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Supervisor: Dragan Djurdjanovic 

 

Maintenance scheduling for geographically distributed assets intricately and 

closely depends on the locations and availability of spare parts, which motivates the joint 

decision-making on the maintenance scheduling and spare part logistics, including 

optimization of the system operations, as well as the design of the underlying spare part 

logistic network. These close interactions between the maintenance and spare part logistic 

activities have been ignored or oversimplified in the existing research and practice, leading 

to the inappropriate maintenance resource allocations and excessive maintenance waiting 

times. Unfortunately, such kind of joint decision-making problems are challenging due to 

the exceptionally large size of the decision space, as well as the strong inter-dependencies 

in the system operations, especially for large-scale systems with complex 

maintenance/logistic structures. Challenges become even more pronounced if one 

acknowledges that those system operations and degradation processes of the assets are 

greatly influenced by numerous uncertain factors, yielding highly stochastic system 

behaviors. To address the aforementioned problems and challenges, in this doctoral 

dissertation, an integrated decision-making framework is proposed to effectively schedule 

preventive maintenance (PM) for geographically distributed assets and properly manage 

inventories in distributed logistic facilities storing the necessary spare parts. In addition, 



 vi 

several factors are discussed within the proposed decision-making framework, including 

the inventory-sharing structure, imperfect maintenance, transportation options and spare 

parts logistic network design. To capture the stochastic nature of the system operations and 

the trade-offs between decisions in the domains of maintenance scheduling, spare part 

inventory management, transportation selection and logistic network construction, a 

discrete-event simulation-based optimization paradigm was used to minimize generic and 

customizable cost functions, that reward functioning of the assets, while penalizing asset 

downtime and consumptions of maintenance/logistic resources. The benefits of the newly 

proposed integrated decision-making framework are illustrated in simulations, through 

comparisons between the integrated policies with several traditional, fragmented decision-

making processes. Moreover, a design of experiment (DOE) based sensitivity analysis is 

introduced to evaluate the effects of a variety of relevant systems parameters on the 

resulting system operations. Future work should be aimed at incorporating robustness to 

uncertainties in model structures and system parameters into the newly proposed decision-

making and system design methodologies, as well as implementing these methods in a real-

life system settings, rather than simulations alone. 
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Chapter 1 

Introduction 

 

1.1 MOTIVATION AND BACKGROUND 

As an essential part of system operations, maintenance ensures the desired 

productivity to the equipment users and generates great profits to equipment providers. 

According to a 2003 study by Accenture [1], after sales services and parts contributes only 

25% of revenues across all manufacturing companies, but are responsible for 40%-50% of 

profits. Particularly in the last couple of decades, the growing size of trans-regional 

companies has resulted in increasingly complicated spare part logistic networks that pose 

significant challenges to the decision-makers in term of maintenance activity scheduling 

and maintenance resource allocation at the enterprise level. 

Preventive maintenance (PM) scheduling in a large and distributed system of 

degrading assets is a challenging decision-making problem because of inherent interactions 

between the maintenance and spare part logistics (SPL) operations. As PM operations are 

aimed at effectively restoring equipment reliability and reducing downtime costs by 

replacing degraded parts before they actually fail, getting the right amounts of spare parts 

available in the right places at right time for maintenance operations is of paramount 

importance for success of those operations. Therefore, the allocations of maintenance 

facilities and management of spare part inventory levels in them should be decided 

simultaneously with the maintenance schedules. 

High level of uncertainties associated with the operations and degradation 

processes also contribute to the difficulties in decision-making in such large-scale systems. 

Sources of uncertainty include degradation processes of the working units, imperfect 

maintenance/inspection operations, unpredictable transportation interruptions/delays, 
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changing environmental parameters, unreliable parametric estimations, etc. Therefore, the 

performance of operations in a realistic system is usually intrinsically affected by the 

accumulated stochastic effects. This necessitates understanding how these stochastic 

effects influence system operations and operational decision-making that is aware of the 

risks associated with the uncertainties in the system.  

In general, two types of maintenance operations can be seen in practice: reactive 

maintenance (RM), which occurs after an asset starts behaving in an unacceptable manner 

or fails, and preventive maintenance (PM), which is performed on an asset before 

unacceptable behavior occurs. Since RM is an unforeseen and thus an unscheduled event, 

it is most often more costly and time consuming than PM [2]. On the other hand, generally 

speaking, PM policies can be classified as reliability-based maintenance (RBM), where 

maintenance is performed at certain times or usage intervals of an asset, and condition-

based maintenance (CBM), where maintenance is performed based on monitoring the 

actual condition of an individual system. Compared to the RBM policies, whose decisions 

are based on the long-term statistical behavior of the degradation processes of the asset, 

CBM decisions take the real-time condition of the system into consideration, usually based 

on the sensor readings obtained from the asset and fitting of a data-driven or physically-

based condition model [3]. As a result, CBM decisions are more dynamic and efficient [4], 

at least in theory. Unfortunately, CBM requires existence of appropriate sensors and 

building of appropriate condition models, which is often both costly and challenging from 

the engineering point of view. Hence, it is safe to say that RBM still dominates the PM 

practice, though significant research is aimed at enabling more pervasive use of CBM.  

Typical research on the integrated decision-making of PM and SPL operations 

focuses on jointly optimizing the PM triggering policies for the assets and replenishment 

policies for the spare part inventories [5]. Though, in the literature, the majority of 
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evaluated systems are still limited to a single-plant manufacturing system or a uni-

component asset structure, recent research started incorporating multi-component asset 

structures and more realistic SPL operations into the integrated decision-making models, 

which will be reviewed in Chapter 2. From the side of geographical dispersion of a system, 

a joint PM and spare part inventory decision-making problem was studied by Chen et al. 

[6] for a multi-echelon SPL network, which considered a usage-based PM policy and 

continuous review inventory system. Though the main idea of this work is aligned with the 

ones of what will be considered in this doctoral thesis, generalization and applications of 

this work are impeded by several unrealistic assumptions, which will be addressed in this 

doctoral research. 

Moreover, for a large-scale and geographically distributed system of degrading 

assets, a successful PM action is necessarily dependent on the locations of maintenance 

facilities and their ability to provide spare parts to the assets, which results in the inherent 

interactions between the SPL network construction and PM/SPL operations. Traditionally, 

the locations of maintenance centers and their association with the assets are considered as 

long-term strategic decisions that are made a priori and independently from the operational 

decisions, such as maintenance scheduling and inventory management. The possibility to 

jointly design SPL network and jointly optimize the maintenance schedules and spare part 

inventory decisions has been ignored until now, and this doctoral research exploits this 

opportunity to improve the efficiency of the SPL system and operations design. 

 

1.2 RESEARCH OBJECTIVES AND CHALLENGES 

The main objective of this Ph.D. research is to devise a decision-making framework 

to jointly optimize PM schedules and spare part logistics in a geographically dispersed 

network that consist of degrading assets and maintenance centers serving those assets with 
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spare parts. This newly proposed decision-making framework is designed to be flexible 

enough so that different maintenance/logistic structures can be further studied, such as 

inventory-sharing structure, imperfect maintenance, transportation options and logistic 

network design. To capture stochastic nature of the system and the trade-offs between 

decisions in the domains of maintenance scheduling, spare part inventory management, 

transportation selection and logistic network construction, a discrete-event simulation-

based optimization approach was used to minimize generic and customizable cost functions 

that reward functioning of the assets, while penalizing asset downtime and consumption of 

the maintenance/logistic resources. Simulation-based optimization paradigm is pursued as 

the solution technique, which allows one to further incorporate various forms of 

customizable cost functions as well as logistic/maintenance structures. 

The challenges of devising such a flexible decision-making framework can be 

summarized as follows: 

(a) Evaluating the system performance in the presence of uncertainties requires 

meticulous consideration of stochastic effects associated with the system topology 

and operations. 

(b) The decision space for the SPL and maintenance decisions grows exponentially 

with the number of decision variables. Even for a small maintenance logistics 

system, the candidate space can be so large that an efficient optimization approach 

is needed. 

(c) As multiple system components interact and multiple uncertainty factors exist in a 

SPL system, there is a tremendous challenge in developing a feasible mathematical 

model and measuring the impacts of those uncertainties. 
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(d) With the target to deal with realistic systems, the decision-making framework 

should be designed flexible enough to incorporate various and customizable 

maintenance/SPL operations and cost functions.  

 

The contributions incorporated into this work can be summarized as follows: 

1. An integrated decision-making framework for SPL and PM operations 

is derived, where multi-echelon SPL network, multi-component asset 

structure and several types of uncertain factors are taken into 

consideration. This integrated decision-making framework can 

incorporate various system operations and cost models without 

changing the principal modeling and optimization paradigm. 

2. A study on incorporating imperfect maintenance operations and 

multiple transportation options into the proposed integrated decision-

making framework is conducted. 

3. A novel model that integrates the SPL network design with the joint 

optimization of spare part inventories and PM schedule is formulated. 

4. A Design of Experiment (DOE) based sensitivity analysis is conducted 

to evaluate the effects and interactions of multiple system parameters on 

the system operations. 

 

1.3 OUTLINE OF THE THESIS 

The rest of this doctoral thesis is organized as follows. Chapter 2 presents a review 

of the literature relevant to the doctoral research. In Chapter 3, an optimization method is 

proposed for joint decision-making in the domains of spare part inventory and preventive 

maintenance scheduling for a system of geographically distributed assets. Also, in Chapter 
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3, a novel simulation-based metaheuristic is proposed to concurrently pursue the 

maintenance schedules and inventory replenishment policies for spare parts in maintenance 

centers that jointly optimize the cost effects of operations in the system. Chapter 4 offers 

an extension of what is described in Chapter 3 through incorporating imperfect 

maintenance operations and multiple transportation options. Chapter 5 considers the 

integration of the SPL network design problem with the joint optimization of PM and SPL 

operations. Finally, Chapter 6 details the scientific contributions of the proposed doctoral 

research and several possible directions for the future research, along with a summary of 

past/foreseen publications based on this doctoral research. 
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Chapter 2 

Literature Review 

 

In this chapter, we review a couple of literatures that are relevant to this doctoral 

research. Section 2.1 introduces maintenance strategies and their applications, while 

Section 2.2 reviews the existing works on spare part logistics (SPL) with focus on the 

joint optimization of SPL operations and maintenance scheduling. We also review the 

literatures on logistic network design in Section 2.3 and literatures on optimization 

methods for maintenance problems in Section 2.4. 

 

2.1 MAINTENANCE STRATEGIES 

In the recent years, maintenance and replacement problems in systems of 

deteriorating assets have been extensively studied. Bevilacqua and Braglia [7] claim that 

maintenance related costs can reach between 15% to 70% of production costs. Lack of 

knowledge and ability in properly scheduling maintenance can cause significant economic 

losses, as documented in semiconductor manufacturing [8], [9] and power generating 

systems [10], [11], and sometimes even cause catastrophic effects in systems, such as 

aircrafts [12] and nuclear systems [13]. Maintenance scheduling is crucial in reducing the 

economic losses and preventing catastrophic results, and consequently, it is of great interest 

to both academia and industry. 

Generally, two overarching concepts of maintenance operations can be seen in 

practice: reactive maintenance (RM), which occurs after an asset starts behaving in an 

unacceptable manner or fails, and preventive maintenance (PM), which is performed on an 

asset before unacceptable behavior occurs. Since RM is an unscheduled event, it is most 

often more costly and more time consuming than PM [14]. 
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Due to the complex nature of manufacturing systems, it is impossible to avoid RM 

operations through perfect prediction of breakdowns. However, with advanced computer-

based monitoring systems and data analysis technologies, it is possible to detect and 

diagnose a breakdown immediately after it occurs, which can significantly reduce the 

downtimes and economic losses even in the case of RM [15].  

 

2.1.1 Preventive Maintenance  

Barlow and Hunter [16] conducted pioneering studies on PM policies in 1960. After 

that, the economic benefits of PM operation have gradually been recognized in various 

industries, leading to numerous studies of various PM models, with the focus on improving 

the effectiveness of PM under different operating environments. To obtain a general picture 

of the development process of PM studies and their applications, readers can refer to 

several literature surveys, including Smith [17], Valdez-Flores and Feldman [18], Zeng 

[19], Fernandez et al. [9], Wang [14], Garg and Deshmukh [20], Sharma and Yadava [21] 

and Froger et al. [11]. Among them, Wang [14] provided the most recent review on PM 

models for non-repairable, single/multiple units deteriorating systems, which is highly 

relevant to the systems considered in this doctoral thesis.  

PM can be roughly grouped into reliability based maintenance (RBM), where 

maintenance is performed at certain times or usage intervals of an asset, and condition 

based maintenance (CBM), where maintenance is performed based on monitoring the 

actual condition of an individual system.  

Compared to RBM policies, whose decisions are based on the long-term statistical 

behavior of the degradation processes of an asset, CBM decisions try to take the actual 

condition of the system into consideration, usually based on the sensor readings obtained 

from the asset and fitting of a data-driven or physically-based condition model [3]. As a 
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result, CBM decisions are more dynamic and efficient [4], at least in theory. Unfortunately, 

CBM requires existence of appropriate sensors and building of appropriate condition 

models, which is often both costly and challenging from the engineering point of view. 

Hence, it is safe to say that RBM still dominates the PM practice, though significant 

research is aimed at enabling more pervasive applications of CBM. 

 

2.1.1.1 Reliability based maintenance (RBM) 

Depending on the way a PM operation is triggered, several types of PM policies 

have been found for RBM in literatures, among which age-dependent and periodic-

dependent PM policies are two commonly used polices for single-unit systems.  

Under an age-dependent PM policy (also known as age replacement policy), PM 

times are based on the age of the unit. Pioneering work on age-dependent PM was proposed 

by Barlow and Hunter in 1960 [16], in which a component is replaced at its age 𝑇 or 

failure, whichever occurs first. Nakagawa [22] extended the age-dependent policy to 

replacing a unit at age 𝑇 or at number 𝑁 of failures. Block et al. [23] introduced a repair 

replacement policy, where units are minimally/perfectly repaired at failure, or they are 

replaced if they survive a certain fixed time since the last maintenance. Wang and Pham 

[24] used a “mixed age PM policy” to deal with a system suffering two types of failures, 

with perfect repairs on type 1 failures and minimal repairs on type 2 failures.  

The periodic-dependent PM policy, also known as block replacement in some 

literature [16], indicates that a component is either correctly repaired at its failure, or 

preventively maintained at fixed time intervals, thus being independent of its failure 

history. Extensive works have been established, especially combing periodic-dependent 

policy with imperfect maintenance [25], [26]. Moreover, the PM intervals can be unequal 

(referred as sequential PM policy), usually becoming shorter as time elapses. Nakagawa 
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[27], [28] investigated a PM policy where PM is performed at fixed intervals 𝑥𝑘 for 𝑘 =

1,2, . . , 𝑁, while Linderman et al. [29] claimed that economic benefits can be obtained from 

adapted PM intervals through linking the aggressiveness of PM schedules with the stability 

of the process. In addition, improvements in maintenance scheduling can also be achieved 

through combing the age-dependent and periodic policies, as can be seen in [30], where an 

intuitive way is proposed for unit replacements at a fixed interval 𝑡0, or when the total 

operating time reaches 𝑇 (𝑡0 < 𝑇).  

Besides the widely used age-dependent and period-dependent PM policies, other 

types of PM polices can also be encountered. Under a repair limit policy, a replacement of 

a unit is triggered by the repair cost [31], [32], the number of repairs [33], [34] or repair 

time [35], [36]. For a failure limit policy, PM is triggered by a failure rate [37], [38] or 

other reliability indices (e.g. accumulated stress[39]). 

The aforementioned works on maintenance polices focus on single-unit systems. 

Nevertheless, due to the complex multi-unit nature of most equipment, maintenance 

problems in multi-unit systems have also received significant attention. For a multi-unit 

system that contains several subsystems having economic or failure dependencies, most 

maintenance policies originally proposed for single-unit systems can still be applicable 

after generalization [25], though opportunities for developing new maintenance policies to 

specifically deal with such complex environment are recognized [40], [25], [41]. 

Opportunistic maintenance policies seek positive cost effects through employing the 

dependencies inside a multi-unit system. Nakagawa and Murthy [42] investigated a multi-

unit system having failure dependencies in the sense that times to failures of different units 

are statistically dependent. Dagpunar [43] introduced a control limit for every unit in a 

multi-unit system and reduced PM costs by preventively replacing units exceeding the 

control limit. As economic dependencies exist among wind turbine systems, Besnard et al. 
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[44] acknowledged dramatic PM cost savings (as high as 45% in their example) by 

implementing opportunistic maintenance policies in offshore wind power systems. Ding 

and Tian [45] further extended Besnard’s work through considering three PM actions 

(perfect, imperfect or two-level PM interventions) for a wind turbine system.  

 

2.1.1.2 Condition based maintenance (CBM) 

The concept of CBM can be tracked back to 1940s [46]. Studies on CBM involve 

various disciplines like statistics, data mining artificial intelligence, and have been applied 

to various domains, including manufacturing, aerospace, medical, etc. The readers can 

refer to a recent survey conducted by Prajapati et al. [46] to find a thorough summary of 

various CBM models and up-to-dated techniques. Since CBM policies are not crucial to 

this doctoral dissertation, we will only review the works related to joint CBM and spare 

parts inventory optimization. Please note that this will be done in Section 2.2.3. 

 

2.1.2 Uncertainty In Maintenance Systems 

Uncertainties in manufacturing scheduling can cause infeasibilities and production 

disturbances, which is why manufacturing scheduling under uncertainty has received a lot 

of attention in recent years, especially from chemical engineering and operations research 

communities [47]. As a special type of production operation, robust scheduling of 

maintenance operations in the presence of uncertainties has also been widely studied. 

Beyer and Sendhoff [48] provided a thorough introduction to robustness concepts 

and measures, and classified uncertainties in the general parameter design processes into 

four categories: (a) changing environmental and operating conditions, e.g. operating 

temperature, pressure, changing material properties and drift, (b) production tolerances and 

actuator impression, i.e. a type of uncertainties enters the system with decision variables, 
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(c) uncertainties in the system output and (d) feasibility uncertainties concerning the 

fulfillment of constraints of the system. Later, a complementary classification scheme of 

uncertainties is provided for engineering disciplines, in which uncertainties are classified 

as objective and subjective from an epistemological perspective. Objective uncertainties 

[49], [50] are intrinsically irreducible, e.g. white noises in devices, humidity and 

temperature, in contrast to subjective uncertainties that reflect the lack of knowledge of the 

system, e.g. inaccurate system parameters and model form errors [51]. 

In the field of maintenance scheduling under uncertainty, most existing works focus 

on dealing with objective uncertainties, such as inherent uncertainties in the degradation 

dynamics and imperfect maintenance operations.  

 

  

2.1.2.1 Degradation dynamics 

Modeling degradation dynamics is an active tropic in the reliability engineering 

community. In the field of maintenance scheduling, Noortwijk [52] pointed out that 

stochastic deterioration dynamics can be modeled by a failure rate function or a stochastic 

process.  

A failure rate function, along with the corresponding lifetime distribution, 

represents the uncertainty in the time to failure of a unit (component or machine). The 

mostly used statistics distribution for a lifetime distribution is Weibull distribution, which 

interpolates between the exponential distribution and the Rayleigh distribution. According 

to Singpurwalla [53], the major disadvantage of the failure rate based approaches is that its 

parametric estimation suffers from lack of failure data and fails to be effectively adjusted 

to the changing operating environment. 
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Deteriorating processes can also be modeled by Markov processes [54]. A Wiener 

degradation processes was considered by Doksum and Hoyland [55], in which they applied 

Brownian motion with drift to data from a variable-stress accelerated life testing 

experiment. The methodology presented in [55] was extended by Whitmore [56] by 

involving imperfect inspections. It was also applied by Whitmore and Schenkelberg  [57] 

to model degradation dynamics of self-regulating heating cables.  

Furthermore, the gamma processes, which are continuous-time stochastic processes 

with independent, non-negative increments having a gamma distribution, was also 

successfully applied to model degradation dynamics for CBM [52], [58], [59]. Finally, in 

very recent research, Cholette and Djurdjanovic [60] and Zhang et al. [61] used a Hidden 

Markov Model to capture the degradation processes in unobservable systems and 

demonstrated the proposed methods on a large dataset obtained from a semiconductor 

manufacturing facility. 

 

2.1.2.2 Imperfect maintenance 

The fact that maintenance of a deteriorating system does not always restore the 

system to the as-good-as-new state adds another level of uncertainty into the system 

operations. The research addressing this challenge led to significant breakthroughs in 

studies on maintenance decision-makings. The concept of “imperfect maintenance” was 

first introduced by Chaudhuri and Sahu [62], and currently, three major maintenance 

strategies are recognized based on the degree to which the operating conditions of the 

system is restored by maintenance: perfect maintenance, minimal maintenance and 

imperfect maintenance. Pham [25] suggested that more than 40 mathematical imperfect 

maintenance models have been proposed.  
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The most popular modeling method for imperfect PM is known as the (𝑝, 𝑞) rule 

proposed by Nakagawa [22], [63]. In this model, the operating component is returned to 

the as-good-as-new state (perfect PM) with probability 𝑝 , and to the as-bad-as-old 

condition (minimal PM) with probability 1 − 𝑝. Block et al. [64] further extended the 

(𝑝, 𝑞) rule to age-dependent imperfect repairs (𝑝(𝑡), 𝑞(𝑡)). Other basic methods to model 

imperfect maintenance include the improvement factor method  [65], virtual age method 

[66], [67], shock model method [68], [69] and the (𝛼, 𝛽) rule [70], [71]. 

Nakagawa [22] first considered imperfect maintenance models for the age-based 

PM policy and optimized PM interval times for imperfect PMs. Extensive models are 

proposed by Sheu et al. [72], [73] to allow imperfect maintenance for both PM and RM. 

Imperfect maintenance is also considered under periodic PM polices and early works 

include [27], [66], [74]. Sheu et al. [75] proposed periodic PM policies that maximize the 

availability of a repairable system, in which the probability of conducting a perfect PM 

depends on the number of imperfect PM conducted in that renewal cycle. 

In recent studies, imperfect maintenance is treated as an important part of complex 

manufacturing systems and the concept is applied to numerous applications. One of the 

applications was in wind farms [45], where multi-level imperfect maintenance thresholds 

are evaluated under the proposed opportunistic maintenance policy. Lin et al. [76] 

developed an integrated model that considered an imperfect manufacturing process, with 

imperfect maintenance operations, inspection errors, PM errors and minimal repairs. 

Finally, one should also note series of papers that focus on implementing imperfect 

maintenance in used system [77]–[79], in which imperfect PM (RM) restores the system 

to a pristine state with a random initial damage.   
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2.1.2.3 Other types of uncertainties in maintenance 

The system’s degradation level can only be evaluated through inspections, and 

inspection does not necessarily have to perfectly reveal the true condition of the system. 

Maintenance scheduling under imperfect inspection was studied by Kallen and Noortwijk 

[59], who used an adaptive Bayesian decision model to determine optimal inspection plans 

under uncertain deterioration. Lin et al. [76] developed an integrated model in considering 

an imperfect manufacturing process with imperfect maintenance, inspection errors, PM 

errors and minimal repairs. Other works involving imperfect inspection include Yun and 

Bai [31], Berrade et al. [80], and Le and Tan [81].  

Only limited numbers of works incorporate subjective uncertainties into 

maintenance scheduling. Vassiliasi and Pistikopoulos [82] derived optimal maintenance 

policies for continuous process operations in the presence of parametric uncertainty. In that 

paper, mix-integer nonlinear programming was used to identify the optimal number of 

PM/RM actions and sequence of these maintenance actions on the various components of 

the systems, and analysis of impacts of uncertainty on the optimal maintenance schedules 

was conducted. Sevaux et al. [83] looked at the task of scheduling maintenance on trains 

for a French railways company in the presence of uncertainties of changing environmental 

conditions. The optimal maintenance polices were obtained through optimizing a robust 

evaluation function, generated as a weighted average of several evaluations under sampled 

environmental parameters. With the assumption that knowledge uncertainties exist within 

asset management systems, Kuhn and Madanat [84] used robust dynamic programming 

model to solve a maintenance optimization problems in which the system parameters are 

not known precisely, but are known to belong to certain sets (“uncertainty sets”).   
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2.2 JOINT MAINTENANCE AND SPARE PARTS INVENTORY OPTIMIZATION 

Spare parts management is important but also challenging because the parts can be 

expensive and their demand is highly erratic and intermittent, while their shortage costs 

can be very high [85], [86]. Effective spare part management is crucial in many industries, 

and the successful industrial applications can be found for airlines [87], computer systems 

[88] and etc. 

Different from inventory management for intermediate or final products, spare 

parts management targets at keeping equipment in operating condition, and largely depends 

on how equipment is used and maintained [89]. Therefore, in its nature, spare parts 

management is closely related to maintenance scheduling problems. The demand for spare 

parts is usually intermittent, erratic and slow moving [85]. To deal with spare part demands, 

most existing literature focuses on forecasting the demands, which will be reviewed in 

section 2.2.1. However, there are still a few papers that attempt to manipulate the demand 

side of the problem through jointly optimizing maintenance schedule and spare part 

inventories.      

 

2.2.1 Forecasting Spare Parts Demand  

Under the assumption that spare parts demand is predictable or partially 

predictable, the demand is usually modelled by a statistical distribution or a stochastic 

process, with the essential parameters being estimated from historical data. Syntetos et al. 

[90] and Boylan [91] provided a thorough review of the current forecasting methods and 

applications regarding spare part demands. 

Due to the compound nature of the demand structure, most industrial software 

applications are based on Croston’s method [92], in which single exponential smoothing is 
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used to predict demand incidences and demand sizes. Extensive theoretical studies of 

Croston’s method are given by Snyder [93], Syntetos and Boylan [94] and Shale et al. [95]. 

In terms of the demand distribution, Poisson distribution is chosen by most models 

as the hypothesized distribution of the slow-moving spare parts demand [86], [96], [97].  

However, Porras and Dekker [98] proposed a bootstrapping approach to construct a non-

parametric empirical distribution of the demand. In a later paper, Willemain et al. [99] 

proposed a patented non-parametric forecasting method designed for intermittent demand 

data. For short demand history, Miller and Willams [100] focused on the seasonal 

component estimations using time-series analysis techniques. Eaves and Kingsman [101] 

also employed a time series analysis approach to take advantages of the limited information 

gathered for the installed assets. 

A series of works have been done to model the demand for spare parts in a dynamic 

way through incorporating the life cycle information on the parts. The earliest studies on 

incorporating the life cycle aspect into spare parts forecasting is conducted by Moore [102], 

who modeled the growth and decay of the demand for a spare part during its life cycle. 

Follow-up research was reported by Fortuin [103], Spengler and Schroter [104] and Tako 

and Robinson [105].  

 

2.2.2 Joint RBM and Inventory Optimization 

The first review of joint optimization of maintenance and inventory polices was 

provided by Dohi et al [106], but this review put emphasis on the spare part inventories, 

with the reviewed models only considering inventory related costs.  

According to a recent review given by Horenbeek [5], existing joint RBM and 

inventory optimization models are classified based on their PM strategies. In the field of 

age-based replacement policy, a single-unit system was first examined by Armstrong and 
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Atkins [107], in which PM replacement and inventory ordering time (for a periodic review 

inventory) were optimized for a unimodal, pseudo-convex cost function. In the extensive 

work [108], they proved that positive cost effects can be achieved by allowing minimal 

repairs for minor failures. Kabir and Al-Olayan [109] considered the integrated decision-

making problem for dispersed systems in which a maintenance facility serves several 

identical single-unit assets following the age-based PM policy and continuous review 

inventory policy. The decision-making problem was solved by a combination of discrete-

event simulation and limited enumeration, with this optimization procedure being further 

improved in [110] to avoid local optima. For the same model as the one considered in 

[110], Hu et al. [111] introduced simulation-based optimization with a genetic algorithm 

to efficiently pursue the optimal solution. Chen et al. [112] firstly conducted a study on a 

multi-echelon network, consisting of multipole supplier, a distributor and different users. 

They used the Arena and OptQuest software packages to perform computations for their 

simulation-optimization model, and jointly optimized the continuous review inventory and 

age-based PM policies. 

In the field of periodic PM (or block-based PM), Acharya et al. [113], Brezavscek 

and Hudoklin [114], and Huang et al. [115] considered block replacement policies inside 

a periodic inventory reviewing system, with maintenance inspection and inventory review 

having the same intervals. Other researchers combine a continuous review inventory policy 

with the block-based PM policy [116]–[123]. More specifically, Saker and Haque [116] 

proposed a joint optimization scheme relying on a similar model as the one considered in 

[110], containing a gamma distributed repair time and several working units consisting of 

several identical components. Based on the model from [116], Ilgin and Tunali [117] 

investigated a joint optimization model allowing a random lead time under multiple types 

of maintenance policies. Nguyen et al. [118]–[120] focused on applications in chemical 
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process plants, and specifically modeled human resources (number of employees and their 

skills) as decision variables or constraints in the presence of imperfect maintenance 

operations. Some researchers also attempted to examine the effects of various failure 

modes in the joint decision-making model. In Panagiotidou’s work [121], each operating 

unit in a multi-unit system is assumed to suffer two types of silent failures (minor or major). 

Meanwhile, other researchers focused on the effects of spare parts quality. In an interesting 

work by Horenbeek et al. [123], the effects of spare parts quality and variability in demands 

for spare parts are evaluated through a stochastic simulation model in 𝑁 identical one-

component systems under a single-echelon periodic inventory review policy. Recently, a 

deterministic deteriorating inventory model was used by Jiang et al [122], enabling them 

to make integrated decisions in the domains of block replacement and periodic review 

inventory policies in the presence of inventory deterioration.  

