
Copyright

by

Ashish Katiyar

2021

The Dissertation Committee for Ashish Katiyar

certifies that this is the approved version of the following dissertation:

Robust Estimation of Tree Structured Probabilistic Graphical

Models

Committee:

Constantine Caramanis, Supervisor

Rachel Ward

Sanjay Shakkottai

Sujay Sanghavi

Georgios (Alex) Dimakis

Robust Estimation of Tree Structured Probabilistic Graphical

Models

by

Ashish Katiyar

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2021

Dedicated to Maa and Papa.

Acknowledgments

Today I am at the stage of writing my PhD dissertation. When I look back at my

journey, I see that I have come a long way. Had this been a solo journey I would have crashed

out long ago, but I have been very fortunate to have amazing people in my life who have

supported me and kept me going. I can never thank these people enough; they are my most

precious treasure. Also, right in the spirit of the whole PhD, I am writing this really close to

the deadline, so I am sure this would be far from a perfect acknowledgment, but then, even

the hypothetical perfect acknowledgment would fall very short of conveying my appreciation

to everyone, so between friends, let’s work with this.

I consider myself extremely fortunate to have Prof. Constantine Caramanis as my

advisor. His advising style focused on my overall development as a researcher. I learned how

to transform real-world problems into precise research problems and take a systematic ap-

proach towards problem-solving by asking the right questions. There were so many instances

of us getting stuck and he was incredibly supportive and patient in such tough times. While

he played a central role in honing my research skills, his contribution went far beyond just

the academic setup. Throughout my PhD, I have always had the reassurance that he has my

back and that, I believe, has helped me keep going this whole time. He helped me decide the

next steps after my PhD. The later part of my PhD was a rather rough ride because of the

challenges posed by COVID and his support during the whole time is absolutely priceless. I

never imagined I would have an advisor who would care so much about my well-being.

v

I would like to thank Prof. Sujay Sanghavi, Prof. Sanjay Shakkottai, Prof. Alex

Dimakis, and Prof. Rachel Ward for being on my committee. Their insights on the research

as well as the motivation they provided helped immensely in shaping this dissertation.

I got an opportunity to amazing researchers during my PhD – Jessica, Vatsal, and

Soumya. Jessica’s knack for questioning everything is amazing, it is what gave rise to my

first research problem. She played a crucial in solving that problem. When I collaborated

with Vatsal on the second problem, I had no prior experience of working with Ising models.

He contributed immensely with his vast experience and helped me by guiding me in the right

direction whenever needed. He is very particular about presentation and planning which in

hindsight turned out to be very helpful in my journey as a researcher. Collaborating with

Soumya has been a privilege. He is an amazing researcher, I literally cannot think of any

research-related conversation with him where I did not come out with a new insight.

One of the most important aspects of any PhD student’s experience is the research

group they are a part of and I am fortunate to be a part of an amazing one. Tianyang always

had very insightful inputs in all the group meetings and I am still amazed by his multitasking

skills. Jessica is the life of every room she is a part of and obviously a great researcher. It

was amazing to have Kiyeon in the group, he was our TA in the convex optimization course

and I learned a lot from him in my formative years. I had a lot of fun conversations with

Liu on a range of topics, he is very supportive. In my initial days during the PhD, whenever

I felt lost or stressed, Eirini was always there to support me. Life would have been much

more difficult had I not had her support. I am very happy to have found a great friend in

Jeongyeol, a great researcher, and an even better human being. I am very fortunate to be

friends with Jiacheng, he is academically smart and street smart. He is always willing to go

vi

out of his way to help in every aspect. Matthew continues to amaze me with his dedication,

so smart and so hardworking. Liam always had great insights in the group meetings and

is a pleasure to hang out with. Another person who has left a long-lasting impression on

me is Orestis, he is one of the best presenters, I always came out learning something new

whenever he was presenting. A person who is just a pleasure to be around is Isidoros, he can

smile through anything that life throws. Due to the pandemic, I did not get an opportunity

to interact a lot with Alexia, Georgios, Kelsey, and Sanika but I am confident that they will

do great work in the future. I can’t wait to see you people shine!

I absolutely loved being a part of WNCG as I got to know a great group of people.

Dave and Yanni are the two people who really helped me survive the first year. From working

together on homeworks and projects to cooking sessions, we stuck together through thick

and thin. Dave and Jacob introduced me to the American way of life. Justin is another

great person that I am fortunate to be friends. He played a very important role in my PhD

by being an endless source of Colombian candy. I have had amazing times with Kartik, Yi,

Nithin, Manan, Nitin, Monica, Jean, Ajil, Nihal, Ronshee, Akash, Alan, Diego, Rajesh, and

Ian. I am especially grateful to the people who are my seniors, Ahmad, Murat, Shalmali,

Avro for being a constant source of inspiration and a lot of board game sessions.

I cannot thank the WNCG and ECE staff enough. A huge shout out to Melanie,

Melody, Karen, Jaymie, and Apipol (who was my consistent source of free Wednesday lunch

post the faculty meeting). Whenever I needed them, they put their whole weight to help

me in every way possible. They make everything happen, ranging from tuition and fees to

TWS, faculty talks, socials, potlucks. They are the ones who have always kept the show

going.

vii

I would also like to thank my advisor during my master’s, Prof. Aniruddha Datta.

I really enjoyed my research experience with him. He was incredibly supportive during my

PhD applications and if it weren’t for him, I wouldn’t be writing this dissertation.

Roommates always play a huge role in how our lives are going and I am very fortunate

to have had Aseem and Manan as my roommates. Aseem played a huge role in helping me

out when I was starting as a PhD student by guiding me on how to approach Professors to be

my advisor. We had a great time, ate great food together, had conversations about cricket

and politics as well as shared our successes and failures. Manan is probably the most relaxed

roommate one can ever have. He was always down for a probability question whenever I

was stuck with anything. Going through the interview process would have been extremely

difficult had it not been for him. Our pizza celebrations are something I am going to miss a

lot. Another person who was not a roommate but still is very close to me is Teja. He is one

of the most selfless people I have ever met.

A person that deserves a paragraph of his own is Vatsal. My first impression of him

was that he is a reinforcement learning expert. I am no longer sure about that part but,

little did I know that he will have such an impact on my journey. My PhD journey would

have been drastically different had it not been for him. There are a lot of people who help

us in our journey, there are a few who make it a priority to help us out as if it was their

journey. I appreciate that he helped me get both of my internships and in my job search,

he cooked great food and invited me over, we had great conversations on our road trip, he

tried to teach me to drive, got me gifts from every place he visited. While these things are

all great, the thing I value the most is the trust that he has my back.

A special mention goes out to the group of Monica, Manan, Vatsal, and Soumya. Our

viii

group conversations are invaluable. Monica has played a very important role in my support

system. She is great at lifting spirits; she always knew the right thing to say whenever I was

feeling low. Soumya is not only a genius when it comes to research, but he is also great at

practical life advice. Another friend who supported me immensely during my PhD is Anshu

whose support I will forever be grateful for.

My master’s was a very crucial stepping stone towards the PhD and I would like

to thank all my friends who helped me get through it. Kirthi, Narendra, and Ajay were

great roommates who always motivated me to aim higher. I have known Narendra since

my undergraduate days and he has been a great friend. I had long conversations and great

times with Rajan and Pravir. Priya, Prerana, and Parul often hosted us for tea, food,

darts, Jenga, and countless other things. I was fortunate to have a great bunch of friends in

Sangam, Shrija, Deeksha, Nithya, and Swati. This is probably the funniest bunch of them

all.

I spent 3 memorable years at DRDO in Bangalore before pursuing a master’s and

I was lucky to have great people around me. Most importantly, I would like to thank my

mentor Sunita Ma’am for not only believing in me but guiding me at every step of the

process. Alka Ma’am was a great friend and a mentor. I also had great friends as colleagues

in Prashant, Gajendra, Manjeet, and Shridhar. I had a great group of friends beyond office

colleagues who made this phase of my life very memorable. Rahul, Brajesh, Vishal, Kaushal,

Ashish, Ajitesh, Anshu, Prateek, and Faizy were so much fun to hang out with. This part

would be incomplete without mentioning Deepak and Gaurav, the people who shared my

love for food and bike rides.

I have been lucky to have people beyond family who, I believe, are constants in my

ix

life. Priya has not only been a source of constant support and motivation, but she is also

the one who has exclusive access to all the aspects of my life. Smriti has always inspired

me and supported me during every phase of my life. Another person who deserves a special

mention is Srishti, she is one of the most talented people I know. She really cares about

making the world a better place and I wish more people shared her zeal. I have known her

since my high school days and she has always provided me with consistent support. She is

very wise, and I am fortunate to have her nudge me in the right direction. When it comes

to long-lasting friends, no one beats Apoorva, my friend since I was 4 (we have been friends

for longer than I can remember). Growing up was fun with her around!

Finally, and most importantly, I would like to acknowledge my family. There is no

way I can do any justice to this part. Ma and Papa have sacrificed everything to ensure

that I have a good life. I feel so loved and that I belong in this world because of them.

Sending me to the best school possible no matter the financial toll it took and doing it all

with a smile is priceless. They have always understood me and supported me in every way

possible. No matter where I get in stuck in my life, I know that they are there to help me

out. Their support has helped me navigate life. This dissertation surely would not have

existed if it was not for them. I am literally at a loss for words right now. I guess I will just

say that their love is the purest form of love I have ever experienced and I am very fortunate

to have them. I would also like to thank my Chachi who has always showered me with all her

unconditional love. Although I am a single child, growing up with my cousin Ayush, I never

felt like a single child. Our connection is a special one where we can talk about absolutely

anything under the sun and always have each other’s back. He has been a major source of

support growing up. I would like to like to thank my Baba and Dadi for being the loving

x

grandparents that they are.

The person whom I have always looked up to is my late Nana Ji. He inspires me like

no one else. He was a person who always stood up for what was right, touched a lot of lives

with his wisdom. If I can ever be a fraction of the person that he was, I will consider myself

successful.

xi

Robust Estimation of Tree Structured Probabilistic Graphical

Models

Ashish Katiyar, Ph.D.

The University of Texas at Austin, 2021

Supervisor: Constantine Caramanis

Undirected probabilistic graphical models or Markov Random Fields (MRFs) are a powerful

tool for describing high dimensional distributions using an associated dependency graph

G, which encodes the conditional dependencies between random variables. They form the

starting point for many efficient estimation and inference algorithms. Thus, learning the

graphical model of a collection of random variables from their samples is a fundamental,

and very well-studied problem. In this thesis, we study a natural variant of this problem -

learning the graph structure when the random variables have independent unknown noise.

We investigate this problem for the class of tree structured graphical models.

In the first problem, the task is to estimate tree structured Gaussian graphical models

from samples which have additive independent Gaussian noise of unknown variance. The

noise in different random variables breaks down the conditional independence relationship.

We ask: can the original tree structure be recovered. We prove that this problem is uniden-

tifiable, but show that this unidentifiability is limited to a small class of candidate trees. We

further present additional constraints under which the problem is identifiable.

In the second problem, we consider tree structured Ising models. The random vari-

ables in Ising models have support on {−1,+1}. We consider the task of learning Ising

xii

models when the signs of different random variables are flipped independently with possibly

unequal, unknown probabilities. We prove that, surprisingly, the same limited unidentifia-

bility results that hold for Gaussian graphical models continue to hold for Ising models.

In the final problem, we study the natural extension of these problems - what happens

in the case of graphical models on discrete random variables with larger support size. We

show that the setting of support size of 3 or more is richer as the tree may be partially

or fully identifiable. We provide a precise characterization of this phenomenon and show

that the extent of recoverability is dictated by the joint PMF of the random variables. In

particular, we provide necessary and sufficient conditions for exact recoverability. We provide

an efficient algorithm to recover the tree upto the identifiability. Finally, we conclude with

the sample complexity upper and lower bounds capturing the dependence of the number of

samples on the underlying parameters.

xiii

Table of Contents

Acknowledgments v

Abstract xii

List of Figures xviii

Chapter 1. Introduction 1

1.1 Markov Random Fields - An Overview . 1

1.2 Tree Structured Graphical Models . 2

1.2.1 Chow-Liu Algorithm . 3

1.2.2 Effect of noise . 7

1.3 Contribution and Organization . 9

Chapter 2. Robust Estimation of Tree Structured Gaussian Graphical Mod-
els 11

2.1 Introduction . 11

2.2 Related Work . 13

2.3 Problem Statement . 14

2.4 Identifiability Result . 15

2.4.1 Identifiability Results without Side Information 16

2.4.2 Identifiability Results with Side Information 20

2.5 Examples and Illustrations . 25

2.5.1 Example for Theorem 2.4.1 . 26

2.5.2 Example of Theorem 2.4.3 . 27

2.5.3 Example of Theorem 2.4.4 . 28

2.5.4 Example of Theorem 2.4.5. 28

2.5.5 Example of Theorem 2.4.7 . 29

xiv

Chapter 3. Robust Estimation of Tree Structured Ising Models 30

3.1 Introduction . 30

3.2 Related Work . 32

3.3 Identifiability Result . 32

Chapter 4. Recoverability Landscape of Tree Structured Markov Random
Fields under Symmetric Noise 39

4.1 Introduction . 39

4.2 Related Work . 41

4.3 Problem Setup . 43

4.4 Identifiability Results . 45

4.4.1 Potential unidentifiability is limited to leaf clusters 45

4.4.2 Error Estimation for a Tree on 3 Nodes 46

4.4.3 Extension to a generic tree . 47

4.4.4 Examples . 49

4.5 Algorithm . 51

4.6 Sample Complexity Results . 55

4.7 Experiments . 57

4.7.1 Support size, k = 2 (Unidentifiable setting): 58

4.7.2 Support size, k = 4 (Identifiable Setting): 58

Appendices 61

Appendix A. Robust Estimation of Tree Structured Gaussian Graphical
Models 62

A.1 Proof of Theorem 1 . 62

A.1.1 Proof of Part(i) - Column n of ΣI is a multiple of column n− 1: . . . 64

A.1.2 Proof of part (ii) - Node n− 1 is a leaf node connected to node n in the
independence structure of Σq: . 67

A.1.3 Proof of part (iii) - Structure of the remaining tree does not change: . 68

A.2 Proof of Theorem 2 . 70

A.2.1 Proof of Part (i) - Categorization of 4 nodes as star/non-star shape: . 72

A.2.2 Proof of Part (ii) - Partitioning of the tree in 2 connected components: 75

xv

A.2.3 Proof of Part (iii) - Recovering the tree up to unidentifiability using
tree partitions . 78

A.3 Proof of Theorem 4 . 83

A.4 Proof of Theorem 6 . 84

Appendix B. Robust Estimation of Tree Structured Ising Models 87

B.1 Proof of Lemma 3.3.5 . 87

B.2 Proof of Covariance of noisy variables. 88

B.3 Proof that the Quadratic gives a valid solution 90

B.4 Proof of Lemma 3.3.6, Lemma 3.3.7 and Star/Non-star Condition for Generic
Trees . 91

B.4.1 Proof of Lemma 3.3.6(a) . 91

B.4.2 Proof of Lemma 3.3.6(b) . 92

B.4.3 Proof of Lemma 3.3.7 . 92

B.4.4 Proof of Star/Non-star Condition for Generic Trees 92

B.5 Proof of Theorem 3.3.8 . 95

Appendix C. Recoverability Landscape of Tree Structured Markov Random
Fields under Symmetric Noise 98

