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Computational grid optimization, correction, improvement and remeshing techniques

have become increasingly important as the application problem and domain complexity in-

creases. It is well recognized that distorted elements may degrade accuracy of finite element

and finite volume simulations or cause them to fail. Hence, automatically generated grids

containing millions of cells, created to fit a domain with complex geometry and adapt to

features of different scales, often require correction before they can be effectively used for a

numerical simulation. In this work a new variational grid smoothing formulation is devel-

oped and an extensive study of its mathematical properties, applicability and limitations is

performed. The approach is based on a local cell quality metric, which is introduced as a

function of the Jacobian matrix of the fundamental map from the reference cell. The math-

ematical properties of the local quality measure are analyzed and new theoretical results

are proved. The grid improvement strategy is formulated as an optimization problem and

a modified Newton scheme is used in the optimization algorithm which is implemented in a

new software package. The effectiveness of the algorithm is tested on several representative

v



grids and for different transport application problems.

The resulting methodology is applicable to general unstructured hybrid meshes in

2 and 3 dimensions. It overcomes several difficulties encountered by other smoothing algo-

rithms, such as effects of changing valence (number of cells sharing the same node). The

formulation includes extensions to unfolding, adaptive redistribution, treatment of tangen-

tially “sliding” boundary nodes and hanging nodes, as well as elements with curved edges

or surfaces, commonly used to provide better fit of domain boundaries or interfaces.

The above techniques are applied to a set of mathematically representative prob-

lems including problems of geometric design as well as transport processes with the aim of

studying the effect of the smoothing approach on the solvability and accuracy. Both 2D

and 3D test problems are considered, including a moving mesh Lagrangian formulation for

a fluid interface problem, non-Newtonian blood flow in curved branched pipes and a brain

mapping/deformation problem. The associated numerical simulations are made on both

serial and parallel PC cluster systems.
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Chapter 1

Mesh improvement techniques

1.1 Introduction: mesh needs and research goals

Generating quality meshes that permit reliable accurate simulations remains a major techni-

cal and theoretical problem. The need to solve more complex applications for multi-material

domains with irregular geometry and varying spatial scales exacerbates the difficulty. For

example, large scale simulations now involve meshes with millions of cells and feature sizes

that vary by orders of magnitude. As mesh generation becomes more automated, generated

meshes are often unreliable and may contain unusable or geometrically distorted elements,

so improving the mesh has become a time consuming but pressing task. This adversely

impacts our ability to do efficient simulation and design because of the complexity of ge-

ometry, material interfaces and feature multiscale. Direct approaches of the state of the

art grid generators, such as CUBIT, which are currently used in industry and national

labs, often generate meshes with poorly shaped elements, such as simplices that are sliv-

ers and quadrilaterals with reentrant corners as well as tangled meshes. Consequently, it

may take man-months to construct a suitable mesh for an important large scale problem.

In simulations where moving boundaries arise, the situation can be much worse since the

mesh deteriorates as cells deform degrading accuracy, conditioning, and computational ef-

fectiveness (more iterations and shorter timesteps). Periodic remeshing and frequent grid

smoothing are needed, as well as other corrective actions. Also of particular interest because

of widespread use of quadratic bases and the need to match curved boundaries, are para-

metrically mapped elements. Despite their practical value in fitting the domain geometry,

the effect of distortion due to the quadratic map from the reference element to an element

1



with curved boundaries has not been sufficiently analyzed in the literature. There remain

many unresolved mathematical questions related to mesh generation, mesh optimization

and remeshing. These include questions related to completion of a mesh from a given sur-

face point, properties of unstructured meshes, mesh quality with respect to angle bounds,

mesh metric bounds, algorithm convergence, and so on.

A variety of mesh improvement techniques, such as topological and quality-based

operators (node insertion/removal, edge/face swap, local refinement or element deletion)

or smoothing (modifying node placement so as to improve a mesh without modifying the

mesh connectivity), have been developed to improve the quality of automatically generated

meshes. Previous work in the smoothing area include Laplacian smoothing, optimization-

based smoothing, and physics-based smoothing. Adaptive mesh redistribution is also a

closely related area. For general treatments of these two issues see, for instance [1, 2, 3, 4].

In the present work we focus on mesh smoothing, optimization and adaptation by

node redistribution and we examine this issue mathematically from the standpoint of local

cell quality. A novel scalar cell quality indicator is introduced and used to construct a

global functional for mesh optimization, smoothing and correction. This metric is related

to the underlying mathematical behavior associated with maps from the reference cell and

therefore to fundamental interpolation ideas in finite element (FE) approximation. It is

shown to generalize readily to high dimensions and to have several desirable features. The

effect of cell/element distortion on the solution accuracy and incorporation in mathematical

and numerical analysis is also of interest and has been investigated during the course of the

study.

1.1.1 Contributions

The primary contributions of this work are:

1. The mathematical properties of the functional and the local quality measure are an-

alyzed. In particular:

• Existence of the solution is proved for the smoothing formulation;
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• A Maximum Principle is proved for the local quality metric.

2. The effect of local changes in mesh topology is investigated; mathematical analysis

and numerical investigations of issues related to varying nodal valence in the mesh

are performed.

3. An optimization algorithm for 2D and 3D meshes is developed that includes

• unfolding;

• smoothing;

• adaptive redistribution;

• treatment of hanging nodes;

• treatment of moving boundaries;

• treatment of curved boundaries.

4. A set of mathematically representative examples, which are challenging for other

smoothing algorithms, is developed in order to test the techniques (verification). Ro-

bustness and efficiency of the optimization algorithm is tested on several large-scale

application meshes in 2 and 3 dimensions, including a tetrahedral mesh for basin

modeling and a hexahedral mesh for brain deformation problem.

5. The role of our smoothing technique in obtaining accurate solutions is investigated

for several transport applications. An algorithm for a moving mesh Lagrangian for-

mulation for a fluid interface problem is developed and implemented, and application

tests for this problem and for non-Newtonian blood flow in curved branched pipes are

run and results analyzed.

6. The impact of mesh distortion on the application problem solvability is investigated:

• Estimates for the conditioning of matrices are derived in terms of the mesh

quality;

• Dependence of the error in the solution on the mesh quality is examined both

numerically and analytically.
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7. The adaptive redistribution strategy is compared to refinement, and the combination

of the two strategies is also examined.

Some of the results obtained during the course of this work have been published or

are in press [5, 6, 7, 8] and some were presented at international conferences.

1.1.2 Overview

The outline of the thesis is as follows: we first provide an overview of related literature on

mesh smoothing techniques and mesh quality. In Chapter 2, we present a mathematical

formulation of a variational smoothing algorithm and introduce a local cell quality metric.

The properties of the functional are examined and the existence of minimizers is proved.

Chapter 3 is devoted to the complete analysis of the quality metric. The comparison anal-

ysis with other quality measures on linear simplex elements is carried out. A Maximum

Principle for the quality metric is proved, providing a way to estimate the quality of tensor-

product and curvilinear (quadratic) elements, as well as determine their nondegeneracy. In

Chapter 4, we describe solution techniques and state the numerical smoothing algorithm.

The reduced Hessian matrix used in the damped Newton solution algorithm, is proved to

be symmetric positive definite, thus allowing the use of fast and efficient iterative solvers

for numerical linear system. Convergence of the modified damped Newton scheme is estab-

lished theoretically and confirmed numerically. A treatment for “sliding” boundary nodes

and hanging nodes is developed. In Chapter 5 we present and discuss numerical studies, in-

cluding smoothing strategies and identifying problem areas for 3D large-scale meshes; study

of the valence effects on the smoother; theoretical investigations of the dependence of ma-

trix condition numbers and bounds on element angles on the distortion metric. In Chapter

6 we describe the extensions of the smoothing formulation to adaptive redistribution and

mapping control. Applications presented here include domain shape recovery, comparison

between adaptive redistribution and refinement, and theoretical and numerical analysis of

the interpolation error in terms of the distortion metric. In Chapter 7 we present and dis-

cuss transport applications, including the effect of smoothing on the solution to a moving

interface fluid flow problem set in a pure Lagrangian frame, and for a non-Newtonian flow
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in two curved branching pipe geometries. We conclude the thesis in Chapter 8, where we

summarize the results and point to directions of further research.

1.2 Smoothing techniques

Due to their simplicity, the oldest and most widely used algorithms for mesh smoothing are

the Laplacian-type smoothers [9, 10], which rely on the properties of conformal maps and

harmonic functions to ensure a good mesh, but have many limitations, e.g. they may fail

for non-convex regions. Most of these algorithms are derived from the Laplacian structured

grid generation techniques [9, 11, 12, 1, 13, 14]. More recent approaches to mesh smoothing

are optimization-based [15, 16, 17, 18, 2]. In these techniques the nodes in the grid are

moved so as to maximize (minimize) a given objective function that describes in some sense

a quality (distortion) metric. This quality metric must be a function of the mesh node

coordinates and, usually, it is maximized by local point relaxation strategies (i.e. locally

over a patch of cells and then globally through all patches in the mesh). Several authors

developed algorithms for smoothing that are based on solving simple physical “analog”

problems, such as using a system of springs between nodes [3], a system of interacting

bubbles [19], or a set of lines drawn on a rubber-like material, stretched to fit the physical

domain [20]. Some smoothing techniques combine all of the above ideas or adjust them to

a particular class of smoothing problems [21] - [35].

Throughout the present work we will use the following notation: latin letters x, y, . . .

represent the coordinates in physical domain Ω, greek letters ξ, η, . . . stand for coordinates

in reference domain Ω̂, S is the Jacobian matrix of the map from the reference domain to

the physical domain, J = det S is the Jacobian determinant and G = ST S is the metric

tensor of this map.

One of the earliest studies of optimization strategies is due to Winslow [9]. Here, a

method for numerical construction of topologically regular, nonuniform 2D triangle meshes

is derived by formulating a potential problem, with two families of the mesh lines playing

the role of equipotentials. The triangle mesh is mapped into a regular equilateral triangle

array composed of three sets of straight lines intersecting each other at 600, of which any
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two sets are sufficient to define the mesh. These two sets are associated with functions

ξ(x, y), η(x, y), which satisfy the Laplace equations

∇2ξ = 0, ∇2η = 0. (1.1)

Solving (1.1), the intersecting “equipotentials” ξ = const and η = const, together with the

third set drawn through the intersection points, form the desired triangle mesh. Equations

(1.1) were solved numerically by inverting them and writing them in terms of x(ξ, η) and

y(ξ, η), using finite-difference approximation. Based on this method, Godunov [11] devised

an algorithm for mesh generation for initial boundary value problems, in which changes in

the boundary data induce changes in the mesh. Thompson [12] used Winslow’s method

to develop an automatic numerical grid generator for a general multi-connected region

containing any number of arbitrarily shaped bodies.

Brackbill and Saltzman [10] extend these ideas to adaptively vary the zone sizes and

enforce orthogonality of grid lines in the resulting mesh. They propose the idea that a

mesh generator can be formulated to optimize a composite objective function consisting of

several measurable properties of the mesh, e.g. the global smoothness of the mapping may

be measured by

Is =

∫

Ω
((∇ξ)2 + (∇η)2)dV, (1.2)

the orthogonality by

Io =

∫

Ω
(∇ξ · ∇η)2dV or I ′o =

∫

Ω
(∇ξ · ∇η)2J3dV

and the weighted volume variation by

Iv =

∫

Ω
wJdV.

To formulate a suitable minimization problem, the objective function for I ′
o or Iv is combined

with Is as a weighted multi-objective function I = Is + λvIv + λ′
oI

′
o to be minimized with

λv ≥ 0, λ′
o ≥ 0. This idea of multi-objective functions was further extended in [15], where

the precise form of weights for functionals of smoothness, orthogonality and adaptivity

was established according to their orders of grid scaling. An optimization multiple-pass

6



procedure was considered, where first a smooth and near-orthogonal grid was obtained from

an initial invalid grid, and then, in subsequent solution passes, this grid was redistributed to

accomodate the approximability measure for the solution, while maintaining the smoothness

and near-orthogonality of the grid. For an adaptation functional, local error estimates based

on an a posteriori error analysis were employed, with the objective being to adjust the grid

so that the local error is equidistributed. The Polak-Ribiere optimization algorithm was

used for minimization of the objective function.

In [1] it was shown that a grid with mesh lines graded by applying a subsequent

transformation to a grid generated as the solution to the Laplace system could have been

generated directly by mapping the Poisson system

∇2ξi = P i

for coordinate functions ξi, i = 1, . . . , n, dimension n, from the physical to the reference

domain. Here appropriate “control functions” P i are specified and the mapped equation is

coupled and nonlinear. A similar approach can be applied to

∇ · (w∇ξi) = 0

where the weight function w acts as a diffusivity to grade the mesh preferentially. These

control functions may be used to implement attraction of the grid lines to points and lines

in space, as well as for adaptivity. For the latter purpose the weights were proposed to be

taken as functions of derivatives of an adaptive function. A brief description of variational

grid generation techniques with several choices for objective functions, presented in terms

of metric tensor coefficients is also given in [1]. This idea is extended in [14] and control

functions are introduced to control cell size.

Mesh redistribution techniques for the evolution problem were considered in [36].

Here, the variational problem was posed with respect to both solution and coordinate

transformation. For the objective functional, the weighted sum of the mean-square residual

functional and the smoothing functional was taken. A penalty term was included in the

smoothing part of the functional in order to constrain the motion of the nodes when the

mesh attempts to fold.
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A variational grid generation method introduced in [20] relies on the use of the

invariants of the left Cauchy-Green tensor ST S of the reference cell deformation into a

current cell:

I1 = tr(ST S), I2 =
1

2

(

(tr(ST S))2 − tr(ST S)2
)

, I3 = det(ST S).

Functionals are defined in terms of these invariants and grids are obtained by minimization

of these energy-like functionals. This also provides a clear mechanical interpretation of the

grid generation method: the underlying mechanical model for this method is the rubber

membrane model. That is, consider a hexahedron of rubber-like material with a regular

cubic pattern drawn on it, which is stretched to adjust its boundary to the boundary of the

physical domain Ω. Then the transformation of the original cubic pattern provides the mesh

in Ω. Since axioms that characterize the properties of valid deformation measures have been

established, this approach is consistent with a choice of deformation measure as the energy

function from elasticity theory

σ = C1(I1 − I3 − 2) + C2(I2 − 2I3 − 1) + K(J − 1)2,

where C1, C2, K are constants. Again, the functional controls smoothness and orthogonality,

as well as the size of the element. An alternative weight function for adaptation can be

introduced based on control of the gradient of the solution and enters instead of constant K

in the above expression. This method was implemented in [37] with various interpolation

methods to correct space localization of the adaptation.

The effect of a Laplacian smoother on Delaunay triangulations was explored in [38].

The algorithm for constraining Laplacian smoothing to maintain a Delaunay triangulation

was shown to measurably improve Laplacian smoothing.

In [16] an approach is presented to produce acceptable quality meshes from a topo-

logically valid initial mesh by solving a constrained optimization problem. The variables for

an iterative optimization procedure (the Fletcher-Reeves conjugate direction algorithm) are

the nodal coordinates of the finite element mesh. Appropriate bounds (area positiveness)

are imposed to prevent an unacceptable mesh.
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Canann [17] presents a mesh smoothing technique that uses optimization principles

(conjugate-gradient method) to minimize Oddy’s distortion metric [39] throughout a mesh,

instead of concentrating efforts directly on nodal operations. Oddy’s distortion metric for

an element is derived using the normalized (dimensionless) Jacobian matrix

S
′

=
S

(det S)1/n
, dimension n

in order to remove the effect of element size. From the analogy between element distortion

and strain, Green’s strain is used, and only one term from Green’s strain, which is a direct

function of the Jacobian, is used to compute distortion metric

D =
tr(GT G)

(det G)2/n
− 1

n

(

tr(ST S)

(det S)2/n

)2

.

This metric provides a continuous scalar evaluation of an element’s distortion, and is sen-

sitive to combined stretching and shearing of the element.

Two optimization smoothing algorithms for finite element triangulations are de-

veloped in [18]. The first algorithm is based on element geometry and is constructed to

maximize the minimum value of shape regularity quality q(t) [40] over a triangulation. The

second algorithm is based on local interpolation errors and with the use of a posteriori error

estimates leads to adaptive improvement of finite element triangulations. The algorithm

for computing a triangulation is a common iterative Jacobi or Gauss-Seidel-like method in

which one sweeps through the vertices, locally optimizing the position of a single vertex

while holding all others fixed. A posteriori error estimates require the solution of a local

Neumann problem in each element. A theoretical analysis of the Hessian properties on a

cell is performed as part of the study in [40].

Another approach to structured grid generation based on the Winslow method is de-

scribed in [13]. Instead of approximating The Euler-Lagrange equations (1.1), the authors

approximate the functional (1.2) and solve the minimization problem using numerical opti-

mization techniques. They show that the discretized functional approaches infinity as any

cell degenerates, and thus, its minimization ensures all grid cells be convex quadrilaterals.

A generalization to the case of adaptive grids based on harmonic maps between surfaces is

also considered in this paper.
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A formulation of the optimization method for grid smoothing in [41] gives several

measures of mesh quality for tetrahedral meshes such as dihedral angles, solid angles, and

element aspect ratios. Combinations of these can be used within the optimization method

framework. The algorithm seeks to maximize the minimum value of the mesh quality

measure, and requires function and gradient evaluations dependent on a local free vertex

position. An analog of the steepest descent method is used in the algorithm.

Clearly, one can extend mesh optimization to include adaptivity to the physics of

the application problem as well as to the geometry. Such adaptive mesh redistribution

techniques are of significant interest in the mesh optimization community [42] - [45].

1.3 Quality measures

Quality measures are extensively referred to in many studies of mesh generation, remeshing

and smoothing techniques. The notion of geometric quality of the mesh arises in early

studies of finite element discretization error. Zlamal [46] proved related estimates for the

discretization error in the solution of a second order BVP. The solution was approximated

by polynomials of third and fourth degree on triangular elements. Estimates included

expressions involving derivatives, cell diameter and a factor 1/ sin θ, where θ is the smallest

angle of all triangles of the given mesh.

The notion of a mapping with bounded distortion is introduced in [47] and it is

proved that each such mapping gives a minimum value to some Dirichlet-type functional.

Mapping f : U → Rn, f ∈ W 1
n(U) is said to be a mapping with bounded distortion when

(

n
∑

k=1

n
∑

i=1

(

∂fk

∂xi
(x)

)2
)n/2

≤ nn/2KnJ(x, f),

holds a.e. x ∈ U , where 1 ≤ K < ∞ is some constant and J(x, f) is the Jacobian determi-

nant of the mapping f. Thus, the distortion coefficient is defined accordingly as

q =

√

∑n
k=1

∑n
i=1(

∂fk
∂xi

(x))2

√
n(J(x, f))1/n

.

Babuska and Aziz [48] have shown that the minimum-angle condition in a planar

triangulation (i.e. in an acceptable triangulation no angle should be small) is too restrictive
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and can be replaced by a condition that limits the maximum allowable angle. An essential

condition is that no angle of a triangular element be close to π, i.e. degenerate obtuse.

In [49] an algebraic decomposition of the Jacobian matrix is given which relates

physical and computational variables. This invertible decomposition parametrizes the mesh

by cell orientation, cell orthogonality, cell volume, and cell aspect ratio. The contribution

of the mesh to the truncation error for the discretized Laplacian, approximated with finite

differences, is investigated.

In [1] a study of the truncation error in finite difference approximations of deriva-

tives of a function, given on a curvilinear coordinate system (physical quadrilateral grid) is

performed. In the 2D case, the truncation error depends upon grid uniformity and orthog-

onality.

In [50] the terminology “slivers” was introduced for tetrahedra with small ratio

of inscribed sphere radius to circumscribed sphere radius. An equivalent nondimensional

measure
Volume4

(
∑4

f=1 Area of a face2
f )3

was used in [21] for computational efficiency.

Definitions of shape parameters for quadrilaterals, that include aspect ratio, skew-

ness, taper and warpage (a total of 4 shape parameters for a flat quadrilateral) are given

in [51]. It is shown that these shape parameters can be expressed in terms of simple poly-

nomial coefficients with a clear physical meaning, and can be evaluated from the Jacobian

matrix. The quadrilateral procedure is extended in [52] to the hexahedron and it is shown

that the hexahedron has 15 shape parameters.

An adaptive strategy for finite element solution of 3D viscous flow problems, based

on an advancing front mesh generator, is presented in [53]. The problem of mesh validity is

considered. In particular, the dependence of error bounds of the finite element solution on

the shape of tetrahedral elements is examined. Analytical bounds for the Stokes problem

solution in [54] include a factor σ = h/ρ defined as the regularity of the element, where h is

the largest edge length and ρ is the diameter of the inscribed sphere. The authors carried

out a sensitivity analysis to study the variations of σ for deformation of a tetrahedron away
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from equiangular shape. Since σ is costly to compute, an estimate α called the aspect ratio,

is suggested instead:

α =

√
2h̄3

12V
,

where h̄ is average edge length.

In [55] a variational algorithm that controls the lengths of grid lines, cell areas,

and the orthogonality of grid lines is used for generating boundary-conforming grids on

surfaces. Additional geometric control is provided using weights. Numerical geometric

quality measures are used to judge the success of the algorithm. Geometric properties of

the grids, such as discrete length, area and orthogonality measures are evaluated using

averages and deviations, via a statistical approach.

A brief overview of tetrahedron quality measures is given in [56], which also provides

a comparison of the fidelity of these measures to a set of distortion sensitivity tests, as well

as a comparison of the computational expense of such measures. The measures that were

judged best able to characterize all distortions of all tests are:

circumscribing sphere radius

inscribed sphere radius
,

maximum edge length

inscribed sphere radius
,

V 4

(
∑4

i=1 area of a face2
i )

3
,

(1/6
∑6

i=1 li)
3

V
,

√

1/6
∑6

i=1 l2i

3

V
,

where V is the volume of the tetrahedron and li, i = 1, . . . , 6 are its edges lengths. The two

latter measures were most computationally effective.

An algorithm for the generation of a high-quality well-graded quadrilateral element

mesh from a triangular element mesh is presented in [57] and makes use of the following

“distortion coefficients”:

α(ABC) = 2
√

3
||CA × CB||

||CA||2 + ||AB||2 + ||BC||2 for triangle ABC, and

β =
α3α4

α1α2
for the quadrilateral, (1.3)

where α1 ≥ α2 ≥ α3 ≥ α4 are values of so called “distortion coefficients” of the subtriangles,

produced by cutting the quadrilateral along its two diagonals. Quality of the triangular
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(quadrilateral) mesh is defined to be the geometrical mean of the α (β) values of all cells in

the mesh.

A tetrahedron shape measure

η(T ) =
12(3V )2/3

∑6
i=1 l2i

=
3 3
√

λ1λ2λ3

λ1 + λ2 + λ3
=

3 3
√

det(ST S)

tr(ST S)
(1.4)

is given in [58], where λi denote eigenvalues of the metric tensor ST S for the transformation

between tetrahedron T and regular reference tetrahedron T̂ . The geometric explanation of

η is that it characterizes the shape of the inscribed ellipsoid.

Three tetrahedron shape measures - the minimum solid angle θmin (or σmin =

sin(θmin/2)), the radius ratio ρ = 3rin/rcirc, and the mean ratio η = 12(3V )2/3/
∑6

i=1 l2i , are

discussed in [59]. For different shape measures µ, ν, a relationship of the form c0µ
e0 ≤ ν ≤

c1µ
e1 is obtained, where c0, c1, e0 and e1 are positive constants. This implies that if one mea-

sure approaches zero for a poorly-shaped tetrahedron, so does the other (µ → 0 ⇒ ν → 0

and ν → 0 ⇒ µ → 0). Combined with the property that each measure attains a maximum

value only for the regular tetrahedron, this means that the shape measures are “equivalent”

in that larger values of the measures represent good quality tetrahedra (close to a regular

tetrahedron) and smaller values represent poor quality tetrahedra (close to degenerate). For

the tetrahedron shape measures σmin, ρ and η, the following equivalency relationships hold:

η3 ≤ ρ ≤ (2/ 4
√

6)η3/4;

η3/2/16 ≤ σmin ≤ 4
√

8η3/4;

√
3/24ρ2 ≤ σmin ≤ (2/ 4

√
3)ρ1/2.

(1.5)

In [40, 18] the shape regularity quality of a triangle t is given by

q(t) =
4
√

3|t|
|l1|2 + |l2|2 + |l3|2

.

The study of its geometrical properties shows that q(t) has circular level sets, when con-

sidered a function of the location of one vertex of t with the other two vertices fixed.

Moreover, it is independent of the size of t and the formula used for computing the area |t|
signal reorientation of a triangle by changing sign, which can be used to avoid mesh folding.
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Another algorithm for the construction of solution-adapted triangular 2D meshes

within an optimization framework is considered in [26]. Here an approximation of the

second spatial derivative of the solution u is used to get a metric in the computational

domain of the form:

|D2u(t, t)| = |
∑

i,j

titj
∂2u

∂xi∂xj
|.

A mesh quality objective function based on this metric

QK = 20.78 VK/P 2
KF (

hK

h
),

is proposed and optimized, where VK , PK are area and perimeter of the element K, hK =

PK/3 and h is the desired mesh size. The quality measure QK is a product of “shape”

quality and a function of mesh size F that satisfies 0 ≤ F (x) ≤ 1 and F (x) = 1 ⇔ x = 1.

The suggested choice of F which has no other extrema is

F (x) = (m(x)β [2 − m(x)β ]), m(x) = min{x, 1/x}.

A different approach to unite shape and size quality metrics is presented in [33, 34].

Characteristics of grid lines, faces of 3D grids and grid cells are presented in terms

of invariants of the metric tensor and their relations in [4]. Various grid characteristics,

such as skewness, stretching, torsion, warping, cell aspect ratio, cell volume, characteristics

of nonorthogonality, departure from conformality, cell deformation, and grid density, are

formulated through quantities which measure the features of the coordinate curves, surfaces

and transformations. Geometric interpretations of metric-tensor invariants are given for

both 2D and 3D grids. Reference [60] contains an overview of several element quality

metrics. Several aspects of geometric mesh quality metrics are examined in [61]. This

includes discussion of the mathematical definition of mesh quality metrics, their properties,

a capability for analyzing and classifying various metrics (including a way to show how

metrics are related and means of identifying redundant metrics). The approach is based on

element Jacobian matrices and an algebraic framework that uses the matrix norm, trace,

and determinant.

Despite their practical value in fitting geometry, except for a few specialized studies

such as those in [62, 35], there has been relatively little work on analyzing the effect of
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distortion due to the quadratic map from the reference element to the element with curved

boundaries. Prior studies on curvilinear elements focus on the issue of the map invertibility

[63], or only the nonvanishing of the Jacobian [64, 65]. These studies include elaborate

numerical schemes to determine if the Jacobian vanishes for the 6-node triangle [66] and

8-node quadrilateral elements [67]. Their extensions for 3D or more complex elements

are only partially successful. The nonvanishing of the mapping Jacobian is proved [63]

to be sufficient for the invertibility of the quadratic 6-node triangle. However, for other,

more complex, quadratic elements a similar result has not been proven yet. In [62] several

distortion parameters for an 8-node quadrilateral with curved boundaries are derived using

the theory of geodesics. The authors in [35] extend the angle-based quality metric, originally

defined for linear triangles and quadrilaterals in [57], for use in the optimization of meshes

consisting of quadratic triangles and quadrilaterals. They also extended the formulation to

unfolding by adding a barrier part to their quality functional.