For the reason of simplicity, the aforementioned works (except [116], [117]) on 

joint RMB and inventory optimization assume that the manufacturing system consist of 

either a single operating unit or several identical units operating independently, with every 

operating unit having a single component. To reflect the complexities of a manufacturing 

systems in reality, several extensive works consider multi-component structures of the 

operating units. In [116] and [117], each operating unit is assumed to contain several 

serially connect components. Bjarnason et al. [124], [125] jointly optimized inspection and 

inventory policies for a k-out-of-n system (it fails when fewer than k components are 

working), in which both planned periodic inspections and unplanned opportunistic 

inspections are performed to find the failed components. Alrabghi et al. [126] proposed a 

simulation-based method to optimize the age-based PM and continuous review inventory 

policy for a flexible-connected multi-component manufacturing system limited by labor 

resources. 
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As a comment, existing works on the joint RBM and spare parts inventory 

optimization still oversimplify the reality in several ways. First, with focus on the side of 

maintenance, the complexity of spare part logistics in reality is generally overlooked. For 

example, none of them consider the effects of geographical dispersion of assets and 

maintenance centers, let alone other more elaborate logistic factors. Second, dependencies 

of operating units (asset, component) are also not fully studied, as most works still have 

assumptions such as “single-component”, “single unit”, “identical multiple units”, etc. 

 

2.2.3 Joint CBM and Inventory Optimization 

Instead of sticking to the pre-estimated lifetime distributions based on the historical 

data of the unit/component, several predictive maintenance models are proposed to 

consistently update the estimation of the remaining useful lifetime (RUL) distributions via 

analysis of the condition of a component. Elwany and Gebraeel [127] incorporated updated 

RUL (after each inspection) into a nonlinear programming model and solved for optimal 

joint maintenance/inventory decision for the next operating period. According to Wang et 

al. [128], the system’s degradation trajectory is modeled by a Wiener process whose 

parameters are estimated in real time based on the newly arrived monitoring data, so that 

the joint inventory and maintenance polices are optimized using the prognostic 

information. They successfully validated their proposed method in an inertial navigation 

system in aircraft. 

 Some other works also jointly optimize CBM and spare parts inventory policies. 

Wang [129] investigated joint CBM and continuous review (s, S) policies using a 

simulation-based method, and claimed that the cost decreased by on average 3.78% when 

joint optimization is used instead of using fragmented optimization in their numerical 

examples. Wang et al. [129] developed a mathematical model to obtain a condition-based 
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replacement and spare provisioning policy for a single-unit deteriorating systems. Then 

they extended the model to multiple identical units [130], in which the deterioration process 

is modeled by a Markov chain and a Monte Carlo simulation procedure (similar to the 

model proposed by Hu [111]). In another extensive work, Wang [131] modelled the failure 

rate as a function of the deterioration level of the system other than a function of time in 

traditional PM models. Li and Ryan [132] assumed Brownian deterioration for a periodic 

review inventory system and used a dynamic programming to derive the optimal inventory 

control and control limit maintenance policies. 

 

2.3 LOGISTIC NETWORK DESIGN 

2.3.1 General Logistic Network Design Model 

Logistic network design problems and facility location models have been widely 

studied in the literature. A thorough introduction to facility location models was given by 

Dsakin [133], in which they categorized the existing models based on their underlying 

optimization formulation. Several related topics are also discussed in this book, including 

the coverage maximization problems, routing problems and production flow planning. In 

the review paper [134], Melo et al. reviewed facility location models for supply chain 

management, with the models being classified according to the features of networks, 

namely single/multiple location layers, single/multiple commodities and single/multiple 

planning periods. Moreover, this review paper had an independent chapter to introduce the 

facility location models proposed for reverse supply chain logistics, where the reverse 

network is referred to as closed-loop network, if the reverse network is integrated with the 

forward network, and recovery network if only the recovery activities are considered. Due 

to the fact that network parameters and system environments can be dramatically changed, 

stochastic and robust location models are also extensively studied to conduct logistics 
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network design under uncertainties and Snyder [135] provided a detailed summary for the 

research relevant to that topic. 

There is also a number of network design models that are specifically developed 

for certain network settings and/or system environments. For example, Eskandarpou et al. 

[136] reviewed 87 papers in the field of sustainable supply chain network design, with the 

focus on the mathematical models and their applications. Besides the typical economic 

factors, the network design models introduced in this paper incorporated various 

environmental and/or social factors relevant to the sustainable supply chain networks. 

Lemmens et al. [137] showed that supply chain network for vaccines do not behave like 

that for typical commodity goods and, therefore, studied several key issues for vaccine 

supply chain design, considering factors such as limited shelf life, cold chain distribution 

and access to remote areas. The problem of pharmaceutical supply chain network design 

was recently studied by Martins et al. [138], with the design factors including the number, 

location and capacity of the warehouses, allocation of customers to the warehouses, as well 

as the capacity of the distribution channels. The strategical and operational decisions in 

their model are optimized using a discrete-event simulation optimization approach. 

Traditionally, for the SPL network design, the locations of maintenance centers and 

their priority in providing maintenance services are considered as strategic long-term 

decisions that are made before the tactical decisions, such as maintenance scheduling and 

spare part inventory management.  

In the majority of the existing research, the SPL network design problem is only 

considered as a special case of the reverse logistic network design [134]. For instance, 

Guide Jr. et al. [139] analyzed the system factors that influence the closed-loop supply 

chain design with product recovery considerations, where Hayes and Wheelwright’s 

product-process matrix was used to study characteristics of the closed-loop supply 
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operations. Another close-loop logistics network design model for the end-of-lease 

computer product recovery was proposed by Lee and Dong [140] as a Mixed Integer 

Programming (MIP) problem. Their model relied on a two-stage heuristic approach to 

decompose the integrated design problem into a location-allocation problem and a network 

flow problem. Only recently, low demand rate and time urgency characteristics of an SPL 

have been considered, which led to studies specifically focusing on the SPL network design 

problems. As all aforementioned SPL network design methods are integrated with 

inventory considerations, in order to avoid redundancy, the review for these approaches 

will be given in Section 2.3.2. 

 

2.3.2 Joint Inventory Management and Logistic Network Design 

For general logistic systems, the integration of logistics network design with 

inventory considerations received increased attention recently, with the proposed models 

being referred to as location-inventory models. 

Currently, most location-inventory models are designed for supply chain logistic 

networks. Berahona and Jensen [141] were the first to explicitly concurrently consider 

decisions on the facility locations and inventory levels in a modified un-capacitated facility 

location (UFL) problem, which is solved via a Dantzig-Wolfe decomposition. Nozick and 

Turnquist [142] included the inventory costs into a fixed-charged facility location 

optimization by modeling the inventory costs as a linear function of the number of open 

maintenance facilities, and in a later work, they specifically considered transportation costs 

and customer responsiveness [143]. Later, Nozick [144] further modified the method to 

consider coverage restrictions as the constraints, so that an proper level of service is 

maintained. The inventory cost was firstly incorporated into UFL model by Daskin and 

Coullard [145], where (Q,r) replenishment policy is applied. The model is formulated as a 
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non-linear integer-programming problem and is solved via a classical Lagrangian 

relaxation solution algorithm, while Shen et al. [146] provided a column generation-based 

optimization method to the same problem. 

At the same time, different types of uncertainty/risk factors are incorporated into 

the location-inventory models. Snyder et al. [147] introduced discrete scenario-based 

randomness into Daskin’s model [142] and present a stochastic version of the location-

inventory model with risk pooling (LMRP). For a three-echelon wholesale supply chain 

system (with suppliers, distribution centers and retailers), Zhang and Xu [148] used pre-

estimated probability distribution to model uncertain customer demand to each retailer. 

They proposed a mixed-integer bi-level programming method to obtain integrated 

decisions in the domains of distribution center allocation, wholesale price of the products 

and transportation flows. Jin et al. [149] also assumed stochastic demands in their location-

inventory method, but they focus on the multi-commodity logistic network design to serve 

multiple types of goods. To address facility disruption risks in a closed-loop supply chain, 

Asl-Najafi et al. [150] presented a location-inventory model with two objectives 

minimizing the total cost as the first objective and minimizing time as the second one. Their 

solution technique is a hybrid meta-heuristic algorithm based on multi-objective particle 

swarm optimization and genetic algorithm.    

As for SPL network design problems, the facility allocation models are also 

integrated with the inventory considerations. Candas and Kutanoglu [151] focus on the 

low-demand nature of the SPL systems and introduced a linear optimization model to 

capture the interdependencies between the network design (facility locations and allocation 

of demands to facilities) and inventory stocking decisions (stock levels in one-for-one 

replenishment policy and their corresponding fill rates). This work was extended by Jeet et 

al. [152] by assuming lost sales for stock-out situations, instead of direct backordering. In 
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a later study, Gzara et al. [153] extended the single-part model to a multiple-part model 

and also considered nonlinear time-based service constraints. For the part-warehouse 

situation, they provided a linear reformulation to the fill-rate function that can be solved 

by a commercial optimizer.  

Other SPL structures are also considered for the integrated SPL network design and 

inventory optimization problem. Iyoob et al. [154] introduced an inventory sharing 

structure into a simplified version of the integrated SPL problem, where they considered 

2-facility inventory sharing pools, with full inventory sharing between the facilities in each 

pool. In the model, demand allocation for the active facilities that stock inventories is 

optimized by minimizing a cost function consisting of the facility, inventory and 

transportation costs, subject to a time-based service level constraint. Wu et al. [155] 

included considerations of the part vendor and transportation selections into the location-

inventory model, which yielded a multi-indenture, multi-echelon spare part supply chain 

system. Due to the model complexity, the resulting optimization problem was solved by an 

elaborately designed Neural Network-Genetic Algorithm-Tabu approach (NN-GA-Tabu). 

To be noted, a major difference between the SPL networks and other types of 

logistic networks lies in that the fact demand rates for the spare parts in a maintenance 

system largely depend on the maintenance schedule and, therefore, are partially influenced 

by adjustments in the PM policies. However, the possibility to jointly design SPL networks 

and optimize the underlying maintenance decisions has never been addressed.  

 

2.4 METHODS FOR MAINTENANCE SCHEDULING 

In general, a maintenance scheduling problem can always be formulated as an 

optimization problem, with possible objective including minimization of the overall costs, 

or maximization of the system availability, as well as one or more constraints regarding 
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the maintenance resources or system performance. Complexity of these models depends 

on the maintenance policies, system configurations, failure/economic dependencies, 

involvement of production/logistic operations and other problem-specific considerations 

[14]. In order to obtain the optimal maintenance schedule, numerous researchers used 

mathematical approach that yield analytical solutions. In those papers, optimization 

methods, such as deterministic programming, stochastic optimization and dynamic 

programming, ae used for maintenance scheduling. Though these mathematical methods 

can yield a strict optimal solutions for small scale decision-making problems, two major 

defectives limit the usefulness of these mathematical models. First, the curse of 

dimensionality prevents the applications of mathematical methods for large-scale decision 

making problems, as the candidate solution space usually grows exponentially with the 

number of decision variables. Second, the manufacturing systems in reality are complex 

and can hardly be faithfully represented by a tractable mathematical model. In order to 

account for complexities of real-life systems in terms of system operations, inter-

dependencies and the numbers of influential factors and decision variables, in the recent 

years, many researchers turns their eyes to simulation-based modeling of system operations 

[156] and metaheuristic approaches to optimization [157] as methods for maintenance 

scheduling optimization.  

Monte Carlo based simulation paradigm is widely used for modeling of system 

operations, with fitness of a candidate solution (maintenance schedule) being evaluated via 

repeated random sampling from relevant distributions (reliability, quality, cycle-time and 

other random factors that affect system operations). Borgonovo et al. [158] and Marquez 

et al. [159] used Monte Carlo methods to assess alternative scheduling policies that could 

be implemented dynamically on the shop floor. Nevertheless, the solution space of 

maintenance optimization problems is usually so large that an exhaustive evaluation of all 
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candidate solutions via Monte Carlo simulations is generally infeasible. Therefore, in the 

majority of existing research in which evaluation of effects of various maintenance 

schedules is done via simulation-based approaches, a heuristic method is employed to 

pursue (sub)optimal solutions through partial but efficient exploration of the solution 

space. For example, Bevilacqua et al. [7] investigated a realistic maintenance scheduling 

problem in an Italian oil refinery using Monte Carlo simulation. The best maintenance 

policy is chosen based on risk priority numbers, which are calculated for components and 

machines through a joint analysis of failure mode and criticality level. 

In contrast with most problem-specific heuristics, a metaheuristic is an algorithm 

designed to solve a wide range of optimization problems without having to deeply adapt to 

each one. According to Boussaid [157], metaheuristics algorithms are classified into two 

basic categories: single-solution based metaheuristics and population based metaheuristics. 

Single-solution based metaheuristic approaches, also known as trajectory methods, start 

with a single initial solution and iteratively move away from the current solution, thus 

denoting a trajectory in the search space. Typical single-solution based metaheuristic 

approaches include the tabu search (TS), simulated annealing method (SA) and greedy 

randomized adaptive search procedure (GRASP). On the other hand, population-based 

metaheuristic approaches deal with a set of solutions rather than with a single solution, 

with most of them involving the concept of either Evolutionary Computation or Swam 

Intelligence. Evolutionary Computation is inspired by the Darwin’s Theory of Evolution, 

while the idea of Swam Intelligence is to produce computational intelligence by exploiting 

simple analogs of social interaction, rather than purely individual cognitive abilities [160].  

Tabu Search (TS) is a single-solution based local search technique that enhances 

the exploration performance by using advanced memory structures of a computer. Starting 

from an initial solution, the algorithm iteratively moves to the next candidate solution by 
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evaluating a local neighborhood set of the current solution, while a tabu list is maintained 

to prevent revisiting the same solution in consecutive iterations. A detailed description of 

the TS can be found in [161], [162]. TS has been used for maintenance scheduling only 

recently. A TS-based automatic scheduling method was first proposed for maintenance 

outage tasks in power systems by Sawa et al. [163]. El-Amin et al. [164] claimed that TS 

provides a viable approach for maintenance scheduling through a comparison between the 

results obtained using TS and using implicit enumeration. TS-based optimization method 

was also used to optimize the total priority of the scheduled tasks in [165] and flexible job 

shop scheduling in [166], [167].  

Genetic algorithms are the most popular and most frequently used population-based 

metaheuristic that mimics the process of natural evolution. A basic GA is very robust, and 

there are many aspects that can be implemented differently according to the problem [168], 

[169]. Those aspects include representation of a solution (chromosomes), selection 

strategy, crossover operators, mutation operators, and other GA operators. As a brief 

description, the GA starts with an initial population (usually randomly generated) and 

evolves by implementing “the survival of the fittest” paradigm ([170], [171]). In each 

generation, multiple individuals are selected based on their fitness following a certain rule, 

e.g. roulette-wheel selection, tournament selection or ranking selection ([169], [172]). 

Crossover operators are then applied to the selected candidate solutions to combine them 

by exchanging some of their chromosome portions, yielding a set of offspring solutions. 

The offspring solutions are then subject to mutation operators to promote the genetic 

diversity of the population, after which a survivor selection is conducted to identify the 

individuals for the next generation based on their fitness. 

Due to the complex nature of maintenance-related decision-making problems, 

which is further exacerbated by joint maintenance and inventory optimization problems, 
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GA has been recognized as a power tool in searching for the optimal policies. For example, 

Hu [111] used GA to solve a joint maintenance/logistic decision-making problem for 

dispersed systems in which a maintenance facility serves several identical single-unit 

assets. Other related works that combine the use of GA and simulation-based models for 

joint maintenance and inventory optimization problem include [112], [117], [130], [131] 

and [173]. 

Several hybrid algorithms based on the combined use of GA and TS have also been 

proposed to improve search efficiency by combining TS’s power in local search with GA’s 

capability for global exploration, along with high suitability of both metaheuristics for 

computational parallelization [174]. Li et al. [175] developed a hybrid approach, which 

combined a graph-based search heuristic with a Tabu-enhanced GA to handle disassembly 

sequence planning for maintenance, and demonstrated that the Tabu-enhanced GA 

improves the search performance when tackling complex problems with larger number of 

disassembly operations. Another hybrid algorithm combing TS, GA and simulated 

annealing (SA) was proposed by Kim et al. [136] for a thermal unit maintenance scheduling 

problem, in which the acceptance probability of SA is used to improve the convergence of 

GA, while TS was adopted to find more accurate solutions. 

 

2.5 CONCLUSION 

To address the aforementioned gaps, in this doctoral dissertation, we establish a 

decision-making framework for the integrated decision-making of preventive maintenance 

and spare parts logistics in the system having multi-echelon logistic facilities and 

geographically dispersed, multi-part degrading assets. The continuous-review inventory 

policy for spare parts inventories in maintenance facilities, along with the age-based PM 

policy for degrading components, will be jointly optimized with several other SPL and PM 
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operations, including imperfect PM operations and shipping mode selections. Moreover, 

the joint decision-making on PM and SPL operations has also been considered with SPL 

network design so that network construction decisions, such as locations of maintenance 

centers and their allocations to assets, are simultaneously optimized with system 

operations.  
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Chapter 3 

Joint Optimization of Preventive Maintenance and Spare Part 

Inventory for Geographically Distributed Assets 

 

 

3.1 INTRODUCTION1 

Preventive maintenance (PM) scheduling in a large and distributed system of 

degrading assets is a challenging decision-making problem because of inherent interactions 

between maintenance decisions and logistic operations. PM operations aim to restore 

equipment reliability and reduce downtime costs by replacing degraded parts before they 

actually fail, and thus, getting the right amounts of spare parts available in the right places 

at the right time is of paramount importance for success of those operations. Therefore, the 

spare parts inventory levels in maintenance facilities should be considered simultaneously 

with maintenance schedules. 

Two general types of maintenance operations can be seen in practice: reactive 

maintenance (RM), which occurs after an asset starts behaving in an unacceptable manner 

or fails, and preventive maintenance (PM), which is performed on an asset before 

unacceptable behavior occurs.  Since RM is an unforeseen and thus an unscheduled event, 

it is most often more costly and more time consuming than PM [2]. On the other hand, 

generally speaking, PM policies can be classified as reliability-based maintenance (RBM), 

                                                 
1 This chapter is based on following publications: 

(1) K. Wang and D. Djurdjanovic, “Joint Optimization of Preventive Maintenance and Spare Part 

Inventory for Multi-echelon Geographically Dispersed Systems”, in Proc. of the 2017 World 

Congress on Engineering Asset Management (WCEAM), Brisbane, Queensland, Australia, August 

2-4, 2017, Paper No. 143, 2017. 

(2) K. Wang and D. Djurdjanovic, “Joint Optimization of Maintenance and Spare Parts Logistics for a 

System of Geographically Distributed, Multi-part Assets”, submitted to the Journal of Intelligent 

Manufacturing, Paper No. JIMS-D-17-00416, 2017. 

Keren Wang wrote this publication under the supervision of Dragan Djurdjanvoic.  
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where maintenance is performed at certain times or usage intervals of an asset, and 

condition-based maintenance (CBM), where maintenance is performed based on 

monitoring the actual condition of an individual system. Compared to RBM policies, 

whose decisions are based on the long-term statistical behavior of the degradation 

processes of an asset, CBM decisions try to take the actual condition of the system into 

consideration, usually based on the sensor readings obtained from the asset and fitting of a 

data-driven or physically-based condition model [3]. As a result, CBM decisions are more 

dynamic and efficient [4], at least in theory. Unfortunately, CBM requires existence of 

appropriate sensors and building of appropriate condition models, which is often both 

costly and challenging from the engineering point of view. Hence, it is safe to say that 

RBM still dominates the PM practice, though significant research is aimed at enabling 

more pervasive applications of CBM.  

In practice, companies plan PM operations of their assets independently from the 

optimization of the logistics and inventory of their maintenance resources. Though these 

planning strategies, referred to in this chapter as fragmented approaches, are easily 

implementable in realistic systems, lack of consideration of the interactions between these 

two domains potentially leaves significant inefficiencies in the operations. This is 

especially visible in the case of large networks of geographically dispersed assets, such as 

oil/gas extraction companies or airlines, where maintenance operations and the need for 

availability of the right amount of right spare parts at the right place are intricately 

interconnected. 

According to a recent review on joint maintenance and inventory optimization 

systems [5], the existing works on jointly scheduling PM operations and optimizing spare 

parts logistics (SPL) can be differentiated based on the underlying PM strategies into those 

that use age-based/usage-based PM policies [110], [111], [116], [177] and those that use 
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block-based/period-based PM policies [113], [114], [122], [123]. From the maintenance 

point of view, the complexity in asset structure is generally ignored, as the aforementioned 

works consider either a single asset, or multiple single-part assets that operate 

independently. However, several recent studies go beyond the simple single-part asset 

structure and consider a serially-connected multi-part asset structure [115], [117], [121], k-

out-of-n structure of the assets [124], [125], flexible-connect multi-part asset structure 

[126] and single-part asset structure with multiple failure modes [178]. With focus on the 

degradation process and maintenance operations, these works inevitably assume simple 

logistic structure for service part management, with spare parts either being stocked locally, 

or being provided from a single source. 

Other researchers considered the joint PM and inventory optimization problems in 

a more complex operational environment. Chen et al. [112] is, to our best knowledge, the 

only work that conducted a study on a multi-echelon logistic network, where there exist a 

distributor, multiple users and multiple suppliers. Nguyen et al. [118], [120] extended the 

definition of the maintenance resource by considering technicians of different skill levels 

for applications in chemical process plants. Other complex SPL operations or decisions are 

also evaluated, including equipment delivery decisions [179],  inventory deterioration of 

spare part [122] and variability in demands for spare parts quality [123]. These works, 

though enhancing the knowledge from the logistic side, oversimplified the maintenance 

decision-making process by assuming a simple uni-component asset structure.  

This decision-making framework proposed in this chapter firstly pursue an 

integrated decision-making policy that jointly optimizes PM and SPL operations in a 

geographically dispersed network. Specifically, the PM intervals and spare parts inventory 

levels are jointly optimized in a geographically dispersed network of degrading multi-part 

assets and multiple maintenance facilities serving those assets with spare parts needed for 



34 

 

their maintenance. By formulating the decision-making process as a stochastic 

optimization problem and solving it via a discrete-event simulation-based metaheuristic 

approach, the framework proposed in this chapter is designed with flexibility to 

accommodate other more complicated logistic network and asset structures, as well as more 

elaborate system operations and cost functions than those considered in this work. 

The rest of the chapter is organized as follows. In Section 3.2, the problem is 

described and the newly proposed integrated decision-making policy is introduced. A 

simulation-based optimization approach based on a genetic algorithm (GA) is described in 

Section 3.3 to solve the optimization problem from Section 3.2. In Section 3.4, the newly 

proposed integrated approach is evaluated in a simulated environment and compared to the 

more traditional, fragmented decision-making approach. Section 3.5 provides conclusions 

of this chapter and outlines several possible avenues for future work. 

 

3.2 METHODOLOGY 

3.2.1 System Structure 

The following terminology will be used in the remainder of this chapter. 

• The term working part refers to a basic unit of a machine. The condition of a part is 

assumed to degrade with its usage independently from other parts, and PM/RM can 

restore the part to the original, non-degraded condition. From the view of SPL, a 

working part on an asset corresponds to a certain type of a spare part that is stored in a 

maintenance facility and can be used to replace it. 

• The term asset refers to a machine that can be operated independently to generate 

revenue. An asset consists of multiple parts and can be operated properly only if all its 

parts behave properly.  
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•  A maintenance center (MC) fulfills maintenance orders from nearby assets by 

shipping new undegraded spare parts to their operating sites. Maintenance centers have 

finite inventory levels of spare parts and any maintenance order that cannot be 

immediately fulfilled by the maintenance center would be served directly by central 

warehouse as emergency order. 

• A central warehouse replenishes spare parts for maintenance centers following a (s, S) 

replenishment policy [86]. The central warehouse can also provide new spare parts 

directly to the assets as emergency orders in maintenance events. The central 

warehouse is the primary source of all new spare parts and it is assumed to have infinite 

inventory levels of spare parts. 

As illustrated in Figure 1, the system considered in this work can be seen as a multi-

echelon logistic network with three levels of facilities. Degrading assets (Echelon 0) are 

serviced by maintenance centers (Echelon 1) from which the spare parts needed for 

maintenance of the relevant assets are provided. When the level of some spare part stocked 

in a maintenance center drops too low, it is restocked from the central warehouse (Echelon 

2). Moreover, an “inventory sharing” logistic structure is considered in the sense that an 

asset can obtain maintenance service from multiple nearby maintenance centers. 

Consequently, there are multiple potential sources for an asset to obtain spare parts for a 

maintenance action - central warehouse, as well as several nearby maintenance centers. 

The asset will obtain the necessary spare parts from the maintenance facility that currently 

has them in stock and the delivery of those parts would incur lower operating cost 

compared to deliveries from other available maintenance facilities. 
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Figure 1: Connection topology of spare parts logistic network enabling the inventory 

sharing between maintenance centers 

 

Figure 2 provides an illustration of the geographic dispersion of the maintenance 

logistic system studied in this chapter. The central warehouse is connected to 𝑛 

maintenance centers, labeled 𝑀𝐶1, 𝑀𝐶2, … ,𝑀𝐶𝑛, and these maintenance centers provide 

maintenance services to a set of 𝐽 nearby assets, 𝐴1, 𝐴2, … , 𝐴𝐽. Due to the geographical 

dispersion of the degrading assets and spare parts needed for their maintenance, delivery 

delays of the necessary spare parts must be taken into consideration. To reflect the 

uncertainties in transportation, these spare part delivery times characterizing inventory 

flows between the central warehouse, maintenance centers and assets are assumed to follow 

pre-estimated probability distributions. 
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Figure 2: An illustration of geographically dispersed maintenance centers and assets 

 

Each asset 𝐴𝑗 is assumed to be made up of 𝐾𝑗 serially connected parts, labeled 

𝑃𝑗,1, 𝑃𝑗,2, … , 𝑃𝑗,𝐾𝑗 , each of which degrades independently with its usage. Degradation 

dynamics of a part 𝑃𝑗,𝑘 is described by a reliability function approximating the distribution 

of the part’s usage to failure, denoted by 𝒯𝑗,𝑘 (∙). The reliability functions are assumed to 

be part-and-asset specific 2 , and can be estimated through analysis of the long-term 

statistical behavior of the part’s degradation process on the asset, or parts of the same type 

on other similar assets.  

 

                                                 
2 Basically, we acknowledge that the same part can be utilized differently in different assets, necessitating 

the use of part-and-asset specific reliability functions. 
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3.2.2 Maintenance Scheduling and Spare Parts Inventory Management 

A so-called replacement maintenance policy is assumed (Van Horenbeek, Buré, et 

al., 2013), that is to say, both PM and RM are assumed to consist of a new, undegraded 

spare part replacing a broken or severely degraded working part on the asset. A complete 

maintenance order is modeled as involving the following two steps: (i) shipping the 

necessary spare part from a maintenance center to the asset as a normal order, or from the 

central warehouse to the asset as an emergency order (when there are no appropriate spare 

parts in stock in the maintenance centers or when getting them from the maintenance 

centers is more expensive than delivering them directly from the central warehouse) and 

(ii) replacing the target working part on the asset with the newly delivered spare part. 

The PM scheduling strategy pursued in this chapter can be summarized as a usage-

based PM replacement policy. According to this policy, PM triggering usage level 𝑥𝑗,𝑘 is 

set for each part 𝑃𝑗,𝑘, indicating the part’s critical usage level at which a PM operation is 

initiated. PM is initialized by ordering a new corresponding spare part, either from the 

maintenance center or from the central warehouse, with the replacement of a working part 

starting only when the necessary spare part is delivered to the location of the asset. Finally, 

it is assumed that after a PM operation, the status of the part (component in an asset) is 

restored to the “as good as new” condition (i.e. perfect maintenance operations are assumed 

[112]). 

Maintenance interventions during RM and PM lead to asset downtimes. Besides 

the obvious downtime needed to perform a maintenance activity (replacement of a working 

part with a spare part), a significant portion of an asset downtime could also be due to the 

time needed for the new spare part to arrive. This waiting time is inevitably (and often 

much) longer in the case of unplanned RM events and depends on where from (the 
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maintenance center vs. central warehouse) and when (newly shipped vs. already shipped 

and on route as a PM order) the spare part is shipped.3 

From the side of SPL, let 𝑆𝑃1, 𝑆𝑃2, … , 𝑆𝑃𝐻  denote all types of spare parts 

considered in this system. Inventories of spare parts in the maintenance centers are 

consumed whenever a PM/RM order arrives and get replenished directly from the central 

warehouse. Replenishment of spare parts in maintenance centers is assumed to follow a (s, 

S) replenishment policy. Under this policy, the decision-variables, {𝑦𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻 , 

indicate the critical levels of spare parts inventory levels at which the maintenance center 

𝑀𝐶𝑖  requests replenishment for the spare part 𝑆𝑃ℎ , while decision-variables, 

{𝑧𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻, indicate the batch size of those replenishment orders. 