C.1 Proof of Lemma 1 . 98

C.2 Obtaining Equation (4.6) . 100

C.3 Proof of Theorem 4.4.2 . 102

C.4 Proof of Theorem 4.4.3 . 104

C.5 Proof of Theorem 4.4.4 . 105

C.6 Proof of Lemma 4.4.5 . 110

C.7 Algorithm Details . 112

C.7.1 Pseudocode and runtime analysis . 113

C.7.1.1 QuadraticError . 113

C.7.1.2 FindCenter . 114

C.7.1.3 GetLeafParent . 115

C.7.1.4 LeafClusterResolution 117

C.7.1.5 Runtime Analysis . 118

C.7.1.6 Recovering TsubT ∗ . 119

xvi

C.7.1.7 Modifications for the unidentifiable setting 119

C.7.2 Proof of correctness . 120

C.7.2.1 Proof of correctness of FindLeafParent subroutine 120

C.7.3 Modification for finite sample domain 129

C.8 Sample Complexity Upper Bound . 130

C.8.1 Sample Complexity for Existence of a solution to Equation 4.7 133

C.8.2 Sample Complexity for Star/Non-Star test 135

C.9 Sample Complexity Lower Bound . 138

C.9.1 Preliminaries . 138

C.9.2 Lower Bound for recovering the equivalence class of trees 144

C.9.3 Lower bound for recovering TsubT ∗ when TsubT ∗ ⊂ TT ∗ 150

C.10Experiments . 156

C.10.1Varying qmax . 156

C.10.2Varying d . 157

Index 159

Bibliography 160

Vita 172

xvii

List of Figures

2.1 For this T ∗, TT ∗ is the set of all the trees obtained by permuting the nodes
within each of the dotted regions. We prove that while T ∗ is unidentifiable,
under our noise model, we can recover TT ∗ . In other words, the tree structure
is recoverable up to permutation of leaves with their neighbors. 16

2.2 Examples of classification of 4 nodes as star shape or non star shape. If they
form a non star shape, the nodes are grouped in pairs of 2. 18

2.3 (a) Suppose {i1, i2, i3, i4} = {7, 9, 5, 2}, part (ii) partitions the nodes in group
1 and group 2. All the equivalence clusters are also shown. (b) Edges between
equivalence clusters. 21

2.4 (a) T ∗ is a Markov Chain on 4 nodes. (b) T ′ is an element of TT ∗ , thus
∃Σ′, D′ such that Σo = Σ′ +D′, D′ is diagonal with non-negative entries and
the conditional independence structure of Σ′ is given by T ′. (c) Running the
Chow-Liu algorithm on the Σo gives a tree which is not in TT ∗ , hence it gives
an infeasible solution. 27

3.1 A chain structure. 37

3.2 A Star structure. 37

4.1 (a) If the node z lies between l and r, l becomes z, hence getting closer to r.
(b) If the node r lies between l and z, both l and r shift towards the right
with l becoming r and r becoming z. 52

4.2 For both chain and star graphs, our algorithm outperforms SGA for 4 different
settings - (i) ρmax = 0.6, qmax = 0.4, (ii) ρmax = 0.6, qmax = 0.0, (iii) ρmax =
0.8, qmax = 0.4, (iv) ρmax = 0.8, qmax = 0.0 57

4.3 Randomly generated graph used for algorithm evaluation. 58

4.4 Comparing the performance of our algorithm and Chow-Liu over different
values of δi,j ∈ {0.00, 0.02, 0.04} and different graph shapes - chain, star,
random. Setting: dmin = dmax = exp(−0.7), qmax = 0.2, # of nodes= 7. For
both algorithms, we provide results for two cases: i) when the exact underlying
tree is recovered, ii) when a tree from the equivalence class is recovered. . . . 60

A.1 Examples of classification of 4 nodes as star shape or non-star shape. 71

A.2 Conditional independence for non-star shape 72

xviii

A.3 Conditional independence for star shape. 74

A.4 Suppose i1 = 7, i2 = 9 and i3 = 5. If j is in group 2, {i1, i2, i3, j} is categorized
as a non star and j pairs with i3. If j is in group 1, {i1, i2, i3, j} is either
categorized as a star or it is categorized as a non star and j pairs with i1 or i2. 77

A.5 (a) Equivalence clusters for the given tree. (b) The cluster tree with equiva-
lence clusters as vertices. 79

B.1 Different possible configurations of any set of 3 nodes. 90

B.2 Possible conditional independence relations for non-star shape if they don’t
form a chain . 93

B.3 Possible conditional independence relations for a star shape. 95

C.1 Four possible configurations of (X1, X2, X3, X4) when they form a non-star
such that (X1, X2) form a pair. 99

C.2 Two possible configurations of (X1, X2, X3, X4) when they form a star. . . . 100

C.3 Position of the three column vectors of matrix M for unidentifiability. 109

C.4 All the possible when node z lies to the left of node l 121

C.5 All the possible when node z lies to the right of node r 123

C.6 All the possible when node z does not lie to the left of l or right of r 125

C.7 The family of distributions used for providing lower bound for completely
unidentifiable case. The graphical model corresponding to P (0) a single re-
coverable leaf cluster. The graphical model corresponding to P (i), for each
i = 1, . . . , t2 − 1, has nodes {ia, ib} as one recoverable leaf cluster, and the
remaining nodes as another recoverable leaf cluster. 146

C.8 The family of distributions used for providing lower bound with t0 dependence.
The graphical model corresponding to P (0) is completely identifiable. The
graphical model corresponding to P (i), for each i = 1, . . . , n, has edge {i, 0}
which forms a recoverable leaf cluster, and the rest are all identifiable. 151

C.9 Comparing the performance of our algorithm for different values of qmax ∈
{0, 0.2, 0.4} and different graph shapes - chain, star. Setting: dmin = dmax =
exp(−0.7), δ = 0.04 # of nodes= 7. We provide results for two cases: i) when
the exact underlying tree is recovered, ii) when a tree from the equivalence
class is recovered. 157

C.10 Comparing the performance of our algorithm for different values of d and
different graph shapes - chain, star. Setting: qmax = 0.2, δ = 0.02 # of
nodes= 7. We provide results for two cases: i) when the exact underlying tree
is recovered, ii) when a tree from the equivalence class is recovered. 158

xix

Chapter 1

Introduction

1.1 Markov Random Fields - An Overview

Markov Random Fields (MRFs) provide a useful framework to model high dimen-

sional probability distributions via an associated dependency graph G, which captures the

conditional independence relationships between random variables. Here, the nodes corre-

spond to the random variables; edges represent the conditional independence relationships

between these nodes.

There are three perspectives for the encoded conditional independence relationships

that are equivalent:

1. Global Markov Property - Suppose the graph is partitioned into three partitionsA,B,C

such that B separates A and C. Then, when conditioning on the nodes in B, all the

nodes in A are independent of the nodes in C.

2. Local Markov Property - When conditioning on all the nodes a particular node has an

edge with, that node is independent of all the remaining nodes in the graph.

3. Pairwise Markov Property - Any two nodes that do not share an edge are independent

conditioned on all the remaining nodes.

1

Example Applications: Probabilistic graphical models have been extensively used

in a wide range of applications including image processing ([18, 24, 28, 83]), bioinformatics

([12, 39]), finance ([22, 68]) etc. A special class of graphical models called Ising Models were

first introduced in [32] to represent spin systems in quantum physics [10]. Recently, Ising

models have also proven quite popular in biology [33], engineering [15, 64], computer vision

[61], and also in the optimization and OR communities, including in finance [91], and social

networks [51]. The special class of tree-structured Ising models is beneficial for applications

in statistical physics over non-amenable graphs. A detailed description and further references

can be found in [49].

Data driven application of graphical models can be split into two major components

- (i) learning the underlying probabilistic graphical model from the data samples, (ii) per-

forming efficient inference using the learnt graphical model. This dissertation provides novel

insights into the first component of learning graphical models from data samples. The second

component of efficient inference, while being interesting in its own right, is out of the scope

of this dissertation.

1.2 Tree Structured Graphical Models

A special class of graphical model which has garnered a lot of interest is when the

underlying graph is a tree (the graph does not contain any cycles). For tree structured

graphical models, the joint distribution of all the random variables can be decomposed as a

product of pairwise distributions of the random variables that share an edge. Restricting to

this subclass of graphical models enables sample efficient learning as governed by the bias

2

variance trade-off. Furthermore, it is computationally efficient to perform exact inference

for tree structured graphical models.

We next understand the implication of tree structured conditional independence on

the decomposition of the probability distribution. Let X = [X1, X2, . . . Xn] be a vector of

random variables whose graphical model is a tree T . Since the graphical model is undirected,

there does not exist a parent child relationship between the nodes. We arbitrarily select any

node Xi as the root node and we define the parent node of any node Xj, denoted by Xπ(j),

as the first node in the path from Xj to Xi. Without loss of generality, assume that X1 is

the root node. Then, the probability distribution of X can be decomposed as follows:

PT (X) = PT (X1)
n∏
j=2

PT (Xj|Xπ(j)). (1.1)

1.2.1 Chow-Liu Algorithm

In the seminal work [17], the authors provide two key results - (i) The tree struc-

tured graphical model that best approximates a high dimensional probability distribution

(has minimum KL divergence) is the maximum weight spanning tree where the weights are

the mutual information between all the pairs of random variables. Furthermore, the pair-

wise marginals of all pairs of random variables connected by an edge match those of the

high dimensional distribution. (ii) The maximum likelihood estimate of the tree structured

graphical model given samples from a probability distribution is given by the maximum

weight spanning tree of the empirical pairwise mutual information.

We include the proof here for completeness. Let P be any arbitrary probability

distribution and PT be the probability distribution of a tree T structured graphical model.

3

The KL-divergence is given as follows:

DKL(P, PT) =
∑
x

P (x) logP (x)−
∑
x

P (x) logPT (x) (1.2)

First note that
∑

x P (X = x) logP (X = x) is equal for every PT .

Next, we show that for a given tree T , DKL(P, PT) is minimized when PT (xj, Xπ(j) =

xπ(j)) = P (Xj = xj, Xπ(j) = xπ(j)). While this is an easy result, we could not find its

proof in the literature. Suppose P̃T is a probability distribution that has the same graph

T but differs on at least one pairwise marginal from P for nodes connected by an edge.

Also assume that PT (Xj = xj, Xπ(j) = xπ(j)) = P (Xj = xj, Xπ(j) = xπ(j)). For the ease of

notation, for any probability distribution P , we denote P (X = x) by P (x), P (Xi = xi) by

P (xi), P (Xi = xi, Xj = xj) by P (xi, xj), and P (Xi = xi|Xj = xj) by P (xi|xj) Then we have

that:

∑
x

P (x) logPT (x)−
∑
x

P (x) log P̃T (x)

=
∑
x

P (x) log
PT (x)

P̃T (x)

=
∑
x

P (x)

(
log

PT (x1)

P̃T (x1)
+

n∑
j=2

log
PT (xj|xπ(j))

P̃T (xj|xπ(j))

)

=
∑
x1

P (x1) log
PT (x1)

P̃T (x1)
+

n∑
j=2

∑
xj ,xπ(j)

P (xj, xπ(j)) log
PT (xj|xπ(j))

P̃T (xj|xπ(j))

=
∑
x1

PT (x1) log
PT (x1)

P̃T (x1)
+

n∑
j=2

∑
xj ,xπ(j)

PT (xj, xπ(j)) log
PT (xj|xπ(j))

P̃T (xj|xπ(j))

=
∑
x

PT (x) logPT (x)−
∑
x

PT (x) log P̃T (x)

=DKL(PT , P̃T) > 0(asPT 6= P̃T)

4

Thus,
∑

x P (x) logPT (x) >
∑

x P (x) log P̃T (x). Therefore, DKL(P, PT) < DKL(P, P̃T).

With this insight, let us come back to Equation (1.2).

DKL(P, PT) =
∑
x

P (x) logP (x)−
∑
x

P (x)

(
logPT (x1) +

n∑
j=2

logPT (xj|xπ(j))

)

=
∑
x

P (x) logP (x)−
∑
x

P (x)

(
logP (x1) +

n∑
j=2

log
P (xj, xπ(j))P (xj)

P (xj)P (xπ(j))
+

)

Now, note that

−
∑
x

P (x) logP (x1) = −
∑
x1

P (x1) logP (x1) = H(X1).

Similarly,

−
∑
x

P (x)
n∑
j=2

logPT (xj) = −
n∑
j=2

∑
xj

P (xj) logP (xj) =
n∑
j=2

H(Xj).

Also note that

∑
x

P (x)
n∑
j=2

log
P (xj, xπ(j))

P (xj)P (xπ(j))
=

n∑
j=2

∑
xj ,xπ(j)

P (xj, xπ(j)) log
P (xj, xπ(j))

P (xj)P (xπ(j))
=

n∑
j=2

I(Xj, Xπ(j))

Therefore, we get

DKL(P, PT) = −H(X) +
n∑
j=1

H(Xj)−
n∑
j=2

I(Xj, Xπ(j))

Since, −H(X) +
∑n

j=1H(Xj) is equal for all PT , in order to minimize DKL(P, PT), we need

to maximize
∑n

j=2 I(Xj, Xπ(j)). Thus, the optimal tree T is the maximum weight spanning

tree with weights being the mutual information of all the pairs of random variables. This

concludes the proof of the first result.

5

Next, we find the maximum likelihood estimate of tree structured graphical model

given samples from a probability distribution. Let x1,x2 . . .xs be the samples and PT be a

probability distribution with tree structured graphical model T . Then we have:

LPT (x1,x2 . . .xs) =
s∏
i=1

PT (xi)

=
s∏
i=1

(
PT (xi1)

n∏
j=2

PT (xij|xiπ(j))

)
.

Thus the log likelihood lPT is given by:

lPT (x1,x2 . . .xs) =
s∑
i=1

(
logPT (xi1) +

n∑
j=2

logPT (xij|xiπ(j))

)

=s

∑
x1

P̂T (x1) logPT (x1) +
n∑
j=2

∑
xj ,xπ(j)

P̂T (xj, xπ(j)) logPT (xij|xiπ(j))

 .

Recall the analysis as the one used to prove that the best tree structured graphical model

approximation of a high dimensional distribution has pairwise marginals of the nodes con-

nected by an edge equal to the pairwise marginals of the those nodes in the high dimensional

distribution. Using the same argument we can conclude that, for a given tree T , the likeli-

hood is maximized when the pairwise marginals of nodes connected by an edge is equal to

the empirical estimate. Thus, we have that:

max
PT

lPT (x1,x2 . . .xs)

= max
T

s∑
i=1

(
log P̂T (xi1) +

n∑
j=2

log P̂T (xij|xiπ(j))

)

= max
T

s∑
i=1

(
n∑
j=1

log P̂T (xij) +
n∑
j=2

log
P̂T (xij, x

i
π(j))

P̂T (xij)P̂T (xiπ(j))

)
.

6

= max
T

s

 n∑
j=1

∑
xj

P̂T (xj) log P̂T (xj) +
n∑
j=2

∑
xj ,xπ(j)

P̂T (xij, x
i
π(j)) log

P̂T (xij, x
i
π(j))

P̂T (xij)P̂T (xiπ(j))

 .

= max
T

s

(
n∑
j=1

Ĥ(Xj) +
n∑
j=2

Î(Xj, Xπ(j))

)
.

Since
∑n

j=1 Ĥ(Xj) is equal for every tree, the maximum likelihood tree is the maximum

weight spanning tree with the weights being the empirical pairwise mutual information.

Clearly, when the underlying graphical model is tree structured, the Chow Liu algo-

rithm correctly recovers the underlying tree. The sample complexity and error exponents

of the Chow-Liu algorithm when the underlying graphical model is tree structured were

presented in [8] and [71] respectively.

