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The ability to predict is one of the hallmarks of successful theories.  Historically, 

the predictive power of biology has lagged behind disciplines like physics because the 

biological world is complex, challenging to quantify, and full of exceptions.  However, in 

recent years the amount of available data has expanded exponentially and biological 

predictions based on this data become a possibility.  The functional gene network is a 

quantitative way to integrate this data and a useful framework for making biological 

predictions.  This study demonstrates that functional networks capture real biological 

insight and uses the network to predict both subcellular protein localization and the 

phenotypic outcome of gene knockouts.  Furthermore, I use the functional network to 

evaluate genetic modules shared between diverse organisms that lead to orthologous 

phenotypes, many that are non-obvious.  I show that the successful predictions of the 

functional network have broad applicability and implications that range from the design 

of large-scale biological experiments to the discovery of genes with potential roles in 

human disease. 
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Chapter 1: Introduction to predictive biology and functional networks 

In science, predictive, quantitative theories and models are preferred over post-

hoc, qualitative theories, because they are both useful for guiding further research and 

indicate that our models are not just rationalizing data, but providing genuine insight into 

the workings of the system under question.  Historically, physics has been the field of 

science best known for its ability to predict the phenomena in its domain; however, 

biologists also value predictive models and in recent years a renewed emphasis on 

prediction has accompanied the rise of systems biology [1].  Some efforts have used 

explicit modeling of physics and chemistry, using diffusion and reaction rates to model 

biological systems.  One classic example is the von Dassow et al. computational model of 

the formation of the segment polarity stripes during early Drosophila development, which 

incorporated known molecular details and showed that the model recapitulated the 

biology over a wide range of values for parameters that were unknown [2].  

Unfortunately, this type of explicit modeling is limited to well studied systems.  Perhaps 

the longest running collaborative effort for biologically relevant predictions is in the area 

of predicting protein structure.  Since 1994, a series of competitions, Critical assessment 

of techniques for protein Structure Prediction (CASP), have evaluated the performance of 

many different approaches to predicting protein structure including: ab initio approaches 

using molecular dynamic simulations, homology based structure prediction, and fold 

recognition [3].  More recently, Scott et al. attempted to predict subcellular protein 

localization using a customized Bayesian classifier [4] and previously known data [5, 6].  

Finally, the entire field of functional genomics sprung up to predict the function of the 

large number of new genes identified by genome sequencing by extrapolating from 

known functional data.   
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Predictions in biology remain challenging.  Part of the challenge is to identify the 

areas of biology that are tractable for prediction and that will make the greatest 

contribution to our understanding of life.  As with other disciplines, it is very important to 

identify the optimal scope of the research, aim for incremental progress, and make readily 

testable hypotheses.  In the following, I will discuss my first effort to test a reasonably 

ambitious prediction, which failed, and evaluate it by these criteria.  I will end the chapter 

with a discussion of the conclusions that guided my future attempts at prediction. 

 

PREDICTING THE NUCLEAR EXPORT ADAPTOR OF THE RIBOSOME SMALL SUBUNIT. 

The formation of the ribosome is a complicated, multi-step process that starts in 

the nucleus and finishes in the cytoplasm.  The ribosome’s two subunits, the large subunit 

(LSU) and the small subunit (SSU), start as a single nuclear RNA transcript, which is 

cleaved into two pieces.  Each RNA molecule separately undergoes further processing 

and the integration of structural proteins within the nucleus.  After key steps are finished, 

the subunits are exported to the cytoplasm for further processing; however, until recently, 

the nuclear export adaptors for both subunits were unknown.  Nuclear export adaptors 

physically link their cargo to the export machinery of the nuclear pore, typically CRM1, 

to provide directed transport across the nuclear membrane.  In 2000, Ho et al. reported 

the discovery of the yeast nuclear export adaptor for the ribosome large subunit (LSU), 

NMD3 [7].  Thus far, the nuclear export adaptor for the ribosome SSU has not been 

identified.  So, I decided to test the hypothesis that the ribosomal SSU nuclear adaptor 

can be predicted based on properties of the LSU adaptor.  I collaborated with Arlen 

Johnson, who had originally identified the LSU adaptor, on this project. 
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Method for predicting the SSU adaptor 

My prediction strategy was based on the assumption that key properties of the 

LSU nuclear adaptor, NMD3, can serve as a guide to identify SSU export adaptor 

candidate genes.  Several properties of NMD3 serve as logical starting points for finding 

the SSU adaptor. NMD3 is essential, as would be expected of a gene critical to the 

function of core cellular machinery.  NMD3p has a classical nuclear export sequence 

(NES), which is known to interact with CRM1 during export.  NMD3 is a conserved 

protein across archeal and eukaryotic organisms, with an additional domain in eukaryotes 

containing the NES that is not present in the archea, which lack a nuclear membrane.  

Furthermore, NMD3 contained a nuclear localization sequence (NLS), which allows it to 

recycle to the nucleus after delivering the nascent SSU to the cytoplasm. 

 

I created a flexible scoring scheme that integrated multiple criteria, since it was 

unclear which criteria would be most useful for identifying the SSU: essentiality, 

presence of a nuclear export sequence, links to the SSU and/or nuclear export machinery 

in the functional network, the distribution of the protein across eukarya and archea, and 

haploinsufficiency.  I integrated the scoring scheme into a web-based application to 

simplify the exploration of various combinations and weighting of criteria and to 

facilitate collaboration.  In addition, I created a simple tool to compare the results from 

various weightings of the evidence.  The underlying data was obtained from the 

following: essentiality and haploinsufficiency from SGD [8], nuclear export sequence 

prediction from NetNES [9], functional links from a pre-publication version of YeastNet 

v.2. [10], and protein conservation using Blast (data provided by Insuk Lee). 
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I explored various combinations of requirements and scoring schemes.  Across a 

wide range of parameters, NMD3 was recovered as a top candidate, which suggested that 

our approach could identify the SSU adaptor if it resembles the LSU adaptor in its mode 

of action. 
 

Approach to experimental testing of SSU adaptor predictions 

After comparing the results from multiple criteria weightings, we hand selected 

five top candidates, including NOP1, PNO1, SUI3, for initial testing, with plans to screen 

additional candidate genes once the screening approach was validated and tested for 

scalability.  We assayed each gene for nuclear export activity in the following manner.  

We engineered dominant negative versions of each gene with a defective nuclear export 

sequences.  If the candidate is the SSU adaptor, over-expression of the dominant negative 

version is expected to block export of the SSU, shifting the distribution of GFP labeled 

SSUs from the nucleolus and cytoplasm to the nucleus. 

 

For each gene, the dominant negative was constructed in two PCR steps, followed 

by cloning into an inducible over-expression vector.  In the first step, the 5’ end of each 

gene was amplified using a forward primer containing an enzyme restriction site and a 

reverse primer that mutated nucleotides in the NES to mutate functionally important 

codons from leucine to alanine.  The 3’ end was amplified in a similar manner, with the 

forward primer designed to match the mutant nucleotides at the NES and the reverse 

primer containing a restriction site compatible with the expression vector.  In the second 

step, the PCR products of the first reactions were fused by amplifying with the forward 

primer of 5’ reaction and the reverse primer of the 3’ reaction.  Only molecules resulting 

from the overlap of the mutated NES region are amplified.  The mutant gene was then 
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cloned into a galactose inducible over-expression vector and co-transformed into yeast 

with a plasmid expressing a GFP tagged SSU protein.  Transformed strains were 

incubated in galactose media prior to microscopy to activate over-expression of the 

dominant negative.  A strain transformed with mutant NMD3 and a GFP tagged LSU 

protein served as a positive control. 
 

Experimental results 

Four of the most promising candidates were screened and found not to affect the 

distribution of the SSU.  The mutant form of NOP1 appeared to affect growth, so a rescue 

experiment was performed by adding a potent NES to the N-terminus of the protein.  The 

exogenous NES failed to rescue the growth phenotype, which suggests that the cause of 

the mutant phenotype is the destabilization of protein structure rather than the disruption 

of nuclear export.   
 

Evaluation of first predictive effort 

Upon reviewing the data, the methodological challenges and timeline, I decided 

that extending the screen to a larger number of genes would be a large investment with an 

ambiguous conclusion.  The predictions were highly dependent on the assumption that 

the SSU adaptor would operate with the same basic mechanism as the LSU adaptor, 

which was reasonable, but not guaranteed.  Unfortunately, in the case, the approach 

would not work unless we precisely identified both the specific gene and specific 

mechanism.  Interestingly, recent work has suggested that one of the predicted genes, 

PNO1 (also known as DIM2), may be involved in nuclear export, but its role as the 

adaptor has not yet been proven [11]. 
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Given the challenge of this approach, it become clear that the predictive power of 

the functional network should be tested in system that is easy to assay, which has more 

than a single target, and, requires a minimal number of assumptions and auxiliary data.  

The final requirement was needed so that the method developed would be broadly 

applicable rather than being rendered obsolete by its own success. 
 

NEW QUANTITATIVE, PREDICTIVE APPROACH WITH THE FUNCTIONAL NETWORK 

In my attempt to find a more broadly applicable approach to prediction, I chose 

one of the most generally applicable tools for inferring the function of unknown genes, 

which was first developed by Lee et al. in 2004 [12].  Their probabilistic functional 

network uses a Bayesian framework to integrate many types of biological datasets (e.g. 

protein interactions, transcriptional co-regulation, and gene fusions).  Abstracting the 

specific nature of interactions allows network to report the probability that two genes are 

functionally related without specifying the precise nature of the association.  Each data 

set integrated into the network is evaluated for quality by calculating the likelihood that 

two genes in a pathway will be linked by the evidence.  The cumulative evidence from 

multiple data sets can lead to well supported linkages that are poorly supported in any 

one experiment.  The network has already proven useful for predicting the function of 

genes involved in chromatin modification and ribosome biogenesis [12-14].  

Furthermore, the functional network provides an intuitive conceptual framework with the 

potential for novel application.  In order to make other predictions with the network, we 

took advantage of an established principle for inferring gene function from network 

connections, the principle of guilt-by-association (GBA).  In GBA, the function of 

uncharacterized genes is inferred from the functions of characterized neighbors in the 

network ([15-17]; reviewed in [18]).  The functional network is weighted, so, given a set 
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of genes with a property of interest, e.g. subcellular localization or knockout phenotype, 

other genes can be predicted based on the sum of their weights to that set.  I will provide 

greater detail for this general approach and specific applications in the following 

chapters. 
 

Applications of the functional network and new predictive approaches 

I have successfully tested two different applications of the functional network 

(discussed in chapter 2 and 3) and have leveraged it to help understand a novel predictive 

method which I will present in chapter 4. 

 

In chapter 2, I show that the functional network is a useful predictor of protein 

localization.  After a large genome wide screen for proteins localized to the yeast shmoo 

tip missed a large number of known genes, I developed a classifier for predicting 

additional proteins localized to the shmoo tip.  The initial set of 37 proteins from large 

screen was used to train a classifier and the top predictions were tested by hand in a small 

manual screen.  The classifier-guided retesting strategy doubled the coverage of the 

screen and remaining false negatives could be rationalized based upon low protein 

abundance. 

 

In chapter 3, I show proof-of-principle that genes linked in a functional network 

are likely to give rise to the same loss-of-function phenotype, demonstrating efficacy for 

predicting yeast mutant phenotypes.  I show that diverse yeast gene loss-of-function 

phenotypes are predictable, from biochemical to morphological to fitness effects.  The 

approach I describe provides a rational and quantitative foundation for targeted reverse 

genetic studies, which I demonstrate by predicting, then verifying, essential genes whose 
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disruption produces elongated yeast cells.  The breadth of applicability suggests that this 

approach could be implemented to identify genes likely to lead to human disease by 

leveraging extensive functional genomics data to expand sets of known disease genes by 

predicting new candidate disease genes. 
 

Finally, in chapter 4, I predict phenotype through a novel method that identifies 

equivalent phenotypes between species.  Mapping between genotype and phenotype is 

often non-obvious, complicating prediction of genes underlying specific phenotypes. I 

address this problem through comparative analyses of phenotypes. I define orthologous 

phenotypes between organisms (phenologs) based upon overlapping sets of orthologous 

genes associated with each phenotype. Genes known to have a phenotype in one 

organism become predictions for having the orthologous phenotype in the other 

organism.  Comparisons of >189,000 human, mouse, yeast, and worm gene-phenotype 

associations reveal many significant phenologs, including novel non-obvious human 

disease models. For example, phenologs suggest a yeast model for mammalian 

angiogenesis defects and an invertebrate model for vertebrate neural tube birth defects. 

With collaborators, we use the former to discover that SOX13 regulates vertebrate 

angiogenesis; with the latter, we demonstrate that IFT140 and RFX2 knockdowns cause 

neural tube defects. Phenologs create a rich framework for comparing mutational 

phenotypes, identifying adaptive reuse of gene systems, and predicting new disease 

genes. 
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Chapter 2: Predicting protein localization to the yeast shmoo 

INTRODUCTION 

Cells coordinate a large scale re-arrangement of their internal machinery when 

they undergo polarized growth.  Polarized growth is a fundamental, highly conserved, 

cellular process that is necessary for both basic cell division and a number of specialized 

growth patterns, for example, during development [1] and the formation of neuronal 

processes.  The budding yeast, S. cerevisae, is a common model organism for studying 

polarized growth, which adaptively re-uses the polarization machinery for vegetative 

growth, mating, and filamentous growth [2].  During normal cell division by budding, 

yeast orient their growth relative to the site of their last bud.  However, during mating, 

the direction of growth is determined by a pheromone gradient that allows cells to extend 

a mating projection, the shmoo, toward cells of the opposite mating type.  In each case, 

the cell’s morphological rearrangement is accompanied by a number of other changes, 

including changes in protein localization. 

 

When exposed to pheromone, yeast cells arrest in the G1 phase of the cell cycle 

and extend a shmoo up the gradient of the pheromone.  As the cell extends the shmoo, it 

re-orients various components of the cellular machinery along the new axis of 

polarization.  Many of the processes involved in budding are also used in shmoo 

formation; however, there are a number of differences as well.  Morphologically, the 

shmoo neck does not become as constricted as the bud neck and a number of proteins 

involved in pheromone sensing are not part of the budding process. Furthermore, the 

functional outcomes, the nuclear segregation and cytokinesis of budding versus the cell 

fusion and karyogamy of mating, entail a number of other different processes. 
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Although a number of shmoo related genes have been localized to the shmoo (e.g. 

shmoo marker, Fus1 [3]), previous proteome-wide screens have not yet characterized the 

shmoo-dependent re-localization of proteins.  My collaborators on this project [4] 

developed a cell micro-array based imaging assay that can characterize the spatial 

distribution of proteins throughout the cell by simultaneously surveying several thousand 

yeast strains with GFP tagged proteins.  The cell chip, a new technology for high-

throughput microscopy, was recently developed by a collaborative effort of several labs 

at the University of Texas at Austin [5].  The method involves the parallel treatment and 

fixation of thousands of yeast strains, which are then printed on a microscope slide using 

technology similar to the Stanford style microarray.  In this project, the library of yeast 

strains with GFP tagged proteins were exposed to alpha factor, a yeast mating 

pheromone.  The method is outlined in Figure 2.1 and reported in Narayanaswamy et al 

[5].  The initial genome-wide screen identified 37 genes localized to the shmoo; however, 

the screen only identified 6 of 47 genes annotated in the literature (as reported by the 

Saccharomyces Genome Database, SGD [6]) as localized to either the shmoo or the 

polarisome (part of the polarization machinery), which indicated a significant false-

negative rate. 
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FIGURE 2.1  SCHEMATIC OF CELL CHIP METHOD WITH PREDICTIONS.  First, the cell 

chip is screened to identify shmoo genes and the functional network is constructed 

independently.  Second, genes identified in the screen are used to train a network 

based classifier.  Finally, a manual screen of predicted genes recovers additional 

shmoo localized genes.  Adapted from [4]. 
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High throughput genome-wide screens are notoriously prone to false negatives 

[7], usually due to technical reasons and the possibility of human error when thousands of 

yeast strains are being assayed.  In this case, the high false negative rate may be due to 

fixation induced auto-fluorescence, which reduces the signal-to-noise ratio and obscures 

lower abundance proteins.  When we realized that the false negative rate of the automated 

screen was high, we asked whether a targeted manual screen might recover additional 

shmoo localized proteins more efficiently than re-screening the entire library.  We 

created a classifier to predict additional shmoo genes using the genes identified in the cell 

chip assay as a training set and manually screened the set of predicted genes.  The follow 

up screen identified an additional 37 shmoo localized proteins and together established a 

clear ordering of cellular organelles along the axis of polarization. 

 

METHODS 

Classifier Construction 

The genes identified in the high throughput screen were used to train a naïve 

Bayesian classifier (using the machine learning tool, Weka). Six genes annotated as 

mitochondrial proteins were manually removed from the set to avoid training on them, 

since they were potentially false positives.  Features were aggregated from data from the 

UCSF GFP screen [8] and the pre-publication YeastNet v.2  functional network by Lee et 

al. [9].  The features included for each gene were: the sum of log likelihood scores (LLS) 

to the set of shmoo genes, the ratio of the LLS sum linking genes to the shmoo set 

divided by the LLS sum of the gene’s links to all genes in the network, estimated protein 

abundance (molecules per cell), and cell location during growth in rich media (in the 

absence of pheromone).  The test set of 5804 genes, labeled as shmoo or not-shmoo was 
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also used as the both the training set and test set. Ten-fold cross validation had very 

similar results. The area under the ROC curve was 0.843, which indicates that it is a 

reasonably accurate classifier.  After training, the classifier recovered 20 of the 37 shmoo 

genes (cross-validation: 19). An additional 151 (cross-validation: 153) genes not 

identified in the initial screen were also classified as shmoo genes using a 0.5 probability 

cutoff.  The classifier was constructed in collaboration with Matt Davis. 
 

Testing predicted shmoo genes 

For the manual secondary screen, proteins predicted to be shmoo localized were 

tested in strains from the S. cerevisiae GFP tagged clone collection (Invitrogen). The 

collection consists of strains derived from the strain EY0986 (ATCC 201388: MATa 

his3∆1 leu2∆0 met15∆0 ura3∆0 (S288C)) by chromosomally tagging ~4200 genes with 

Aequorea Victoria GFP (S65T) at the carboxy-terminal end of an open reading frame 

[10].  We inoculated GFP strains from -80°C stocks into YPD in 96 well plates, grew 

them overnight, exposed them to alpha factor for three hours, and imaged them on a 

fluorescent scope.  Two graders independently scored cell images for shmoo localization 

of the GFP signal.  Proteins were considered shmoo localized when both grader’s agreed.  