In the next chapter we present a mathematical approach for analyzing mesh defor-

mation that leads to a new cell quality metric suitable for mesh optimization.
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Chapter 2

Variational formulation of the smoothing problem

In this chapter we present a novel variational smoothing formulation and demonstrate how

an analogy can be drawn between it and the Laplace-based smoothing techniques in 2D and

hyperelasticity problems in 3D. We first discuss the class of mappings, their properties and

variational statement. Of particular importance is a mesh distortion metric, which arises

from the variational problem formulation. We examine the distortion functional proper-

ties, including its Euler-Lagrange equations, natural boundary conditions, and existence of

minimizers. We also introduce functional extensions for tangled meshes and present the

discretization framework.

2.1 Mapping and variational statement

2.1.1 Derivation from 2D Winslow smoother

In the literature review of Chapter 1, Section 1.2 we introduced the Winslow smoother

[9] as a well-known strategy. Here, the ideas of harmonic functions and maps lead to the

associated Dirichlet integral

I =

∫

Ω
[(∇ξ)2 + (∇η)2]dxdy. (2.1)

The pair of Laplace problems (1.1) follows as the associated pair of Euler-Lagrange equa-

tions. Mapping the variational problem to the reference domain (ξ, η) ∈ Ω̂ we have

I =

∫

Ω̂

x2
ξ + x2

η + y2
ξ + y2

η

xξyη − xηyξ
dξdη (2.2)
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for x(ξ, η) and y(ξ, η). This can be expressed compactly as

I =

∫

Ω̂

tr(ST S)

det S
dξdη (2.3)

where tr denotes the trace (recall Section 1.2 for the notations). Following the ideas of

optimization-based smoothing and of quality metrics as functions of the metric tensor or

Jacobian matrix, it is natural to relate the integrand of (2.3) to a quality measure. We

define the corresponding local distortion measure as

β(S) =
1
2tr(ST S)

det S
, (2.4)

which we have scaled so that its range is [1,∞). Thus, when the map between the reference

and physical frames is identity (S = I), the value of distortion measure is one β(I) = 1,

and when the map approaches degeneracy det S → 0, β → +∞. We define the local mesh

quality as Q0 = β−1.

In fact, this distortion measure generalizes to any dimension directly [34] as

β(S) =

(

1
ntr(ST S)

)n/2

det S
. (2.5)

The map and distortion metric here are for general reference and physical domains, but we

are particularly interested in the map from a reference cell Ω̂c onto an arbitrary cell in the

physical domain. In the course of this work, we will thoroughly investigate the properties

of the distortion measure (2.5). As we will see below, β is a “fair” shape control measure

in the sense that it detects all types of degenerate elements and does not depend upon the

size of the element. (Note that this distortion metric is insufficient, since it will not control

size.)

Since in most applications it is desirable to exercise control on element size as well

as shape, we introduce a “dilation” or size control metric and combine both metrics into a

composite measure. In the literature review of Chapter 1, we indicated several approaches

invented to unite element shape and size control, and we will follow one of them. Let v be

a target element size measure (related to area in 2D and volume in 3D) defined a priori.

For example, in the case of a “desired” uniform grid, v is taken to be the average cell area

v =

∫

Ω̂ det Sd~ξ
∫

Ω̂ d~ξ
.
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Then the ratios det S/v and v/ det S indicate the departure of det S from v. If a specified

grading in size is desired, then v may be specified (as we will see later in Chapter 6). Since

det S can be above or below v, we use the symmetric dilation measure

µ(S) =
1

2

(

v

det S
+

det S

v

)

, (2.6)

which has its origin in the Zhoukowsky conformal map z + 1/z. Then the dilation measure

achieves its minimum µ = 1 when v = det S and µ → ∞ as det S → ∞ or 0.

Following the ideas of multi-objective functions, we now define an additive distortion-

dilation measure

Eθ = (1 − θ)β(S) + θµ(S), (2.7)

where coefficient 0 ≤ θ < 1 can be adjusted to emphasize the respective distortion and

dilation terms either a priori or via feedback.

Remark: Note, that in this section we are considering the mesh smoothing problem

only. That is, the initial mesh is valid and has positive Jacobians everywhere, so metrics

(2.5), (2.6) and (2.7) are well defined. The extensions of the metric definitions to more

general cases (zero or negative Jacobians) is described later in Section 2.2.

Now the variational grid smoothing formulation can be stated as follows: minimize

the functional

I =

∫

Ω̂
Eθ(S)d~ξ, (2.8)

subject to specified boundary (or other) constraints. In this general formulation, the refer-

ence domain is a union of all Nc reference elements (one for each cell in the mesh) Ω̂ =
⋃

c Ω̂c

and (2.8) is understood as

I =

Nc
∑

c=1

∫

Ω̂c

Eθ(S)d~ξ.

2.1.2 Properties of the functional

For clarity of exposition, let us return to the 2D case and write the functional (2.8) in the

following way

I = (1 − θ)Iβ + θIµ, where Iβ =

∫

Ω̂
β(S)dξdη, Iµ =

∫

Ω̂
µ(S)dξdη. (2.9)
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We already know that functional Iβ is elliptic, since its Euler-Lagrange equations are the

Laplace equations (1.1). Below we will obtain the Euler-Lagrange equations and natural

boundary conditions for our composite variational problem. By mapping the problem to

the physical domain we have

Iβ(ξ, η) =

∫

Ω̂
βdξdη =

1

2

∫

Ω

(

(∇ξ)2 + (∇η)2
)

dxdy;

Iµ(ξ, η) =

∫

Ω̂
µdξdη =

∫

Ω
µJ−1dxdy =

1

2

∫

Ω

(

1

v
+ vJ−2

)

dxdy

=
meas Ω

2v
+

v

2

∫

Ω
(ξxηy − ξyηx)2dxdy. (2.10)

The variations of the functionals are

δIβ =

∫

Ω
(∇ξ · ∇δξ + ∇η · ∇δη) dxdy

=

∫

∂Ω

(

∂ξ

∂n
δξ +

∂η

∂n
δη

)

ds −
∫

Ω
(∆ξδξ + ∆ηδη) dxdy;

δIµ = v

∫

Ω
J−1 (δξxηy − δξyηx + ξxδηy − ξyδηx) dxdy

= v

∫

δΩ











J−1











ηy

−ηx











· n δξ + J−1











−ξy

ξx











· n δη











ds

+ v

∫

Ω

((

(J−1ηx)y − (J−1ηy)x

)

δξ +
(

(J−1ξy)x − (J−1ξx)y

)

δη
)

dxdy.

Since we are going to use different values of θ in the smoothing algorithm, it is useful

to understand the effect of the dilation functional. The corresponding Euler-Lagrange

equations (from the dilation functional only, θ = 1) in the physical domain Ω are

J−1
y ηx = J−1

x ηy

J−1
y ξx = J−1

x ξy, (2.11)

or, equivalently, since J−1 6= 0 ⇒ ξxηy 6= ξyηx,

(J−1)x = (J−1)y = 0 in Ω ⇒ J = const in Ω̂. (2.12)

From the definition of the dilation measure (2.6) we have J = v on Ω. If we assign different

values of v for different cells in the grid, we can repeat the derivation and get J |c = vc for
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each cell c in the grid. Note, that the dilation part of the functional alone (θ = 1) cannot

be used for the mesh smoothing, since it has no elliptic properties and will not guarantee

the solution existence of the variational problem (which is considered later in this chapter).

The Euler-Lagrange equations for the full functional (2.8) in physical domain Ω

follow easily from the variational statement as

−(1 − θ)∆ξ + vθ
(

J−1
y ηx − J−1

x ηy

)

= 0

−(1 − θ)∆η + vθ
(

J−1
y ξx − J−1

x ξy

)

= 0.

In order to obtain the natural boundary conditions let us represent the domain boundary

as a collection of parts, each of which is given by either ξ = const or η = const coordinate

lines:

∂Ω =

(

Γξ =
⋃

i

Γξ
i

)

⋃



Γη =
⋃

j

Γη
j



 , where Γξ
i : ξ = consti, Γη

j : η = constj ,

and any two parts may share only their end-points. Then δξ = 0 on Γξ and δη = 0 on Γη

so the natural boundary conditions are











θ v
J ηy + (1 − θ)ξx

−θ v
J ηx + (1 − θ)ξy











· n = 0 on Γη;











−θ v
J ξy + (1 − θ)ηx

θ v
J ξx + (1 − θ)ηy











· n = 0 on Γξ.

Let us analyze these conditions on a representative part of the boundary, Γξ
0. For the natural

boundary conditions coming from the shape control part of the functional (with θ = 0) we

get ∇η · n = 0, which means that grid lines given by level curves η = const tend to align

orthogonally to the boundary (see Figure 2.1, a)). For the conditions coming from the size

control part (with θ = 1) we obtain ∇ξ||n, i.e. grid lines ξ = const tend to align parallel to

the boundary (see Figure 2.1, b)). Thus, natural boundary conditions impose orthogonality

of the grid lines near/to the boundary.

20



∂Ω

ξ = const0

¡µn@I∇η

η = const

a)

∂Ω

ξ = const0

¡µn
ξ = const ¡µ∇ξ

b)

Figure 2.1: Natural boundary conditions in 2D.

2.1.3 Analogy with 3D hyperelasticity

A useful way of approaching the variational smoothing formulation (2.8) is by drawing

the analogy between our smoothing problem in 3D and a problem of equilibrium for hy-

perelastic material. We can then draw on several theoretical results from the theory of

hyperelastic deformation to infer related properties of our 3D generalization of the metric.

More specifically, in our case the local measure Eθ represents a stored energy function for

hyperelastic material W : Ω̂ × M
3
+ → R and the distortion functional I =

∫

Ω̂ Eθ(S)d~ξ is

the total energy of the material. The admissible deformations x : Ω̂ → R
3 satisfy the con-

straints det∇x = det S > 0 in Ω̂ and x = x0 on the boundary. In our formulation, thus, we

have no applied body or surface forces. The solution sought is the admissible deformation

minimizing the total energy. Thus, using the theory developed for hyperelastic materials in

[68], we will demonstrate how certain theoretical results apply to our case.

Existence of the minimizers.

We are interested mainly in two types of boundary conditions for the problem:

• boundary conditions of place: x(~ξ) = x0(~ξ) on part of the boundary Γ0, which corre-

spond to specifying the location of mesh boundary nodes;

• unilateral boundary conditions of place: x(Γ2) ⊂ C, where C is some given closed

subset of R
3, which models contact without friction and corresponds to movement of
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mesh nodes along the given boundary.

Existence results for the hyperelasticity problem with both types of boundary con-

ditions above are proved in [68] based on John Ball’s theory [69]. We now reformu-

late this result considering that our stored energy function does not explicitly depend on

CofS = (det S)S−T , and we do not need to impose any conditions on CofS.

Lemma 1 For existence of the solution in the set

Φ = {x ∈ W1,p(Ω̂); det∇x ∈ Lr(Ω̂),

x = x0 a.e. on Γ0,

x ∈ C a.e. on Γ2,

det∇x > 0 a.e. in Ω̂} (2.13)

(provided it is nonempty and infx∈Φ I(x) < +∞) the stored energy function W must satisfy

three assumptions:

1. Polyconvexity: for almost all ~ξ ∈ Ω̂, there exists a convex function W(~ξ, ·) : M
3 ×

(0, +∞) → R such that

W(~ξ, S, detS) = W (~ξ, S) for all S ∈ M
3
+;

the function W(·, F, δ) : Ω̂ → R is measurable for all (F, δ) ∈ M
3 × (0, +∞).

2. Behavior as det S → 0+: for almost all ~ξ ∈ Ω̂,

lim
det S→0+

W (~ξ, S) = +∞.

3. Coerciveness: there exist constants a1, a2, p, r such that

a1 > 0, p ≥ 2, r > 1, a2 ∈ R,

W (~ξ, S) ≥ a1(||S||p + (det S)r) + a2

for almost all ~ξ ∈ Ω̂ and for all S ∈ M
3
+. (2.14)
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Proof:

We follow here step by step the existence proof (for the problem with boundary conditions

of place only) in [68] but applied now to our case (no dependence on CofS).

(1) All integrals are well defined. A consequence of the first assumption: For almost

all ~ξ ∈ Ω̂, the function W(~ξ, ·) : M
3 × (0, +∞) → R is continuous (it is convex and real-

valued on an open subspace of a finite-dimensional space); for all (F, δ) ∈ M
3 × (0, +∞),

the function W(·, F, δ) : Ω̂ → R is measurable, and M
3 × (0, +∞) is a Borel set. Therefore

the function W : Ω̂× M
3 × (0, +∞) → R is a Caratheodory function, and consequently the

function

~ξ ∈ Ω̂ → W(~ξ,∇x(~ξ), det∇x(~ξ)) ∈ R

is measurable for each x ∈ Φ (det∇x(~ξ) ∈ (0, +∞) for almost all ~ξ ∈ Ω̂). Since the function

W is in addition bounded below (by the coerciveness inequality), we conclude that the

integral
∫

Ω̂
W (~ξ,∇x)d~ξ =

∫

Ω̂
W(~ξ,∇x, det∇x)d~ξ

is a well defined extended real number in the interval [a2volΩ̂, +∞] for each x ∈ Φ.

(2) We find the following lower bound for I(x), x ∈ Φ using coerciveness of function

W , the Poincare inequality and the boundary condition x = x0 on Γ: there exist constants

c > 0 and d > 0 such that

I(x) ≥ c{||x||p
1,p,Ω̂

+ | det∇x|r
0,r,Ω̂

} + d for all x ∈ Φ.

(3) Let (φk) be an infimizing sequence for the functional I, i.e. a sequence that

satisfies

φk ∈ Φ ∀k, and lim
k→∞

I(φk) = inf
x∈Φ

I(x).

By assumption, infx∈Φ I(x) < +∞, and thus by (2) the sequence (φk, det∇φk) is bounded

in the reflexive Banach space W1,p(Ω̂) × Lr(Ω̂), where p ≥ 2, r ≥ 1. Hence there ex-

ists a subsequence (φl, det∇φl) that converges weakly to an element (φ, δ) in the space

W1,p(Ω̂) × Lr(Ω̂). By the properties of mappings φ ∈ W1,p(Ω̂) → Cof∇φ ∈ Lp/2(Ω̂) and

23



φ ∈ W1,p(Ω̂) → det∇φ, proved in [68], we have






































φl ⇀ φ in W1,p(Ω̂), p ≥ 2,

Cof∇φl ⇀ H in Lq(Ω̂), 1
p + 1

q ≤ 1,

det∇φl ⇀ δ in Lr(Ω̂), r ≥ 1







































⇒



















H = Cof∇φ

δ = det∇φ

(4) Show that φ ∈ Φ, i.e. establish that det∇φ > 0 almost everywhere in Ω̂ and that

φ = x0 on Γ. This part uses Mazur’s theorem and is exactly the same as in the original

proof.

(5) Show that
∫

Ω̂
W (~ξ,∇φ(~ξ))d~ξ ≤ lim inf

l→∞

∫

Ω̂
W (~ξ,∇φl(~ξ))d~ξ.

Let us consider a subsequence (φm) of (φl) such that the sequence (
∫

Ω̂ W (~ξ,∇φm(~ξ))d~ξ)

converges. Using the result of step (3) and Mazur’s theorem, we conclude that for each m,

there exist integers j(m) ≥ m and numbers µm
t , m ≤ t ≤ j(m), such that

µm
t ≥ 0,

j(m)
∑

t=m

µm
t = 1,

Dm =

j(m)
∑

t=m

µm
t (∇φt, det∇φt)

m→∞→ (∇φ, det∇φ)

in Lp(Ω̂) × Lr(Ω̂).

Hence there exists a subsequence (Dn) of (Dm) such that

j(n)
∑

t=n

µn
t (∇φt(~ξ), det∇φt(~ξ))

n→∞→ (∇φ(~ξ), det∇φ(~ξ))

for almost all ~ξ ∈ Ω̂.

Since the function W(~ξ, ·) is continuous on the set M
3× (0, +∞) for almost all ~ξ ∈ Ω̂

as a consequence of the first assumption, and since from step (4) det∇φ(~ξ) > 0 for almost

all ~ξ ∈ Ω̂, we have

W (~ξ,∇φ(~ξ)) = W(~ξ, (∇φ(~ξ), det∇φ(~ξ)))

= lim
n→∞

W




~ξ,

j(n)
∑

t=n

µn
t (∇φt(~ξ), det∇φt(~ξ))




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for almost all ~ξ ∈ Ω̂. Using this relation, Fatou’s lemma, and the assumed convexity of the

function W(~ξ, ·) for almost all ~ξ ∈ Ω̂, we obtain

∫

Ω̂
W (~ξ,∇φ(~ξ))d~ξ ≤ lim inf

n→∞

∫

Ω̂
W




~ξ,

j(n)
∑

t=n

µn
t (∇φt(~ξ), det∇φt(~ξ))



 d~ξ

≤ lim inf
n→∞

j(n)
∑

t=n

µn
t

∫

Ω̂
W (~ξ,∇φt(~ξ))d~ξ

= lim
n→∞

∫

Ω̂
W (~ξ,∇φn(~ξ))d~ξ = lim

m→∞

∫

Ω̂
W (~ξ,∇φm(~ξ))d~ξ.

(6) The function φ is thus a solution to the minimization problem since φ ∈ Φ by

step (4), and since

I(φ) ≤ lim inf
l→∞

I(φl) = inf
x∈Φ

I(x) ⇒ I(φ) = inf
x∈Φ

I(x).

Proof of existence of minimizers for a total distortion functional:

In our case, the second assumption of the Lemma is obviously true. The coerciveness is

easy to establish, using the fact that the Jacobian determinant is bounded from above by

the volume of physical domain det S < V,

W (~ξ, S) = Eθ(S) = (1 − θ)
1

33/2 ||S||3

det S
+ θ/2

(

v + (det S)2/v

det S

)

≥

≥ 1 − θ

33/2V
||S||3 +

θ

2vV
(det S)2 +

θv

2V
.

Thus, we establish a1 = min
(

1−θ
33/2V

, θ
2vV

)

, a2 = θv
2V , p = 3 ≥ 2 and r = 2 ≥ 1.

It remains to show the polyconvexity of Eθ. The size control part µ is a convex function of

det S, and we will show that the shape control part β is a convex function of two variables

(S, det S) (we denote β̂(S, det S) = β(S)) by proving that its second derivative is positive

definite:

β̂′′(F, det F )(S, ·) =











( 1

3
trF T F )1/2trST S+ 1

3
(trF T S)2( 1

3
trF T F )−1/2

det F − ( 1

3
trF T F )trF T S

(det F )2

− ( 1

3
trF T F )trF T S

(det F )2
2( 1

3
trF T F )2

(det F )3











(2.15)
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for all F, S ∈ M
3
+. The quadratic form defined by this second derivative is equal to

(xy)β̂(xy)T =
2(y

1

3
trF T F

det F − x
2 trF T S)2 + x2

6 (2 trF T F trST S − (trF T S)2)

(1
3trF T F )1/2 det F

and is positive for any x, y ∈ R since

trF T S ≤ (trF T F )1/2(trST S)1/2

by the Cauchy-Schwarz inequality.

Transition to 2D

The hyperelastic material problem is naturally defined in three dimensions. However, we

can formulate certain constraints on this 3D problem that allow us to transform it to a

form suitable for our 2D smoothing formulation. Note, that the size control part of the

functional Iµ is the same in any dimension, so we are only concerned about the transition

of the shape control part Iβ.

Appealing once again to elasticity theory, the columns of the deformation gradient

S = ∇x form the basis in the tangent vector space. Hence, it is natural in our work to

consider the Jacobian matrix as a basis and its columns as the associated vectors. We will

employ this idea later in Chapter 3 for the discussion of local metric properties. At this

moment, however, our goal is to reduce the 3D formulation to 2 dimensions only. To do

this we have to eliminate the dependence on the third coordinate, and put some restriction

on the redundant third basis vector:

S =





















S2

0

0

0 0 g3





















, det S = g3 det S2,

where S2 is the 2× 2 Jacobian matrix for a 2D map with columns (basis vectors in 2D) g1

and g2. If we now set

g2
3 =

1

2
tr(ST

2 S2) =
1

2

(

g2
1 + g2

2

)
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substituting in (2.5) we obtain

β3D(S) =

(

1
3tr(ST S)

)3/2

det S
=

(

1
3tr(ST

2 S2) +
g2
3

3

)3/2

g3 det S2
=

1
2tr(ST

2 S2)

det S2
= β2D(S2).

That is, the desired 2D restriction is achieved.

2.2 Interior and exterior penalty treatments

In the previous section we considered the mesh smoothing formulation for a given valid

grid and, thus, defined all metrics for mappings with positive Jacobians only. Note, that

formally we can extend the previous definitions for all mappings as follows by modifying

Eθ so that

Eθ(S) = +∞, when det S ≤ 0. (2.16)

For example, on the degenerate and folded elements in Figure 2.2, the distortion metric is

infinite Eθ = +∞.

s s s
0 12

s s
0 1,2

degenerate

triangles

s s

s

@
@

@
@

@
@@

0 1,3

2

degenerate and folded quadrilaterals

s s

s

HH
HH

H

A
A
A
AAs

0 1

2

3

Figure 2.2: Degenerate and folded elements.

The total distortion functional I takes the form of an internal or barrier penalty

functional. That is, the functional penalizes a mesh with Jacobians close to zero, and does

not accept any mesh with det S ≤ 0. This is an important property, which ensures that a

result of smoothing (2.8) cannot contain any folded or degenerate elements.

However, in most practical applications requiring smoothing and correction of the

mesh, the initial mesh can be folded or can contain nonconvex cells. The previous functional

and minimization procedure cannot be applied directly to folded meshes, since the barrier
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prevents correction of the folded mesh. In order to address the problem of invalid initial

grids, the functional (2.8) can be modified to the form of an exterior penalty function

[15, 70]. That is, the modified functional will penalize any folded mesh with negative

Jacobians, while still accepting it.

The barrier in the original functional (2.8) is due to the presence of det S in the de-

nominator of the integrand. An exterior penalty formulation can be developed by replacing

this factor det S by a function χε(det S), such that χε(x) → x when x > 0, χε(x) → 0 when

x ≤ 0, so the new integrand will be a finite approximation of the original infinite barrier.

In the present work, we use the rational function [70]

χε(x) =
x

2
+

1

2

√

ε2 + x2 (2.17)

since it has the properties

χε(x) ≈ x when x À ε

χε(x) ≈ ε2

4x
when x → −∞ (2.18)

α =
χ′

ε(x)x

χε(x)
: |α| ≤ 1, 0 ≤ χ′′

ε(x)x2

χε(x)
≤ 1 − α.

The plot of this function and its reciprocal for ε = 0.1 is shown in Figure 2.3. We can see

that for the positive values of argument x the function approximates x very well, and its

reciprocal grows smoothly but fast with the decrease in x < 0.

Remark: A different approach, where an exponential penalty term is added to the

objective function in order to give it a monotonically decreasing property with a single

minimum, is considered for surface meshes in [35].

The formulation of the grid unfolding problem now becomes: minimize the functional

Iε =

∫

Ω̂
Eθ,ε(S)d~ξ, where Eθ,ε(S) =

φθ(S)

χε(det S)
, (2.19)

where

φθ(S) = (1 − θ)

(

1

n
tr(ST S)

)n/2

+
θ

2

(

v + (det S)2/v
)

, (2.20)

subject to boundary or other constraints. This modification allows the minimization pro-

cedure to start from a folded grid, and since the value of the functional Iε is significantly
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Figure 2.3: Functions χ0.1(x) and χ−1
0.1(x).

increased when folded cells are present in the grid, the final grid will not contain nonconvex

cells (assuming there exists such a mesh solution for the given connectivity and boundary

conditions).

The plot of values for the modified objective function Eθ,ε(S) in 2D with

S =











1 x

0 y











shown in Figure 2.4 demonstrates that function is monotone and convex. The simple form

of the Jacobian matrix used for the plot corresponds, for example, to a corner basis of

a quadrilateral cell with bilinear map, or to a linear triangle map with a right reference

triangle (see Figure of the basis below). Thus, y < 0 corresponds to a reentrant corner of a

quadrilateral cell, or to a triangle with negative area. We can observe that when y < 0 the

modified objective function Eθ,ε takes a large value.

¡
¡

¡
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¡
¡

¡ª
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1,0 x,yx y

Note that once the grid is untangled the exterior penalty can be removed and the
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Figure 2.4: Objective function for grid untangling Eθ,ε, θ = 0.5, ε = 0.1, v = 1.

scheme is allowed to revert to the previous form with interior barrier penalty behavior. The

natural barrier prevents “refolding”.

2.2.1 Euler-Lagrange equations for penalty formulation (2.19) in 2D.

We will concentrate our attention on the shape control part of the functionals, since only

this part is responsible for the unfolding. As we already established, for the 2D variational

problem

min Iβ =
1

2

∫

Ω̂

tr(ST S)

det S
=

1

2

∫

Ω
((∇ξ)2 + (∇η)2)dxdy

the corresponding Euler-Lagrange equations are

∆ξ = 0, ∆η = 0.

For the penalty formulation (2.19) of the same problem

min Iβ,ε =
1

2

∫

Ω̂

trST S

χε(det S)
dξdη =

1

2

∫

Ω
D((∇ξ)2 + (∇η)2)dxdy

where D = det S/χε(det S), the Euler-Lagrange equations become

∇ · (D∇ξ) = 0, ∇ · (D∇η) = 0. (2.21)

30



(Note that for the change of variables under the integral we assume det S 6= 0).

The diffusivity coefficient D influences mesh grading and has the following properties

(with our choice of χε):

(1) D ≈ 1 when det S À ε,

(2) D ≈ −4/ε2 when det S → −∞ and

(3) D → 0 when det S → 0.

In [14] it was shown that a solution to diffusion problem (2.21) satisfies

D det S = const. (2.22)

Thus, in our case the situation (1) corresponds to the equidistributed grid, situation (2) -

to mesh clustering, and situation (3) - to dilation of the mesh cells. This means that when

we start the untangling procedure on a folded cell, it first shrinks to one point (situation

(2)) and then dilates (situations (3) and (1)). The final size of the cell is determined by the

size control part of the metric. This behavior is indeed observed in numerical tests in both

2D and 3D cases, as will be illustrated later in Chapter 5.

2.3 Discretization

In order to obtain a convenient discretized problem formulation from (2.8), let us introduce

the vector of all grid node coordinates of a candidate mesh

RT = (XT
1 , . . . ,XT

n ), Xi ∈ R
N ,

where N is the total number of grid nodes. From this vector we can extract, for each cell c

in the mesh, the vector of coordinates of its Nc,v vertices

Xc,i = RcXi, Rc ∈ R
Nc,v×N .