1.2.2 Effect of noise

In practice, it is rare to observe the random variables without noise, as sources of

noise are ubiquitous, e.g. errors in sensors, incorrect human labeling. The problem is

further exacerbated by the fact that often the magnitude of the noise in unknown. For

critical applications like modeling the gene interaction networks, it is even more important

to ensure that the graphical model estimate is robust to the noise in the observations. Thus,

it is imperative to understand the impact of noise on the graphical model estimation problem.

Noise in the random variables can break down the conditional independence relation-

ship. For instance, if two random variables X and Z are independent conditioned on Y , we

do not expect the noisy versions of these variables to satisfy the same conditional indepen-

dence relationship even if the noise in the random variables is independent. We understand

this with a simple example.

7

Example: Suppose X, Y and Z have support on {0, 1}. The data generation process is that

X is a fair coin toss, if X takes the value 1, for Y we toss a biased coin whose probability

of 1 is 0.99 and if X takes the value 0, for Y we toss a biased coin whose probability of 0 is

0.99. Similarly, if Y is 1, for Z we toss a biased coin whose probability of 1 is 0.99 and if Y

is 0, for Z we toss a biased coin whose probability of 0 is 0.99. This is given as follows:

P (X = 1) = 0.5

P (Y = 1|X = 1) = 0.99, P (Y = 1|X = 0) = 0.01

P (Z = 1|Y = 1) = 0.99, P (Z = 1|Y = 0) = 0.01.

It is easy to see that X ⊥ Z|Y . Now let us assume that Y is noisy, that is, the bit Y gets

flipped with some probability. It is easy to see that X and Z are no longer independent.

Thus, noise in Y breaks down the conditional independence relationship X ⊥ Z|Y .

Therefore, noise in the random variables can introduce new edges in the graphical

model, thereby obfuscating the original graph structure. This gives rise to the natural

question: Can the original graph be recovered? One approach could be to apply the Chow-

Liu algorithm on the noisy observations. Unfortunately, when the nodes are corrupted by

noise of unequal magnitude, it can change the order of the pairwise mutual information,

thereby, potentially changing the maximum weight spanning tree.

In this dissertation we study three classes of tree structured graphical models - (i)

Gaussian Graphical Models, (ii) Ising Models, (iii) Discrete graphical models with support

size larger than 2. We uncover novel unidentifiability phenomena for these graphical models.

8

1.3 Contribution and Organization

Chapter 2: Robust Estimation of Tree-Structured Gaussian Graphical Models

In this chapter, we consider the task of learning the underlying tree for Gaussian graphical

models when the observations from random variables have independent additive Gaussian

noise with unknown variance. In the absence of noise, we can estimate the covariance matrix

and it is well-known that the support of the inverse covariance matrix corresponds to the

edges of the graphical model. Due to noise, instead of having access to the true covariance

matrix Σ, we only have access to the noisy covariance matrix M = Σ + D, where D is

an unknown positive diagonal matrix. We investigate whether is it possible to recover the

conditional independence structure (graphical model) of the underlying variables. We prove

that it is impossible to recover the original tree, however, it is possible to recover a small

equivalence class of trees which contains the original tree. This equivalence class of trees is

given by all possible permutations of the nodes within a leaf cluster (a leaf node, its parent,

and its siblings form a leaf cluster). The key idea revolves around using the uncorrupted

off-diagonal elements of the covariance matrix to make inferences about the graph structure.

We also present some side information conditions which can make the problem identifiable.

Chapter 3: Robust Estimation of Tree-Structured Ising Models This chapter is

about the robust estimation of Ising models. In this case, the noise is because of the random

variables flipping their sign with unknown, possibly unequal probability. We approach this

problem by estimating the probability of error for the different random variables which

can lead to tree structured graphical models. Interestingly, we arrive at the exact same

identifiability results as for Gaussian graphical models.

9

Chapter 4: Recoverability Landscape of Tree Structured Markov Random Fields

under Symmetric Noise Insights from above two problems lead to a natural question:

does this property of identifiability upto an equivalence class of trees in the face of indepen-

dent noise hold for graphical models on generic random variables or is it a special property

of Gaussian graphical models and Ising models. We show that when the support size is 3

or more, the structure of the leaf clusters may be partially or fully identifiable. We provide

a precise characterization of this phenomenon and show that the extent of recoverability is

dictated by the joint PMF of the random variables. In particular, we provide necessary and

sufficient conditions for exact recoverability. Furthermore, we present a polynomial time,

sample efficient algorithm that recovers the exact tree when this is possible, or up to the

unidentifiability as promised by our characterization, when full recoverability is impossible.

We also provide sample complexity lower bounds for the problem. Finally, we demonstrate

the efficacy of our algorithm experimentally.

10

Chapter 2

Robust Estimation of Tree Structured Gaussian

Graphical Models

2.1 Introduction

In this chapter, we study the recovery of tree structured Gaussian Graphical Models

from noisy samples. For jointly Gaussian random variables, the graphical model is given by

the non-zeros in the inverse of the covariance matrix, also known as the precision matrix. We

ask a natural variant of this fundamental problem: suppose we observe the random variables

with independent additive noise. Thus, in the infinite sample limit, rather than knowing

the covariance matrix, Σ, we have access only to M = Σ + D, the sum of the covariance

matrix and a diagonal matrix. In general, (Σ + D)−1 does not share the sparsity structure

of Σ−1. In the language of probability, if two random variables X and Y are independent

conditioned on Z, then we do not expect that (X+W1) and (Y +W2) are independent when

conditioned on (Z +W3), even when W1, W2 and W3 are independent.

Parts of this chapter are available at: Katiyar, Ashish, Jessica Hoffmann, and Constantine Carama-

nis.“Robust estimation of tree structured Gaussian graphical models.” In International Conference on Ma-

chine Learning, pp. 3292-3300. PMLR, 2019. The author formulated the problem, performed the theoretical

analysis and contributed in writing the paper.

11

We ask: when is it possible to recover the conditional independence structure (graph-

ical model) of the underlying variables, i.e., when can we recover the sparsity pattern of

Σ−1? Despite the voluminous literature on Gaussian graphical models, to the best of our

knowledge, there has been no answer to this question.

Contributions of this paper. We show the following:

• A negative result of unidentifiability (Theorem 2.4.1): Even for a simple Markov chain

on three nodes, the problem is unidentifiable even when an arbitrarily small amount

of independent noise is added. That is, there are covariance matrices that differ only

on their diagonal entries, and yet whose inverses have different sparsity patterns.

• A positive result of limited unidentifiability (Theorem 2.4.2): While unidentifiable,

even for large independent noise, the ambiguity is highly limited. Specifically, we show

that for tree-structured graphical models, distinguishing leaves from their immediate

neighbors is impossible, but the remaining structure of the graph is identifiable (see

Figure 2.1 for an illustration).

• Identifiability with Side Information:

– (Theorem 2.4.3) We characterize an upper bound on the noise which, if given as

side information, makes the problem identifiable.

– (Theorem 2.4.4) If there is side information that in the precision matrix, for a leaf

node, the diagonal entry is greater than the absolute value of the other non-zero

entry, the problem is identifiable.

– (Theorems 2.4.5, 2.4.7) Given a lower bound on the minimum eigenvalue of the

true covariance matrix as side information, we characterize the upper bound on

12

the noise for which the problem is identifiable. We also characterize a lower bound

on the noise which makes the problem unidentifiable.

2.2 Related Work

Estimating Gaussian graphical models has been a very widely explored topic. Various

algorithms based on the `1 penalized log likelihood maximization have been used in, e.g.,

[2, 59, 23, 89, 62]. A parameter free Bayesian approach was presented in [82]. In [50] and [88],

another approach was proposed which finds conditional independence relations by regression

using one random variable as output and the remaining random variables as input. The

output variable is conditionally independent of the input variables with regression coefficient

zero.

The Chow-Liu algorithm of [17] (Section 1.2.1) is the most popular algorithm for

learning tree structured graphical models. However, as discussed in Section 1.2.2, in the

presence of unequal noise, it can converge to an incorrect tree.

There has been research about learning tree structured graphical models with latent

variables ([16, 58, 13]). One could cast our problem as the problem of learning latent tree

graphical model with the leaf nodes being the noisy random variables we observe and the

latent nodes being the true underlying random variables. However, algorithms learning

latent tree graphical model focus on minimal tree extensions which assume that all the latent

nodes have degree greater than 2. This assumption makes these algorithms inapplicable in

our setting as the leaf nodes of the original tree have degree 2 when considering graphical

models containing both- the non-noisy nodes and the noisy nodes.

13

Robust estimation of graphical models has been extensively studies in [46, 87, 79, 37,

48, 78, 45]. However, the robustness is against outliers or missing data or Gaussian noise

with known covariance or bounded noise. To the best of our knowledge, there is no work

that addresses the natural setting of (unknown) additive independent Gaussian noise. This

is precisely the setting that we tackle in this paper. In [90] the authors address the problem

of measurement error in the directed graphical models setting. These results do not extend

to the setting of undirected graphical models.

The algorithm in [34] comes closest to our setting, and in fact is complementary.

In that work, the goal is to recover the graph structure in the presence of corruption in

those off-diagonal terms of the covariance matrix which are not conditionally independent.

Specifically, the results there do not consider (and cannot address) noise in the diagonal

elements. Thus, this setting considers a perfectly complementary setting, as in this work

there is noise only in the diagonal elements of the covariance matrix and not in the off

diagonal elements. It would be interesting to consider if these results can be merged to

obtain a general result.

2.3 Problem Statement

Let X = [X1, X2 . . . , Xn]T denote a vector of jointly Gaussian random variables whose

conditional independence structure is given by a tree. We call this the true tree T ∗. We denote

the covariance matrix of X by Σ∗ and the precision matrix by Ω∗. That is, X ∼ N(0,Σ∗).

We denote the noise covariance matrix by D∗. This is a non-negative diagonal matrix. We

14

denote the observed noisy covariance matrix by:

Σo = Σ∗ +D∗.

Given Σo as an input, recovering Σ∗ exactly is never possible. Consider, for instance, inde-

pendent noise added only to a leaf node. Instead, we would like to recover the underlying

tree T ∗. We show that in general, recovering T ∗ exactly is not possible. However, we show

that the ambiguity is limited. We characterize this explicitly. That is, we characterize the set

of possible trees T ′ that correspond to a covariance matrix, Σ′, and a nonnegative diagonal

matrix D′ such that Σo = Σ′ +D′.

Notation: For any matrix Σ, (Σ)T represents the transpose of the matrix. Σij denotes the

element at the i, j position. Σ:,i represents the ith column. Σ−i,−j represents the submatrix

after deleting row i and column j from Σ. Σ−i,j represents the jth column without the ith

element. Similarly, Σi,−j represents the ith row without the jth element. We use det(Σ) to

represent the determinant of the matrix. For a random vector X = [X1, X2, . . . , Xn]T , Xi

denotes the ith component and X−i denotes the subvector after removing the ith component.

2.4 Identifiability Result

Let the set of all the leaf nodes of T ∗ be L:

L = {a | node a is a leaf node in T ∗}.

Consider all the subsets of L such that no two nodes in the subset share a common neighbor.

Let p be the number of such subsets. Let Sq be the qth subset. Let T q be the tree obtained

15

Figure 2.1: For this T ∗, TT ∗ is the set of all the trees obtained by permuting the nodes within

each of the dotted regions. We prove that while T ∗ is unidentifiable, under our noise model, we

can recover TT ∗ . In other words, the tree structure is recoverable up to permutation of leaves with

their neighbors.

by exchanging the position of nodes in Sq with their neighbor node in T ∗. Therefore, for

every tree T q, there is a corresponding set Sq.

Definition 2.4.1. For any tree T ∗, we define the equivalence class of tree TT ∗ as follows:

TT ∗ = {T q | q ∈ {1, 2, . . . p}}.

Figure 2.1 gives an example of TT ∗ .

2.4.1 Identifiability Results without Side Information

Theorem 2.4.1. (Negative Result - Unidentifiability) Consider a covariance matrix Σ∗

whose independence structure is given by the tree T ∗. Suppose we are given a noisy co-

variance matrix Σo = Σ∗ + D∗ where D∗ii > 0 when i is a neighbor of a leaf node. For

any tree T̃ ∈ TT ∗, it is always possible to decompose Σo = Σ̃ + D̃ where the conditional

independence for Σ̃ is given by the tree T̃ and D̃ is a non-negative diagonal matrix.

16

Proof Outline. We give an explicit construction that demonstrates that any tree

T̃ ∈ TT ∗ is achievable. Consider any tree T̃ ∈ TT ∗ and its corresponding leaf subset S̃. The

required decomposition of Σo = Σ̃ + D̃ is given as follows:

Σ̃ij =

Σ∗ij − 1

Ω∗ij
if i = j ∈ S̃

Σ∗ij + ci1 if i = j ∈ Neighbor(S̃)

Σ∗ij otherwise,

(2.1)

where Neighbor(S̃) is the set of neighbor nodes of all the nodes in S̃. Also, ci1 is chosen such

that 0 < ci1 ≤ D∗ii.

D̃ii =

D∗ii + 1

Ω∗ii
if i ∈ S̃

D∗ii − ci1 if i ∈ Neighbor(S̃)

D∗ii otherwise.

(2.2)

The full proof which includes arriving at this decomposition and showing that the conditional

independence structure of Σ̃ is given by T̃ is in Appendix A.

Theorem 2.4.2. (Positive Result - Limit on unidentifiability) Consider any decomposition

Σo = Σ′ +D′ such that the conditional independence for Σ′ is given by a tree T ′ and D′ is a

non-negative diagonal matrix. Then T ′ ∈ TT ∗. Equations 2.1 and 2.2 provide a decomposition

that results in this T ′.

Proof Outline. The proof of the theorem relies on showing that the off-diagonal terms

of the covariance matrix suffice to specify the structure of the underlying tree up to the

equivalence set TT ∗ . Our proof is constructive, and hence can be considered as a proto- or

conceptual- algorithm for recovering TT ∗ .

The main building block of this proof is to categorize any set of 4 nodes as a star-

shape or a non-star-shape (we define this below). Moreover, if it is a non star shape, we show

17

Figure 2.2: Examples of classification of 4 nodes as star shape or non star shape. If they form a

non star shape, the nodes are grouped in pairs of 2.

that it is always possible to partition the four nodes into two pairs that each lie in separate

connected components of the tree.

Definition 2.4.2. • Four nodes {i1, i2, i3, i4} form a non-star shape if there exists a

node ik in the tree T ∗1 such that exactly two nodes among the four lie in the same

connected component of T ∗ \ ik.

• If {i1, i2, i3, i4} do not form a non-star shape, we say they form a star shape.

It is easy to see that in the event that a set of 4 nodes forms a non star, there exists a grouping

such that the 2 nodes in the same connected component form the first pair and the other

2 nodes form the second pair. Figure 2.2 gives examples of star shape and non star shape.

This categorization is done using only the off-diagonal elements of the covariance matrix,

hence this property remains invariant to diagonal perturbations, that is, every set of 4 nodes

falls in the same category in any tree obtained from the decomposition of Σo = Σ′ + D′ as

Σ′ij = Σ∗ij ∀ i 6= j. The proof of this theorem is split in 3 parts:

1Note that nothing prevents ik to be one of the four nodes.

18

(i) Prove that it is possible to categorize any set of 4 nodes as star shape or non star shape

using only off diagonal elements of the covariance matrix. Moreover, if the 4 nodes

have a non star shape, we can find their grouping in two halves.

(ii) Prove that this categorization of all the possible sets of 4 nodes completely defines all

the possible partitions of the original tree in 2 connected components such that the

connected components have at least 2 nodes.