 

3.2.3 Integrated Decision-Making Policy 

In this chapter, we will seek an integrated decision-making policy described by the 

PM triggering usage levels {𝑥𝑗,𝑘} 1≤𝑗≤𝐽 ,1≤𝑘≤𝐾𝑗 
, spare parts inventory levels 

{𝑦𝑖,ℎ}1≤𝑖≤𝑛 ,1≤ℎ≤𝐻  and replenishment order sizes {𝑧𝑖,ℎ}1≤𝑖≤𝑛 ,1≤ℎ≤𝐻  that minimize the 

expected system operating cost per unit time of the entire system. More precisely, the 

integrated decision-making policy will be pursued by solving the stochastic optimization 

problem formulated below. 

                                                 
3 Obviously, unscheduled RM operations requiring spare parts that at the time are not available in the 

nearby maintenance centers lead to the longest asset downtimes, since the new spare part needs to be 

shipped from the far-away warehouse. 
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Minimize
{𝑥𝑗,𝑘∈𝑋𝑗,𝑘}1≤𝑗≤𝐽,   1≤𝑘≤𝐾𝑗 

{𝑦𝑖,ℎ∈𝑌𝑖,ℎ}1≤𝑖≤𝑛,   1≤ℎ≤𝐻

{𝑧𝑖,ℎ∈𝑍𝑖,ℎ}1≤𝑖≤𝑛,   1≤ℎ≤𝐻

1

𝑇
 𝔼

{
 
 

 
 

∑ (𝑑𝑖,ℎ𝐷𝑖,ℎ + 𝑠𝑖,ℎ𝑆𝑖,ℎ)
1≤𝑖≤𝑛
1≤ℎ≤𝐻

+ ∑ (𝑟𝑗,𝑘
𝑖 𝑅𝑗,𝑘

𝑖 +𝑚𝑗,𝑘
𝑖 𝑀𝑗,𝑘

𝑖 )
1≤𝑖≤𝑛
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ (𝑟𝑗,𝑘
𝑐𝑤𝑅𝑗,𝑘

𝑐𝑤 +𝑚𝑗,𝑘
𝑐𝑤𝑀𝑗,𝑘

𝑐𝑤)
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ 𝑙𝑗𝐿𝑗
1≤𝑗≤𝐽

}
 
 

 
 

 

Optimization Problem 1 

 

where the following notation is used, 

• 𝑖, 𝑗, 𝑘, ℎ : Indices for maintenance center (𝑖), asset (𝑗), working part (𝑘) and spare 

part type (ℎ). 

• 𝑇 : Decision-making time horizon. 

• 𝐷𝑖,ℎ : Inventory holding cost per unit time for the spare part 𝑆ℎ at the maintenance 

center 𝑀𝐶𝑖. 

• 𝑆𝑖,ℎ : Replenishment delivery cost per order for spare part 𝑆ℎ to the maintenance 

center 𝑀𝐶𝑖. 

• 𝑑𝑖,ℎ : Cumulative inventory holding time of the spare part 𝑆ℎ at the maintenance 

center 𝑀𝐶𝑖. 

• 𝑠𝑖,ℎ : Cumulative replenishment orders of the spare part 𝑆ℎ to the maintenance 

center 𝑀𝐶𝑖. 

• 𝑅𝑗,𝑘
𝑖  : Cost to order a RM for the working part 𝑃𝑗,𝑘  from the maintenance 

center 𝑀𝐶𝑖. 
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• 𝑀𝑗,𝑘
𝑖  : Cost to order a PM for the working part 𝑃𝑗,𝑘  from the maintenance 

center 𝑀𝐶𝑖. 

• 𝑅𝑗,𝑘
𝑐𝑤 : Cost to order a RM for the working part 𝑃𝑗,𝑘 from the central warehouse. 

• 𝑀𝑗,𝑘
𝑐𝑤 : Cost to order a PM for the working part 𝑃𝑗,𝑘 from the central warehouse. 

• 𝑟𝑗,𝑘
𝑖  : Cumulative number of RM orders for the part 𝑃𝑗,𝑘 served by the maintenance 

center 𝑀𝐶𝑖. 

• 𝑚𝑗,𝑘
𝑖 : Cumulative number of PM orders for the part 𝑃𝑗,𝑘 served by the maintenance 

center 𝑀𝐶𝑖. 

• 𝑟𝑗,𝑘
𝑐𝑤 : Cumulative number of RM orders for the part 𝑃𝑗,𝑘  served by the central 

warehouse. 

• 𝑚𝑗,𝑘
𝑐𝑤 : Cumulative number of PM orders for the part 𝑃𝑗,𝑘 served by the central 

warehouse. 

• 𝐿𝑗 : Penalty cost per unit downtime of the asset 𝐴𝑗. 

• 𝑙𝑗 : Cumulative downtime of the asset 𝐴𝑗. 

• 𝑋𝑗,𝑘 : Candidate solution set for the PM triggering usage level of the working part 

𝑃𝑗,𝑘. 

• 𝑌𝑖,ℎ  : Candidate solution set for the inventory level of the spare part 𝑆ℎ  at the 

maintenance center 𝑀𝐶𝑖.  

• 𝑍𝑖,ℎ : Candidate solution set for the replenishment order size of the spare part 𝑆ℎ 

to the maintenance center 𝑀𝐶𝑖. 

• ℒ𝒯𝑗
𝑖(∙) : Lead time distribution for the asset 𝐴𝑗 to obtain new spare parts from the 

maintenance center 𝑀𝐶𝑖.  

• ℒ𝒯𝑗
𝑐𝑤(∙) : Lead time distribution for the asset 𝐴𝑗 to obtain new spare parts from 

the central warehouse.  
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According to the “inventory-sharing” option, in order to perform a specific PM/RM 

operation on a working part 𝑃𝑗,𝑘, the maintenance service is provided by the maintenance 

center that currently has the necessary spare part in stock and has the smallest associated 

cost 𝑀𝑗,𝑘
𝑖  (in the case of PM) or 𝑅𝑗,𝑘

𝑖 + 𝑙𝑗 ∗ 𝔼(ℒ𝒯𝑗
𝑖) (in the case of RM), compared to 

other available maintenance centers. In case of insufficient levels of necessary spare parts 

in all maintenance centers or the central warehouse can provide the maintenance service 

with lower associated cost (𝑀𝑗,𝑘
𝑐𝑤 / 𝑅𝑗,𝑘

𝑐𝑤 + 𝑙𝑗 ∗ 𝔼(ℒ𝒯𝑗
𝑐𝑤)) than the available maintenance 

centers, the PM/RM orders would be fulfilled directly by the central warehouse. 

For each candidate solution, stochastic effects induced by randomness in the 

reliability of working parts, delivery delays for spare parts inventory flows and 

maintenance repair times were captured by discrete-event simulations of system 

operations. In the objective function, the stochastic effects are reflected in the cumulative 

statistics (i.e. 𝑑𝑖,ℎ -s, 𝑠𝑖,ℎ -s, 𝑟𝑗,𝑘
𝑖 -s, 𝑚𝑗,𝑘

𝑖 -s, 𝑟𝑗,𝑘
𝑐𝑤 -s, 𝑚𝑗,𝑘

𝑐𝑤 -s and 𝑙𝑗 -s). The objective 

function values obtained from multiple runs of those simulations were averaged to estimate 

the expected value in the objective function in (1). 

It is easily visible that the cost function in the formulation (1) is composed of the 

inventory holding/replenishment cost, the penalty cost for asset downtime, and the 

maintenance costs (PM/RM). Among them, the RM/PM cost per order is a comprehensive 

cost consisting of all one-time costs incurred by this order, such as the spare part production 

costs, delivery costs and labor costs. Also, it is very important to note that this cost function 

is highly flexible in the sense that one can choose cost parameters and/or incorporate other 

potential operating costs, such as backorder costs and unfulfilled contract penalties. In 

effect, different companies, and often different parts of the same company will operate with 

different cost functions and cost parameters, and optimization formulation (1) may need to 

be adapted to reflect such specificities. A metaheuristic simulation-based optimization 
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approach to solving the optimization problem (1), which will be elaborated in Section 3.3, 

allows such alterations to the objective function, and was one of the main reasons for 

choosing such an optimization approach.  

Theoretically, the PM trigger usage level 𝑥𝑗,𝑘 can be any positive value, but in 

periodic review systems, the status of a working part is evaluated periodically and, 

therefore, a finite discrete candidate solution set is assumed for 𝑥𝑗,𝑘-s. For example, that 

set could be 𝑋𝑗,𝑘 ∈ {30, 35, 40, 45, 50} in time units. If the size of the candidate solution 

set for each PM triggering usage level 𝑥𝑗,𝑘 is 𝑃, the size of the candidate solution set for 

each spare part inventory level 𝑦𝑖,ℎ is 𝑄 and for each replenishment order size 𝑧𝑖,ℎ is 

𝑅, then the solution space for the optimization problem of the integrated policy consists of 

up to 𝑃
∑ 𝐾𝑗
𝐽
𝑗=1 (𝑅𝑄)𝑛𝐻 candidate solutions. Even for a small maintenance logistic system, 

this problem is infeasible to solve through a complete enumeration, especially with 

expected operating costs being estimated via multiple replication of discrete-event 

simulations. A metaheuristic approach to pursue a solution to this optimization problem 

will be presented in Section 3.3. 

 

3.2.4 Fragmented Decision-Making Policy 

Traditionally, scheduling of PM operations and optimization of spare part 

inventories are accomplished separately, with PM schedules being optimized for the 

system without considerations of spare part availability, after which spare parts inventory 

levels are optimized to serve those PM schedules. This approach, referred to in this chapter 

as the fragmented policy, is easily implementable in realistic systems, but it does not 

consider the interactions between these two domains and thus potentially leaves significant 

inefficiencies in the operations. Following this industrial common practice, a fragmented 

decision-making policy is described in this section and will be used as a benchmark policy. 
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The fragmented decision-making process is a two-phase procedure. Firstly, for each 

asset, the maintenance decisions are optimized, under the assumption that unlimited 

supplies of spare parts are stocked in all maintenance centers. For each asset 𝐴𝑗 , PM 

triggering usage levels for its constituent parts are obtained by solving the following 

optimization problems 

 

Minimize
{𝑥𝑗,𝑘∈𝑋𝑗,𝑘}1≤𝑘≤𝐾𝑗 

1

𝑇
 𝔼

{
 

 

∑ (𝑟𝑗,𝑘
𝑖 𝑅𝑗,𝑘

𝑖 +𝑚𝑗,𝑘
𝑖 𝑀𝑗,𝑘

𝑖 )
1≤𝑖≤𝑛
1≤𝑘≤𝐾𝑗

+ ∑ (𝑟𝑗,𝑘
𝑐𝑤𝑅𝑗,𝑘

𝑐𝑤 +𝑚𝑗,𝑘
𝑐𝑤𝑀𝑗,𝑘

𝑐𝑤)

1≤𝑘≤𝐾𝑗

+ 𝑙𝑗𝐿𝑗  |{𝑦𝑖,ℎ = +∞}1≤𝑖≤𝑛
1≤ℎ≤𝐻

}
 

 

       for    1 ≤ 𝑗 ≤ 𝐽 

Optimization Problem 2 

 

Unlike formulation (1), optimization problem (2) minimizes a cost function that 

only encompasses maintenance-related costs for the assets, including the asset downtime 

penalty, as well as PM and RM operation ordering costs (it does not incorporate inventory-

related costs for the maintenance facilities). Moreover, the optimal solution to the 

optimization problem (2) provides a lower bound to the optimization problem (1) under 

the assumption that there is no inventory-related cost in the system. 

The second phase is to optimize the logistic decisions for the entire system based 

on the locally optimized PM triggering usage levels {𝑥𝑗,𝑘
∗  }

 1≤𝑗≤𝐽,1≤𝑘≤𝐾𝑗 
 from the first 

phase. More precisely, the spare parts inventory levels {𝑦𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻  and 

replenishment order sizes {𝑧𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻  are optimized with the objective of 
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minimizing both maintenance and logistic cost per unit time of the entire system via the 

following stochastic optimization. 

 

Minimize
{𝑦𝑖,ℎ∈𝑌𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻

{𝑧𝑖,ℎ∈𝑍𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻

1

𝑇
 𝔼

{
 
 

 
 

∑ (𝑑𝑖,ℎ𝐷𝑖,ℎ + 𝑠𝑖,ℎ𝑆𝑖,ℎ)
1≤𝑖≤𝑛
1≤ℎ≤𝐻

+ ∑ (𝑟𝑗,𝑘
𝑖 𝑅𝑗,𝑘

𝑖 +𝑚𝑗,𝑘
𝑖 𝑀𝑗,𝑘

𝑖 )
1≤𝑖≤𝑛
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ (𝑟𝑗,𝑘
𝑐𝑤𝑅𝑗,𝑘

𝑐𝑤 +𝑚𝑗,𝑘
𝑐𝑤𝑀𝑗,𝑘

𝑐𝑤)
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ 𝑙𝑗𝐿𝑗
1≤𝑗≤𝐽

| {𝑥𝑗,𝑘
∗ } 1≤𝑗≤𝐽 

1≤𝑘≤𝐾𝑗

}
 
 

 
 

 

Optimization Problem 3 

 

It should be noted again that maintenance decisions in the optimization problem (2) 

are made under the assumption that the necessary spare parts are always available in the 

relevant maintenance centers. This assumption of infinite spare parts stock in maintenance 

centers ensures that the maintenance decisions and logistic decisions can be pursued 

sequentially via optimizations (2) and (3). Compared to the integrated decision-making 

policy obtained via (1), ignoring the interrelations between PM decisions and spare parts 

inventory levels across different assets, as is done in the sequential, fragmented approach 

described above, leads to a computationally less complicated, fragmented decision-making 

policy. However, this comes at the expense of obtaining a suboptimal solution and it is this 

opportunity for improved cost effects of system operations that we are pursuing via the 

newly proposed integrated decision-making policy. 
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3.3 SIMULATION-BASED METAHEURISTIC OPTIMIZATION 

Simulation-based optimization is shown to be a powerful paradigm for decision-

making in complex spare part logistic systems [110]–[112], [116], [117], [177], [180], as 

well as for optimization of maintenance operations. Consequently, discrete-event 

simulations are utilized in this chapter to estimate the expected operating cost per unit time 

of the system under a candidate solution. The expected operating cost is estimated via 

multiple replications of discrete event simulations of target system operations, and is then 

fed back into a GA-based metaheuristic to guide the movements toward improved 

candidate decisions. Thus, ever improving integrated maintenance triggering and inventory 

replenishment policies minimizing the cost function in formulation (1) are sought. 

The discrete-event simulation approach is needed to evaluate each candidate 

solution due to the existence of multiple uncertain factors, as well as the need to make 

dynamic decisions resulting from inventory-sharing option. At the same time, the 

metaheuristic approach is also necessary to search for the optimized solutions, as the high 

dependencies between system operations and decision variables make a full enumeration 

of the solution space or certain kinds of decomposition approaches infeasible to the 

proposed optimization problem. 

There are all together 2𝑛𝐻 + ∑ 𝐾𝑗
𝐽
𝑗=1  decision variables in the integrated policy, 

including 2𝑛𝐻 logistic decision variables (𝑦𝑖,ℎ-s and 𝑧𝑖,ℎ-s) and ∑ 𝐾𝑗
𝐽
𝑗=1  maintenance 

decision variables (𝑥𝑗,𝑘-s). Therefore, each candidate solution is represented via 2𝑛 + 1 

chromosome portions (𝑋, 𝑌1, 𝑌2, … , 𝑌𝑛, 𝑍1, 𝑍2, … , 𝑍𝑛), in which 𝑋 denotes a decision-

variable vector containing all PM triggering usage levels, while 𝑌𝑖 and 𝑍𝑖 respectively 

denote vectors containing all spare parts inventory levels that trigger replenishment orders 
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from the central warehouse to the maintenance center and the batch size of those 

replenishment orders4. 

Generally speaking, GA is a search heuristic that mimics the process of natural 

selection. The GA evolution starts from 𝑉 randomly generated candidate solutions as the 

initial population, labeled 𝐺0 = {(𝑋0,𝑣, 𝑌0,𝑣
1 , … , 𝑌0,𝑣

𝑛 , 𝑍0,𝑣
1 , … , 𝑍0,𝑣

𝑛 )
1≤𝑣≤𝑉

} . The fitness of 

each candidate solution in the population is taken to be inversely proportional to the 

expected system operating cost per unit time, which is obtained via multiple replications 

of simulations of system operations under the maintenance/logistic policy represented by 

that candidate solution. To generate offspring solutions for the next generation, selection, 

crossover and mutation operators are applied to the current generation of candidate 

solutions. These operators are described below. 

• Selection operator: A pair of parent candidate solutions, 

(𝑋𝑢,𝛼, 𝑌𝑢,𝛼
1 , … , 𝑌𝑢,𝛼

𝑛 , 𝑍𝑢,𝛼
1 , … , 𝑍𝑢,𝛼

𝑛 ) and (𝑋𝑢,𝛽 , 𝑌𝑢,𝛽
1 , … , 𝑌𝑢,𝛽

𝑛 , 𝑍𝑢,𝛽
1 , … , 𝑍𝑢,𝛽

𝑛 ), are chosen 

from the current generation 𝑢 to mate and produce offspring candidate solutions for 

the next generation 𝑢 + 1, with the probability of being selected for each candidate 

solution being proportional to its fitness5. 

• Crossover operator: For a pair of selected parent solutions, a single-point crossover 

operator is executed on each of the 2𝑛 + 1 chromosome portions, leading to 2𝑛 + 1 

pairs of recombined chromosome portions, namely {𝑋𝑎, 𝑋𝑏}, {𝑌𝑎
1, 𝑌𝑏

1}, …, {𝑌𝑎
𝑛, 𝑌𝑏

𝑛}, 

{𝑍𝑎
1, 𝑍𝑏

1}, …, {𝑍𝑎
𝑛, 𝑍𝑏

𝑛}. Then an offspring solution is generated via randomly selecting 

a chromosome portion from each of 2𝑛 + 1 pairs, while the remaining chromosome 

portions form the other offspring solution. 

                                                 
4 Specifically, we have 𝑋 = (𝑥1,1., 𝑥1,2, … , 𝑥1,𝐾1 , … , 𝑥𝐽,1, 𝑥𝐽,2, … , 𝑥𝐽,𝐾𝐽), 𝑌𝑖 = (𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝐻) and 𝑍𝑖 =

(𝑧𝑖,1, 𝑧𝑖,2, … , 𝑧𝑖,𝐻). 
5 This is known as the so-called fitness proportionate selection [181]. Also, please note that a single 

solution may be chosen to serve as a parent more than once. 
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• Mutation operator: Each gene in an offspring solution chromosome is selected with a 

small probability, known as the mutation probability, and the selected gene value is 

randomly perturbed to an adjacent candidate in its candidate solution set6. The mutation 

operator promotes genetic diversity in the population from one generation to the next.  

 

Figure 3: An illustration of crossover operator on two parent candidate solutions, 

(𝑋𝑢,𝛼, 𝑌𝑢,𝛼
1 , 𝑍𝑢,𝛼

1 ) and (𝑋𝑢,𝛽 , 𝑌𝑢,𝛽
1 , 𝑍𝑢,𝛽

1 ) considered for Optimization Problem 1 

 

Overall, in each generation of candidate solutions, 𝑉 pairs of parent solutions are 

selected to form 2𝑉  offspring solutions via the above-described GA operators. The 

offspring solutions with highest fitness are promoted to form the next generation, with 

elitism enforced by ensuring that the highest performing candidate from the parent 

generation gets added to the next generation, if its fitness is higher than the fitness of all 

offspring solutions.  

This procedure yields ever-improving candidate solutions, consistently reducing 

the expected operating costs of the system. After a predetermined number of GA 

generations is reached, or the best fitness is not improved in a number of consecutive 

generations, the GA optimization is terminated and the integrated decision-making policy 

                                                 
6 For example, assume that the PM triggering level 𝑥𝑗,𝑘 takes value in 𝑋𝑗,𝑘 = {30, 35, 40, 45, 50} and the 

current value for this gene is 𝑥𝑗,𝑘 = 40. If the mutation operator is performed on this gene, the decision 

will mutate into either 𝑥𝑗,𝑘 = 35 or 45, with the mutation probability. 
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is obtained as the best candidate solution in the last GA generation, denoted by 

(𝑋∗, 𝑌∗
1, … , 𝑌∗

𝑛, 𝑍∗
1, … , 𝑍∗

𝑛).   

One should note that similar simulation-based metaheuristic algorithms can be 

derived in exactly the same way for each of the optimization problems (2)-(3), yielding 

decisions for the benchmark fragmented decision-making policy described in Section 

3.2.4. Same as the optimization problem (1), due to the existence of uncertain factors and 

dynamic decisions, the discrete-event simulation approach is needed to evaluate the 

candidate solutions for the optimization problem (2)-(3). However, instead of GA 

metaheuristic, a complete enumeration of the entire solution space to an optimization 

problem in formulations (2)-(3) is feasible if the size of its decision space is sufficiently 

small.  

 

3.4 RESULTS 

3.4.1 Simulation Setup and Decision Summary Statics 

In this section, we will evaluate the newly introduced integrated decision-making 

policy through a series of simulations of operations of a system illustrated in Figure 4. It 

consists of a central warehouse and three maintenance centers that provide maintenance 

services to 49 geographically dispersed assets7. These 49 assets consist of all together 126 

parts, belonging to 5 different spare part types. The set of decision variables consists of 30 

logistic decision variables and 126 maintenance decision variables. Time-to-failure 

distributions for the workings parts are modeled by Weibull reliability distributions, while 

                                                 
7 In terms of the optimization formulation (1) in Section 3.2.3, we have here 𝑛 = 3, 𝐽 = 49 and  𝐻 = 5. 
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all lead times and repair times are assumed to follow symmetric triangular distributions. 

Baseline parameters for this system are summarized in Appendix A8.  

 

 

Figure 4: Illustration of the SPL network in the baseline system 

 

The planning horizon (𝑇) for optimization was taken to be 365 ∗ 5 time units. 

Within this horizon, the operating cost and other system statistics are evaluated as averages 

over 50 replications9. The integrated decision-making policy is obtained by using GA based 

algorithm described in Section 3.3, with the detailed parameter settings given in the 

                                                 
8 Please note that different distribution forms and parameters could easily be implemented within the same 

simulation based optimization proposed in this chapter. As mentioned before, this flexibility of the 

simulation-based metaheuristic optimization paradigm is the main reason why it is used in this chapter. 
9 This parameter was obtained by increasing the number of replications until further increases did not lead 

to significant changes in the average cost effects. 
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Appendix A. In terms of computational costs, implementation on a relatively ordinary 

personal computer (Intel Core i5-3570 CPU, 16 GB RAM, 64-bit Window 7) led to average 

computational time of 17.5 seconds for one GA iteration. Considering that it takes less than 

10 hours to obtain the integrated decision-making policy for the baseline example, it would 

be feasible to achieve daily updates on the integrated decisions for systems of similar scale, 

though the computations can be greatly accelerated further in a parallel computing 

environment.   

In order to formally compare maintenance/logistic decisions under different 

policies, the following summary statistics are introduced: (1) total spare part inventory 

level, (2) average PM triggering usage level and (3) system uptime. The total spare part 

inventory level is calculated as the sum of the maximum inventory levels of spare parts that 

can simultaneously be stocked in the maintenance centers, and it can be used to evaluate 

the requirements on the logistic resources. More formally, it is expressed as  

𝑉 =∑∑(𝑦𝑖,ℎ + 𝑧𝑖,ℎ)

𝑛

𝑖=1

𝐻

ℎ=1

 . 

Average PM triggering usage level for the system, denoted by �̅�, is calculated by 

averaging PM triggering usage levels (maintenance decision variables) for all the working 

parts in the system. It can be used to express how aggressively PM operations are planned 

across the entire system, and is calculated as 

�̅� =
1

∑ 𝐾𝑗
𝐽
𝑗=1

∑∑𝑥𝑗,𝑘

𝐾𝑗

𝑘=1

𝐽

𝑗=1

 . 

System uptime is introduced and calculated as the average uptime (time not spent 

under maintenance) per unit time of all assets in the system. It expresses the utilization of 

assets and is formally defined as 

𝑆𝑈 = (1 −
∑ 𝑙𝑗
𝐽
𝑗=1

𝑇 ∙ 𝐽
) ∙ 100% . 
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3.4.2 Results for the Baseline System Settings 

As shown in Figure 5, for the baseline system parameters, the integrated decision-

making policy yields a lower expected operating cost compared to the fragmented policy, 

indicating a cost reduction of 3.03%. Furthermore, this cost reduction is statistically 

significant, with the significance level less than 0.0027, according to a one-sided z-test 

(corresponding to ±3𝜎 limits) [182].  

 

 

Figure 5: Cost comparison between the integrated and fragmented policies for baseline 

system 

 

More detailed analysis showed that the fragmented policy had the tendency to stock 

higher levels of spare parts in the maintenance centers, compared to the integrated policy. 

Namely, it can be observed from Figure 6 that for each type of spare parts, the newly 

proposed integrated policy yielded lower total inventory levels, compared to the 

fragmented policy. Potential negative effects of lower levels of spare parts in stock, such 

as more frequent emergency orders and occasional prolonged asset downtimes due to 
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waiting for spare parts10, were relieved through lower logistic costs and more aggressive 

scheduling of PM operations, leading to better avoidance of negative effects of 

unscheduled RM operations and lower overall operating costs of the system. 

This more aggressive PM scheduling under the integrated decision-making policy 

is clearly evident in Table 1, where one can see that average PM triggering usage level is 

smaller under the integrated policy, compared to the benchmark policy. However, as shown 

by the number of RMs per unit time in Table 1, aggressive PM scheduling did not 

necessarily lead to fewer RM operations under the integrated decision-making policy. The 

reason is that there were more situations when assets broke down while waiting for a spare 

part as a consequence of lower spare parts inventory levels in the relevant maintenance 

centers. Nevertheless, the downtimes caused by these RM events were reduced, since the 

relevant parts were already on their way, and these negative effects of breakdowns did not 

outweigh the benefits of lower inventory levels, at least for the baseline system parameters 

considered here. 

 

                                                 
10 In Figure 5, these negative effects are visible in the higher maintenance costs and higher downtime 

penalty costs under the integrated policy, compared to those under the fragmented policy. 
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Figure 6: Total inventory level for each spare part in 3 MCs (i.e. 𝑦1,ℎ + 𝑦2,ℎ + 𝑦3,ℎ +
𝑧1,ℎ + 𝑧2,ℎ + 𝑧3,ℎ for 𝑆𝑃ℎ) 

 

Table 1: Comparison of performance statistics between integrated and fragmented 

policy 

 

Moreover, the optimal solution to the optimization problem (2) provides a lower 

bound to the expected operating cost under the integrated decision-making policy, by 
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System Statistic Fragmented Policy Integrated Policy 

Total spare part inventory level (𝑉) 108 84 

Average PM triggering usage level (�̅�) 55.83 48.69 

System uptime 95.72% 95.30% 

Number of PM orders per unit time 1.593 1.771 

Number of RM orders per unit time 0.750 0.752 
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assuming no inventory-related cost in the system. For the baseline example, this lower 

bound is 3052.17 monetary unit/unit time, compared to 5063.89 monetary unit/unit time, 

the expected operating cost under the integrated policy. Tighter lower bounds can be 

derived through relaxing the optimization problem (1) in more elaborate ways, which 

would be one of the future works to this chapter. 

In summary, the newly introduced, joint optimization of maintenance and logistic 

operations yields a lower operating cost by avoiding overstocking of spare parts and by 

taking advantage of more intense scheduling of PM operations. To gain better 

understanding of the newly proposed integrated decision-making policy, we will further 

study its sensitivity to fluctuations in the (i) geographical dispersion of maintenance centers 

from the central warehouse, (ii) cost rates of handling spare parts inventories, and (iii) 

penalty rates for asset downtimes. 

 

3.4.3 Influence of the Geographic Dispersion Level 

In this section, performance of the newly proposed integrated decision-making 

policy will be evaluated and benchmarked against the traditional fragmented decision-

making policy in a series of systems having the same connection topology as the baseline 

system, but with maintenance centers and assets being at different distances away from the 

central warehouse (i.e. with different levels of geographic dispersion). This dispersion is 

modeled using a multiplier 𝛼 , referred to as the dispersion scalar, which is used to 

simultaneously rescale the times needed to accomplish replenishment to the maintenance 

centers and the lead times for spare part deliveries from the central warehouse to the assets. 

As illustrated in Figure 7, we used 𝛼 ∈ {
1

3
,
2

3
, 1,

4

3
,
5

3
} , with the most geographically 

concentrated system corresponding to 𝛼 =
1

3
, and the most dispersed system 

corresponding to 𝛼 =
5

3
, while 𝛼 = 1 corresponds to the baseline system settings.  
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Figure 7: Logistic network under different dispersion scalars 

 

No matter which policy is applied, the increase of geographic dispersion is 

inevitably associated with a higher operating cost of the system. However, as illustrated in 

Figure 8, both the relative and absolute cost reduction of the integrated policy over the 

fragmented policy consistently increase as the geographic dispersion of the system 

increases. 
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Figure 8: Reduction of operating costs per unit time for systems with 𝛼 in 

{
1

3
,
2

3
, 1,

4

3
,
5

3
}. Absolute cost reductions are reported as averages and 

corresponding ±3σ limits estimated from simulations. 

 

Detailed analysis of simulation results showed that in order to perform maintenance 

operations in a more dispersed system, more spare parts need to be stocked locally in 

maintenance centers, pushing spare parts inventory levels higher under both polices. 