Microscopy for classifier predicted genes was performed in collaboration with Ram 

Narayanaswamy. 
 

Additional related methods, which I was not involved in, are published in 

Narayanaswamy, et al [4]. 
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RESULTS 

Shmoo localized proteins can be predicted from their functional linkage to known 
shmoo proteins. 

In order to expand our recovery of yeast proteins,  we combined genome-wide 

datasets of protein localization in yeast cells growing in the absence of pheromone [10] 

and the integrated probabilistic gene network [9, 11] to develop a classifier for predicting 

additional proteins localized to the shmoo tip (for example, proteins that had been missed 

because of low expression or penetrance). As detailed in the Methods, our initial set of 37 

proteins from the cell chip screen was used to train a naïve Bayesian classifier (Table 

2.1). Application of the classifier identified 151 proteins exceeding a 50% probability 

score threshold.  With a limited set of candidate genes, we could individually assay them 

in the absence of fixative.  118 of the 151 proteins were already present in the extant GFP 

library. We manually re-tested each of these 118 GFP fusion strains for protein 

localization to the shmoo tip. From this set, 37 additional proteins (~31% of those tested) 

were confirmed to be shmoo-localized (Table 2.2). 
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TABLE 2.1: MANUALLY VERIFIED SHMOO TIP LOCALIZED GENES IDENTIFIED BY 

THE CELL CHIP.  As in [4]. 

Gene name ORF name 
Human 
ortholog* 

Gene Ontology biological process 
annotation 

ABP1 YCR088W DBNL 
establishment of cell polarity (sensu 
Fungi) 

AIP1 YMR092C WDR1 response to osmotic stress 

BEM3 YPL115C - pseudohyphal growth 

CAP1 YKL007W CAPZA2 barbed-end actin filament capping  

CAP2 YIL034C CAPZB filamentous growth 

CAR1 YPL111W ARG1 arginine catabolism to ornithine  

CBK1 YNL161W STK38L regulation of exit from mitosis 

CDC10 YCR002C SEPT9 cell wall organization and biogenesis 

CDC11 YJR076C - cell wall organization and biogenesis 

CDC48 YDL126C VCP ubiquitin-dependent protein catabolism 

EDE1 YBL047C EPS15 endocytosis  

END3 YNL084C - endocytosis 

ENT1 YDL161W EPN3 endocytosis 

EXO70 YJL085W - cytokinesis 

EXO84 YBR102C EXOC8 exocytosis 

FUS1 YCL027W - conjugation with cellular fusion 

INP52 YNL106C SYNJ2 cell wall organization and biogenesis 

KEL1 YHR158C RABEPK cell morphogenesis 

LSG1 YGL099W GNL1 ribosome biogenesis 

MID2 YLR332W - cell wall organization and biogenesis 

PEA2 YER149C - pseudohyphal growth 

POP2 YNR052C CNOT8 
regulation of transcription from RNA 
polymerase II promoter 

SEC10 YLR166C EXOC5 
establishment of cell polarity (sensu 
Fungi) 

SEC18 YBR080C NSF ER to Golgi vesicle-mediated transport 

SEC2 YNL272C - exocytosis  

SEC3 YER008C - cytokinesis 

SEC5 YDR166C EXOC2 cytokinesis 

SEC6 YIL068C EXOC3 cytokinesis 

SEC8 YPR055W EXOC4 cytokinesis 

SHM2 YLR058C SHMT1 one-carbon compound metabolism  

SHR3 YDL212W - ER to Golgi vesicle-mediated transport 

SLA1 YBL007C GRAP cell wall organization and biogenesis 

SLG1 YOR008C - cell wall organization and biogenesis 

SMY1 YKL079W - exocytosis 

YCR043C YCR043C - biological process unknown  

YMR295C YMR295C - biological process unknown  

YOR304C-A YOR304C-A - biological process unknown  

* as calculated by InParanoid [12], listing only the top-scoring inparalog 
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TABLE 2.2: MANUALLY VERIFIED SHMOO TIP LOCALIZED PROTEINS IDENTIFIED BY 

THE CLASSIFIER.  As in [4]. 
Gene 
name ORF name 

Human 
ortholog* Gene Ontology biological process annotation 

ABP140 YOR239W METTL2B actin cytoskeleton organization and biogenesis  

ARK1 YNL020C AAK1 protein amino acid phosphorylation 

BCK1 YJL095W - protein amino acid phosphorylation 

BEM1 YBR200W - establishment of cell polarity (sensu Fungi) 

BNI1 YNL271C DIAPH1 pseudohyphal growth 

BOI1 YBL085W - establishment of cell polarity (sensu Fungi) 

BSP1 YPR171W - actin cortical patch distribution  

BUD6 YLR319C - actin filament organization 

BZZ1 YHR114W TRIP10 endocytosis 

CHS3 YBR023C - cytokinesis 

CHS5 YLR330W - spore wall assembly (sensu Fungi) 

ENT2 YLR206W EPN3 endocytosis 

KEL2 YGR238C RABEPK conjugation with cellular fusion 

LAS17 YOR181W WASL endocytosis 

MYO2 YOR326W MYO5B vesicle-mediated transport 

MYO5 YMR109W MYO1E cell wall organization and biogenesis 

PAN1 YIR006C - endocytosis 

PRK1 YIL095W AAK1 protein amino acid phosphorylation 

RGD1 YBR260C ARHGAP21 response to acid 

RVS161 YCR009C BIN3 endocytosis 

RVS167 YDR388W - endocytosis 

SAC6 YDR129C PLS3 endocytosis 

SEC15 YGL233W EXOC6 cytokinesis 

SEC31 YDL195W SEC31A ER to Golgi vesicle-mediated transport  

SFB3 YHR098C - ER to Golgi vesicle-mediated transport  

SHS1 YDL225W - establishment of cell polarity (sensu Fungi) 

SLA2 YNL243W HIP1R actin filament organization 

SMI1 YGR229C - regulation of fungal-type cell wall biogenesis 

SRV2 YNL138W CAP1 pseudohyphal growth 

SYP1 YCR030C - biological process unknown  

TWF1 YGR080W TWF1 bipolar bud site selection 

VRP1 YLR337C WIPF1 endocytosis 

WSC2 YNL283C - cell wall organization and biogenesis 

WSC3 YOL105C - cell wall organization and biogenesis 

YDR348C YDR348C - biological process unknown  

YER071C YER071C - biological process unknown 

YIR003W YIR003W - biological process unknown  

* as calculated by InParanoid [12], listing only the top-scoring inparalog 
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The classifier-guided retesting strategy doubled the coverage of the screen, and 

remaining false negatives could be rationalized based upon low protein abundance.  The 

targeted secondary screen had a much higher success rate than the initial unguided screen 

(1% vs. 31%).  Of the 37 genes identified in the second round of screening, 7 overlapped 

with previous literature, bringing the combined total of identified genes to 13 of 47 genes 

reported in the literature (Figure 2.2A).  Of genes in the GFP library, we could identify 

63% of the known shmoo tip-localized proteins that were present at >2500 

molecules/cell, but less than 21% of known proteins with <2500 molecules/cell, which 

suggest that the high false negative rate may primarily be due to the insensitivity of the 

microscope and camera.  On average, the shmoo tip proteins identified via the classifier 

method were less abundant than those recovered via the cell chip method, which suggests 

that using a network guided approach to expand an initial list of seed genes works well in 

cases with high false negative rates that can be reduced in lower-throughput assays.   
 

Adaptive re-use of polarization proteome 

Unsurprisingly, the set of 74 shmoo-localized proteins (37 each from initial screen 

and network identified), showed a marked enrichment for Gene Ontology functional 

categories related to polarized growth (with p < 10
-6

 being the threshold of probability 

calculated using a hypergeometric distribution [13] that the intersection of given list with 

any functional category occurs by chance), with the strongest enrichment observed for 

the GO Biological Process annotation establishment of cell polarity (p < 10
-35

), followed 

by annotations including anatomical structure morphogenesis (p < 10
-32

), cellular bud 

site selection (p < 10
-29

), cytokinetic process (p < 10
-28

), vesicle-mediated transport (p < 

10
-22

), reproduction (p < 10
-20

), endocytosis (p < 10
-18

), actin filament organization (p < 
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10
-13

), exocytosis (p < 10
-12

), and conjugation (p < 10
-6

).  Furthermore, there appears to be 

very broad reuse of the proteins during formation of the shmoo and buds (Figure 2.2B). 

 

In addition, 41 of the 74 proteins have human orthologs (Tables 2.1 & 2.2), 

which implies that there is a broad conservation of these processes across eukaryotes. 
 

Figure 2.3 indicates a number of complexes involved in the polarization process.  

The exocyst, an octomeric complex, helps dock vesicles to the bud site during cell 

growth.  Together, the initial and classifier screens identified all eight members of the 

complex, which strongly implies a conserved role for the complex in both budding and 

shmooing.  Members of the septin ring, a pentameric complex, were also identified, are 

characteristically present at the shmoo neck, forming a collar like structure.  One of the 

members CDC3, was absent from the GFP library and could not be identified.  

Additionally, several components of the actin cortical patch were identified as present in 

the shmoo, which illustrates the role of the actin cytoskeleton in supporting the polarized 

outgrowth.  Interestingly, we identified a number of genes which are actively involved in 

endocytosis, RVS161, RVS167, SAC6, and ENT2, which were broadly distributed 

throughout the shmoo, often in punctuates.  Figure 2.4 We observed that proteins 

involved in exocytosis were localize at the extreme tip of the shmoo while proteins 

involved in endocytosis localized more broadly around the shmoo tip, which may 

indicate a great deal of membrane turnover in the shmoo as it grows. 
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FIGURE 2.2  A. MANUAL VALIDATION BASED ON CLASSIFIER DOUBLES COVERAGE 

OF KNOWN SHMOO GENES.  B. GENES INVOLVED IN SHMOO FORMATION 

OVERLAP SIGNIFICANTLY WITH BUDDING GENES and indicate significant reuse 

of polarization machinery.  Adapted from [4]. 
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FIGURE 2.3  IMAGES OF VARIOUS SHMOO LOCALIZED CELLULAR COMPONENTS.  

GFP-tagged proteins are identified by microscopy.  Adapted from [4]. 
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FIGURE 2.4  EXOCYTOTIC PROTEINS ARE MORE DISTALLY LOCATED THAN 

ENDOCYTOTIC PROTEINS IN THE SHMOO.  Adapted from [4]. 
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In addition to characterized complexes, the screen and network based classifier 

found several uncharacterized proteins, such as YMR295C [14], YDR348C, and 

YOR304C-A, localize to both the bud [10] and shmoo tips which implies general reuse in 

polarization. Examination of these proteins’ functional relationships in the yeast 

functional gene network illustrates their potential involvement in specific aspects of 

polarized cell growth (Figure 2.5): YOR304C-A is linked with Bud6, a key protein in 

polarization signaling (and also found in the screen) and Duo1, a cytoskeletal protein. 

YMR295C and YDR348C are network neighbors, with the former also linked to 

glycolytic transcription factor Gcr1, and the latter tied to the cell cycle progression genes 

Clb2 and Cdc28. Therefore, these genes may help connect polarization with other cellular 

systems such as cell cycle control and energy metabolism.  The functional network, 

therefore, helps predict the localization of uncharacterized genes and provides a starting 

point by which to evaluate their role. 

In line with the adaptive re-use of the polarization machinery, the primary 

predictive strength that prior localization data contributed to the classifier was bud 

localization.  However, only 6 of the 37 genes identified in the second round were bud 

localized, which suggests that the primary predictive power of the classifier came from 

the features derived from the functional network.  This demonstrates the power of the 

functional network to find likely false negatives from genome-wide screens of gene 

localization and can significantly expand the number of genes recovered with minimal re-

screening. 
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FIGURE 2.5  THE FUNCTIONAL NETWORK SUGGESTS POSSIBLE ROLES FOR 

UNKNOWN PROTEINS LOCALIZED TO THE SHMOO.  Characterized proteins are 

labeled in black and represented by yellow circles.  Uncharacterized proteins are 

in labeled in blue with red circles.  Bold genes are identified shmoo genes.  See 

text for additional details.  Adapted from [4]. 
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CONCLUSION 

Polarized growth is a fundamental cellular process that has been repurposed for 

multiple functions and the spatial distribution of the shmoo proteome demonstrates that a 

significant fraction of genes involved in polarized growth are shared by differing cellular 

processes in S. cerevisiae.  Of the 67 proteins shared between the mating and budding 

polarization processes (Figure 2.2) there is significantly greater conservation between 

human and yeast than expected by chance (39 of the 67 yeast genes have human 

orthologs [12], p < 0.023, chi-square test), suggesting that the functions of these core 

polarization components are consistent across eukaryotes.  Recognition of this significant 

overlap helps contribute to our understanding of phenologs, a topic I will be covering in 

detail in chapter 4. 

 

The functional network, which integrates a broad variety of data, but does not 

explicitly include location data, can predict protein localization even for uncharacterized 

genes.  Functional networks were developed to predict gene function [11] but this project 

illustrates that they are capable of broader application because they capture information 

beyond the originally intended application. 

 

The process of screening followed by prediction could be iterated by adding the 

newly identified shmoo genes to the training set.  This would then re-weight their 

neighboring genes in the network, which could potentially identify additional genes that 

are related to the shmoo and pheromone response pathways. 

 

This chapter has been abstracted and reworked from a paper that is in press [4]. 
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Chapter 3: Predicting yeast knockout phenotypes with a functional 
network 

INTRODUCTION 

After the successful application of the classifier to protein localization and expanding the 

coverage of genome wide screens, I looked for a related application where the network 

could guide research by providing targeted predictions.  I also sought to reduce the 

complexity and obscurity of the classifier by adopting a simpler, more broadly applicable, 

and intuitively understandable algorithm for prediction.  In this chapter and the associate 

paper [1], I demonstrate that loss-of-function yeast phenotypes are predictable by simple 

guilt-by-association in functional gene networks.  By computational testing of more than 

one thousand loss-of-function phenotypes from genome-wide assays of yeast I show that 

diverse phenotypes are predictable, spanning cellular morphology, growth, metabolism, 

and quantitative cell shape features.  I apply the method to (1) extend a genome-wide 

screen by predicting, then verifying, genes whose disruption elongates yeast cells, and (2) 

computationally predict human disease genes.  To facilitate network-guided screens, I 

have established a web server at http://www.yeastnet.org which provides network based 

predictions based on submitted genes.  

 

BACKGROUND 

Historically, genetic relationships between mutations were inferred when the mutations 

resulted in a shared phenotype.  Similar phenotypic outcomes were typically interpreted 

as representing a functional relationship between the two genes and these relationships 

were represented as genetic pathways and later as gene networks.  With high throughput 

technologies being integrated into functional networks, it is now possible to ask whether 

the inverse inference is possible.  Are functionally linked genes likely to share a common 

phenotype?  If so, it is possible to predict the phenotypic outcomes of gene disruption by 

extrapolating from known phenotypic data.  Of particular interest, the method could be 

applied to identify candidate genes that are likely to cause a specific disease when 
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mutated, based on their linkage to a known disease gene.  In this project, I show that a 

wide range of yeast phenotypes can be predicted using a functional network and 

demonstrate that the method is likely to be broadly applicable to human disease. 

 

Advances over the past decade in both forward and reverse genetics mean that the 

predictability I find can be applied in a simple way to correctly associate genes with 

phenotypes of interest.  For forward genetics, genome-wide association studies (reviewed 

in [2]) are starting to identify candidate genes associated with human traits and diseases, 

such as recent studies correlating variants in the ORMDL3 gene to risk of childhood 

asthma [3].  At the same time, reverse genetics by rapid testing of candidate genes has 

become more routine with the creation of mutant strain collections (e.g., yeast deletion 

strain collections [4, 5]) and the development of RNA interference (RNAi) for down-

regulation of genes (e.g., as for genome-wide RNAi screens of C. elegans [6, 7] or human 

cell lines, reviewed in [8]).  With the ability to predict loss-of-function phenotypes, I 

suggest utilizing the two aspects of genetics synergistically: with a starting set of genes 

linked to a specific phenotype by a forward genetic screen, computational predictions of 

additional genes associated with that phenotype can be evaluated using reverse genetics, 

expanding on the original screen, much like were able to do for shmoo localized proteins 

in the previous chapter.  Furthermore, given the polygenic nature of many diseases and 

phenotypes, this approach will improve the characterization of the network of genes 

affecting a trait of interest.   

 

Functional networks have been successfully used to annotate unknown genes using the 

principle of guilt-by-association (GBA), which assumes that the function of a gene is 

closely related to its neighbors in the network [9].  I applied GBA to predict yeast 

phenotypes using YeastNet v.2 [10] by asking if the genes linked to a seed set of genes 

associated with a particular loss-of-function phenotype might also be more likely to result 

in the same phenotype upon disruption.  This probabilistic functional gene network has 

102,803 functional links among 5,483 yeast genes, where the probability of a link 

indicates the likelihood that two genes will have the same Gene Ontology biological 
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process annotations [11] relative to the background expectation.  Genes are ordered by 

their connectivity to the initial set; the genes linked most strongly to the seed set become 

candidate genes for the same phenotype. 

 

An illustration of the functional network and GBA is displayed in Figure 3.1 as a graph 

with circles (genes) connected by edges (functional links).  Blue circles represent seed 

genes that lead to the target phenotype upon knockout.  Red circles represent tightly 

linked neighbors that are candidate genes that are predicted to give rise to the phenotype 

upon disruption.  The sums of the genes’ probabilistic linkages to the seed set are used to 

rank the phenotype predictions.  As a consequence, genes tightly linked to multiple seed 

genes score more highly than genes weakly linked to only a single seed gene. 
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FIGURE 3.1  OVERVIEW OF GUILT-BY-ASSOCIATION PHENOTYPE PREDICTION. Guilt-

by-association phenotype prediction employs a functional gene network, 

represented here as circles (genes) connected by lines (functional linkages), and a 

seed set of genes (blue circles) whose disruption is known to give rise to the 

phenotype of interest.  Neighboring genes in a functional gene network (red 

circles) are candidates for also giving rise to the phenotype.  Candidates are 

prioritized by the sum of their network linkage weights to the set of seed genes.  