(iii) Prove that these partitions of a tree into connected components completely define the

tree structure up to the equivalence set TT ∗ .

For part (i), we prove that a set of 4 nodes {i1, i2, i3, i4} forms a non star shape such that

nodes i1 and i2 form one pair and i3 and i4 form the second pair if and only if:

Σ∗i1i3
Σ∗i1i4

=
Σ∗i2i3
Σ∗i2i4

,

Σ∗i2i1
Σ∗i3i1

6=
Σ∗i2i4
Σ∗i3i4

.

(2.3)

We also prove that a set of 4 nodes {i1, i2, i3, i4} forms a star if and only if:

Σ∗i1i3
Σ∗i1i4

=
Σ∗i2i3
Σ∗i2i4

,

Σ∗i2i1
Σ∗i3i1

=
Σ∗i2i4
Σ∗i3i4

.

(2.4)

For part (ii), we first define a subtree.

Definition 2.4.3. Let A denote the set of all the nodes in T ∗. A subtree B of a tree T ∗ is

a set of nodes such that B and A \ B both form connected components in T ∗. The pair of

subtrees B and A \B are called complementary subtrees.

19

We prove that if we start with a set of nodes {i1, i2, i3, i4} that form a non star such

that nodes i1 and i2 form a pair, we can get a partition of T ∗ into the smallest subtree

containing i1 and i2 and the remaining tree. This is done using the function Smallest-

Subtree(Σo, {i1, i2, i3, i4}), the details of which are provided in Appendix B.2. Upon doing

this for different initializations, we get all the possible partitions of the tree such that each

partition has at least 2 nodes.

For part (iii) we define equivalence clusters and edges between equivalence clusters

as follows:

Definition 2.4.4. A set containing an internal node and all the leaf nodes connected to

it forms an equivalence cluster. We say that there is an edge between two equivalence

clusters if there is an edge between any node in one equivalence cluster and any node in the

other equivalence cluster.

The subtrees obtained from part (ii) completely specify the equivalence clusters and

the edges between the equivalence clusters. This gives us the set TT ∗ . Partitioning in part

(ii) and equivalence clusters in part (iii) are illustrated in Figure 2.3. The detailed proof of

each part is presented in Appendix B.

2.4.2 Identifiability Results with Side Information

Theorem 2.4.3. (Maximum Noise Identifiability Condition) Suppose the noise is upper

bounded by

D∗aa <
1

Ω∗aa
, ∀ a ∈ L (2.5)

20

Figure 2.3: (a) Suppose {i1, i2, i3, i4} = {7, 9, 5, 2}, part (ii) partitions the nodes in group 1 and

group 2. All the equivalence clusters are also shown. (b) Edges between equivalence clusters.

and suppose that this upper bound is known as side information. In this case, the decompo-

sition of Σo = Σ′ +D′ results in Σ′ whose independence structure is given by T ∗.

Proof. From Equation 2.2, for a leaf node a to exchange position with its neighbor, we need:

D′aa ≥
1

Ω∗aa
.

The constraint in Equation 2.5 makes this solution infeasible. Hence any feasible solution

cannot have a leaf node exchanged with its neighbor.

Theorem 2.4.4. (Leaf Diagonal Majorization Identifiability Condition) Suppose Ω∗ satisfies

the condition that for any leaf node a and its neighbor node b in T ∗, Ω∗aa > |Ω∗ab|. Then for

any decomposition of Σo = Σ′ + D′ which satisfies the same property, the tree structure of

Σ′ is the same as that of Σ∗, that is, T ′ = T ∗.

Proof Outline. To prove this claim, we consider the decomposition of Σo = Σ′ + D′

such that the conditional independence structure T ′ for Σ′ has leaf node b and its neighbor

21

node a. We show that Ω′bb < |Ω′ab|, that is, the leaf node b in T ′ violates the constraint. Hence,

any decomposition of Σo which results in an exchange of a leaf node with its neighbor is

infeasible. Hence the problem becomes identifiable.

Relabeling if necessary, assume that node n is a leaf node connected to node n− 1 in

T ∗. From Equation 2.1, the decomposition of Σo = Σ′ + D′ to obtain a tree structure T ′ in

which node n− 1 is a leaf node connected to node n is given by:

Σ′ij =

Σ∗ij − 1

Ω∗ij
if i = j = n

Σ∗ij + ci1 0 < ci1 < D∗n−1n−1 if i = j = n− 1

Σ∗ij otherwise.

We derive the expression of Ω′ = (Σ′)−1. We denote B1 and B2 as follows:

B1
ij =

 ci1 0 < ci1 < D∗n−1n−1 if i = j = n− 1

0 otherwise
,

B2
ij =

 − 1
Ω∗nn

if i = j = n

0 otherwise
.

This gives us Σ′ = Σ∗ + B1 + B2. The calculation of Ω′ = (Σ′)−1 is presented in Appendix

C. At positions (n− 1, n− 1) and (n− 1, n) of Ω′, we get:

Ω′n−1n−1 =
1

cn−1
1

,

Ω′n−1n =
Ω∗nn

cn−1
1 Ω∗n−1n

.

By the original assumption we have Ω∗nn > |Ω∗n−1n|, hence Ω′n−1n−1 < |Ω′n−1n|. Therefore any

exchange of leaf node with its neighbor gives an infeasible solution.

22

Theorem 2.4.5. (Minimum Eigenvalue Identifiability Condition) Suppose that a lower bound

on the minimum eigenvalue λmin of Σ∗ is such that for every neighbor node b of a leaf node

a in T ∗, D∗bb < λmin. Then for any decomposition of Σo = Σ′ + D′ such that the minimum

eigenvalue of Σ′ is at least λmin, the tree structure of Σ′ is the same as that of Σ∗, i.e.,

T ′ = T ∗.

Corollary 2.4.6. If the smallest eigenvalue of Σ∗ is larger than every element of the diagonal

noise matrix D∗, and we know that this fact holds as side information, then T ∗ is identifiable.

Proof. Relabeling if necessary, assume that node n is a leaf node and node n−1 is its neighbor

in T ∗. We again consider the decomposition of Σo = Σ′ + D′ such that the conditional

independence structure T ′ for Σ′ has leaf node n − 1 and its neighbor node n. In order to

prove this theorem we first consider an intermediate matrix ΣI :

ΣI = Σ∗ +B2.

ΣI has minimum eigenvalue 0 (This is proved in the Appendix A during the proof of Theorem

2.4.1). Σ′ is obtained as follows:

Σ′ = ΣI +B1.

We denote the minimum eigenvalue of Σ′ by λ′min and ΣI by λImin. Using a standard result

in matrix perturbation theory for symmetric matrices [67] we have:

λ′min ≤ λImin + cn−1
1

= cn−1
1

≤ D∗n−1n−1.

23

If D∗n−1n−1 < λmin then λ′min < λmin making this decomposition infeasible. Hence any

decomposition resulting in the exchange of a leaf node a with its neighbor b is infeasible if

D∗bb < λmin.

Theorem 2.4.5 gives a sufficient condition on the noise for identifiability if the mini-

mum eigenvalue is lower bounded. Next, we present a sufficient condition for unidentifiability

in the same setting.

Before the theorem statement, we define the following quantities for any pair of a leaf node

a and its neighbor b in T ∗:

eab = 1 +
Ω∗aa
|Ω∗ab|

,

fab =
(Ω∗aa)

2

(Ω∗ab)
2

+
Ω∗aa
|Ω∗ab|

,

gab =
Ω∗aa(Ω

∗
aaΩ

∗
bb − (Ω∗ab)

2)

(Ω∗ab)
2

+
n∑
j=1
j 6=a,b

Ω∗aa|Ω∗bj|
|Ω∗ab|

,

hab = max
i=1...n
i 6=a,b

(n∑
j=1
j 6=a,b

|Ω∗ij|+
Ω∗aa|Ω∗bi|
|Ω∗ab|

)
.

(2.6)

Theorem 2.4.7. (Minimum Eigenvalue Unidentifiability Condition) Suppose that a lower

bound on the minimum eigenvalue of Σ∗ is λmin. If for any decomposition of Σo = Σ′ +D′,

the same constraint holds, the problem will be unidentifiable if, for a leaf node a and its

neighbor b, the noise in node b is lower bounded as follows:

D∗bb ≥

 eabλmin if λmin ≤ (eab−fab)
eabgab

,

fab

1/λmin−gab if (eab−fab)
eabgab

< λmin <
1
gab
, 1
hab

.

If this holds, there exists a feasible Σ′ with conditional independence structure T ′ which has

node b as a leaf node and node a as its neighbor.

24

Proof Outline. Suppose Σ′ has node b as leaf node and node a as its neighbor and the

rest of the structure is the same as T ∗. We provide a lower bound on the minimum eigenvalue

of Σ′ by upper bounding the maximum eigenvalue of Ω′ using Gerschgorin’s Theorem [67].

The details are provided in Appendix D.

Note that a lower bound on the noise for unidentifiability can be given only below a threshold

of λmin. If λmin is above this threshold, we cannot draw a conclusion about identifiability

using this theorem.

2.5 Examples and Illustrations

In this section we provide an example to illustrate the theorem statements.

Consider a Markov Chain (MC) on 4 nodes whose covariance matrix is given as follows:

Σ∗ =

1.1508 −0.1885 0.0548 −0.0069

−0.1885 0.2356 −0.0686 0.0086

0.0548 −0.0686 0.7472 −0.0934

−0.0069 0.0086 −0.0934 0.1367

 ,

Then its precision matrix is:

Ω∗ =

1 0.8 0 0

0.8 5 0.4 0

0 0.4 1.5 1

0 0 1 8

 .

25

and T ∗ is given in Figure 2.4(a). Let the noise matrix be:

D∗ =

0.1 0 0 0

0 10 0 0

0 0 0.5 0

0 0 0 0.1

 .

We have Σo = Σ∗ +D∗.

2.5.1 Example for Theorem 2.4.1

By Theorem 2.4.1, there exists a decomposition of Σo = Σ′ + D′ such that the

conditional independence structure of Σ′ is given by a tree T ′ with node 2 as a leaf node. A

possible decomposition is as follows:

Σ′ =

0.1508 −0.1885 0.0548 −0.0069

−0.1885 10.2356 −0.0686 0.0086

0.0548 −0.0686 0.7472 −0.0934

−0.0069 0.0086 −0.0934 0.1367

 ,

D′ =

1.1 0 0 0

0 0 0 0

0 0 0.5 0

0 0 0 0.1

 .
(2.7)

The precision matrix Ω′ is then:

Ω′ =

6.9687 0.1250 −0.5 0

0.1250 0.1 0 0

−0.5 0 1.5 1

0 0 1 8

 . (2.8)

26

Figure 2.4: (a) T ∗ is a Markov Chain on 4 nodes. (b) T ′ is an element of TT ∗ , thus ∃Σ′, D′ such that

Σo = Σ′+D′, D′ is diagonal with non-negative entries and the conditional independence structure

of Σ′ is given by T ′. (c) Running the Chow-Liu algorithm on the Σo gives a tree which is not in

TT ∗ , hence it gives an infeasible solution.

Thus, in the conditional independence structure of Σ′, node 2 is a leaf node attached to node

1 as shown in Figure 2.4(b).

Chow-Liu. We now note that running the Chow-Liu algorithm on Σo gives a MC

as shown in Figure 2.4(c). This tree does not belong to TT ∗ . This is an example of how the

Chow-Liu algorithm can give an infeasible solution.

2.5.2 Example of Theorem 2.4.3

The noise matrix D∗ satisfies the condition of Theorem 2.4.3:

D∗11 <
1

Ω∗11

, D∗44 <
1

Ω∗44

.

Hence by the theorem statement, with side information that D′11 < 1, the decomposition in

Equation 2.7 is no longer feasible. Similarly a decomposition with node 3 as a leaf node is

also not feasible. Hence the only feasible solutions have the same structure as T ∗ and the

problem is identifiable.

27

2.5.3 Example of Theorem 2.4.4

Ω∗ satisfies the condition of Theorem 2.4.4, that is, for leaf nodes 1 and 4:

Ω∗11 > |Ω∗12|,Ω∗44 > |Ω∗34|.

In the presence of side information that for any leaf node b connected to node a in T ′,

Ω′bb > |Ω′ab|, the decomposition in Equation 2.7 becomes infeasible as Ω′22 < |Ω′12|. Similarly,

exchanging nodes 3 and 4 also results in an infeasible Σ′. Hence the problem becomes

identifiable with this side information.

2.5.4 Example of Theorem 2.4.5.

A lower bound on the minimum eigenvalue of Σ∗ is λmin = 0.6. The noise in node 2

does not satisfy the condition of Theorem 2.4.5, that is:

D∗22 > λmin.

Therefore, we cannot say anything about the feasibility of the decomposition when node

2 becomes a leaf node connected to node 1. However, the condition of Theorem 2.4.5 is

satisfied by node 3, that is:

D∗33 < λmin.

Therefore any decomposition which results in node 3 becoming a leaf node violates the

minimum eigenvalue constraint (if Σ′ were such that node 3 were a leaf node, the minimum

eigenvalue of Σ′ could at most be 0.0046 < λmin).

28

2.5.5 Example of Theorem 2.4.7

In order to illustrate Theorem 2.4.7, we consider leaf node 1 and its neighbor node 2.

The values e12, f 12, g12, h12 for the current example are:

e12 = 2.25, f 12 = 2.8125, g12 = 7.3125, h12 = 9.

If λmin = 0.6, we cannot draw a conclusion about the identifiability of the problem using

Theorem 2.4.7 as λmin > 1/h12. If instead λmin = 0.1, it satisfies λmin < 1/h12, 1/g12. Hence

we can arrive at a lower bound on the noise for unidentifiability using Theorem 2.4.5 which

is given as follows:

D∗22 > 1.0465.

29

Chapter 3

Robust Estimation of Tree Structured Ising Models

3.1 Introduction

In this paper, we explore the problem of learning the underlying graph of tree-

structured Ising models with independent, unknown, unequal error probabilities. In 2011,

[14] highlighted the importance of robustness in Ising models. Recent works in [26, 27, 44]

have tried to address this problem. However, they assume the side information of the error

probability, which is mostly unavailable and difficult to estimate in most practical settings.

In the closely related work for tree-structured Ising models, [53, 55] address this problem

as they build on the Chow-Liu algorithm of [17]. In [53], they consider the simplified case

where each node has an equal probability of error and [55] assumes that the error doesn’t

alter the order of mutual information. Both assumptions imply that asymptotically, Chow-

Liu converges to the correct tree. However, these assumptions don’t arise naturally and are

difficult to check from access to only noisy data. To the best of our knowledge, there doesn’t

exist an analysis of what happens beyond this limiting assumption of order preservation of

Parts of this chapter are available at: Katiyar, Ashish, Vatsal Shah, and Constantine Caramanis. ”Ro-

bust estimation of tree structured Ising models.” arXiv preprint arXiv:2006.05601 (2020). The author for-

mulated the problem, performed the theoretical analysis and contributed in writing the paper.

30

mutual information.

In fact, section 5.1 of [9] provides an example of the unidentifiability of the problem

for a graph on 3 nodes and says that the problem is ill-defined. We reconsider this problem,

and show that for the special class of tree structured Ising models, although the problem is

not identifiable, nevertheless the unidentifiability is limited to an equivalence class of trees.

Thus, more appropriately, one can cast the problem of learning in the presence of unknown,

unequal noise as the problem of learning this equivalence class.

Key Contributions

1. We show that the problem of learning tree structured Ising models when the obser-

vations flip with independent, unknown, possibly unequal probability is unidentifiable

(Theorem 3.3.8).