The discretized form of the minimization problem (2.8) is then: find the solution to

R = arg min
R

Ih, Ih =

Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)Eθ(S|q(c)), (2.23)

31



where contributions to the functional from each cell c are approximated using a numerical

integration rule. Let the Nq discrete contributions to this integration rule from one cell be

defined by indices {q(c)}. The rows of Jacobian matrix S|q(c) are computed as

ST = (a1, . . . ,an), ai|q(c) = Qq(c)RcXi. (2.24)

A set of matrices Qq(c) and weights σq(c) determine a numerical integration rule on a cell.

The discretized functional for the untangling formulation (2.19) then becomes

Ih,ε =

Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)

φθ(S|q(c))
χε(det S|q(c))

. (2.25)

We will discuss the discretization of boundary node constraints in Chapter 4.

The computational complexity for evaluating the discretized functional can be esti-

mated as follows:

a) computation of one Jacobian matrix S|q(c) requires computing n matrix-vector products

of n×Nc,v matrix and Nc,v×1 vector (or n2Nc,v multiplications and n2(Nc,v−1) additions);

b) computation of distortion metric Eθ(S|q(c)) requires a constant number of operations:

3 (n = 2) or 14 (n = 3) for det S|q(c) and 16 (n = 2) or 30 (n = 3) for Eθ(S|q(c));
c) NqNc multiplications and NqNc − 1 additions for estimating Ih.

Thus, the total number of operations is of the order of 2n2NcNqNc,v.

Remarks:

1. The formulation can be applied to any unstructured grid including those containing

different types of cells, using appropriate integration rules (see 4. below);

2. Unstructured grids will have varying nodal valence and this effect will also be inves-

tigated in the numerical work of Section 5.2;

3. The general formulation is written in n dimensions and, thus, is applied here for both

2D and 3D;

4. The rule for integration should be chosen consistent with the penalty form of the

original functional, i.e. it has to enforce the barrier property of the discrete functional
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so that the set of admissible shapes will not get larger for the discretized problem and

we will not obtain invalid cells in the smoothed mesh.
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Chapter 3

Local quality measure

In many recent optimization-based mesh improvement strategies the main component is a

quality metric. (See references in Section 1.2). The properties of the metric impact the

algorithm performance, and the rules for numerical approximation should be consistent

with those desired properties. For example, it is important for numerical approximation of

the metric to be able to detect all the elements forbidden by the associated quality metric.

Due to the constantly increasing interest in optimization-based mesh smoothing

techniques, there is a growing literature on element quality metrics. The most extensively

analyzed in terms of their quality are the common linear simplex elements: the 3-noded

triangle and 4-noded tetrahedron. On these elements we perform a comparison analy-

sis between our metric and other popular quality measures. There are fewer results for

tensor-product and quadratically mapped elements, which, despite their practical value,

are difficult to analyze, especially in 3D. A key goal of this chapter is to present an exten-

sive study of the quality metric defined in Chapter 2 for several practical elements, as well

as develop a consistent and efficient rule for computing its numerical analog (integral over

the cell). In some instances our metric coincides with a quality measure known from the

literature, and we will then only briefly mention its properties as established in the cited

works. All other results are new and were obtained by the author.

For example, the function β(S), reformulated in terms of invariants of the metric

tensor of coordinate transformation G = ST S, was considered in [4]. It was shown that

β(S) controls the cell angles and cell aspect ratio in the 2D case and has similar properties

in 3D. The estimates for the angle α between two cell edges and cell aspect ratio F (ratio
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of the lengths of the edges) for 2D quadrilateral cells are

sin2 α ≥ (1/β)2, 2 ≤ F + 1/F ≤ 4β2 − 2.

Thus β → 1 enforces α → π/2 and F → 1; i.e. a square cell. The modified distortion

measure Eθ retains these properties of β(S). It is an indicator for quasi-isometry of the

mapping [33, 34] - an analog of mapping conformality characterization, in the sense that

γ2I ≤ ST S ≤ Γ2I,

where γ and Γ can be estimated from Eθ.

In the following sections, we examine the properties of the local distortion metric

Eθ(S) or corresponding local quality measure Qθ(S) = E−1
θ (S) (Q0(S) = β−1(S)) on basic

2D and 3D isoparametric elements given by linear and quadratic maps (which are most

widely used in grid generation and for FE analysis).

3.1 Linear simplex elements

3.1.1 2D triangular element

Taking the reference element to be the equilateral triangle with sides of length 1 and vertices

m1, m2, m3, the linear map onto an arbitrary triangular element with area A, edges of

lengths l1, l2, l3, and vertices v1, v2, v3 (see Figure 3.1) can be expressed in terms of

baricentric coordinates as




















1

x

y





















=











1 1 1

v1 v2 v3





















1 1 1

m1 m2 m3











−1





















1

ξ

η





















(3.1)

Thus, the constant Jacobian matrix can be computed from the relation










x

y











= v1 + ξ(v2 − v1) + η

(

2v3 − v1 − v2√
3

)

,
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Figure 3.1: The linear map of the regular reference triangle onto an arbitrary triangle.

and we get

det S =
4√
3
A, tr(ST S) =

2

3
(l21 + l22 + l23).

The value of the distortion measure is

β =
l21 + l22 + l23

4
√

3A

so the quality measure Q0 is

Q0 =
4
√

3A

l21 + l22 + l23
.

We see that the metric reduces here to a well known example [40, 57] of a “fair” geometric

measure in the sense that it is equal to 0 on any type of degenerate triangle. It is also

normalized (takes values from the interval [0, 1] ).

The corresponding additive measure from (2.7) is

Eθ = (1 − θ)
l21 + l22 + l23

4
√

3A
+

θ

2

(√
3

4A
+

4A√
3

)

.

The level sets of the corresponding quality measure Qθ = E−1
θ for a triangle with a fixed

edge (0, 0)− (0, 1) as a function of the coordinates (x, y) of the opposite vertex are shown in

Figure 3.2 for different values of parameter θ. Each level set curve is given by the equation

Qθ(x, y) = const. As θ increases, the quality measure becomes less restrictive in the sense

that it admits more points in the regions Qθ > const, as can be seen by comparing the
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“interior” areas for a given level curve in each graph of Figure 3.2. However, it remains a

“fair” measure.
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Figure 3.2: Level sets of Qθ(x, y) on triangle with vertices (0, 0), (0, 1), (x, y).

Comparison with other triangle shape distortion measures. Following the notion

of quality measure equivalency introduced in [59], we now prove relationships of the form

c0β
e0 ≤ α ≤ c1β

e1 , where c0, c1, e0, e1 > 0,

where α is a distortion measure with values from [1,∞). These inequalities imply that both

measures α and β go to infinity simultaneously α → ∞ ⇐⇒ β → ∞, i.e. both measures

detect the same types of degenerate elements. If the bound is tight, i.e. constant ci is

optimal (denoted by ≤t), for example α ≤t β then β → 1 =⇒ α → 1. Thus, such quality

measures are interchangeable if used in the mesh optimization methods.

Let us consider a triangle with area A, side lengths l1 ≥ l2 ≥ l3, inradius r, circum-

radius R, shortest altitude h and smallest angle Θ. Then using our distortion measure for

the triangle above,

β =

∑3
i=1 l2i

4
√

3A

we can establish equivalency estimates of the form given with the metrics indicated in the

left column of the Table 3.1. The derivations for the inequalities in Table 3.1 with respect

to each of the 7 comparison measures are listed below:
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Distortion metric Equivalency estimates

α1 =
(
P

3
i=1

li)
2

12
√

3A
, 1

3β ≤ α1 ≤t β

Watabayshi and Galt [71]

α2 = R
2r ,

√
3

6 β ≤ α2 ≤t β2

Cavendish, Field, Frey [50]

α3 = l1√
3r

2
3β ≤ α3 ≤ 3β

α4 =
√

3l1
2h , β ≤t α4 ≤ 2β

Suhara and Fukudo [72]

α5 =

√
P

3
i=1

l2i
2h

√
3

3 β ≤ α5 ≤ 3
2β

α6 = l1
l3

, α6 ≤ 4
√

3
3 β

not “fair” measure

α7 =
√

3
2 sin Θ , 1

6β ≤ α7 ≤ 3
2β

smallest angle

Table 3.1: Comparison of triangle distortion measures.
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1. From the estimates
3
∑

i=1

l2i ≤ (
3
∑

i=1

li)
2 ≤ 3

3
∑

i=1

l2i

we get

β/3 ≤ α1 ≤ β,

where the upper bound is tight.

2. For the radii, we have r = 2A/
∑3

i=1 li and R = l1l2l3/4A. Since l1l2l3 ≤ (
∑3

i=1 li/3)
3

we get a tight estimate

α2 =
l1l2l3(

∑3
i=1 li)

16A2
≤ (
∑3

i=1 li)
4

1633A2
= α2

1 ≤ β2.

On the other hand, R ≥ li/2 for i = 1, 2, 3, thus R > (
∑3

i=1 li)/6 and

α2 ≥ (
∑3

i=1 li)
2

24A
=

√
3

2
α1 ≥

√
3

6
β.

3. Using triangle inequality l1 < l2 + l3 we get l1 < (
∑3

i=1 li)/2 and

α3 =
l1(
∑3

i=1 li)

2
√

3A
≤ (
∑3

i=1 li)
2

4
√

3A
= 3α1 ≤ 3β.

Also l1 ≥ (
∑3

i=1 li)/3 and

α3 ≥ 2α1 ≥ 2/3β.

4. From A = 1/2l1h it follows that α4 =
√

3l21/4A. Estimates
∑3

i=1 l2i ≤ 3l21 ≤ 2l21 +(l2 +

l3)
2 ≤ 2

∑3
i=1 l2i lead to

β ≤ α4 ≤ 2β.

5. From 4., α5 = l1

√

∑3
i=1 l2i /4A and

√

α1β =
(
∑3

i=1 li)
√

∑3
i=1 l2i

12A
< α5 <

(
∑3

i=1 li)
√

∑3
i=1 l2i

8A
= 3/2

√

α1β.

Thus
√

3/3β ≤ α5 ≤ 3/2β.
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6. Since l3 ≥ h we get

α6 ≤ l1
h

= 2/
√

3α4 ≤ 4
√

3/3β.

The lower bound inequality does not hold, since α6 is not a “fair” measure. For exam-

ple, let us consider a set of nearly degenerate triangles with one vertex approaching

the middle of the opposite edge v3 → 1
2 (v1 + v2) , where v1 = (0, 0), v2 = (1, 0). For

these triangles α6 → 2, β → +∞, and β cannot be used to bound α6 from below.

As we see, the existence of such a one sided relationship means that the distortion

measure α6 is not capable of detecting all cases of degeneracy, but those degeneracies

that it does identify will be also detected by the measure β.

7. From sin Θ = l3/2R = 2A/l1l2 and 2l2 ≥ l2 + l3 > l1 ≥
P

3
i=1

li
3 it follows that

1/6β ≤ 3l21
2(
∑3

i=1 li)2
<

3l1l2β
∑3

i=1 l2i
= α7 =

√
3l1l2
4A

≤
√

3(l21 + l22)

8A
≤ 3/2β.

The integration rule (recall representations (2.23), (2.24)) for triangular element is

given by

Q =











−1 1 0

− 1√
3

− 1√
3

2√
3











, Nq = 1, σ = 1.

Since the map is affine, the 1-point quadrature is exact and the numerical distortion metric

is the same as the continuous metric.

3.1.2 3D tetrahedral element

We now extend these ideas to the tetrahedral element. For the mapping of the regular

tetrahedral reference element with edges of length 1 and vertices m1, m2, m3, m4 onto an

arbitrary tetrahedron with vertices v1, v2, v3, v4, volume V and edge lengths l1, . . . , l6,
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(see Figure 3.3) we have


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1
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
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


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
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1 1 1 1
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










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



1 1 1 1
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
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
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

−1


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1
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Figure 3.3: The linear map of the regular reference tetrahedron onto an arbitrary tetrahe-

dron.

Thus




















x

y

z





















= v1 + ξ1(v2 − v1) + ξ2

(

2v3 − v1 − v2√
3

)

+ ξ3

(

3v4 − v1 − v2 − v3√
6

)

and

det S = 6
√

2V, tr(ST S) =
1

2

6
∑

i=1

l2i .

For the corresponding quality measure and additive distortion-dilation measure respectively
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we now get

Q0 =
72
√

3V
(

∑6
i=1 l2i

)3/2
,

Eθ = (1 − θ)

(

∑6
i=1 l2i

)3/2

72
√

3V
+

θ

2

(

1

6
√

2V
+ 6

√
2V

)

,

with Qθ = E−1
θ . These are also “fair” measures in the sense given above. A related tetra-

hedron shape measure

η =
12(3V )2/3

∑6
i=1 l2i

= (Q0)
2/3

was derived in [58] from the singular values of transformation S. Geometrically η reflects

the shape of the inscribed ellipsoid.

Comparison with other tetrahedron distortion measures. Let us consider a tetra-

hedron with volume V , face areas Si, i = 1, . . . , 4, edge lengths l1 ≥ . . . ≥ l6, inradius r,

circumradius R, and smallest solid angle Θ. Then using the distortion measure

β =
(
∑6

i=1 l2i )
3/2

72
√

3V

we can establish the estimates in Table 3.2. (In [59], the comparison analysis between

measures η = β−3/2, ρ = r
R and Θ resulted in the estimates (1.5).) The derivations for

the inequalities in Table 3.2 follow the same general idea as that seen previously for the

triangle. For the 3 comparisons in Table 3.2 we have, in row order:

1. Follows from
6
∑

i=1

l2i ≤ (
6
∑

i=1

li)
2 ≤ 6

6
∑

i=1

l2i .

2. The area of a triangle does not exceed the area of the equilateral triangle with the

same perimeter, so

Si ≤
√

3/36P 2
i =

√
3/4((li1 + li2 + li3/3)

2 ≤
√

3/12(l2i1 + l2i2 + l2i3),

and
4
∑

i=1

S2
i ≤ (

√
3/12)2

4
∑

i=1

(l2i1 + l2i2 + l2i3)
2 ≤ 1/12(

6
∑

i=1

l2i )
2,
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Distortion metric Equivalency estimates

α =
(
P

6
i=1

li)
3

64
√

2V

√
6

36 β ≤ α ≤t β

Dannelongue and Tanguy [53]

ν =
(
P

4
i=1

S2
i )3

37V 4 , 3
√

3
16

√
2
β ≤ ν ≤ 64β4

Cougny, Shephard and Georges [21]

φ = l1
2
√

6r
,

4
√

3
4
√

8

√
β ≤ φ ≤

√
15
2 β

Baker [73]

Table 3.2: Comparison of tetrahedron distortion measures.

implies that

ν ≤ (1/12(
∑6

i=1 l2i )
2)3

37V 4
= 64β4.

Using the estimate from [59]

4
∑

i=1

Si ≥ 3
4
√

3
√

V l1

and l21 ≥ 1/6
∑6

i=1 l2i , we get
√

√

√

√

4
∑

i=1

S2
i ≥ 1/2

4
∑

i=1

Si ≥ 3
4
√

3/4
√

V l1,

4
∑

i=1

S2
i ≥ 9

√
3

4
V

√

√

√

√1/6
6
∑

i=1

l2i

and, finally,

ν ≥ 3
√

3

16
√

2
β.

In [56] it was shown that the distortion measure ν is significantly sensitive to element

distortions. In particular, it is able to characterize all types of poorly shaped tetrahe-

dra, such as a “needle” element, “flat” element, “sliver” element, etc. The existence
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of a two sided relationship between ν and β means that the measure β is also sensitive

to all tetrahedral element distortions mentioned above.

3. The formula for the inradius is

r =
3V

∑4
i=1 Si

, and from 2.
4
∑

i=1

Si ≤
√

3/6
6
∑

i=1

l2i .

From triangle inequalities l1 < l2+l3, l1 < l4+l5 and l2 < l4+l6 we get 3l21 < 5
∑6

i=2 l2i

and thus l1 <
√

5/8
∑6

i=1 l2i . Hence,

φ =
l1(
∑4

i=1 Si)

6
√

6V
≤

√
15/2β.

On the other hand

φ =
l1(
∑4

i=1 Si)

6
√

6V
≥ 3 4

√
3l

3/2
1

6
√

6V
≥

4
√

3
4
√

8

√

β.

The integration rule below for the tetrahedron is again exact:

Q =





















−1 1 0 0

− 1√
3

− 1√
3

2√
3

0

− 1√
6

− 1√
6

− 1√
6

3√
6





















, Nq = 1, σ = 1.

3.2 Maximum principle

In this section we formulate and prove a maximum principle for the metric Eθ(S), which

helps in analyzing its behavior on elements with nonconstant Jacobian matrices.

In order to formulate the maximum principle property for the local additive measure

Eθ we consider each n × n matrix as a collection of its columns

S = (S( · , 1), S( · , 2), . . . , S( · , n)) .

The general algebraic property of the additive measure is stated in the following Theorem.
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Theorem 1 Let an n × n matrix S have the following representation

S =

m
∑

j=1

SjΛj ,

m
∑

j=1

Λj = I, Λj ≥ 0, (3.3)

where Λj are diagonal matrices. This can be equivalently written columnwise as

S( · , i) =
m
∑

j=1

Sj( · , i)λij ,
m
∑

j=1

λij = 1, λij ≥ 0, ∀ i = 1, . . . , n.

Let us also introduce a multi-index α = (α1, . . . , αn) with αi = 1, . . . , m, and define “com-

binational matrices”

S̃α = (Sα1
( · , 1), Sα2

( · , 2), . . . , Sαn( · , n)) . (3.4)

Then there exist coefficient functions aα(λij) : aα ≥ 0,
∑mn

α=1 aα = 1, such that

det S =
mn
∑

α=1

aα det S̃α ≥ min
α

det S̃α. (3.5)

Moreover, for the additive metric Eθ, we have

Eθ(S) ≤ max
α

Eθ(S̃α), (3.6)

and if minα det S̃α > 0 then there exist coefficient functions bα(S) : bα ≥ 0,
∑mn

α=1 bα = 1,

such that

Eθ(S) ≤
mn
∑

α=1

bαEθ(S̃α) ≤ max
α

Eθ(S̃α). (3.7)

Proof:

Note, that if the determinant of at least one “combinational matrix” is not positive det S̃α ≤
0, then the Theorem statement

Eθ(S) ≤ max
α

Eθ(S̃α) = ∞

is trivial. So, we only need to consider the case minα det S̃α > 0. First we will state and

prove two auxiliary lemmas, and then finish the proof of the Theorem.
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Lemma 2 Let an n × n matrix S have the following representation

S = (1 − ξ)S1 + ξS2, 0 ≤ ξ ≤ 1 (3.8)

and let det S̃α > 0 for all the “combinational matrices”

S̃α = (Sα1
( · , 1), Sα2

( · , 2), . . . , Sαn( · , n)) ,

where multi-index α = (α1, . . . , αn) with αi = 1, 2.

Then there exist coefficient functions aα(ξ) : aα ≥ 0,
∑2n

α=1 aα = 1, such that

det S =
2n
∑

α=1

aα det S̃α ≥ min
α

det S̃α > 0; (3.9)

and coefficient functions bα(S) = aα det S̃α
det S ≥ 0,

∑2n

α=1 bα = 1, such that

β(S) ≤
2n
∑

α=1

bαβ(S̃α) ≤ max
α

β(S̃α). (3.10)

Proof:

In order to prove the inequalities (3.10), (3.9) we will use the bisection argument.

1. Let us consider the case of ξ = 1/2. Then

tr(ST S) = tr

(

(

1

2
S1 +

1

2
S2

)T (1

2
S1 +

1

2
S2

)

)

≤ 1

2
tr(ST

1 S1) +
1

2
tr(ST

2 S2) =

=
1

2n

∑

α

tr
(

ST
α1

Sα1
( · , 1), ST

α2
Sα2

( · , 2), . . . , ST
αn

Sαn( · , n)
)

=

=
1

2n

∑

α

tr(S̃T
α S̃α).

Using the additivity of the determinant function with respect to the columns of a

matrix, we get

det S = det

(

1

2
S1 +

1

2
S2

)

=
1

2n

∑

α

det S̃α, aα

(

1

2

)

=
1

2n
, det S ≥ min

α
det S̃α.

Let us consider the following inequality

(

1

n2n

∑

α

tr(S̃T
α S̃α)

)n/2

≤ 1

2n

∑

α

(

1

n
tr(S̃T

α S̃α)

)n/2

. (3.11)
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After introduction of the following notations: q = n/2, N = 2n, xα = 1
ntr(S̃T

α S̃α) the

above inequality (3.11) takes a form of the Holder inequality

N
∑

α=1

|xαyα| ≤
(

N
∑

α=1

yp
α

)1/p( N
∑

α=1

xq
α

)1/q

,

where yα = 1 ∀α, 1/p + 1/q = 1. Thus, we get

β(S) det S =

(

1

n
tr(ST S)

)n/2

≤ 1

2n

∑

α

(

1

n
tr(S̃T

α S̃α)

)n/2

=
1

2n

∑

α

β(S̃α) det S̃α,

and, finally

β(S) ≤
∑

α

bαβ(S̃α), bα =
det S̃α

∑

α det S̃α

=
det S̃α

2n det S
.

2. Let us now take any ξ ∈ [0, 1].

a) Let us bisect the interval [0, 1]; then at the middle point ξ1 = 1/2 we get a matrix

S3 = S(ξ1) = 1
2(S1 +S2). Let us denote by [l1, r1] the half of the interval containing ξ:

ξ ∈ [l1, r1] and assume, without loss of generality, that this interval is [l1, r1] = [0, 1/2].

Then, using item 1. of this proof, we get

β(S| 1
4

) det S| 1
4

= β

(

1

2
S1 +

1

2
S3

)

det

(

1

2
S1 +

1

2
S3

)

≤ 1

2n

∑

χ, χi=1 or 3

β(S̃χ) det S̃χ

=
1

2n

∑

χ, χi=1 or 2

β

(

1

2
S1 +

1

2
S̃χ

)

det

(

1

2
S1 +

1

2
S̃χ

)

=

≤ 1

2n

∑

χ

1

2n

∑

ζ, ζi=1 or χi

β(S̃ζ) det S̃ζ =
∑

α

aαβ(S̃α) det S̃α,

where S̃α is determined from two multi-indices χ and ζ and consists of the columns

of matrices S1 and S2, and

det S| 1
4

=
1

2n

∑

χ

1

2n

∑

ζ, ζi=1 or χi

det (Sζ1( · , 1), . . . , Sζn( · , n)) =
∑

α

aα

(

1

4

)

det S̃α.

Thus,

β(S| 1
4

) ≤
∑

α

bαβ(S̃α), bα =
aα det S̃α

∑

α aα det S̃α

.

b) Let us bisect the interval [l1, r1] and continue the reasoning in item a). Continuing

the bisection, we will obtain two sequences of points {li}∞1 and {ri}∞1 , such that
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li → ξ from the left and ri → ξ from the right as i → ∞. Using the additivity of

the determinant function with respect to the columns of a matrix, we compute the

coefficients

aα(ξ) = ξ(# of αj=1, j=1,...,n)(1 − ξ)(# of αj=2, j=1,...,n)

in the formula for det S = J(ξ) at a point ξ:

J(ξ) = det(ξS1 + (1 − ξ)S2) =
∑

α

aα(ξ) det S̃α.

Due to the continuity of the determinant we get

lim
i→∞

J(li) = lim
i→∞

∑

α

aα(li) det S̃α =
∑

α

aα(ξ) det S̃α, lim
i→∞

aα(li) = aα(ξ).

Since the function β(ξ) is continuous and β(li) ≤
∑

α(aα(li) det S̃α/J(li))β(S̃α) ∀i, we

have

lim
i→∞

β(li) ≤
∑

α

β(S̃α) lim
i→∞

(aα(li) det S̃α/J(li)) =

=
∑

α

β(S̃α)(aα(ξ) det S̃α/J(ξ)).

Lemma 3 Let an n × n matrix S have the following representation

S =
m
∑

j=1

SjΛj ,
m
∑

j=1

Λj = I, Λj ≥ 0, (3.12)

where Λj are diagonal matrices, which can be equivalently written columnwise as

S( · , i) =
m
∑

j=1

Sj( · , i)λij ,
m
∑

j=1

λij = 1, λij ≥ 0, ∀ i = 1, . . . , n.

Let det S̃α > 0 for all the “combinational matrices”

S̃α = (Sα1
( · , 1), Sα2

( · , 2), . . . , Sαn( · , n)) , (3.13)

where multi-index α = (α1, . . . , αn) with αi = 1, . . . , m.

Then there exist coefficient functions aα(λij) : aα ≥ 0,
∑mn

α=1 aα = 1, such that

det S =
mn
∑

α=1

aα det S̃α ≥ min
α

det S̃α > 0; (3.14)
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and coefficient functions bα(S) = aα det S̃α
det S ≥ 0,

∑mn

α=1 bα = 1, such that

β(S) ≤
mn
∑

α=1

bαβ(S̃α) ≤ max
α

β(S̃α). (3.15)

Proof:

1. Let us prove the statement for the case Λj = λjI, j = 1, . . . , m by induction:

a) For m = 2 the statement is proved in Lemma 2;

b) Let the statement of Lemma 3 be true for m = k;

c) Let us prove it for m = k + 1. Then

S =
k+1
∑

j=1

λjSj = (1 − λk+1)
k
∑

j=1

fjSj + λk+1Sk+1,

where coefficients fj = λj/
∑k

t=1 λt. Introducing the notation SQ =
∑k

j=1 fjSj , the

inequalities (3.15), (3.14) hold for matrix SQ by induction argument b). Each “combi-

national matrix” produced from columns of two matrices SQ and Sk+1 can be written

as

S̃χ, χi=Q or k+1 =
k
∑

j=1

fjS̃α, αi=j or k+1,

where matrices S̃α are the “combinational matrices” in (3.13) produced from all Sj ,

1 ≤ j ≤ m. Thus, from the induction argument b) we have

β(S̃χ, χi=Q or k+1) = β





k
∑

j=1

fjS̃α, αi=j or k+1



 ≤
∑

ν

aν det S̃νβ(S̃ν)

det S̃χ, χi=Q or k+1

and det S̃χ, χi=Q or k+1 ≥ minν det S̃ν . Finally, we demonstrated that matrices SQ and

Sk+1 satisfy the conditions of Lemma 2 and thus for ∀λ, 0 ≤ λ ≤ 1 the inequality

β(S) det S ≤
∑

χ

aχβ(S̃χ, χi=Q or k+1) det(S̃χ, χi=Q or k+1) ≤

≤
∑

χ

aχ

∑

ν

aν det S̃νβ(S̃ν) =
∑

ν′

aν′ det S̃ν′β(S̃ν′),

det S =
∑

χ

aχ det S̃χ, χi=Q or k+1 =
∑

χ

aχ

∑

ν

aν det S̃ν =
∑

ν′

aν′ det S̃ν′ .
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2. The case m = 2 can be reduced to the case of item 1. above after rewriting the linear

combination of two matrices S = S1(I − Λ) + S2Λ, Λ = diag(λi) in terms of their

“combinational matrices”

S =
2
∑

α1,...,αn=1

(1 − λ1)
2−α1λα1−1

1 · · · (1 − λn)2−αnλαn−1
n S̃α.