A gene strongly linked to multiple seed genes will thus rank more highly than a 

gene weakly linked to a single seed gene.  Network drawn with Cytoscape [12].  

Figure used by permission [1]. 

 



 33 

 

METHODS 

As published in [1]. 

Assembling the set of non-redundant loss-of-function phenotypes 

A literature search was conducted to find genome-scale studies of yeast gene 

knockout phenotypes.  Datasets were compiled from studies that systematically examined 

a large fraction of the yeast genome.  No effort was made to minimize redundancy among 

the gene sets themselves.  Nonetheless, only one set is a strict subset of another (genes 

that have changed levels of transposon cDNA upon knockout are a subset of the genes 

that reduce retrotransposition).  Most studies were conducted using one or more of the 

following strain collections: haploid [4], homozygous diploid [4], heterozygous diploid 

[4], tetracycline-titratable [13].  The reported data were a mix of qualitative, pseudo-

quantitative, and quantitative results.  Pseudo-quantitative data (often reported as "+", 

"++", "-", "--", etc.) were thresholded at the most stringent reported value (except for the 

small set of genes conferring the phenotype “branched cells” [4]; all genes with this 

morphology were included).  Quantitative data were arbitrarily thresholded using cutoffs 

that appeared consistent with the sensitivity of the assay.  Predictability was not used as a 

criterion for selecting thresholds.  In some cases, thresholds less stringent than those 

selected result in more predictable phenotype sets (data not shown).  In cases where an 

uncharacterized open reading frame overlapped a known gene on the chromosome and 

both shared the same phenotype (e.g. Axial budding [14]; the dubious open reading frame 

YOR300W overlaps BUD7), the uncharacterized gene was removed from the phenotype 

set.  Additional phenotypes were collected from the Saccharomyces Genome Database 

(SGD) [15]; phenotypes extracted from SGD used the threshold determined by SGD.   
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For the 281 quantitative phenotypes reported by SCMD [16], the 40 knockout 

strains with either the highest or lowest values for each SCMD feature were selected 

(resulting in 562 seed gene sets).  Similarly, 440 CV phenotypes were generated by 

considering the 40 knockout strains with either the higher or lowest CV for each SCMD 

CV feature (220 total features). 
 

Prediction of phenotypes and evaluation of prediction quality 

For each gene in the network, I calculated the sum of its link weights to genes 

with the phenotype in question (the seed set), i.e., assigning each gene i the score 

∑
∈

=

seedj

iji LLSS , where j is a gene in the seed gene set, and LLSij is the log likelihood score 

for the linkage between gene i and gene j, as reported in [11] except where explicitly 

analyzing other networks.  Genes were then rank-ordered by their Si scores, with the 

highest scoring genes the most likely to share the phenotype with the seed set.  For 

networks reporting only binary linkages (MIPS [17], DIP [18]), I considered all linkages 

to be of weight 1.  For calculation of Figure 3.5, YeastNet v.2, DIP and PICO [19] were 

each evaluated at two different confidence levels.  For analyses of protein interaction 

networks, the following networks were analyzed:  YeastNet v. 2, which corresponds to all 

interactions reported in [11]; physical protein interactions (PPI) from the Database of 

Interacting Proteins (DIP) [18] (downloaded on February 4, 2007) selecting as the core 

set those interactions reported by [20];  Collins et al [21], using their reported threshold; 

PICO E-0 and E-2, PPI sets from [19]; MIPS, all PPI in physical complexes reported by 

[19] derived from [17].  In all cases, self interactions were removed. 
 

For each phenotype, the predictability was evaluated by generating a ROC curve 

based upon the gene ranking and calculating the area under the curve (AUC).  The ROC 
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curve indicates the relative rate of true and false positive predictions as a function of the 

score Si, plotting the true positive rate (TP/(TP+FN)) versus false positive rate 

(FP/(FP+TN)).  In calculating Si, self-self links were not permitted, and each gene in the 

seed set was withheld in turn from the seed set for evaluation (i.e., leave-one-out cross-

validation).  TP, true positives, was defined (for a specific threshold) as the number of 

genes from the seed set ranked above a given Si; FP, false positives, as the number of 

genes above the threshold but not in the seed set; FN, false negatives, as the number of 

seed genes ranked below the threshold; and TN, true negatives, as the number of non-

seed genes ranked below the threshold.  The AUC ranges from 0 to 1, with 0.5 indicating 

random performance and 1.0 indicating perfect classification.  Note that AUC is 

calculated using only seed genes represented in the network (i.e., the network is not 

penalized for partial coverage of the seed set), allowing the predictive capacity of 

networks of differing sizes to be compared.  For the purposes of calculating a ROC curve, 

all genes not linked to the phenotype seed set were treated as being of the same rank.  

Note that none of the phenotypes have been tested for all genes (most tested only non-

essential genes).  Due to differences in the reporting of genes tested, ROC curves for the 

set of 100 phenotypes were calculated over the entire set of yeast genes in the network 

being tested (5,483 genes for the functional network).  Thus, the measures of 

predictability (AUC) are likely to be underestimates, since all untested genes are 

considered false positives. 
 

As an alternative test for functional enrichment, I used ArrayPlex [22] to calculate 

the hypergeometric probability of the enrichment for each GO annotation within a given 

gene set. 
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Prediction of human disease gene sets 

For the test of human disease gene prediction, I collected sets of yeast genes 

whose human orthologs were linked to the same OMIM disease [23].  Human disease 

phenotypes from OMIM were collapsed into major categories (i.e., variants of each 

disease were collapsed into a single category, such as collapsing “Cataract, polymorphic 

and lamellar” and “Cataract, crystalline aculeiform” into a single category of cataract 

defects).  Each human disease gene was mapped to one of 2,151 human-yeast orthology 

groups using InParanoid [24], and seed sets of yeast genes linked to the same disease 

were selected such that at least 4 of the yeast genes were present in YeastNet.  

Calculation of predictability and measurement of AUC was performed as for yeast 

phenotypes, considering linkages in YeastNet between human-yeast orthology groups 

rather than between individual yeast genes. 

Generation of random phenotype sets 

In order to estimate the random distribution of AUC scores for literature 

phenotypes, sets of genes of the same sizes as the real phenotype seed sets were drawn 

from the complete set of yeast genes and tested for predictability, using as the 

background set of genes those designated by SGD as "verified" or "uncharacterized" (not 

dubious or pseudogenes) (as of January 29, 2007).  For SCMD morphology phenotypes 

[16], 1000 sets of 40 genes were drawn randomly from the complete set of genes 

analyzed by SCMD, then tested for predictability in order to generate the null expectation 

for the AUC distribution.  For human disease phenotypes, random gene sets were 

generated for comparison by randomly drawing from the set of network annotated 

human-yeast orthologs such that the set size distribution of the random sets matched the 

size distribution of the actual OMIM disease seed sets. 
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Yeast strains, media, and growth 

For predicting elongation mutants, I employed a seed set of 77 non-essential 

genes identified by Giaever et al. [4] as “Elongate 3” in a screen of the homozygous 

diploid yeast deletion collection.  Using GBA with this seed set, I predicted additional 

genes likely to give rise to elongated cells, and selected for assay the 35 top-ranked 

essential genes with strains available in the tetracycline-downregulatable library of yeast 

strains [13].  A negative set of 17 strains from the same library was randomly selected 

from those genes not linked to any of the known elongated genes.  The corresponding 

strains were obtained from Open Biosystems.  Each strain was grown to saturation at 

30°C in YPD, inoculated into fresh YPD with 10 ng/ml doxycycline, grown 16 hours and 

imaged [13] to evaluate cell morphology.  Two biologists evaluated the images for each 

strain (with strain names hidden) for elongated cell morphologies using a simple 

qualitative scoring scheme (0-2), assigning a final score to each strain as the sum of the 

independent evaluations.  Strains scoring >2 were selected as elongated, which 

minimized false positives, yet recovered NUT2, previously reported to be elongated 

[13].   Wei Niu helped train me in microscopy and helped handle the yeast library.  

Edward Marcotte helped with image analysis. 
 

In order to predict gene-phenotype associations (see prediction testing below for 

phenotypes tested), I calculated the sum of links between a given gene and a seed set of 

genes known to lead to a specific phenotype upon knockout, i.e., each gene in the 

network, i was given the score ∑
∈

=

seedj

iji LLSS , where j is a gene with the given 

phenotype, and LLSij is the log likelihood score for the linkage between gene i and gene j.  

Self-self links were not permitted, effectively making the approach equivalent to a 

classifier using leave-one-out cross-validation.  The genes with the highest Si score are 
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most likely to share the phenotype with the seed set.  Genes were rank ordered by their Si 

score for each phenotype, which was used to generate a ROC curve and calculate the area 

under the curve (AUC).  The ROC curve plots the relative true positive rate 

(TP/(TP+FN)) to the false positive rate (FP/(FP+TN)) as a function of Si.  True positives, 

TP, were defined (for a given Si threshold) as the number of genes with the specific 

phenotype that scored above the threshold; false positives, FP, as the number of 

phenotype related genes below the threshold; false negatives, FN, as the number of genes 

in the set below the threshold; and true negatives, TN, as the number of genes not known 

to have the phenotype below the threshold.  The AUC can range from 0 to 1, with 0.5 

indicating that the predictions are random.  The appropriate background set of genes 

varies between phenotype screens, since none of the knockout libraries are complete; 

however, the ROC curves were calculated assuming that the entire genome has been 

screened.  It is likely that the real AUC is underestimated for many phenotypes, since 

untested, predicted genes are treated as false positives. 
 

RESULTS 

To evaluate the utility of applying the GBA concept to phenotype prediction, I 

initially tested predictions computationally with a large assortment of phenotypes and 

then experimentally validated a set of predictions for a specific morphological trait. 

Computational Results 

Using Guilt-By-Association to Predict Essentiality 

I first investigated whether the network could distinguish viable from non-viable 

yeast gene deletion strains.  Essential genes of both yeast and humans are known to be 

more highly connected in protein physical interaction networks than non-essential genes 
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[25-27], and there is evidence that essential proteins may also be enriched in the same 

physical complexes [19, 28].  I asked if essential genes could be predicted on the basis of 

their connections to other essential genes in a functional gene network.  I employed the 

guilt-by-association approach, using as the seed set the 1,027 known essential yeast genes 

[4, 29], then scoring each gene in yeast for its likelihood to be essential as a function of 

connectivity to this seed set.  As described in the methods above, each gene in the seed 

set was withheld in turn from the seed set in order to evaluate it; i.e., performing leave-

one-out cross-validation.  As the prediction score for each gene, I calculated the sum of 

the weights of linkages connecting the query gene to genes in the seed set.  Given that 

each linkage’s weight in this network corresponds to the log likelihood of the linked 

genes belonging to the same pathway [11] the sum of linkage weights therefore 

represents the naïve Bayesian combination of evidence that the query gene belongs to the 

same pathway as the seed set genes.  I expect genes in the same pathway to often exhibit 

the same loss-of-function phenotypes.  Thus, this score should also serve to identify 

genes that share phenotypes with the seed set genes. 
 

To evaluate prediction quality, I calculated the true positive rate (sensitivity, 

TP/(TP+FN)) and the false positive rate (1-specificity, FP/(FP+TN)), as a function of the 

prediction score, plotting the resulting receiver operating characteristic (ROC) curve.  As 

Figure 3.2 shows, the essential genes are strongly predictable on the basis of their 

network neighbors.  Therefore, in addition to the previous observations that essential 

genes have larger numbers of physical interaction partners, I demonstrate that essential 

yeast genes are also preferentially connected to each other in a functional network.  
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A yeast gene network predicts varied, specific loss-of-function phenotypes 

In order to further test phenotypic predictability, I collected an additional set of 99 

yeast knockout phenotypes that had been generated in large scale genetic screens that 

assayed a substantial fraction of the genome (typically, all non-essential genes).  These 

reverse genetic screens are made possible by the recent creation of libraries of yeast 

knockout strains [4, 5] and are reported either in the Saccharomyces Genome Database 

(SGD; [30]) or in one of 32 additional publications in the literature, listed in full in Table 

3.1.  In these collections, a single yeast gene is deleted in each yeast strain; a phenotypic 

assay on the complete set of knockout strains thereby associates that phenotype with 

those deleted genes that gave rise to it.  These screens are ideal for addressing the general 

question of whether or not specific loss-of-function phenotypes are predictable.  

Crucially, the phenotypic data is not integrated into the functional network [11], which 

allows for an independent, unbiased assessment of the functional networks predictive 

accuracy. 
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FIGURE 3.2  DIVERSE YEAST GENE LOSS-OF-FUNCTION PHENOTYPES ARE 

PREDICTABLE USING GUILT-BY-ASSOCIATION IN A FUNCTIONAL GENE 

NETWORK.  Predictability is measured in a ROC plot of the true positive rate 
(sensitivity) versus false positive rate (1-specificity) for predicting genes giving 
rise to 10 specific loss-of-function phenotypes, as well as for essential genes 
whose disruption produces nonviable yeast [4].  For each phenotype, each gene in 
the yeast genome was prioritized by the sum of the weights of its network 
linkages to the seed genes associated with the phenotype.  Genes with higher 
scores are more tightly linked to the seed set and therefore more likely to give rise 
to the phenotype. Each phenotype was evaluated using leave-one-out cross-
validation, omitting genes from the seed set for the purposes of evaluation. More 
predictable phenotypes tend towards the top-left corner of the graph; random 
predictability is indicated by the diagonal.  For clarity, the line connecting the 
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final point of each graph to the top right corner has been omitted.  Figure used by 
permission [1]. 
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TABLE 3.1.  PREDICTABILITY OF 100 YEAST GENE DELETION PHENOTYPES.  Table 

used by permission from [1]. 
 
Phenotypea

 AUC # seed 
genes with 
phenotype 

# seed 
genes 

in 
network 

Cite 

caspofungin sensitive 0.996 20 18 [31] 
increased resistance to calcofluor white  0.982 10 10 [32] 
unipolar budding 0.941 10 10 [14] 
CPY secretion (3) 0.937 46 44 [33] 
cell cycle arrest defective 0.930 8 8 [34] 
UVC sensitive (high) 0.919 15 14 [35] 
sensitivity at 15 generations in galactose  0.908 17 14 [4] 
CANR mutator (high) 0.904 18 18 [36] 
haploinsufficient in rich medium (YPD) 0.898 184 184 [37] 
cellular chitin level increased (3) 0.873 22 21 [32] 
bleomycin resistant (3) 0.871 5 4 [38] 
morphology: branched (diploid) 0.870 5 5 [4] 
sensitivity at 15 generations in 1.5 M sorbitol  0.867 6 4 [4] 
caspofungin resistant 0.866 8 8 [31] 
inviable (essential) 0.845 1100 1027 [4, 

29] 
shortened telomeres (3) 0.843 20 18 [39] 
sensitivity at 15 generations in minimal +his 
+leu +ura medium 

0.843 77 70 [4] 

MMS sensitive (3) 0.837 78 73 [40] 
cellular chitin level reduced (2) 0.835 17 17 [32] 
Petite 0.833 179 166 [41] 
sensitivity at 5 generations in minimal +his 
+leu +ura medium 

0.827 62 51 [4] 

long telomeres (3) 0.824 6 6 [39] 
decreased calcofluor white resistance 0.814 65 63 [37, 

42] 
Growth defect on a fermentable carbon source  0.812 257 249 [43] 
transposon cDNA expression changed (high) 0.810 27 26 [44] 
morphology: clumpy (3)(diploid) 0.802 18 18 [4] 
gamma radiation sensitive (3) 0.793 31 31 [45] 
cell cycle arrest defective and defective shmoo 0.782 30 29 [34] 
sensitivity at 5 generations in galactose  0.781 11 10 [4] 
small (haploid) 0.778 215 192 [46] 
retrotransposition reduced 0.772 99 89 [44] 
K1 killer toxin sensitive (40%) 0.770 72 72 [42] 
increased iron uptake 0.757 76 70 [47] 
Growth defect on a non-fermentable carbon 
source  

0.755 498 448 [43] 
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gentamycin sensitive (high) 0.754 11 11 [48] 
proteasome inhibitor sens (high) 0.753 22 22 [49] 
reduced fitness in rich medium (YPD) 0.748 891 872 [37] 
mycophenolic acid sensitive 0.746 38 33 [50] 
axial budding 0.745 4 4 [14] 
morphology: elongate (3) (diploid) 0.739 77 73 [4] 
sporulation deficient 0.738 261 244 [51] 
random budding (high) 0.737 74 72 [14] 
large (haploid) 0.728 227 205 [46] 
reduced sporulation (3) (normal respiration) 0.722 136 119 [52] 
bleomycin sensitive (4) 0.721 58 55 [38] 
sensitivity at 5 generations in synthetic 
complete - lys medium 

0.715 23 22 [4] 

decreased rapamycin resistance 0.707 272 256 [53] 
whi 0.706 19 19 [41] 
sensitivity at 5 generations in 1.5 M sorbitol  0.704 13 11 [4] 
decreased wortmannin resistance 0.703 89 85 [53] 
sensitivity at 20 generations in 1 M NaCl  0.703 63 59 [4] 
K1 killer toxin resistant (40%) 0.698 19 18 [42] 
morphology: round (3) (diploid) 0.696 105 99 [4] 
uge 0.694 28 26 [41] 
sensitivity at 5 generations in synthetic 
complete - trp medium 

0.694 48 45 [4] 

sensitivity at 5 generations in 1 M NaCl  0.693 60 56 [4] 
rapamycin resist (2) 0.692 26 26 [54] 
reduced iron uptake 0.688 5 5 [47] 
rate of growth loss of growth in 0.85 M NaCl 0.682 212 189 [55] 
sensitivity at 5 generations in medium of pH 8  0.677 102 93 [4] 
sensitivity at 15 generations in medium of pH 8  0.676 128 115 [4] 
morphology: small (3)(diploid) 0.672 79 69 [4] 
sensitivity at 15 generations in 10 uM nystatin  0.672 28 27 [4] 
morphology: large (3)(diploid) 0.669 88 80 [4] 
reduced glycogen storage (2) 0.666 44 41 [56] 
sensitivity at 5 generations in 10 uM nystatin  0.666 124 108 [4] 
increased rapamycin resistance   0.662 114 100 [53] 
morphology: unusual shmoo (haploid) 0.661 29 25 [34] 
morphology: polarized bud growth (haploid) 0.657 5 5 [34] 
wortmannin resistant (5) 0.656 25 23 [57] 
sensitivity at 5 generations in synthetic 
complete - thr medium 