However, it is evident that logistic decisions under the integrated policy are less sensitive 

to changes in 𝛼 than those under the fragmented policy (increases in inventory levels are 

not as pronounced as they are for the fragmented decision-making policy). This leads to 

the trend shown in Figure 9, where the differences between the optimized spare parts 

inventory levels (logistic decisions) under the two polices become larger for larger 𝛼, 

leading to increased savings in inventory handling in the more geographically dispersed 

systems.  
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Another fact that deserves noticing is that, as the locations of the logistic facilities 

change, maintenance decisions under the integrated policy are adjusted along with the 

logistic decisions, while the fragmented policy cannot deal with such changes in the 

system. As shown in Figure 9 and Figure 10: Average PM triggering usage levels for 

systems with 𝛼 ∈ {
1

3
,
2

3
, 1,

4

3
,
5

3
}, regardless of the value of 𝛼 , the fragmented decision-

making policy yields the same maintenance statistic (average PM triggering usage level) 

as the baseline system 11 . However, for the integrated decision-making policy, as 𝛼 

increases, there are two competing factors that drive the maintenance decisions in the 

opposite directions. On one hand, since longer replenishment delivery delays increase the 

cost of unscheduled downtimes and RM operations, this drives an incentive for more 

frequent PM operations. On the other hand, the higher inventory levels bring down the 

likelihood of emergency order, which reduces the impact and cost of RM operations and 

allows for less frequent PM scheduling. Consequently, the average PM triggering usage 

level under the integrated policy changes with the increasing dispersion scalar, but not 

monotonically.  

 

                                                 
11 Actually, it keeps using the same maintenance decisions 
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Figure 9: Total spare part inventory levels for systems with 𝛼 ∈ {
1

3
,
2

3
, 1,

4

3
,
5

3
} 

 

 

Figure 10: Average PM triggering usage levels for systems with 𝛼 ∈ {
1

3
,
2

3
, 1,

4

3
,
5

3
} 
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3.4.4 Influence of the Inventory Handling Costs 

The cost rate of handling inventories could vary significantly due to factors such as 

the facility location or the type of the part being stocked [183]. In this section, we will 

investigate the performance of the newly proposed integrated decision-making policy 

under various inventory handling costs. To achieve this goal, both inventory holding costs 

(parameters 𝐻𝑖,ℎ) and replenishment delivery costs (parameters 𝑆𝑖,ℎ) are simultaneously 

rescaled in the baseline system setting, with the inventory cost scalar 𝛽 ∈ {
1

3
,
2

3
, 1,

4

3
,
5

3
 }. 

Please note that 𝛽 = 1 corresponds to the baseline system settings. 

It can be observed from Figure 11 that as 𝛽  rises, both absolute and relative 

operating cost benefits of the integrated policy over the benchmark policy increase. This is 

a plausible observation because, as inventory holding becomes more expensive, the 

beneficial effects of avoiding overstocking yielded by the integrated policy are magnified 

and therefore the benefits of the integrated policy become more pronounced. 

 

 

Figure 11: Reduction of operating costs per unit time for the systems with 𝛽 ∈

{
1

3
,
2

3
, 1,

4

3
,
5

3
}, being reported as averages and corresponding ±3σ limits 

estimated from simulations. 
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Also to be noted, the cost difference between the two policies becomes negligible 

when the inventory handling costs become cheap enough. Furthermore, the integrated and 

fragmented policies also converge in the sense of decisions as the inventory cost scalar 

goes towards zero. This is evident in Figure 12, where one can see that the decisions 

generated by the integrated and fragmented policies have approximately the same 

maintenance and logistic statistics at 𝛽 =
1

3
. This makes sense because, with the inventory 

handling costs approaching zero, the “infinite inventories” assumption made in the 

fragmented policy becomes increasingly correct, since more and more spare parts can be 

stocked due to cheaper inventory stocking and replenishment costs. 

In addition, the behaviors of summary statistics in Figure 12 and Figure 13 

demonstrate that, unlike the fragmented policy, the integrated policy effectively adjusts to 

the changes in inventory handling costs. When the cost of handling inventories is raised, 

the maintenance schedule for the fragmented policy remains unchanged and cannot adjust 

to the situation of the changing logistic costs. Conversely, the maintenance schedule within 

the integrated decision-making policy can adjust to the decreasing availability of spare 

parts caused by higher inventory handling costs, which, in turn, partially offsets the 

negative influence of increasing logistic costs on the overall system operating costs.  
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Figure 12: Total spare part inventory levels for systems with 𝛽 ∈ {
1

3
,
2

3
, 1,

4

3
,
5

3
} 

 

Figure 13: Average PM triggering usage levels for systems with 𝛽 ∈ {
1

3
,
2

3
, 1,

4

3
,
5

3
} 
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3.4.5 Influence of the Downtime Penalties 

In this section, influence of the penalty rate for asset downtimes on the integrated 

and fragmented decision-making policies will be evaluated through scaling of the original 

asset downtime penalties in the baseline system. To study these effects in a relatively 

tractable way, a downtime penalty scalar 𝛾  is introduced to simultaneously 

magnify/diminish the downtime penalties for all assets in the system, after which decisions 

made by the integrated and fragmented polices are compared. The downtime penalty scalar 

𝛾  takes value in the set {
1

4
,
1

2
, 1, 2, 4}, with the baseline system obviously corresponding 

to 𝛾 = 1. 

From Figure 14, it is evident that as downtime penalties decrease, the integrated 

decision-making policy becomes increasingly cost effective, both in terms of the absolute 

and relative cost savings over the fragmented decision-making policy. Furthermore, as 

downtime penalties increase, the integrated and fragmented policies gradually converge in 

the sense of both costs and decisions. Namely, as downtime penalties increase, the cost 

benefits of the integrated policy over the fragmented policy become negligible, as 

illustrated in Figure 14, with both the logistic and maintenance decision statics converging 

between the two policies, as visible in Figure 15 and Figure 16.  
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Figure 14: Reduction of operating costs per unit time for systems with 𝛾 in 

{
1

4
,
1

2
, 1,2,4}, being reported as averages and corresponding ±3σ limits 

estimated from simulations. 

 

 

Figure 15: Total spare part inventory level for the systems with 𝛾 in {
1

4
,
1

2
, 1,2,4} 
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Figure 16: Average PM triggering usage level for the systems with 𝛾 in {
1

4
,
1

2
, 1,2,4} 

 

Figure 17 shows system uptime for various 𝛾-s and can be used to explain the 
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PM schedules obtained for the jointly optimized policy become increasingly close to those 

obtained via the fragmented policy, which, as mentioned earlier, optimizes PM schedules 
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policies approach each other in both the logistic and maintenance decisions as the 

downtime penalties grow. 
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Figure 17: System uptimes for 𝛾 ∈ {
1

4
,
1

2
, 1,2,4}, being reported as averages and 

corresponding ±3σ limits estimated from simulations. 

 

3.5 CONCLUSION AND FUTURE WORK  
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The integrated decisions-making policy introduced in this chapter was 

implemented in a simulated environment for a wide variety of cost parameters and system 

configurations, and is benchmarked against the traditionally used fragmented decision-

making policy in which maintenance and logistic decisions are made sequentially.  

An elaborate sensitivity analysis has been conducted to evaluate the influence of 

varying cost rates for handling spare part inventories, geographic dispersion levels of the 

system and penalty rates for asset downtimes. The results illustrate that the newly proposed 

integrated decision-making policy consistently outperforms the fragmented decision-

making policy by enabling lower overall system operating costs. Detailed analysis of the 

cost effects showed that smaller spare part inventory levels (logistic decisions) and smaller 

PM triggering usage levels (maintenance decisions) take place under the integrated policy, 

indicating its avoidance of excessive stocking of spare parts in maintenance centers and 

avoidance of costly, reactive maintenance events via more aggressive scheduling of 

relatively more cost-efficient PM operations. Moreover, the sensitivity analysis showed 

that the integrated decision-making yielded increasing relative improvements over the 

fragmented policy in systems with more geographically dispersed assets and maintenance 

facilities, in systems with higher costs of handling inventories, as well as in systems with 

lower penalties for asset downtime. The reasons for these results can be summarized in the 

fact that the integrated decision-making policy can better adjust to changes in the systems 

by jointly optimizing logistic and maintenance decisions, compared to what we see when 

maintenance and logistic decisions are optimized sequentially under the traditional 

fragmented decision-making policy. 

In another study, a comparison of the unit-time operating costs between the baseline 

system with stochastic time-related parameters and the system with deterministic time-

related parameters is conducted. For the conciseness of the dissertation, details of this 
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comparison will not be elaborated. However, the conclusions are provided here that 

additional uncertainties in the system lead to higher operating costs under the integrated 

policy and require more maintenance and logistic resources. 

Several research extensions of the work presented in this chapter can be noted. 

Firstly, the methodology can be extended to account for more complex and elaborate 

logistic/maintenance operations, such as imperfect maintenance operations, multiple 

transportation options. Secondly, the integrated decision-making policy can be further 

improved to incorporate robustness to inaccuracies and uncertainties in the model of 

system operations due to, for example, inaccurate reliability parameter estimates or 

uncertainties in repair operations. Thirdly, further study on various asset structures would 

be useful to understand the effects of different numbers of components insider assets, 

different ways of their connection and different mappings between working parts and spare 

parts. Finally, another potential benefit from risk pooling under the integrated decision-

making policy can be further studied through varying and/or adding uncertain factors. The 

paradigm of discrete-event simulation based modeling of system operations and GA based 

metaheuristic optimization described in this chapter offers a promising framework to tackle 

these more complex, but also more realistic operational problems than those considered in 

this manuscript. 
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Chapter 4 

Joint Optimization of Imperfect Preventive Maintenance, Spare 

Parts Inventory and Transportation Options 

 

4.1 INTRODUCTION12 

For geographically distributed systems of degrading assets and maintenance 

facilities serving these assets, such as assets and maintenance facilities in airlines and 

oil/gas extraction companies, preventive maintenance (PM) scheduling is a challenging 

decision-making problem because of its inherent interactions with the availability of the 

required maintenance resources. As PM operations are aimed at ensuring the asset 

availability by replacing degraded parts before they actually fail, getting the right amounts 

and types of spares parts to the right places at the right time is of paramount importance 

for a successful PM execution. Therefore, the spare parts logistics (SPL), including 

inventory levels in maintenance facilities and the transportation options to deliver the spare 

parts, should be considered along with the maintenance schedules.  

According to a recent review [184], the existing works on jointly scheduling of PM 

and SPL mainly focus on the optimization of reliability-based maintenance policies in a 

spare parts inventory system. From the side of maintenance, both the age-based (usage-

based)  [109], [180], [116], [111] and block-based (period-based) PM policies [113], 

[114], [122], [123] are considered. In addition, several recent studies considered joint PM 

and SPL decision-making for advanced asset systems, such as serial-connected multi-part 

asset structure [115], [117], [121], k-out-of-n asset structure [124], [125], flexible-connect 

                                                 
12 This chapter is based on a submitted journal paper: K. Wang and D. Djurdjanovic, “Joint Optimization 

of Preventive Maintenance and Spare Part Inventory and Transportation Options for Systems of 

Geographically Distributed Assets”, submitted to Elsevier Journal of Computers and Industrial 

Engineering, Paper No. CAIE-S-17-10392, 2017. 

Keren Wang wrote this publication under the supervision of Dragan Djurdjanvoic.  
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multi-part asset structure [126] and simple asset structure with multiple failure modes 

[178]. 

From the side of SPL, the joint decision-making problems have been considered in 

both continuous-review inventory systems [109], [126], [180] and periodical-review 

inventory systems [121], [123]. These works evaluated several inventory management 

strategies, including the (R,S) replenishment policy [123], [185], (s,S) replenishment policy 

[109], [111], [178], [180] and the strategy with reserved inventories for PMs [186]. Beyond 

inventory management, Nguyen et al. extended the definition of the maintenance resource 

by considering technicians of different skill levels [118], [120], thus involving the human 

resource planning into the resulting decision-making policies, while Chen et al. [112] 

assumed the existence of multiple suppliers and proposed an integrated decision-making 

policy for the resulting multi-echelon logistic network. 

Sensitivity studies for the integrated PM and SPL decision-making policies have 

also received attention in the literature [116], [121], [185]. These sensitivity studies are 

inspired by parametric uncertainties that often cannot be directly evaluated and have to be 

estimated based on the expert knowledge or the long-time observation of this system [48], 

[51]. However, there is still lack of a well-established methodological approach to 

quantitatively study the effects of changing system parameters and fully understand their 

interactions in the decision-making process. 

In this chapter, we introduce an integrated decision-making process that jointly 

optimizes PM schedules, spare part inventory levels and transportation options for spare 

parts in a geographical dispersed network of multi-part assets and multi-level maintenance 

facilities serving those assets with the necessary spare parts. The unique contributions of 

this work to the area of joint PM and SPL decision-making can be summarized as follows. 

We will consider possibilities of imperfect PM operation, which will be the first in the 
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literatures on joint PM and SPL decision-making. Furthermore, we will consider multiple 

shipping options for spare parts deliveries, which is also a first.  Finally, for the purpose 

of sensitivity analysis, a design of experiment (DOE) based method is proposed and 

introduced to study the effects and interactions between various system parameters on the 

decision-making process and its performance. 

The rest of the chapter is organized as follows. Section 4.2 describes the joint PM 

and SPL decision-making in the form of a stochastic optimization formulation. Section 4.3 

introduces a simulation-based metaheuristic approach to solving the optimization problem 

described in Section 4.2. In Section 4.4, the proposed integrated decision-making process 

is evaluated in a simulated environment, using a DOE-based sensitivity analysis. Section 

4.5 provides conclusion of this research and outlines several possible avenues for future 

work. 

 

4.2 METHODOLOGY 

4.2.1 Problem Statement 

As illustrated in Figure 18, the topology of the SPL system considered in this 

chapter is a three-level logistic network, consisting of a central warehouse, a maintenance 

center and a set of multiple assets. Furthermore, the assets are assumed to have multi-part 

structure, each consisting of multiple independent working parts. These entities are 

explained in more detail below, 

• A central warehouse is the primary source to all new spare parts and plays two 

roles in the spare part inventory flow - replenishing spare parts for the maintenance 

centers following a (s, S) replenishment policy [86], or providing spare parts 

directly to the assets as emergency orders when the maintenance order could not be 
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satisfied from a maintenance center. Infinite inventory levels of spare parts are 

assumed for the central warehouse. 

• A maintenance center fulfills maintenance orders from the nearby assets by 

shipping new undegraded spare parts to their operating sites. It is assumed to have 

finite inventory levels of spare parts and any maintenance order that cannot be 

immediately fulfilled by the maintenance center would be served by the central 

warehouse as an emergency order. 

• The term asset is used to refer to a machine that can be operated independently to 

generate revenue. It is assumed that there is a fleet of geographically dispersed 

assets in the system, labeled 𝐴1, 𝐴2, … , 𝐴𝐽 . An asset consists of multiple 

independent working parts and can be operated properly only if all its parts behave 

properly.  

• The term working part is used to refer to a basic unit of an asset. An asset 𝐴𝑗 (1 ≤

𝑗 ≤ 𝐽 ) is assumed to be made up of  𝐾𝑗  serially connected parts, labeled 

𝑃𝑗,1, 𝑃𝑗,2, … , 𝑃𝑗,𝐾𝑗 . Degradation process of a part 𝑃𝑗,𝑘  is characterized by a 

reliability function, 𝒟𝑗,𝑘(∙), representing the distribution of that part’s usage time 

to failure. From the point of view of logistics, a working part on an asset 

corresponds to a certain type of a spare part that needs to be stored in the 

maintenance center. During a PM/RM, a new spare part should be shipped either 

from the maintenance center or directly from the central warehouse to replace the 

degraded working part. 
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Figure 18: Three-echelon spare part logistic network considered in Chapter 4 

 

 

Figure 19: Illustration of spare part inventory flows within the SPL system 

 

In this chapter, a continuous-review inventory system is considered and a (s, S) 

replenishment policy is followed to manage spare part inventories in the maintenance 

centers. Let 𝑆𝑃1, 𝑆𝑃2, … , 𝑆𝑃𝐼 denote all spare parts needed to be stocked in a maintenance 

center. For a spare part 𝑆𝑃𝑖 , the reorder inventory level 𝑦𝑖  (corresponding to s in the 

replenishment policy) indicates the critical level of this spare part that triggers a 

replenishment order with batch size 𝑧𝑖 (corresponding to S-s in the replenishment policy), 

indicating the number of the spare parts to be shipped from the central warehouse to that 
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maintenance center. Furthermore, the replenishment cost per order (𝑆𝑖) is assumed to be a 

linear function of the batch size (𝑧𝑖), or more formally 

𝑆𝑖(𝑧𝑖) = 𝑆𝑖
𝑓𝑖𝑥

+ 𝑆𝑖
𝑎𝑑𝑑 ∗ (𝑧𝑖 − 1) 

where 𝑆𝑖
𝑓𝑖𝑥

 denotes the fixed replenishment handling cost and 𝑆𝑖
𝑎𝑑𝑑  denotes the 

additional cost to have one more spare part added to the replenishment order. 

From the side of maintenance decisions, the so-called replacement maintenance 

policy is assumed [184], that is to say, both PM and RM involve a new spare part replacing 

the broken or severely degraded working part on the asset. Moreover, a usage-based PM 

triggering policy is considered, which means that a PM triggering usage level 𝑥𝑗,𝑘 is set 

for each working part 𝑃𝑗,𝑘 , indicating the part’s critical usage level at which a PM 

operation is initiated. 

Once initialized, a complete maintenance order consists of two phases: 

transportation and execution. 

 

Phase I  

Transportation consists of shipping the ordered spare part to the asset 𝐴𝑗 from 

the maintenance center as a normal order, or from the central warehouse as an emergency 

order, with the lead times respectively following the distributions ℳ𝒯𝑗(∙) and 𝒞𝒯𝑗(∙). 

During RMs, a significant portion of the asset downtimes are caused by the waiting 

times for the new spare part. Therefore, several expedited shipping options will be 

considered, with fasters ones incurring more costs. More formally, decision variable 𝑢𝑗  

will be used to denote the relative acceleration of the expedited shipping option compared 

to a normal delivery to the asset 𝐴𝑗, with its influence on the lead time distributions and 

expedited shipping costs as follows: 
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• Lead time from the maintenance center to the asset 𝐴𝑗 following the distribution 

ℳ𝒯𝑗 ((1 + 𝑢𝑗) ∗ 𝑡) 

• Lead time from the central warehouse to the asset 𝐴𝑗 following the distribution 

𝒞𝒯𝑗 ((1 + 𝑢𝑗) ∗ 𝑡) 

• Expedited shipping cost to accelerate a RM delivery to the asset 𝐴𝑗 given by 𝑇𝑗 ∗

𝑢𝑗  

Obviously, decision variable 𝑢𝑗  scales the delivery times, with e.g. 𝑢𝑗 = 0 

corresponding to no acceleration in deliveries, 𝑢𝑗 = 1 doubling the speed of deliveries, 

𝑢𝑗 = 2 tripling that speed etc. 

 

Phase II 

Execution is essentially the process in which the target part on the asset is replaced 

with the newly delivered spare part, resulting in a maintenance intervention. The times 

needed to execute maintenance interventions will be referred to as repair times. 

It is assumed that a RM always restores the part 𝑃𝑗,𝑘 to as-good-as-new condition, 

or, in other words, RM operations are assumed to be so-called perfect maintenance 

operations. However, it is assumed that PM operations of various performance qualities 

are available, with different costs and repair times. The character of a PM on an asset 𝐴𝑗 

will be described by the PM recovery rate 𝑣𝑗 , representing its relative quality compared to 

a perfect PM. The decision variable 𝑣𝑗  is assumed to take discrete values between 0 and 

1 (𝑣𝑗 = 1 indicates a perfect PM and 𝑣𝑗 = 0 indicates a minimal repair), influencing the 

PM-related parameters as follows,  

• Usage to failure of the part 𝑃𝑗,𝑘  after PM following the distribution 

𝒟𝑗,𝑘 (
𝑡

(1−𝛼)𝑣𝑗+𝛼
) 

• PM cost per order on the part 𝑃𝑗,𝑘 given by 𝑀𝑗,𝑘(𝑣𝑗) = 𝑀𝑗,𝑘
𝑓𝑖𝑥

+𝑀𝑗,𝑘
𝑎𝑑𝑑 ∗ 𝑣𝑗 
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• PM repair time on the part 𝑃𝑗,𝑘 given by 𝑅𝑇𝑗,𝑘(𝑣𝑗) = 𝑅𝑇𝑗,𝑘
𝑓𝑖𝑥

+ 𝑅𝑇𝑗,𝑘
𝑎𝑑𝑑 ∗ 𝑣𝑗  

where 𝛼 > 0 denotes the relative quality of a minimal repair compared to a perfect 

operation, 𝑀𝑗,𝑘
𝑓𝑖𝑥

(𝑅𝑇𝑗,𝑘
𝑓𝑖𝑥

) denotes the fixed PM cost (time) and 𝑀𝑗,𝑘
𝑎𝑑𝑑(𝑅𝑇𝑗,𝑘

𝑎𝑑𝑑) denotes the 

additional cost (time) to improve PM performance. 

 

4.2.2 Stochastic Optimization Formulation 

In this chapter, we will seek an integrated decision-making policy for the usage 

levels triggering PMs for working parts (𝑥𝑗,𝑘-s), reorder and target inventory levels for spare 

parts being stocked in the maintenance centers (𝑦𝑖-s and 𝑧𝑖-s), the expedited delivery rates 

for RMs (𝑢𝑗-s) and the recovery rates of PMs (𝑣𝑗-s). More formally, the integrated decision-

making policy will be pursued through the following stochastic optimization, 

Minimize
{𝑥𝑗,𝑘∈𝑋𝑗,𝑘}1≤𝑗≤𝐽,1≤𝑘≤𝐾𝑗 

{𝑦𝑖∈𝑌𝑖} 1≤𝑖≤𝐼
{𝑧𝑖∈𝑍𝑖} 1≤𝑖≤𝐼
{𝑢𝑗∈𝑈𝑗}1≤𝑗≤𝐽

{𝑣𝑗∈𝑉𝑗}1≤𝑗≤𝐽

1

𝑇
𝔼

{
 
 

 
 

∑ (𝑑𝑖𝐷𝑖 + 𝑠𝑖𝑆𝑖(𝑧𝑖))

1≤𝑖≤𝐼

+ ∑ (𝑟𝑗,𝑘𝑅𝑗,𝑘 +𝑚𝑗,𝑘𝑀𝑗,𝑘(𝑣𝑗) + 𝑒𝑗,𝑘𝐸𝑗,𝑘)
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ 𝑙𝑗𝐿𝑗
1≤𝑗≤𝐽

+ ∑ 𝑟𝑗,𝑘𝑇𝑗 ∙ 𝑢𝑗
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗 }

 
 

 
 

 

Optimization Problem 4 

where the terms are explained in Table 2. 
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Table 2: Notation used in the optimization problem (4) 

Category Symbol Description 

General notation 
𝑖, 𝑗, 𝑘 

Indices for spare part type (𝑖), asset (𝑗), working part 

(𝑘) 

𝑇 Planning horizon 

Candidate value 

set for decision 

variable 

𝑋𝑗,𝑘 
A discrete real-number set for PM trigger 𝑥𝑗,𝑘 with 

values in (0,∞) 

𝑌𝑖 
A discrete integer set for reorder level 𝑦𝑖 with values 

in [−1,∞) 

𝑍𝑖 
A discrete integer set for batch size 𝑧𝑖 with values in 

[1,∞) 

𝑈𝑗 
A discrete real-number set for RM expedition rate 𝑢𝑗  

with values in [0,∞) 

𝑉𝑗 
A discrete real-number set for PM recovery rate 𝑣 

with values in [0,1] 

Inventory-related 

terms  

𝐷𝑖 
Inventory holding cost per unit time for the spare part 

𝑆𝑃𝑖 

𝑆𝑖(𝑧𝑖) 
Replenishment cost per order for the spare part 𝑆𝑃𝑖 

at the batch size 𝑧𝑖 

𝑑𝑖 
Cumulative inventory holding time of the spare part 

𝑆𝑃𝑖 

𝑠𝑖 Cumulative replenishment order of the spare part 𝑆𝑃𝑖 

PM 
𝑀𝑗,𝑘(𝑣𝑗) 

Unit PM cost to perform PM on the part 𝑃𝑗,𝑘 with the 

given 𝑣𝑗  

𝑚𝑗,𝑘 Cumulative number of PM orders for the part 𝑃𝑗,𝑘 

Normal RM 
𝑅𝑗,𝑘 Unit RM cost to perform RM on the part 𝑃𝑗,𝑘 

𝑟𝑗,𝑘 Cumulative number of RM orders for the part 𝑃𝑗,𝑘 
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Table 2. Continued from previous page 

 

Objective function in (4) represents the expected unit-time operating cost of the 

system. The expectation operator is applied due to the random effects induced by the 

reliability of working parts and the delivery delays of spare parts. In the objective function, 

the stochastic effects are reflected in the cumulative statistics (i.e. 𝑑𝑖-s, 𝑠𝑖-s, 𝑟𝑗,𝑘-s, 𝑚𝑗,𝑘-

s, 𝑒𝑗,𝑘-s and 𝑙𝑗-s). 

For each integrated decision, these random effects are captured by discrete-event 

simulation and the expected operating costs are estimated through averaging of the 

objective function values obtained from multiple replications of simulations.  

One can see that the cost function in formulation (4) consists of three groups of 

costs: i) inventory-related costs, including the cost to hold spare parts inventories in the 

maintenance center and the cost to order replenishment for the maintenance center, ii) 

penalties for the asset downtimes, and iii) maintenance costs incurred by execution of PM 

and RM operations. This objective function penalizes the consumption of maintenance and 

logistic resources, while rewarding the asset availability. Obviously, this is a relatively 

simple cost function and one may likely need to choose cost parameters and/or incorporate 

other potential operating costs, such as backordering costs and unfulfilled contract 

penalties. In effect, different companies, and often different parts of the same company 

Emergency RM 

𝐸𝑗,𝑘 
Additional charge of an emergency RM on the part 

𝑃𝑗,𝑘 

𝑒𝑗,𝑘 
Cumulative number of emergency RM orders for the 

part 𝑃𝑗,𝑘 

Downtime penalty 𝐿𝑗 Penalty cost per unit downtime of the asset 𝐴𝑗 

Expedited 

Shipping 
𝑇𝑗 

Expedited shipping cost per RM order to the asset 𝐴𝑗 
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operate with different cost functions and cost parameters, necessitating adequate changes 

in the optimization formulation (4). A metaheuristic simulation-based optimization 

approach to solving the optimization problem (4), which will be elaborated in the next 

section, allows such alterations to the objective function, and was one of the main reasons 

for choosing such an optimization approach 

 

4.3 SIMULATION-BASED OPTIMIZATION APPROACH 

In this section, we will describe a simulation-based metaheuristic optimization 

procedure that pursues a joint maintenance triggering, inventory management and 

transportation selection policy as a solution to the optimization problem (4). 

Simulation-based optimization has become a powerful paradigm for decision-

making in the area of SPL and maintenance scheduling due to its flexibility in 

accommodating advanced system operations, as well as complex cost structures observed 

in real-world systems [116], [111], [117], [126]. In this chapter, discrete-event simulations 

were utilized to estimate the expected operating cost for a candidate solution, which is then 

fed back into a metaheuristic algorithm to guide the movements towards improved 

candidate solutions. 

Optimization procedure pursued in this chapter is based on the genetic algorithm 

(GA) paradigm [181]. Generally speaking, GA is a search heuristic that mimics the process 

of natural evolution. Each candidate solution, (𝑋, 𝑌, 𝑍, 𝑈, 𝑉) , is represented via five 

chromosome portions, each of which is a decision vector respectively relevant to the PM 

triggers, replenishment triggers, replenishment batch sizes, RM delivery speeds and PM 

qualities13.  The GA evolution starts from 𝑁 randomly generated candidate solutions as 

                                                 
13 Specifically, we have 𝑋 = (𝑥1,1., 𝑥1,2… , 𝑥1,𝐾1 , … , 𝑥𝐽,1, 𝑥𝐽,2, … , 𝑥𝐽,𝐾𝐽), 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝐼), 𝑍 =

(𝑧1, 𝑧2, … , 𝑧𝐼), 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝐽) and 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝐽). 
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the initial population, labeled 𝐺0 = {(𝑋0
𝑠, 𝑌0

𝑠 , 𝑍0
𝑠, 𝑈0

𝑠, 𝑉0
𝑠)|1 ≤ 𝑠 ≤ 𝑁}. The fitness of each 

candidate solution in the population is taken to be inversely proportional to the expected 

operating cost of the system obtained via multiple simulation replications of system 

operations under the decision-making policy represented by that candidate solution. In 

order to generate offspring candidate solutions for the next generation, selection, crossover 

and mutation operators are applied to the current generation. These operators are described 

below. 

• Selection operator: A pair of parent solutions, namely (𝑋𝛼, 𝑌𝛼 , 𝑍𝛼 , 𝑈𝛼, 𝑉𝛼) and 

(𝑋𝛽 , 𝑌𝛽 , 𝑍𝛽 , 𝑈𝛽 , 𝑉𝛽)  are chosen from the current generation 𝑔  to mate and 

produce offspring candidate solutions for the next generation 𝑔 + 1 , with 

probability of selection being proportional to their fitness (also known as fitness 

proportionate selection [181]). 