3. The case of m > 2 is proved by induction in a manner similar to item 1.

From the Lemma 3 we have

det S =
mn
∑

α=1

aα det S̃α ≥ min
α

det S̃α > 0;

where aα(λij) : aα ≥ 0,
∑mn

α=1 aα = 1, and

β(S) ≤
mn
∑

α=1

bαβ(S̃α) ≤ max
α

β(S̃α),

where bα(S) = aα det S̃α
det S ≥ 0,

∑mn

α=1 bα = 1. It remains to show that inequality

µ(S) ≤
∑

α

bαµ(S̃α)

holds for the function µ(S) = 1
2 (det S/v + v/ det S) . This inequality is equivalent to

1 +
(det S)2

v2
≤ det S

v

∑

α

aα det S̃α

det S

(

det S̃α

v
+

v

det S̃α

)

=
∑

α

aα

(

1 +
(det S̃α)2

v2

)

or
(

∑

α aα det S̃α

)2
≤ ∑

α aα(det S̃α)2. The last inequality takes form of the Cauchy in-

equality

(xTy)2 ≤ (xTx)(yTy)

after introduction of the notations xα =
√

aα, yα =
√

aα det S̃α, ∀ α = 1, . . . , mn.

Thus,

Eθ(S) = (1 − θ)β(S) + θµ(S) ≤
mn
∑

α=1

bαEθ(S̃α) ≤ max
α

Eθ(S̃α)

for any 0 ≤ θ < 1.
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In application to finite-element grids defined by mappings, this property implies that

if the Jacobian matrix of a map can be presented in the form (3.3), as in the case of tensor

product linear elements or simplex quadratic elements as considered below, then the following

important results follow

1. The value of additive metric Eθ at any point in the cell is bounded from above (and

thus controlled) by the finite linear combination of its values on “combinational ma-

trices”, which are easy to compute. Thus, we obtain a practical rule for computing

the element quality indicator.

2. The formula for computation of the Jacobian determinant in (3.5) readily supplies a

sufficient condition for such local map nondegeneracy:

det S̃α > 0 ∀α ⇒ det S > 0. (3.16)

3. After uniform refinement of a grid, the upper bound on Eθ will remain unchanged

(provided the constants v are computed properly for each grid).

4. The “consistent” rule (in the sense defined earlier) for integration of the distortion

measure over such an element is:
∫

Ω̂c

Eθ(S)d~ξ ≈
∑

α

σαEθ(S̃α), (3.17)

with constant weights σα > 0,
∑

α σα = 1. In the algorithm, implementation this rule

would require computation of all |α| “combinational matrices” on each element and

evaluation of the distortion measure Eθ on them. The weights can be set, for example,

to provide exact computation of the area of the reference element
∫

Ω̂c
det Sd~ξ using

this rule. If all “combinational matrices” S̃α are used in the integral approximation

(i.e. all weights are nonzero) then, as a consequence of (3.6), the value of the discrete

functional will control (bound) the value of the original functional (2.8)

I =
∑

c

∫

Ω̂c

Eθ(S)d~ξ ≤
∑

c

∑

α

(∫

Ω̂c

bα(S)d~ξ

)

Eθ(S̃α) ≤

≤ 1

min σα

∑

c

∑

α

σαEθ(S̃α) =
Ih

min σα
.
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We will examine this bound later in this chapter on several types of elements. In the

case of meshes with piecewise constant Jacobian determinant (det S = const on each

cell) I = Ih.

3.3 Tensor product linear elements

The case of the mapped tensor product linear cell in n dimensions is more complex than

the case of simplices, since the Jacobian matrix, and hence the additive measure Eθ, are

not constant on the cell. Nevertheless, by employing the maximum principle, we can al-

ways compute an upper bound for the additive measure (lower bound for quality measure).

“Combinational matrices” for this bound are a full set of constant matrices arising from a

representation of the Jacobian matrix on the tensor product cell. We will consider this in

general and then illustrate it in the 2D and 3D cases.

The map of a unit hypercube 0 ≤ ξ1, . . . , ξn ≤ 1 onto the tensor product linear cell

with vertices rν , where multi-index ν = (ν1, . . . , νn) , νi = 0, 1 defines a binary node num-

bering, can be written as

r =
∑

ν

(1 − ξ1)
(1−ν1)ξν1

1 · · · (1 − ξn)(1−νn)ξνn
n rν (3.18)

and columns of its Jacobian matrix are

S( · , i) =
∑

ν

(1 − ξ1)
(1−ν1)ξν1

1 · · · (1 − ξi−1)
(1−νi−1)ξ

νi−1

i−1 (−1)1−νi (3.19)

(1 − ξi+1)
(1−νi+1)ξ

νi+1

i+1 · · · (1 − ξn)(1−νn)ξνn
n rν .

Clearly, this representation of the Jacobian matrix is equivalent to the form (3.3), where

the sum contains m = 2n−1 terms. Each such term in the ith column representation is a

difference between position vectors of two cell vertices

r(ν1,...,νi−1,1,νi+1,...,νn) − r(ν1,...,νi−1,0,νi+1,...,νn)

and can be sought as an ith basis vector, corresponding to the edge basis vector on the

reference element. Thus, the upper bound for additive measure requires calculation of Eθ
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on all mn = 2n(n−1) bases that can be composed from the set of edge basis vectors. The

computational complexity for evaluating this bound includes m Jacobian matrix evaluations

and mn evaluations of the distortion measure, which gives 120 operations for n = 2 and

2460 operations for n = 3 (68 and 1436 operations correspondingly for evaluation of the

Jacobian determinants only for the mapping nondegeneracy conditions).

3.3.1 2D quadrilateral element

For the bilinear cell (see Figure 3.4), the “combinational matrices” correspond to all vertex

bases of the quadrilateral cell. Thus, from (3.16) we obtain a sufficient condition for the

bilinear map nondegeneracy - Jacobians positive at all four vertices - which is well known

[74] to be both a necessary and sufficient condition for invertibility of a bilinear cell. For

the metric we get

Eθ ≤
1
∑

j,k=0

bjkEθ(S̃jk) ≤ max
j,k

Eθ(S̃jk).

From the binary indices introduced above we can define the local numbering of cell vertices

conveniently as follows (see also Figure 3.4):

rj,k = r(2k + j).

Employing this numbering and recalling (3.18), the rule for metric integration over a

0,0 1,0

0,1 1,1

=

0 1

2 3

-
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Figure 3.4: Bilinear map and local numbering of vertices.
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bilinear element is defined by

Q0 =











−1 1 0 0

−1 0 1 0











, Q1 =











−1 1 0 0

0 −1 0 1











,

Q2 =











0 0 −1 1

−1 0 1 0











, Q3 =











0 0 −1 1

0 −1 0 1











,

Nq = 4, σ = 1/4.
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Figure 3.5: Level sets on quadrilateral element with vertices (0, 0), (0, 1), (1, 0), (x, y).

Figure 3.5 illustrates properties of the metric Eθ and its approximation on the bi-

linear element. The color map in the Figure represents level sets for the minimum value of

the Jacobian determinant, maximum values of shape distortion β and dilation metric µ, as

well as numerical approximations of respective parts of the cell total “energy” (recall the
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elasticity analogy) (
∫

β(S))h =
∑

α σαβ(S̃α) and (
∫

µ(S))h =
∑

α σαµ(S̃α), as functions of

the position (x, y) of node 3 for deviation from a regular square element. From this Fig-

ure we can see that, up to a scaling constant, level sets of the approximation to the total

cell distortion nearly coincide with those of the metric maximum. The boundaries of level

sets for numerical distortion are smoother than those for the maximum values, thus the

numerical approximation is a little more restrictive in terms of acceptable element shapes.

3.3.2 3D hexahedral element

For a trilinear cell (Figure 3.6), the representation of the Jacobian matrix can be computed

from trilinear images of the edge basis triples in reference space. All 64 basis triples can be
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Figure 3.6: Trilinear map.

obtained from the four distinct vector triples shown in Figure 3.7 by rotation and reflection

(after reflection the orientation should be changed to preserve the initial “right” basis triple

orientation).

Nondegeneracy of the trilinear map (recall (3.16)) is guaranteed (sufficiency) by

checking positivity of 27 expressions containing combinations of Jacobians of all 64 edge

bases. These conditions include positive Jacobians at all eight vertices of the cell, positive

sum of Jacobians of all bases of type IV, and positive combinations of Jacobians of bases

of types II and III, which are schematically illustrated in Figure 3.8. The general problem

of determining the set of conditions that are both necessary and sufficient for the trilinear

map nondegeneracy remains an open question.
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Figure 3.7: Types of basis triples for computation of bounds for Eθ and det S on trilinear

element.
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Figure 3.8: Types of basis triples in sufficient nondegeneracy condition for trilinear element.

The integration rule for the metric on a trilinear cell is defined here by

Nq = 64, σI =
1

27
, σII =

1

(2) · (27) , σIII =
1

(4) · (27) , σIV =
1

(8) · (27) ,

where weights correspond to basis types shown in Figure 3.7 and matrices {Qq(c)} are easy

to compute.

3.3.3 Prisms

Let us consider a prismatic cell in 3D defined by the tensor product map of a 2D triangular

basis and linear map in the third direction. If we take the reference prism element to
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be defined by a regular triangle as its base with vertical height 1, then the map onto an

arbitrary prism with vertices v1, . . . ,v6 is (see Figure 3.9)

r(~ξ ) = (1 − ξ3)

(

v1 + ξ1(v2 − v1) + ξ2

(

2v3 − v1 − v2√
3

))

+ ξ3

(

v4 + ξ1(v5 − v4) + ξ2

(

2v6 − v4 − v5√
3

))

. (3.20)

The columns of the Jacobian matrix for this map can be written in the form (3.3) as
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Figure 3.9: The map for the prismatic element.

S(·, 1) = (1 − ξ3)(v2 − v1) + ξ3(v5 − v4),

S(·, 2) = (1 − ξ3)

(

2v3 − v1 − v2√
3

)

+ ξ3

(

2v6 − v4 − v5√
3

)

, (3.21)

S(·, 3) =

(

1 − ξ1 −
ξ2√
3

)

(v4 − v1) +

(

ξ1 −
ξ2√
3

)

(v5 − v2) +
2ξ2√

3
(v6 − v3),

and we obtain two candidates for each of the two first columns for the “combinational

matrices” from 2D bases on both top and bottom triangular faces and three candidates for

the third column corresponding to three third edge basis vectors. Thus, the total number

of “combinational matrices” in the maximum principle estimate for the prismatic element

is equal to 12, and the formula for the Jacobian determinant yields the following 9 sufficient

nondegeneracy conditions:

det

(

v2 − v1,
2v6 − v4 − v5√

3
,vk+4 − vk+1

)

+
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+ det

(

v5 − v4,
2v3 − v1 − v2√

3
,vk+4 − vk+1

)

> 0,

det

(

v3j+2 − v3j+1,
2v3j+3 − v3j+1 − v3j+2√

3
,vk+4 − vk+1

)

> 0, j = 0, 1, k = 0, 1, 2.

(399 operations are required for evaluating the Jacobian determinants in the above condi-

tions, and 591 for the maximum principle bound.)

The matrices {Qq(c)} for the integration rule for the distortion metric over the pris-

matic element can be readily obtained from (3.21) and Nq = 12, σq = 1/12 ∀q.

3.4 Quadratic simplices

3.4.1 2D triangular quadratic element

Let us take the reference element to be the same regular triangle with sides of unit length,

which we used for the definition of a linear triangular element map. The quadratic map

onto an arbitrary curved triangular element with vertex and edge control coordinates v1,

v2, v3, v4, v5, v6 (see Figure 3.10) can be expressed as

r(ξ, η) =

(

1 − 3ξ −
√

3η +
4√
3
ξη + 2ξ2 +

2

3
η2

)

v1 +

+

(

−ξ +
1√
3
η − 4√

3
ξη + 2ξ2 +

2

3
η2

)

v2 + (3.22)

+

(

− 2√
3
η +

8

3
η2)v3 + (

8√
3
ξη − 8

3
η2

)

v4 +

+

(

8√
3
η − 8√

3
ξη − 8

3
η2

)

v5 +

(

4ξ − 4√
3
η − 4ξ2 +

4

3
η2

)

v6.

The Jacobian matrix of the map (3.22) may be expressed in the form (3.3) employed

earlier for the maximum principle as

S = λ1S1 + λ2S2 + λ3S3, (3.23)

where

λ1 = (1 − ξ − η√
3
), S1 = (4v6 − 3v1 − v2,

1√
3
(−3v1 + v2 − 2v3 + 8v5 − 4v6));

λ2 = (ξ − η√
3
), S2 = (v1 + 3v2 − 4v6,

1√
3
(v1 − 3v2 − 2v3 + 8v4 − 4v6)); (3.24)
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Figure 3.10: The quadratic map r of the regular reference triangle onto an arbitrary triangle.

λ3 =
2√
3
η, S3 = (v1 − v2 + 4v4 − 4v5,

1√
3
(v1 + v2 + 6v3 − 4v4 − 4v5)).

As before, the columns Si(·, 1) and Si(·, 2) of these matrices can also be considered as

2D basis vectors at the cell vertices and used to form 9 different bases or “combinational

matrices” S̃α = (Si(·, 1), Sj(·, 2)) , i, j = 1, 2, 3, α = 1, . . . , 9. The Jacobian determinant of

the map then is written

det S =

3
∑

i,j=1

λiλj det (Si(·, 1), Sj(·, 2)) =
∑

α

aα(ξ, η) det S̃α, (3.25)

where functions of local coordinates aα(ξ, η) ≥ 0 are positive inside the triangular element

and can be zero only on its boundary, and
∑

α aα(ξ, η) = 1. In fact, there are only 6

different functions aα(ξ, η) in (3.25) and we can regroup the terms in this sum to verify that

the following 6 conditions

det S1 > 0, det S2 > 0, det S3 > 0, (3.26)

det(S1(·, 1), S2(·, 2)) + det(S2(·, 1), S1(·, 2)) > 0,

det(S1(·, 1), S3(·, 2)) + det(S3(·, 1), S1(·, 2)) > 0,

det(S2(·, 1), S3(·, 2)) + det(S3(·, 1), S2(·, 2)) > 0

guarantee nondegeneracy of the map (3.22). (Computation of all the Jacobian determinats

in the above nondegeneracy condition requires 159 additions/multiplications).
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Figure 3.11: Degenerate quadratic triangles with a) one, b) two and c) three curved edges

(degeneracy at red vertices).

Figures 3.11 and 3.12 illustrate some representative examples of degenerate shapes,

which are all forbidden by the metric Eθ and the nondegeneracy conditions above. Figure

3.11 shows some degenerate shapes where control nodes on curved edges have been located

to produce zero Jacobian at one or more of the vertices 1,2,3 which lie on the ideal equilateral

triangular shape. This picture gives us the general idea of the edge curvatures that can be

achieved in the quadratically mapped triangle without degenerating the map. Of particular

practical interest are, of course, examples a) of the single curved edge and b) of two curved

edges in the element, since such curved elements are likely to arise when one or two edges

coincide with an interface or exterior boundary. Note, that one edge can curve outwards

without any restrictions, if the element remains symmetric, but its inward deformation is

limited insofar as the Jacobian condition is concerned. Figure 3.12 a) presents a degenerate

quadratic triangle with nodes v1 = v2 = (0, 0), v3 = (1, 0), v4 = (1/2,−
√

3/4), v5 =

(1/2,
√

3/4), v6 = (1/2, 0), where det S is positive at all vertices 1,2,3, but zero at a mid-

edge node 6. In Figure 3.12 b) det S > 0 at all 6 nodes, but is equal to zero at one

point ξ = 2/3, η = 0 on the boundary of the element given by v1 = (0, 0), v2 = (1/2, 0),

v3 = (1, 0), v4 = (3/4,−
√

3/8), v5 = (1/2,
√

3/4), v6 = (5/8, 0). Finally, in Figure 3.12 c)

the Jacobian determinant is positive everywhere on the boundary, but zero at the marked

interior point ξ = 1/2, η = 1/
√

3 of the triangle v1 = (0, 0), v2 = (1, 0), v3 = (1/2,
√

3/2),

v4 = (9/16, 3
√

3/4), v5 = (7/16, 3
√

3/4), v6 = (1/2,−
√

3/4).
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Figure 3.12: Degenerate quadratic triangles (degeneracy at red points).

Returning to (3.25), the matrices enter in the maximum principle bound as before:

Eθ(S) ≤ max
α

Eθ(S̃α)

and the integration rule over quadratic triangle with weights corresponding to the vertex

bases σ1 = 1/6, and for other combinational matrices σ2 = 1/12, has Nq = 9 contributions.

(Computation of the bound requires 276 operations).

Figure 3.13 illustrates some of the properties of the metric Eθ on the curvilinear

element. The color maps in the Figure represent level sets of minimum value of Jacobian

determinant, maximum values of shape distortion β and dilation metric µ, as well as nu-

merical approximations of parts of the cell total “energy” (
∫

β(S))h =
∑

α σαβ(S̃α) and

(
∫

µ(S))h =
∑

α σαµ(S̃α), as functions of the position of one mid-edge node 6 in a regular-

shaped triangle (Figure 3.10). This Figure shows that deformation of the edge inwards is

restricted in the same small triangular region by all the functions (region of negative det S

and infinite metrics above the straight edge configuration). The regions of small shape and

size distortion are, of course, bounded and much more restrictive than a nondegeneracy

condition. Comparing the maximum distortion with the numerical approximation of total

cell distortion, we can see that (up to a scaling constant), as expected, the approximation

rule based on the maximum principle result is even more restrictive in terms of acceptable

shapes.
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Figure 3.13: Level sets as functions of position for lower mid-edge node in quadratic triangle

with all other nodes fixed on the regular shape.
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3.4.2 3D tetrahedral quadratic element

As in the case of linear simplices, the 2D results of the previous section can be extended

directly to the 3D quadratic tetrahedron. The Jacobian matrix in this case also has linear

dependence upon local coordinates of the reference cell and the maximum principle applies.

Taking the reference element to be the regular tetrahedron with edges of unit length, the
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Figure 3.14: The quadratic map of the regular reference tetrahedron onto an arbitrary

tetrahedron.

quadratic map onto a tetrahedron with curved edges and faces with vertex and edge control

node coordinates v1, . . . ,v10 as in Figure 3.14 has a Jacobian matrix of the form

S =

(

1 − ξ − η√
3
− ζ√

6

)

S1 +

(

ξ − η√
3
− ζ√

6

)

S2 +

(

2η√
3
− ζ√

6

)

S3 +

√

3

2
ζS4, (3.27)

where each matrix Si corresponds to a basis (or 3 × 3 Jacobian matrix) at vertex vi

S1(·, 1) = 4v7 − 3v1 − v2, S1(·, 2) =
−3v1 + v2 − 2v3 + 8v6 − 4v7√

3
,

S1(·, 3) =
−3v1 + v2 + v3 − 3v4 − 4v6 − 4v7 + 12v10√

6
;

S2(·, 1) = v1 + 3v2 − 4v7, S2(·, 2) =
v1 − 3v2 − 2v3 + 8v5 − 4v7√

3
,

S2(·, 3) =
v1 − 3v2 + v3 − 3v4 − 4v5 − 4v7 + 12v8√

6
;

S3(·, 1) = v1 − v2 + 4v5 − 4v6, S3(·, 2) =
v1 + v2 + 6v3 − 4v5 − 4v6√

3
,
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S3(·, 3) =
v1 + v2 − 3v3 − 3v4 − 4v5 − 4v6 + 12v9√

6
;

S4(·, 1) = v1 − v2 + 4v8 − 4v10, S4(·, 2) =
v1 + v2 − 2v3 − 4v8 + 8v9 − 4v10√

3
,

S4(·, 3) =
v1 + v2 + v3 + 9v4 − 4(v8 + v9 + v10)√

6
.

All the coefficients in this representation (3.27) of the Jacobian matrix are nonnega-

tive and less than or equal to 1, and their sum is 1. The upper bound on a distortion mea-

sure Eθ(S) for the quadratic tetrahedral element contains contributions from 43 = 64 bases,

which can be obtained by forming all possible basis triples S̃α = (Si(·, 1), Sj(·, 2), Sk(·, 3)) ,

i, j, k = 1, . . . , 4 from the four vertex bases in (3.27).

Nondegeneracy of the quadratic tetrahedron can be guaranteed by checking only 20

conditions:

det Si > 0, i = 1, . . . , 4;

det(Si(·, 1), Sj(·, 2), Sj(·, 3)) + det(Sj(·, 1), Si(·, 2), Sj(·, 3))+

det(Sj(·, 1), Sj(·, 2), Si(·, 3)) > 0, 0 ≤ i 6= j ≤ 4;

det(Si(·, 1), Sj(·, 2), Sk(·, 3)) + det(Sj(·, 1), Si(·, 2), Sk(·, 3))+

det(Si(·, 1), Sk(·, 2), Sj(·, 3)) + det(Sk(·, 1), Sj(·, 2), Si(·, 3))+

det(Sj(·, 1), Sk(·, 2), Si(·, 3)) + det(Sk(·, 1), Si(·, 2), Sj(·, 3)) > 0,

0 ≤ i 6= j 6= k ≤ 4.

(3.28)

(Computation of the above Jacobian determinants requires 1580 additions/multiplications,

and evaluation of the bound in the maximum principle takes 2604 operations, which is

comparable to the computational complexity we obtained earlier for a 3D tensor-product

element). Note that, similar to the case of the trilinear map, it is not clear what set of

conditions will be both necessary and sufficient for nondegeneracy of the map (3.27).

The integration rule has Nq = 64 contributions with weights corresponding to a

vertex basis σ1 = 1/20, a combination from two vertex bases σ2 = 1/120, a combination of
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three different vertex bases σ3 = 1/240.

Not surprisingly, there is a greater variety of limiting curvatures and shapes for

degenerate curved tetrahedra than triangles but we may still draw an analogy between

several cases, e.g. the cases of all three inward curved edges in a triangle and all six edges

of a tetrahedron curved inwards (towards the center of the element). The case of most

practical interest corresponding to one face of a tetrahedron fitting the curved boundary

surface is represented by three curved edges forming this face. The inward curvatures of

these edges are limited in the same sense as for the 2D case.

3.5 Biquadratic elements

The map of a unit square 0 ≤ ξ, η ≤ 1 onto the curvilinear quadrilateral cell with nodes

r1, . . . , r9 (see Figure 3.15) can be written as

r = (1 − 2ξ)(1 − ξ)(1 − 2η)(1 − η)r1 + (3.29)

+ 4ξ(1 − ξ)(1 − 2η)(1 − η)r2 + ξ(2ξ − 1)(1 − 2η)(1 − η)r3 +

+ 4(1 − 2ξ)(1 − ξ)η(1 − η)r4 + 16ξ(1 − ξ)η(1 − η)r5 + 4ξ(2ξ − 1)η(1 − η)r6 +

+ (1 − 2ξ)(1 − ξ)η(2η − 1)r7 + 4ξ(1 − ξ)η(2η − 1)r8 + ξ(2ξ − 1)η(2η − 1)r9.

The columns of the Jacobian matrix for this map can be written in the form

1 32

9

4

7

5

8

6 -

r7

r4

r1

r2

r3
r6r9

r8
r5

Figure 3.15: Quadratic map for quadrilaterals.

S(·, 1) = {(1 − ξ) (−3r1 + 4r2 − r3) + ξ (r1 − 4r2 + 3r3)} (1 − 2η)(1 − η) +

+ {(1 − ξ) (−3r4 + 4r5 − r6) + ξ (r4 − 4r5 + 3r6)} 4η(1 − η) +
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+ {(1 − ξ) (−3r7 + 4r8 − r9) + ξ (r7 − 4r8 + 3r9)} η(2η − 1);

S(·, 2) = {(1 − η) (−3r1 + 4r4 − r7) + η (r1 − 4r4 + 3r7)} (1 − 2ξ)(1 − ξ) +

+ {(1 − η) (−3r2 + 4r5 − r8) + η (r2 − 4r5 + 3r8)} 4ξ(1 − ξ) +

+ {(1 − η) (−3r3 + 4r6 − r9) + η (r3 − 4r6 + 3r9)} ξ(2ξ − 1).

The coefficients in this representation are all less or equal to 1, their sum is one, but, unlike

the preceding case of quadratic simplices or linear elements, they can be negative. Thus,

we cannot apply the maximum principle proof to this case, although we still have

tr(ST S) =
∑

α

aαtr(S̃T
α S̃α) and det S =

∑

α

aα det S̃α,
∑

α

aα = 1,

but now −1 ≤ aα ≤ 1. In order to be able to bound the coefficients in

β(S) ≤
∑

α

aα det S̃α

det S
β(S̃α)

we first need to formulate the nondegeneracy conditions (for det S > 0) for the mapping.

This is a challenging problem in itself and apparently has not been addressed previously in

the literature.

As we have already seen, the bilinear element is nondegenerate if and only if the

Jacobian determinants at all its four vertices are positive [74], or in other words, there is no

reentrant corner having interior angle greater than or equal to π. Equivalently, the two pairs

of triangles, formed by splitting the quadrilateral by its two diagonals, are nondegenerate. A

similar approach using subdivision by diagonals to two pairs of triangles with quadratically

curved edges would be easy to apply for the curvilinear quadrilateral as well (e.g. [35]), but,

as we will show below, it is not valid in this case. In particular, the Jacobian matrix of the

biquadratic element cannot be conveniently presented as a linear combination of matrices

corresponding to pairs of quadratic triangles, generated by splitting the cell by diagonals,

as in the case of the bilinear cell.

However, in more restrictive settings that are of greater practical interest, such as

the case where only one edge is quadratically curved, it is possible to carry out the analysis.

We will now consider this situation in detail.
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3.5.1 Quadratic quadrilateral with one curved edge.

Let us consider a biquadratic element with all nodes fixed on the ideal unit square shape,

except for mid-edge node 2. The displacement of node 2 from its ideal position is denoted

by a vector x = ag1 + bg2, where g1, g2 are two unit basis vectors in 2D (see Figure 3.16).

Thus, the Jacobian matrix for this element at any point (ξ, η) inside the cell reduces to

1 3

2

9

4

7

5

8

6

A
AKx

-

6

g1

g2

Figure 3.16: Quadrilateral with one curved edge.

S = (g1 + 4(1 − 2ξ)(1 − 2η)(1 − η)x,g2 + 4ξ(1 − ξ)(4η − 3)x). (3.30)

We require that the determinant be positive for all 0 ≤ ξ, η ≤ 1. That is,

det S = 1 + 4(1 − 2ξ)(1 − 2η)(1 − η)a + 4ξ(1 − ξ)(4η − 3)b > 0. (3.31)

This condition is equivalent to

−1

4
< a <

1

4
, −1 < b <

1

6
(1 +

√

1 − 16a2) (3.32)

and implies that node 2 may lie within the bounded subregion shown in Figure 3.17. The

upper bound on b in (3.32) can be derived from quadratic inequality (3.31) with η = 0.