0.647 31 29 [4] 

enhanced glycogen storage (2) 0.645 61 55 [56] 
proteasome inhibitor resistant 0.642 7 6 [49] 
reduced spores per ascus 0.641 37 34 [52] 
rate of growth sensitivity in 0.85 M NaCl 0.629 209 191 [55] 
morphology: football (3) (diploid) 0.628 59 53 [4] 
germination deficient 0.627 158 147 [51] 
sporulation promoting 0.622 102 98 [51] 
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6AU sensitive (3) 0.618 28 26 [58] 
increased wortmannin resistance 0.617 80 75 [53] 
morphology: elongated (haploid) 0.603 110 101 [34] 
rapamycin sensitive (4) 0.597 20 20 [54] 
efficiency of growth sensitivity in 0.85 M NaCl 0.597 65 58 [55] 
decreased rapamycin resistance 0.597 8 7 [53] 
slow growth in YPD (16x below WT) 0.585 23 22 [4] 
MPA sensitive (3) 0.563 24 22 [58] 
morphology: round (haploid) 0.552 13 11 [34] 
efficiency of growth resistance in 0.85 M NaCl 0.541 44 40 [55] 
sensitivity at 5 generations in synthetic 
complete medium 

0.531 88 78 [4] 

morphology: large (haploid) 0.527 23 21 [34] 
adaptation time loss of growth in 0.85 M NaCl 0.526 103 91 [55] 
adaptation time sensitivity in 0.85 M NaCl 0.521 284 259 [55] 
decreased sensitivity to the anticancer drug, 
cisplatin 

0.512 22 19 [59] 

morphology: chain (diploid) 0.485 5 5 [4] 
morphology: small (haploid) 0.480 94 89 [34] 
rate of growth resistance in 0.85 M NaCl 0.479 59 49 [55] 
morphology: clumped (haploid) 0.479 32 28 [34] 
adaptation time resistance in 0.85 M NaCl 0.465 69 60 [55] 
efficiency of growth loss of growth in 0.85 M 
NaCl 

0.464 23 21 [55] 

morphology: pointed (haploid) 0.453 99 88 [34] 
a
Numbers in parentheses indicate threshold applied to generate seed set, e.g., (3) indicates ‘+++’ 

or ‘---’, as appropriate. 
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Each phenotype was evaluated for the area under the ROC curve (a measure of 

predictability), as described in the methods.  Specifically, I used hits from these screens 

as seed sets for predicting the associated phenotypes from the yeast network, performing 

leave-one-out cross-validation, just as for the prediction of essential genes.  The 

network’s predictive power for a representative assortment of these phenotypes is 

displayed in Figure 3.2.  In order to evaluate the overall trends in these data, I calculated 

the area under each of the 100 ROC curves (AUC) as a measure of prediction strength—

an AUC value of 0.5 indicates random performance, while an AUC value of 1.0 indicates 

perfect predictions.  I found that a majority of phenotypes are reasonably predictable 

(Figure 3.3), with 70% of the phenotypes predictable at AUC > 0.65.  In contrast, none 

of 100 random gene sets of the same sizes as the actual phenotypic seed sets exhibited 

AUC > 0.65.  The AUC of the highest scoring random set was 0.64, which indicates that 

phenotypes with AUC > 0.65 were significant to at least p < 0.01.  In order to contrast the 

AUC of real phenotypes derived from the literature with what would be expected under a 

random distribution, I generated equivalent sets of random genes by drawing from the 

complete set genes labeled by SGD [15] as verified or uncharacterized (as of January 29, 

2007).  The random sets were size matched to the real phenotype sets. 
 

A wide range of phenotypes are highly predictable, including: shortened 

telomeres [39], increased secretion of CPY protein [33] (an indicator of disruption of 

sorting in the secretory system), and chitin accumulation [32].  Many categories of 

phenotype are at least moderately predictable, including both very specific phenotypes, 

such as iron uptake [47] and caspofungin sensitivity [31], and broader phenotypes like 

gross cellular morphology (small cells [46], round cells [4], etc.).  Surprisingly, there is 

little dependence of predictability on the size of the seed set (Figure 3.4), and I observed 
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strong predictability for both large and small seed sets (e.g., bleomycin resistance [38], n 

= 4 genes, AUC = 0.87 versus nonviability/essential [4, 29], n = 1027 genes, AUC = 

0.85). 
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FIGURE 3.3  LOSS-OF-FUNCTION PHENOTYPES ARE PREDICTED SIGNIFICANTLY 

BETTER THAN RANDOM EXPECTATION.  Here, predictability is measured as the 
area under a ROC curve (AUC), measuring the AUC for each of 100 yeast 
phenotypes observed in genome-wide screens and plotting the resulting AUC 
distributions.  Real phenotypes are significantly more predictable than size-
matched random gene sets.  At the left of each box-and-whisker plot, the center of 
the blue diamond indicates the AUC mean, the top and bottom of the diamond 
indicate the 95% confidence interval, and the accompanying solid vertical line 
indicates +/- 2 standard deviations.  The bottom, middle, and top horizontal lines 
of the box-and-whisker plots represent the 1st quartile, the median, and the 3rd 
quartile of AUCs, respectively; whiskers indicate 1.5 times the interquartile range.  
Red plus signs represent individual outliers.  Figure used by permission [1]. 
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FIGURE 3.4  A PLOT OF SEED SET SIZE VERSUS PREDICTABILITY OF THE PHENOTYPE 

SHOWS NO SIGNIFICANT CORRELATION.  Thus, there does not appear to be an 

intrinsic limitation for applying network-guided reverse genetics even when seed 

set size is small.  Each filled circle indicates the prediction strength (AUC, as 

calculated in Figure 3.3) of one of the 100 loss-of-function phenotypes relative to 

the number of genes in that seed set.  Figure used by permission [1]. 
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Integration of functional genomics and proteomics data is important for phenotype 
prediction 

As physically interacting proteins often share related genetic interaction partners 

(e.g., [60, 61]) and even human disease associations [25, 62, 63], it seemed likely that 

physical protein interactions might account for a large fraction of the signal I observe.  In 

particular, Lage et al [62] has used guilt-by-association among protein complexes to 

predict disease genes within human genetic linkage groups.  Balancing this trend, 

phenotypes of annotated genes are in part predictable directly from the annotations [64].  

Thus, I asked if the integration of functional genomics and proteomics data in the 

functional network brought additional predictive power over physical interactions alone.  

To compare the predictive accuracy of the functional network to protein interaction 

networks, I repeated the GBA analysis with several protein interaction networks [17-19, 

21].  I used any weightings reported with the interactions and weighted all interactions 

equally in the absence of a reported interaction probability.  I measured the median AUC 

across the same 100 phenotypes discussed above for the functional yeast gene network 

and for each of several versions of the yeast protein physical interaction network [17-19, 

21].  I compared these values to the median fraction of each seed gene set covered by the 

respective networks.  The values of AUC and fraction covered therefore serve as 

measures of precision and recall for each network.  As Figure 3.5 demonstrates, I 

observe that all networks predict loss-of-function phenotypes to some extent, but find the 

functional network to predict phenotypes at a significantly higher precision and recall. 



 51 

 

 
 
FIGURE 3.5  FUNCTIONAL NETWORKS HAVE GREATER PREDICTIVE POWER FOR 

PHENOTYPE THAN PHYSICAL PROTEIN NETWORKS.  Median values of 
predictive power (AUC) across 100 loss-of-function phenotypes are plotted 
versus the median fraction of each seed gene set covered by a network (coverage; 
measured as the fraction of seed genes with at least one linkage in the network).  
Five networks are compared: the functional yeast network (YeastNet v. 2 [11]) 
and four versions of the network of yeast physical protein interactions (DIP [18], 
PICO [19], MIPS physical complexes [17], and Collins et al. [21]).  DIP, PICO, 
and YeastNet are each evaluated at their two reported confidence thresholds.  The 
YeastNet functional gene network shows considerably higher predictive power 
than for the networks composed only of physical interactions; the full YeastNet 
shows higher predictive power than a more confident core set of the top 47,000 
linkages, indicating that the lower confidence linkages nonetheless add predictive 
power.  Error bars indicate the 1st and 3rd quartiles.  Figure used by permission 
[1]. 
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I attribute this enhanced performance to the increased comprehensiveness of the 

functional gene network, both in terms of additional types of gene associations as well as 

more extensive coverage of the overall set of yeast genes.  The functional network 

accomplishes this by incorporating other sources of functional interaction (e.g., mRNA 

co-expression) in addition to physical interactions from both small scale (e.g., the DIP 

and MIPS databases) and genome scale (e.g., mass spectrometry of affinity-purified 

protein complexes and yeast two hybrid) experiments.  Figure 3.6 illustrates two sub-

networks that contribute to the prediction of two difference phenotypes, one of which 

depends heavily on the physical interaction data (A), but the other does not (B).  This 

suggests that many phenotypes are the result of more than the disruption of protein 

complexes or interactions.  The integration of many types of data, including protein 

interactions, allows the functional network to predict phenotypes regardless of the 

underlying mechanism that leads to the phenotype.  This is a clear example that 

integration of multiple types of functional data improves the predictive accuracy and gene 

coverage of the functional network over the underlying datasets. 
 

Further, as shown in Figure 3.7, the sequential addition of progressively lower 

confidence functional linkages increases both predictive accuracy and coverage. Low 

confidence linkages do not undercut the predictive power of high confidence linkages 

because they are weighted in proportion to the strength of the evidence that supports 

them. These observations highlight the importance of integrating diverse data types 

within a consistent statistical frame work and suggest that the proteins encoded by genes 

associated with the same phenotype often may not physically interact.  As additional 

functional data are collected by the scientific community, they can be quickly integrated 
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within the network framework to generate more accurate functional networks, and, as 

shown in Figure 3.8, more accurate phenotype predictions. 
 



 54 

 

 
FIGURE 3.6  PREDICTIVE POWER OF FUNCTIONAL NETWORK RELIES ON PHYSICAL 

AND FUNCTIONAL INFORMATION.  (A) and (B) show example seed gene sets 

(green circles) and their network connections, indicating functional linkages in 

grey lines, physical interactions in thin black lines, and both functional and 

physical interactions in thick black lines.  (A) shows genes whose deletion 

increases cellular chitin levels [32] (AUC = 0.87), whose prediction relies upon a 

mix of physical and functional interactions.  (B) shows genes whose deletion 

confers sensitivity at 5 generations in synthetic complete medium lacking 

threonine [4] (AUC = 0.65), whose prediction derives predominantly from 

functional linkages.  Network drawn with Cytoscape [12]. Figure used by 

permission [1]. 
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FIGURE 3.7  LOWER PROBABILITY LINKAGES CONTINUE TO IMPROVE PREDICTIVE 

ACCURACY, ALBEIT WITH DIMINISHING RETURNS, shown in a plot of the 

predictive accuracy (median AUC across the 100 phenotypes, calculated as in 

Figure 3.3) versus median network coverage of the 100 phenotype sets, as 

calculated for the top-ranked 20000 (20K), 40000 (40K), etc. linkages in 

YeastNet v.2.  This trend derives from the fact that all links in this network have 

at least a 60% probability of linking genes in the same pathway.  The probabilistic 

nature of the network means that low confidence linkages are unlikely to undercut 

high confidence linkages during phenotype prediction because the links are 

weighted according to the strength of the evidence supporting them.  Error bars 

indicate the 1st and 3rd quartiles.  Figure used by permission [1]. 
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FIGURE 3.8  ITERATIONS OF THE FUNCTIONAL NETWORK IMPROVE PHENOTYPE 

PREDICTION.  Additional data integrated into the functional network improves 

phenotype prediction over time, with new links improving both predictive 

accuracy and coverage of genes with known phenotypes.  YeastNet1 [9], 

YeastNet2 [11], and YeastNet3 [65] use the same basic approach to integrate data, 

but incorporate different data sets and use slightly different methods to insure 

quality control. 
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Prediction of quantitative cell morphology phenotypes 

Having established the predictive power of the network for largely qualitative 

phenotypes, I chose to I apply the same approach to the quantitative, morphological 

phenotypes.  Given that the phenotypes analyzed thus far are often based on subjective 

criteria (i.e., judged to be elongated or not), it is important to ask if such predictions can 

be made for quantitative phenotypes.  So, I tested the predictive power of the GBA 

approach on quantitative cell morphology data reported by the Saccharomyces cerevisiae 

morphology database (SCMD) [16], which were systematically measured for the set of 

haploid MATa yeast deletion strains [66].  281 quantitative features of cell shape, 

cellular, and subcellular morphology were measured for each strain, including such 

parameters as the ratio of long cell axis to short cell axis, the angle between a mother cell 

and bud, and the relative distribution of actin with regards to the bud position.  Each 

feature was measured for many cells from a given strain, and the mean value reported.  

For 220 of the features, the coefficient of variance (CV) was also reported, describing the 

variability in that feature across single cells in that strain.  Considering the mean value of 

each feature and the CV as separate traits (the former will be referred to as morphology 

phenotypes and the latter as CV phenotypes) means that a total of 501 cell shape 

measurements or CVs were reported for 4,718 strains. 

 

As not all measurable cell shape features are likely to be under selection (for 

example, they might simply vary stochastically yet neutrally), I do not expect all such 

phenotypes to correspond to functional pathways and therefore be predictable.  

Nonetheless, one might expect that a number of these would have functional correlates 
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and therefore be predictable.  In order to test this notion, I therefore evaluated each of the 

501 features for predictability using the functional gene network. 

  

To generate seed gene sets from these data, for each of the 281 quantitative 

features I selected as phenotypic seed sets the 40 genes with the highest measured mean 

value of that feature and the 40 genes with the lowest measured mean value of that 

feature, in all generating 562 morphology phenotype seed gene sets (281 features x 2 

seed sets each).  I then evaluated each of these seed sets for predictability using ROC 

analysis.  As for the 100 genome-wide phenotypic screens, I observed many strongly 

predictable cell morphology phenotypes, such as those illustrated in Figure 3.9.  For 

example, one of the most strongly predictable cell morphology phenotypes is for the 

genes whose disruption most increases cell ellipticity during nuclear migration to the bud 

neck (AUC = 0.87).  Another strongly predictable phenotype is for deletion strains 

showing the highest increase in the actin polarization of unbudded cells (AUC = 0.80). 

 

The AUC distribution of 562 quantitative phenotypes from SCMD is compared to 

the background random distribution in the next figure (Figure 3.10).  Although many 

morphological phenotypes overlap with the random distribution, a significant portion of 

the phenotypes are more predictable than explainable by chance.  For the SCMD 

phenotype sets, the model for random expectation was generated by drawing 1000 sets of 

40 genes from the set of genes SMCD analyzed and calculating the AUC for each 

random set.  Note that predictability does not depend strongly on the size of the seed sets; 

I see similar predictive power with seed sets of 10 - 80 genes (data not shown).  These 

results confirm that even specific quantitative aspects of yeast cell shape often have 
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functional correlates, and therefore the sets of genes whose disruption most affects such 

features are predictable. 
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FIGURE 3.9  NETWORK-BASED PREDICTIONS OF QUANTITATIVE CELL MORPHOLOGY 

PHENOTYPES.  A WIDE VARIETY OF PHENOTYPES BASED UPON 

QUANTITATIVE YEAST CELL SHAPE AND INTRACELLULAR FEATURES ARE 

PREDICTABLE [66], as shown for the 10 phenotypes in this ROC analysis 
(selected from SCMD phenotypes with AUC > 0.68).  For each of the features, 
the 40 genes whose deletion mutants show either the 40 highest or 40 lowest 
values for that quantitative feature (indicated by “high” or “low”, respectively) 
were selected as the seed gene set.  Predictability was evaluated using ROC 
analysis as in Figure 2, plotting the true positive prediction rate versus false 
positive rate, using leave-one-out cross-validation.  For clarity, the line 
connecting the final point of each graph to the top right corner has been omitted.  
Labels of features are adapted for clarity from the Saccharomyces cerevisiae 
Morphology Database [16]; the SCMD labels A, A1B, and C, represent unbudded 
cells, budded cell with one nucleus in mother cell, and large-budded post-mitotic 
cells with nuclei in both mother and daughter cell, respectively.  Ratio 
measurements refer to proportions across a population of cells.  Figure used by 
permission [1]. 
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FIGURE 3.10  PREDICTIONS OF QUANTITATIVE CELL MORPHOLOGY PHENOTYPES 

ARE SIGNIFICANTLY BETTER THAN RANDOM. A histogram plotting the 

distribution of the AUC values for 562 quantitative morphological phenotypes 

shows a significantly higher proportion of high AUC values than for 1,000 size-

matched random gene sets.  Figure used by permission [1]. 
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Genes increasing cell-to-cell variation are less functionally coherent than those 
decreasing variation 

With two types of quantitative traits in SCMD, the traits themselves and their 

variance, I decided to see if subsets of the phenotypes were differentially predictable.  

Specifically, I asked if the coefficient of variance of a yeast morphology phenotype 

across single cells in a population was itself a predictable phenotype.  Strikingly, I 

observed good predictability for sets of genes whose disruption most increased the CV of 

a given morphological feature (e.g., the 40 genes whose deletion caused the highest 

increase in bud neck width CV; AUC = 0.70), but near random prediction for sets of 

genes whose disruption most decreased the CV in a given morphological feature (e.g., 

the 40 genes whose deletion most reduced bud neck width CV; AUC = 0.54) (Figure 

3.11).  The high CV phenotypes are significantly more predictable than the low CV 

phenotypes (p < 0.0001, Wilcoxon signed-ranks test).  Across the 220 high CV 

phenotypes, I observed 116 to show significantly greater AUC values than size-matched 

random sets (at the 95% confidence level as judged by Z-score > 1.95), while only 26 of 

the set of 220 low CV phenotypes were better than random at this level. 