• Crossover operator: For a pair of selected parent solutions, a single-point crossover 

operator is executed at a random point in each of the five chromosome portions, 

leading to five pairs of recombined chromosome portions, namely {𝑋𝑎, 𝑋𝑏} , 

{𝑌𝑎, 𝑌𝑏} , {𝑍𝑎, 𝑍𝑏} , {𝑈𝑎, 𝑈𝑏}  and {𝑉𝑎, 𝑉𝑏} . Then an offspring solution is 

generated via randomly selecting a chromosome portion from each of the five pairs, 

while the remaining chromosome portions forms another offspring solution. The 

above-described crossover operator is pictorially illustrated in Figure 20. 

• Mutation operator: To promote genetic diversity in the offspring population, each 

gene in an offspring solution chromosome is selected with a small probability 

(commonly referred to as the mutation probability), and its value is perturbed to an 

adjacent candidate in its candidate value set14.  

                                                 
14 For example, assume that the PM triggering usage level 𝑥𝑗,𝑘 takes values in 𝑋𝑗,𝑘 = {35, 40, 45, 50} 

and the current value for this gene is 𝑥𝑗,𝑘 = 40. If the mutation operator is performed on this gene, the 

decision will mutate into either 𝑥𝑗,𝑘 = 35 or 45, with a small mutation probability. 
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Figure 20: A realization of the crossover operator on two parent candidate solutions 

considered for Optimization Problem 4 

 
Following [181], N pairs of parent solutions are selected from the current 

generation, leading to the birth of 2N offspring solutions. If the top performing candidate 

solution in the parent generation has higher fitness than the 2N offspring candidates, it is 

added to the offspring population, thus enforcing the well-known concept of elitism in this 

GA [181]. From this set, the fittest N solutions are selected to form the next generation of 

candidate solutions. 

Successive progression of generations yields ever-improving solutions, leading to 

lower expected operating cost of the system. Termination criterion for this algorithm is 

either a predetermined number of GA generations being reached, or the best candidate 

solution not being improved over a number of consecutive generations. The integrated 

decision-making policy is then taken to be the fittest candidate solution in the last GA 

generation, denoted by (𝑋∗, 𝑌∗, 𝑍∗, 𝑈∗, 𝑉∗) . Figure 21 illustrates the above-described 

algorithm. 
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Figure 21: Flow chart of the GA-based optimization pursued in Chapter 4 

 

4.4 RESULTS 

4.4.1 Baseline System and Restricted Systems 

The newly proposed integrated decision-making policy described in Section 4.2 is 

evaluated in a series of simulations. For the baseline system, a central warehouse is 
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connected to a maintenance center that provides maintenance service to 20 geographically 

dispersed assets. All together, 52 working parts are associated with the assets, and the 

corresponding spare parts (5 types of spare parts) need to be stocked in the maintenance 

facilities. Therefore, the integrated decision-making policy for the baseline system contains 

102 decision variables, including 52 usage levels that trigger PM operations for the 

corresponding working parts, 5 reorder levels and 5 replenishment batch sizes for 

managing spare part inventories in the maintenance center, 20 recovery rates that represents 

the quality of PM operations and 20 acceleration rates that denote shipping options of the 

RM service. More details on the parameters of the baseline system can be found in the 

Appendix B. 

 

  

Figure 22: Illustration of the spare part logistic network for the baseline system in 

Chapter 4 (single maintenance center and 20 assets) 
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The decision-making planning horizon (𝑇) is 365*5 time unis, and 100 replications 

of simulations are generated to estimate the unit-time operating cost for each candidate 

solution 15 . The simulation-based metaheuristic algorithm described in Section 4.3 is 

repeated 10 times, with different randomly selected initial candidate solutions (i.e. 10 GA 

runs) to better explore the solution space [181]. In terms of computational costs, it always 

took less than 10 hours to obtain a decision-making policy for this system on a relatively 

simple personal computer (Intel Core i5-3570 CPU, 16GB RAM, 64-bit Window 7). It 

should be noted that the simulation based metaheuristic optimization proposed in this 

chapter is highly parallelizable (each candidate solution and each replication could be 

evaluated in parallel) and thus, this algorithm could be greatly accelerated in a multi-

processor environment [187]. 

The integrated decision-making policy proposed in this chapter derived under the 

assumption that multiple options exist for PM execution, RM transportation and the size 

of replenishment orders. Special cases of the integrated decision-making policy can be 

obtained by restricting some of those options, and the indicators, 𝕝1, 𝕝2 and 𝕝3, will be 

used to denote such restrictions in the following manner: 

1) 𝕝1 = 0 denotes the existence of multiple PM operations with different quality levels, 

while  𝕝1 = 1  corresponds to the situation with perfect PM only. Thus, 𝕝1 = 1 

implies fixing 𝑣𝑗 = 1 (1 ≤ 𝑗 ≤ 𝐽) in the formulation (4). 

2) 𝕝2 = 0 denotes the existence of multiple spare parts shipping options for RM, while 

𝕝2 = 1 corresponds to normal RM delivery only. Thus, 𝕝2 = 1 implies fixing 𝑢𝑗 = 0 

(1 ≤ 𝑗 ≤ 𝐽) in the formulation (4). 

                                                 
15 This number of replication was selected in an ad hoc manner, by increasing the number of replications 

until their average effects did not change significantly with further increases. 
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3) 𝕝3 = 0 denotes a (s, S) replenishment policy for spare parts inventory management in 

the maintenance center, while  𝕝3 = 1 indicates a (S-1, S) replenishment policy in 

which only one spare part is shipped as a replenishment order. Thus, 𝕝3 = 1 implies 

fixing 𝑧𝑖 = 1 (1 ≤ 𝑖 ≤ 𝐼) in the formulation (4). 

The benefits of considering multiple options for PM operations, RM deliveries and 

replenishment size can be seen via the comparisons between the integrated decision-

making policy and its special cases. As shown in Figure 24, restriction on any of the three 

options leads to the increase in the system operating costs. Moreover, a two-way analysis 

of variance (ANOVA) model [188] is used to study the statistical effects of these multiple-

choice options. In other words, ANOVA factorial analysis is used to study effects of factors 

𝕝1 , 𝕝2  and 𝕝3  on the unit-time operating costs under the integrated decision-making 

policy. As visible from Figure 24, the main effects of 𝕝1, 𝕝2 and 𝕝3 are all statistically 

significant, with the significance level of 0.01 or less, confirming the cost benefits of 

executing these multiple-choice options. Moreover, 2nd order interaction effects of 𝕝1 × 𝕝2 

and 𝕝1 × 𝕝3 are marginally significant, illustrating weak interactions between these factors 

(options). 

More detailed analysis of system performance under different decision-making 

options shows that when 𝕝1 = 1  and 𝕝2 = 𝕝3 = 0  16,  the PM service becomes less 

efficient in terms of increased repair interventions (+93.3%) and higher cumulative PM 

costs (+71.7%). Furthermore, when 𝕝2 = 1  and 𝕝1 = 𝕝3 = 0 17 , the prolonged RM 

delivery delays lead to a 11.0% increase in asset downtimes. Finally, when 𝕝3 = 1 and 

𝕝1 = 𝕝2 = 0  18 , more replenishment deliveries are needed (+120.3%), leading to the 

increase in the replenishment delivery costs. Please note that a detailed list of statistics 

                                                 
16 The scenario that PM operations restricted to perfect PM only. 
17 The scenario that spare part deliveries for RM orders restricted to normal shipping speed only. 
18 The scenario that inventory management policy restricted to the (S-1, S) replenishment policy. 
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describing the system performance under the integrated decision-making policy is provided 

in the Appendix B for the baseline and restricted systems. 

 

 

Figure 23: Comparison of unit time operating costs between the baseline and restricted 

systems 

 

 

Figure 24: ANOVA analysis of the unit time operating costs, with significance levels 

for the effects of factors 𝕝𝟏, 𝕝𝟐 and 𝕝𝟑 
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4.4.2 Sensitivity Analysis for Operating Costs 

ANOVA method can also be used to conduct sensitivity studies regarding various 

system parameters. In this section, the unit-time operating cost under the integrated 

decision-making policy is used as the response in a two-level factorial ANOVA, in which 

six input factors are considered. Specifically, factor F1 denotes the geographical dispersion 

level of the logistic network and factors F2-F6 are relevant to cost-related system 

parameters, respectively denoting inventory holding cost per unit time (F2), replenishment 

cost per order (F3), PM quality improvement cost per order (F4), penalty cost per unit 

downtime (F5) and RM acceleration cost per order (F6). Each factor is varied at two levels 

(low & high), resulting in 64 experimental levels in a 26 DOE. More details on the DOE 

settings can be found in the Appendix B. 

In Figure 25, significance levels for the 6 main effects and 15 interaction effects are 

shown as the result of ANOVA. The main effects of the geographical dispersion level (F1) 

and four cost-related factors (F2, F4-F6) along with some of their interaction effects 

(F1×F2, F2×F5, F4×F5, F4×F6, F5×F6) were found to be critical to the system operating 

cost. Criticality of these effects is plausible, since changes in these factors directly affect 

either the maintenance scheduling or spare parts logistic planning in the integrated 

decision-making policy. 

Moreover, it is interesting to see that the replenishment cost per order (F3) is only 

marginally significant to the operating cost under the integrated decision-making policy, 

while its interaction effect with another inventory-related cost parameter, inventory 

holding cot per unit time (F2), is more significant than its main effect. It illustrates the fact 

that when only the replenishment costs become expensive, the negative effects can be 

partially offset through properly adjusting the inventory management policy, such as 

shipping more spare parts in a replenishment batch. 
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Figure 25: ANOVA analysis of the unit time operating costs under the integrated 

policy, with significance levels for the main/interaction effects of F1-F6 

 
4.4.3 Sensitivity Analysis for Cost-Reduction Effects of Multi-Option Operations 

In this section, we will focus on the sensitivity analysis on cost-reduction effects 

of considering multi-mode PM operations, RM expedition options and flexible batch size 

of replenishment orders. To prevent interaction effects between these operations, the 

cost-reduction effect for each of them is defined as the difference between, 

(1) the operating cost of the system with all three operations being restricted, i.e. 𝕝1 =

𝕝2 = 𝕝3 = 1, and 

(2) the operating cost of the system allowing multiple options for the operation of 

interest, but having other two operations restricted, e.g. set 𝕝2 = 0 and 𝕝1 = 𝕝3 = 1 

to analyze RM expedition options. 
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The results of two-way ANOVA studies for the three cost-reduction effects are 

shown in Figure 24 - Figure 26. Generally, the cost-reduction effects of all three 

operations are sensitive to the magnitude of PM quality improvement cost per order (F4), 

penalty per unit downtime (F5) and their interaction effect (F4×F5). It makes senses as 

these two factors directly affect the PM schedule that plays the core role of the integrated 

decision-making policy. Furthermore, another fact deserved noting that, if the main 

effects of two factors are both critical to a response, then their interaction effect also 

tends to be critical to the same response. 

Besides the aforementioned effects (F4, F5, F4×F5), each of the three responses 

is sensitive to some other factors. Firstly, the inventory holding cost per unit time (F2) is 

an important factor to the cost-reduction effect of multi-mode PM operation, illustrating 

that the availability of the spare parts also affects PM schedule. Secondly, it is plausible 

that RM acceleration cost (F6) affects the cost-reduction effect of RM expedition options. 

However, F6 is a noncritical factor to other two responses, where the normal shipping 

speed is the only option to RM deliveries, leading to zero RM acceleration cost under the 

corresponding restricted systems. Thirdly, the replenishment policy guides the inventory 

management for spare parts in maintenance center, therefore, the cost-reduction effect as 

the shift from (S-1,S) to (s,S) replenishment policy is sensitive to the magnitude of two 

inventory-related cost parameters, namely inventory holding cost (F2) and replenishment 

cost per order (F3). 
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Figure 26: ANOVA analysis for cost-reduction effect of multi-mode PM operations: 

significant levels for main/interaction effects of F1-F6 

 

 

Figure 27: ANOVA analysis for cost-reduction effect of expedited RM options: 

significant levels for main/interaction effects of F1-F6 
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Figure 28: ANOVA analysis for cost-reduction effect of (s,S) replenishment policy: 

significant levels for main/interaction effects of F1-F6 

 

4.5 CONCLUSION AND FUTURE WORK  

In this chapter, an integrated decision-making policy is proposed for concurrent 

preventive maintenance scheduling, spare parts inventory management and transportation 

planning in a system of geographically dispersed multi-part degrading assets and 

maintenance facilities that serve them. This integrated decision-making policy considers 

both perfect and imperfect maintenance options, as well as multiple shipping methods for 

spare part deliveries. This decision-making process was modeled as a stochastic 

optimization problem and was solved via a simulation-based optimization approach relying 

on a GA-based metaheuristic. 

The integrated decision-making policy introduced in this chapter was implemented 

in a series of simulations. The results illustrated statistically significant cost benefits of 

involving the options of multi-mode PM operations, expedited RM shipping and flexible 

replenishment deliveries into the integrated decision-making process, while their 

interaction effects turned out to be only marginally significant according to a two-level 
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ANOVA analysis. Furthermore, a DOE-based factorial analysis showed that operating 

costs under the integrated decision-making policy were sensitive to changes in 

geographical dispersion levels of the logistic network, as well as several 

maintenance/logistic cost parameters. Finally, the factorial analysis also illustrated that 

when only replenishment costs for spare parts become expensive, proper adjustment in 

inventory management under the integrated policy would allow the system to operate 

without a significant increase in operating costs. 

Several possible avenues for possible future research can be identified. Firstly, the 

integrated decision-making process can be improved in the sense of robustness to 

uncertainties in the model parameters, which could be caused by limited availability of 

historical data or expert knowledge from which they need to be identified. Secondly, the 

assumptions of fixed network topology can be relaxed, leading to optimization of the 

maintenance facility locations and their interconnections with assets that need maintenance 

service. Finally, human resource planning also deserves further research, including 

optimization of the number, skills and allocation of technicians needed to properly execute 

maintenance activities. 
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Chapter 5 

Spare Part Logistic Network Design for Jointly Optimized Preventive 

Maintenance and Spare Part Logistic Operations 

 

5.1 INTRODUCTION19 

Preventive maintenance (PM) operations aim to restore equipment reliability and 

reduce downtime costs by replacing degraded parts before they actually fail. For a large 

and distributed system of degrading assets, a successful PM schedule is inevitably 

dependent on the locations of maintenance facilities and the availability of the necessary 

spare parts in those facilities, which results in the inherent interactions between the 

decisions in the domains of constructing the spare part logistics (SPL) network, spare part 

inventory management and maintenance scheduling. Traditionally, the locations of 

maintenance centers and their priorities in providing maintenance service are considered 

as long-term strategic decisions that are made a priori and independently from the tactical 

decisions, such as maintenance scheduling and inventory management [189].  

In the majority of the existing literature, the design of a SPL network is only 

considered as a special case of the general logistic network design problem20. Meanwhile, 

integration of the logistic network design with the inventory considerations has also 

become an active research topic, with the underlying models being referred to as the 

location-inventory models [146], [150]. Several recent works specifically studied the SPL 

network design problem and focus on the unique features of SPL networks, such as low 

demand rates and time urgency [86]. Candas and Kutanoglu [151] were the first to study 

                                                 
19 This chapter is based on a submitted journal paper: K. Wang and D. Djurdjanovic, “Spare Part Logistic 

Network Design for Jointly Optimal Preventive Maintenance and Spare Part Logistic Operations”, 

submitted to European Journal of Operations Research, Paper No. EJOR-S-17-03980, 2017. 

Keren Wang wrote this publication under the supervision of Dragan Djurdjanvoic.  
20 Thorough reviews of various logistic network design models can be found in [190], [191], [133]. 
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the low-demand nature of the spare part logistic systems and introduced a linear 

optimization model to capture the interdependencies between the network design and 

inventory stocking decisions under the one-for-one replenishment policy. This work was 

extended by Jeet et al. [152] who considered lost sales for stock-out situations instead of 

assuming direct backordering. This was further extended by Gzara et al. [153] who 

assumed a multiple-part model for the asset structure. Due to the time sensitivity of 

maintenance services, Iyoob et al. [154] introduced the inventory-sharing structure into the 

SPL network design so that an asset can be served by multiple maintenance facilities, while 

Wu et al. [155]  considered multiple 3rd party vendors and multiple transportation options 

to improve the efficiency of the logistic system. Nevertheless, the existing models for SPL 

network design always assumed known demand rates of spare parts, which is not the case 

in reality, as the demand rates for spare parts fully depend on the maintenance schedule. 

Another stream of literature relevant to this work is the joint optimization of PM 

and SPL operations. Most early studies in this area focus on the integration of PM 

scheduling with spare part inventory planning in relatively simple asset systems and a 

thorough review in this domain can be found in [5]. Several recent studies modelled assets 

as multi-part structures, including serially-connected multi-part assets [115], [117], [121], 

k-out-of-n structure assets [124], [125], and flexible-connect multi-part assets [126]. 

Among all these works, Chen et al. [112] is, to the best of our knowledge, the only work 

that conducted a study on a multi-echelon SPL network, with a distributor, multiple users 

and multiple suppliers in the network. 

In this chapter, we propose a novel design method to integrate the SPL network 

design problem with the optimization of PM and SPL operations in that network. The 

design factors for SPL network include the locations of maintenance centers and their 

interconnections with the geographically dispersed assets, which will be simultaneously 
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optimized with the PM schedules and spare part replenishment policies for the 

maintenance centers. The resulting design will be an SPL network providing spare parts 

to the relevant geographically dispersed assets with the lowest cumulative cost of the 

network construction and resulting SPL and maintenance operations. 

The rest of the Chapter is organized as follows. Section 5.2 describes the model of 

the SPL network and system operations. In Section 5.3, the newly proposed method for 

joint optimization of the SPL network design and the SPL/PM operations in it is 

formulated as a stochastic optimization problem, which is solved via a discrete-event 

simulation-based metaheuristic approach proposed in Section 5.4. The new methodology 

is evaluated through a set of simulations in Section 5.5, while the conclusions of this 

research as well as several possible directions for the future work are provided in Section 

5.6. 

 

5.2 METHODOLOGY  

5.2.1 SPL Network Design 

The following terminology will be used in the remainder of this chapter. 

• The term working part refers to a basic unit of a machine. The condition of a part is 

assumed to degrade with its usage independently from other parts, and PM/RM can 

restore the part to the original, non-degraded condition. From the view of SPL, a 

working part on an asset corresponds to a certain type of a spare part that is stored in a 

maintenance facility and can be used to replace it. 

• The term asset refers to a machine that can be operated independently to generate 

revenue. An asset consists of multiple parts and can be operated properly only if all its 

parts behave properly.  
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•  A maintenance center fulfills maintenance orders from nearby assets by shipping new 

undegraded spare parts to their operating sites. Maintenance centers have finite 

inventory levels of spare parts and are replenished from the central warehouse. 

• The central warehouse replenishes spare parts for maintenance centers following a (s, 

S) replenishment policy [86]. It can also provide spare parts directly to the assets as 

emergency orders in maintenance events. The central warehouse is the primary source 

of all new spare parts and is assumed to have infinite inventory levels of spare parts. 

As illustrated in Figure 29, the central warehouse and a fleet of 𝐽 nearby assets, 

labeled 𝐴1, 𝐴2, … , 𝐴𝐽, are geographically dispersed across a large region. To provide 

timely maintenance service, multiple maintenance centers can be constructed and each 

constructed maintenance center will be further connected to one or multiple assets. It is 

assumed that there are 𝑁 candidate sites to build maintenance centers, labeled 

𝑀𝐶1, 𝑀𝐶2, … ,𝑀𝐶𝑁, and a binary decision-variable 𝑢𝑖  (1 ≤ 𝑖 ≤ 𝑁) is used as the 

indicator to denote if the candidate site 𝑀𝐶𝑖 is built or not. Specifically, 𝑢𝑖 = 1 denotes 

a decision to construct maintenance center 𝑀𝐶𝑖, while 𝑢𝑖 = 0 denotes the decision not 

to construct it. 

Moreover, the interconnections between the built maintenance centers and the 

assets also need to be decided. Formally, a binary decision variable 𝑣𝑖,𝑗 (1 ≤ 𝑖 ≤ 𝑁, 1 ≤

𝑗 ≤ 𝐽), referred to as the facility-asset connection indicator, will be set to 1 if the 

connection between the candidate site 𝑀𝐶𝑖 and asset 𝐴𝑗 is to be established21, and 0 

otherwise.  

 

                                                 
21 A one-time construction cost will be incurred if a connection between the maintenance center 𝑀𝐶𝑖 and 

asset 𝐴𝑗 is established. 
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Figure 29: Geographically dispersed logistic facilities and assets considered in Chapter 

5 

 

The system considered in this chapter allows logistic operations with inventory-

sharing, in the sense that an asset can obtain necessary spare parts from multiple 

maintenance centers, as well as the central warehouse [154]. More precisely, for a specific 

PM/RM action, the affected asset will obtain the necessary spare parts from the 

maintenance facility that currently has them in stock and the delivery of those parts would 

incur the lowest operating cost compared to other available maintenance facilities. In the 

case of insufficient levels of necessary spare parts in all connected maintenance centers, or 
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if the central warehouse can provide the spare parts with the lowest associated costs, the 

PM/RM orders would be fulfilled directly by the central warehouse. 

Finally, the delivery times for the spare part inventory flows between the central 

warehouse, maintenance centers and assets are characterized by the following distribution 

functions, which are assumed to be known: 

• ℒ𝒯𝑗
𝑖(∙): Lead time distribution for an asset 𝐴𝑗 to obtain new spare parts from the 

maintenance center 𝑀𝐶𝑖. 

• ℒ𝒯𝑗
0(∙): Lead time distribution for an asset 𝐴𝑗 to obtain new spare parts from the 

central warehouse. 

• ℛ𝒯𝑗  (∙): Lead time distribution for replenishing spare parts to the 𝑀𝐶𝑖 from the 

central warehouse. 

 

5.2.2 Assumptions on the PM and SPL Operations 

From the aspect of PM and SPL operations in the system, the following 

assumptions are made:  

1. An asset 𝐴𝑗 is assumed to consist of 𝐾𝑗 serially connected parts22, labeled 

𝑃𝑗,1, 𝑃𝑗,2, … , 𝑃𝑗,𝐾𝑗. From the view of SPL, each working part on an asset 

corresponds to a certain type of a spare part that is stored in a maintenance 

facility. It is assumed that there are 𝐻 types of spare part in this system, labeled 

𝑆𝑃1, 𝑆𝑃2, … , 𝑆𝑃𝐻. 

                                                 
22 I.e., assets are assumed to have a multi-part structure. 
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2. Degradation dynamics of a part 𝑃𝑗,𝑘 is described by a reliability function 

approximating the distribution of its usage time to failure23 and denoted by  

𝒯𝑗,𝑘 (∙). 

3. A replacement maintenance policy is assumed, that is to say, both PM and RM are 

assumed to consist of a new, undegraded spare part replacing a broken or severely 

degraded working part on the asset. Each maintenance action is modeled as a two-

step process consisting of the following steps: (1) shipping the necessary spare part 

from a maintenance center to the asset as a normal order, or from the central 

warehouse to the asset as an emergency order 24  and (2) replacing the target 

working part on the asset with the newly delivered spare part (actual repair 

intervention on the asset). 

4. A usage-based PM policy is assumed, in the sense that a PM triggering usage level 

𝑥𝑗,𝑘  is set for each part 𝑃𝑗,𝑘 , indicating the critical usage level at which a PM 

operation is initiated for that asset. PM is initialized by ordering a new 

corresponding spare part, either from the maintenance center or from the central 

warehouse, with the replacement of a working part starting only when the necessary 

spare part is delivered to the location of the asset.  

5. Perfect maintenance operations are assumed, i.e. after each maintenance operation, 

the part (component in an asset) is assumed to be in the “as good as new” condition 

[112]. 

                                                 
23 Reliability functions are assumed to be part-asset specific and can be estimated through a long-term 

statistical analysis behavior of failure times for that part on that asset, or of parts of the same type on 

similar types. 
24 When there are no appropriate spare parts in stock in the maintenance centers or when getting the spare 

parts from the available maintenance centers is more expensive than getting it directly from the central 

warehouse. 
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6. Inventory management for spare parts in maintenance centers is assumed to 

follow a (s, S) replenishment policy. In order to model this policy, decision-

variables, {𝑦𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻, are introduced to denote critical spare part inventory 

levels at which a maintenance center 𝑀𝐶𝑖 requests replenishment for the spare 

part 𝑆𝑃ℎ, while decision-variables, {𝑧𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻, indicate the batch sizes of 

those replenishment orders (corresponding to the parameter S-s in the 

replenishment policy). 

 

5.3 OPTIMIZATION FORMULATION  

5.3.1 Formulation for SPL Network Design with System Operation Considerations 

Let us now describe the optimization formulation for the new SPL network design 

that is jointly optimized with the SPL and PM system operations in that network. The 

following five groups of decision variables will be used to describe any SPL network 

design and the underlying SPL and maintenance operations: construction indicators for 

maintenances center {𝑢𝑖}1≤𝑖≤𝑁, connection indictors between maintenances centers and 

assets {𝑣𝑖,𝑗}1≤𝑖≤𝑁,1≤𝑗≤𝐽 , PM triggering usage levels {𝑥𝑗,𝑘}1≤𝑗≤𝐽,1≤𝑘≤𝐾𝑗
, spare part 

inventory levels that trigger replenishments from the central warehouse {𝑦𝑖,ℎ}1≤𝑖≤𝑁,1≤ℎ≤𝐻 

and replenishment order sizes {𝑧𝑖,ℎ}1≤𝑖≤𝑁,1≤ℎ≤𝐻 . The optimization objective will be to 

minimize the expected cumulative costs of the network construction and operations of the 

system per unit time. The underlying stochastic optimization problem is formulated as 

follows 



101 

 

Minimize
{𝑢𝑖∈{0,1}}1≤𝑖≤𝑁

{𝑣𝑖,𝑗∈{0,1}}
1≤𝑖≤𝑁,1≤𝑗≤𝐽

{𝑥𝑗,𝑘∈𝑋𝑗,𝑘}  1≤𝑗≤𝐽,1≤𝑘≤𝐾𝑗 

{𝑦𝑖,ℎ ∈𝑌𝑖,ℎ}1≤𝑖≤𝑁,1≤ℎ≤𝐻

{𝑧𝑖,ℎ ∈𝑍𝑖,ℎ}1≤𝑖≤𝑁,1≤ℎ≤𝐻

1

𝑇
( ∑ 𝑢𝑖𝐹𝑖
1≤𝑖≤𝑁

+ 𝑇 ∑ 𝑢𝑖𝑂𝑖
1≤𝑖≤𝑁

+ ∑ 𝑣𝑖,𝑗𝐶𝑖,𝑗
1≤𝑖≤𝑁
1≤𝑗≤𝐽

)

+
1

𝑇
 𝔼

{
 
 

 
 

∑ (𝑑𝑖,ℎ𝐷𝑖,ℎ + 𝑠𝑖,ℎ𝑆𝑖,ℎ)
1≤𝑖≤𝑁
1≤ℎ≤𝐻

+ ∑ (𝑟𝑗,𝑘
𝑖 𝑅𝑗,𝑘

𝑖 +𝑚𝑗,𝑘
𝑖 𝑀𝑗,𝑘

𝑖 )
1≤𝑖≤𝑁
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ (𝑟𝑗,𝑘
0 𝑅𝑗,𝑘

0 +𝑚𝑗,𝑘
0 𝑀𝑗,𝑘

0 )
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ 𝑙𝑗𝐿𝑗
1≤𝑗≤𝐽

 |  {𝑢𝑖}1≤𝑖≤𝑁 and {𝑣𝑖,𝑗}1≤𝑖≤𝑁
1≤𝑗≤𝐽

}
 
 

 
 

 

Optimization Problem 5 

 

where the following notation is used, 

• 𝑖, 𝑗, 𝑘, ℎ: Indices for the maintenance centers (𝑖), assets (𝑗), working parts (𝑘) and 

spare parts (ℎ). 

• 𝑇 : Decision-making time horizon. 

• 𝐹𝑖 : One-time construction cost of the maintenance center 𝑀𝐶𝑖. 

• 𝑂𝑖 : Fixed facility-maintenance cost per unit time to operate the maintenance center 

𝑀𝐶𝑖. 

• 𝐶𝑖,𝑗: One-time connection cost between the maintenance center 𝑀𝐶𝑖 and asset 𝐴𝑗. 

• 𝐷𝑖,ℎ  : Inventory holding cost per unit time for the spare part 𝑆𝑃ℎ  at the 

maintenance center 𝑀𝐶𝑖. 
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• 𝑆𝑖,ℎ : Replenishment delivery cost per order for spare part 𝑆𝑃ℎ to the maintenance 

center 𝑀𝐶𝑖. 

• 𝑅𝑗,𝑘
𝑖  : Cost to order a RM for the working part 𝑃𝑗,𝑘  from the maintenance 

center 𝑀𝐶𝑖. 

• 𝑀𝑗,𝑘
𝑖  : Cost to order a PM for the working part 𝑃𝑗,𝑘  from the maintenance 

center 𝑀𝐶𝑖. 

• 𝑅𝑗,𝑘
0 : Cost to order a RM for the working part 𝑃𝑗,𝑘 from the central warehouse. 

• 𝑀𝑗,𝑘
0 : Cost to order a PM for the working part 𝑃𝑗,𝑘 from the central warehouse. 

• 𝐿𝑗 : Penalty cost per unit downtime of the asset 𝐴𝑗. 

• 𝑑𝑖,ℎ : Cumulative inventory holding time of the spare part 𝑆𝑃ℎ at the maintenance 

center 𝑀𝐶𝑖. 

• 𝑠𝑖,ℎ : Cumulative replenishment orders of the spare part 𝑆𝑃ℎ to the maintenance 

center 𝑀𝐶𝑖. 