This can be compared with the nondegeneracy condition for the two quadratic tri-

angles defined by vertices 1, 2, 3, 5, 7, 4 and 1, 2, 3, 6, 9, 5 of Figure 3.16 which is

−1

4
< a <

1

4
, b <

1

4
+ a, b <

1

4
− a. (3.33)

This comparison implies that node 2 is now more restricted in its inward movement, but

it can now move any distance downwards without making the triangular elements invalid.
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Figure 3.17: “Admissible” positions for node 2 (inside the red contour) of a biquadratic

element with other nodes fixed on the ideal shape.

(Note, that although the elements are valid, accuracy may be an issue if |b| is large.)

This clearly indicates that checking nondegeneracy of the two pairs of triangles composing

the given biquadratic element is not equivalent and might not be enough to guarantee

nondegeneracy of the biquadratic map. In particular, in our case the lower bound on b (on

downward movement of node 2) in (3.32) is caused by the connection between nodes 2 and

8, which is not “captured” in any of the composing triangles.

We can also compare the nondegeneracy conditions (3.32) for the 9-node biquadratic

element with one curved edge against the nondegeneracy conditions for the 8-node serendip-

ity element with one curved edge. The map for an 8-node serendipity element can be ob-

tained from a biquadratic map (3.29) by constraining the position of the mid-cell node 5
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Figure 3.18: “Admissible” positions for node 2 (inside the green contour) deduced from the

8-node serendipity element.

as

r5 =
r2 + r4 + r6 + r8

2
− r1 + r3 + r7 + r9

4
.

The Jacobian matrix for such an element reduces to (compare to (3.30))

S = (g1 + 4(1 − 2ξ)(1 − η)x,g2 − 4ξ(1 − ξ)x)

and the nondegeneracy condition

det S = 1 + 4(1 − 2ξ)(1 − η)a − 4ξ(1 − ξ)b > 0

is equivalent to

−1

4
< a <

1

4
, b <

1

2
(1 +

√

1 − 16a2), (3.34)
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which is illustrated in Figure 3.18. Not surprisingly, in this sense the serendipity element

can tolerate much greater distortions than a biquadratic element.

The level set color maps for minimum Jacobian determinant and maximum of shape

and size metrics on the quadratic quadrilateral with one curved edge as functions of position

of mid-edge node 2 are illustrated in Figure 3.19.
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Figure 3.19: Level sets as functions of position of the node 2 of a biquadratic element.

The preceding case can be generalized from the square to the arbitrary quadrilateral

in Figure 3.20. The displacement of node 2 from its ideal position on the bilinear element

(middle of the edge 1-3) is denoted by x (see Figure 3.20). The basis vectors at a point
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Figure 3.20: “Restricted” biquadratic map.

(ξ, η) inside the bilinear cell may be expressed in terms of the edge vectors shown as

glin
1 = g0

1(1 − η) + g1
1η, glin

2 = g0
2(1 − ξ) + g1

2ξ.

The Jacobian matrix of the “restricted” biquadratic map described above can be written

compactly as

S = (glin
1 + 4(1 − 2ξ)(1 − 2η)(1 − η)x,glin

2 + 4ξ(1 − ξ)(4η − 3)x) (3.35)

and its determinant is

det S = det Slin(1 + 4(1 − 2ξ)(1 − 2η)(1 − η)ã + 4ξ(1 − ξ)(4η − 3)b̃), (3.36)

where

ã =
det(x,glin

2 )

det Slin
, b̃ =

det(glin
1 ,x)

det Slin
, and Slin = (glin

1 ,glin
2 ).

The nondegeneracy conditions for this map are the same as (3.32), only now ã and b̃ are

functions of local coordinates. The more strict inequalities, which guarantee nondegeneracy

of the “restricted” biquadratic map everywhere inside the cell, are

| det(x,g0
2)| <

1

4
min{det S1, det S7},

| det(x,g1
2)| <

1

4
min{det S3, det S9},

−min{det S1, det S3} < det(g0
1,x) <

1

6
min{det S1, det S3},

−min{det S7, det S9} < det(g1
1,x) <

1

6
min{det S7, det S9}, (3.37)

71



where det Si denotes the Jacobian determinant at one of the vertices i = 1, 3, 7, 9 of the

bilinear cell. Figure 3.21 shows the corresponding admissible region for node 2 of the

quadrilateral from Figure 3.20.
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Figure 3.21: Admissible positions for node 2 (inside the contour) of a quadrilateral with

one curved edge.

In the case of a nondegenerate biquadratic map we can always find a finite upper

bound for the distortion measure. For example, in order to obtain the upper bound on

measure Eθ of the “restricted” biquadratic map considered above, we use the following

estimates on coefficient functions from (3.36)

A = |4(1 − 2ξ)(1 − 2η)(1 − η)ã| < 1, B = |4ξ(1 − ξ)(4η − 3)b̃| < 3,

C = |4(1 − 2ξ)(1 − 2η)(1 − η)b̃| < 4, D = |4ξ(1 − ξ)(4η − 3)ã| < 3/4.

Then

tr(ST S) = (glin
1 (1 + 4(1 − 2ξ)(1 − 2η)(1 − η)ã) + 4(1 − 2ξ)(1 − 2η)(1 − η)b̃glin

2 )2 +

+ (glin
2 (1 + 4ξ(1 − ξ)(4η − 3)b̃) + 4ξ(1 − ξ)(4η − 3)ãglin

1 )2

≤ (glin
1 )2((1 + A)2 + D2) + (glin

2 )2(C2 + (1 + B)2) +

+ 2(glin
1 · glin

2 )((1 + A)C + (1 + B)D)

< 249/16(glin
1 )2 + 43(glin

2 )2 ≤ 43tr((Slin)T Slin). (3.38)
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From this result it is easy to verify that

β(S) < 43
det Slin

det S
β(Slin)

and

µ(S) ≤ (1 + A + B)2
det Slin

det S
µ(Slin),

so

Eθ(S) < 43
det Slin

det S
Eθ(S

lin).

However, these estimates do not have the same practical value as the maximum principle.

They are not constructive in the sense that they do not help to establish the mapping

properties, such as nondegeneracy and element quality. They indicate, nevertheless, that if

the initial mesh of quadrilaterals with a curved edge is valid, then the variational smoothing

formulation can be applied.

The numerical integration rule for the biquadratic element, by analogy, contains

Nq = 36 contributions (from all bases in the representation of det S). However, establishing

the validity of an initial mesh of biquadratic elements, as well as formulating an unfolding

algorithm for such a mesh, remains an open question.
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Chapter 4

Solution algorithm and numerical implementation

This chapter is devoted to the description of the numerical solution technique used for the

variational smoothing formulation. The gradient of the smoothing functional (2.8), and the

untangling functional (2.19), are nonlinear, so an iterative optimization algorithm, such as

Newton’s method or another gradient descent method, should be applied to the associated

nonlinear algebraic problem. In the present work, the modified damped Newton’s method is

used. The modified Hessian of the distortion functional is proved to give a positive definite

linear system. This method is easy to modify into a Lagrange multiplier method, which

can be used for constrained minimization problems. The necessity to impose constraints

arises, for instance, when the boundary nodes are allowed to tangentially “slide” along the

boundary or when the mesh contains hanging nodes. The algorithm extensions for the

treatment of such constraints, as well as a strategy for its parallel implementation, are also

formulated.

In order to account for a Dirichlet-type boundary condition (fixed mesh boundary

nodes) we seek the coordinate vector R in the following form R = (I−B)Rb +BRin, where

B ∈ R
N×N is the diagonal matrix with the entries b(i, i) = 1 if ith node is internal (its

coordinates may be changed) and b(i, i) = 0 if ith node is a fixed boundary node. Then

Rb is a given vector satisfying the coordinate boundary conditions and Rin is an unknown

vector.

Let us write down the gradient and the Hessian matrix for the unfolding functional

(2.25). (The formula for the smoothing functional (2.23) will follow after substitution

χε(x) = x, χ′
ε(x) = 1, χ′′

ε(x) = 0.) We will use the notation ∂f/∂a for the gradient of some

function f with respect to a, i.e. a column vector, and ∂f/∂aT for the transposed gradient
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vector, i.e. row vector. (For other notations recall the functional discretization in Section

2.3.) The following equalities hold

∇Ih,ε =

Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)

n
∑

i=1

∂aT
i

∂R

∂Eθ,ε

∂ai
= (4.1)

=

Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)





















BRT
c QT

q(c) . . . 0

...
. . .

...

0 . . . BRT
c QT

q(c)









































∂Eθ,ε

∂a1

...

∂Eθ,ε

∂an





















and

H =

(

∂2Ih,ε

∂Xi∂Xj

)

=





















I − B . . . 0

...
. . .

...

0 . . . I − B





















+ (4.2)

+

Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)





















BRT
c QT

q(c) . . . 0

...
. . .

...

0 . . . BRT
c QT

q(c)





















P ε





















Qq(c)RcB . . . 0

...
. . .

...

0 . . . Qq(c)RcB





















,

where

P ε =





















∂2Eθ,ε

∂aT
1

∂a1
. . .

∂2Eθ,ε

∂aT
1

∂an

...
...

...

∂2Eθ,ε

∂aT
n ∂a1

. . .
∂2Eθ,ε

∂aT
n ∂an





















.

For our implementation of Newton’s method, instead of solving the full Newton’s descent

step, which is computationally expensive and time-consuming, we approximate the Hessian

by a block-diagonal reduced Hessian matrix H [34, 70], or even by diagonally reduced

Hessian. The latter considerably facilitate implementation of the numerical minimization
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algorithm, especially when dealing with large 3D meshes. The block-diagonal Hessian can

be computed by the formula (4.2) using the following reduced block-diagonal form of P ε:

P̃ ε =





















P ε
11 · · · 0

...
. . .

...

0 · · · P ε
nn





















,

where

P ε
ii =

∂2Eθ,ε

∂aT
i ∂ai

+
χ′′

ε

χε
φθa

iaiT ,

and vectors ai are defined by ai · aj = Jδij , and for diagonally reduced Hessian only the

diagonal part of P ε is used. This choice of reduced Hessian matrix H allows reducing the

numerical minimization problem to n minimization problems of lower dimension within the

iterative step, which in terms of the original smoothing problem means that all coordinates

are independent from each other. It also ensures that the associated reduced Hessian ma-

trix H is symmetric positive definite, as we will show in the following paragraph. This

property allows employing fast and efficient symmetric iterative solvers for the numerical

linear system (such as a conjugate gradient method) for our problem.

Properties of the reduced Hessian matrix. All n diagonal blocks of H are indepen-

dent and can be computed as follows

Hii = I − B +

Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)BRT
c QT

q(c)P
ε
iiQq(c)RcB. (4.3)

Let us consider a standard finite element representation of the ith coordinate function xi

on a grid of isoparametric elements: xi = Φ ·Xi, where Φ ∈ R
N and Φ(j) is a basis function

for the node j. Then the corresponding row of the Jacobian matrix has the representation

ai = ∇~ξ
xi = ∇~ξ

ΦXi,

and

aT
i ai = XT

i (∇~ξ
Φ)T∇~ξ

Φ Xi.
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On the other hand,

aT
i ai =

Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)a
T
i |q(c)ai|q(c) = XT

i





Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)RT
c QT

q(c)Qq(c)Rc



Xi.

Thus we can write

M =

Nc
∑

c=1

Nq
∑

q(c)=1

σq(c)RT
c QT

q(c)Qq(c)Rc = (∇~ξ
Φ)T∇~ξ

Φ,

and M = MT ≥ 0. From the partition of unity property of the finite element basis
∑N

j=1 Φ(j) = 1, it follows that
∑N

j=1 ∇~ξ
Φ(j) = 0 and at least one row of ∇~ξ

Φ is a

linear combination of other rows; e.g.

∇~ξ
Φ(N) = −

N−1
∑

j=1

∇~ξ
Φ(j).

All other N − 1 rows of ∇~ξ
Φ are linearly independent (if ∇~ξ

Φ(k) =
∑

j∈J aj∇~ξ
Φ(j),

then Φ(k) =
∑

j∈J ajΦ(j)+const and Φ(k) =
∑

j∈J ajΦ(j)+const·∑N
j=1 Φ(j); i.e. Φ is not

a basis). Thus matrix M has rank N − 1, and M(j, j) = −∑k 6=j M(k, j) > 0. If at least

one diagonal element in B is zero (at least one node is fixed in the grid), then matrix

I − B + BMB has a full rank, and since its Gershgorin disks are contained in those of M ,

I − B + BMB is strictly positive definite. Now in order to prove H > 0 it suffices to show

that P ε
ii ≥ wI, w > 0.

Let us first write down expressions for derivatives that are necessary for the compu-

tation of the gradient and the Hessian matrix of the functional:

∂Eθ,ε

∂ai
=

1

χε

(

∂φθ

∂ai
− α̂φθa

i

)

∂2Eθ,ε

∂aT
i ∂ai

=
1

χε

(

∂2φθ

∂aT
i ∂ai

− α̂

(

∂φθ

∂ai
aiT + ai ∂φθ

∂aT
i

)

+

(

2α̂2 − χ′′
ε

χε

)

φθa
iaiT

)

,

where α̂ = χ′

ε
χε

, and |α| = |α̂J | < 1.
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In the 2D case, for the untangling functional Hessian corresponding to (2.25) we

have

trP ε
ii =

1

χε

(

2(1 − θ)(1 − α) +
θ

v
(1 − α)2|ai|2

+ 2(1 − θ)α̂2

(

1

2
tr(ST S)

)

|ai|2 + θvα̂2|ai|2
)

> 0,

and since |α| < 1,

det P ε
ii =

1

χ2
ε

(

(1 − θ)2((1 − α)2 + α̂2|aj |2|ai|2)

+
(1 − θ)θ

v

(

(1 − α)2 + vα̂2
)

|ai|2
)

> 0,

For the smoothing functional Hessian (α = 1, J > 0) we have

trPii =
1

J3

(

2(1 − θ)

(

1

2
tr(ST S)

)

|ai|2 + θv|ai|2
)

> 0,

det Pii =
1

J4

(

(1 − θ)2(|aj |2|ai|2) + (1 − θ)θv|ai|2
)

> 0.

Thus, from the characteristic equation for the eigenvalues of P ε
ii

λ2 − λtrP ε
ii + det P ε

ii = 0

we get

λ1 + λ2 = trP ε
ii > 0, λ1λ2 = det P ε

ii > 0,

and, finally, P ε
ii > min(λ1, λ2)I, where min(λ1, λ2) > 0, which yields the desired result.

In the nD case, n > 2, diagonal entries of P ε have the following form

P ε
ii(k, k) =

(1 − θ)
(

1
ntr(ST S)

)n/2−2

χε

(

(

1√
2

ai(k) −
√

2α̂

(

1

n
tr(ST S)

)

ai(k)

)2

+

+
1

n

n
∑

j=1

n
∑

l=1

aj(l) aj(l) +
n
2 − 2

n
a2

i (k)

)

+
θ(ai(k))2

χε

(

α̂2v +
1

v
(α̂J − 1)2

)

.

The expression in parenthesis in the first term is nonnegative for any n ≥ 2 and the ex-

pression in parenthesis in the second term is always positive. Thus, P ε
ii(k, k) ≥ 0 and the

78



equality is achieved only when n > 2 and all entries of the Jacobian matrix are zero (i.e.

all element vertices have the same coordinates). In order to account for this rare situation,

which will break down the numerical procedure, we make a small modification to the untan-

gling metric (2.20) and define φ̃θ(S) = φθ(S)+ (n−2)ε
2 tr(ST S), 0 < ε << 1. This introduces

a nonzero contribution to the Hessian P̃ ε
ii(k, k) = P ε

ii(k, k) + (n − 2)ε > 0. Hence we have

the desired result.

For the diagonal entries of matrix Pii in case of the smoothing formulation (that is,

applied to a valid grid) we get

Pii(k, k) =
(1 − θ)

(

1
ntr(ST S)

)n/2−2

J

((

1√
2

ai(k) −
√

2

(

1
ntr(ST S)

)

J
ai(k)

)2

+

+
1

n

n
∑

j=1

n
∑

l=1

aj(l) aj(l) +
n
2 − 2

n
a2

i (k)

)

+
θv

J3
(ai(k))2 > 0 ∀n ≥ 2.

The basic algorithms are summarized below.

Untangling algorithm. For the grid untangling minimization problem the following

iterative solution scheme is used: choose the initial guess R0,

for k = 0, 1, 2, . . .

find minimization direction Pk = −H−1∇Ih,ε,

solve approximately τk = arg min
τ

Ih,ε(R
k + τPk);

Rk+1 = Rk + τkP
k;

if min
q(c)

det S(Rk+1) > 0, stop.

Smoothing algorithm. For the grid smoothing minimization problem the following it-

erative solution scheme is used: choose the initial guess R0,

for k = 0, 1, 2, . . .

find minimization direction Pk = −H−1∇Ih,

solve approximately τk = arg min
τ

Ih(Rk + τPk);

Rk+1 = Rk + τkP
k;
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if |min
q(c)

Qθ(R
k+1) − min

q(c)
Qθ(R

k)| < ε, stop.

After each iteration, the global minimum quality measure

(Qθ)|min = min
q(c)

1

Eθ(Sq(c))
(4.4)

is computed in order to monitor the optimization process. Iterations cease when the dif-

ference between the minimum quality (4.4) of two subsequent grids is less than a given

tolerance; (other criteria are possible). The linear system for determination of the mini-

mization direction is solved using the conjugate gradient method.

Convergence of the iterative procedures. Let us assume that a mesh given by R∗ is

the global minimizer for our functional

R∗ = arg min Ih,ε(R) and S∗ = Iv1/n, so that Eθ(S
∗) = 1 everywhere.

Then ∇Ih,ε(R
∗) = 0, P ε(R∗) is a constant diagonal matrix and at iteration k + 1 the error

satisfies

||Rk+1 − R∗|| = ||Rk + τkP
k − R∗|| = ||Rk − τkH−1

k ∇I(Rk) − R∗|| =

||Rk − R∗ − τkH−1
k (∇I(Rk) −∇I(R∗))|| ≤ ||H−1

k || · ||Hk − τkH(Rc)|| · ||Rk − R∗||,

where Rc = ξRk + (1 − ξ)R∗ for some 0 ≤ ξ ≤ 1. Equivalently,

||ek+1|| ≤ qk||ek||, qk =
||Hk − τkH(Rc)||

w
,

where w is the smallest eigenvalue of the modified Hessian H proven above to be positive. As

we have already seen, the maximum eigenvalue of the Hessian matrix of the functional ||Hk−
τkH(Rc)|| is defined by the maximum eigenvalue of the Hessian matrix of the distortion

measure ||P̃ ε(Rk) − τkP
ε(Rc)||. We get ||P̃ ε(Rk) − P ε(R∗)|| → 0 as Rk → R∗ due to the

continuity of the second derivatives of the distortion measure
∂2Eθ,ε

∂aT
i ∂ai

. Thus, qk = ||Hk −
H(Rc)||/w → 0 as k → ∞ (for τk = 1) and we obtain a super-linear convergence for our

iterative procedure. Note, that our iterative minimization procedure belongs to a class of

quasi-Newton methods, since ||Hk−H(R∗)|| → 0 as Rk → R∗ and the approximation to the
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Hessian is chosen to be symmetric positive definite in order to facilitate reliable computation

of the solution. Numerical observations confirm almost quadratic convergence.

Remark: As noted earlier, local point relaxation is a popular strategy for optimization-

based mesh smoothing. According to this strategy, a local optimization problem is solved

for the optimal position of each node in the mesh depending on the positions of its neigbor

nodes. (The computational complexity of such a problem is comparable to our algorithm.)

Then, global sweeps through all nodes have to be repeated to account for possible influences

that non-neighboring nodes may have on each other. Our global minimization accounts for

all node interactions in each descent step. Also, local point relaxation algorithms rely on

the patch-based mesh quality definitions. This can cause problems for smoothing of meshes

with varying valence, as we will see later in Section 5.2. Our element-based approach to

the mesh quality, on the other hand, overcomes those difficulties, since it provides us with

the ability to control shape and size of each individual element in the mesh. This, in turn,

makes our approach more suitable for adaptation (which will be discussed in Chapter 6).

4.1 Treatment of constraints

When the smoothing procedure is applied in conjunction with certain adaptive refinement

schemes, it may have to deal with hanging nodes. Also the ability to move boundary nodes

along a curved boundary of a manifold instead of fixing them is a basic practical require-

ment. In both cases the variational problem underlying the smoothing method becomes

a constrained minimization problem. In the following section, we briefly describe a La-

grange multiplier approach which is suggested for use in the cases mentioned above as a

postprocessing step. That is, this step is to be applied after the smoothing of the grid is

done treating hanging nodes as interior and boundary nodes as fixed. Let us define the

Lagrangian for constraints gi(R) = 0 as

Lh = Ih +
NC
∑

i=1

λigi(R), (4.5)

where NC is the number of constraints, which is equal to n times the number of hanging

nodes plus the number of “moving” boundary nodes. Here Λ = {λi, i = 1, . . . , NC} are
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the discrete Lagrange multipliers. The minimization of the Lagrangian is done in a manner

similar to the smoothing, i.e.

First take initial guess











R

Λ











=











R0

0











for k = 0, 1, 2, . . .

find minimization direction Pk from










H B

BT 0





















Pk
R

Pk
Λ











=











−∇Ih − BΛk

0











, where B(i, j) =
∂gj

∂Ri
;

solve approximately τk = arg min
τ

Lh





















Rk

Λk











+ τPk











;

Rk+1 = Rk + τkP
k
R;

if |min
q(c)

Qθ(R
k+1) − min

q(c)
Qθ(R

k)| < ε, stop.

The minimization direction may be computed efficiently using only the diagonal part of the

Hessian H from the system

BTH−1BPΛ = −BTH−1∇Ih;

HPR = −∇Ih − BPΛ.

(4.6)

For a “moving” boundary node j we first determine whether this node j and its

neighbor boundary nodes b1, . . . , bnb lie on the same plane (line in 2D). In this case, the

constraint forbids node movement in the normal direction

gi =
n
∑

k=1

(Xnew
k (j) − Xk(j))nk.

For example, in 2D

n1 =
1

X(b1) − X(b2)
, n2 =

−1

Y(b1) − Y(b2)
.
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In the case of nonzero curvature boundary, the node is allowed to move along the sphere

(circle), going through node j and its n boundary neighbors:

gi =
n
∑

k=1

(Xnew
k (j) − Xk(center))2 − r2.

Computation of this quadratic approximation to a surface requires a minimal number of

nodes, and in practice here is observed to provide an accurate fit in 2D, although other

forms (than the sphere/circle) might be preferable in higher dimensions.

The constraints gi = 0 for a hanging node j with adjacent edge nodes p1 and p2

defining the constraint for j are given by

gi = Xk(j) −
Xk(p1) + Xk(p2)

2
, k = 1, . . . , n.

However, in situations with several levels of hanging nodes, e.g. when node p1 or p2 is also a

hanging node and constraints become imbedded, it is preferable to use a penalty formulation

to impose them. This is easily done by adding a penalty term to the functional:

Ih → Ih +
NHN
∑

i=1

1

2ε
g2
i (R), (4.7)

where NHN is the number of hanging nodes and ε is the chosen tolerance. In the numerical

algorithm we need to add linear terms (since gi has a linear dependence on R) to the right

hand side and constant terms to the Hessian. That is,

−∇Ih → −∇Ih −
NHN
∑

i=1

gi(R)

ε
∇gi(R); H → H +

NHN
∑

i=1

∇gi(R)∇T gi(R)

ε
.

The above algorithms are implemented in software modules using the C programming

language. Our methodology and software has been adopted by LANL and is being used in

their applications simulators.

4.2 Parallel implementation

In this section we briefly describe how the above algorithms can be implemented on a paral-

lel machine. Note, that due to our choice of the reduced Hessian matrix, the minimization
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problems for each spatial direction are independent and can be solved in parallel, with com-

munication between the processors only required to find an optimal step in the minimization

direction.

Further, fine-grain parallelism can be achieved by the domain decomposition ap-

proach used for the finite element method which works for our smoothing method as well.

The reduced Hessian matrix H and the right hand side −∇Ih are assembled from the cell

contributions in the usual FE fashion. After the mesh nodes are distributed between the

processors, only the information from the cells divided by the interfaces needs to be trans-

ferred between the processors for the assembly of the numerical problem for subdomain

mesh smoothing on each processor. After computing the linear system solution P by parts

over the processors, the 1D optimization problem for the optimal step τ is easily solved by

computing all parts of the new functional values on each processor and then assembling the

sums on one of the machines and performing a comparison there.

An alternative fine-grain parallel strategy relates to the two step smoothing with

boundary node correction procedure described in the previous section. That is, after the

mesh nodes are distributed between the processors, the interface (and boundary) nodes

are marked as fixed and mesh smoothing in each subdomain is performed without any

communication between the processors. Then, the interface node positions are corrected

in a few iterations of global mesh smoothing (which requires some information transfer, as

described in the previous paragraph). Since most of the global mesh is already smoothed,

these correction steps will be inexpensive, thus providing a very effective and highly parallel

strategy.

In the following chapters we illustrate the use of the new scheme and algorithm on

several representative test problems and on relevant applications.
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Chapter 5

Numerical examples

In this section we illustrate the performance of the new variational smoothing/unfolding

algorithm on some representative examples that are challenging for other smoothing tech-

niques. We also discuss the main issues presented by these examples. In particular, we

perform mathematical and numerical investigations of effects of varying nodal valence on

the smoothing, as well as impact of mesh distortion on the application problem solvability.

5.1 Smoothing and unfolding of meshes in nonconvex do-

mains

It is well known [2] that the Laplace smoother may produce overlapping grids for nonconvex

domains, so it is important to check the behavior of the present type of smoother for such

domains. The improvement and untangling of folded meshes, e.g. including those with

nodes outside of the domain, is also an important test.

Triangular grid in a nonconvex domain Consider the nonconvex (v-shaped) domain

with triangular grid and fixed boundary nodes shown on the left in Figure 5.1. Clearly this

is a valid high quality grid. Laplace smoothing will move points outside the domain and

produce an invalid tangled mesh. Smoothing with our new additive functional using weight

θ = 0.8 produces the grid on the right in Figure 5.1. There is no overlap and the mesh lines

are well behaved. Cells at the peak on the symmetry line are slightly dilated and those at

the reentrant corner are slightly compressed, but the modified mesh remains of high quality.

Note, that the “ideal” element in this example is the regular triangle, and most of the cells
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modified during smoothing achieve a shape closer to ideal than the shape they had initially.

Figure 5.1: Triangular grid in nonconvex domain. Initial mesh (left) and smoothed mesh

(right).

“Sliding” boundary nodes In the following example, the postprocessing Lagrange mul-

tiplier approach was used to improve the quality of a quadrilateral grid in a domain of

complex shape. The initial grid, the grid after 5 smoother iterations, and the grid after 5

iterations with the constrained smoother are shown in Figure 5.2. The use of the lumped

Hessian matrix in the constrained smoothing procedure does not degrade the grid quality

when compared to results of the unconstrained smoothing. This is true only if the initial

grid is “good enough”, which explains why we apply the constrained smoothing step as a

postprocessing step. (Also, application of many iterations of constrained smoothing might

change the boundary significantly). It can be observed that by allowing boundary nodes to

“slide” we achieved near-orthogonality of grid lines to the boundary in the test problem,

which is implied by the natural boundary conditions of the functional (recall Section 2.1.2).