 

Upon further analysis, it became clear that while quantitative, morphological 

phenotypes were predictable at both the high and low ends of the measured distribution, 

only high, but not low, coefficient-of-variance phenotypes are predictable.  As successful 

prediction of a loss-of-function phenotype implies functional coherence of the genes—

essentially reflecting clustering of the genes in the functional network—this result 

indicates that the genes whose disruption most strongly reduced the CV in a given 

morphological feature do not in general form a functionally coherent set.  By contrast, 

genes whose disruption most increased morphological phenotypic variability were 
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predictable, and thus functionally coherent.  I further observed that the same genes tended 

to be present in the phenotypic sets from many different CV phenotypes—i.e., there are 

particular genes whose deletion increases the coefficient of variance of a large number of 

otherwise unrelated morphological properties. 
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FIGURE 3.11  GENES WHOSE DISRUPTION DECREASES POPULATION CO-EFFICIENT 

OF VARIANCE (CV) ARE ESSENTIALLY RANDOM.  Separate analyses of 

phenotypes associated with morphological features and phenotypes associated 

with cell-to-cell variability in the morphological features reveals asymmetry in 

predictability. Sets of genes whose disruption causes the 40 largest or smallest 

mean values of a morphological feature (middle plots) are significantly more 

predictable than random gene sets (left side).  By contrast, while the sets of genes 

whose disruption most increase the CV tend to be predictable (high AUC), those 

that most decrease the CV are not (low AUC).  Box-and-whisker plots are drawn 

as in Figure 3.3.  Figure used by permission [1]. 
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To further explore this observation, for each of the 4,718 yeast genes in the SCMD data 

set, I calculated the median percentile rank across each of the 220 SCMD CV 

phenotypes.  Thus, the gene whose deletion strain has the highest median percentile rank 

(the telomere length regulation gene EST1; median percentile rank of 0.98) exhibits the 

highest cell-to-cell variability across nearly all of the set of 220 CV phenotypes.  By 

contrast, the gene whose deletion strain has the lowest median percentile rank 

(YAL004W, a small open reading frame that overlaps the coding sequence for the HSP70 

family chaperone SSA1; median percentile rank 0.17) consistently exhibits the lowest 

cell-to-cell variability for the tested phenotypes.  Thus, these rankings capture the generic 

tendency for a gene to increase or decrease cell-to-cell variability across many measured 

morphology parameters.  I tested the top-ranked 40 genes and the bottom-ranked 40 

genes for their network-based predictability.   
 

As with my earlier observations, the top-ranked 40 genes (those with highest 

median percentile rank) show reasonable predictability (AUC = 0.71), while the bottom-

ranked 40 genes show random predictability (AUC = 0.49).  Thus, either on a phenotype-

by-phenotype basis, or across all 220 phenotypes, genes whose disruption most increased 

morphological phenotypic variability tended to be more predictable and functionally 

coherent than those that reduced phenotypic variability.  By comparing the distribution of 

the median percentile rank of all 220 coefficient of variance phenotypes for each of the 

4,718 knockout strain to 127 wild-type replicates, I were able to identify a cluster of 

genes involved in DNA repair that consistently lead to higher coefficients of variance for 

many phenotypes (Figure 3.12).  The top-ranked set of 40 genes show strong enrichment 

for specific Gene Ontology terms, with 17 of the 40 genes encoding nuclear proteins (p < 

10
-6

; measured using FunSpec [67]); 10 of these are DNA binding proteins (p < 10
-4

), 
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including genes of DNA recombination and repair (p < 10
-6

).  Many of these genes are 

involved in maintaining genomic stability, including the repair/recombination proteins 

RAD27, RAD50, RAD51, RAD52, CTF4, HEX3, RTT109, and THP1, the histone 

HTZ1, and the telomere maintenance protein EST1.  Thus, while deletions of these genes 

may possibly increase phenotypic variation, the most plausible biological explanation for 

the increased cell-to-cell variation between these strains is that they are no longer clonal 

due to genomic damage and rearrangement. 
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FIGURE 3.12  GENES KNOCKOUTS THAT INCREASE VARIANCE ACROSS MANY 

MORPHOLOGICAL TRAITS TYPICALLY AFFECT GENOMIC STABILITY.  A 

histogram comparison of the median phenotypic CVs observed for deletion strains 

versus replicate analyses of wild-type cells shows that deletion strains with the 

most reduced CVs are essentially wild-type-like in character, while those with the 

most increased CVs show significantly more cell-to-cell variability than wild-type 

cells.  These latter knockout strains carry deletions for genes predominantly 

involved in maintaining genomic integrity.  This trend is therefore likely to have 

arisen from non-clonal genetic variation in these strains, recapitulating the classic 

mutator phenotype.  Data from [16].  Figure used by permission [1]. 
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The functional network predicts yeast orthologs of human disease genes 

The network’s effectiveness at predicting both qualitative and quantitative yeast 

phenotypes suggests the possibility of application to other organisms, such as for 

predicting human disease genes.  I evaluated the applicability of the functional network 

GBA approach to predicting human disease by performing a similar AUC analysis on 

yeast orthologs of human diseases. I used human diseases from OMIM [68], while 

treating disease variants of a single disease as one category.  I mapped human disease 

genes and yeast genes in the functional network to their human-yeast ortholog group 

using InParanoid.  Using the method described above, I then calculated the AUC (as a 

measure of predictability) of the yeast orthologs of human genes for diseases that 

involved at least 4 human-yeast ortholog groups of which at least 4 yeast orthologs 

existed in YeastNet.  Perhaps surprisingly, phenotype predictions from the functional 

network are robust across species boundaries.  Yeast orthologs of human disease genes 

can be predicted by the functional network as demonstrated in Figure 3.13 for 28 OMIM 

diseases involving four or more yeast orthologs.  Not only are many of the yeast 

orthologs of these disease genes predictable, the median predictive accuracy of these 

phenotypes is even slightly higher than the genome-wide yeast phenotypes (Figure 3.3), 

a probable reflection of the fact that genes conserved between yeast and humans 

generally compose core cellular machinery, well-captured by the gene network.  As an 

illustration of this, the highest scoring human disease (AUC = 0.998), leukoencephaly 

with vanishing white matter, results from mutations in any of the subunits of the 

translation initiation factor EIF2B [69].  Likewise, I observed strong predictability for 

hemolytic anemia (AUC = 0.89), which involves 11 ortholog groups, involved in 
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glycolysis and glutathione metabolism, which are linked primarily by co-expression and 

co-citation, with only a few physical interaction-based linkages.  

Although this test was limited to diseases involving biological processes shared 

between human and yeast, these results support the notion that an integrated human 

functional network would guide the discovery of new disease genes.  As I observe strong 

disease predictions both from protein complexes (as in leukoencephalopathy) and 

pathways (as in hemolytic anemia), it appears likely that a functional human gene 

network might offer strong predictions for genes associated with diverse human diseases, 

even in the absence of genetic linkage data. 
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FIGURE 3.13  YEAST GENES WHOSE HUMAN ORTHOLOGS ARE LINKED TO THE SAME 

DISEASES ARE PREDICTED SIGNIFICANTLY BETTER THAN RANDOM 

EXPECTATION. Predictability is measured as the area under a ROC curve (AUC) 
as in Figure 3, measuring the AUC for each of 28 human diseases reported in the 
OMIM disease database [23] that have four or more yeast orthologs annotated in 
the yeast function network and plotting the resulting AUC distributions.  Real 
disease gene sets are significantly more predictable than size-matched random 
gene sets drawn from the set of yeast-human orthologs.  Box plots are drawn as in 
Figure 3.3.  Figure used by permission [1]. 
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Experimental Results 

Extending a genetic screen by network-guided reverse genetics 

To this point, my analysis of the predictive power of the network had used a 

computational approach to demonstrate its power to retrieve known results.  However, for 

organisms in which reverse genetics is feasible, the observation that phenotypes can be 

predicted from network connectivity opens the possibility of extending genetic screens in 

a directed fashion.  That is, when in possession of a set of genes known to give rise to a 

phenotype of interest, rather than randomly screening to identify additional genes, one 

could instead exploit the predictability of phenotypes by directly screening genes that are 

most strongly connected to the known set in the network.  In this manner, experiments 

could be focused on the genes most likely to give rise to the phenotype.  So, I sought to 

experimentally demonstrate the predictive power of the network using a seed set of 

genes, while simultaneously extending a high-throughput screen, in a fashion similar to 

the extension of the screen for novel shmoo localized proteins as discussed in the 

previous chapter.  However, in this case, rather than re-testing to reduce false negatives, I 

wanted to screen additional genes that had not been previously tested in an initial screen.  

I decided to extend a previously published screen [4] of non-essential genes that result in 

a simple morphological defect, cell elongation, by testing essential genes.  Among 

nonessential genes, 145 genes (3.3%) have been identified that give rise to elongated 

morphologies in homozygous diploid deletion strains, of which 77 genes (1.7%) show a 

strong phenotype [4].  I selected these 77 genes as a seed set and found the phenotype to 

be reasonably predictable from the network using ROC analysis (AUC = 0.74).  Using 

the GBA method, I predicted the top 35 essential genes, which were not tested in the 

screen [4, 66], and were able to assay 33 of these strains for the elongate phenotype using 



 72 

a tetracycline-downregulatable library.  For a negative control, 17 strains from the same 

library not linked to known elongate genes were also assayed.  I examined conditional 

loss-of-function strains for elongated cell morphologies, performing light microscopy of 

yeast strains carrying tetracycline-downregulatable alleles of each candidate gene [13].  

Sixteen (~48%) of the 33 tested were elongated, as shown for several examples in Figure 

3.13.  Only one negative control was elongated, which had been previously identified by 

Mnaimneh et al. [13].  The results represent an 8-fold improvement over the negative 

control set and a >15-fold improvement over genome-wide screening, confirming a set of 

predictions experimentally while also validating the general strategy of network-guided 

genetic screening. 
 

My rate of elongation identification is 8-fold higher than the negative control set 

and greater than 15-fold higher than the genome-wide screen, which demonstrates the 

utility of network-informed genetic screens and confirms that GBA phenotypic 

predictions based on the functional network are substantially accurate. 
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FIGURE 3.13  NETWORK-GUIDED EXTENSION OF A GENETIC SCREEN.  GBA was 

applied to predict essential yeast genes whose disruption resulted in elongated 

yeast cells, based on the genes’ network connectivity to a seed set of 77 

nonessential genes already known to cause cell elongation when deleted [4]. Five 

examples of successful predictions, observed in yeast strains carrying 

tetracycline-downregulatable conditional alleles [13] of the essential genes TAF9, 

MED6, MED7, SWI1, and RPO21. By contrast, conditional down-regulation of 

an unrelated essential gene, SCM3, caused no such cell elongation.  See Figure 

3.14 for additional details.  Figure used by permission [1]. 
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To gain further insight into the genes identified, I examined the network 

connections among the seed genes and newly identified genes giving rise to the elongated 

phenotype (Figure 3.14).  Strikingly, functional analysis of the elongate genes recovered 

indicates that the elongate phenotype is linked to the disruption of core transcriptional 

machinery, with the genes associated with elongated yeast cell morphology strongly 

enriched for core transcriptional functions (for example, they are significantly enriched 

for the MIPS [70] annotation “mRNA synthesis”, P < 10
-12

 [67]).  The set of newly 

identified genes predominantly belong to the RNA polymerase II mediator complex and 

associated transcriptional machinery.  Specifically, the genes recovered in the targeted 

screen are subunits of the RNA polymerase II mediator complex (MED6, MED7, both 

previously identified by [23], and MED8), and the transcription initiation complexes 

TFIID and SAGA (TAF1, TAF5, TAF9, and TAF12), complexes required for RNA 

polymerase II transcriptional initiation.  This illustrates another advantage of network-

guided genetic screening: because candidate genes are selected directly from the gene 

network, functional connections are often already known among the genes, helping to 

guide later interpretation of the hits.  The relationship between an observed phenotype 

and the corresponding molecular defect is often mysterious: the mechanism is unknown 

by which defects in transcription initiation lead to elongated cells. Nevertheless, it 

demonstrates that the phenotypic predictions of the functional networks are accurate even 

when the mechanisms leading from genotype to phenotype are unclear. 
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FIGURE 3.14  NETWORK CONNECTIVITY PREDICTS GENES INVOLVED IN CELL 

ELONGATION.  16 of 33 tested essential genes (yellow circles) showed elongated 
cell phenotypes (see Figure 3.13) on the basis of their connections to the seed set 
genes (green circles), with particular enrichment for genes associated with RNA 
polymerase II transcriptional initiation and the mediator complex.  The color of 
the edge between two genes indicates the source of evidence supporting the 
functional link: thick black, multiple types of evidence; blue, affinity 
purification/mass spectrometry; green, literature mining by co-citation; cyan, gene 
neighbors or tertiary structure; pink, literature curated physical interaction; red, 
genetic interaction.  Network drawn with Cytoscape [12].  Figure used by 
permission [1]. 
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DISCUSSION 

Just as functional networks propagate known functional annotations to un-

annotated genes, phenotype prediction via GBA is limited to propagating known 

phenotypes.  Therefore, an initial seed set of genes is required, such as might result from 

a genetic screen for the phenotype of interest, before being able to apply the network in 

order to identify more such genes.  I might also expect genes in the same pathway to 

often exert inverse effects on a phenotype, acting either as activators or repressors.  I will 

discuss this further in the next chapter, because my next area of research suggests that 

there may be ways to find “inverse” phenotypes when a number of activators and 

repressors are involved in a given pathway.  Despite possible complicating factors, I 

demonstrate that GBA can be successfully applied to identify genes giving rise to similar 

loss-of-function phenotypes.  Furthermore, network-guided phenotype prediction can be 

used to extend a genetic screen in a targeted fashion by providing a ranked list of 

potential candidates for evaluation.  In principle, the screen might be expanded by adding 

the newly identified genes to the seed set and iterating the prediction and testing.   

 

In particular, large-scale reverse genetic screens using yeast mutant strain 

collections have become increasingly common [71].  However, as seen in my chapter on 

shmoo localization, large-scale assays often suffer from high false negative rates.  In 

many cases, the primary source of false negatives may be the limited scope of libraries 

used in screening (e.g., screening only the nonessential or essential genes).  Such partially 

genome-wide screens can benefit by following up the initial screen with focused 

screening (or re-screening) of prioritized candidate genes.  In order to facilitate such 

efforts, I have created a web server [69] which allows interactive analysis of a seed gene 
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set, performing ROC analysis to assess the predictability of the phenotype, then returning 

a ranked list of candidate genes most likely to share the same loss-of-function phenotype. 
 

Note that I have focused on predicting loss-of-function phenotypes because of the 

large number of genome-wide screens available; it is not clear that gain-of-function 

phenotypes will be similarly predictable.  However, the recent construction of yeast over-

expression libraries [72-74] should soon allow testing of network-based prediction of 

such phenotypes. 
 

Why are loss-of-function phenotypes predictable? 

The results indicate that typical phenotypes represent specific enough defects that 

they are predictable based upon the genes’ functional associations. I observe multiple 

mechanisms for how loss of different genes leads to disruption of the same 

phenotypically relevant process, primarily participation in the same protein complex or 

membership in the same biological pathway.  These results are consistent with the partial 

predictability of human disease from protein complex membership [62, 63] and of the 

prediction of knockout phenotypes of annotated yeast genes on the basis of pathway 

annotation [64], which I illustrate with the following contrasting examples from among 

my predictions.  In Figure 3.6A, the proteins ANP1, MNN9, MNN10, MNN11, VAN1 

are members of the same alpha-1,6-mannosyltransferase protein complex.  Chitin 

accumulates when the function of the complex is disrupted by the loss of any one of the 

five members [32].  In contrast, in Figure 3.6B, the three genes THR1, THR4, and HOM6 

are involved in the biochemical pathway that converts homoserine to threonine; these 

genes are linked in the functional network [11] by virtue of the coordinate expression of 

their bacterial homologs in operons (e.g., as for the Bacillus subtilis homologs ThrB, 
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ThrC, and ThrA ), even though there is as yet little evidence that they belong to the same 

physical complex.  The loss of any of the three genes disrupts the threonine synthesis 

pathway and leads to reduced growth after 5 generations in threonine-depleted media [4].  

The functional gene network, which combines both physical and functional interactions, 

predicts both classes of phenotypes effectively, whether resulting from disruption of 

physical complexes or pathways. 
 

Nevertheless, some phenotypes are not significantly predictable.  Three likely 

causes exist:  First, poor predictability may result from using genome-wide screens with 

high false positive rates, which would base predictions on incorrectly identified seed sets.  

I sought to minimize this type of error by adopting stringent thresholds for each 

phenotype.  Second, incomplete screens (e.g., such as by not testing the essential genes), 

high false negative rates, and the stringent phenotype thresholds that I selected could lead 

to a large number of positive examples being excluded from the seed sets.  Such omitted 

positive examples scoring higher than seed genes would artificially depress prediction 

accuracies.  Third, unpredictable phenotypes could in principle arise from the disruption 

of functionally unrelated genes.  In order to test this, I compared the GO enrichment for 

the 25 most predictable phenotypes with the 25 least predictable phenotypes.  For each 

phenotype, I identified the GO term with the most significant enrichment of genes 

annotated with the term, measured using the hypergeometric distribution.  Using a 

significance threshold of p < 10
-7

, I find that 18 of the 25 highly predictable phenotypes 

are significantly enriched for at least one GO annotation, versus only 2 of the 25 poorly 

predictable phenotypes.  This suggests that poorly predictable phenotypes largely result 

from sets of genes with little functional coherence. 
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AUC is a useful measure of gene functional coherence 

By definition, the GBA approach predicts phenotypes associated with functionally 

coherent sets of genes, presumably reflecting the clustering of the genes in the functional 

network.  Such predictability, which I specifically measure as the AUC, can therefore be 

regarded as a direct estimate of the functional coherence of the seed gene set.  Thus, 

beyond simply evaluating phenotype prediction, the AUC offers an additional measure of 

functional coherence that complements other existing measures, such as the enrichment 

of GO annotations or other biologically meaningful sets of genes (e.g., as calculated by 

FunSpec [67] or DAVID [75]). For example, the five genes giving rise to the branched 

cell phenotype are connected by six linkages in the network (AUC = 0.87), but only a 

single pair shares any GO annotation (p < 0.001, for the GO term “transcription from 

RNA polymerase II promoter”).  The network-based AUC measure for functional 

coherence leverages the massive unbiased data integration of functional networks, 

extending well beyond known annotations, and allows estimates of functional coherence 

even among unannotated genes or those spanning multiple systems. 
 