2. The unidentifiability is restricted to the equivalence class of trees obtained by permut-

ing within the leaf nodes and their neighbors (Theorem 3.3.4).

While we also developed an algorithm to recover the equivalence class of trees from the noisy

samples and performed the sample complexity analysis for the same, we do not include it in

this chapter as the algorithm presented in Chapter 4 is also applicable in the case of Ising

models and outperforms this algorithm.

31

3.2 Related Work

Efficient algorithms for structure learning of Ising models can be divided into three

main categories based on their assumptions: i) special graph structures [1, 17, 19, 66, 8], ii)

nature of interaction between variables such as correlation decay property (CDP) [6, 7, 9,

42, 60], iii) bounded degree/width [5, 20, 36, 47, 85, 76]. However, these algorithms assume

access to uncorrupted samples.

In the last decade, there has been a lot of research on robust estimation of graphical

models [37, 45, 46, 79, 87]. However, extending the above frameworks to the robust structure

learning of Ising models remains a challenge. [26, 27, 44] have tried to solve the problem of

robust estimation of general Ising models under the assumption of access to the probability of

error for each node. Recently, [53, 55] proposed algorithms to estimate the underlying graph

structure of tree-structured Ising models in the presence of noise under the strong assumption

that the probability of error does not alter the order of mutual information order for the

tree. Both these assumptions are restrictive and impractical. In this paper, we present the

first algorithm that can robustly recover the underlying tree structured Ising model (upto an

equivalence class) in the presence of corruption via unknown, unequal, independent noise.

3.3 Identifiability Result

Problem Setup: Let X = [X∗1 , X
∗
2 . . . X

∗
n] be a vector of random variables with support

on {−1, 1}. Suppose the conditional independence structure of the variables of X is given

by a tree T ∗. This implies that the distribution of X can be represented by an Ising model.

In our model, we have observations where each X∗i flips with probability qi. We denote

32

the probability of error by the vector q = [q1, q2, . . . qn] and the noisy random variables by

X′ = [X ′1, X
′
2 . . . X

′
n]. The error in X∗i disrupts the tree structured conditional independence

and the graphical model of X′ is a complete graph if qi > 0 ∀i ∈ [n]. In fact, X′ need not be

an Ising model. Given samples of X′, we want to find the tree structure T ∗. T

Model Assumptions

Assumption 3.3.1. (Bounded Mean) The absolute value of the mean - |E[Xi]| ≤ µmax < 1

∀i ∈ [n].

Assumption 3.3.2. (Bounded Correlation) Correlation ρi,j of any two nodes Xi and Xj

connected by an edge - ρmin ≤ |ρi,j| ≤ ρmax where 0 < ρmin ≤ ρmax < 1.

Assumption 3.3.3. (Bounded error probability) The error probability - 0 ≤ qi ≤ qmax < 0.5

∀i ∈ [n].

These assumptions arise naturally. Assumption 3.3.1 ensures that no variable ap-

proaches a constant and hence gets disconnected from the tree. The lower bound in As-

sumption 3.3.2 also ensures that every node is connected. The upper bound in Assumption

3.3.2 ensures that no two nodes are duplicated. Assumption 3.3.3 ensures the noisy node

doesn’t become independent of every other node due to the error.

Limited unidentifiability of the problem

In Theorem 3.3.4, we prove that it is possible to recover TT ∗ (as defined in 2.4.1) from

the samples of X′. Further, we prove that given the distribution of X′, there exists an Ising

33

model for each tree in TT ∗ such that, for some noise vector, its noisy distribution is the same

as that of X′ in Theorem 3.3.8

Theorem 3.3.4. Suppose X̃ and X are binary valued random variables satisfying assump-

tion 3.3.1 whose conditional independence is given by trees T ′ and T ∗ respectively satisfying

assumption 3.3.2. Assume that each node in both these distributions T ′ and T ∗ is allowed

to be flipped independently with probability satisfying assumption 3. Let E∗ and E′ represent

the noisy distributions of X and X̃ respectively. If E′ = E∗, then T ′ ∈ TT ∗.

Proof. The proof of this theorem relies on this key observation: the probability distribution

of the noisy samples completely defines the categorization of any set of 4 nodes as star/non-

star shape (as defined in 2.4.2). Once we prove this key observation, the rest of the proof

follows from the proof of theorem 2.4.2. Next, we see how to classify a set of 4 nodes as

star/non-star using the noisy samples.

We denote the correlation between two nodes Xi and Xj in the non-noisy setting by

ρi,j and in the noisy setting by ρ′i,j. Similarly the covariance is denoted by Σi,j and Σ′i,j.

We utilize the correlation decay property of tree structured Ising models which is stated in

Lemma 3.3.5.

Lemma 3.3.5. (Correlation Decay) Any 2 nodes Xi1 and Xik have the conditional indepen-

dence relation specified by a tree structured Ising Model such that the path between them is

(Xi1 → Xi2 → Xi3 · · · → Xik) if and only if their correlation is given by:

ρi1ik =
k∏
l=2

ρil−1,il . (3.1)

34

The proof of this lemma is provided in Appendix, B.1. We also prove that E[Xe
i] =

(1− 2qi)E[Xi] and Σ′i,j = (1− 2qi)(1− 2qj)Σi,j in Appendix B.2.

Categorizing a set of 4 nodes as star/non-star

We first look at a graphical model on 3 nodes X1, X2, X3 whose conditional indepen-

dence is given by a chain with X2 ⊥ X3|X1. By Lemma 3.3.5, we have Σ2,3Σ1,1 = Σ1,2Σ1,3.

Suppose the sign of X1, X2, X3 flip independently with probability q1, q2, q3 respec-

tively. Substituting the values of Σ2,3,Σ1,1,Σ1,2 and Σ1,3 in terms of their noisy counterparts

gives us:

(1− 2q1)2 = 1− Σ′1,1 +
Σ′1,2Σ′1,3

Σ′2,3
. (3.2)

If we had prior knowledge about the underlying conditional independence relation,

this quadratic equation, which depends only on the quantities measurable from noisy data,

could be solved to estimate the probability of error of X1.

We prove in Appendix B.3 that Equation (3.2) gives a valid solution for any configura-

tion of 3 nodes in a tree structured Ising model. Therefore, in the absence of the knowledge

that X2 ⊥ X3|X1, we can estimate a probability of error for each Xi which enforces the

underlying graph structure to represent the other 2 nodes independent conditioned on Xi.

Thus, irrespective of the true underlying conditional independence relation we can always

find a probability of error for each node which makes any other pair of nodes conditionally

independent. We use this concept to classify a tree on 4 nodes as star or non-star shaped.

35

We follow a notation where q̂j,ki denotes the estimated probability of error of Xi which

enforces Xj ⊥ Xk|Xi.

Condition for star/non-star shape:

Any set of 4 nodes {X1, X2, X3, X4} is categorized as a non-star with (X1, X2) forming

one pair and (X3, X4) forming another pair if and only if:

q̂2,3
1 = q̂2,4

1 6= q̂3,4
1 , q̂1,3

2 = q̂1,4
2 6= q̂3,4

2 ,

q̂2,4
3 = q̂1,4

3 6= q̂1,2
3 , q̂2,3

4 = q̂1,3
4 6= q̂1,2

4 .

From Equation (3.2), this is equivalent to the condition that
ρ′1,3
ρ′1,4

=
ρ′2,3
ρ′2,4

,
ρ′1,2
ρ′1,4
6= ρ′3,2

ρ′3,4
.

Any set of 4 nodes {X1, X2, X3, X4} is categorized as a star if and only if:

q̂2,3
1 = q̂2,4

1 = q̂3,4
1 , q̂1,3

2 = q̂1,4
2 = q̂3,4

2 ,

q̂2,4
3 = q̂1,4

3 = q̂1,2
3 , q̂2,3

4 = q̂1,3
4 = q̂1,2

4 .

This is equivalent to the condition that
ρ′1,3
ρ′1,4

=
ρ′2,3
ρ′2,4

=
ρ′1,2
ρ′1,4

.

In order to see how these conditions correspond to a star/non-star shape, lets consider

a chain on 4 nodes as shown in Figure 3.1. Let each Xi be flipped with probability qi. With

access only to the noisy samples, we estimate the probability of error for each node in order

to find the underlying tree. The key idea is that when we estimate the probability of error

for a given node, it should be consistent across different conditional independence relations.

For instance in the present case, the error estimates q̂1,3
2 and q̂1,4

2 of X2 satisfy q̂1,3
2 = q̂1,4

2 = q2.

We show that q̂3,4
2 6= q̂1,3

2 (Lemma 3.3.6(b)). We also prove that q̂2,3
1 = q̂2,4

1 6= q̂3,4
1 (Lemma

3.3.6). These imply that X3 6⊥ X4|X2 and X3 6⊥ X4|X1. By symmetry, we have X1 6⊥ X2|X3

and X1 6⊥ X2|X4. These conditional independence statements imply that X1, X2, X3 and X4

36

Figure 3.1: A chain structure. Figure 3.2: A Star structure.

form a chain with (X1, X2) on one side of the chain and (X3, X4) on the other side of the

chain.

Next, we consider the case when 4 nodes form a star structured graphical model as

in Figure 3.2. Under the same noisy observation setting we prove that q̂2,3
1 = q̂2,4

1 = q̂3,4
1 ,

q̂1,3
2 = q̂1,4

2 = q̂3,4
2 , q̂1,2

3 = q̂1,4
3 = q̂2,4

3 and q̂1,3
4 = q̂1,2

4 = q̂3,2
4 (Lemma 3.3.7). Thus, we can

conclude that the underlying graphical model is star structured.

Lemma 3.3.6. Let the graphical model on X1, X2, X3 and X4 form a chain as shown in

Figure 3.1. Suppose the bits of each Xi are flipped with probability qi < 0.5. Then the

following holds:

(a) q̂2,3
1 = q̂2,4

1 , (b) q̂1,3
2 6= q̂3,4

2 , q̂2,3
1 6= q̂3,4

1

Lemma 3.3.7. Let the graphical model on X1, X2, X3 and X4 form a star as shown in Figure

3.2. Suppose the bits of each Xi are flipped with probability qi < 0.5. Then the following

holds:

q̂2,3
1 = q̂2,4

1 = q̂4,3
1

The proof of these lemmas and the details of extending these results to generic trees

require basic algebraic manipulations and can be found in Appendix B.4.

Theorem 3.3.8. Let E′ denote the probability distribution of X′ when the error probability

of all the neighbors of leaf nodes is non-zero. For any T̃ ∈ TT ∗, there exists a set of random

37

variables X̃ with conditional independence given by T̃ and a corresponding error probability

vector q̃ such that E′ = Ẽ where Ẽ denotes the noisy distribution of X̃.

We prove this theorem by explicit calculation of q̃. We utilize Lemma 3.3.5 to en-

force the conditional independence relations in any tree T̃ ∈ TT ∗ . The proof is included in

Appendix B.5.

Interestingly these unidentifiability results for noisy tree structured Ising models

match the ones for noisy tree structured Gaussian graphical models inspite of them being

graphical models on different class of random variables.

38

Chapter 4

Recoverability Landscape of Tree Structured Markov

Random Fields under Symmetric Noise

4.1 Introduction

In this chapter, we focus on learning the underlying tree-structured graphical model

on non-noisy discrete random variables with common support size k using samples that

are corrupted by a k-ary symmetric noise channel. Our work reveals a rich recoverability

landscape for MRFs under symmetric noise. We discover that when k ≥ 3, for a fixed

underlying tree structure, the recoverability is determined by the pairwise PMF of the non-

noisy random variables. This is in contrast to the Gaussian graphical model and Ising model

results where, for a fixed tree structure, edges within a leaf cluster (a leaf node, its parent,

and its siblings) are never recoverable irrespective of the probability distribution of the non-

noisy random variables. We completely characterize the recoverability for k ≥ 2 by providing

the necessary and sufficient conditions for the identifiability of the edges within a leaf cluster.

Parts of this chapter are available at: Katiyar, Ashish, Soumya Basu, Vatsal Shah, and Constantine

Caramanis. ”Recoverability Landscape of Tree Structured Markov Random Fields under Symmetric Noise.”

arXiv preprint arXiv:2102.08554 (2021). The author formulated the problem, designed the algorithm, per-

formed experiments, and contributed in the theoretical analysis and paper writing.

39

Our contributions can be summarized as follows:

1. Identifiability Characterization: In Theorem 4.4.2, we completely characterize the

recoverability of tree-structured MRF on support size k when the observations come

from unknown k-ary symmetric channel noise where each node has a different error

probability. We show the identifiability depends on the PMF of the non-noisy random

variables, which is unobserved. This dependence can then be translated to the PMF

of the noisy random variables, which is observed, that provides the characterization.

We show that for the special class of Symmetric Graphical Models (as defined in Section

4.4.4), for any k, the nodes within a leaf cluster are unidentifiable. On the other

direction, we show for the class of Perturbed Symmetric Graphical Models (details in

Section 4.4.4) for k ≥ 4, the exact tree is identifiable.

2. Algorithm: We develop an algorithm that recovers the class of candidate trees that

can explain the noisy observations. In the identifiable setting, this corresponds to

recovering the exact tree. The algorithm is iterative where we recover one edge from

the candidate tree per iteration. (Section 4.5).

3. Sample Complexity Analysis: We provide novel sample complexity lower bounds

and upper bounds (Section 4.6). Our upper bounds are shown to have orderwise tight

dependence on underlying graph parameters, size of the graph, edge parameters (re-

lated to underlying conditional MF), and noise parameters. The lower bound proof

relies on a novel construction of a class of graphical models including perturbed sym-

metric graphical models where part of the leaf clusters are identifiable.

40

4. Experiments:1 We demonstrate the efficacy of our algorithm via extensive numerical

experiments for a variety of trees with different structures, edge parameters, corruption,

and support sizes.

4.2 Related Work

We divide the related work into three main categories:

Learning Generic Graphical Models from Non-Noisy Samples: There exists a rich

literature on the problem of learning graphical models on discrete random variables which

assume access to non-noisy samples [7, 9, 5, 6, 42, 36, 86, 60]. However, these models do not

provide guarantees in the face of noise in the samples.

Learning Tree-Structured Graphical Models: The special class of tree-structured

graphical models has also been extensively studied beginning with the classical Chow-Liu

algorithm was proposed in [17]. Chow-Liu algorithm’s error exponents for Gaussian graph-

ical models and graphical models on discrete random variables were analyzed in [71] and

[69] respectively. Results in [69] were further refined in [72] under additional assumptions of

homogeneity and zero external field in tree-structured Ising models. In [8] the authors ap-

proximate the distribution of generic Ising models using tree-structured Ising models. More

recently, in [21], the authors provide an algorithm to learn tree-structured Ising models

providing total variation distance guarantees. In [4], the authors provide finite sample guar-

antees for the Chow-Liu algorithm. As these algorithms assume access to non-noisy samples,

1The code containing the implementation of the algorithm is available at https://github.com/

ashishkatiyar13/NoisyTreeMRF

41

no performance guarantees can be established when the samples have noise.

Robust Estimation of Graphical Models: Robust estimation of graphical models has

been studied in multiple prior works but they are unable to resolve our setting. The algo-

rithms in [26, 44, 27] learn graphical models on discrete random variables without the tree

structure assumption but assume access to error probabilities. This is complementary to our

setting as we have the tree structure constraint but do not require the knowledge of the error

probabilities. In [72, 54, 56], the authors study the recovery of trees using noisy samples.