• 𝑟𝑗,𝑘
𝑖  : Cumulative number of RM orders for the part 𝑃𝑗,𝑘  serviced by the 

maintenance center 𝑀𝐶𝑖. 

• 𝑚𝑗,𝑘
𝑖  : Cumulative number of PM orders for the part 𝑃𝑗,𝑘  serviced by the 

maintenance center 𝑀𝐶𝑖. 

• 𝑟𝑗,𝑘
0 : Cumulative number of RM orders for the part 𝑃𝑗,𝑘  serviced by the central 

warehouse. 

• 𝑚𝑗,𝑘
0 : Cumulative number of PM orders for the part 𝑃𝑗,𝑘 serviced by the central 

warehouse. 

• 𝑙𝑗 : Cumulative downtimes of the asset 𝐴𝑗. 

Objective function in optimization problem (5) represents the expected unit-time 

cost of the system construction and operations over the planning horizon of length 𝑇. The 

expectation operator is applied due to the random effects induced by the reliability of 
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working parts, delivery delays of the spare parts and repair times of maintenance 

interventions. In the objective function, the stochastic effects are reflected in the 

cumulative statistics (i.e. 𝑑𝑖,ℎ -s, 𝑠𝑖,ℎ -s, 𝑟𝑗,𝑘
𝑖 -s, 𝑚𝑗,𝑘

𝑖 -s, 𝑟𝑗,𝑘
0 -s, 𝑚𝑗,𝑘

0 -s and 𝑙𝑗 -s). The 

objective function consists of two major parts: facility-related costs and system operational 

costs. More specifically, the facility-related costs involve the construction costs to build 

the maintenance centers and connect them to the assets, as well as the fixed facility-

maintenance costs associated with operating those maintenance centers, while the 

operational costs associated with the PM and SPL operations involve (i) inventory-related 

costs (costs of holding spare parts inventories in the maintenance center and costs of 

replenishment orders for the maintenance center), (ii) penalties for the asset downtimes, 

and (iii) maintenance costs incurred by execution of the PM and RM operations. 

In order to perform a specific PM/RM operation on a working part 𝑃𝑗,𝑘 , the 

necessary spare part is provided by the maintenance center that currently has that part in 

stock and has the smallest associated spare part delivery cost 25  compared to other 

maintenance centers. In the case of insufficient levels of the necessary spare parts in all 

maintenance centers, or if the central warehouse can provide the maintenance service with 

the lowest corresponding maintenance cost26, then the necessary spare part is provided 

directly by the central warehouse. 

 

5.3.2 Benchmark Network Designs 

The newly proposed SPL network design method that leads to the jointly optimized 

network design and the resulting PM and SPL operations will be compared to two other, 

more traditional SPL network designs. For both benchmark designs, the SPL network is 

                                                 
25 This cost is 𝑀𝑗,𝑘

𝑖  in the case of PM, or 𝑅𝑗,𝑘
𝑖 + 𝑙𝑗 ∗ 𝔼(ℒ𝒯𝑗

𝑖) in the case of RM. 
26 This cost is 𝑀𝑗,𝑘

0  in the case of PM, or 𝑅𝑗,𝑘
0 + 𝑙𝑗 ∗ 𝔼(ℒ𝒯𝑗

0) in the case of RM. 
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determined independently of the SPL and PM operations, which are optimized post-festum, 

based on the SPL network design obtained from the previous stage. These benchmark 

network designs along with the optimization of the corresponding system operations will 

be described below. 

 

5.3.2.1 Network Design without Maintenance Centers 

The simplest SPL network design is the one where no maintenance center is built. 

This design, referred to in this chapter as the “No-MC Network”, avoids the network 

construction costs, as well as the costs associated with the management of spare part 

inventories in the maintenance centers. Nevertheless, the resulting operational performance 

of this network will inevitably be associated with low efficiency in servicing the assets 

during the maintenance activities. Essentially, since all maintenance orders have to be 

served directly by the central warehouse as emergency orders, prolonged asset downtimes 

and increased maintenance costs for emergency orders can be expected. 

Formally, the No-MC SPL network design is obtained by restricting all 

construction indicators for the maintenance centers (𝑢𝑖-s) and all connection indicators for 

the facility-asset pairs (𝑣𝑖,𝑗-s) to 0. Given this pre-designed network, the PM triggering 

usage levels {𝑥𝑗,𝑘 ∈ 𝑋𝑗,𝑘}  1≤𝑗≤𝐽,1≤𝑘≤𝐾𝑗 
 are optimized to minimize a cost function that only 

considers the maintenance costs associated with emergency orders and the corresponding 

asset downtime penalties, as formulated below, 
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Minimize
{𝑥𝑗,𝑘∈𝑋𝑗,𝑘}  1≤𝑗≤𝐽,1≤𝑘≤𝐾𝑗 

1

𝑇
 𝔼

{
 
 

 
 

∑ (𝑟𝑗,𝑘
0 𝑅𝑗,𝑘

0 +𝑚𝑗,𝑘
0 𝑀𝑗,𝑘

0 )
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ 𝑙𝑗𝐿𝑗
1≤𝑗≤𝐽

  |
|   {𝑢𝑖 = 0}1≤𝑖≤𝑁 and {𝑣𝑖,𝑗 = 0}1≤𝑖≤𝑁

1≤𝑗≤𝐽

}
 
 

 
 

 

Optimization Problem 6 

 

5.3.2.2 Nearest-MC Network Design 

Another pre-designed SPL network is obtained under the assumptions that (i) all 

candidate maintenance centers are built and (ii) the assets are serviced by the nearest 

maintenance facility. This SPL network design will be referred to as the “Nearest-MC 

Network”. An asset 𝐴𝑗  is serviced by the maintenance facility that has the smallest 

expected lead-time for the inventory flow between them, i.e. maintenance center with the 

index27 

𝑖∗(𝑗) = argmin
0≤𝑖≤𝑁

 𝔼 (ℒ𝒯𝑗
𝑖(𝑡)). 

  

Given this network, the corresponding PM and SPL operations are concurrently 

optimized by selecting PM triggering usage levels {𝑥𝑗,𝑘 } 1≤𝑗≤𝐽,1≤𝑘≤𝐾𝑗 
, spare parts 

inventory levels {𝑦𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻  and replenishment order sizes {𝑧𝑖,ℎ}1≤𝑖≤𝑛,1≤ℎ≤𝐻  that 

minimize the resulting maintenance costs, SPL costs and downtime penalties per unit time 

in the system, or more formally, 

 

                                                 
27 Particularly, 𝑖∗(𝑗) = 0 indicates that the asset 𝐴𝑗 is closer to the central warehouse than any 

maintenance center and, thus, no facility-asset connection will be built for this asset. 
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Minimize
{𝑥𝑗,𝑘∈𝑋𝑗,𝑘}  1≤𝑗≤𝐽,1≤𝑘≤𝐾𝑗 

{𝑦𝑖,ℎ ∈𝑌𝑖,ℎ}1≤𝑖≤𝑁,1≤ℎ≤𝐻

{𝑧𝑖,ℎ ∈𝑍𝑖,ℎ}1≤𝑖≤𝑁,1≤ℎ≤𝐻

1

𝑇
 𝔼

{
 
 

 
 

∑ (𝑑𝑖,ℎ𝐷𝑖,ℎ + 𝑠𝑖,ℎ𝑆𝑖,ℎ)
1≤𝑖≤𝑁
1≤ℎ≤𝐻

+ ∑ (𝑟𝑗,𝑘
𝑖 𝑅𝑗,𝑘

𝑖 +𝑚𝑗,𝑘
𝑖 𝑀𝑗,𝑘

𝑖 )
1≤𝑖≤𝑁
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ (𝑟𝑗,𝑘
0 𝑅𝑗,𝑘

0 +𝑚𝑗,𝑘
0 𝑀𝑗,𝑘

0 )
1≤𝑗≤𝐽
1≤𝑘≤𝐾𝑗

+ ∑ 𝑙𝑗𝐿𝑗
1≤𝑗≤𝐽 |

|
  {𝑢𝑖 = 1}1≤𝑖≤𝑁 and  {𝑣𝑖,𝑗 = 𝕀(𝑖 = 𝑖∗(𝑗))}1≤𝑖≤𝑁

1≤𝑗≤𝐽
 

}
 
 

 
 

 

Optimization Problem 7 

where 𝕀(∙) is indicator function that equals 1 if the corresponding condition is true, and 

0 otherwise. 

 

5.4 SIMULATION-BASED METAHEURISTIC OPTIMIZATION APPROACH 

In this section, we will describe a simulation-based metaheuristic optimization 

procedure pursuing a solution to the optimization problem (6) and yielding the SPL 

network design that is jointly optimized with the SPL and PM operations in it. Due to its 

flexibility in accommodating realistic system structures and operation models, 

simulation-based optimization has become a powerful paradigm for logistic network 

design [138], as well as for joint decision-making in the domains of PM and SPL 

operations [116], [111], [117], [126]. Moreover, the cost function considered in this 

chapter is relatively simple and one may likely need to incorporate other types of cost 

structures. Metaheuristic simulation-based optimization allows such alterations, which is 

another motivating factor for choosing such an optimization paradigm. 
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Optimization procedure pursued in this chapter is based on the genetic algorithm 

(GA) paradigm [181]. Generally speaking, GA is a search heuristic that mimics the 

process of natural evolution. Each candidate solution is denoted by a chromosome 

(𝑈, 𝑉, 𝑋, 𝑌, 𝑍) containing five portions, each of which is a decision vector respectively 

relevant to the construction indicators of the maintenance centers, connection indicators 

of facility-asset pairs, PM triggering levels, replenishment triggering levels and 

replenishment batch sizes28.  

The GA algorithm starts with an initial population 𝐺0 consisting of 𝑆 randomly 

generated candidate solutions, labeled 𝐺0 = {(𝑈0
𝑠, 𝑉0

𝑠, 𝑋0
𝑠, 𝑌0

𝑠 , 𝑍0
𝑠)|1 ≤ 𝑠 ≤ 𝑆}. The 

fitness of each candidate is taken to be inversely proportional to the corresponding 

expected unit-time cumulative costs29 obtained via multiple replications of simulations 

of system operations represented by that candidate solution. In order to generate offspring 

candidate solutions for the next generation, selection, crossover and mutation operators 

are applied to the current generation. These operators are described below. 

• Selection operator: A pair of parent solutions, say (𝑈𝛼, 𝑉𝛼 , 𝑋𝛼 , 𝑌𝛼 , 𝑍𝛼) and 

(𝑈𝛽 , 𝑉𝛽 , 𝑋𝛽 , 𝑌𝛽 , 𝑍𝛽), is chosen from the current generation 𝑔 to mate and produce 

offspring candidate solutions for the next generation 𝑔 + 1, with probability of 

selection being proportional to their fitness30. 

• Crossover operator: For a pair of selected parent candidate solutions, a two-point 

crossover operator is executed for each of the five chromosome portions, leading to 

                                                 
28 Specifically, 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑁), 𝑉 = (𝑣1,1, 𝑣1,2, … , 𝑣1,𝐽, … , 𝑣𝑁,1, 𝑣𝑁,2, … , 𝑣𝑁,𝐽)  𝑋 =

(𝑥1,1., 𝑥1,2… , 𝑥1,𝐾1 , … , 𝑥𝐽,1, 𝑥𝐽,2, … , 𝑥𝐽,𝐾𝐽), 𝑌 = (𝑦1,1, 𝑦1,2… , 𝑦1,𝐻 , … , 𝑦𝑁,1, 𝑦𝑁,2… , 𝑦𝑁,𝐻 , ) and 𝑍 =

(𝑧1,1, 𝑧1,2… , 𝑧1,𝐻 , … , 𝑧𝑁,1, 𝑧𝑁,2… , 𝑧𝑁,𝐻). One should note that there are dependencies between these 

decision variables in the sense that, for a candidate maintenance center 𝑀𝐶𝑖, its connection indicators with 

assets (𝑣𝑖,𝑗-s) and inventory decision-variables (𝑦𝑖,ℎ-s and 𝑧𝑖,ℎ-s) are non-trivial only if 𝑀𝐶𝑖 is built, i.e. if 

𝑢𝑖 = 1. 
29 Objective function in optimization problem (5). 
30 This selection approach is also known as the fitness proportional selection [181]. 
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five pairs of recombined chromosome portions, namely {𝑈𝑎, 𝑈𝑏}, {𝑉𝑎, 𝑉𝑏}, 

{𝑋𝑎, 𝑋𝑏}, {𝑌𝑎, 𝑌𝑏} and {𝑍𝑎, 𝑍𝑏}. Then, one offspring solution is generated by 

randomly selecting a chromosome portion from each of the five pairs, while the 

remaining chromosome portions form the other offspring solution. The above-

described crossover operator is pictorially illustrated in Figure 30. 

• Mutation operator: To promote genetic diversity in the offspring population, genes in 

all offspring solution chromosomes are subject to mutation with a small probability, 

commonly referred to as the mutation probability. The value of each gene selected for 

mutation is perturbed to an adjacent candidate in its candidate value set31. 

For each generation, S pairs of parent solutions are selected from the current 

generation, leading to the birth of 2S offspring solutions. If the top performing candidate 

solution in the parent generation has higher fitness than the 2S offspring candidates, it is 

added to the offspring population, thus enforcing the well-known GA concept of elitism 

[181]. From this set, the fittest S solutions are selected to form the next generation of 

candidate solutions. 

 

                                                 
31 For example, assume that the PM triggering usage level 𝑥𝑗,𝑘 takes values in 𝑋𝑗,𝑘 = {20,25,30,35} and 

the current value for this gene is 𝑥𝑗,𝑘 = 25. If the mutation operator is performed on this gene, the decision 

will mutate into either 𝑥𝑗,𝑘 = 20 or 35, with a small mutation probability. 
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Figure 30: A realization of the two-crossover operator on two parent candidate 

solutions in Chapter 5 

Successive progression of generations obtained via the above-mentioned 

operations lead to ever improving candidate solutions, yielding lower and lower expected 

unit-time costs associated with the SPL network construction and system operations. 

Termination criterion for this algorithm is either a predetermined number of GA 

generations being reached, or the best candidate solution not being improved over a 

number of consecutive generations. The final solution for the newly proposed SPL 

network design, denoted by (𝑈∗, 𝑉∗, 𝑋∗, 𝑌∗, 𝑍∗), is selected as the fittest candidate 

solution in the last GA generation. 

The discrete-event simulation approach is always required to evaluate each 

candidate solution due to the existence of multiple uncertain factors, as well as the need 

to make dynamic decisions following inventory-sharing option. At the same time, the 

metaheuristic approach is also necessary to search for the optimized solutions, as the high 

dependencies between system operations and decision variables make a complete 

enumeration of the solution space or certain kinds of decomposition approaches 

infeasible to the formulated optimization problem. 
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One should also note that similar simulation-based metaheuristic algorithms can 

be derived in exactly the same way for each of the optimization problems (6) and (7), 

yielding optimized operational decisions for the benchmark SPL network designs 

described in Section 3.2. 

 

5.5 RESULTS 

5.5.1 System Description 

The newly proposed method of integrating SPL network design model with 

system operation optimization is evaluated via a series of simulations. The baseline 

system consists of a central warehouse and 49 geographically distributed multi-part 

assets, as pictorially illustrated in Figure 31. From the side of network design, 9 candidate 

maintenance centers can potentially be built and connected to those 49 assets, resulting in 

9 decision-variables for facility construction and 441 decision-variables for facility-asset 

connections. From the aspect of system operations, the operational decisions involve 126 

usage levels that trigger PM operations for the corresponding working parts, as well as 45 

inventory levels and 45 replenishment batch sizes describing the spare part inventory 

management policies in the maintenance centers.  
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Figure 31: Geographically dispersed logistic facilities and assets of the baseline system 

in Chapter 5  

 

The planning horizon (𝑇) for optimization was taken to be 365 ∗ 10 time units32. 

Within this horizon, the expected costs and other system statistics are evaluated as averages 

over 40 replications33. The newly proposed SPL network design is obtained using the GA-

based algorithm described in Section 4, with the detailed parameter settings given in the 

Appendix C. In terms of computational costs, implementation on a relatively ordinary 

personal computer (Intel Core i5-3570 CPU, 16 GB RAM, 64-bit Window 7) led to average 

computational time being less than 30 hours for the above-described system, with an 

                                                 
32 Corresponds to 10 years, with each time step being one day. 
33 This parameter was obtained by increasing the number of replications until further increases did not lead 

to significant changes in the average cost effects. 
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important note that the computations can be greatly accelerated further in a parallel 

computing environment.  

In order to evaluate the system performance under the newly proposed optimized 

design, several summary statistics are calculated and compiled in Table 3. 

 

Statistic Formula Description 

Number of active 

maintenance 

centers 
∑𝕀(𝑢𝑖 = 1) ∏ 𝕀(𝑦𝑖,ℎ ≥ 0)

1≤ℎ≤𝐻

𝑁

𝑖=1

 

Number of maintenance centers 

that are built and are used for 

stocking the spare parts. 

Number of active 

facility-asset 

connections 
∑∑𝑢𝑖𝑣𝑖,𝑗

𝑁

𝑖=1

𝐽

𝑗=1

 

Number of connections 

between assets and the 

maintenance centers that are 

built. 

Total spare part 

inventory level 
∑∑𝑢𝑖(𝑦𝑖,ℎ + 𝑧𝑖,ℎ)

𝑁

𝑖=1

𝐻

ℎ=1

 

Sum of the maximum inventory 

levels of spare parts that can be 

stocked in the maintenance 

centers, crudely expressing 

storage requirements in the 

maintenance centers 

Average PM 

triggering usage 

level 

1

∑ 𝐾𝑗
𝐽
𝑗=1

∑∑𝑥𝑗,𝑘

𝐾𝑗

𝑘=1

𝐽

𝑗=1

 

Roughly expressing the overall 

aggressiveness of the PM 

schedules across the entire 

system 

System uptime (1 −
∑ 𝑙𝑗
𝐽
𝑗=1

𝑇 ∙ 𝐽
) 

Average uptime (time not spent 

under maintenance) per unit 

time of all assets in the system, 

crudely expressing the 

utilization of assets 

Table 3: Summary statistics for network design and system performance 
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5.5.2 Comparison Between the Optimized and Benchmark Designs 

For the baseline system described above, the SPL network designed using the newly 

proposed approach that enables optimized PM and SPL operations is illustrated in Figure 

32. One can see that only two maintenance centers need to be built and most assets are 

serviced by one or both of them. However, it is interesting to find that asset 𝐴47  is 

assigned to be serviced with spare parts directly from the central warehouse (marked by 

the dashed red line) instead of one of the maintenance centers. Considering that asset 𝐴47 

has a simple single-part structure and thus requires only one type of spare parts (𝑆𝑃1), it is 

economically more efficient to just send those parts from the central warehouse than 

incurring the costs of constructing and allocating a maintenance center to it. To mitigate 

the prolonged asset downtimes due to emergency orders, asset 𝐴47 ended up having a 

small PM triggering usage level, implying an aggressive PM policy that enables reduction 

of unplanned RM events through performing more PM operations. 

Furthermore, let us compare the system performance under the newly proposed 

SPL network design with that corresponding to the two benchmark designs described34 in 

Section 5.3.2. 

 

                                                 
34 The corresponding pre-built SPL networks are pictorially illustrated in Figure 33 and Figure 34. 
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Figure 32: Proposed SPL network design that enables optimized PM and SPL 

operations. 
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Figure 33: Pre-built SPL networks for No-MC network design. 

 

 

Figure 34: Pre-built SPL networks for Nearest-MC network design. 
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As shown in Figure 35, the newly proposed network design enables the system to 

operate with a much lower expected unit-time overall costs compared to the two benchmark 

network designs. These cost reductions are statistically significant according to a one-sided 

z-test [182], with the significance levels less than 0.0001. 

 

 

Figure 35: Cost-effects of optimized system operations associated with the proposed 

SPL network design and two benchmark designs. 

 

A more detailed comparison between the three network designs can be made based 

on the summary statistics provided in Table 4. In the No-MC SPL network, all RM/PM 

orders are serviced directly by the far-away central warehouse instead of some local 

maintenance center, leading to the worst asset uptime performance caused by prolonged 

delays in providing maintenance services. Thus, though it avoids the costs of building 
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maintenance centers, connecting them to the assets and managing spare parts inside them, 

the overall operations in the No-MC network still underperform by far the other two 

network designs because of the excessive costs caused by the asset downtimes, as well as 

the higher costs associated with the emergency orders. 

For the Nearest-MC SPL network design, all 9 candidate maintenance centers are 

built and assets always obtain spare parts from their nearest maintenance center, allowing 

more timely deliveries of spare parts to the assets, but at the expense of the highest costs 

to build and operate the SPL network. 

It is also evident from Table 4 that the newly proposed optimized design provides 

a more efficient usage of the logistic resources. Though system uptime of 92.35% is only 

slightly smaller than that in the Nearest-MC network35  (92.58%), the optimized SPL 

network design requires significantly fewer maintenance facilities to be built/connected 

and enables the system to operate with relatively lower spare part inventories. At the same 

time, potential negative effects of a sparse logistic network and low spare parts inventories, 

such as more frequent emergency orders and occasional prolonged asset downtimes caused 

by waiting for the spare parts, were mitigated through more aggressive scheduling of PM 

operations and the implementation of inventory sharing36. 

 

 

 

 

 

                                                 
35 Since the Nearest-MC network enables fastest possible deliveries of spare parts and, consequently, least 

aggressive PM scheduling, uptime performance ends up being better than in other networks, but at the 

increased costs of building and operating the SPL network. 
36 An asset could obtain necessary spare parts from several nearby maintenance centers. 
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Statistic Proposed No-MC Nearest-MC 

Number of active maintenance centers 2 0 9 

Number of facility-asset connections 64 0 51 

Total spare part inventory level 153 0 187 

Average PM triggering usage level 29.56 21.43 48.02 

System uptime (%) 92.35 83.31 92.58 

Table 4: Comparison of performance statistics between three network designs 

 

5.5.3 Sensitivity Analysis Regarding Network Construction Costs 

In this section, influence of the network construction costs on the newly proposed 

network design will be evaluated through increasing/decreasing of the costs necessary for 

construction of the maintenance centers (𝐹𝑖-s), costs associated with connecting the assets 

to the constructed maintenance centers (𝐶𝑖,𝑗 -s) and fixed facility-operating costs for 

maintenance centers (𝑂𝑖 -s). To study these effects in a relatively tractable way, a 

construction cost scalar 𝛼 is introduced to simultaneously magnify/diminish these costs 

in the baseline parameter set. This scalar takes values in the set 𝛼 ∈ {0,1,5}, with the 

baseline system corresponding to 𝛼 = 1. 

It can be observed from Figure 36 that the unit-time overall cost under the newly 

proposed network design consistently increases as the scalar 𝛼 grows. To offset negative 

effects of the increased construction costs, a relatively sparse network design with fewer 

maintenance centers and fewer facility-asset connections can be observed in the resulting 

networks for 𝛼 = 0 (Figure 37), 𝛼 = 1 (Figure 32) and 𝛼 = 5 (Figure 38). 
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Figure 36: Cost comparison under the proposed SPL network design with various 

construction cost scalar 

 

 

Figure 37: SPL network obtained by the proposed network design under 𝜶 = 𝟎 

4673.5 

3809.4 

4300.9 

990.3 

968.3 

902.8 

1329.0 

1795.8 

1439.8 

1293.4 

394.9 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

α=5

α=1

α=0

Unit-time Cost (monetary unit / unit time)

Unit-time Costs under Various Construction Cost Scalar

Downtime Penalty Maintenance Cost Logistic Cost Facility Cost



120 

 

 

Figure 38: SPL network obtained by the proposed network design under 𝜶 = 𝟓 

 

It is interesting to note that when the construction cost scalar 𝛼 approaches zero, 

it seems intuitive that all 9 candidate maintenance centers can be built and connections can 

be established so that all 49 assets can be serviced by these centers (building them is free). 

However, as it can be seen from Figure 10 and Table 5, the newly proposed design 

methodology leads to the SPL network with only four maintenance centers providing the 

maintenance services37. Furthermore, one can also observe from Table 5 that, when 𝛼 =

0, the total spare part inventory levels are reduced by 11.7% compared to the baseline 

system setting (𝛼 = 1), while at the same time, easier availability of spare parts caused by 

the larger number of maintenance centers enables the system to operate with a more 

                                                 
37 The other five maintenance centers are not needed though they are free to build because if they stocked 

any spare parts, the non-negligible costs to hold/replenish the spare part would lead to losses. In other 

words, these five maintenance centers are not needed, though they are free to be built. 
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aggressive PM schedule (evidenced by the smaller average PM triggering level under 𝛼 =

0 than that under 𝛼 = 1).  

On the other hand, when construction of the maintenance facilities costs five times 

as it does in the baseline system settings (when 𝛼 = 5), only one maintenance center is 

built and it is located close to the geographical center of the assets, providing 47 out of 49 

assets with the necessary spare parts (the remaining 2 assets are serviced directly by the 

central warehouse). An added benefit of having only one maintenance center is the more 

efficient usage of logistic resources, which is reflected in the reduced total spare part 

inventory levels, as well as the savings in the SPL costs. The reason for this is the fact that 

the logistic resources are localized in a single maintenance center, instead of being spread 

out across multiple ones. As for maintenance operations, 𝛼 = 5  yielded the smallest 

average PM triggering usage level compared to 𝛼 = 0  and 𝛼 = 1 . This is intuitive 

because, as only one maintenance center is built when 𝛼 = 5, the expected times for most 

assets to obtain spare parts are much longer compared to 𝛼 = 0 or 𝛼 = 1. Therefore, 

more aggressive PM scheduling is needed to ensure avoidance of lengthy RM interventions 

and timely deliveries of spare parts. 
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Scalar α 5 1 0 

Number of active maintenance centers 1 2 4 

Number of facility-asset connections 47 64 196 

Total spare part inventory level 120 153 135 

Average PM triggering usage level 32.38 29.56 24.72 

System uptime (%) 90.08 92.35 90.98 

Table 5: Summary statistics for optimized network design under various 𝜶 

 

5.4.4 DOE Based Sensitivity Analysis for the Proposed Network Design 

In this section, a two-way analysis of variance (ANOVA) [188] is used to study 

the effects of cost parameters associated with the facility construction, inventory 

management and maintenance scheduling on the unit-time overall costs, involving the 

network construction costs and operational costs obtained when the SPL network design 

is jointly optimized with the SPL and PM operations, as suggested in Section 3.1. Three 

input factors, labeled as F1, F2 and F3, are considered within this DOE. Factor F1 

denotes a scalar for the cost parameters regarding logistic network construction, factor F2 

is a scalar for inventory-related cost parameters, including inventory holding and 

replenishment costs, and factor F3 denotes a scalar for all maintenance-related cost 

parameters. Each factor (F1-F3) is varied at three levels (low, medium & high), resulting 

in 27 experimental levels. 

In Table 6, significance levels for the three main effects and three 2nd order 

interaction effects are shown as the result of ANOVA. The main effects of all 3 factors 
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were found to have strong statistical significance and to be positively correlated with the 

unit-time overall cost of the entire system. Statistical significance of these effects is 

plausible, since changes in these factors directly affect decisions on the SPL network 

design, spare part inventory management and maintenance schedule, thus, inevitably 

affecting the overall system performance.  

Furthermore, all three 2nd order interaction effects, F1×F2, F2×F3 and F2×F3, 

are also found to be statistically significant according to ANOVA analysis, with p values 

being less than 0.05. It confirms the main motivation of this chapter, which is the fact 

that, for the fairly generic system considered in this chapter, decisions regarding the SPL 

network construction, PM scheduling and spare parts inventory management must be 

considered and optimized jointly, as suggested in this chapter, rather than separately, 

which is the traditional approach.  

 

Factor F value Pr(>F) Regression Coefficient 

F1 394.17 1.02e-8 1665.19 

F2 16681.27 3.30e-15 741.47 

F3 16206.47 3.71e-15 679.24 

F1×F2 30.62 6.72e-5 -116.26 

F1×F3 4.79 0.029 25.18 

F2×F3 322.96 7.22e-9 36.12 

Table 6: Result table of ANOVA for factors F1-F3 
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5.6 Conclusions and Future Work 

This chapter introduces a new design method for joint optimization of a network of 

maintenance centes servicing a set of geographically distributed assets with the necessary 

spare parts, PM schedules for those assets and SPL inventory polices throughout the 

logistic network. From the side of network construction, the locations of the maintenance 

centers that stock the spare parts needed for maintenance activities and their links with the 

geographically dispersed assets are determined. From the side of system operations, this 

work considers usage-based PM operations for the degrading assets and (s,S) 

replenishment policies to manage the spare part inventories in the maintenance centers that 

are selected for building. The new SPL network design is pursued as a solution to a 

stochastic optimization problem in which maintenance locations and their connections to 

the assets are optimized jointly with the underlying PM and SPL operations, minimizing 

the total costs of the SPL network construction, maintenance and SPL operations. This 

solution is sought through a simulation-based optimization using a Genetic Algorithm-

based heuristic. 

Simulations were used to compare the newly proposed SPL network design to two 

more traditional benchmark network designs in which the networks are pre-built, while the 

PM and SPL operations are optimized for that pre-built SPL network (i.e. post-festum). 

The results showed that the newly proposed method consistently incurs lower overall costs 

of system construction and operations by enabling more efficient usage of the spare part 

inventories and better synchronization of maintenance and SPL operations. 