In principle, the AUC approach can therefore measure the functional coherence of 

genes that annotation-based methods will miss.  Beyond unannotated genes, the AUC-

based estimate of functional coherence might also work effectively when the genes under 

study span multiple functional categories—each category may only be partially enriched 

and therefore otherwise be missed for lack of signal.  The functional network, however, 

considers pairwise linkages, not predetermined categories, so has the potential to identify 

linked genes across multiple annotation categories. 
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Recapitulation of the classic mutator phenotype in the yeast knockout collection  

I observed a strikingly higher predictability for mutations that increased cell-to-

cell phenotypic variation versus those that decreased it.  The deletion strains exhibiting 

higher CVs tended to be consistent across the complete set of CV phenotypes examined, 

with the deleted genes showing strong enrichment for functions related to DNA repair, 

recombination, and genomic stability. Note that strains with the lowest CV phenotypes 

showed neither predictability nor functional enrichment—in fact, the CVs exhibited by 

these strains were similar to those observed for replicate analyses of wild-type cells 

(Figure 3.12), suggesting that the strains that most decreased cell-to-cell variation were 

essentially wild-type-like in this regard.   
 

This outcome is consistent with a recapitulation in the yeast deletion strain 

collection of the classic mutator phenotype.  The mutator phenotype was originally 

observed in DNA repair mutants—such mutants accumulated mutations so rapidly that 

they showed high variability in colony sizes when grown on Petri dishes, high variability 

in cell morphologies, high rates of plasmid loss, and increased spontaneous mutagenesis 

(e.g., as previously observed for RAD27 and RAD52 deletion mutants [76, 77]).  The 

most likely explanation is therefore that strains in the deletion collection harboring 

deletions in genes related to genomic stability have simply accumulated mutations at a 

higher rate.  A mixed population, no longer clonal, would be expected to exhibit more 

cell-to-cell variation than other deletion strains, which would accumulate mutations at a 

lower rate.  Thus, I suspect that the phenotypic analysis is correctly revealing the 

functional signature of a legitimate phenotype inadvertently captured in the process of 

distributing and passaging the yeast deletion strain collection. 
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Applying network-based phenotype prediction to humans and other organisms 

In principal, the approach I describe could be applied for any organism, using 

functional network data, if available, or in the absence of such data, using physical 

interaction data, such as available protein interaction networks for fly [78], worm [58], or 

human [25, 79-83].  In the absence of an integrated functional gene network or protein 

interaction network, I expect that networks of mRNA co-expression associations, such as 

can be derived from DNA microarray data, would provide some utility for phenotype 

prediction.  Such data are a major contributor to functional gene networks (e.g., [9, 84, 

85]) and are relatively easily generated from available data for most model organisms.   
 

In particular, application of this approach in humans may allow directed 

identification of disease genes.  Indeed, functional linkages derived largely from known 

Gene Ontology annotation [86] or protein interactions [62] have shown some utility for 

prioritizing positional candidate genes from genome-wide linkage screens.  However, the 

results show that across a wide range of yeast phenotypes and human diseases the 

associated genes (or their yeast orthologs) can be directly identified even in the absence 

of supporting genetic loci data.  In order to apply my approach to human diseases, genes 

known to be associated with a particular disease, such as found from twin or genome-

wide association studies, would form the seed set.  Additional candidate genes likely to 

be associated with that disease could then potentially be identified or prioritized based 

upon their network connections to the seed set, using the guilt-by-association principle.  

Potential disease genes could then be tested in disease model systems or screened 

genetically in a focused manner.  Such a directed approach would leverage the 

tremendous existing body of knowledge about protein interactions and functional 

pathways. 
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CONCLUSIONS 

In summary, I have demonstrated that yeast gene loss-of-function phenotypes are 

broadly predictable from connectivity in a functional gene network, with examples 

presented spanning a wide range of cell growth, cell morphology, metabolite transport, 

chemical sensitivity, and molecular phenotypes.  I demonstrate that this predictability can 

be used to extend genetic screens in a directed fashion, and that this approach might 

therefore be important in organisms for which genetics is difficult.  Furthermore, based 

on a computational analysis of gene linkage among yeast-human orthologs involved in 

disease, I suggest that a similar approach in humans might enable the directed discovery 

of disease genes.  In the following chapter, I will discuss another strategy for predicting 

phenotype across species that was inspired by this observation and others. 
 

This work is published in Genome Biology [1] from which this chapter is 

reworked and expanded upon. 
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Chapter 4: Predicting and testing human disease genes in model 
organisms by finding equivalent phenotypes between species. 

 

INTRODUCTION 

Identifying genes responsible for human disease is often challenging, at least in 

part because phenotypic assays are frequently not possible.  In addition, genome-wide, 

blind genetic studies for mutation/disease correlation often require much more data than 

can be easily collected and often run the risk of not passing a significance threshold due 

to corrections for multiple testing.  Therefore, it is desirable to find high confidence 

candidate genes that are strongly evidenced to play a causative role in the disease of 

interest, prior to screening. 

 

My previous two projects demonstrated that the yeast functional network 

effectively predicts genes for targeted screens of both intracellular protein localization 

and organismal phenotype.  Furthermore, I found that the network could predict yeast 

orthologs of human diseases.  The logical extension of this research program is to show 

that the functional network can provide a rational, quantitative approach for prioritizing 

candidate disease genes across species and to evaluate which organisms are appropriate 

models for a given disease.  As illustrated in the previous chapter by the yeast cell 

elongation phenotype and the human disease leukoencephaly, once a phenotype or 

disease is traced to the disruption of a gene, the phenotypic outcome of the disruption of 

related genes can be predicted even without understanding the exact mechanism that 

gives rise to the phenotype. 
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However, it is not always possible to predict the exact phenotypic outcome of 

disrupting an ortholog present in one species from the gene disruption phenotype of 

another species.  For example, 3 of 4 genes that are implicated in leukoencephaly in 

humans have yeast orthologs that are essential and the other is sensitive to growth in 

synthetic complete minus tryptophan media.  Even more starkly, mutating the RB1 gene 

in humans gives rise to retinoblastoma [1], a cancer of the retina, yet disrupting the RB1 

ortholog (and a second redundant gene) in the nematode C. elegans gives rise to ectopic 

vulvae [2]. Mutant phenotypes are thus an emergent property of the system; disruptions 

of equivalent genes with conserved molecular functions, but in different systems 

contexts, can lead to different outcomes. It becomes clear that to test the prediction of 

human disease genes in model organisms it is necessary to start by finding phenotypes 

that are in some way equivalent across species.  However, diverse genetic perturbations 

can give rise to the same phenotypic outcome (degeneracy), while mutation of a single 

gene can lead to multiple phenotypic outcomes (pleiotropy). Genes and phenotypes thus 

have a many-to-many relationship, and mapping equivalent phenotypes between 

organisms is non-obvious.  Nonetheless, once equivalent phenotypes are identified, 

screens for additional mutations that lead to a phenotype in the model organism may 

provide high confidence candidate genes for a phenotype/disease in the reference 

organism. 

 

But, can we tell if a particular disease model is equivalent enough to the human 

case to be useful? Can this property be quantified, allowing ranking of models according 

to utility? Are there non-obvious models for human disease, perhaps hidden by 

differences in emergent appearance? Importantly, a model does not have to exactly 

reproduce symptoms of a disease to be useful. Thousands of genome-wide mutational 
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analyses have now been performed, associating genes to phenotypes in model organisms, 

e.g., yeast, worms, and mice, at a far higher rate than for humans (Figure 4.1). 

 

Identifying and expanding models of human disease 

I demonstrate a three step process for identifying cross-species models of human 

diseases.  First, I identify equivalent phenotypes based on the shared involvement of 

orthologous genes involved in phenotypes from two species.  Second, I test genes in the 

model organism for the disease equivalent phenotype and choose genes that are naturally 

predicted by the overlapping phenotypes or by being closely linked network neighbors as 

suggested in my previous chapter.  Third, I test the candidate genes for their phenotypic 

outcome in the original organism, or appropriate surrogate. 

  

Identifying equivalent phenotypes (phenologs) 

As a framework for considering equivalent phenotypes, my research introduces 

the notion of orthologous phenotypes, defined as phenotypes related by the orthology of 

the associated genes in two organisms, and corresponding to the phenotype-level 

equivalent to gene orthologs. Orthologous phenotypes derive from sets of genes in two 

organisms such that the genes in each organism are associated with the same phenotype 

(phenotypes can differ between the organisms), and the associated gene sets overlap 

significantly (i.e., are enriched for the same orthologous genes) (Figure 4.2). 

Orthologous phenotypes are evolutionarily conserved outputs of conserved systems of 

genes, which can manifest as different traits or structures in different organisms due to 

organism-specific context effects. The human retinoblastoma eye cancer and the C. 

elegans synthetic multivulval phenotype are orthologous, with failures of orthologous 
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genes performing equal molecular functions in different contexts causing different 

phenotypic outcomes. Orthologous phenotypes thus bridge the molecular definitions of 

homologous and orthologous genes [3] with classic definitions of homologous structures 

from Owen [4] and Darwin [5], deriving from considerations both of gene heredity and of 

the traits/structures affected by perturbing the genes.  I will refer to orthologous 

phenotypes as phenologs. 
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FIGURE 4.1  THE RATE OF ASSOCIATING GENES TO ORGANISM-LEVEL PHENOTYPES 

IN MODEL ORGANISMS GREATLY EXCEEDS THAT IN HUMANS (data from [6-
10]). Thus, appropriate mapping of model organism phenotypes to human 
diseases could significantly accelerate discovery of human disease gene 
associations. Orthologous phenotypes (phenologs) offer one such approach.  
Figure adapted from work in review [42].  Thanks to Greg Weiss for figure. 
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FIGURE 4.2  PHENOLOGS CAN BE IDENTIFIED BASED ON SIGNIFICANTLY 

OVERLAPPING SETS OF ORTHOLOGOUS GENES (A is orthologous to A’, B to B’, 

etc), such that each gene in a given set (green box or cyan box) gives rise to the 

same phenotype in that organism. The phenotypes may differ in appearance 

between organisms due to differing organismal contexts. As gene-phenotype 

associations are often incompletely mapped, genes currently linked to only one of 

the orthologous phenotypes become candidate genes for the other phenotype (e.g., 

the ortholog of gene D in organism 2 is a new candidate for phenotype 2).  Figure 

adapted from work in review [42]. 
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Phenologs can be identified by assembling known gene-phenotype associations 

for two organisms, considering only genes that are orthologous between the two 

organisms, then testing each inter-organism phenotype pair for significant gene overlap 

based upon three observations: (1) the total number of orthologs in organism 1 that give 

rise to phenotype 1; (2) the total number of orthologs in organism 2 that give rise to 

phenotype 2; and (3) the number of orthologs shared between these two sets. The 

significance of a phenolog can be calculated from the hypergeometric probability of 

observing at least that many shared orthologs by chance. Figure 4.3 shows an example: 

the set of human genes (with worm orthologs) associated with X-linked breast/ovarian 

cancer significantly overlaps genes whose mutations lead to a high frequency of male 

progeny in C. elegans. Male C. elegans are determined by a single X chromosome, 

hermaphrodites by 2 copies; thus, X chromosome non-disjunction leads to higher 

frequencies of males [11]. Human breast/ovarian cancers can derive from a similar 

mechanism, e.g. as for sporadic basal-like breast cancers [12], supporting the notion that 

this phenolog is identifying a useful disease model. 

 

Finding genes in model organism for orthologous phenotype 

The breast cancer/male progeny example above demonstrates that candidate 

disease genes in the reference organism can be identified immediately if they are already 

known to result in the orthologous phenotype upon disruption.  Human orthologs of the 

13 additional genes associated with the worm trait are reasonable candidate genes for 

involvement in breast/ovarian cancers. Nine of these genes were not yet included in the 

databases I employed, but could be confirmed in the primary literature to be linked to 

breast cancer (e.g., as for the breast cancer biomarker KIF15 [13]); 4 genes (GCC2, 

PIGA, WDHD1, SEH1L) remain as breast cancer candidate genes (Figure 4.3). The 
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worm phenotype thus predicts and suggests additional genes relevant to human breast 

cancer.  Furthermore, additional candidates can be identified by targeted screening using 

guilt by association in the functional network of the target organism, using currently 

known genes as the seed set, where known genes can either those involved in the overlap 

(identified by k in Figure 4.2), or the entire set of genes involved in the model organism 

phenotype (k and n2 in Figure 4.2).  Later in this chapter, I will discuss the positive 

results of the attempt to experimentally validate this approach. 

 

Testing candidate genes 

Once candidate genes are identified they can be evaluated for their involvement in 

the disease phenotype in a number of ways depending on the specific phenotype.  For 

some phenotypes, candidate genes can be adequately tested by knockout or knockdown 

in cell or tissue culture.  In other cases, the genomic region surrounding candidate genes 

can be targeted for sequencing to identify mutations in affected individuals.  In this work, 

we utilize a third approach, where candidate genes from simple organisms are tested in a 

vertebrate model system that is already known to mimic human disease quite well. 
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FIGURE 4.3  AN EXAMPLE OF A PHENOLOG MAPPING HIGH INCIDENCE OF MALE C. 

ELEGANS PROGENY TO HUMAN BREAST/OVARIAN CANCERS (details in text).  

Figure adapted from work in review [42]. 
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METHODS 

Collection of phenotypes 

I collected gene-phenotype associations from the literature for four species 

(worm, yeast, mouse, and human). For human phenotypes, I used employed human 

diseases from the OMIM database [14], using the compressed OMIM disease categories 

previously described in McGary et al. [15], such that multiple variants of a disease were 

grouped together. (For example “Corneal dystrophy, hereditary polymorphous posterior” 

and “Corneal dystrophy, lattice type I,” reduce to a single category of corneal 

dystrophies). Mouse gene-phenotype associations were downloaded from MGI [16] 

(MGI_PhenoGenoMP.rpt; downloaded on April 21, 2008). Gene-phenotype associations 

involving more than one locus or that could not be linked to an Entrez Gene were 

removed. MGI identifiers were converted to Entrez GeneIDs using MGI_Coordinate.rpt 

(downloaded April 25, 2008).  MGI mouse phenotype descriptions were from 

VOC_MammalianPhenotype.rpt, downloaded May 7, 2008. All MGI data were 

downloaded from ftp://ftp.informatics.jax.org/pub/reports/index.html. The MGI 

associations were supplemented with a small number of broadly defined mouse 

phenotypes obtained from http://hugheslab.med.utoronto.ca/supplementary-data/

mouseFunc_I/MGI_phenotype.txt, but which are ultimately derived from MGI data.  

Worm gene-phenotype associations were assembled from the literature-reported RNAi 

studies assembled in Lee et al. [17] supplemented by the addition of phenotype data 

downloaded from WormBase 188 [7] (ftp://ftp.wormbase.org/pub/wormbase/acedb/

WS188/). Worm gene-phenotype association data come from 

phenotype_association.WS188.wb, phenotype descriptions from 

phenotype_ontology.WS188.obo, and gene information from geneIDs.WS188.gz.  Files 
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were downloaded on March 26, 2008.  WormBase phenotypes were filtered for positive 

associations only. All allelic variants and RNAi data were reduced to gene-phenotype 

pairs. Gene IDs (e.g. WBGene00044645) were translated to sequence names (e.g. 

Y51H7BR.8) using geneIDs.WS188.gz. Of approximately 22K gene-phenotype pairs, 

384 could not be linked to a sequence name. These derived primarily from uncloned 

genes and were thus omitted from further analysis. Yeast gene-phenotype associations 

were obtained from McGary et al. [15] (a literature compilation plus SGD [8]), 

supplemented with associations from a recent set of genome-wide screens of drug 

sensitivity [18] (homozygous and heterozygous screens, 

het.z_tdist_pval_nm.goodbatch.pub  hom.z_tdist_pval_nm.pub downloaded from 

http://chemogenomics.stanford.edu/supplements/global/download/data/). All gene-

phenotype associations from the drug screens were filtered using the authors’ 

recommended cutoff of p<1x10
-5

. For the purposes of calculating phenologs, I considered 

only a subset of the gene-phenotype associations plotted in Figure 1A, analyzing only 

those implicating single genes (i.e., not genetic interactions or traits requiring 

simultaneous mutation of multiple loci), and only those phenotypes in which a defect was 

observed (i.e., omitting genes associated with the phenotype “normal”, “wild-type”, “no 

effect”, or other such cases.) 

 

Identification of non-redundant phenotype sets 

In order to minimize the number of redundant comparisons performed, all 

phenotype-associated gene sets within a single organism were tested for significant 

overlap and non-redundant sets were selected for subsequent analyses. Within each 

organism, phenotypes were identified that reciprocally covered ≥80% of each other’s 

genes; for each such pair of phenotypes, only the phenotype with the greater number of 
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genes was retained. (For example, in mouse, genes associated with defects in the small 

petrosal ganglion and small nodose ganglion overlap considerably. The former has 9 

associated genes, of which a subset of 8 is also associated with the latter phenotype; only 

the former was retained.) 

 

Calculating Orthologs 

Orthologs between species were calculated using the following translated 

genomes: Human, ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/protein/protein.fa.gz, 

downloaded on Feb. 7, 2008; Mouse, ftp://ftp.ncbi.nih.gov/genomes/M_musculus/

protein/protein.fa.gz, downloaded Oct. 13, 2007; Worm, ftp://ftp.wormbase.org/pub/

wormbase/data_freezes/WS170/sequences/wormpep170.tar.gz, downloaded on Feb. 19, 

2007; Yeast, ftp://genome-ftp.stanford.edu/pub/yeast/sequence/genomic_sequence/

orf_protein/ orf_trans.fasta.gz, downloaded Feb. 19, 2007. 

 

For human and mouse proteomes, I analyzed only sequences with protein refseq 

identifiers (NP_ only). For humans, 43 genes without Gene IDs were removed (mostly 

hypothetical proteins).  For mouse, three proteins without current records were removed. 

 

In order to identify orthologous genes in different species, orthologs were 

calculated using INPARANOID v. 1.35 [19] with default parameters, using blastall 

2.2.15 also with default parameters. All genes assigned as orthologs (strictly speaking, 

ortholog groups or orthogroups, due to inclusion of in-paralogs) by INPARANOID were 

kept, regardless of their INPARANOID score. Using orthogroups, rather than 

bidirectional best hits, captures the many-to-many relationships that exist for gene 

duplicates that exist in more than one copy in one or both species. In order to prevent 
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isoform variations from resulting in skewed blast results, mouse and human sequences 

with the same Entrez GeneID but separate RefSeqIDs were treated separately in 

INPARANOID. Following INPARANOID analysis, orthologs sharing GeneIDs were 

combined so that gene variants would be considered together in subsequent analyses. 