Critically, they operate in the restricted regime where the Chow-Liu algorithm converges to

the correct tree. While these results are insightful in their own right, their assumptions are

generally violated in our setting making their results inapplicable.

In [73] the authors extend our results for Gaussian graphical models and Ising models,

providing better sample complexity results and a more efficient algorithm. These results do

not extend to discrete random variables with support sizes larger than 2 and therefore fail

to capture the nuanced identifiability properties demonstrated in our setting.

Finally, our problem can be posed as the latent tree graphical model estimation

problem, where the noisy nodes are observed and non-noisy nodes are latent. Results for

learning latent tree graphical models in [58, 13, 16], and independently and concurrently

in [11], can be used to recover the underlying tree barring the nodes within leaf clusters.

Importantly, these models do not assume any structure on the noise, and thereby, contrived

noise models make it impossible to recover nodes within a leaf cluster. As a result they fail

to uncover the possibility of identifiability within a leaf cluster when we consider the natural

k-ary symmetric channel noise model.

42

4.3 Problem Setup

Let X = [X1, X2 . . . Xn] be the vector of random variables with a common support

set, S = {s1, s2, . . . sk} such that their graphical model structure is a tree T ∗. The vanilla

learning problem is to recover the tree T ∗ from i.i.d samples of Xi.

In this paper, we consider the problem of recovering T ∗ but we do not get to observe

samples of Xi. Instead, the samples of Xi pass through a k-ary symmetric noise channel and

we observe the output denoted by X ′i, that is,

X ′i =

Xi w.p. 1− qi,

Ui w.p. qi,

(4.1)

where qi is the probability of error for Xi and Ui is a discrete random variable independent

of X and Uj ∀j 6= i, distributed uniformly on S. Note that qi can be unequal for all Xi. The

vector of the noisy random variables is denoted by X′ = [X ′1, X
′
2 . . . X

′
n]. Due to the noise in

Xi, the graphical model of the nodes in X′ is no longer given by T ∗. In general, the graphical

model on the noisy random variables can be a complete graph.

Matrix PMF and Distance Notation: We denote the joint PMF matrix for random

variables (Xa, Xb), and (X ′a, X
′
b) by the matrix Pa,b and Pa′,b′ respectively, such that:

(Pa,b)i,j = P (Xa = si, Xb = sj), (Pa′,b′)i,j = P (X ′a = si, X
′
b = sj).

The conditional PMF of Xa conditioned on Xb is denoted by the matrix Pa|b while the

marginal distribution of random variables Xa and X ′a are denoted using diagonal matrices

Pa and Pa′ respectively such that:

(Pa|b)i,j = P (Xa = si|Xb = sj), (Pa)i,i = P (Xa = si), (Pa′)i,i = P (X ′a = si).

43

The information distance metric between proposed in [40], is defined as follows:

di,j = − log
|det(Pi,j)|√
det(Pi)det(Pj)

, di′,j′ = − log
|det(Pi′,j′)|√
det(Pi′)det(Pj′)

. (4.2)

We require the following assumptions that are natural and standard in this line of

literature (c.f. [13, 16]).

Assumption 4.3.1. The probability mass at every support for each non-noisy random vari-

able is bounded away from 0 : (Pa)i,i ≥ pmin > 0.

Assumption 4.3.2. The distance di,j between adjacent non-noisy random variables is bounded:

0 < dmin < di,j < dmax.

Assumption 4.3.3. The probability of error is upper bounded away from 1: qi ≤ qmax < 1.

Assumption 4.3.1 ensures that the probability mass at any support is not arbitrarily

small for any random variable. The bounds on the distance in Assumption 4.3.2 ensure that

no adjacent random variables are duplicates or independent. Assumption 4.3.3 ensures that

the noisy observations are not independent of the underlying random variables. Our sample

complexity lower bounds in Section 4.6 show that the problem becomes infeasible if these

assumptions are not satisfied.

Lastly, we also formally define a leaf cluster as follows:

Definition 4.3.1. The leaf cluster of any leaf node is the set containing that leaf node,

its parent node and all its sibling leaf nodes.

44

4.4 Identifiability Results

In this section, we prove that the identifiability of the underlying tree is determined

by the joint PMF of leaf parent pairs. The proof is divided in 3 parts - (i) prove that the only

potential unidentifiability is within the leaf clusters of the tree, (ii) analyze the existence of

valid probability of error for a tree on three nodes, (iii) extend the analysis to a generic tree

and arrive at the necessary and sufficient condition for identifiability.

4.4.1 Potential unidentifiability is limited to leaf clusters

For any tree T ∗, recall the definition of the equivalence class of trees TT ∗ from 2.4.1.

We show here that with a few new proof ideas, essentially the same is true for graphical

models on discrete random variables with general support size k:

Lemma 4.4.1. Suppose the random variables in X form a tree graphical model T ∗. Given

samples from noisy random variables X ′i, it is possible to recover the equivalence class TT ∗.

Proof Idea. The key ingredient of this proof is the use of the information distance

metric di,j as defined in (4.2) to categorize a set of 4 nodes as star/non-star (defined in

2.4.2). Once we have the star/non-star categorization, the proof of Theorem 2.4.2 gives us

the desired result.

Remarks: (i) Lemma 4.4.1 is not limited to the k-ary symmetric noise channel

and holds for any noise channel such that when conditioned on Xi, X
′
i is independent of

Xj ∀j ∈ [n] 6= i and Xi and X ′i are not independent. This result was independently and

concurrently derived in [11]. (ii) If there are no restrictions on the noise channel, recovering

45

TT ∗ is the best we can do. That is, for every tree in TT ∗ , it is possible to construct a noise

model that can produces the noisy observation. This analysis along with the proof of Lemma

4.4.1 is included in Appendix C.1.

4.4.2 Error Estimation for a Tree on 3 Nodes

Additional Notation for k-ary Symmetric Channel: For each random variable Xa,

we define a k × k error matrix Ea as follows:

Ea = (1− qa)I + qa
k
O,

where O is a matrix of all ones. Recall that k is the common support size for all the random

variables and qa is the probability of error of Xa.

We denote the error estimated for node Xa which enforces Xb ⊥ Xc|Xa by q̃b,ca and we also

define the matrix Ẽb,c
a as:

Ẽb,c
a = (1− q̃b,ca)I + q̃b,ca

k
O.

Note that Pa′,b′ and Pa,b are related as follows:

Pa′,b′ = EaPa,bEb. (4.3)

It is also easy to see that:

Pa′ = (1− qa)Pa + qa
k
I. (4.4)

Error Estimation: Suppose there exist 3 nodes such that X1 ⊥ X3|X2 and we observe X ′1,

X ′2 and X ′3 through a k-ary symmetric channel as defined in Equation (4.1). The conditional

independence relationship gives us:

P1,3 = P1,2P
−1
2 P2,3. (4.5)

46

From Equation (4.3), we have P1′,3′ = E1P1,3E3, P1′,2′ = E1P1,2E2, P2′,3′ = E2P2,3E3. From

Equation (4.4), we have P2′ = (1− q2)P2 + q2
k
I. By substituting these in Equation (4.5) we

get the following quadratic equation with matrix coefficients in noise parameter q2 (details

in Appendix C.2):

q2
2

k2
(O − kI)− q2

k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1,′3′P1′,2′ − P2′ = 0, (4.6)

where the 0 on the RHS is a k × k matrix of all 0s. The key insight here is that, Equation

(4.6) depends only on the noisy observations. Therefore, in the absence of the knowledge of

conditional independence relation, it can be used as a test to check if the noisy observations

can potentially be explained by X1 ⊥ X3|X2. Precisely, for a graph on 3 nodes (X1, X2, X3),

X2 is a potential middle node if the we can satisfy Equation (4.6) for some noise parameter

q2 ∈ [0, qmax]. In other words, X2 is a potential middle node if the following holds, with ‖·‖F

as the Forbenius norm of a matrix:

min
0≤x≤qmax

‖x
2

k2
(O − kI)− x

k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1,′3′P1′,2′ − P2′‖F = 0. (4.7)

This is equivalent to k2 quadratic equations corresponding to each element of the matrix

having a common root which lies between 0 and qmax. These equations need not be unique.

4.4.3 Extension to a generic tree

Before presenting the identifiability result, we first establish some notation. Let L

be the set containing all the leaf nodes of the tree-structured graphical model T ∗. Now,

consider the subset of leaf nodes with the following property: the leaf node X2, its parent

node X1, and any arbitrary node X3 from the graph have a solution to Equation (4.7). We

47

label this subset Lsub ⊆ L. TsubT ∗ ⊆ TT ∗ represents the equivalence class where only leaves in

Lsub can exchange positions with their parents.

The next theorem completely characterizes the identifiability of the underlying tree for a

k-ary symmetric noise channel.

Theorem 4.4.2. Suppose the random variables in X form a tree-structured graphical model

T ∗. Let X′ be the observed noisy output after passing X through a k-ary symmetric channel.

Then, we show that for any leaf node X2 ∈ Lsub and its parent node X1, equation (4.7)

remains unchanged for any arbitrary third node X3 from the graph. Using X′, we can re-

cover TsubT ∗ . Moreover, for every tree T̃ ∈ TsubT ∗ , there exist random variables X̃ and a k-ary

symmetric channels such that the graphical model of X̃ is T̃ and the k-ary channel output is

X′.

Proof Idea: As the unidentifiability is only between the nodes within a leaf cluster,

the key idea is to study a subset of 3 nodes comprising of a leaf parent pair and an arbitrary

third node. It is clear that, Equation (4.7) has a solution when the parent node is the

middle node. Whenever Equation (4.7) does not have a solution for a given node being a

candidate center node, we can rule out the possibility of that node being a parent node. We

further show that when the solution exists for a leaf node as a candidate center node, we can

construct a tree where the parent node exchanges position with the leaf node. The details

are presented in Appendix C.3.

48

4.4.4 Examples

In this section, we do not assume access to qmax and analyse the solution to Equation

(4.7) with the constraint 0 < x < 1. Extension to the setting of 0 < x < qmax is straight-

forward where we reject any solution x > qmax. We first prove that symmetric graphical

models are unidentifiable. Next, we present perturbed symmetric graphical models that are

unidentifiable for k = 3 but are identifiable for k ≥ 4. Finally, we show that our analysis

recovers the existing results for k = 2.

Symmetric graphical models: Symmetric graphical models are a class of graphical mod-

els where the marginals of all the random variables are uniform on the support and the

conditional PMF matrix Pa|b for random variables Xa, Xb that have an edge between them,

takes the following form:

Pa|b = Pb|a = αa,bI + (1− αa,b)Ok .

Recall that O is the matrix of all ones. The bounds on the distance in Assumption 4.3.2

enforces exp (−dmax/(k − 1)) < αa,b < exp (−dmin/(k − 1)).

Theorem 4.4.3. Suppose the random variables in X form a tree graphical model T ∗. Let X2

be any leaf node and X1 be its parent node. If P1 = P2 = I
k

and P2|1 = α2,1I+(1−α2,1)O
k

such

that exp (−dmax/(k − 1)) < α2,1 < exp (−dmin/(k − 1)), then Equation (4.7) has a solution.

The proof is included in Appendix C.4. Since, Equation (4.7) has a solution for every

leaf node X2 as the candidate center node, using Theorem 4.4.2, we conclude that symmetric

graphical models are unidentifiable.

49

Perturbed symmetric graphical models: We first define a k × k perturbation matrix

∆a,b. For a given offset 0 < ca,b < k, the term in the (i, j) position of ∆a,b is:

∆a,b(i, j) =

 δa,b, for j = ((i− 1 + ca,b) mod k) + 1

0, o/w.

In the perturbed symmetric model, the marginals continue to be uniform on the support but

the conditional PMF matrix Pa|b for adjacent Xa and Xb is modified to:

Pa|b = (αa,b − δa,b)I + (1− αa,b)Ok + ∆a,b.

Here αa,b and δa,b are chosen such that Assumption 4.3.2 is satisfied. We find that perturbed

symmetric graphical models are unidentifiable for k = 3 but become identifiable for k ≥ 4.

Theorem 4.4.4. Suppose the random variables in X form a tree graphical model T ∗. Let

X2 be any leaf node and X1 be its parent node. Suppose P1 = P2 = I
k

and P2|1 = (αa,b −

δa,b)I + (1 − αa,b)
O
k

+ ∆a,b such that |δa,b| > 0, αa,b 6= δa,b, and αa,b, δa,b are such that the

distance assumptions in 4.3.2 are satisfied. Then, equation (4.7) has a solution for k = 3,

but does not have a solution for k ≥ 4.

Proof Idea. The proof for k ≥ 4 relies on lower bounding the Frobenius norm of

the quadratic away from 0. In conjunction with Theorem 4.4.2, this implies that the exact

tree is identifiable when k ≥ 4. For k = 3, we explicitly calculate the solution to Equation

(4.7). Note that, for k = 3 the class of symmetric and perturbed symmetric graphical models

together comprise all the joint PMF matrices that are circulant. In fact, for k = 3, when

the marginals are uniformly distributed, the joint PMF matrix being circulant is a necessary

and sufficient condition for unidentifiability. These details are presented in Appendix C.5.

50

Unidentifiability when k = 2: We now discuss the unidentifiability for k = 2.

Lemma 4.4.5. Suppose the random variables in X have support size k = 2 and they form

a tree graphical model T ∗. The random variables in X pass through a binary symmetric

channel with positive probability of error and we observe X′. For any 3 nodes (X1, X2, X3),

Equation (4.7) always has a valid solution.

The proof of Lemma 4.4.5 is in Appendix C.6. Corollary 4.4.6 recovers the unidenti-

fiability results for Ising models.

Corollary 4.4.6. When the random variables in X have a support size of 2 and all the

parents of leaf nodes have non-zero noise, we have TsubT ∗ = TT ∗.

4.5 Algorithm

In this section, we present the algorithm to recover a tree from TsubT ∗ given samples

corrupted by a k-ary symmetric noise channel as inputs.

Key Idea: The algorithm to recover the tree is an iterative one. During an iteration, we

have an active set of nodes which are guaranteed to form a subtree. At each iteration, we

find a leaf parent pair in the subtree, record that edge, and remove the leaf node from the

active set of nodes. The algorithm to recover the tree structure is presented in Algorithm 1.

51

Figure 4.1: (a) If the node z lies between l and r, l becomes z, hence getting closer to r. (b) If the

node r lies between l and z, both l and r shift towards the right with l becoming r and r becoming

z.

Algorithm 1 Recover Tree Structure

Input : Pairwise noisy distributions, P ′i,j ∀i, j ∈ [n]
Output : List of edges, Edges
1: procedure FindTree(P ′i,j ∀i, j ∈ [n])

2: ActiveSet← {1, 2, . . . n}, Edges← {}, Parents← {}
3: while |ActiveSet| > 2 do
4: leaf, parent← GetLeafParent(P ′i,j , ActiveSet, Edges, Parents)

5: ActiveSet← ActiveSet \ leaf
6: Edges← Edges ∪ (leaf, parent)
7: Parents← Parents ∪ parent
8: end while
9: Edges← Edges ∪ (ActiveSet[0], ActiveSet[1])

10: return Edges
11: end procedure

Finding a leaf parent pair: We next describe the algorithm to find a leaf parent

pair. We maintain two nodes - a left node l, and a right node r. The idea is to move both

the nodes towards the right side till r is a leaf node and l is its parent node. In order to do

this we consider a third node z and perform the following operations:

1. If the center node in (l, r, z) is z, we shift node l to node z,

52

2. If the center node in (l, r, z) is r, we shift node l to node r and node r to node z.

This is illustrated in Figure (4.1). Finding the center node can be done by checking

the feasibility of Equation (4.7) for different candidate center nodes.