Quadrilateral mesh unfolding in nonconvex domain As shown in Section 2.2, bar-

rier formulations of variational smoothing algorithms facilitate mesh unfolding, as well as

smoothing. As an example, let us consider the unfolding of a folded quadrilateral mesh for

an annular cylindrical domain. For the initial grid, we relocate the nodes interior to a cylin-

drical polar mesh for a semicircular annulus and place them at the origin as indicated by
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Figure 5.2: Initial grid (left), smoothed grid with fixed boundary nodes (middle) and

smoothed grid with “sliding” boundary nodes (right) for the complex domain having two

“cavities”.

the mesh on the left in Figure 5.3. After applying the smoothing algorithm for 5 iterations,

the grid is close to equidistributed, as seen on the right in Figure 5.3.

The dynamics of minimal quality and minimal Jacobian determinant variation during

unfolding is shown in Figure 5.4.
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Figure 5.3: Unfolding. Initial mesh (left), smoothed mesh, θ = 0.8 (middle) and smoothed

mesh, θ = 0.2 (right).
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Figure 5.4: Unfolding. (Qθ)min and Jmin vs number of iterations.
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5.1.1 Large-scale tetrahedral mesh for basin modeling

In the following example we demonstrate the technique on a petroleum reservoir geome-

chanics application mesh for Reconcavo Baiano Basin [75]. Basin modeling is important in

reservoir formation studies. Producing a viable mesh in this application is a challenging

problem. In the present case, the initial tetrahedral mesh is for 8 geological horizontal

material layers. It also contains faults, which makes the domain geometry very complex.

In testing our smoothing algorithm, we treat the basin as a homogeneous medium and fix

all nodes on external boundaries and fault boundaries.

Due to the complex geometry, the initial mesh has very poor quality. In particular,

it contains a lot of “needle” tetrahedra with large height and negligibly small base area.

Some of these “needle” tetrahedra have their base on one boundary and opposite vertex on

another boundary, which implies that they cannot be improved during the smoothing in this

test since we do not include boundary node motion. However, significant improvement is

achieved in the quality of interior elements (with all vertices inside the domain). The general

view of the mesh, consisting of interior elements only, before and after smoothing is shown

in Figure 5.5. We can notice changes in this complex mesh, induced by the smoothing.

In order to better illustrate these changes, the zoom-in on a patch of elements is shown

in Figure 5.6, representing individual improvement in the interior cell quality. Initially,

this patch had several “needle” tetrahedra. Their bases expanded during smoothing, thus

improving their quality.

Each iteration of numerical opimization procedure took 7 seconds of CPU time

on a PC with AMD 2.2GHz processor, and most of this time was spent on the Hessian

matrix assembly over all 187,257 tetrahedra in the mesh. The initial quality evaluation and

nondegeneracy check was performed under a second of CPU time.
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Figure 5.5: Interior of the basin mesh, 56,211 cells, initial (top) and smoothed (bottom).
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Figure 5.6: Fragment of the basin mesh, initial (left) and smoothed (right).

Histograms of cell distortion before and after smoothing are presented in Figure 5.7.

From this Figure we observe that the number of cells with small distortion value (from 1 to

10) after smoothing increased almost 50% compared to the same number in the initial mesh.

Also the maximum value of distortion in the smoothed mesh is three orders of magnitude

smaller than initial maximum distortion. Remark: For better smoothing results, we would

cell distortion
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Figure 5.7: Interior of the basin mesh, cell distortion before and after smoothing.

enable node “sliding” along the domain boundaries (and interfaces between the layers, for
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non-homogeneous material) in the algorithm. However, this would require an additional

module for functional geometry description of these boundaries which was not provided

with the data.

5.1.2 Hexahedral mesh of a brain

In this section we test our smoothing methodology on a hexahedral mesh of a human brain,

that is being used in studies of brain motion occurring during brain surgery [76]. (A section

of cranial bone is removed and the brain moves undergoing large displacement under the

resulting change in pressure.) The initial hexahedral mesh consists of several subdomains

of different material properties, representing brain and ventricles. This mesh was generated

from a generic brain mesh mapped piecewise linearly to a patient-specific mesh that was

“adjusted” manually to accommodate tumor, ventricle distortion and other pathologies.

The general view of the initial surface mesh is shown in Figure 5.8. The initial mesh

Figure 5.8: Hexahedral mesh of a brain, 15,036 cells.
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provided to us [77] was assumed to be valid with no negative Jacobians. This reasoning was

supported by the claim of the provider that “the commercial elasticity FE codes would fail

if there was a negative Jacobian”. Our goal was: 1) to test this hypothesis using our metric

and software; 2) to improve the mesh to permit more efficient, accurate nonlinear elasticity

solution by the mesh provider. In step 1 our metric and scheme identified several “gap”

areas (bounded by faces belonging to only one cell) inside the mesh, and the distortion

metric located several severely-distorted elements with negative Jacobians. Most of these

elements are adjacent to the boundaries of the domain (including “gap” boundaries), as can

be seen in Figure 5.9. In this figure element coloring distinguishes between boundary (red)

and interior (blue) nodes.

Smoothing of the initial mesh with θ = 0.8 and fixed nodes on the boundaries

and interfaces improves the quality of the mesh, as can be seen from three mesh cut-

outs before and after smoothing, presented in Figure 5.10. The improvement in individual

element quality is demonstrated in Figure 5.11. Here, the initial element is close to a

degenerate hexahedron since its shape is almost prismatic. After smoothing, the element

shape improves dramatically and it resembles a brick.

Each iteration of numerical opimization procedure took 23 seconds (on AMD 2.2GHz

processor) for this example, where the Hessian matrix assembly required computing 64

contributions from each of 15,036 hexahedra in the mesh. The initial quality evaluation

and nondegeneracy check was performed under a second of CPU time.
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gaps

Figure 5.9: Hexahedral mesh of a brain: colored distorted elements and detected “gaps”.
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Figure 5.10: Hexahedral mesh of a brain: cut-outs before (left) and after smoothing (right).
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Figure 5.11: Hexahedral mesh of a brain: one element before (left) and after smoothing

(right).

5.2 Valence treatment

The local valence of a vertex is defined here as the number of elements or cells that meet at

that vertex. Most, if not all, current smoothing algorithms produce significant local dilation

effects at vertices where valence differs from the mean [78]. The following numerical tests

demonstrate the behavior of the smoothing algorithm when operating on a grid with varying

valence. Since all unstructured grids have varying interior valence, we examine this case in

detail.

5.2.1 Algorithm performance on meshes with points of changing valence.

In this subsection we will show the results of numerical tests for 4 cases of meshes with

changing valence and then discuss these results at the end.

2D triangular meshes Figure 5.12 demonstrates the smoother behavior on triangular

grids with changing valence. All boundary nodes are fixed in this example. There is some

disparity in dilation effects but the behavior is satisfactory for smoothing with θ = 0.8,

whereas smoothing with θ = 0.2 produces significant dilation.
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Figure 5.12: Triangular grids. Initial meshes (left), smoothed meshes, θ = 0.8 (middle) and

smoothed meshes θ = 0.2 (right).

2D quadrilateral meshes The effect of smoothing on a mesh of quadrilateral cells is

shown in Figure 5.13. The initial grid consists of two block-generated subgrids corresponding

to a trapezoidal subdomain and its continuation to the annular region via an intermediate

transition. Note the 2 interior points are valence 3 and other interior nodes are valence

4. Boundary nodes on the exterior circular boundary are fixed and nodes on the vertical

diameter boundary of the semicircle are allowed to “slide” along this line. The initial mesh

and the smoothed meshes for θ = 0.8 and θ = 0.2 respectively, after 3 iterations are shown.

The minimal quality (Qθ)min, minimal value of the Jacobian determinant, and functional

value Ih for this test are graphed in Figure 5.14 as functions of the number of iterations.
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Figure 5.13: Quadrilateral grid smoothing. From left to right: initial grid, grid after 3

iterations of the smoother with θ = 0.8, θ = 0.2.
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Figure 5.14: Smoothing. (Qθ)min, Jmin and Ih vs number of iterations.
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3D meshes Let us now consider two 3D examples of grids with varying valence. First we

examine a hexahedral grid with varying valence (Figure 5.15) that is generated by CUBIT

[79]. The problem domain is composed of three tube segments that intersect as shown in

Figure 5.15 and the main area of difficulty is the interior grid near the intersection. An

expanded view of the 2D midplane slice near this area is shown on the extreme right of the

figure. The interior grid on the section after 10 iterations of smoothing with θ = 0.8 (size

X
Y

Z

X
Y

Z

Figure 5.15: Initial 3D grid.

control) is shown on the left in Figure 5.16, and the result of smoothing with θ = 0.2 (shape

control) is shown on the right in the same Figure.

X
Y

Z

X
Y

Z

Figure 5.16: Grid slice after smoothing with θ = 0.8 (left) and θ = 0.2 (right).
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Next, let us consider a 3D example of a hybrid mesh consisting of hexahedra and

prisms. The mesh is constructed inside a sphere, and a 1/8 cut-away of the initial mesh

is shown in Figure 5.17. This test problem was suggested by a DoE Lab since it exhibits

problems for other mesh smoothing schemes and is important to their application class.

The boundary nodes on the surface of the sphere are fixed during smoothing. Figure 5.18

demonstrates meshes obtained after smoothing with two values of θ. In this example the

mesh includes hanging nodes and nodes with irregular valence (nodes belonging to cells

of both types and valence 6 nodes of hexahedral cells - generalization of the previous 2D

example).

X
Y

Z

Figure 5.17: Cut-away showing 1/8 of a sphere for initial hybrid 3D grid.
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Figure 5.18: Cut-away showing 1/8 of a sphere for hybrid 3D grid smoothed with θ = 0.2

(top) and θ = 0.8 (bottom).
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Results from these numerical tests demonstrate that significant dilation may occur

in grids with varying valence when smoothing with θ near zero; that is, with the accent on

the shape control metric (similar results are seen for Laplacian-type smoothers). Increasing

the size control θ alleviates this problem. It can also be noticed (see Figure 5.14) that

minimization of a global functional with more weight on shape control does not improve the

minimal values of the quality metric and the Jacobian determinant compared to the initial

state (although the global functional value decreases). That is, the value of such a functional

depends more on the global mesh structure than on any individual cell contribution, as one

might expect. On the other hand, when the weight is shifted towards the size control

metric, all local quality metric values improve during smoothing. Thus, adding weight to

the dilation metric makes our smoothing procedure less sensitive to the varying valence of

the mesh. Nevertheless, we must always keep some nonzero weight on the shape control part

of the metric in order to preserve the properties and validity of the smoothing algorithm.

In the remainder of this section we will examine the effect of varying valence on both shape

and size control parts of the functional.

5.2.2 Properties of the smoothing functional on meshes with changing

valence

We first examine the local behavior of the discrete functional (2.23) on a patch of cells, then

look at the global effect of smoothing on meshes with varying valence.

Patch of triangular elements Following [78], let us consider a patch of val > 2 equi-

lateral triangular elements shown in Figure 5.19 for the case val = 6.

For each element in the initial patch configuration we have

φ =
2π

val
, β0 =

2 − cos φ√
3 sin φ

, µ0 =
v
√

3

4 sin φ
+

sin φ

v
√

3
.

Now we move one vertex A0 a distance δ to a position A. The functional for the new patch

depends upon δ as

Ih(δ) = (val − 2)Eθ(0) + 2Eθ(δ).
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Figure 5.19: Patch of triangles.

Its derivative w.r.t. δ is equal to

I ′
h(δ) =

1√
3 sin φ

(

2(1 − θ) +
2θ sin2 φ

v
+

4(θ − 1) − 3θv

2(1 + δ)2

)

.

The minimum of this functional is achieved when I ′
h(δ) = 0, that is when

δ =

√

1 − (1 − 3v/4)θ

1 − θ + θ/v sin2 φ
− 1.

If θ = 0 (only shape control is imposed), the minimum is at δ = 0, independent of valence

val. If θ = 1 (only size control), the minimum is at δ =
√

3v/(2 sin 2π
val )−1 and is controlled

by the value of desired element area v.

Patch of quadrilaterals The setting is similar to the previous case (see Figure 5.20) and
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Figure 5.20: Patch of quadrilaterals.

the functional becomes

I(δ) = (val − 2)Eθ(0) + θ/2

(

v

(1 + δ) sin φ
+

(1 + δ) sin φ

v

)

+
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+(1 − θ)/2

(

2 + 2(1 + δ)2 + δ2 − 2δ cos φ

2(1 + δ) sin φ
+

δ2 − 2δ cos φ

2 sin φ

)

,

with derivative

I ′
h(δ) =

1 − θ

2 sin φ

(

3/2 + δ − cos φ − 3/2 + cos φ

(1 + δ)2

)

+

+
θ

2 sin φ

(

sin2 φ

v
− v

(1 + δ)2

)

.

The contours I ′
h(δ) = 0 as functions of valence val are shown in Figure 5.21 for different

values of θ.
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Figure 5.21: Optimal position δ as a function of valence and θ. On top: v = 2, on bottom:

v = 0.5.

From Figure 5.21 we can conclude that smoothing of the quadrilateral grid with

only shape control results in attraction of points to a node of valence smaller than regular

and repulsion of points from a node of valence larger than regular. The same behavior
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holds for any Laplace-type smoothing. Addition of size control to the functional introduces

control over this attraction/repulsion force through the values of desired element area v

and parameter θ. Figure 5.21 also demonstrates that, as expected, large values of target

cell area v induce dilation, whereas small values of v promote attraction. The effect is

more dramatic with the increase of θ (weight shifted towards the size control part of the

functional).

Functional at a node Now, let us consider an interior node of a quadrilateral grid in

a different setting, where all nodes on the patch boundary are fixed and only the interior

node is allowed to move. Let us denote by l1, . . . , lval the lengths of all edges connected to

this node. Let the angles between these edges be numbered in a counterclockwise manner

as α1, . . . , αval (see Figure 5.22). The angles satisfy an obvious restriction
∑val

i=1 αi = 2π.

l1α1¡
¡
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¡l2
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Figure 5.22: Interior node of valence val = 6.

The functional value at the node is equal to

Ih(node) = (1 − θ)

val
∑

i=1

li
li+1

+ li+1

li

2 sin αi
+

θ

2

val
∑

i=1

(

lili+1 sin αi

v
+

v

lili+1 sin αi

)

and achieves its minimum value

Ih(node)min = (1 − θ)
val

sin( 2π
val )

+ θ val
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when α1 = . . . = αval = 2π
val (due to symmetry) and l1 = . . . = lval =

√

v/ sin( 2π
val ).

Thus, such a symmetric configuration is preferable when it can be achieved under the given

boundary and other constraints.

The position of any node influences the quality of the whole patch of cells surrounding

the node. Suppose that in each cell of the patch the coordinates of three nodes (the interior

node and two connected with it by edges) are determined by the conditions above. Let

us consider the functional sensitivity to the position of the remaining vertices. It suffices

to examine a typical cell. The level sets of the shape control metric β, as a function of

coordinates of the fourth node (B in Figure 5.20) of a quadrilateral cell within the patch

surrounding nodes with valence 3 and 5 are shown in Figure 5.23. In both cases the metric
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Figure 5.23: Level sets of β on a patch of valence 3 (top) and 5 (bottom).

β has its minimum when the angle χ at the free vertex is equal to π/2. Thus, the edges

forming this angle are forced to be 25% longer (than 1) in the case of the valence 3 patch

and 17% shorter in the case of the valence 5 patch. Thus, the local dilation or contraction

effect near points of irregular valence is caused by the tendency of a Laplace-type smoother

to (1) preserve symmetry, (2) keep edge lengths nearly equal and (3) attain a maximum

possible (under these conditions) number of right angles in the mesh.
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If we now suppose that all other vertices in the grid have valence 4 and consider the

layer of cells surrounding the irregular valence patch, similar reasoning implies that node

clustering or unclustering near the point of irregular valence is due to the restriction on the

sum of angles imposed by the global mesh connectivity. In order to demonstrate that in

this case clustering is independent of the central (irregular valence) node contribution (even

of the patch contribution), we performed smoothing of the test grid with deleted patches

of cells surrounding valence 3 nodes. That is, we deleted the cells and considered different

configurations of the resulting inner boundary. Smoothing is performed with value θ = 0.2,

and boundary nodes are allowed to “slide” tangentially along the outer boundary. The

results for a coarse grid are shown in Figure 5.24. Similar behavior is displayed on finer

grids.

In other situations, irregular valence nodes tend to induce mainly local dilation or

contraction of the surrounding cells, as in the following example. In this case we consider

a mesh of regular triangles and a uniform mesh of square cells in a large enough domain.

That is, a domain large enough that boundaries do not affect the behavior of the smoother

on the interior patches of interest. For the initial grid configuration we removed one node

in the center for each of the two meshes and reconnected the remaining vertices (see Figure

5.25). Thus, we obtained several vertices of varying valence inside each mesh, with the

majority of the vertices being of regular valence. The results of the smoothing for these

meshes with different values of θ are shown in Figure 5.26, and in all these cases smoothing

affects only the patches of cells surrounding the irregular valence vertices. That is, the

effect of valence change attenuates significantly under this smoother and weighting. This

suggests that the effect of local valence irregularity can be addressed appropriately in this

way. Hence, we anticipate the approach will improve element shape and not be impacted

adversely by valence changes. This also suggests that local subgrid or patch optimization

may be computationally efficient. However, in general, the exterior mesh will vary globally

unlike the uniform meshes of Figures 5.25 and 5.26.
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Figure 5.24: From top to bottom, left to right: whole smoothed grid, smoothed grid with

free nodes on the boundaries of deleted patches, smoothed grid with patch boundaries fixed

from initial grid, smoothed grids with vertex angle χ equal to 120, 80 and 90 degrees.

Figure 5.25: Zoom on the initial regular grids with one node removed.
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Figure 5.26: Zoom on the smoothed grids: on top θ = 0.2, on bottom θ = 0.8.
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5.2.3 Bounds on angles

We conjecture that, in general, the maximum and minimum angles occur in the smoothed

grid at the vertices with minimal (maximal) valence (excluding boundary influence). We do

not have a proof of this yet, but we are able to obtain estimates on maximal and minimal

angles in terms of distortion measure β for the case of triangular and tetrahedral grids, as

described below. (Size distortion measure µ does not provide any control over cell angles.)

For the triangular element with area A and edges l1 ≤ l2 ≤ l3, the shape distortion

measure is reduced to

β =
l21 + l22 + l23

4
√

3A
. (5.1)

Let us denote the smallest angle by α1; then we can rewrite the distortion measure as

β =
l22 + l23 − l2l3 cos α1

2
√

3A
.

For the sine of the smallest angle we, thus, have

sin α1 =
2A

l2l3
=

l22 + l23 − l2l3 cos α1√
3βl2l3

≥

≥ 2 − cos α1√
3β

. (5.2)

From the last inequality and using the fact that α1 ≤ π/3 it is easy to obtain the following

estimate

α1 ≥ arcsin

(

2 −
√

1 − β−2

√
3β + 1/(

√
3β)

)

. (5.3)

For the largest angle α3 in the triangle we can show (repeating (5.2)) the estimate

sin α3 ≥ 2 − cos α3√
3β

.

If this angle is obtuse α3 ≥ π/2 then

sin(π − α3) ≥
2 + cos(π − α3)√

3β

and

α3 ≤ min

(

π − 2α1, π − arcsin

(

2 +
√

1 − β−2

√
3β + 1/(

√
3β)

))

. (5.4)

110



For the tetrahedron with volume V , solid angles γ1, . . . , γ4, and edges l1, . . . , l6 the

shape distortion measure is

β =
(
∑6

i=1 l2i )
3/2

72
√

3V
. (5.5)

Using the estimates from [59], for the minimal solid angle γ1 we get

1/(16β) ≤ sin(γ1/2) ≤ 4
√

8/
√

β.

Thus,

γ1 ≤ 2 arcsin

(

1

16β

)

. (5.6)

From [59] we also know that

γ1 ≤ γ2 ≤ γ3 ≤ γ4 ⇒

sin(γ1/2) ≤ sin(γ2/2) ≤ sin(γ3/2) ≤ sin(γ4/2).

The tetrahedron is poorly shaped if γ4 is close to 2π, i.e. when 2π − γ4 is small. However,

since

sin

(

2π − γ4

2

)

≥ sin(γ1/2),

consequently

γ4 ≤ 2π − 2 arcsin

(

1

16β

)

, (5.7)

which shows how the largest value of distortion measure for the grid can be used to estimate

the bounds on the smallest and largest angles.

Figure 5.27 demonstrates the sensitivity of the angle bounds (5.3), (5.4) to the

deformation of a triangular element. The type of deformation is schematically represented

in the Figure: on the left, the base of the regular triangle is kept fixed, and the height varies

from zero to twice the ideal height; on the right the base is fixed and the length of one

adjacent edge varies from zero to twice the ideal, while keeping the angle between the base

and this edge constant. The Figure shows that estimates are almost exact for the minimum

angle and quite good for the maximum angle.
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Figure 5.27: Sensitivity of angle bounds for triangles.

5.2.4 Algorithm with varying θ.

One approach to deal with the valence problem is to introduce an alternative target shape

for the cells located near the irregular valence nodes. The drawback of this approach is that

we do not know which shape should be considered ideal for these cells. (For example, what

is the best configuration of the patch boundary in Figure 5.24?) A similar approach would

be to enforce more size control near these irregular valence nodes and allow more shape

control far from them. This can be achieved by varying parameter θ throughout the domain.

Simply increasing or decreasing θ at a node with lower or higher valence is not enough. Our

strategy is to identify the irregular valence nodes vi, i = 1, . . . , I, for each such node compute

a radius of its “domain of influence” rvi = minj{dist(vi, ∂Ω), 1
2dist(vi, vj)}, and define the

piecewise-constant function θ on each cell by
{

θ(c) = 1 − dist(vi,c)
rvi

, if dist(vi, c) ≤ rvi

}

. The

implementation of this approach resulted in the central grid shown in Figure 5.28. The grid

obtained with varying θ does not show much clustering near valence 3 points, and it still

has nearly square elements close to the boundary of the domain.

112



Figure 5.28: From top to bottom: grid smoothed with θ = 0.2, varying θ, and θ = 0.8.
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5.3 Meshes with curvilinear elements

Curvilinear elements are most often used to provide better fit of domain boundaries and

interfaces to improve the solution accuracy and are especially helpful for problems with

moving boundaries/interfaces tracked by the mesh. Although quadratic FE bases are widely

used, smoothing/improvement techniques for meshes of isoparametric quadratic elements

have not been studied previously. In the following section we examine the performance

of the present approach and algorithm on simple but representative 2D and 3D grids of

quadratic simplices.

2D test case. First, we consider smoothing of 2D triangular grids generated inside a

ring with a curvilinear cut or fracture. The domain boundaries are internal and external

circles centered at the origin and a curved cut which is shown in bold in Figure 5.29 a).

Boundary nodes are allowed to tangentially “slide” along the boundaries of the domain

during smoothing; only the end nodes of the cut are fixed to preserve the geometry of the

boundaries. Meshes obtained after 5 iterations of smoothing with θ = 0.8 (Figure 5.29 b))

and θ = 0.2 (Figure 5.29 c)) followed by 3 iterations of boundary node corrections contain

only nondegenerate elements and preserve the curvature of the cut and the boundary. Note,

however, that in order to keep valid elements, all edges of the quadratic triangles adjacent

to the high curvature cut are forced to be curved. On the other hand, away from the high

curvature boundaries the interior edges are close to straight line segments.

For the second example we keep the same domain geometry and mesh connectivity

as in Figure 5.29 a), but place all interior nodes at the origin. Thus we obtain a folded mesh

of curvilinear triangles as shown in Figure 5.30. Meshes after 15 iterations of untangling

plus 5 iterations of smoothing with boundary node corrections are identical to several digits

to the results of smoothing in Figure 5.29 b) and c). The evolution of an initially invalid

mesh during the first 4 iterations of unfolding (θ = 0.2) is presented in Figure 5.31. We

can observe that the majority of the cells are untangled after 3 iterations, however it takes

a dozen more iterations for the cells adjacent to the high-curvature cut to achieve a valid

shape. The evolution of minimal quality and minimal Jacobian determinant variation during
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a)

b) c)

Figure 5.29: Grids of curved triangles: a) initial, b) smoothed with θ = 0.8, and c) smoothed

with θ = 0.2.

smoothing and unfolding is shown in Figure 5.32.
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Figure 5.30: Folded grid of curved triangles.

1 iter. 2 iter.

3 iter. 4 iter.

Figure 5.31: Evolution of grid of curvilinear triangles during unfolding.
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Figure 5.32: (Qθ)min and Jmin vs number of iterations. Upper figures: smoothing; lower

figures: unfolding of the 2D curvilinear mesh.
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3D test case. In this 3D numerical test example we start with a simple tetrahedral mesh

inside a cylinder and “snap” the mid-edge nodes to lie on the curved cylindrical surface

where appropriate (see Figure 5.33 a)). Hence, the mesh edges on the cylinder surface

are approximated by a quadratic map. For clarity of presentation only the visible surface

edges are shown. The discretization of the flat back surface is the same as for the front

one except for a rotation through 30 degrees. There are no interior vertex nodes. Interior

mid-edge nodes are free to move under the smoothing process. The mesh smoothed under

a) b) c)

Figure 5.33: From left to right: a) curvilinear tetrahedral mesh inside a cylinder, b) smooth-

ing result with fixed cylindrical boundary and c) with free boundary.

the condition of preserving the circular boundary of the cylinder but with the geometry

constraint on the interior front and back faces of the cylinder relaxed is shown in Figure

5.33 b). In this resulting mesh the total volume is preserved, but the edge lying on the

“cylindrical” symmetry axis of the domain moves so that the front circular surface (initially

flat) becomes convex and the back surface - concave. In this way, the shape of all tetrahedra

becomes closer to ideal. The mesh in Figure 5.33 c) is obtained by allowing all the nodes to

move freely during smoothing. The volume of the domain is again preserved, but the areas

of circular surfaces which were flat in the original mesh change. Also the front surface turns

slightly to align radial edge directions more closely with those on the back surface. This

configuration allows for even more improvement in element shape than in result b).
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5.4 Effect of mesh distortion on the problem solvability

5.4.1 Condition number study

Since we want to have a practical understanding of the effect of mesh improvement on

solvability after smoothing, we compute the condition numbers κ for a mass matrix M and

a stiffness matrix K for the Laplace problem on several representative meshes, as well as

derive theoretical predictions for their values. We assume here that Dirichlet boundary

conditions apply and both mass and stiffness matrices are symmetric positive definite.

The series of numerical tests performed with 3D hexahedral meshes leads to the

following observations:

1. Local distortion has almost no effect on κ(M) and κ(K), as well as on a solution to

the Laplace problem;

2. Local tangling makes the stiffness matrix noninvertible, but does not affect mass

matrix conditioning; severe local tangling results in negative masses for adjacent ele-

ments;

3. Small distortion of all elements leads to increase in both condition numbers;

4. κ(K) worsens significantly when large elements are adjacent to small ones, but not in

the case when transition between different sizes is gradual.

