane is close-by on the ground,
but is not the case here).

did on the LabelMe dataset, perhaps because most of the images in the VOC

are not “scenes”, but instead object-centric. Further, the sparser coverage of

scales, scene types, and viewpoints may make it more difficult for the single

global Gist descriptor to exploit what context is there.
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Chapter 5

Conclusions

Our main contribution is to derive implicit features from human-provided

image tags, and to demonstrate their power for improving detection speed and

accuracy. Overall, our results indicate that there is significant value in reading

into the implicit cues found in human-tagged images. Not only can we find

objects faster by noting the context hints from how they were named, but we

can also improve the final accuracy of the detector itself.

Results on two realistic datasets with 25 diverse categories demonstrate

that we can learn the tendencies of real taggers, even when (and perhaps

because of the fact that) they are unaware of what the ultimate purpose of

their tags will be. When designing our approach, we did not necessarily expect

our tag-driven results to be competitive with a context model using visual

cues; the fact that our method complements and at times even exceeds the

well-known Gist cue is very encouraging.

Our feature design is inspired in part by studies on attentional behav-

ior; the differences between how people scan images and what they decide

to tag is not fully teased apart, though work is being done in this direc-

tion [1, 9, 10]. Furthermore, while our data contains nouns and objects that
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did appear, generic tags can extend to any words or parts of speech, present

or not. Interesting future work would be to predict which objects in the tags

are most likely to be present, or considering multiple detectors’ confidence.
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