If Equation (4.7) has a solution for more than one nodes, we use an alternative method

which uses the 3 nodes in conjunction with different 4th nodes. These 4 nodes are categorized

as star/non-star to arrive at the center node. While doing the test for the center node, we

only consider the nodes with pairwise distances smaller than 4dmax + 3ηmax. Here ηmax is

an upper bound on the distance between a clean and noisy node. For a given pmin and qmax

from Assumption 4.3.1 and 4.3.3 respectively, ηmax = (1− k) log(1− qmax)− 0.5k log(kpmin)

(details in Appendix C.7). This makes it easy to adapt the algorithm for the finite sample

setting.

Finite sample algorithm: The finite sample version of the algorithm uses the empirical

estimate of the joint PMF of random variables to test for the center node given a set of three

nodes. We only perform the test for nodes that whose empirical distance is small to avoid

a sample complexity exponential in the diameter of the graph. For the test of center node

by checking for existence of a solution to Equation (4.7) using empirical PMF estimates, we

need the following additional assumption:

Assumption 4.5.1. When Equation (4.7) does not have a solution, we have the following

inequality:

min
0≤x<qmax

‖x
2

k2
(O − kI)− x

k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1,′3′P1′,2′ − P2′‖F > t0

53

This assumption ensures that when Equation (4.7) does not have a solution for a leaf

node X2 as a center node, it can be detected in the presence of perturbations due to finite

samples. In Appendix C.7, we provide the details of the algorithm including finding the

center node, and necessary modifications for executing the algorithm using finite samples.

In addition, we also include the pseudocode and the proof of correctness of the algorithm.

Insights into the input parameters of the algorithm: The algorithm in its vanilla

form requires dmin, dmax, qmax, pmin and t0 in addition to the noisy samples as inputs. While

the dependence on the knowledge of qmax is necessary, it is possible to obtain estimates of

bounds of dmin and dmax using the noisy samples. This comes at the cost of higher sample

complexity. Dependence on t0 can also be avoided at the cost of higher time complexity.

This is detailed as follows:

• The upper bound on dmax is denoted by d̃max. It is defined as d̃max = maxi minj 6=i di′j′ .

This bound can potentially be lose by 2ηmax.

• If the ground truth is such that dmin− 2ηmax > 0 then a lower bound on dmin, denoted

by d̃min, can be defined as d̃min = mini minj 6=i di′j′ − 2ηmax. This bound can also be

loose by 2ηmax.

• If pmin and qmax are such that pmin > qmax then a valid lower bound on pmin is

mini(Pa′)i,i − qmax which can potentially be lose by qmax.

• In the absence of the knowledge of t0, we can use the star/non-star test for finding the

center node among 3 nodes as long as no 2 nodes belong to the same leaf cluster. This

increases the time complexity of finding the center node from O(1) to O(n). Once we

54

get nodes within the same leaf cluster, the potential center node with the minimum

objective function in Equation (4.7) is chosen as the center node.

4.6 Sample Complexity Results

In this section, we provide both the sample complexity upper bounds and sample

complexity lower bounds for recovering the tree using our algorithm in presence of corrupted

samples.

Theorem 4.6.1 (Sample Complexity Upper Bound). Suppose the random variables in

X form a tree graphical model T ∗ and we observe X′ such that Assumptions 4.3.1, 4.3.2,

4.3.3 and 4.5.1 are satisfied. Then, the finite sample Algorithm 1 correctly recovers TsubT ∗ with

probability at least 1− δ if the number of samples N satisfies

N = O

(
max

{
k2 exp(8dmax)

(1−qmax)6(k−1)(0.9p2.5min)2k(1−exp (−2dmin))2(k−1)2(k−1) ,

k exp(16dmax)

t20(1−qmax)12(k−1)(0.9p2.5min)4k(k−1)4(k−1)

}
log
(

2nk(n−1)
δ

))

In the unidentifiable setting, since Equation (4.7) always has a solution, our algorithm

finds more than one candidate center nodes and therefore resorts to the star/non-star test

for finding the center node. In the sample complexity, the second term in the max comes

from the quadratic test and therefore it can be dropped. As a result, since we have an

easier learning problem of learning only TT ∗ , the sample complexity has better dependence

on dmax, qmax and pmin.

Theorem 4.6.2 (Sample Complexity Lower Bound). Suppose the random variables in

X form a tree graphical model T ∗ and we observe X′ such that Assumptions 4.3.1, 4.3.2,

55

4.3.3 and 4.5.1 are satisfied. Then any algorithm that correctly recovers TsubT ∗ with probability

at least 1− δ requires N samples where

N = Ω

(
exp

(
2dmax

k−1

)
(k−1)(1−qmax)2

(
1−exp

(
−dmin

k−1

))(1− δ) log(n)

)

Furthermore, for k ≥ 4, 0 < t0 ≤ k
10

exp(−2dmax

k−1
), we additionally have

N = Ω

(
max

d∈{dmax,dmin}
exp

(
− 2d
k−1

) (
1− exp

(
− d
k−1

)) k(1−δ) log(n)

t20

)
We note that our lower bounds on sample complexity shows our certain dependence

on the problem parameters cannot be improved orderwise. Firstly, we see the dependence on

the graph size scales as Θ(log(n)) which is standard in graphical model learning. We observe

that the sample complexity scales as exp(Θ(dmax)) as a function of the dmax. Furthermore,

for small enough t0 and support size 4 or more, the dependence on the lower bound for the

quadratic term Q(x), t0, scales as Θ(1
t20

) highlighting the significance of the term Q(x) in the

recovery of MRFs under unknown symmetric noise model.

Our lower bound proof for t0 dependence in the (partially) identifiable case uses a

family of (n+ 1) star graphs with n edges each, where one graph is a perturbed symmetric

graphical model (Section 4.4.4), and for the other graphs we select one edge each and replace

the conditional PMF with the one from a symmetric model. Thus, the equivalence class TsubT ∗

for each graph in the family is unique. For the lower bounds in the unidentifiable scenario, we

generalize the construction in [73] to k > 2 support size using symmetric graphical models.

Our derivation for KL divergence for symmetric graphical model, and perturbed symmetric

graphical models used in the lower bound proofs can be of independent interest.

56

2000 3000 4000 5000 6000 7000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.6, qmax = 0.4

600 800 1000 1200 1400
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.6, qmax = 0

1000 1200 1400 1600 1800 2000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.8, qmax = 0.4

100 200 300 400 500 600
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.8, qmax = 0 Our algorithm
SGA
Chow-Liu

(a) Chain Graph

1000 2000 3000 4000 5000 6000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.6, qmax = 0.4

100 200 300 400 500 600
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.6, qmax = 0

1000 1500 2000 2500 3000 3500 4000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.8, qmax = 0.4

100 150 200 250 300
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.8, qmax = 0 Our algorithm
SGA
Chow-Liu

(b) Star Graph

Figure 4.2: For both chain and star graphs, our algorithm outperforms SGA for 4 different settings

- (i) ρmax = 0.6, qmax = 0.4, (ii) ρmax = 0.6, qmax = 0.0, (iii) ρmax = 0.8, qmax = 0.4, (iv)

ρmax = 0.8, qmax = 0.0

4.7 Experiments

In this section, we present the experiments demonstrating the efficacy of our algorithm

(The code can be found at https://github.com/ashishkatiyar13/NoisyTreeMRF.). We

first demonstrate the performance of our algorithm for the k = 2 setting and demonstrate

that our algorithm considerably outperforms the algorithm in [73]. Next, we showcase the

performance of our algorithm for the k = 4 setting with the perturbed symmetric model. As

discussed in Section 4.4.4, the exact tree is identifiable in this scenario.

57

Figure 4.3: Randomly generated graph used for algorithm evaluation.

4.7.1 Support size, k = 2 (Unidentifiable setting):

In this part, we compare the performance of our algorithm for chain and star graphs

to that of SGA proposed in [73]. We use the exact same settings as in [73] and demonstrate

that we outperform SGA.

For chain graphs, the nodes are labeled X1 to X12 from left to right. The star graphs have

X1 as the center node and X2, . . . X12 are leaf nodes connected to X1

Setting: (i) Number of nodes = 12. (ii) Correlation of all the adjacent nodes = ρ. (iii)

Alternate nodes have maximum noise (qi = 0 if i % 2 = 0, qi = qmax if i %2 = 1). (iv)

Assume access to ρ. (v) Number of iterations = 1000

For both, chain graphs and star graphs, we vary ρ in {0.6, 0.8} and qmax in {0, 0.4}.

We would like to point out that qmax is defined differently in our setting and in SGA;

qmax in our setting is twice the SGA’s qmax. The final results are presented in Figures 4.2a

and 4.2b respectively.

4.7.2 Support size, k = 4 (Identifiable Setting):

In this part we see the impact of δ on the performance of the algorithm for different

graphs. We execute the algorithm for a lot of randomly generated graphs and the algorithm

converges to the correct output. We report the results for 3 different graph structures - star,

chain and one of the many randomly generated graphs (Figure 4.3).

58

Setting : (i) Number of nodes = 7.

(ii) Graph Shape = {Chain, Star, Random}

(iii) Distance of all the adjacent nodes = exp(−0.7).

(iv) Error probability is uniformly sampled from [0, 0.2].

(v) δ ∈ {0.00, 0.02, 0.04}

(vi) Assume access to qmax, dmin but not to dmax, t0.

(vii) Number of iterations = 100

Takeaways:

1. We witness the transition from unidentifiability to identifiability. When δ = 0, the

exact graph cannot be recovered and hence the exact recovery fraction remains low

consistently regardless of the number of samples. Higher δ has faster convergence to

the correct graph.

2. Learning a tree from the equivalence class requires much fewer samples.

3. For the given noise model when the probability of error is randomly selected, for

a significant number of realizations in the star shape, the Chow-Liu remains in the

equivalence class. However, it lags behind considerably compared to our algorithm.

4. Chow-Liu has high error for complete recovery.

We also perform extensive experiments where we evaluate the impact of the probability of

error and the distance between adjacent nodes and present the results in Appendix C.10.

59

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.0, shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.02, shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.04, shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.0, shape = star

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.02, shape = star

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.04, shape = star

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.0, shape = random

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.02, shape = random

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

 = 0.04, shape = random

Our algorithm - Exact
Our algorithm - EC
Chow-Liu - Exact
Chow-Liu - EC

Figure 4.4: Comparing the performance of our algorithm and Chow-Liu over different values of

δi,j ∈ {0.00, 0.02, 0.04} and different graph shapes - chain, star, random. Setting: dmin = dmax =

exp(−0.7), qmax = 0.2, # of nodes= 7. For both algorithms, we provide results for two cases: i)

when the exact underlying tree is recovered, ii) when a tree from the equivalence class is recovered.

60

Appendices

61

Appendix A

Robust Estimation of Tree Structured Gaussian

Graphical Models

A.1 Proof of Theorem 1

Consider any tree T q ∈ TT ∗ and its corresponding set Sq. We find the covariance

matrix Σq with the same off diagonal elements as Σo whose independence structure is given

by T q. Upon obtaining Σq, getting the Dq matrix is immediate. To begin with, let us

consider the case when Sq has just one node, i.e, Sq consists of one of the leaves of T ∗.

Proposition A.1.1. Suppose the covariance matrix Σ∗ has conditional independence struc-

ture T ∗ with leaf node a and its neighbor b. Consider a covariance matrix Σq defined as

follows:

Σq
ij =

Σ∗ij − 1

Ω∗aa
if i = j = a

Σ∗ij + ci1 0 < ci1 < D∗ij if i = j = b

Σ∗ij otherwise,

The conditional independence structure T q of Σq is given by the tree obtained by exchanging

positions of node a and b in T ∗.

Proof. Relabeling if necessary, assume that node n is a leaf node and node n − 1 is its

62

neighbor in T ∗. Define B1 and B2 as follows:

B1
ij =

 ci1 0 < ci1 < D∗n−1n−1 if i = j = n− 1

0 otherwise
,

B2
ij =

 − 1
Ω∗nn

if i = j = n

0 otherwise
.

We also define an intermediate matrix ΣI = Σ∗ + B2. Therefore Σq = ΣI + B1. The proof

of this proposition can be split in the following steps:

(i) We prove that for ΣI column n is a multiple of column n − 1 making it a low rank

matrix.

(ii) We add B1 to ΣI to get Σq. In Σq column n is a multiple of column n−1 at all elements

other than n− 1st. This makes node n− 1 a leaf node connected to node n as we see

in Lemma A.1.2.

(iii) We prove that the independence structure of the rest of the nodes does not change.

This is done by proving 2 claims:

(a) Conditional independence relations do not change when if conditioning is not on

node n or node n− 1.

(b) Any pair of nodes which were independent conditioned on n−1 in Σ∗ are indepen-

dent conditioned on n in Σq.

63

A.1.1 Proof of Part(i) - Column n of ΣI is a multiple of column n− 1:

The precision matrix Ω∗ is of the form:

Ω∗ =

Ω∗11 . . . Ω∗1n−1 0

...
. . .

...
...

Ω∗1n−1 . . . Ω∗n−1n−1 Ω∗n−1n

0 . . . Ω∗n−1n Ω∗nn

 . (A.1)

For notational convenience, in what follows, we label the blocks in (A.1) as Ω∗x,Ω
∗
y and Ω∗z,

so that:

Ω∗ =

 Ω∗x Ω∗y

(Ω∗y)
T Ω∗z

 .
As depicted in (A.1), block Ω∗y is a n−1 length vector with a non zero only at position n−1.

The covariance matrix Σ∗ = (Ω∗)−1 is as follows:

Σ∗ =

Σ∗11 . . . Σ∗1n−1 Σ∗1n

...
. . .

...
...

Σ∗1n−1 . . . Σ∗n−1n−1 Σ∗n−1n

Σ∗1n . . . Σ∗n−1n Σ∗nn

 .

As with Ω∗, we write it in blocks as:

Σ∗ =

 Σ∗x Σ∗y

(Σ∗y)
T Σ∗z

 . (A.2)

By the matrix inversion lemma, we have:

Σ∗x = (Ω∗x)
−1 + (Ω∗x)

−1Ω∗y[Ω
∗
z − (Ω∗y)

T (Ω∗x)
−1(Ω∗y)]

−1(Ω∗y)
T (Ω∗x)

−1.

64

To ease notation, we define c2 , [Ω∗z − (Ω∗y)
T (Ω∗x)

−1(Ω∗y)]
−1. The (n − 1)st column of Σ∗x is

given as follows:

(Σ∗x):,n−1 = [1 + c2(Ω∗x)
−1
n−1,n−1(Ω∗n−1n)2](Ω∗x)

−1
:,n−1. (A.3)

Note that (Σ∗x)n−1,n−1 = Σ∗n−1n−1 and (Ω∗x)n−1,n−1 = Ω∗n−1n−1.

By the matrix inversion lemma, we also have:

Σ∗y = −(Ω∗x)
−1Ω∗y[Ω

∗
z − (Ω∗y)

T (Ω∗x)
−1(Ω∗y)]

−1.

Substituting c2 for [Ω∗z − (Ω∗y)
T (Ω∗x)

−1(Ω∗y)]
−1 and the value of Ω∗y from equation (A.1) we

get:

Σ∗y = −c2Ω∗n−1n(Ω∗x)
−1
:,n−1. (A.4)

By Equations (A.3) and (A.4) we have:

Σ∗y =
−c2Ω∗n−1n

[1 + c2(Ω∗x)
−1
n−1,n−1(Ω∗n−1n)2]

(Σ∗x):,n−1. (A.5)

Hence, the nth column of Σ∗ is a multiple of the (n− 1)st column except for the nth element.