Moreover, an elaborate sensitivity analysis was conducted to evaluate the influence 

of network construction costs on the proposed SPL network design. One can conclude that, 

lower facility construction costs always lead to more maintenance centers being built and 

a reduction in the overall system costs. Besides that, more maintenance facilities provide 
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extra flexibility in the PM and SPL operations, so that more aggressive PM schedules can 

be pursued without overburdening the logistic resources. 

Finally, a DOE based sensitivity study was used to quantitatively describe the 

main/interaction effects of cost parameters on the performance of SPL network designs 

obtained using the newly proposed methods. The DOE results showed that 1st order effects 

of facility-related, maintenance-related, as well as inventory-related cost parameters are all 

statistical significant factors to the expected overall cost. Furthermore, all 2nd order effects 

were also found to be statistically significant, which confirms the necessity to pursue joint 

rather than fragmented optimization across the network construction and operations 

domains, as suggested in this chapter. 

As for possible future research that could extend the results presented in this 

chapter, several classical constraints associated with the SPL network design can be 

incorporated into the current optimization, including the budget constraints on the network 

construction and fill-rate constraints on the maintenance services. In addition, the newly 

proposed methodology for SPL network design can be further improved in the sense of 

robustness to model uncertainties due to, for example, inaccurate estimates of parameters 

describing the system operations, or potentially variable network topologies (assets 

moving, new assets appearing, or some assets disappearing from the network). Finally, real 

life implementation of the methods proposed in this chapter, with realistic model 

parameters and scales remains a challenge for the chapter. 
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Chapter 6 

Summary of Accomplishments and Proposed Future Work 

 

6.1 SUMMARY OF THE RESEARCH 

This doctoral dissertation presents the research on a series of decision-making 

problems on jointly considering PM schedules, service parts logistics and network design 

in a SPL systems of geographically dispersed degrading multi-component assets and 

maintenance facilities providing spare parts to those assets. The goal was to develop 

decision-making framework and tools that concurrently pursue SPL network design and 

system operations that minimize a customizable cost function that rewards system uptimes 

and production, while penalizing utilization of maintenance and logistic resources. 

In Chapter 2, a review of the research relevant to the optimization of maintenance 

strategies and spare parts logistics was presented. This review focuses on the maintenance 

strategies, service part logistics, logistics network design, the integrated models of the 

maintenance and service part logistics, as well as the commonly adopted methods for 

optimization of operation in maintenance/SPL systems. 

Derived from a recent submitted publication, Chapter 3 presents a novel integrated 

decision-making policy consisting of the usage-based PM policies for degrading assets and 

(s,S) replenishment policies for management of spare part inventories locally stocked in 

the maintenance centers. The integrated decision-making is formulated as a stochastic 

optimization problem with the objective of minimizing a customizable cost function that 

penalizes the consumptions of maintenance/logistics resources and asset downtimes. Due 

to numerous stochastic effects in the system and the large-scale solution space to the 

optimization problem, the formulated stochastic optimization problem was solved via an 
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elaborate simulation-based metaheuristic approach using a GA heuristic. The newly 

proposed policy was shown to consistently outperform the fragmented policy which 

separately optimizes the maintenance schedules, followed by the optimization of the spare 

parts inventory levels in the maintenance centers. In addition, sensitivity analysis 

demonstrated that the integrated policy yields increased benefits in systems with higher 

inventory-related costs, systems with more geographically dispersed assets and systems 

with higher penalties for asset downtime. 

An extension of the research described in Chapter 3 was pursued in Chapter 4, 

where imperfect PM operations, expedited RM deliveries and flexible replenishment 

deliveries are considered as additional elements in the system operations. Moreover, a 

Design of Experiment (DOE) based factorial analysis was performed to conduct sensitivity 

studies, which showed consistent cost benefits of considering these additional elements in 

the joint decision-making process. This DOE-based analysis also showed that the 

integrated decision-making policies were sensitive with statistical significance to changes 

in geographical dispersion levels of the SPL system, maintenance/logistic cost parameters, 

as well as their interaction effects. 

Chapter 5 focuses on the integration of the SPL network design with the decision-

making in the domains of maintenance scheduling and spare part inventory management. 

Compared to the more traditional SPL network designs, where operational decisions are 

made independently from the network design, the overall system efficiency can be greatly 

improved through jointly optimizing strategic-level decisions of maintenance center 

allocations and their association with the assets, along with the decisions in the domains of 

PM scheduling and spare part inventory management. 
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6.2 SCIENTIFIC CONTRIBUTIONS 

Each chapter of this doctoral thesis has certain scientific contributions which have 

already been elaborated in individual chapter and resulted in past/foreseen publications. 

This section will provide a summary of scientific contributions across this dissertation. 

This entire doctoral research demonstrates the interactions between maintenance 

scheduling and spare part logistics management for geographically dispersed system 

consisting of degrading assets and maintenance facilities serving these assets. To capture 

such interactions between system operations, a novel decision-making framework is 

established to jointly optimize PM and SPL operations for multi-echelon SPL systems. 

Established on a discrete-event simulation-based optimization approach, the proposed 

integrated decision-making framework has a building flexibility in incorporating various 

cost functions, PM/SPL structures and different types of uncertain factors, which becomes 

a powerful paradigm to model real-world maintenance system having geographical 

dispersed assets/facilities. To the best of our knowledge, this is the first research that 

conduct systematic studies on joint PM and SPL optimization with focus on a 

geographically dispersed SPL network.  

From the strategic-level point of view, maintenance activities are also influenced 

by network topology of the spare part system. Therefore, in this dissertation, a novel SPL 

network design is proposed that enables the joint optimization of PM and SPL operations, 

leading to a more efficient SPL system in providing maintenance services. This work is 

among the first few works that focus on the SPL network design and, to our best 

knowledge, is the only work that allows the maintenance optimization within a logistic 

network design. More importantly, this proposed network design provides a completely 

new perspective to improve the maintenance services in terms of timing and efficiency.  
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6.3 FUTURE WORKS 

In Chapter 3 - Chapter 5, several possible avenues for future research specifically 

related to the work in those chapters have been identified. Generally speaking, the most 

critical future research would be the development of a robust version of the decision-

making framework that enables joint PM and SPL optimization in the existence of 

uncertain system parameters, including inaccurate reliability parameter estimates, 

changing system environments and uncertain cost function parameters etc. Robust 

optimization should be able to handle such uncertainties, while maintain the flexibility of 

the methods presented in this thesis. The major challenge of developing a robust version 

of decision-making framework is to properly develop a modeling methodology that enables 

robust optimization approach to be applied on a system with various PM/SPL operations 

and uncertain factors. Besides the challenge in modeling methodology, concerns on 

computational efficiency of robust optimization approach will dramatically increase when 

a large number of decision variables are taken into considerations. Overcoming the 

aforementioned challenges will enable transform of the results of this doctoral research 

from simulation to decision-making in real-life logistic and maintenance scheduling 

problems in geographically distributed systems. 

 

6.4 COMPLETED AND EXPECTED FUTURE PUBLICATION 

This section provides a list of publications that have already been produced, or are 

anticipated to be finished based on this doctoral dissertation: 

(1) C. Jin, D. Djurdjanovic, H.D. Ardakani, K. Wang, M. Buzza, B. Begheri, P. Brown 

and J. Lee, “A comprehensive framework of factory-to-factory dynamic fleet-level 

prognostics and operation management for geographically distributed assets”, in 
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Proc. Of the IEEE conference on Automation Science and Engineering, August 24-

28, 2015, Gothenburg, Sweden, pp. 225-230, 2015. 

(2) A. UI Haq, K. Wang and D. Djurdjanovic, “Feature Construction for Dense Inline 
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Appendices 

APPENDIX A: SYSTEM SETTINGS FOR SIMULATION EXAMPLES IN CHAPTER 3 

This appendix provides a detailed description of the baseline system in Section 

3.4.1. Generally, the SPL system has 1 central warehouse, 3 maintenance centers and 49 

assets (i.e. 𝑛 = 3 and 𝐽 = 49). Maintenance center specific parameters are given in 

Table 7, with the description of each term listed below. 

• ℛ𝒯𝑖(∙): A symmetric triangular distribution for replenishment delivery time from the 

center warehouse to the maintenance center 𝑀𝐶𝑖. 

• 𝐻𝑖,ℎ: Inventory holding cost per unit time for the spare part 𝑆ℎ at 𝑀𝐶𝑖. 

• 𝑆𝑖,ℎ: Replenishment delivery cost per unit time for the spare part 𝑆ℎ at 𝑀𝐶𝑖 

• ℳ𝒯(∙): A symmetric triangular distribution for repair times during maintenance. 

 

Maintenance 

center 
ℛ𝒯𝑖(∙) 

𝐻𝑖,ℎ-s (monetary 

unit/unit time) 

𝑆𝑖,ℎ-s (monetary 

unit/order) 

ℳ𝒯(∙) 

𝑀𝐶1 Tri(10.5,15,19.5) 30 450 Tri (0.35, 

0.5, 0.65) 𝑀𝐶2 Tri(13.6,18,23.4) 30 540 

𝑀𝐶3 Tri(14.7,21,26.3) 30 630 

Table 7: Maintenance center specific parameters for the baseline system in Chapter 3 

  

Parameters specifically related to an asset 𝐴𝑗 are listed in Table 8, where  

• 𝐿𝑗 : Downtime penalty, penalty cost of unit downtime of the asset 𝐴𝑗.  

• 𝐾𝑗 : Number of working parts inside the asset 𝐴𝑗. 

• ℒ𝒯𝑗
𝑖(∙) : A symmetric triangular distribution of lead time from 𝑀𝐶𝑖 to the asset 𝐴𝑗. 

• ℒ𝒯𝑗
𝑐𝑤(∙) : A symmetric triangular distribution of lead time from the central 

warehouse to the asset 𝐴𝑗. 
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Asset 𝐿𝑗 𝐾𝑗 
Mapping of working part to spare 

part type 
ℒ𝒯𝑗

1(∙) ℒ𝒯𝑗
2(∙) ℒ𝒯𝑗

3(∙) ℒ𝒯𝑗
𝑐𝑤(∙) 

𝑨𝟏 1000 4 𝑃1,1 = 𝑆𝑃1, 𝑃1,2 = 𝑆𝑃2, 𝑃1,3
= 𝑆𝑃3, 𝑃1,4
= 𝑆𝑃4 

Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟐 1000 3 𝑃2,1 = 𝑆𝑃1 , 𝑃2,2 = 𝑆𝑃2, 𝑃2,3 = 𝑆𝑃4 Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟑 1000 2 𝑃3,1 = 𝑆𝑃1, 𝑃3,2 = 𝑆𝑃3 Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟒 1000 2 𝑃4,1 = 𝑆𝑃1, 𝑃4,2 = 𝑆𝑃4 Tri(1.4,2,2.6) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟓 1000 3 𝑃5,1 = 𝑆𝑃1 , 𝑃5,2 = 𝑆𝑃3, 𝑃5,3 = 𝑆𝑃4 Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟔 1000 3 𝑃6,1 = 𝑆𝑃1 , 𝑃6,2 = 𝑆𝑃4, 𝑃6,3 = 𝑆𝑃5 Tri(1.75,2.5,3.25) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟕 1000 2 𝑃7,1 = 𝑆𝑃1, 𝑃7,2 = 𝑆𝑃5 Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟖 1000 3 𝑃8,1 = 𝑆𝑃1, 𝑃8,2 = 𝑆𝑃2, 𝑃8,3 = 𝑆𝑃3 Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟗 1000 2 𝑃9,1 = 𝑆𝑃1, 𝑃9,2 = 𝑆𝑃3 Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟏𝟎 1000 2 𝑃10,1 = 𝑆𝑃1, 𝑃10,2 = 𝑆𝑃4 Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(10.5,15,19.5) 

𝑨𝟏𝟏 1000 4 𝑃11,1 = 𝑆𝑃1 , 𝑃11,2 = 𝑆𝑃2, 𝑃11,3
= 𝑆𝑃3, 𝑃11,4
= 𝑆𝑃4 

Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟏𝟐 1200 4 𝑃12,1 = 𝑆𝑃1 , 𝑃12,2 = 𝑆𝑃2, 𝑃12,3
= 𝑆𝑃3, 𝑃12,4
= 𝑆𝑃4 

Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟏𝟑 1000 2 𝑃13,1 = 𝑆𝑃1, 𝑃13,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟏𝟒 1500 2 𝑃14,1 = 𝑆𝑃1, 𝑃14,2 = 𝑆𝑃4 Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟏𝟓 1000 3 𝑃15,1 = 𝑆𝑃1 , 𝑃15,2 = 𝑆𝑃3, 𝑃15,3 = 𝑆𝑃4 Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟏𝟔 2000 3 𝑃16,1 = 𝑆𝑃1 , 𝑃16,2 = 𝑆𝑃4, 𝑃16,3 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(1.4,2,2.6) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟏𝟕 1000 2 𝑃17,1 = 𝑆𝑃1, 𝑃17,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟏𝟖 1000 3 𝑃18,1 = 𝑆𝑃1 , 𝑃18,2 = 𝑆𝑃2, 𝑃18,3 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(1.05,1.5,1.95) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟏𝟗 500 2 𝑃19,1 = 𝑆𝑃2, 𝑃19,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟐𝟎 1000 2 𝑃20,1 = 𝑆𝑃2, 𝑃20,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟐𝟏 1000 3 𝑃21,1 = 𝑆𝑃1 , 𝑃21,2 = 𝑆𝑃4, 𝑃21,3 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(1.4,2,2.6) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟐𝟐 1500 2 𝑃22,1 = 𝑆𝑃1, 𝑃22,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟐𝟑 500 3 𝑃23,1 = 𝑆𝑃3, 𝑃23,2 = 𝑆𝑃4, 𝑃23,3 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟐𝟒 800 2 𝑃24,1 = 𝑆𝑃2, 𝑃24,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟐𝟓 1000 2 𝑃25,1 = 𝑆𝑃2, 𝑃25,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟐𝟔 800 2 𝑃26,1 = 𝑆𝑃2, 𝑃26,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(3.5,5,6.5) Tri(13.6,18,23.5) 

𝑨𝟐𝟕 1000 4 𝑃27,1 = 𝑆𝑃1 , 𝑃27,2 = 𝑆𝑃2, 𝑃27,3
= 𝑆𝑃3, 𝑃27,4
= 𝑆𝑃4 

Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟐𝟖 1200 4 𝑃28,1 = 𝑆𝑃1 , 𝑃28,2 = 𝑆𝑃2, 𝑃28,3
= 𝑆𝑃3, 𝑃28,4
= 𝑆𝑃4 

Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟐𝟗 1000 2 𝑃29,1 = 𝑆𝑃1, 𝑃29,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

𝑨𝟑𝟎 1500 2 𝑃30,1 = 𝑆𝑃1, 𝑃30,2 = 𝑆𝑃4 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟑𝟏 1000 3 𝑃31,1 = 𝑆𝑃1 , 𝑃31,2 = 𝑆𝑃3, 𝑃31,3 = 𝑆𝑃4 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

𝑨𝟑𝟐 2000 3 𝑃32,1 = 𝑆𝑃1 , 𝑃32,2 = 𝑆𝑃4, 𝑃32,3 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(1.4,2,2.6) Tri(14.7,21,27.3) 

𝑨𝟑𝟑 1000 2 𝑃33,1 = 𝑆𝑃1, 𝑃33,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

𝑨𝟑𝟒 1000 3 𝑃34,1 = 𝑆𝑃1, 𝑃34,2 = 𝑆𝑃2, 𝑃34,3 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(1.05,1.5,1.95) Tri(14.7,21,27.3) 

𝑨𝟑𝟓 500 2 𝑃35,1 = 𝑆𝑃2, 𝑃35,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟑𝟔 1000 2 𝑃36,1 = 𝑆𝑃2, 𝑃36,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

𝑨𝟑𝟕 1000 3 𝑃37,1 = 𝑆𝑃1 , 𝑃37,2 = 𝑆𝑃4, 𝑃37,3 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(1.4,2,2.6) Tri(14.7,21,27.3) 

𝑨𝟑𝟖 1500 2 𝑃38,1 = 𝑆𝑃1, 𝑃38,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

Table 8: Asset-specific parameters for the baseline system in Chapter 3 
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Table 8. Continued from previous page 

𝑨𝟑𝟗 500 3 𝑃39,1 = 𝑆𝑃3, 𝑃39,2 = 𝑆𝑃4, 𝑃39,3 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

𝑨𝟒𝟎 800 2 𝑃40,1 = 𝑆𝑃2, 𝑃40,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟒𝟏 1000 2 𝑃41,1 = 𝑆𝑃2, 𝑃41,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

𝑨𝟒𝟐 800 2 𝑃42,1 = 𝑆𝑃2, 𝑃42,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟒𝟑 1000 2 𝑃43,1 = 𝑆𝑃2, 𝑃43,2 = 𝑆𝑃5 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

𝑨𝟒𝟒 800 2 𝑃44,1 = 𝑆𝑃2, 𝑃44,2 = 𝑆𝑃3 

 

 

 

Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟒𝟓 500 4 𝑃45,1 = 𝑆𝑃1, 𝑃45,2 = 𝑆𝑃2, 𝑃45,3 = 𝑆𝑃3, 𝑃45,4 = 𝑆𝑃4 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟒𝟔 1200 4 𝑃46,1 = 𝑆𝑃1, 𝑃46,2 = 𝑆𝑃2, 𝑃46,3 = 𝑆𝑃3, 𝑃46,4 = 𝑆𝑃4 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.7,1,1.3) Tri(14.7,21,27.3) 

𝑨𝟒𝟕 500 1 𝑃47,1 = 𝑆𝑃1 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(1.05,1.5,1.95) Tri(14.7,21,27.3) 

𝑨𝟒𝟖 500 1 𝑃48,1 = 𝑆𝑃1 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(1.05,1.5,1.95) Tri(14.7,21,27.3) 

𝑨𝟒𝟗 1500 2 𝑃49,1 = 𝑆𝑃1, 𝑃49,2 = 𝑆𝑃3 Tri(3.5,5,6.5) Tri(3.5,5,6.5) Tri(0.35,0.5,0.65) Tri(14.7,21,27.3) 

 

The spare parts that are needed to execute RM/PM on a working part 𝑃𝑗,𝑘 can be 

obtained from any of the three maintenance centers, as well as the central warehouse, 

with the following cost terms (as explained in the body of Chapter 3): 

• 𝑀𝑗,𝑘
𝑖  : Cost to order a PM for the working part 𝑃𝑗,𝑘 from the maintenance center 

𝑀𝐶𝑖.  

• 𝑅𝑗,𝑘
𝑖  : Cost to order a RM for the working part 𝑃𝑗,𝑘 from the maintenance center 

𝑀𝐶𝑖.  

• 𝑀𝑗,𝑘
𝑐𝑤 : Cost to order a PM for the working part 𝑃𝑗,𝑘 from the central warehouse.  

• 𝑅𝑗,𝑘
𝑐𝑤 : Cost to order a RM for the working part 𝑃𝑗,𝑘 from the central warehouse. 

Values of these parameters are listed in Table 9 below. 
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Asset 𝑴𝒋,𝒌
𝟏  𝑹𝒋,𝒌

𝟏  𝑴𝒋,𝒌
𝟐  𝑹𝒋,𝒌

𝟐  𝑴𝒋,𝒌
𝟑  𝑹𝒋,𝒌

𝟑  𝑴𝒋,𝒌
𝒄𝒘 𝑹𝒋,𝒌

𝒄𝒘 
 

Asset 𝑴𝒋,𝒌
𝟏  𝑹𝒋,𝒌

𝟏  𝑴𝒋,𝒌
𝟐  𝑹𝒋,𝒌

𝟐  𝑴𝒋,𝒌
𝟑  𝑹𝒋,𝒌

𝟑  𝑴𝒋,𝒌
𝒄𝒘 𝑹𝒋,𝒌

𝒄𝒘 

𝑨𝟏 500 1000 700 1200 700 1200 500 1200 𝑨𝟐𝟔 700 1200 500 800 700 1200 700 1200 

𝑨𝟐 500 1000 700 1200 700 1200 500 1200 𝑨𝟐𝟕 700 1200 700 1200 300 600 300 1200 

𝑨𝟑 500 1000 700 1200 700 1200 500 1200 𝑨𝟐𝟖 700 1200 700 1200 300 600 300 1200 

𝑨𝟒 500 1000 700 1200 700 1200 500 1200 𝑨𝟐𝟗 700 1200 700 1200 300 600 300 1200 

𝑨𝟓 500 1000 700 1200 700 1200 500 1200 𝑨𝟑𝟎 700 1200 700 1200 300 600 300 1200 

𝑨𝟔 500 1000 700 1200 700 1200 500 1200 𝑨𝟑𝟏 700 1200 700 1200 300 600 300 1200 

𝑨𝟕 500 1000 700 1200 700 1200 500 1200 𝑨𝟑𝟐 700 1200 700 1200 300 600 300 1200 

𝑨𝟖 500 1000 700 1200 700 1200 500 1200 𝑨𝟑𝟑 700 1200 700 1200 300 600 300 1200 

𝑨𝟗 500 1000 700 1200 700 1200 500 1200 𝑨𝟑𝟒 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟎 500 1000 700 1200 700 1200 500 1200 𝑨𝟑𝟓 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟏 700 1200 500 800 700 1200 700 1200 𝑨𝟑𝟔 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟐 700 1200 500 800 700 1200 700 1200 𝑨𝟑𝟕 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟑 700 1200 500 800 700 1200 700 1200 𝑨𝟑𝟖 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟒 700 1200 500 800 700 1200 700 1200 𝑨𝟑𝟗 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟓 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟎 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟔 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟏 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟕 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟐 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟖 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟑 700 1200 700 1200 300 600 300 1200 

𝑨𝟏𝟗 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟒 700 1200 700 1200 300 600 300 1200 

𝑨𝟐𝟎 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟓 700 1200 700 1200 300 600 300 1200 

𝑨𝟐𝟏 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟔 700 1200 700 1200 300 600 300 1200 

𝑨𝟐𝟐 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟕 700 1200 700 1200 300 600 300 1200 

𝑨𝟐𝟑 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟖 700 1200 700 1200 300 600 300 1200 

𝑨𝟐𝟒 700 1200 500 800 700 1200 700 1200 𝑨𝟒𝟗 700 1200 700 1200 300 600 300 1200 

𝑨𝟐𝟓 700 1200 500 800 700 1200 700 1200 

Table 9: PM/RM costs for the baseline system in Chapter 3 

 

For the convenience of illustration, the distribution for usage to failure of working 

parts, 𝒯𝑗,𝑘(∙)-s, are assumed to be spare-part specific and follows a Weibull distribution, 

as listed in Table 10.  
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Spare part type  𝒯𝑗,𝑘(∙) Expected time to failure 

𝑆𝑃1 Weibull(3.0, 80) 69.88 

𝑆𝑃2 Weibull(4.0, 100) 93.06 

𝑆𝑃3 Weibull(3.5, 65) 59.04 

𝑆𝑃4 Weibull(3.5, 70) 63.58 

𝑆𝑃5 Weibull(2.7, 65) 54.76 

Table 10: Usage to failure distributions for working parts (𝑘 for shape, λ for scale) 

 

As for the decision variables, there are 156 of them, 30 of which are related to 

spare part inventory management and the other 126 are the PM triggers. Each decision 

variable is assumed to take values in a discrete value set, as described in Table 11. 

 

Symbol Description Value set 

𝑋𝑗,𝑘 (1 ≤ 𝑗 ≤ 49, 1 ≤ 𝑘 ≤

𝐾𝑗) 

Discrete real-number set for PM trigger 

𝑥𝑗,𝑘 

{5, 10, 15,… , 150} 

𝑌𝑖,ℎ (1 ≤ 𝑖 ≤ 3, 1 ≤ ℎ ≤ 5) 
Discrete integer set for reorder level 𝑦𝑖,ℎ {−1, 0, 1, 2,… , 30} 

𝑍𝑖,ℎ (1 ≤ 𝑖 ≤ 3, 1 ≤ ℎ ≤ 5) 
Discrete integer set for batch size 𝑧𝑖,ℎ {1, 2, 3, 4, 5} 

Table 11: Candidate value sets for the decision variables in Chapter 3 

 

In Table 12, a complete list of parameters for the GA based optimization 

metaheuristic, as well as the relevant computational times are given. These parameters 

were selected ad hoc, after a few trial and error runs, though more formal methods for 

selecting GA parameter can be found in the literature [181]. 
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 Description Value 

General parameters 
Time horizon, 𝑇 1825 time units 

Replication number 50 

Parameters for GA 

Population size 60 

Maximum iteration number 5000 

Maximum unchanged iteration 500 

Crossover rate 0.6 

Mutation rate 0.02 

Computational time in baseline system 
Each GA iteration 17.5 seconds 

Entire algorithm ≤10 hours 

Table 12: The algorithm-related parameters and computation cost for the proposed 

algorithm in Chapter 3 
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APPENDIX B: SYSTEM SETTINGS FOR SIMULATION EXAMPLES IN CHAPTER 4 

For all the examples studied in Chapter 4, the relevant system settings and 

parameters, as well as detailed simulation results will be given in this appendix. Firstly, 

for the baseline example given in Section 4.4.1, the parameters that are uniform across 

the system are listed in Table 13. 

 

Symbol Description Value 

𝐽 Number of assets 20 

𝐶𝑇 Lead time of replenishment delivery 3 time units 

𝐻𝑖  Inventory holding cost per unit time 10 monetary unit/unit time 

𝑆𝑖
𝑓𝑖𝑥

 Fixed replenishment handling cost per order 120 monetary unit/order 

𝑆𝑖
𝑎𝑑𝑑 

Additional cost to have one more spare part added 

to replenishment order 
0 monetary unit/part 

𝑅𝑗,𝑘 RM cost per order 1000 monetary unit/order 

𝑅𝑇𝑗,𝑘
𝑅𝑀 RM repair time per RM order 0.5 time unit/order 

𝑀𝑗,𝑘
𝑓𝑖𝑥

 Fixed PM cost per order 200 monetary unit/order 

𝑀𝑗,𝑘
𝑎𝑑𝑑 Additional PM cost  to improve PM quality 800 monetary unit/order 

𝑅𝑇𝑗,𝑘
𝑓𝑖𝑥

 Fixed PM repair time per order 0.4 time unit/order 

𝑅𝑇𝑗,𝑘
𝑎𝑑𝑑 Additional repair time to improve PM quality 0.1 time unit 

𝐸𝑗,𝑘 Additional charge of an emergency RM 0 monetary unit/order 

𝑇𝑗 Additional charge to accelerate RM delivery 500 monetary unit/order 

Table 13: System-uniform parameters for the baseline system in Chapter 4  

 

For the baseline system, parameters specifically related to an asset 𝐴𝑗 are given 

in Table 14, with the description of each term listed below,  

• ℳ𝒯𝑗(∙) : Lead time distribution for the asset 𝐴𝑗 to obtain new spare parts from the 

maintenance center.  
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• 𝒞𝒯𝑗(∙) : Lead time distribution for the asset 𝐴𝑗 to obtain new spare parts from the central 

warehouse.  

• 𝐿𝑗 : Penalty per unit downtime of the asset 𝐴𝑗.  

• 𝐾𝑗 : Number of working parts inside the asset 𝐴𝑗. 

 

Asset 𝓜𝓣𝒋(∙) 𝓒𝓣𝒋(∙) 

𝑳𝒋 

(monetary unit/unit 

time) 

𝑲𝒋 Mapping of working part to spare par type 

𝐴1 Weibull(1.1, 5) Constant(3) 400 4 𝑃1,1 = 𝑆𝑃1, 𝑃1,2 = 𝑆𝑃2, 𝑃1,3 = 𝑆𝑃3, 𝑃1,4 = 𝑆𝑃4 

𝐴2 Weibull(1.1, 5) Constant(3) 400 3 𝑃2,1 = 𝑆𝑃1 , 𝑃2,2 = 𝑆𝑃2, 𝑃2,3 = 𝑆𝑃4 

𝐴3 Weibull(1.1, 5) Constant(3) 400 2 𝑃3,1 = 𝑆𝑃1, 𝑃3,2 = 𝑆𝑃3 

𝐴4 Weibull(1.1, 5) Constant(3) 400 2 𝑃4,1 = 𝑆𝑃1, 𝑃4,2 = 𝑆𝑃4 

𝐴5 Weibull(1.1, 5) Constant(3) 400 3 𝑃5,1 = 𝑆𝑃1, 𝑃5,2 = 𝑆𝑃3, 𝑃5,3 = 𝑆𝑃4 

𝐴6 Weibull(1.1, 5) Constant(3) 400 3 𝑃6,1 = 𝑆𝑃1, 𝑃6,2 = 𝑆𝑃4, 𝑃6,3 = 𝑆𝑃5 

𝐴7 Weibull(1.1, 5) Constant(3) 400 2 𝑃7,1 = 𝑆𝑃1, 𝑃7,2 = 𝑆𝑃5 

𝐴8 Weibull(1.1, 5) Constant(3) 400 3 𝑃8,1 = 𝑆𝑃1, 𝑃8,2 = 𝑆𝑃2, 𝑃8,3 = 𝑆𝑃3 

𝐴9 Weibull(1.1, 5) Constant(3) 400 2 𝑃9,1 = 𝑆𝑃2, 𝑃9,2 = 𝑆𝑃3 

𝐴10 Weibull(1.1, 5) Constant(3) 400 2 𝑃10,1 = 𝑆𝑃2, 𝑃10,2 = 𝑆𝑃5 

𝐴11 Weibull(2.2, 

5) 
Constant(3) 800 4 𝑃11,1 = 𝑆𝑃1, 𝑃11,2 = 𝑆𝑃2, 𝑃11,3 = 𝑆𝑃3, 𝑃11,4

= 𝑆𝑃4 
𝐴12 Weibull(2.2, 

5) 
Constant(3) 800 3 𝑃12,1 = 𝑆𝑃1 , 𝑃12,2 = 𝑆𝑃2, 𝑃12,3 = 𝑆𝑃4 

𝐴13 Weibull(2.2, 

5) 
Constant(3) 800 2 𝑃13,1 = 𝑆𝑃1, 𝑃13,2 = 𝑆𝑃3 

𝐴14 Weibull(2.2, 

5) 

Constant(3) 800 2 𝑃14,1 = 𝑆𝑃1, 𝑃14,2 = 𝑆𝑃4 

𝐴15 Weibull(2.2, 

5) 
Constant(3) 800 3 𝑃15,1 = 𝑆𝑃1, 𝑃15,2 = 𝑆𝑃3, 𝑃15,3 = 𝑆𝑃4 

𝐴16 Weibull(2.2, 

5) 
Constant(3) 800 3 𝑃16,1 = 𝑆𝑃1, 𝑃16,2 = 𝑆𝑃4, 𝑃16,3 = 𝑆𝑃5 

𝐴17 Weibull(2.2, 

5) 
Constant(3) 800 2 𝑃17,1 = 𝑆𝑃1, 𝑃17,2 = 𝑆𝑃5 

𝐴18 Weibull(2.2, 

5) 

Constant(3) 800 3 𝑃18,1 = 𝑆𝑃1, 𝑃18,2 = 𝑆𝑃2, 𝑃18,3 = 𝑆𝑃3 

𝐴19 Weibull(2.2, 

5) 
Constant(3) 800 2 𝑃19,1 = 𝑆𝑃2, 𝑃19,2 = 𝑆𝑃3 

𝐴20 Weibull(2.2, 

5) 

Constant(3) 800 2 𝑃20,1 = 𝑆𝑃2, 𝑃20,2 = 𝑆𝑃5 

Table 14: Asset-specific parameters for the baseline system in Chapter 4 

 

The usage time to failure of a working part is assumed to be part type specific and 

follows a Weibull distribution. For each of the five spare part types, the distribution of its 
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usage time to failure, along with its expected value and standard deviation, are listed in 

Table 15.  