With regards to the smoothing procedure, as we already observed in Section 5.2, smoothing

with shape control does not improve the individual worst values of the quality metric that

occur near the irregular valence points. Whereas size control helps to improve all the values

of quality. The conditioning of mass and stiffness matrices follows the behavior of the

extremal values of quality and Jacobian determinant.

This last remark leads us to develop theoretical estimates, concerning the relation

between the maximum value of mesh quality Eθ and the conditioning of mass and stiffness

matrices for that mesh. Mass matrix elements are computed as follows:

Mi,j =

Nc
∑

c=1

∫

Ωc

ϕiϕjdx =

Nc
∑

c=1

∫

Ω̂c

ϕiϕj det S d~ξ (5.8)
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=

Nc
∑

c=1

Nq
∑

q(c)=1

ϕi(q) ϕj(q) det S|q(c)σq(c) =

=





Nc
∑

c=1

Nq
∑

q(c)=1

aq(c) det S|q(c)



M ideal
i,j ,

where M ideal is a mass matrix computed on a reference mesh, ϕi, i = 1, . . . , N are the FE

basis functions, and the constant coefficients aq(c) ≥ 0 satisfy
∑Nc

c=1

∑Nq

q(c)=1 aq(c) = 1. Thus,

the ith eigenvalue of the mass matrix satisfies

max(det S) ≥ λi(M)

λi(M ideal)
≥ min(det S), (5.9)

and the condition number can be bounded as

κ(M) ≤ max(det S)

min(det S)
κ(M ideal). (5.10)

Similarly, the stiffness matrix elements can be written as:

Ki,j =

Nc
∑

c=1

∫

Ωc

(∇ϕi)
T∇ϕjdx =

=

Nc
∑

c=1

∫

Ω̂c

(∇ξϕi)
T S−1S−T∇ξϕj det S d~ξ,

where by γ, Γ we denote the smallest and largest dimensionless singular values of the

Jacobian matrix:

γ2v2/nI ≤ ST S ≤ Γ2v2/nI. (5.11)

From the definition of the singular values, we can write

S−1S−T = UT diag(γ−2
k )Uv−2/n,

where U is an orthogonal matrix UT = U−1. The stiffness matrix above becomes

Ki,j =

Nc
∑

c=1

Nq
∑

q(c)=1

(Uq∇ξϕi(q))
T diag(γ−2

k )|q(Uq∇ξϕj(q))v
−2/n det Sqσq

and it follows that

max
q(c)

(

det Sq

γ2
qv2/n

)

≥ Ki,j

Kideal
i,j

≥ min
q(c)

(

det Sq

Γ2
qv

2/n

)

, (5.12)
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where Kideal
i,j is a stiffness matrix computed on a reference mesh. Thus, by continuity of

the 2-norm, the estimates for the condition number of the stiffness matrices are related as

follows

κ(K) ≤
max

(

det S
γ2

)

min
(

det S
Γ2

) κ(Kideal). (5.13)

The singular values of the Jacobian matrix and its determinant can be estimated

in terms of our local distortion measure β(S) and dilation measure µ(S) (or, equivalently,

in terms of the total metric Eθ). Thus, the condition number estimates (5.10) and (5.13)

represent the dependence between the mesh quality and matrix conditioning, and they can

be used to predict the difference in computational cost for iterative linear system solver on

different meshes.

For the series of test grids presented in Figure 5.34, the condition numbers and their

estimates are shown in Figure 5.35. In estimates for the stiffness matrix conditioning we

assumed Γγ = O(1) and computed the proportionality coefficient in (5.13) as

n2(βmax)
4/n (max(det S))1+2/n

(min(det S))1−2/n
, (5.14)

using the estimate

Γn ≤ nn/2β det S

for the maximum singular value of the Jacobian matrix in terms of distortion metric. As

we can observe from Figure 5.35, our theoretical predictions are in qualitative agreement

with the computed values. The overestimation of the predictions is due to fact that we

take extremum values of metrics over the whole computational mesh in (5.14). Thus, our

estimate (5.14) assumes the worst case scenario: all cells in the mesh have the worst quality.

However, the relative difference in condition numbers for different smoothing strategies is

in agreement with the predictions. Another important observation we can draw from these

estimates is that, for a highly distorted grid (Eθ >> 1), the condition number of the stiffness

matrix is proportional to (max Eθ)
4/n.
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Figure 5.34: Test hexahedral grids with progressively decreasing angle between the lower

tubes.
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Figure 5.35: Condition numbers and their estimates for 3D test grids.
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Figure 5.36 indicates the dependence of the condition number and minimum and

maximum eigenvalues of the stiffness matrix for the Laplace operator on the cell distortion.

The matrix is computed on one quadrilateral cell and distortion is caused by symmetric

stretching of one edge, which remains parallel to the opposite fixed edge of the quadrilateral.

The initial configuration corresponds to a unite square. Two cases with Dirichlet boundary

conditions are considered that correspond respectively to fixing a node on the extending

edge or on the opposite edge.
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Figure 5.36: Dependence of κ(K) on quadrilateral cell’s distortion.

The main observation is that the stiffness matrix condition number is sensitive to

the shape of the cells, whereas cell size does not have any effect on it. Thus, in the situation

where a grid contains a pair of adjacent cells of very different sizes (for which κ(K) is

always large, e.g. in Figure 5.37 κ(K) = 60, max det S
min det S = 7), these two cells have to be

highly distorted. However, when cell size varies gradually, which allows for almost “ideal”

cell shape, the condition of the stiffness matrix is close to “ideal” as well (in Figure 5.38

κ(K) = 44, max det S
min det S = 20).
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Figure 5.38: Grid with small κ(K).
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The estimate for condition number κ(K) for the above case of a deformed quadri-

lateral cell

κ(K) ∝ max(β +
√

β2 − 1)2

is presented in Figure 5.39 along with values of κ(K) computed for different types of bound-

ary conditions. This estimate is easy to obtain in 2D, since we can determine both singular

values Γ, γ in terms of the distortion metric and Jacobian determinant

Γ2 =
det S

v

(

β +
√

β2 − 1
)

(5.15)

γ2 =
det S

v

(

β −
√

β2 − 1
)

. (5.16)
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Figure 5.39: κ(K) and its estimate on quadrilateral cell.
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5.4.2 Solution error induced by local curvilinear mesh distortion.

In this section we consider the impact of local curvilinear mesh distortion on the solution

accuracy.

In the numerical simulation we solve the following model diffusion problem

−∇ · (α∇u) = f in Ω = [0, 1] × [0, 1],

where

α =
1

ν
+ ν(x1 + x2 − 1)2,

f(x1, x2) = 4ν(x1 + x2 − 1)(arctan ν(x1 + x2 − 1) + arctan ν) + 4, ν = 100,

using a finite element technique on a mesh of isoparametric elements given by biquadratic

maps. Dirichlet boundary data are specified on all boundaries from the analytic solution

u(x1, x2) = (2 − x1 − x2)(arctan ν(x1 + x2 − 1) + arctan ν).

The solution of this test problem has an interior layer (region of steep gradient) at large ν.

Following the results from our study of the quality measure dependence upon mid-

edge node displacement in an element (recall Chapter 3, Section 3.5), a local displacement of

only one interior mid-edge node is considered. Thus, only two elements sharing the curved

edge are deformed, and all other cells in the mesh have “ideal” shape and size. The values for

the node displacement (δx, δy) are chosen from the following sets δx ∈ {0, 1/8, 1/4, 3/8, 1/2},
δy ∈ {0, 1/9, 2/9, 1/3}. Thus, some of the deformations involve zero or negative Jacobians.

In some cases, the Jacobian is zero at one of the Gaussian quadrature points, so no numerical

solution could be obtained (due to divide by zero). For all the other cases, we compute the

error in L2 norm, H1 seminorm and L∞ norm. The plots of error vs. mesh resolution are

shown in Figure 5.40. We observe that the error in integral norms (i.e. averaged over the

domain) does not noticeably change due to the local mesh distortion. However, error in the

maximum norm differs significantly, and for some choices of distortion it does not decrease

with mesh refinement. For example, on the finest undeformed mesh the relative maximum-

norm error is ||e||L∞
/||u||L∞

= 2% and can be compared to the ||e||L∞
/||u||L∞

= 21%

relative error on the mesh with local mid-edge node displacement (1/4, 1/9) (yellow curve
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Figure 5.40: Solution error dependence on the local mesh deformation; L2 and H1 errors

(top), and L∞ error (bottom).
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in Figure 5.40). This displacement results in two degenerate cells sharing a deformed edge.

Thus, we see that the maximum-norm error might not improve during the mesh refinement,

if degenerate cells are present.

Next, the numerical tests are repeated on meshes, consisting of 8-node “serendipity”

elements. The FE basis functions for the solution approximation remain the same as before

(biquadratic), but the geometric element now accepts more significant deformation (without

losing its validity) due to the absence of the central node. The set of displacement for the

mid-edge node is, therefore, extended to include δy = 1/2, 3/4, which caused negative Jaco-

bians and failure of the numerical solution procedure on the previous mesh of isoparametric

elements, but is acceptable now. On the other hand, the numerical solution procedure now

fails for mesh deformations with δx = 3/8, which lead to negative Jacobians in both meshes,

but was nevertheless solvable on isoparametric elements. The integral errors again do not

display significant dependence upon the mesh deformation. Figure 5.41 compares the plots
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Figure 5.41: L∞ solution error dependence on the local mesh deformation; mesh with 8-node

“serendipity” elements.
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of L∞ error vs. mesh resolution. Here we observe that although in all cases error decreases

with mesh refinement, the curve for error with a mesh having no distortion is the steepest.

(Compare: in Figure 5.40 curves for small deformations (1/8, 0) (blue) and (0, 1/9) (orange)

follow the “no distortion” error curve, whereas in Figure 5.41 they move away from this

curve).

To conclude, isoparametric elements can better tolerate small distortions (in terms

of the solution accuracy), but may lose asymptotic convergence in L∞-norm for distortions

causing element degeneracy. (However, the asymptotic convergence rate in L∞-norm on

meshes with “serendipity” elements is consistently smaller than the convergence rate on

isoparametric meshes). Such loss of asymptotic convergence in L∞-norm may cause re-

duced rate of asymptotic convergence in L2-norm (O(h2) instead of O(h3) on biquadratic

elements), since the error in L2-norm is proportional to the product of the maximum error

and the area of local distortion ||e||L2
∝ ||e||L∞

h2. Thus, one must ensure high quality of

the mesh in the regions of interest. In particular, high curvature of the element edges is not

desirable and should be avoided in such regions.
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Chapter 6

Adaptivity and mapping control

Adaptive dynamic mesh adjustment to the application problem and domain geometry is

one of the major trends in mesh improvement strategies. In this chapter we demonstrate

how our variational smoothing formulation can be extended to adaptive redistribution and

mapping control. We compare adaptive redistribution and refinement strategies and inves-

tigate combining these strategies. Dependence of the solution error on the mesh quality is

also analyzed both numerically and analytically. We also consider the problem of evolving

mesh geometry.

The additive local distortion measure Eθ(S) in (2.7) provides control over both

element shape and size, and it achieves its minimum on the “ideal” shaped reference element

with the average cell volume v. This choice of “ideal” shape and size for the cell comes

from geometric considerations. It is useful for recognizing inverted or degenerate elements

in the mesh, but it clearly is not optimal for achieving the most accurate solution of an

application problem. However, adaptivity can be easily incorporated into our smoothing

framework through the choice of different “ideal” (or target) shapes and sizes for different

cells in the mesh. Thus, by prescribing different target volumes v to different cells, one can

define and control the desired cell size distribution via dilation measure µ(S). Similarly,

one can define a priori the desired element shape by introducing a metric in reference

coordinates. These metrics essentially use different reference elements for different cells

in the grid. Minimization of the correspondingly modified functional will result in a grid

with cells having their shape as close as possible (under given connectivity of the grid

and imposed boundary conditions) to the target shapes due to the action of shape control

distortion measure β(S).
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6.1 Preserving cell size distribution during smoothing

As an illustrative example, the smoothing procedure is applied to an elaborate grid gen-

erated to adaptively fit a multi-airfoil domain. This grid has many nodes with irregular

valence and it initially had several folded cells. The most relevant part of this grid before

and after smoothing is shown in Figure 6.1. This example indicates the importance of cell

size control (via µ(S)), since without it the smoothing procedure “undoes” desired clus-

tering near the airfoils and tends to promote a uniform grid, which is undesirable because

boundary layers need to be resolved. Initially, the volumetric factors v were computed for

each cell, and then the smoothing algorithm was run enforcing these target values through

µ. The improvement in the grid details can be seen in Figure 6.2. It can also be observed

from Figure 6.2 that smoothing may not retain enough clustering in the boundary layers,

even when weight in the distortion measure definition is shifted towards the size control

metric (θ close to 1). This is explained by the fact that square is the “ideal” shape for all

elements in this test (by the distortion metric definition). However, in the boundary layers,

elongated cells with high aspect ratio define more desirable target shape. Although the size

of the cells in the boundary layers of the smoothed mesh is close to the target, their shape

is not, which causes node dilation from the boundary. Thus, in order to have a grid that

retains the initial mesh density in the boundary layer, a block smoothing strategy may be

desirable. In such a strategy blocks of boundary layer cells can be left unchanged during

smoothing, or can be assigned a target shape different from square. In the next section we

will introduce the framework which can be used in the implementation of the latter strategy.
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Figure 6.1: Subregion showing initial grid (top), smoothed with θ = 0.2 grid (bottom left)

and smoothed with θ = 0.8 grid (bottom right).
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Figure 6.2: Fragments of initial grid (left), smoothed with θ = 0.2 grid (middle) and

smoothed with θ = 0.8 grid (right).
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6.2 Mapping control and domain shape recovery

6.2.1 Introducing mapping control in the metric and smoothing formu-

lations

As we mentioned in the beginning of this chapter, the desired element shape and size

can be defined a priori for each cell in the mesh by introducing a target metric H(~ξ) in

reference coordinates and thus essentially providing different reference elements for different

cells in the mesh. Figure 6.3 schematically demonstrates the idea: instead of the reference

element representing the “ideal” target shape and size for the physical cell, we now define

a new target element for each cell. Here, the target metric is given by the Jacobian matrix

-
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Figure 6.3: Target element definition.

H(~ξ) of the (nondegenerate) map between the reference and target elements. Note, that

the Jacobian matrix of the map from target to physical cell, which can be defined as a

superposition of two mappings, is SH−1, as shown in Figure 6.3. In order to include the

new target element definitions into the smoothing formulation, one needs to substitute this

matrix SH−1 instead of S in the metric and functional definitions, yielding

Eθ(SH−1) = (1 − θ)

(

1
ntr(H−T ST SH−1)

)2/n

det(SH−1)
+

θ

2

(

1

det(SH−1)
+ det(SH−1)

)

,
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I =

∫

Ω̂
Eθ(SH−1)d~ξ. (6.1)

(Since target size is already defined by the metric, the volumetric factor is set to be equal to

one, v = 1.) Discretization of the functional is done using the same approximate integration

rules as before, only now the matrix SH−1 is evaluated instead of S. Numerical optimiza-

tion procedures are not affected by this modification. Thus, minimization of this modified

functional is performed similar to the original smoothing procedure and it will result in a

mesh with cells having the shape and size as close as possible (under given connectivity of

the grid and imposed boundary conditions) to the target shapes and sizes. For example, if

slender elements are desired in an anisotropic mesh, this can be achieved by using a slender

target element in Figure 6.3. This, therefore, resolves the anisotropic grid issue.

6.2.2 Domain shape recovery

Many application problems include evolving domain geometry. As an example, let us con-

sider flow of blood in the arteries. The walls of the arteries respond to the stresses induced

by the viscous blood flow by stretching or contracting. The simulation algorithm for such

a problem would incorporate continuous change of domain geometry (and, consequently,

the mesh). Let us assume that at a certain moment in time t a nondegenerate deformation

field defining the evolved geometry at time t+∆t is known (from the viscous flow solution).

Thus, we have a current mesh and a functional representation of a deformation field for

the new geometry H(~ξ), and we are required to evolve the mesh. These provide the initial

conditions for mesh smoothing with the target cell definition procedure, as described above.

We now will illustrate the performance of this procedure on two examples for domain shape

recovery.

In the first example, the 2D deformation field H(ξ, η) =
(

∂w

∂ξ , ∂w

∂η

)

is defined using

the map

w(ξ, η) =











r + X − (r + X − ξ) cos 2πη
Y

(r + X − ξ) sin 2πη
Y











.

(Note, that in the algorithm we do not use the map w(ξ, η) itself, only the deformation field

136



derived from it. The formula for the map is listed here to give a better understanding of the

desired domain shape.) The initial mesh is a uniform quadrilateral mesh inside a rectangular

domain (see Figure 6.4 a)) with dimensions X and Y , which up to a scaling coincides with

the reference domain Ω̂ for this problem. The above map describes deformation from this

rectangular domain to a ring with inner radius r.

a) b) c)

d) e) f)

Figure 6.4: Target shape recovery of 2D quadrilateral mesh.
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Smoothing of this mesh with Eθ(SH−1) results in a full recovery of the ring domain

shape. During the smoothing all nodes are free to move, i.e. no Dirichlet-type boundary

condition is involved. The mesh evolution during smoothing with θ = 0.5 is shown in Figure

6.4. As expected, mesh changes dramatically within several first smoothing iterations (from

a) to c)), but the deformation slows down when the domain shape becomes close to the

target (approximately half of the total number of iterations is spent on the last transition

from e) to f)).

In the second example, two different 3D geometries are chosen for the initial and

target domain shapes. They are presented in Figure 6.5 (positioned according to the target

element definition scheme in Figure 6.3). The initial domain (on the right in Figure 6.5)

has a pipe shape given by the map

r(ξ1, ξ2, ξ3) =





















ξ1

(R + Z − ξ3) sin 2πξ2
Y

R + Z − (R + Z − ξ3) cos 2πξ2
Y





















, S =

(

∂r

∂ξ1
,

∂r

∂ξ2
,

∂r

∂ξ3

)

,

and target domain (on the left in Figure 6.5) is a spiral with two full turns defined by

w(ξ1, ξ2, ξ3) =





















(R + ξ3) cos
(

X−ξ1
R sin ϕ

)

ξ2 + (X − ξ1) cos ϕ

(R + ξ3) sin
(

X−ξ1
R sin ϕ

)





















, H =

(

∂w

∂ξ1
,
∂w

∂ξ2
,
∂w

∂ξ3

)

,

where X, Y and Z are dimensions of the reference brick. (Again, the maps are given for

clarification only, they are not used by the algorithm.)

The stages of domain shape recovery during smoothing of the hexahedral mesh with

θ = 0.5 and no fixed nodes are shown in Figure 6.6. As in the 2D case, the domain shape

changes dramatically and becomes close to the target after the few first iterations, but

“full” recovery of the target shape transition (from e) to f)) takes a significant number of

iterations (about 300).
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Figure 6.5: 3D domains: reference (top), target (bottom, left) and initial (bottom, right)

shapes.
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Figure 6.6: Shape recovery in 3D.
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6.3 Introducing adaptivity in the smoothing formulation

In adaptive mesh redistribution techniques, mesh nodes are repositioned in order to improve

solution accuracy. The solution or adaptive function u is known on the initial mesh. Mesh

connectivity and total number of nodes do not change during redistribution, which gives

this technique an advantage over uniform and adaptive refinement strategies (adaptive re-

finement often introduces “hanging nodes” into the mesh, which must be treated differently

from usual nodes in the application simulation). However, some adaptive redistribution

methods can distort mesh elements too much, thus affecting the efficiency of the numerical

simulation and overall numerical problem solvability.

Most redistribution techniques aim to minimize the interpolation error for an adap-

tive function, which in turn controls the approximation error. The most widely used ap-

proach for adaptive mesh redistribution is to adaptively control the areas of the elements

(through the map Jacobian determinant J = det S) by introducing weights w = w(u)

as functions of the adaptive function and its gradient. The strategy then is to satisfy

Jw =const [1, 14], or to solve w(J − 1)2 → min [20] or
∫

wJdV → min [10, 2]. The use

of several metric coefficients (instead of the single weight) improves the technique, since it

allows for directional adaptation. The metric coefficient matrix G can be determined from

the relation between the nD computational domain and the rD adaptive vector-function

[80, 4, 13], and its elements will be dependent on the gradient of the adaptive function.

Metrics based on the Hessian of the adaptive function are also used in unstructured mesh

adaptation algorithms [26], and have been proved to be quasi-optimal for interpolation in

the L∞−norm [44]. However, such meshes might be too “rough” for numerical simulations

and require further adjustments.

In this work, the variational mesh smoothing problem (2.8) is generalized for adap-

tation by introducing the adaptive metric G into the mesh distortion functional. We define

this metric G using different modifications of the covariant metric tensor for the surface of

values of the scalar adaptive function u:

G ∝ (gij), gij = δj
i +

∂u

∂xi

∂u

∂xj
, i, j = 1, . . . , n.
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Here, the metric represents the map between the physical domain (x1, . . . , xn) ∈ Ω and the

surface of values of the adaptive function u(x1, . . . , xn) (G1/2 is the Jacobian matrix of this

map). The adaptive redistribution problem is then formulated as follows: minimize

I =

∫

Ω̂
Eθ(G1/2S)d~ξ. (6.2)

This formulation is similar to smoothing with target element definitions (6.1), only now

the metric G is defined in the physical coordinates and represents the map of the physical

cell onto the element on the surface of values of the adaptive function. Thus, the problem

(6.2) is equivalent to the construction of a good quality mesh on the surface of values of

u and the result is the projection of this mesh onto the computational domain Ω. This

idea is illustrated in Figure 6.7. The functional discretization and numerical minimization

Figure 6.7: Adaptive mesh redistribution: smooth mesh on the surface (x, y, u(x, y)) pro-

jected onto the computational domain (x, y).

procedures again are not affected by the introduction of the new metric into the smoothing

formulation.
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Remark: Both target shape definition metric and adaptive metric can be present in

the functional, providing the capability of adjusting the mesh to target shape definition,

smoothing and adaptivity at the same time. Also, since all metrics are nondegenerate

(det H > 0 and detG > 0), the cells in the resulting mesh will always be nondegenerate as

a consequence of the barrier property of the functional.

We perform several numerical tests with different choices of adaptive metric. The

first and the simplest choice we consider is a piecewise constant (on each cell) definition of

the adaptive metric

G =
√

1 + |∇u|2I.

The shape control part β of the distortion measure is independent of this type of metric,

so adaptivity is due only to area (volume) change. Thus, the technique is equivalent to

those described in the beginning of the section, since only desired element volume v =

v0/
√

1 + |∇u|2 is dependent upon the adaptive function. In the tests, the initial mesh is a

uniform hexahedral mesh inside the unit cube. Figure 6.8 shows horizontal layers and strips

of cells extracted from the middle of the domain for meshes, that have been redistributed

with the adaptive functions:

a) u = exp
(

− |x−0.5|+|y−0.5|+|z−0.5|
ε

)

(point source);

b) u =







































0 if y ≤ y0 − δ

1
2 + 1

2(1 + sin(π(y−y0

2δ ))) if y0 − δ ≤ y ≤ y0 + δ

1 if y ≥ y0 + δ

(steep front), where y0 determines the location of the front and δ is the width of the front;

and

c) u = 4 sin(2π(x + y + z)).
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Figure 6.8: Adaptation to a) point source, b) steep front and c) sine function.
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The choice of a piecewise constant on each cell metric for adaptive metric:

G =





















1 + u2
x 0 0

0 1 + u2
y 0

0 0 1 + u2
z





















allows for directional adaptation. In this case the shape control part of the functional

depends on the metric in the following way: each row of the Jacobian matrix S is scaled

with a metric factor ai → ai

√
Gii. Thus, each direction has its own adaptive scaling factor,

which is equal to the length of the tangent vector to the coordinate curve (xi, u(x1, . . . , xn)).

The results of directional adaptation to functions u1 = exp
(

− |x−0.5|
εx

− |y−0.5|
εy

− |z−0.5|
εz

)

,

where εz = 0.6 > εy = 0.2 > εx = 0.1 and u2 = sin(π(x + 2y + 3z)) are shown in Figure 6.9.

In this example, the initial mesh is again a uniform hexahedral mesh inside a unit cube.

A 1/8 subcube cut-out and three of its projections are shown in the Figure. We observe

that, for the first function, the clustering towards the center of the cube is different in each

direction (the dimensions of the central element are z > y > x). For the second function,

we can see different periods of the sine function in different directions.
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Figure 6.9: Directional adaptation to local exponential source (on top) and sine function

(on bottom).

146



6.4 Combining adaptive refinement (h-) and redistribution

(r-) strategies

One can expect that combination of r- and h-adaptivity will yield reduction in the number

of degrees of freedom (number of nodes) in the optimal mesh compared to the results of

pure adaptive refinement and may be useful in accommodating anisotropic effects. In order

to investigate this topic, we perform a numerical comparison analysis for r- and h- adaptive

strategies and their combination.

Let us consider an interpolation problem for the function

u(x, y) =
expx/ε −1

exp1/ε −1
+

expy/ε −1

exp1/ε −1

on a quadrilateral mesh inside a unit square domain. This function is a solution to a

convection-diffusion problem

−ε∆u + ∇u = 0,

which has layers adjacent to the boundaries x = 1 and y = 1 and in the corner where

these boundaries meet. The adaptive refinement criterion is to refine a quadrilateral cell

“naturally” into four cells if the norm of the interpolation error on the cell is larger than a

given tolerance. We consider two cases: the error is estimated in L2 norm or in H1 semi-

norm, and the computations run while ||e||L2
> τL2

= 10−5, or |e|H1 > τH1 = 10−3,

respectively. The metric for adaptive redistribution (6.2) is taken to be a piece-wise

constant function on each cell with the values GL2
(c) = ||e||L2(c)/τL2

I and GH1(c) =










||ux − (Uh)x||L2(c)/τH1
0

0 ||uy − (Uh)y||L2(c)/τH1











, correspondingly. These metrics cause

mesh nodes to cluster in the regions of large error and spread everywhere else. (The lower

limit for the metric is set to 1/Nc).

Plots of global L2 and H1 interpolation errors vs the number of degrees of freedom

(number of nodes in the mesh) for different strategies are shown in Figure 6.10. From this

Figure we observe that the L2 error decreases linearly with the increase in number of degrees

of freedom during uniform refinement and quadratically during adaptive refinement. The
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Figure 6.10: Interpolation error vs number of d.o.f. for different strategies.
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adaptive redistribution curve was obtained by redistributing uniform meshes with different

numbers of degrees of freedom. This r- strategy causes significant (an order of magnitude)

decrease in the L2 error compared to the error on the initial uniform meshes. However,

the difference is less noticeable when the initial error (before redistribution) is small (and

number of degrees of freedom is large). This can be explained by the fact that local errors

on such meshes are already small (the order of τ), so the adaptive metric is close to unity

and does not induce significant changes in the mesh.