 

Calculation of phenologs 

For each pair of species, I first converted gene-phenotype associations to 

ortholog-phenotype associations using the orthologs calculated by INPARANOID. In 

cases were paralogous genes within an organism result in the same phenotype, multiple 

gene-phenotype associations thus collapse to a single ortholog-phenotype association, 

which eliminates artificial inflation of the significance of ortholog overlap. Second, I 

compared the set of orthologs associated with a given phenotype within one species 

(species 1) to the set of orthologs associated with a given phenotype in the second species 

(species 2), repeating this analysis for all pairwise comparisons of phenotypes from 

species 1 and species 2. For each pair of phenotypes in which the ortholog sets 

overlapped (shared members), I calculated the probability of the overlap due to chance 

using the cumulative hypergeometric distribution, where N is the total number of 

orthologs shared between the two species; n and m are the number of orthologs linked to 

the species 1 and species 2 phenotypes, respectively; and k is the number of common 

orthologs, i.e., those linked to both phenotypes: 

 

where 
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The hypergeometric probability does not correct for multiple comparisons, so I 

estimated the false discovery rate with an empirical permutation test. I performed 1,000 

random permutations of the ortholog-phenotype associations, for each permutation 

repeating the all versus all phenotype comparison using ortholog set sizes identical to 

those associated with the actual phenotypes. Significant phenologs were identified at a 

false discovery rate of 0.05 by ranking real & permuted phenologs on the basis of the 

associated hypergeometric probabilities and selecting a threshold of probability where the 

proportion of permuted phenologs above the cutoff accounted for 5% of the phenologs. 

 

Tests of sub-network modularity 

I measured the degree of network interconnectivity among orthologs involved in 

overlapping phenotypes from yeast and worms using a modification to a recently 

developed measure of the network clustering of a set of genes [15, 17]. Given a query set 

of genes, their interconnectivity in a functional gene network (a gene network with edge 

weights corresponding to the log likelihood of the linked genes functioning in the same 

biological process [17, 20]) is calculated as the area under a receiver-operator 

characteristic curve (AUC) for predicting back members of the query gene set when rank-

ordering all genes in the network by each gene’s sum of edge weights to the query gene 

set (corresponding to the naïve Bayes probability of participating in the same process as 

genes in the query set), performing the test using cross-validation (each query gene is 

omitted in turn from the query set for purposes of its evaluation). AUC ranges from 0 to 
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1. A high AUC indicates that query genes are more tightly connected in the network to 

each other than to other genes, while an intermediate AUC (near 0.5) corresponds to no 

better than random recovery of query genes, indicating negligible interconnectivity of the 

query gene set in the network. (AUC values in the range of 0 to near 0.5 indicate worse 

than random expectation, e.g., systematically lower connectivity of the query set).  

 

To analyze phenolog gene sets, I modified the method by converting the gene-

centric functional networks [17, 20] into networks of orthologs based upon 

INPARANOID ortholog assignments. I retained only network edges connecting 

orthologs present in both yeast and worm. In the case that multiple genes are assigned to 

a single ortholog, multiple network edges could exist between a pair of orthologs; I 

retained only the edge with the greatest weight (confidence).  The resulting yeast and 

worm networks thus each contain ortholog-ortholog functional associations, rather than 

gene-gene associations. Using these two networks, I calculated AUC as in [15, 17]: for a 

given ortholog query set (e.g. the set of orthologs in the intersection of a phenolog), I 

rank ordered all orthologs shared between yeast and worm by the sum of the edges 

connecting them to the query set, then calculated AUC for recovery of the query ortholog 

set using cross-validation.  

 

I calculated network AUC for genes (orthologs) within and outside of phenolog 

intersections (Figure 4.7), considering all significant (5% FDR) yeast-worm phenologs 

with at least 4 genes in both the phenolog intersection ortholog set and the ortholog set 

outside the intersection. In order to correct for possible query gene size effects, I sub-

sampled the larger of the two sets. For example, if the intersection of a worm phenotype 

and a yeast phenotype has 30 orthologs and the yeast phenotype has 15 additional 
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orthologs, I calculated the AUC of the 15 additional orthologs, then randomly sampled 15 

genes at a time from the intersection set, calculating the AUC of each subset of 15 genes, 

taking the median value of 100 such samplings as the AUC for the intersection set. 

 

Treatment of animals 

Animal care met the principles and guidelines of the Institute for Laboratory 

Animal Research ‘‘Guide for Care and Use of Laboratory Animals’’ and the University 

of Texas at Austin Institutional Animal Care and Use Committee. 

 

Xenopus laevis embryo manipulations 

Female Xenopus laevis were ovulated overnight after injecting human chorionic 

gonadotropin, and eggs were squeezed out for fertilization in vitro. At the two cell stage, 

the jelly layer of embryos was removed by swirling in 3% cysteine (pH 7.9) in 1/3x 

MMR medium and washed in 1/3xMMR five times. For microinjections, embryos were 

placed in 2% Ficoll in 1/3xMMR, and injected using forceps and an Oxford universal 

micromanipulator, then reared in 2% Ficoll in 1/3xMMR to stage 9, then washed and 

reared in 1/3xMMR.  
 

Whole-mount in situ hybridization was performed using a modified method 

omitting acetylation steps from the standard method [21]. For all experiments, 

morpholino antisense oligonucleotides (MOs) were injected at 20-60ng/blastomere.  To 

target ciliated epidermis, injections were made into the two ventral cells at the 4 cell 

stage. Two dorsal cells were injected to analyze neural tube closure. The posterior 

cardinal vein and intersomitic veins were targeted by injecting into the two ventral cells 

equatorially at the 4 cell stage. For whole mount in situ hybridization for Erg and XMsr, 



 107 

embryos were fixed in MEMFA medium at stage 34 to 36. The hemorrhage phenotype 

was photographed at stage 45 after anesthetizing with Benzocaine.  
 

Images of embryos were obtained with a Leica MZ16FA stereomicroscope using 

ImageProPlus software. 

 

All methods involving Xenopus were performed by Tae Joo Park.   

 

Confocal imaging 

For epidermal cilia staining, embryos were fixed in MEMFA at stage 25 to 27 and 

washed with Ptw solution (PBS+0.1% Tween-20). The embryos were incubated with 

mouse anti-α-tubulin IgG in Ptw for 30 min. After washing with Ptw, the embryos were 

incubated with Alexa Fluor 555 goat anti-mouse IgG in Ptw for 30 min followed by 

washing in Ptw. Actin filaments were co-stained using Alexa 488 conjugated Phalloidin. 

In all cases, embryos were mounted in Ptw and 3D projections of cilia were made by 

collecting overlapping sections with a Zeiss LSM5 PASCAL confocal microscope. 3D 

projections, image processing, and image analysis were performed with LSM5, Image 

ProPlus, and Adobe Photoshop software.  All confocal methods were performed by Tae 

Joo Park.   
 

Morpholino oligonucleotides and cDNA clones 

xSox12, Erg, and XMsr cDNAs were obtained from Open BioSystem (xSox12: 

IMAGE:6636177, Erg: IMAGE:5512670, XMsr: IMAGE:8321886). Centrin-GFP was 

obtained from Dr. Chris Kintner at the Salk institute. Translation blocking antisense 

morpholinos for IFT140, RFX2, and xSox12 were designed based on the sequences from 
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the NCBI database (IFT140: x17243.1, RFX2: BC108517.1, xSox12: BC068647.1). MOs 

were obtained from Gene Tools. All MO sequences are listed below: 

IFT140-MO:  5’-TTCCTAAGGCACTCCAGTCACCCAT-3’ 

RFX2-MO:  5’-AATTCTGCATACTGGTTTCTCCGTC-3’ 

xSox12-MO:  5’-TCACCCTGTATGGTATCCATTTAAG-3’ 

xSox12-MM:  5’-TCAGCCTCTATGCTATGCATTCAAG-3’ 

 

Morpholinos were designed by Tae Joo Park. 
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RESULTS 

Computational Results 

To systematically discover phenologs, I collected from the literature a set of 1,923 

human disease-gene associations [6], 74,250 transgenic mouse phenotype-gene 

associations [9], 27,065 C. elegans gene-phenotype associations [7], and 86,383 yeast 

gene-phenotype associations [8, 10, 15, 18], spanning ~300 human diseases and >6,000 

model organism phenotypes. With these data and the sets of orthologous gene 

relationships between each pair of organisms [19], I quantitatively examined each inter-

organism phenotype pair, measuring the significance of each (Figure 4.4).  I corrected 

for testing multiple hypotheses by repeating all analyses 1,000 times with randomly 

permuted gene-phenotype associations to calculate a false discovery rate (FDR) based 

upon the observed null distribution of scores (Figures 4.5).  With this correction, I 

observe of 154 significant phenologs (5% FDR) between human diseases and yeast 

mutational phenotypes, 3,755 between human and mouse, 147 between mouse and worm, 

105 between mouse and yeast, and 206 between yeast and worm, and 9 between human 

and worm (the low number stems from limited mutational data in both species) (Figure 

4.6). 
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FIGURE 4.4  SYSTEMATIC IDENTIFICATION OF PHENOLOGS. For a pair of organisms, 

sets of genes known to be associated with mutational phenotypes are assembled, 

considering only orthologous genes between the two organisms. Pairs of 

mutational phenotypes—one phenotype from each organism, each associated with 

a set of genes—are then compared to determine the extent of overlap of the 

associated gene sets, calculating the significance of overlap by the 

hypergeometric probability.  Figure adapted from work in review [42]. 
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FIGURE 4.5  MANY MORE ORTHOLOGOUS PHENOTYPES ARE OBSERVED THAN 

EXPECTED BY RANDOM CHANCE as revealed by comparison of the distribution 
of observed probabilities with those derived from the same analysis following 
permutation of gene-phenotype associations, as shown in all pairwise 
comparisons of the mutational phenotypes from mouse, human, yeast, or worm.  
Figure from work in review [42]. 
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FIGURE 4.6  COUNT OF PHENOLOGS ABOVE A FALSE DISCOVERY RATE THRESHOLD 

for all pairwise comparisons of the mutational phenotypes from mouse, human, 

yeast, or worm.  Figure adapted from work in review [42]. 
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Phenologs identifies obviously equivalent phenotypes 

Many intuitively obvious phenologs are identified in this manner, which serve as 

positive controls: nonviable C. elegans (RNAi) are found to be phenologous to inviable 

yeast (gene deletion), given that of 705 worm genes (with yeast orthologs) associated 

with nonviability, and 653 yeast genes (with worm orthologs) associated with 

nonviability, 369 orthologs are shared between these sets (p ≤ 10
-33

). Embryonic lethality 

before somite formation in mice is found to be phenologous to nonviable C. elegans 

following RNAi (p ≤ 10
-5

). Mouse pre-/peri-natal lethality or embryogenesis defects are 

phenologous with sterility in C. elegans following RNAi (p ≤ 10
-6

). Many lethality, 

sterility, and embryonic developmental phenotypes are related across organisms. 

Importantly, many more specific phenologs are revealed, especially for the 

comparison of mouse and human phenotypes; these recapitulate many known mouse 

models of disease, serving as additional positive controls. Table 4.1 lists specific 

examples. For example, one of the most significant phenologs identified between human 

disease and mouse mutational phenotypes is that linking Bardet-Biedl syndrome with 

four mouse traits, each of which relates to the disruption of ciliary function (abnormal 

brain ventricle/choroid plexus morphology, small hippocampus, enlarged third ventricle, 

absent sperm flagella; all p ≤ 10
-11

), consistent with the apparent molecular defects in 

Bardet-Biedl syndrome [22]. The argument is thus that mouse ciliary defects provide a 

powerful model for studying human Bardet-Biedl syndrome, consistent with its recently 

recognized utility in this regard. Similarly, human cataracts are observed to be 

phenologous to mouse cataracts (p ≤ 10
-24

), human obesity is phenologous to mouse 

obesity (p ≤ 10
-14

), human deafness to mouse deafness (p ≤ 10
-29

), human retinitis to 

mouse retinal degeneration (p ≤ 10
-26

), and human goiter to mouse enlarged thyroid 
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glands (p ≤ 10
-8

). Thus, the calculation of phenologs correctly identifies many known 

mouse models of human diseases and therefore has the potential to identify new models. 
 

Techniques developed for identifying homologous genes can be applied to phenologs 

Much of the powerful conceptual framework established for gene sequence 

homology and orthology may be applicable to phenologs. For example, equivalent 

phenotypes might be defined on the basis of homologous, rather than orthologous, gene 

sequences, in this manner examining the divergence of phenotypic outcome of 

homologous systems. Similarly, many of the algorithmic approaches used to identify 

orthologous genes might also be applied to the identification of phenologs. I explored this 

notion for one effective and easily automated approach to identify orthologous sequences, 

the reciprocal best hit (RBH) strategy. The RBH criterion holds that genes X and Y are 

orthologs if gene X is the most similar sequence to gene Y when searched genome-wide, 

provided the reciprocal search is also true.  I adapted the RBH criterion to the 

identification of phenologs in order to identify the most equivalent phenotypes between 

two organisms from among those assayed, by asking if the phenotypes have the most 

significant (lowest p-value) gene overlaps with each other when searched against all 

phenotypes in their respective organisms. Such analysis gives a second criterion for 

identifying phenologs, useful for legitimate phenologs with poor p-values due to limited 

phenotypic data sets. Examples of such RBH phenologs are indicated in Table 4.1. 

 

Phenologs identify dense subnetworks in functional network 

Phenologs imply that although phenotypes diverge, the orthology of the 

underlying gene networks and probably their immediate functional output is conserved. I 

might therefore expect genes involved in a given phenolog to represent a coherent 
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biological module, and thus to be highly interconnected in gene networks. Moreover, one 

might expect that the genes already confirmed to show the signature phenotypes in both 

organisms (e.g., the intersection labeled by k in Figure 4.4) would be even more highly 

interconnected than the genes associated with the signature phenotype in only one 

organism; these latter genes might or might not belong to this sub-network, as multiple 

mechanisms might give rise to the phenotype. Evidence in current gene networks of more 

linkages among the genes in each such intersection would support this notion of 

phenologs recapitulating modular subnetworks. I therefore systematically tested all 

significant phenologs involving yeast and worm genes for the genes’ connectivity in 

available functional networks [15, 17]. I find the network connectivity of genes in 

phenolog intersections to be significantly higher (p < 0.0001; Wilcoxon signed-rank) than 

the phenolog genes outside of the intersections, which nonetheless show significantly 

higher network connectivity than random size-matched gene sets (p < 0.0001) (Figure 

4.7). This indicates that phenologs do identify evolutionarily conserved subnetworks of 

genes relevant to particular phenotypes or diseases, while still predicting new candidate 

genes significantly better than random expectation. 
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 Phenotype1  Phenotype2 n1 n2 k p-value PP
V 

Hs cataracts Mm cataracts 19 47 1
1 

6x10
-24

 1.0
0 

Hs X-linked conductive deafness Mm circling 47 50 1
2 

2x10
-20

 1.0
0 

Hs Bardet-Biedl syndrome Mm absent sperm flagella 11 5 4 8x10
-13

 1.0
0 

Mm lymphoma Sc CANR mutator high 14 11 6 1x10
-11

 1.0
0 

Hs Zellweger syndrome Sc reduced number of 
peroxisomes 

8 6 4 1x10
-9

 1.0
0 

Hs xeroderma pigmentosum Sc high UVC irradiation 
sensitivity 

7 9 4 5x10
-9

 1.0
0 

Hs susceptible to autism Mm abnormal social 
investigation 

5 16 3 1x10
-8

 1.0
0 

Hs susceptible to neural tube 
defects 

Mm abnormal circulating 
amino acid level 

3 32 2 1x10
-5

 1.0
0 

Hs porphyria Sc damnacanthal 
sensitive 

4 4 2 2x10
-5

 1.0
0 

Mm abnormal heart 
development 

Ce male tale morphology 
abnormal 

52 7 4 5x10
-7

 1.0
0 

Mm pre-/peri-natal lethality Ce sterile 498 34
4 

6
6 

1x10
-6

 0.9
9 

Mm abnormal angiogenesis Sc lovastatin sensitive 8 67 5 1x10
-6

 0.9
9 

Mm Spleen hypoplasia Sc uge (enlarged cells) 5 16 3 3x10
-6

 0.9
9 

Mm gastrointestinal hemorrhage Ce abnormal body wall 
muscle cell polarization 

6 3 2 4x10
-6

 0.9
8 

Hs breast/ovarian cancer Ce high incidence male 
progeny 

12 16 3 7x10
-6

 0.9
8 

Hs achromatopsia Ce chemotaxis defective 3 9 2 1x10
-5

 0.9
8 

Hs congenital disorder of 
glycosylation 

Sc CID 604586 sensitive 10 25 3 2x10
-4

 0.9
8 

Hs hemolytic anemia Sc hydroxyurea sensitive 11 23 3 2x10
-4

 0.9
8 

Mm abnormal olfactory neuron 
morphology 

Ce dauer constitutive 7 4 2 1x10
-5

 0.9
7 

Hs glycogen storage disease Sc glycogen storage 
reduced 

3 20 2 2x10
-4

 0.9
7 

Hs amyotrophic lateral 
sclerosis 

Sc increased resistance to 
wortmannin 

2 34 2 2x10
-4

 0.9
7 

Mm abnormal placenta Sc sorbitol sensitive 8 14 3 1x10
-5

 0.9
6 

Mm abnormal endocardium 
morphology 

Sc cantharidin sensitive 2 11 2 2x10
-5

 0.9
5 

Hs somatic basal cell 
carcinoma 

Ce egg size abnormal 1 3 1 6x10
-4

 0.7
7 

Hs hypothyroidism Ce blistered cuticle 3 2 1 1x10
-3

 0.7
5 
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TABLE 4.1  EXAMPLES FROM THE >6,000 SIGNIFICANT PHENOLOGS DETECTED 

among human (Hs) diseases and mouse (Mm), yeast (Sc), and worm (Ce) mutant 
phenotypes.  n1 indicates the number of orthologs in organism 1 with phenotype1, 
n2 the number in organism 2 with phenotype2, and k the number in both sets. The 
significance of each phenolog is assessed by the hypergeometric probability (p-
value), the positive predictive value (PPV) when considering multiple testing (1 – 
false discovery rate), and the reciprocal best hit criterion (bold text).  Table from 
work in review [42]. 
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FIGURE 4.7  GENES INVOLVED IN PHENOLOGS SHOW ENHANCED 

INTERCONNECTIVITY IN GENE NETWORKS, shown here for worm (top) and 

yeast (bottom) gene networks [17, 20]. All significant yeast-worm phenologs with 

at least 4 orthologs in both the ‘intersection’ and ‘non-intersection’ sets (see 

Methods) were tested for network connectivity, measured as the area under a 

receiver-operator characteristic (ROC) plot as described in [15], with values 

ranging from 0.5 (random network connectivity) to 1 (high network connectivity). 