 

Spare part 

type  

Weibull distributed time to failure, 

 𝐖𝐞𝐢𝐛𝐮𝐥𝐥(𝒌, 𝝀): 𝒌 for shape, 𝛌 

for scale 

Expected time to 

failure,  

𝔼(𝑺𝑷𝒉) 

Standard deviation of time to 

failure,  

𝐒𝐃(𝑺𝑷𝒉) 

𝑆𝑃1 Weibull(3.0, 80) 69.88 26.00 

𝑆𝑃2 Weibull(4.0, 100) 93.06 25.45 

𝑆𝑃3 Weibull(3.5, 65) 59.04 18.53 

𝑆𝑃4 Weibull(3.5, 70) 63.58 19.95 

𝑆𝑃5 Weibull(2.7, 65) 54.76 23.13 

Table 15: Spare part related parameters for the baseline system in Chapter 4 

There are all together 102 decision variables in the baseline example, including 52 

usage levels that trigger PM operations for the corresponding working parts (𝑥𝑗,𝑘-s), 5 

inventory reorder levels that trigger replenishment from the central warehouse (𝑦𝑖-s) and 

5 replenishment batch sizes (𝑧𝑖-s), 20 recovery rates (𝑢𝑗-s) that represent the quality of 

PM operations and 20 acceleration rates (𝑣𝑗-s) that denote shipping options of the spare 

part delivery service. Each decision variable is assumed to take value in a discrete value 

set, as described in Table 16,  

Symbol Description Value set 

𝑋𝑗,𝑘 

A discrete real-number set for PM trigger 

𝑥𝑗,𝑘 (mapping to the spare part 𝑆𝑃ℎ) 

{𝔼(𝑆𝑃ℎ) + 𝛽 ∙ SD(𝑆𝑃ℎ)} where 

𝛽 ∈ {−2.5,−2.0,−1.5,−1.0,−0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5} 

𝑌𝑖 
A discrete integer set for reorder level 𝑦𝑖 {−1, 0, 1, 2,… , 20} 

𝑍𝑖 A discrete integer set for batch size 𝑧𝑖 {1, 2, 3} 

𝑈𝑗  
A discrete real-number set for RM 

expedition rate 𝑢𝑗  
{0, 0.5, 1} 

𝑉𝑗  
A discrete real-number set for PM 

recovery rate 𝑣𝑗  
{0, 0.5, 1.0, 1.5, 2.0} 

Table 16: Value sets for the decision variables in Chapter 4 
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Table 17 gives a complete list of parameters for the GA based metaheuristic, as 

well as the relevant computational times of the algorithm for optimization of the 

baselines system operations. The stopping criteria for the genetic algorithm are either the 

maximum number of iterations being reached, or the solution not being improved over a 

number of successive iterations. The algorithm is implemented in Java, on a relatively 

standard personal computer (Intel Core i5-3570 CPU, 16 GB RAM, 64-bit Window 7 

operating system). 

 

 Description Value 

General parameters 
Time horizon, 𝑇 1825 time units 

Replication number 100 

Parameters for GA 

Population size 60 

Maximum iteration number 500 

Maximum unchanged iteration 30 

Crossover rate 0.6 

Mutation rate 0.05 

GA runs 5 

Computational time of baseline system 
Each GA iteration  17.9 seconds 

Entire algorithm ≤10 hours 

Table 17: Parameters of the discrete event simulations, GA-related parameters and 

computational times for the proposed algorithm in Chapter 4 

 

To quantitatively evaluate all examples presented in Section 4.4.1, a complete 

report of simulation results for the baseline system and restricted systems (R0-R6) is 

provided in Table 18. 
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Table 18: Performance statistics of the baseline system and the restricted systems in 

Section 4.4 

In Section 4.4.2, six factors are studied in the DOE analysis of the unit time 

operating costs under the integrated decision-making policy. A detailed description for 

each factor is listed in Table 19 and the unit time operating costs under the integrated 

policy with different system settings are provided in Table 20.  

 

 

Table 19: Factors F1-F6 used for DOE study in Section 4.4.2 

 

System Index R0 R1 R2 R3 R4 R5 R6 Baseline 

I1: Indicator for multi-mode PM 1 0 1 1 0 0 1 0 

I2: Indicator for RM expedition 1 1 0 1 0 1 0 0 

I3: Indicator for flexible replenishment 1 1 1 0 1 0 0 0 

System uptime (%) 94.40 94.91 95.29 94.54 95.71 94.85 95.18 95.66 

Cumulative inventory holding times 12493.95 15910.15 15911.44 16226.56 16036.76 17208.50 16258.20 16288.49 

Cumulative replenishment order 1311.20 1389.00 1388.72 614.71 1347.79 564.41 612.83 611.75 

Cumulative number of PM orders 591.16 446.99 557.64 623.36 229.26 482.55 579.95 380.05 

Cumulative number of RM orders 879.23 1012.68 903.93 859.42 1178.64 992.93 891.93 1084.70 

Cumulative number of emergency 

orders 10.36 4.53 4.66 7.39 3.83 6.99 7.27 7.07 

Unit-time fixed PM cost 64.78 48.99 61.11 68.31 25.12 52.88 63.56 41.65 

Unit-time added PM cost 259.14 185.01 244.44 273.25 81.43 197.03 254.22 143.44 

Unit-time RM cost 481.77 554.89 495.30 470.92 645.83 544.07 488.73 594.36 

Unit-time inventory holding cost 68.46 87.18 87.19 88.91 87.87 94.29 89.09 89.25 

Unit-time replenishment cost 86.22 91.33 91.31 40.42 88.62 37.11 40.30 40.22 

Unit-time downtime penalty  673.98 643.59 546.06 659.11 510.60 645.00 556.99 516.64 

Unit-time RM acceleration cost 0.00 0.00 84.14 0.00 138.32 0.00 77.62 109.50 

Unit-time emergency RM cost 10.36 4.53 4.66 7.39 3.83 6.99 7.27 7.07 

Factor Description Low vs. High 

Level 

Relevant system parameters need to 

be scaled 

F1 Geographical dispersion level 1.0 vs. 5.0 𝐶𝑇 and 𝒞𝒯𝑗(∙) for 1 ≤ 𝑗 ≤ 20 

F2 

Inventory holding cost per unit 

time 0.2 vs. 5.0 

𝐻𝑖  for 1 ≤ 𝑖 ≤ 5 

F3 Replenishment cost per order 1.0 vs. 5.0 𝑆𝑖
𝑓𝑖𝑥

 and 𝑆𝑖
𝑎𝑑𝑑  for 1 ≤ 𝑖 ≤ 5 

F4 

PM quality improvement cost per 

order 0.2 vs. 5.0 
𝑀𝑗,𝑘
𝑎𝑑𝑑 for 1 ≤ 𝑗 ≤ 20, 1 ≤ 𝑘 ≤ 𝐾𝑗 

F5 Penalty cost per unit downtime 0.2 vs. 5.0 𝐿𝑗 for 1 ≤ 𝑗 ≤ 20 

F6 RM acceleration cost per order 0.2 vs. 5.0 𝑇𝑗 for 1 ≤ 𝑗 ≤ 20 
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 F1 F2 F3 F4 F5 F6 Cost  F1 F2 F3 F4 F5 F6 Cost  F1 F2 F3 F4 F5 F6 Cost 

1 L L L L L L 709.1 23 H L L L H H 3244.8 45 L H L H H L 1570.5 

2 L L H L L L 822.9 24 H L H L H H 3095.0 46 L H H H H L 3060.4 

3 H L L L L L 718.0 25 L L L H L H 3237.3 47 H H L H H L 3274.2 

4 H L H L L L 815.2 26 L L H H L H 954.7 48 H H H H H L 3581.8 

5 L L L L H L 2339.5 27 H L L H L H 985.0 49 L H L L L H 3791.0 

6 L L H L H L 2439.8 28 H L H H L H 941.2 50 L H H L L H 795.7 

7 H L L L H L 2383.2 29 L L L H H H 998.3 51 H H L L L H 1242.3 

8 H L H L H L 2451.1 30 L L H H H H 4104.7 52 H H H L L H 874.3 

9 L L L H L L 916.7 31 H L L H H H 4162.4 53 L H L L H H 1368.6 

10 L L H H L L 979.9 32 H L H H H H 4167.9 54 L H H L H H 3637.7 

11 H L L H L L 932.9 33 L H L L L L 4183.9 55 H H L L H H 3989.6 

12 H L H H L L 993.2 34 L H H L L L 798.1 56 H H H L H H 4151.8 

13 L L L H H L 2422.6 35 H H L L L L 1241.3 57 L H L H L H 4541.4 

14 L L H H H L 2495.5 36 H H H L L L 927.4 58 L H H H L H 1006.8 

15 H L L H H L 2461.2 37 L H L L H L 1360.7 59 H H L H L H 1329.7 

16 H L H H H L 2527.5 38 L H H L H L 3046.8 60 H H H H L H 1387.9 

17 L L L L L H 789.9 39 H H L L H L 3237.6 61 L H L H H H 1615.5 

18 L L H L L H 837.3 40 H H H L H L 3465.2 62 L H H H H H 4705.4 

19 H L L L L H 725.6 41 L H L H L L 3768.8 63 H H L H H H 4895.1 

20 H L H L L H 843.7 42 L H H H L L 1010.1 64 H H H H H H 5329.6 

21 L L L L H H 3024.1 43 H H L H L L 1329.5         

22 L L H L H H 709.1 44 H H H H L L 1353.4         

Table 20: Operating costs under different system settings, with “L” denoting low level 

and “H” denoting high level 
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APPENDIX C: SYSTEM SETTINGS FOR SIMULATION EXAMPLES IN CHAPTER 5 

For the baseline example studied in Section 5.5., the system settings will be 

described in details in this appendix. In general, there are 9 candidate maintenance 

centers (𝑁 = 9) and 49 assets (𝐽 = 49). Moreover, facility-related parameters are listed in 

Table 21.  

 

 Description 
Central 

Warehouse 

𝑀𝐶1 𝑀𝐶2 𝑀𝐶3 𝑀𝐶4 𝑀𝐶5 𝑀𝐶6 𝑀𝐶7 𝑀𝐶8 𝑀𝐶9 

(𝑥, 𝑦) 
Location 

Coordinate 
(0,0) (5,5) (5,15) (5,25) (15,5) (15,15) (15,25) (25,5) (25,5) (25,25) 

𝑅𝑗,𝑘
𝑖  

RM cost per order 

from 𝑀𝐶𝑖 3500 886 824 474 430 454 418 486 452 802 

𝑀𝑗,𝑘
𝑖  

PM cost per order 

from 𝑀𝐶𝑖 2000 443 412 237 215 227 209 243 226 401 

𝐹𝑖 
Construction cost 

for 𝑀𝐶𝑖 
NA 

1631073 1522228 696729 835716 870629 760027 673857 574999 1697354 

𝑂𝑖 

Fixed facility-
maintenance cost 

for 𝑀𝐶𝑖 per unit 

time 

NA 

97 87 95 93 89 80 106 121 123 

𝐷𝑖,ℎ Spare part 

inventory holding 

cost in 𝑀𝐶𝑖 per 

unit time 

 NA 

30 30 30 30 30 30 30 30 30 

𝑆𝑖,ℎ Replenishment 

delivery cost per 

order to 𝑀𝐶𝑖 NA 1290 1110 960 1110 870 690 960 690 450 

Table 21: Facility-related parameters for the baseline system in Chapter 5 

For the baseline system in Chapter 5.5, parameters specifically related to an asset 

𝐴𝑗 are shown in Table 22, with the description of each term listed below,  

• 𝐾𝑗 : Number of working parts in the asset 𝐴𝑗.  

• 𝐿𝑗 : Penalty per unit downtime of the asset 𝐴𝑗 (monetary unit/unit time). 

• 𝐶𝑖,𝑗 : Connection costs between maintenance center 𝑀𝐶𝑖 and the asset 𝐴𝑗 

(monetary unit).
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Asset 𝑳𝒋 𝑲𝒋 Mapping of working part to spare part type Location coordinate 𝑪𝟏,𝒋 𝑪𝟐,𝒋 𝑪𝟑,𝒋 𝑪𝟒,𝒋 𝑪𝟓,𝒋 𝑪𝟔,𝒋 𝑪𝟕,𝒋 𝑪𝟖,𝒋 𝑪𝟗,𝒋 

𝐴1 1000 4 𝑃1,1 = 𝑆𝑃1, 𝑃1,2 = 𝑆𝑃2, 𝑃1,3 = 𝑆𝑃3, 𝑃1,4 = 𝑆𝑃4 (11.4,28.9) 99851 61209 82623 80250 69363 57110 51257 71056 59206 

𝐴2 1000 3 𝑃2,1 = 𝑆𝑃1 , 𝑃2,2 = 𝑆𝑃2, 𝑃2,3 = 𝑆𝑃4 (24.3,16.4) 86289 68519 92079 86712 78552 58843 97870 63267 96230 

𝐴3 1000 2 𝑃3,1 = 𝑆𝑃1, 𝑃3,2 = 𝑆𝑃3 (16,15.6) 61189 68679 54376 82006 59031 52253 86159 67372 83031 

𝐴4 1000 2 𝑃4,1 = 𝑆𝑃1, 𝑃4,2 = 𝑆𝑃4 (10.5,6.9) 69194 81368 51083 95529 90028 87293 90656 69166 80864 

𝐴5 1000 3 𝑃5,1 = 𝑆𝑃1, 𝑃5,2 = 𝑆𝑃3, 𝑃5,3 = 𝑆𝑃4 (28.2,14.7) 78775 76503 63754 62432 72582 61386 90223 99306 51500 

𝐴6 1000 3 𝑃6,1 = 𝑆𝑃1, 𝑃6,2 = 𝑆𝑃4, 𝑃6,3 = 𝑆𝑃5 (26.3,18.7) 76784 54354 90105 99458 53348 96970 50909 84192 89187 

𝐴7 1000 2 𝑃7,1 = 𝑆𝑃1, 𝑃7,2 = 𝑆𝑃5 (16.5,20.4) 76707 94268 94951 81297 56894 60891 59108 52091 55348 

𝐴8 1000 3 𝑃8,1 = 𝑆𝑃1, 𝑃8,2 = 𝑆𝑃2, 𝑃8,3 = 𝑆𝑃3 (18.7,11.9) 80823 96984 67723 70532 99218 97279 83833 99416 88342 

𝐴9 1000 2 𝑃9,1 = 𝑆𝑃2, 𝑃9,2 = 𝑆𝑃3 (17.6,11) 66835 83120 62209 64776 84009 76393 70580 80132 87527 

𝐴10 1000 2 𝑃10,1 = 𝑆𝑃2, 𝑃10,2 = 𝑆𝑃5 (6.2,29.6) 79177 77590 79179 75591 54130 85979 99808 67727 98563 

𝐴11 1000 4 𝑃11,1 = 𝑆𝑃1, 𝑃11,2 = 𝑆𝑃2, 𝑃11,3 = 𝑆𝑃3, 𝑃11,4 = 𝑆𝑃4 (9,1.1) 67323 94328 72735 70672 60887 56283 65446 86306 89144 

𝐴12 1200 3 𝑃12,1 = 𝑆𝑃1 , 𝑃12,2 = 𝑆𝑃2, 𝑃12,3 = 𝑆𝑃4 (14.1,26.6) 84690 50491 92161 96117 88548 52133 68910 85217 86476 

𝐴13 1000 2 𝑃13,1 = 𝑆𝑃1, 𝑃13,2 = 𝑆𝑃3 (6.9,27.4) 61214 63453 83652 73875 81186 61823 58857 91483 88347 

𝐴14 1500 2 𝑃14,1 = 𝑆𝑃1, 𝑃14,2 = 𝑆𝑃4 (25.3,23.9) 96724 55395 59112 54955 74489 59663 94795 54955 52209 

𝐴15 1000 3 𝑃15,1 = 𝑆𝑃1, 𝑃15,2 = 𝑆𝑃3, 𝑃15,3 = 𝑆𝑃4 (5.8,3) 77865 88625 65598 58950 66948 60508 75508 95319 81447 

𝐴16 2000 3 𝑃16,1 = 𝑆𝑃1, 𝑃16,2 = 𝑆𝑃4, 𝑃16,3 = 𝑆𝑃5 (6.8,7.9) 55077 69543 52731 75065 71587 99879 90581 74283 94723 

𝐴17 1000 2 𝑃17,1 = 𝑆𝑃1, 𝑃17,2 = 𝑆𝑃5 (5.1,10.1) 56878 69501 96368 95875 85679 80917 67165 96802 56239 

𝐴18 1000 3 𝑃18,1 = 𝑆𝑃1, 𝑃18,2 = 𝑆𝑃2, 𝑃18,3 = 𝑆𝑃3 (6.8,20.4) 86530 82324 91658 69915 87492 91762 66124 77614 98957 

𝐴19 500 2 𝑃19,1 = 𝑆𝑃2, 𝑃19,2 = 𝑆𝑃3 (13.1,4.1) 77466 66522 80974 68032 87826 70696 74618 84738 98637 

𝐴20 1000 2 𝑃20,1 = 𝑆𝑃2, 𝑃20,2 = 𝑆𝑃5 (9.3,21.6) 66388 91891 86954 97709 51597 67844 83133 64076 61520 

𝐴21 1000 3 𝑃21,1 = 𝑆𝑃1, 𝑃21,2 = 𝑆𝑃4, 𝑃21,3 = 𝑆𝑃5 (27.7,3.2) 85557 81229 79531 83022 52378 67440 72568 62046 85753 

𝐴22 1500 2 𝑃22,1 = 𝑆𝑃1, 𝑃22,2 = 𝑆𝑃5 (12.9,19.6) 92810 64076 86553 56889 91837 56931 79411 68308 90338 

𝐴23 500 3 𝑃23,1 = 𝑆𝑃3, 𝑃23,2 = 𝑆𝑃4, 𝑃23,3 = 𝑆𝑃5 (5.5,14.8) 75190 74480 93853 67658 72473 98177 52115 98648 59461 

𝐴24 800 2 𝑃24,1 = 𝑆𝑃2, 𝑃24,2 = 𝑆𝑃3 (27.1,23.4) 83357 79322 83756 68052 81014 90558 50963 54194 98741 

𝐴25 1000 2 𝑃25,1 = 𝑆𝑃2, 𝑃25,2 = 𝑆𝑃5 (29.4,21.5) 82568 61562 70175 56102 63422 62893 66584 57612 67401 

Table 22: Asset-specific parameters for the baseline example in Chapter 5 
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Table 22. Continued from previous page 

𝐴26 800 2 𝑃26,1 = 𝑆𝑃2, 𝑃26,2 = 𝑆𝑃3 (13.2,27.1) 56083 94208 54714 96503 69951 52371 67119 86799 89735 

𝐴27 1000 4 𝑃27,1 = 𝑆𝑃1, 𝑃27,2 = 𝑆𝑃2, 𝑃27,3 = 𝑆𝑃3, 𝑃27,4 = 𝑆𝑃4 (3.3,26.7) 77246 84312 94682 52740 65184 52310 59774 86009 86088 

𝐴28 1200 4 𝑃28,1 = 𝑆𝑃1, 𝑃28,2 = 𝑆𝑃2, 𝑃28,3 = 𝑆𝑃3, 𝑃28,4 = 𝑆𝑃4 (7.7,10) 93890 79122 53535 96138 90019 64298 77184 99239 85784 

𝐴29 1000 2 𝑃29,1 = 𝑆𝑃1, 𝑃29,2 = 𝑆𝑃3 (12.3,21) 91949 71664 73532 78036 63455 87451 75195 82341 65388 

𝐴30 1500 2 𝑃30,1 = 𝑆𝑃1, 𝑃30,2 = 𝑆𝑃4 (17.8,5.9) 56937 73779 68123 89406 89015 83426 56676 51078 77993 

𝐴31 1000 3 𝑃31,1 = 𝑆𝑃1, 𝑃31,2 = 𝑆𝑃3, 𝑃31,3 = 𝑆𝑃4 (7.9,0.9) 65041 96971 99046 64332 90042 94806 79877 94201 97187 

𝐴32 2000 3 𝑃32,1 = 𝑆𝑃1, 𝑃32,2 = 𝑆𝑃4, 𝑃32,3 = 𝑆𝑃5 (18.1,22.3) 77458 86420 78838 51293 72327 82316 76061 68616 96857 

𝐴33 1000 2 𝑃33,1 = 𝑆𝑃1, 𝑃33,2 = 𝑆𝑃5 (21.3,15) 91477 92455 68627 79660 93628 96676 83424 60339 82693 

𝐴34 1000 3 𝑃34,1 = 𝑆𝑃1, 𝑃34,2 = 𝑆𝑃2, 𝑃34,3 = 𝑆𝑃3 (6.7,14.4) 53603 70337 83347 96687 90548 74228 87838 70853 98590 

𝐴35 500 2 𝑃35,1 = 𝑆𝑃2, 𝑃35,2 = 𝑆𝑃3 (3.5,27.1) 99399 93208 69445 72738 62335 89222 94142 95686 77915 

𝐴36 1000 2 𝑃36,1 = 𝑆𝑃2, 𝑃36,2 = 𝑆𝑃5 (8.9,18.3) 79944 57444 94986 72520 60284 94983 88130 94125 64248 

𝐴37 1000 3 𝑃37,1 = 𝑆𝑃1, 𝑃37,2 = 𝑆𝑃4, 𝑃37,3 = 𝑆𝑃5 (9.6,18.5) 83662 83214 56141 70366 63765 85834 64170 94810 91329 

𝐴38 1500 2 𝑃38,1 = 𝑆𝑃1, 𝑃38,2 = 𝑆𝑃5 (12.7,25.8) 69502 74896 84741 91719 80482 78737 66303 72822 85690 

𝐴39 500 3 𝑃39,1 = 𝑆𝑃3, 𝑃39,2 = 𝑆𝑃4, 𝑃39,3 = 𝑆𝑃5 (15.2,24.2) 94221 86043 50931 83739 71926 71892 55852 90735 66243 

𝐴40 800 2 𝑃40,1 = 𝑆𝑃2, 𝑃40,2 = 𝑆𝑃3 (2.6,17.3) 62312 67136 68785 77328 78097 69792 69907 75769 82877 

𝐴41 1000 2 𝑃41,1 = 𝑆𝑃2, 𝑃41,2 = 𝑆𝑃5 (7.9,5.5) 97546 86118 70004 91594 56717 53024 54213 58195 66211 

𝐴42 800 2 𝑃42,1 = 𝑆𝑃2, 𝑃42,2 = 𝑆𝑃3 (24,7.2) 65087 50585 76996 54769 57326 81558 92967 98712 78542 

𝐴43 1000 2 𝑃43,1 = 𝑆𝑃2, 𝑃43,2 = 𝑆𝑃5 (0.9,26.6) 99843 77678 75773 66535 71501 74591 53552 94387 53232 

𝐴44 800 2 𝑃44,1 = 𝑆𝑃2, 𝑃44,2 = 𝑆𝑃3 (27.9,0.9) 71810 91332 69727 80674 90933 94312 96556 59540 62930 

𝐴45 500 5 𝑃45,1 = 𝑆𝑃1, 𝑃45,2 = 𝑆𝑃2, 𝑃45,3 = 𝑆𝑃3, 𝑃45,4 = 𝑆𝑃4, 𝑃45,5 = 𝑆𝑃5 (21.9,14.7) 94894 79669 75193 80641 90972 76595 60104 72695 71396 

𝐴46 1200 5 𝑃46,1 = 𝑆𝑃1, 𝑃46,2 = 𝑆𝑃2, 𝑃46,3 = 𝑆𝑃3, 𝑃46,4 = 𝑆𝑃4 , 𝑃46,4 = 𝑆𝑃5 (14.7,5) 98303 81003 84770 86009 67345 75850 77835 57825 78103 

𝐴47 500 1 𝑃47,1 = 𝑆𝑃1 (17.4,29.4) 84741 71323 91814 86570 68002 72711 69320 88778 86714 

𝐴48 500 1 𝑃48,1 = 𝑆𝑃1 (7.1,21.4) 71514 84688 97261 89212 85279 55467 69497 79546 72970 

𝐴49 1500 2 𝑃49,1 = 𝑆𝑃1, 𝑃49,2 = 𝑆𝑃3 (13.8,15) 52517 61435 91710 50783 93186 53904 83453 75011 60900 
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Given the location coordinates of central warehouse, maintenance centers and 

assets, the lead time distribution between two entities, with coordinates (𝑥1, 𝑦1) and 

(𝑥2, 𝑦2), is given by a symmetric triangular distribution as, 

 

ℒ𝒯~Triangle (0.9√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2, √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2, 1.1√(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2). 

 

The usage time to failure of a working part is assumed to be type-specific and 

follows a Weibull distribution. For each of the five spare part types, the distribution of its 

usage time to failure, along with its expected value and standard deviation, are listed in 

Table 23.  

 

Spare part 

type  

Weibull distributed time to failure, 

 𝐖𝐞𝐢𝐛𝐮𝐥𝐥(𝒌, 𝝀): 𝒌 for shape, 𝛌 for 

scale 

Expected time to 

failure,  

𝔼(𝑺𝑷𝒉) 

Standard deviation of time to 

failure,  

𝐒𝐭𝐝(𝑺𝑷𝒉) 

𝑆𝑃1 Weibull(3.0, 80) 69.88 26.00 

𝑆𝑃2 Weibull(4.0, 100) 93.06 25.45 

𝑆𝑃3 Weibull(3.5, 65) 59.04 18.53 

𝑆𝑃4 Weibull(3.5, 70) 63.58 19.95 

𝑆𝑃5 Weibull(2.7, 65) 54.76 23.13 

Table 23: Spare part specific parameters for the baseline example in Chapter 5 

From the view of decision variable, there are 666 decision variables in the 

baseline example. Each decision variable is assumed to take value in a discrete value set, 

which is described as follows,  
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 Description Number of Decision 

Variables 

Value set for decision variable 

𝑥𝑗,𝑘 
PM triggering usage level 126 A discrete real-number set: 

{15,20,25,… ,120} 

𝑦𝑖,ℎ 
Spare part inventory level 45 A discrete integer set: 

{−1, 0, 1, 2, … ,20} 

𝑧𝑖,ℎ Replenish batch size 45 A discrete integer set: {1, 2, 3,4,5} 

𝑢𝑖 
Maintenance center construction 

indicator 

9 A binary set: {0, 1} 

𝑣𝑖,𝑗 Facility-asset connection indicator 441 A binary set: {0, 1} 

Table 24: Value sets for the decision variables in Chapter 5 

In Table 25, a complete list of parameters for the GA based metaheuristic, as well 

as relevant computational times of the algorithm for the baselines system are given. The 

algorithm is implemented in Java, on a PC (Intel Core i5-3570 CPU, 16 GB RAM, 64-bit 

Window 7).  

 

 Description Value 

General parameters 
Time horizon, 𝑇 3650 time units 

Replication number 40 

Parameters for GA 

Population size 50 

Crossover rate 0.6 

Mutation rate 0.02 

GA runs 5 

Stop criteria 
Maximum iteration number 3000 

Maximum unchanged iteration 200 

Computational time of baseline system 
Evaluation of each GA iteration 42 seconds 

Entire algorithm for 5 GA runs 132 hours 

Table 25: The algorithm-related parameters and computation cost for the baseline 

system in Chapter 5 
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