Addition of the redistribution step before mesh refinement significantly reduces the

final number of degrees of freedom. Also, one r- step is enough, since it already provides

optimally shaped cells under the current metric. Their refinement does not change their

distortion measure (as a consequence of the maximum principle), so additional r- steps

between refinements do not affect the mesh. For example, in our case alternating r- and

h- strategies give the same result as one r- step followed by h-steps. A similar trend is

observed for the H1 error case. From the plot we can see that up to N = 103 degrees

of freedom the error grows, which is explained by the fact that initially boundary layers

were not sufficiently resolved to pick up the true gradient value. Thus, the initial mesh for

combination of r- and h- strategies was chosen fine enough.

The resulting meshes for the strategies from Figure 6.10 are demonstrated in Figure

6.11. The difference in global mesh appearance for L2 and H1 error adaptation cases is

barely noticeable, but the differences in details near the corner x = 1, y = 1 are evident.

Table 6.1 contains information about the minimum cell area in the final mesh for each

strategy. The smallest cell occurs at the x = 1, y = 1 corner for every mesh, and its size

provides better insight into the optimal mesh scaling.

Note: For smoothing and redistribution of highly adaptive meshes (with several levels

of hanging nodes), as in the case of alternating adaptive redistribution and refinement in

the above example, the treatment of hanging nodes constraints through penalty formulation

(4.7) is preferable over the Lagrange multipliers.
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Strategy minimum cell area number of nodes

in the final mesh in the final mesh

uniform refinement, L2 6.1 · 10−5 16641

adaptive refinement (h-), L2 8.2 · 10−5 13215

adaptive redistribution (r-), L2 4.4 · 10−5 16641

(r-,h-), L2 2.9 · 10−4 2832

(r-, uniform), L2 2.3 · 10−4 3249

uniform refinement, H1 6.1 · 10−5 16641

adaptive refinement (h-), H1 9.3 · 10−5 11817

adaptive redistribution (r-), H1 5.4 · 10−6 16641

(r-,h-), H1 8.21 · 10−5 11374

(r-, uniform), H1 8.89 · 10−5 9409

Table 6.1: Comparison of different adaptive strategies: minimum cell areas.
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6.5 Error analysis

Error in the finite element solution is bounded above by the interpolation error on isopara-

metric elements. Several adaptive redistribution techniques are based on this fact, e.g. mesh

is redistributed to better resolve the solution function where its gradients are high. On the

other hand, mesh quality enters the interpolation error estimates predicting larger error on

distorted elements. Thus, it is important for an adaptive mesh redistribution technique to

keep the right balance between mesh clustering in the regions of interest and amount of cell

distortion introduced by such a clustering. This motivates the following study of interpo-

lation error for tensor product linear elements in the context of our adaptive redistribution

methodology.

Lemma 4 Suppose that sufficiently smooth function u(x1, . . . , xn) has bounded second deriva-

tives in the cell Ωc, which is the image of a unit hypercube Ω̂c = D under nondegenerate

tensor-product linear mapping, i.e. | ∂
2u(x1,...,xn)

∂xi∂xj
| ≤ K, ∀i, j ∈ {1, . . . , n} and Π(u) denotes

the polylinear interpolant of u, such that Π(u) = u at the vertices of the cell. Then

||u − Π(u)||H1(Ωc) ≤
√

2K
Γ2

γ

v1/n

4
√

1 + |∇u|2
√

meas(Ωc), (6.3)

||u − Π(u)||L2(Ωc) ≤
√

2KΓ2 v2/n

√

1 + |∇u|2
√

meas(Ωc), (6.4)

where v = hn is the target cell volume, γ and Γ are the minimum and maximum sin-

gular values of the modified Jacobian matrix in (6.2), i.e. v2/nγ2 ≤ STGS ≤ v2/nΓ2,

G =
√

1 + |∇u|2I, and the following standard definition of the Sobolev norm is used

||u||2H1(Ωc)
=

n
∑

i=1

|| ∂u

∂xi
||2L2(Ωc)

+ ||u||2L2(Ωc)
.

Proof:

Let φ = u − Π(u). Then

||φ||2H1(Ωc)
=

∫

Ωc

(∇φ)T∇φdx +

∫

Ωc

φ2dx =

=

∫

D
J(∇ξφ)T S−1S−T∇ξφd~ξ +

∫

D
Jφ2d~ξ. (6.5)
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We first consider the high-order term in (6.5), containing the derivatives of φ. Function

Π(u) is linear with respect to ξi, so the following estimate holds

(φξi)
2 ≤

∫

D
(uξiξi)

2d~ξ, ∀ i ∈ {1, . . . , n}. (6.6)

We can write uξiξi = gT
i Hgi, where H is the Hessian of function u, and from the singular

values definition in the Lemma’s statement we get S−1S−T ≤
√

1+|∇u|2
γ2v2/n and (gT

i gi) ≤
v2/nΓ2√
1+|∇u|2

. Thus, for the high-order term in (6.5) we obtain

∫

D
J(∇ξφ)T S−1S−T∇ξφd~ξ ≤

√

1 + |∇u|2
γ2v2/n

∫

D
J

n
∑

i=1

(gT
i Hgi)

2d~ξ ≤

≤ 2K2 Γ4

γ2

v2/n

√

1 + |∇u|2
meas(Ωc).

Using (6.6) twice we can obtain an estimate for the low-order term in (6.5)

∫

D
Jφ2d~ξ ≤

∫

D
J(∇ξφ)T∇ξφd~ξ ≤

∫

D
J

n
∑

i=1

(gT
i Hgi)

2d~ξ ≤ 2K2Γ4 v4/n

1 + |∇u|2 meas(Ωc),

which provides the L2-error estimate (6.4). We neglect this low-order term in the H1-error

estimate (6.3).

Consequently, for the global estimates over the whole computational domain Ω,

meas(Ω) = 1, we get

||u − Π(u)||H1(Ω) ≤
√

2K
Γ2

γ
h, (6.7)

||u − Π(u)||L2(Ω) ≤
√

2KΓ2h2, (6.8)

where K, Γ, γ are global bounds over the whole domain.

Comparing the estimates in Lemma 4 with classical finite element local interpolation

estimates

||u − Π(u)||H1(Ωc) ≤ Cσ4
Ωc

h|u|H2(Ωc), (6.9)

||u − Π(u)||L2(Ωc) ≤ CσΩch
2|u|H2(Ωc),

we see that coefficients Γ2 and Γ2/γ in estimates (6.7)-(6.8) using the modified metric, enter

in a similar manner as the element quality σΩc in the standard interpolation bounds of (6.9).

As we have already established in Section 5.4, the singular values Γ and γ of the Jacobian
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matrix can be evaluated in terms of distortion metric Eθ. Our local interpolation estimates

(6.3), (6.4) also suggest better interpolation in the regions with high solution gradients,

since as a result of minimizing the adaptation functional (6.2) we should have Γ → 1 and

γ → 1. The above analysis leading to estimates (6.7)-(6.8) is illustrated on the following

numerical test, where we compute the error in finite element solution and singular values

of Jacobian matrices on different adapted meshes.

Numerical experiment. Let us consider the test problem

−∇ · (α∇u) = f in Ω = [0, 1] × [0, 1],

where

α =
1

ν
+ ν(x1 + x2 − 1)2,

f(x1, x2) = 4ν(x1 + x2 − 1)(arctan ν(x1 + x2 − 1) + arctan ν) + 4

and Dirichlet boundary data are specified from analytic solution

u(x1, x2) = (2 − x1 − x2)(arctan ν(x1 + x2 − 1) + arctan ν).

The solution of this test problem has an interior layer (region of steep gradient O(ν)) for

large ν.

Figures 6.12 and 6.13, respectively, are graphs of L2 and H1 errors and show rates of

convergence in the finite element solutions, obtained on uniform and adapted grids. For each

mesh size h two adapted grids were constructed using our adaptive redistribution approach,

corresponding to values θ = 0.8 and θ = 0.1 in the functional (6.2). Our first observation

is that for θ = 0.8 and small ν, i.e. for solutions without steep gradients, errors on the

adapted grid are independent of h and do not show the expected rate of convergence. This

can be explained by the fact that at θ = 0.8 the dominant part of the overall distortion

measure Eθ is volumetric distortion measure µ. Since

µ =
1

2

(

x +
1

x

)

, where x =
det S(detG)1/2

v
,

this distortion measure has a minimum at

x = 1, or det S =
v

(detG)1/2
=

v
√

1 + |∇u|2
,
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and, consequently, minimization of µ leads to cell clustering in zones where the function has

a nonzero gradient. For functions with small gradient, this grid distortion is unnecessary

and induces an error, which does not depend on the mesh spacing.

However, for θ = 0.1 and small ν errors in the solutions on adapted and uniform

grids agree. In this case shape distortion measure β, which is responsible for promoting an

“ideal” square shape for the element, is dominant in the overall measure Eθ and does not

allow severe mesh distortion, unless the function gradient is very high.

As expected, for solutions with sharp gradients, the error on adaptive grids is sig-

nificantly less than on the uniform meshes. It achieves its asymptotic regime earlier and,

consequently, is comparable to the error on a much finer uniform grid.

Graphs in Figures 6.14 and 6.15 verify the dependence expected from the above

estimates (6.7), (6.8) on the interpolation error, i.e. ||e||L2
∝ Γ2h2 (slope 2 on log-log scale)

and ||e||H1 ∝ hΓ2/γ (slope 1). These plots were obtained again for adaptive redistribution

with θ = 0.8 and θ = 0.1.
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Figure 6.12: Comparison of the L2 errors for solutions on uniform and adaptive meshes for

θ = 0.8 (top) and θ = 0.1 (bottom).

156



−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−4

−3

−2

−1

0

1

2

3

4

5

log h

lo
g(

||e
|| H

1)

θ=0.8

adp, ν=4
uniform
adp, ν=16
uniform
adp, ν=64
uniform
adp, ν=256
uniform

1

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−4

−3

−2

−1

0

1

2

3

4

5
θ=0.1

log h

lo
g(

||e
|| H

1)

adp, ν=4
uniform
adp, ν=16
uniform
adp, ν=64
uniform
adp, ν=256
uniform

1

Figure 6.13: Comparison of the H1 errors for solutions on uniform and adaptive meshes for

θ = 0.8 (top) and θ = 0.1 (bottom).
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Figure 6.14: Plots of L2 error vs estimate for solution on adaptive meshes for θ = 0.8 (top)

and θ = 0.1 (bottom).
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Figure 6.15: Plots of H1 error vs estimate for solution on adaptive meshes for θ = 0.8 (top)

and θ = 0.1 (bottom).
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Chapter 7

Transport applications

In this chapter we present the results of simulations of several transport application problems

and analyze the role of the smoothing technique in obtaining accurate solutions.

7.1 Moving interface problems: application to Lagrangian

computations in fluid dynamics

An arbitrary Lagrangian-Eulerian (ALE) numerical technique for solving time-dependent

fluid dynamics problems was introduced in [81]. The method uses a finite difference mesh

with vertices that may be moved with the fluid (Lagrangian), be held fixed (Eulerian),

or be moved in any other prescribed manner. The advantage over purely Lagrangian or

Eulerian methods is that the mesh deformation can be controlled (avoiding folding), still

keeping the mesh close to the Lagrangian mesh (for improved accuracy). However, following

closely the Lagrangian mesh often results in a highly distorted mesh unsuitable for further

computations. In rezoning formulations [82] - [84], a Lagrangian calculation runs until the

mesh becomes unacceptably distorted, then a new good quality mesh is created, the solution

is mapped onto it, and calculation continues. Our smoothing methodology can be used to

detect unacceptable mesh distortions. A rezoning strategy, similar to that used in the ALE

method, would be to smooth the Lagrangian mesh when it becomes highly distorted using

our algorithm and map the solution onto the smoothed mesh. Thus, a new mesh will be

close to Lagrangian and remapping will not introduce a significant error in the solution.
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7.1.1 Rayleigh-Taylor instability problem.

In this example, we simulate the Rayleigh-Taylor instability problem for two ideal gases

with nondimensional densities ρh = 2 and ρl = 1, and adiabatic constant γ = 1.4, following

the problem formulation in [85]. Initially, the heavier gas is above the lighter gas in a

rectangular vessel [0 : 1/6] × [0 : 1]. A nondimensional gravitational acceleration g =

0.1 is directed downwards producing an unstable situation. The interface y(x) = 1/2 is

deliberately perturbed as described by the formula y(x) = 1/2 + ε cos(6πx), ε = 0.01.

Initially, velocity is zero everywhere; the pressure distribution is approximately hydrostatic.

The time evolution of this problem leads to a rollup of the interface and the gener-

ation of significant vorticity. Thus, this problem is generally regarded as poorly suited for

Lagrangian methods; nevertheless, it is often used as a benchmark problem for comparison

of robustness, accuracy and efficiency of different ALE techniques. Here we use it to test

the limits of our smoothing algorithm in this context. Hence, we perform computations

by a purely Lagrangian method, adding smoothing correction steps with remapping when

the mesh becomes nearly folded. We use an explicit time-integration scheme, so the time

step decreases when the mesh deforms. In the algorithm implemented here, the discretized

conservation of mass and momentum equations in Lagrangian frame are [81]

d

dt

∫

V
ρdV = 0, (7.1)

d

dt

∫

V ∗

ρ~udV +

∫

V ∗

∇pdV −
∫

V ∗

ρ~gdV = 0, (7.2)

where V is cell volume and V ∗ is the volume surrounding a grid point.

Solution algorithm Initializing the calculations: initial values are assigned to variables

x, y, u, v, ρ, p and time step ∆t.

At time tk, k = 0, 1, 2, . . .

1. Solution is advanced one time step using an explicit Lagrangian calculation:

• Velocity components are updated ũk, ṽk using finite difference approximation [81]

of the conservation of momentum equation (7.2).

161



• The time step ∆t is adjusted so that the evolved mesh xk + ∆tũk, yk + ∆tṽk

remains unfolded (our distortion functional is used to detect folding).

• Using the adjusted time step ∆tk, the evolved velocity uk+1, vk+1, mesh xk+1, yk+1,

density ρk+1 and pressure pk+1 (from the equation of state) are computed.

2. If the time step ∆tk < ε is smaller than a given tolerance, the mesh xk+1, yk+1 is

smoothed using our algorithm yielding a new mesh x̃k+1, ỹk+1. During smoothing the

grid points on the fluid interface, as well as on the domain boundaries, are allowed to

tangentially slide along the interface/boundary.

3. The solution is mapped onto the smoothed mesh: velocity components are interpolated

from the piecewise-linear approximation on the old mesh; piecewise-constant density

and pressure are remapped using either interpolation or conservative rezoning strategy

described below (we compare results of computations using these two different remap

strategies).

Rezoning Rezoning algorithms are usually defined by means of mapping algorithms op-

erating between two arbitrary meshes. They are often required to be conservative, and to

preserve the solution monotonicity, and they introduce a diffusive error into the solution.

Hence, frequent remapping may be expensive. There are several basic rezoning approaches

[86]. The cheapest, most diffusive and non-conservative method is interpolation; here, new

values are evaluations of an interpolation function (to the new mesh) that is constructed

from the solution on the old mesh. In the particle in cell method [82], the element of the

old mesh is subdivided by a logically regular mesh, a particle is associated with each of

the subelements. Then the values on a new mesh cell are computed as a sum of contri-

butions from all the particles inside this new cell. In the completely conservative rezone

strategies [83, 84], the integrals in the conservation statement are computed exactly on the

intersections between the cells of new and old meshes.

In the simulation of the Rayleigh-Taylor instability problem undertaken here we use

a modification of the latter rezoning approach, introduced in [87, 88]. This technique is

specifically designed to work in cases where the new mesh is obtained by a small displace-
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ment of the vertices of an old mesh. Then the signed flux integrals are evaluated for each

cell (see Figure 7.1), yielding a conservative quadrature for computing new masses of the

cells. The remap is exact for a global linear function.

swept regions
for flux computations

Figure 7.1: Conservative remap between the old (black) and the new (green) meshes; density

fluxes are calculated over swept regions.

Results The explicit Lagrangian computations for the test problem without remap (step

1) only proceed to the time t = 3.43 (the timesteps become progressively smaller and after

this time the mesh deformation requires ∆t ≈ 0). The solution ρ, p, u and v at this time is

shown in Figure 7.2. With the addition of mesh smoothing (step 2) and the interpolation

remapping in step 3 of the solution algorithm, we can run the explicit computations further,

and the solution at time t = 5.32 is shown in Figure 7.3. However, from this Figure we
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observe that too much distortion has been introduced in the density distribution by the

interpolation remaps. Solution using the conservative remap strategy (in step 3) at a time

t = 5.58 is presented in Figure 7.4. Here, a smooth density distribution is still observed, even

though the interface distortion becomes quite large. Comparing the resulting meshes for

solutions using the two remap strategies we can see that remap error in density introduces

errors in other variables, and these errors increase with time giving an inaccurate solution

field and interface position.

Next, the mesh correction results (at different times) are shown in Figure 7.5. Here,

the interface between the two fluids is treated as a boundary in the smoothing procedure

and interior points on the interface slide tangentially along this boundary.
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Figure 7.2: Solution to RT instability problem at t=3.43, no remap.
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Figure 7.3: Solution to RT instability problem at t=5.32, interpolation remap.
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Figure 7.4: Solution to RT instability problem at t=5.58, conservative remap.
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Figure 7.5: Grid corrections: before (left) and after smoothing (right); arrows indicate the

interface.
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7.2 Blood flow in arterial branches

In this section we consider a pressure-driven flow in a branched pipe. The pipe geometry

is deformed to represent the branching arteries, and a Powell-Eyring viscosity model [89]

- [91] is used for approximation of the blood flow. In this simulation we use CUBIT to

generate the undeformed grid, new software to morph the domain and mesh, our smoothing

software, and the flow code developed in [79].

The flow is modeled by the incompressible Navier-Stokes equations with a generalized

viscous constitutive model. In the Powell-Eyring fluid model, the viscosity is a function of

the strain rate in the fluid and is given by:

µ(s) = µ∞ + (µ0 − µ∞)
sinh−1 λs

λs
,

where µ0 and µ∞ are the limiting viscosities at zero strain rate s = 0 and infinite strain

rate s → ∞ respectively; λ is a characteristic time.

Two domain geometries, chosen to model arteries, are shown in Figure 7.6 together

with the boundary conditions. The outer surface of the pipes is a no-slip and no-penetration

boundary. The inflow section has a fixed normal component of the traction and no flow

tangent to the section. The outflow sections have no flow tangent to the sections and zero

normal component of the traction. In the first domain the pipe radii away from the branch

region are fixed, and branch pipes are curved so that the medial axis of the two outflow

pipes lie in a plane perpendicular to the medial axis of the inflow pipe. In the second domain

the pipe geometry is the same, but the pipe radii vary throughout the domain to model

constrictions and dilations of the arteries.

The pipe geometries in Figure 7.6 were obtained from a hexahedral mesh inside the

straight branching pipe geometry (Chapter 5, Figure 5.15). For each pipe the deformation

function was defined with the aim of modeling the actual arteries. Figure 7.7 shows two

views of brain arteries which were used as a prototype for the domain geometry (pictures

from http://www.neuropat.dote.hu/table/angio.htm).
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outflow: no tangential flow
no normal traction

inflow: no tangential flow
fixed normal traction

no slip, no penetration

Figure 7.6: Domains and boundary conditions for the blood flow simulation: without con-

strictions (top) and with constrictions (bottom).
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Figure 7.7: Two views of brain arteries.
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The flow was computed at different values of Re = 10, 20, 50 (which is based on the

given pressure difference and µ0) and with µ0/µ∞ = 1, 0.1, 0.03, 0.01. Figures 7.8 - 7.11

show the plots of boundary viscous stress and flow streamlines, colored by pressure and

velocity magnitude, for flow at Re = 20 in the pipes without constrictions with all stated

choices of viscosity ratios. The color scale for each variable is defined from the maximum and

minimum values of this variable through all four Figures in order to facilitate comparison

between the Figures. The slow flow (Re = 10) does not exhibit significant changes with the

change of µ0/µ∞, and the fast flow (Re = 50) develop vortices even at µ0/µ∞ close to 1,

i.e. the Newtonian case. From these Figures we can observe that:

1) The maximum boundary stress occurs at the non-smooth joints where the inflow pipe

meets the two other pipes, as well as on the inside curve of the inflow pipe. The area near

the joint for the two outflow pipes has very low stress in the case of Newtonian fluid, but

the stress on this area grows significantly with reduction of µ0/µ∞.

2) Pressure profiles are almost the same for all cases; however pressure at the joint of the two

outflow pipes grows with reduction of µ0/µ∞. That is, regions of higher pressure expand

in the outflow direction.

3) The velocities of the fluid increase significantly with introduction of non-linearity, and the

velocity profile displays sharper gradients. At µ0/µ∞ = 0.03 we can see a vortex starting to

form near the joint for the outflow pipes, and the vortex formation becomes more evident

at µ0/µ∞ = 0.01.

Figure 7.12 shows corresponding plots of boundary stress for different µ0/µ∞ for

flow at Re = 20 with constrictions. The same trends in flow behavior with the change of

µ0/µ∞ can be observed for this choice of geometry. However, we also see that the maximum

boundary stress now occurs at the constriction in the inflow pipe for the Newtonian flow, but

is reduced for the non-Newtonian fluid. Also the vortices do not form in this case. Figure

7.13 gives plots of stress, pressure and velocity for the flow at Re = 20, µ0/µ∞ = 0.01. The

color scales here are the same as in the previous Figures. Comparing this result with that

for flow under the same conditions in non-constricted pipes (Figure 7.11), we observe that

constrictions reduce the non-linear effect of viscosity.
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Figure 7.8: Flow at Re = 20, µ0/µ∞ = 1: a) boundary stress, b) pressure and c) velocity

magnitude.
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Figure 7.9: Flow at Re = 20, µ0/µ∞ = 0.1: a) boundary stress, b) pressure and c) velocity

magnitude.
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Figure 7.10: Flow at Re = 20, µ0/µ∞ = 0.03: a) boundary stress, b) pressure and c)

velocity magnitude.
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Figure 7.11: Flow at Re = 20, µ0/µ∞ = 0.01: a) boundary stress, b) pressure and c)

velocity magnitude.
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Figure 7.12: Boundary stress for flow in constricted pipes at Re = 20, a) µ0/µ∞ = 1,

b)µ0/µ∞ = 0.03 and c) µ0/µ∞ = 0.01.
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Figure 7.13: Flow in constricted pipes at Re = 20, µ0/µ∞ = 0.01: a) boundary stress, b)

pressure and c) velocity magnitude.

178



In order to characterize the conditions of periodic blood flow in arteries better,

transient “pumping” flow simulations were performed. In these computations, instead of a

fixed pressure gradient between inflow and outflow boundaries ∇p = −1 (i.e. fixed normal

traction on the inflow boundary) we specify an oscillating function ∇p = −0.5(1 + sin t).

Simulations of the pumping flow at Re = 20 and with µ0/µ∞ = 0.01 yield similar results for

both pipe geometries (i.e. with and without constrictions). The plots of velocity magnitude

in the computed pumping flow in pipes without constrictions at different times are shown

in Figure 7.14. Since the flow has no time to fully develop under this specified transient

pressure gradient and the periodic average pressure gradient is smaller than the value in

previous simulations, vortices do not form in this example (compare to Figure 7.11, where

vortices form at the same flow conditions but fixed pressure gradient). Also, the maximum

velocity magnitude, as well as the whole velocity profile, is similar to that of a Newtonian

flow at Re = 20 and fixed pressure gradient. Thus, in this test of a pumping flow the effects

of the nonlinear viscosity are not as significant.
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Figure 7.14: Pumping flow at Re = 20, µ0/µ∞ = 0.01: velocity magnitude at different

times.
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Next, in order to demonstrate the importance of using a high quality mesh for

application simulations, we compare the results of the steady state non-Newtonian flow

simulation with parameters Re = 20, µ0/µ∞ = 0.01 in the straight branched-pipe geometry

(recall Figure 5.15) with three different meshes. All meshes are obtained by node redistri-

bution of the same initial mesh. They include: 1) a mesh with randomly perturbed nodes

(all elements remain valid, but the quality deteriorates), 2) a mesh smoothed with θ = 0.2

(rapid cell size change due to valence effect, see Section 5.22) and 3) a mesh smoothed

with θ = 0.8 (high quality mesh). On these meshes the simulation runs till the times 1)

t = 54.8, 2) t = 61.1 and 3) t = 73.9, respectively. After these times vortices form in the

flow and no steady state can be achieved. The color plots of stress, pressure and velocity

magnitude at the medial plane cut-out and streamlines of the flow computed on the third

mesh at t = 73.9 are shown in Figure 7.15. We observe that the high pressure region forms

at the joint of the lower pipes, and this information might be crucial in determining the

conditions of break-down of the pipe walls. The calculations on the high quality mesh allow

more reliable prediction of the flow.
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1)

2) 3)

Figure 7.15: Flow in straight pipes at Re = 20, µ0/µ∞ = 0.01: 1) boundary stress, 2)

pressure and 3) velocity magnitude.
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Chapter 8

Concluding remarks

The variational smoothing algorithm developed here has been shown to be very versatile in

its ability to treat many aspects of mesh improvement problems and several new theoretical

results have been established. Furthermore, the scheme was implemented in C and it’s

performance was tested for both 2D and 3D hybrid meshes for smoothing and unfolding,

adaptive redistribution, improvement of meshes with hanging nodes and moving boundaries,

and meshes containing curvilinear elements. The algorithm was tested on representative

problems and yields good results in all these situations. It also overcomes several difficulties

encountered by other popular smoothing techniques, such as effects of changing valence.

The mathematical properties of the formulation were analyzed. In particular, a maximum

principle for the local distortion metric was proved, providing a way for estimating quality

and identifying degeneracy for a wide variety of element types. The importance of mesh

smoothing was confirmed by numerical and analytical studies that investigate the relation

between the application problem solvability, accuracy and mesh distortion. Application

studies of problems describing various transport processes were conducted, and the impact

of smoothing on their solution was investigated.

Our algorithm and software is now being used by the DoE National Laboratories

and has been provided to the DoD Laboratories where its use is planned next year.

Future research directions include further extensions of the algorithm and its adapta-

tion for an even wider range of problems. Further investigation of the analytical properties

of the smoothing functional may lead to algorithm improvements. For example, implemen-

tation of the automatic selection for parameter θ depending on the particular problem would

further facilitate the use of the algorithm. We have identified several open mathematical is-
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sues, such as nondegeneracy and quality assessment for quadratic tensor-product elements,

that are important and challenging. Our study of combined h-r schemes has important

implications and in conjunction with solution feedback provides an elegant approach to

the anisotropic grid need for boundary and interior layer problems. The present numerical

studies suggest one r- step is very effective and this should be explored further numerically.

We have described both coarse and fine grain parallel algorithms, but these have not yet

been implemented, and it appears that no similar parallel strategy has yet been deployed.

This will become an important issue for future large scale applications in industry and the

US National Labs.

There are several other issues of similar significance that are identified during the

course of this dissertation. The importance of these topics is evident from the studies in

the annual International Meshing Roundtable meetings. Overall, there are several promis-

ing future research directions and improvement possibilities for the techniques and ideas

presented in this work.
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