Genes from phenolog intersections show significantly higher network 

connectivity than genes associated with a phenolog, but outside of the 

intersection, which in turn show significantly higher connectivity than size-

matched random gene sets. Thus, phenologs capture subnetworks or network 

modules informative about a given phenotype pair, and carry predictive value for 

additional genes relevant to the phenotypes. At the left of each box-and-whisker 

plot, the center of the blue diamond indicates the mean AUC across phenologs, 

the top and bottom of the diamond indicate the 95% confidence interval, and the 

accompanying solid vertical line indicates ± 2 standard deviations. The bottom, 

middle, and top horizontal lines of the box-and-whisker plots represent the first 

quartile, the median, and the third quartile of AUCs, respectively; whiskers 

indicate 1.5 times the interquartile range. Red plus signs represent individual 

outliers.  Figure adapted from work in review [42]. 
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Experimental Results 

Experimental confirmation of a yeast model for vertebrate angiogenesis 

The power of the phenolog framework lies in discovery of non-obvious disease 

models. I observed just such a serendipitous phenolog between abnormal angiogenesis in 

mutant mice and reduced growth rate of yeast deletion strains when grown in the 

hypercholesterolemia drug lovastatin (8 mouse genes, 67 yeast, 5 shared, p ≤ 10
-6

; Figure 

4.8). This observation, consistent with the action of lovastatin in reducing tumor-induced 

angiogenesis (e.g., [23]), suggests that budding yeast, which entirely lack blood vessels, 

could potentially model aspects of mammalian vasculature formation, and help to define 

genes affecting this process. In particular, the five shared genes between these processes 

are, in yeast, the mitogen activated protein (MAP) kinases SLT2, PBS2, and HOG1, the 

calcineurin B protein CNB1, and the uncharacterized protein VPS70; the four 

characterized proteins regulate osmosensing and aspects of cell wall organization and 

biogenesis. Strikingly, mutations of their mouse orthologs (MAPK7, MAP2K1, 

MAPK14, PPP3R1, and the prostate-specific membrane antigen PSMA, respectively) all 

show strong angiogenesis defects—e.g., MAPK7 deletion causes defective blood vessel 

and cardiac development [24]; ablation in adult mice leads to leaky blood vessels [25]. 

Similarly, PSMA regulates angiogenesis by modulating integrin signal transduction [26]. 

Thus, this conserved subnetwork of genes was alternately repurposed to regulate 

osmosensing and cell wall biogenesis in yeast cells and proper formation and 

maintenance of blood vessels in mice.   
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FIGURE 4.8  EXAMPLE OF A NON-OBVIOUS DISEASE MODEL REVEALED BY 

PHENOLOGS: YEAST MUTANTS SENSITIVE TO THE HYPERCHOLESTEROLEMIA 

DRUG LOVASTATIN PREDICT MAMMALIAN ANGIOGENESIS DEFECTS.  The set 

of 8 genes (considering only mouse/yeast orthologs) associated with mouse 

angiogenesis defects and the set of 67 genes associated with lovastatin 

hypersensitivity in yeast significantly overlap, suggesting that the yeast gene set 

may predict angiogenesis genes. This prediction was verified in Xenopus embryos 

for the case of the transcription factor xSOX12.  Figure adapted from work in 

review [42]. 
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Orthology of phenotypes predicts that additional human orthologs of genes 

associated with a phenologous model organism trait are more likely to be associated with 

the human disease. I therefore examined the yeast angiogenesis model for other yeast 

genes (with mammalian orthologs) whose deletion induced sensitivity to lovastatin. Of 

the 62 candidates, three of the corresponding mouse genes were confirmed by literature 

to function in angiogenesis, but had yet to be annotated as such. These genes included the 

known target of lovastatin, HMG-CoA reductase, whose role in angiogenesis has been 

previously observed [27], the sirtuin SIRT1, whose disruption in zebrafish and mice 

caused defective blood vessel formation and blunted ischemia-induced 

neovascularization [28], and the casein kinase Csnk2a1, inhibitors of which inhibit mouse 

retinal neovascularization [29]. Additional genes were involved in other aspects of 

cardiovascular development, such as the gene mitoferrin, being expressed most highly in 

hematopoietic organs, fetal liver, bone marrow, and spleen, and mutations in which block 

terminal erythroid maturation, leading to profound anemia [30]. Similarly, SMAP1 

positively regulates erythrocyte differentiation [31]. Thus, mammalian orthologs of the 

62 yeast lovastatin-sensitivity genes include additional genes relevant to cardiovascular 

development, supporting the notion that a yeast model might predict angiogenesis genes. 

 

In order to more directly evaluate predictions of this phenolog, 13 of the 62 genes 

not already associated with angiogenesis were tested in the frog Xenopus laevis. Using 

whole mount in situ hybridization, my collaborators examined mRNA expression of the 

Xenopus orthologs for patterns relevant to angiogenesis. The gene xSOX12 (the Xenopus 

ortholog of mammalian SOX13, a transcription factor known to regulate T lymphocyte 

differentiation [32] and to be expressed in mouse arterial walls [33]) was prominently 

expressed in the posterior cardinal vein, intersomitic veins, and developing heart, 
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consistent with a role affecting developing vasculature (Figure 4.9). They knocked down 

xSOX12 expression using microinjection of morpholino antisense oligonucleotides (MO) 

and assayed for vasculature defects by in situ hybridization to the vasculature reporter 

genes Erg and XMsr (Figure 4.10).  The knockdown of xSOX12 leads to a strong defect 

in angiogenesis, with morpholino injected animals largely lacking intersomitic and 

posterior cardinal veins. By later stages, hemorrhaging was apparent in morphants due to 

the defective vasculature (Figure 4.11). Thus, xSOX12/SOX13 is a novel regulator of 

angiogenesis, discovered in the absence of any previous functional data linking it to 

angiogenesis, on the basis of orthology between mouse angiogenesis defects and yeast 

lovastatin sensitivity. Notably, these data also demonstrate that differentiation both of 

blood cells [32] and blood vessels are controlled by the same transcription factor. 
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FIGURE 4.9  IN SITU HYBRIDIZATION SHOWS XSOX12 EXPRESSION IN VEINS AND 

DEVELOPING HEART OF A STAGE 32 XENOPUS EMBRYO.  Figure from work in 

review [42]. 
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FIGURE 4.10  MORPHOLINO (MO) KNOCKDOWN OF XSOX12 INDUCES DEFECTS IN 

VASCULATURE, measured using in situ hybridization versus two independent 

markers of the vasculature, the angiogenesis-regulating transcription factor Erg 

(defects observed in 31 of 49 animals tested) and the angiotensin receptor 

homolog XMsr (12 of 19 animals tested). Such defects are rare in untreated 

control animals and 5 base pair mismatch morpholino (MM) knockdowns (0 of 22 

control animals tested with XMsr, 2 of 46 tested with Erg; 5 of 28 MM animals 

tested with Erg).  Figure adapted from work in review [42]. 
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FIGURE 4.11  HEMORRHAGING IS APPARENT IN STAGE 45 XENOPUS EMBRYOS DUE 

TO DYSFUNCTIONAL VASCULATURE FOLLOWING XSOX12 MORPHOLINO 

KNOCKDOWN (12 of 50 animals tested; 2 also showed unusually small hearts 

with defective morphology; right-hand panel magnifies yellow boxed region in 

middle panel), but is rare in control animals (1 of 45 tested untreated animals, 1 of 

22 xSOX12-MM knockdown animals tested). All phenotypes in Figures 4.10 and 

4.11 are significantly different from controls by chi-square tests (p < 0.001).  

Figure adapted from work in review [42]. 
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Experimental confirmation of a worm model for neural tube defects 

Given a phenolog for a human disease, any approach for associating more genes 

with the model organism trait, e.g., a genetic screen, will suggest new human disease 

gene candidates. I used this approach and a phenolog between abnormal C. elegans cilia 

morphology and mouse neural tube defects—consistent with a known role for cilia in 

neural tube formation [34]—to identify new genes affecting vertebrate neural tube 

closure (Figure 4.12). Defects in neural tube closure are among the most common and 

debilitating human birth defects, afflicting nearly 1 in 1,000 live births world-wide [35], 

yet they have a complex genetic basis and knowledge of the underlying genes is still 

incomplete.  We first tested a direct prediction of the phenolog to confirm that 

knockdown of the vertebrate intraflagellar transport gene IFT140 causes defective 

ciliogenesis and failure of neural tube closure in developing Xenopus embryos (Figure 

4.13). We then applied the emerging technique of network-guided genetics [17] to 

prioritize the transcription factor daf-19, a master regulator of worm ciliogenesis, as the 

gene most likely to show a similar effect (based on known genetic interactions to the cilia 

morphology defect genes). We knocked down the Xenopus ortholog of this gene, RFX2, 

and observed a defect in the developing neural tube at stage 20 (Figure 4.13), confirming 

RFX2’s association with neural tube defects for the first time in a vertebrate. As RFX2 is 

a transcription factor, it might potentially control many downstream processes; analysis 

of an early marker of ciliated cell fate specification (TEX15 [36]) confirms that ciliated 

cells are intact in the RFX2 knockdown animals (Figures 4.14). Characterization of the 

precise defects of IFT140 and RFX2 knockdown in Xenopus shows normal deployment 

of basal bodies but marked reduction of cilia on multi-ciliated epithelial cells if either 

gene is knocked down (Figure 4.13). Given the good mechanistic and genetic agreement 
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between Xenopus and mammalian neural tube closure [37], there is thus a high likelihood 

that defects in these genes are associated with human neural tube birth defects. 
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FIGURE 4.12  SCHEMATICALLY REPRESENTATION OF THE VALIDATION OF TWO NEW 

NEURAL TUBE DEFECT GENES PREDICTED BY PHENOLOGS AND GENE 

NETWORKS.  Figure adapted from work in review [42]. 
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FIGURE 4.13  MORPHOLINO KNOCKDOWNS OF XENOPUS GENES RFX2 AND IFT140 

SHOW STRONG NEURAL TUBE DEFECTS (left column), in contrast to control 
animals. (RFX2-MO, 41 of 43 animals tested; IFT140-MO, 46 of 52 tested; 
untreated control, 0 of 55 tested.) Immunofluorescence of the Xenopus ciliated 
epithelium from IFT140 or RFX2 morpholino knockdown animals reveals normal 
deployment of basal bodies (centrin marker) but abnormal or missing cilia (alpha-
tubulin marker) on multi-ciliated epithelial cells.  Figure adapted from work in 
review [42]. 
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FIGURE 4.14  RFX2-MO KNOCKDOWN ANIMALS SHOWS THAT CILIATED CELLS ARE 

INTACT, BUT LACK CILIA as shown in a representative in situ hybridization 

versus TEX15, a marker of ciliated cell fate specification [36]. The numbers of 

ciliated cells visible per embryo did not differ significantly between control and 

RFX2-MO embryos (13 control embryos were scored, with 6 showing high 

numbers of ciliated cells, 4 medium, 3 low; 11 RFX-MO embryos were scored 

showing 4 high, 6 medium, 1 low; no significant difference by chi-square test.)  

Figure adapted from work in review [42]. 
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Discussion 

Phenologs reflect the innate modularity of gene systems and help illuminate the 

prolific adaptive reuse of conserved genetic elements because they identify sets of genes 

that maintain a shared relationship across varied biological contexts.  Within this 

framework, it is possible to address questions like, “Does a genetic module maintains a 

recognizable identity in single-cell yeast and in the blood vessels of vertebrates?”  This 

approach identifies genetic modules that would otherwise be obscured when their 

rewiring with other downstream modules leads to divergent phenotypic outcomes in other 

organisms.  The participation of multiple genetic modules in determining a shared 

phenotypic outcome may help explain why the genes in the intersection of two 

phenotypes are so tightly interlinked even relative to other genes associated with the 

same phenotype (Figure 4.7).  I propose that one possible explanation for this trend is 

that phenologs are identified on the basis of a shared, conserved genetic module, but that 

other organism-specific modules (or organism-specific relationships among modules) 

determine the specific phenotypic outcome (Figure 4.15).  When randomly sampling 

from the non-intersecting genes, my algorithm would sample only one module in the 

intersection, but would sample multiple modules among the rest of the genes involved in 

the phenotype, which would reduce the relative density of functional links among the 

genes, as measured by the area under the ROC curve.  In the future, with a wider 

sampling of phenotypic data across taxa, it may eventually be possible to track the 

functional coherence of sets of genes over time, and piece together how they are rewired 

for different purposes in various organisms.  Ultimately, this wider, comparative view 

will give greater insight into specific mechanisms, since it will capture not just the 

systems as they currently exist, but also illustrate the ways in which they can vary. 
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FIGURE 4.15  PROPOSED MODEL TO EXPLAIN GREATER FUNCTIONAL COHERENCE 

AMONG ORTHOLOGS INVOLVED IN BOTH PHENOTYPES RELATIVE TO 

ORTHOLOGS INVOLVED IN A SINGLE PHENOTYPE ( see Figure 4.7).  Phenologs 
may be identified primarily by the overlap of a single genetic module 
(overlapping orthologs are represented by blue circles, functional relationships by 
blue lines.).  However, in each organism multiple additional non-conserved 
modules may be involved in the orthologous phenotype (represented by circles of 
various other colors), including downstream modules that give rise most directly 
to the organism specific phenotype.  Sampling of the non-overlapping orthologs 
will reveal fewer functional links since members of different modules will have 
fewer functional links between them.  However, as a set they remain somewhat 
coherent due to the modules internal links and links that connect the modules 
together. 
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CONCLUSION 

This research shows that phenologs provide a rich framework for comparing 

mutational phenotypes with potential for finding non-obvious models of human disease.  

The phenologs also naturally identify candidate genes that have a clear relationship to 

human disease. This will facilitate the study of underlying mechanisms of diseases in 

simple, tractable model organisms with the confidence that the research will apply 

directly to understanding aspects of complex human diseases.  To that end, the phenolog 

approach provides a quantitative heuristic for estimating the likely utility of a chosen 

organism as a model for a disease of interest.  Additional experimental work will be 

needed to evaluate how useful this heuristic will be. 

 

The combination of phenologs with the method of network guided genetics, 

explored in the previous chapter, has already identified a neural tube gene, RFX2, that is 

a very strong contender for playing a role in human neural tube defects.  A more 

thorough exploration of the synergy between these two approaches may find refinements 

that provide even more impressive predictions. 

 

Phenologs identify closely associated genes and provide insight into the systems 

involved in a phenotype, but detailed molecular work is still necessary to determine the 

exact mechanisms that ultimately lead to the phenotypic effects of the disruption of these 

systems.  To this end, I have provided a web application to interactively search for 

phenologs, available at http://www.phenologs.org, making both the algorithm and the 

data readily available to those who study specific diseases or biological systems.  At the 

beginning of the age of sequencing, identifying orthologous genes would have been 
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nearly impossible without algorithms like Needleman-Wunsch [38], Smith-Waterman 

[39], or BLAST [40].  However, prior to GenBank [41] and other sequence databases, 

collecting sequence data reported in the literature would make orthologous genes difficult 

to track down.  Hopefully, this work provides an initial algorithm for identifying 

orthologous phenotypes and will further motivate the creation and use of a standard 

repository of gene-phenotype associations for all organisms, so that phenologs and their 

underlying genetic systems will be more readily identified. 

 

This chapter has been reworked and expanded from a submitted paper [42] that is 

currently under review. 
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Chapter 5: Putting the pieces together 

Widespread genome sequencing has provided a substantial list of the parts that 

make up living organisms.  In some cases, we already know where those pieces fit 

together, in other cases, there is still much work to be done; particularly to work out how 

molecular sequences and their defects lead to specific, macroscopic morphologies and 

phenotypes.  If we approach biology like a jigsaw puzzle, we can see that genome 

sequencing has defined many of the pieces of the puzzle and basic research has already 

found many of the edge pieces that frame the work that remains to be done.  However, 

much labor will be necessary to place the remaining pieces and to understand how 

individual processes work together as a whole.  It is my hope that the predictive 

approaches that have been developed here will contribute to associating poorly 

understood genes with their correct biological context, which will facilitate targeted 

research that addresses the mechanistic, molecular level details and yet play a role in 

connect the details to a unified biological understanding that bridges the various 

biological processes and functions, both within a given organism and, eventually, across 

the diversity of life.   
 

To that end, I have developed: a tool for understanding cellular level events 

(chapter 2), a method for associating genes with organismal phenotypes (chapter 3), and, 

finally, a framework that leverages a comparative approach to learn more about the unity 

and diversity of the mechanisms that function in many species (chapter 4).  Using these 

tools is analogous to sorting pieces of a puzzle according to their color and texture prior 

to assembling them.  My disappointing attempt to predict the export adaptor of the small 

subunit of the ribosome suggests that our current tools may not yet be able to predict the 

specific mechanisms by which the biological puzzle will fit together.  However, my 
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subsequent papers has shown three different domains in which current knowledge can be 

leveraged to predict genes associated with a number of biological processes.  The 

adoption of these tools by other researchers has the potential to further accelerate the pace 

of the collection of biological knowledge by prioritizing candidate genes in intuitively 

understandable, broadly applicable, quantitative ways that illuminate their relevance to 

individual biological processes of interest. 
 

In particular, I hope that the phenolog approach and supporting web application 

will provide a very practical tool that helps reinforce the important contributions that can 

be made by integrating comparative methods in the normal work flow of molecular and 

cellular biology.  By providing a pragmatic motivation for the collection of gene-

phenotype data across many taxa, I hope that the collected data will eventually facilitate 

comparative studies across a range of spatial and temporal scales (e.g. developmental, 

behavioral, physiological, and metabolic) and grant us a better understanding of how the 

structure of biological mechanisms permit organisms to adapt to a changing world. 
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