Also, by the matrix inversion lemma Σ∗nn = Σ∗z = c2.

Now we look at the intermediate matrix ΣI which is given as follows:

ΣI =

Σ∗11 . . . Σ∗1n−1 Σ∗1n

...
...

...
...

Σ∗1n−1 . . . Σ∗n−1n−1 Σ∗n−1n

Σ∗1n . . . Σ∗n−1n Σ∗nn − 1
Ω∗nn

 . (A.6)

Now we prove that ΣI is a rank deficient matrix and its nth column is a multiple of its (n−1)st

column. Specifically, letting c3 ,
−c2Ω∗n−1n

[1+c2(Ω∗x)−1
n−1,n−1(Ω∗n−1n)2]

, we show that ΣI
:,n = c3ΣI

:,n−1. This

is true for the first (n − 1) elements by Equation (A.5). Basically we need to prove the

65

following:

Σ∗nn −
1

Ω∗nn
= c3Σ∗n−1n. (A.7)

Expanding the LHS in Equation (A.7), we get

Σ∗nn −
1

Ω∗nn
=

1

Ω∗nn − (Ω∗n−1n)2(Ω∗x)
−1
n−1n−1

− 1

Ω∗nn

=
c2

Ω∗nn
(Ω∗n−1n)2(Ω∗x)

−1
n−1n−1.

(A.8)

For the RHS of Equation (A.7), we substitute Σ∗n−1n from Equation (A.4) and the value of

c3 to get the following:

c3Σ∗n−1n =
c2

2(Ω∗n−1n)2

[1 + c2(Ω∗x)
−1
n−1,n−1(Ω∗n−1n)2]

(Ω∗x)
−1
n−1n−1

=
c2(Ω∗n−1n)2

[c−1
2 + (Ω∗x)

−1
n−1,n−1(Ω∗n−1n)2]

(Ω∗x)
−1
n−1n−1

=
c2

Ω∗nn
(Ω∗n−1n)2(Ω∗x)

−1
n−1n−1.

(A.9)

From Equations (A.8) and (A.9) we conclude that that (ΣI):,n = c3(ΣI):,n−1. Hence, ΣI is

a rank deficient matrix. Also note that the first n − 1 principal sub matrices of ΣI have

positive determinant by the positive definiteness of Σ∗. Hence, rank(ΣI) = n− 1.

66

A.1.2 Proof of part (ii) - Node n− 1 is a leaf node connected to node n in the

independence structure of Σq:

Next we add B1 to ΣI to get Σq:

Σq =

Σ∗11 . . . Σ∗1n−1 Σ∗1n

...
...

...
...

Σ∗1n−1 . . . Σ∗n−1n−1 + cn−1
1 Σ∗n−1n

Σ∗1n . . . Σ∗n−1n Σ∗nn − 1
Ω∗nn

 ,

for any 0 < cn−1
1 < D∗n−1n−1. In Σq column n − 1 is not multiple of column n, hence it is a

symmetric positive definite matrix making it a valid covariance matrix. Also, column n− 1

is a multiple at all indices except at index n. In order to prove that node n− 1 is a leaf node

connected to node n, we use Lemma A.1.2.

Lemma A.1.2. If in any covariance matrix Σ, column n− 1 is a multiple α 6= 0 of column

n except at position n− 1, then in the independence structure of Σ, node n− 1 is a leaf node

connected to node n.

Proof of Lemma 1: We look at the edges of node n − 1 given by the (n − 1)st column of

Ω = Σ−1.

|Ωn−1i| =
|det(Σ−(n−1),−i)|

det(Σ)

For i /∈ n, n− 1, Ωn−1i = 0 as the submatrix Σ−(n−1),−i is rank deficient by assumption. Note

that Ωn−1n 6= 0, because by contradiction if that was true, Ω would be a block diagonal with

node n − 1 as one block. This would imply that Σ would be a block diagonal with node

n− 1 as one block, which cannot be the case as Σn−1n = αΣnn 6= 0. Hence node n− 1 is a

67

leaf node connected to node n.

By Lemma A.1.2, node n− 1 is a leaf node connected to node n in T q.

A.1.3 Proof of part (iii) - Structure of the remaining tree does not change:

In order to prove this part, we need the following lemma:

Lemma A.1.3. For any random vector Y = [Y1, Y2, . . . , Yn], Y ∼ N(0,Σ), Yi is independent

of Yj conditioned on Yk if and only if

Σij =
ΣikΣjk

Σkk

.

Proof of Lemma A.1.3: The probability distribution of Y−k conditioned on Yk is given as

follows:

Y−k | Yk ∼ N(Σ−k,kΣ
−1
kk Yk,Σ−k,−k −

Σk,−kΣ−k,k
Σkk

).

For Yi to be independent of Yj conditioned on Yk, the i, j component of the conditional

covariance matrix must be zero, giving

Σij =
ΣikΣjk

Σkk

.

Proof of part (iiia) - Conditional independence relations, when conditioning is not on n or

n− 1, don’t change:

This is a direct consequence of Lemma A.1.3 as Σq
kk = Σ∗kk for k 6= n, n− 1.

68

Proof of part (iiib) - Any pair of nodes which were independent conditioned on n− 1 in Σ∗

are independent conditioned on n in Σq:

Suppose node i and node j were independent conditioned on node n − 1 in Σ∗ and

i, j 6= n. Then by Lemma A.1.3 we have:

Σ∗ij =
Σ∗n−1iΣ

∗
n−1j

Σ∗n−1n−1

.

From Equation(A.2), note that Σ∗n−1i = (Σ∗x)n−1i and Σ∗n−1j = (Σ∗x)n−1j, also Σ∗ni = (Σ∗y)i

and Σ∗nj = (Σ∗y)j. So, by Equation (A.5), we have:

Σ∗ij =
Σ∗niΣ

∗
nj

c3Σ∗n−1n

.

Since the off diagonal terms of Σ∗ and Σq are equal, we have:

Σq
ij =

Σq
niΣ

q
nj

c3Σq
n−1n

.

By Equation (A.7) we can substitute the denominator to obtain:

Σq
ij =

Σq
niΣ

q
nj

Σq
nn

.

Therefore, by Lemma A.1.3, in the graphical structure for Σq, i and j are independent

conditioned on n.

Proving parts (i), (ii) and (iii) proves Proposition A.1.1, that the conditional independence

structure of Σq is given by the tree T q. For a leaf node a and its neighbor b in T ∗, the

decomposition Σo = Σq +Dq which results in the exchange to nodes a and b is as follows:

Σq
ij =

Σ∗ij − 1

Ω∗aa
if i = j = a

Σ∗ij + ci1 0 < ci1 < D∗ij if i = j = b

Σ∗ij otherwise,

69

Dq
ii =

D∗ii + 1

Ω∗aa
if i = a

D∗ii − ci1 if i = b

D∗ii otherwise,

Thus far, we have only considered the case when Sq has just one node. This analysis directly

extends to the case when Sq has more than one nodes. The Σq and Dq matrices in that case

are as follows:

Σq
ij =

Σ∗ij − 1

Ω∗ij
if i = j ∈ Sq

Σ∗ij + ci1 if i = j ∈ Neighbor(Sq)

Σ∗ij otherwise,

Dq
ii =

D∗ii + 1

Ω∗ii
if i ∈ Sq

D∗ii − ci1 if i ∈ Neighbor(Sq)

D∗ii otherwise,

where Neighbor(Sq) is the set of neighbor nodes of all the nodes in Sq. Also, ci1 is chosen

such that 0 < ci1 < D∗ii. This completes the proof of Theorem 1.

A.2 Proof of Theorem 2

We prove this theorem by proving that the off diagonal terms of covariance matrix are

enough to determine the structure of the underlying tree up to the equivalence set TT ∗ . The

main building block of this proof and of the algorithm presented in Section 5 is to categorize

any set of 4 nodes as a star shape or a non-star shape. Moreover, if it is a non star star

shape we further divide the set of 4 nodes in half forming 2 pairs of nodes.

70

Figure A.1: Examples of classification of 4 nodes as star shape or non-star shape.

Definition A.2.1. • Four nodes {i1, i2, i3, i4} form a non-star shape if there exists a

node ik in the tree T ∗1 such that exactly two nodes among the four lie in the same

connected component of T ∗ \ ik.

• If {i1, i2, i3, i4} does not form a non-star shape, we say they form a star shape.

It is easy to see that in the event that a set of 4 nodes forms a non star, there exists a

grouping such that the 2 nodes in the same connected component form the first pair and

the other 2 nodes form the second pair. Examples of star shape and non-star shape are

presented in Figure A.1. This categorization is done using only the off-diagonal elements of

the covariance matrix, hence this property remains invariant to diagonal perturbations, that

is, every set of 4 nodes falls in the same category in any tree obtained from the decomposition

of Σo = Σ′ +D′ as Σ′ij = Σ∗ij ∀i 6= j.

The proof of this theorem is split in 3 parts:

(i) Prove that it is possible to categorize any set of 4 nodes as star shape or non-star shape

using only off diagonal elements of the covariance matrix.

1Note that nothing prevents ik to be one of the four nodes.

71

Figure A.2: Conditional independence for non-star shape

(ii) Prove that this categorization of 4 nodes completely defines all the possible partitions

of the original tree in 2 connected components such that the connected components

have at least 2 node.

(iii) Prove that these partitions of a tree into connected components completely define the

tree structure up to the equivalence set TT ∗ .

A.2.1 Proof of Part (i) - Categorization of 4 nodes as star/non-star shape:

We first state the conditions using only off-diagonal elements for a set of 4 nodes

to be categorized as non-star shape. Assume that a set of 4 nodes {i1, i2, i3, i4} satisfy the

definition of a non-star shape such that nodes i1 and i2 form one pair and i3 and i4 form the

second pair. This is true if and only if:

Σ∗i1i3
Σ∗i1i4

=
Σ∗i2i3
Σ∗i2i4

,

Σ∗i2i1
Σ∗i3i1

6=
Σ∗i2i4
Σ∗i3i4

and

Σ∗i2i1
Σ∗i4i1

6=
Σ∗i2i3
Σ∗i3i4

.

(A.10)

The first equality and the second inequality imply the last inequality. When nodes {i1, i2, i3, i4}

form a non star shape, they either satisfy a conditional independence structure shown in Fig-

72

ure A.2(a) or A.2(b) for some nodes ik and ik′ .

For Figure A.2(a), the following conditional independence relations hold:

i1 ⊥ i3, i4|i2, (A.11)

i3 6⊥ i4|i2. (A.12)

Using Lemma A.1.3, we get the following conditions for the conditional independence relation

in Equations (A.11) and (A.12):

Σ∗i2i2 =
Σ∗i1i2Σ

∗
i3i2

Σ∗i1i3
=

Σ∗i1i2Σ
∗
i4i2

Σ∗i1i4
6=

Σ∗i3i2Σ
∗
i4i2

Σ∗i3i4
. (A.13)

Using Equation (A.13) we get the relations in Equation (2.3).

For Figure A.2(b), the following conditional independence relations hold:

i1 ⊥ i3, i4|ik′ , (A.14)

i2 ⊥ i3, i4|ik′ , (A.15)

i3 6⊥ i4|ik′ . (A.16)

Using Lemma A.1.3, we get the following conditions for the conditional independence relation

in Equations (A.14), (A.15) and (A.16):

Σ∗ik′ ik′ =
Σ∗i1ik′Σ

∗
i3ik′

Σ∗i1i3
=

Σ∗i1ik′Σ
∗
i4ik′

Σ∗i1i4
=

Σ∗i2ik′Σ
∗
i3ik′

Σ∗i2i3
=

Σ∗i2ik′Σ
∗
i4ik′

Σ∗i2i4
6=

Σ∗i3ik′Σ
∗
i4ik′

Σ∗i3i4
. (A.17)

Using Equation (A.17), we get the conditions in Equation (2.3). Note that for both the cases

in Figure A.2, the Equation (2.3) remains the same if i1 and i2 exchange positions.

73

Figure A.3: Conditional independence for star shape.

Next, we state the conditions using only off-diagonal elements for a set of 4 nodes to be

categorized as a star shape. Assume that a set of 4 nodes {i1, i2, i3, i4} satisfy the definition

of a star shape. This is true if and only if:

Σ∗i1i3
Σ∗i1i4

=
Σ∗i2i3
Σ∗i2i4

,

Σ∗i2i1
Σ∗i3i1

=
Σ∗i2i4
Σ∗i3i4

and

Σ∗i2i1
Σ∗i4i1

=
Σ∗i2i3
Σ∗i3i4

.

(A.18)

First 2 equalities imply the third equality. Any set of 4 nodes {i1, i2, i3, i4} can form a star

structure only if their conditional independence relation is given by Figure A.3(a) or A.3(b)

for some node ik. For Figure A.3(a), the conditional independence relations are given as:

i2 ⊥ i3, i4|i1, (A.19)

i3 ⊥ i4|i1. (A.20)

Using Lemma A.1.3, we get the following for these conditional independence relations in

Equations (A.19) and (A.20):

Σ∗i1i1 =
Σ∗i1i2Σ

∗
i1i3

Σ∗i2i3
=

Σ∗i1i2Σ
∗
i1i4

Σ∗i2i4
=

Σ∗i1i4Σ
∗
i1i3

Σ∗i4i3
. (A.21)

74

Equation (A.21) implies Equation (2.4).

For Figure A.3(b), the conditional independence relations are given as:

i1 ⊥ i2, i3, i4|ik, (A.22)

i2 ⊥ i3, i4|ik, (A.23)

i3 ⊥ i4|ik. (A.24)

Using Lemma A.1.3, we get the following for the conditional independence relations in Equa-

tions (A.22), (A.23) and (A.24):

Σ∗ikik =
Σ∗i1ikΣ

∗
i2ik

Σ∗i1i2
=

Σ∗i1ikΣ
∗
i3ik

Σ∗i1i3
=

Σ∗i1ikΣ
∗
i4ik

Σ∗i1i4
=

Σ∗i2ikΣ
∗
i3ik

Σ∗i2i3
=

Σ∗i2ikΣ
∗
i4ik

Σ∗i2i4
=

Σ∗i3ikΣ
∗
i4ik

Σ∗i3i4
. (A.25)

Equation (A.25) implies Equation (2.4).

Hence using only the off diagonal terms, checking the conditions in Equations (2.3) and (2.4),

any set of 4 nodes can be classified as a star shape or non-star shape.

A.2.2 Proof of Part (ii) - Partitioning of the tree in 2 connected components:

We prove this by presenting an explicit algorithm to obtain a specific partition of the

original tree T ∗, which would also be a valid partition of T ′, using the categorization of any

set of 4 nodes as a star shape or non-star shape. This procedure can be performed with

different initializations to obtain all the possible partitions.

Let A denote the set of all the nodes in T ∗.

75

Definition A.2.2. A subtree B of a tree T ∗ is a set of nodes such that B and A \B form

a connected component in T ∗. The pair of subtrees B and A \B are called complementary

subtrees.

For any set of 4 nodes {i1, i2, i3, i4} that form a non-star shape such that nodes i1

and i2 form a pair, we obtain the smallest subtree containing i1 and i2 by Algorithm 2.

Basically, we fix i1, i2 and i3 and scan through all the remaining nodes to form a set of 4

nodes and check if it forms a star or non-star shape. If this set of 4 nodes forms a star shape

or forms a non-star shape such that the scanned node pairs with i1 or i2, we put it in group

1, otherwise, we put it in group 2. Once we are done scanning through all the nodes, group

1 gives the smallest subtree and group 2 gives its complementary subtree.

76

Figure A.4: Suppose i1 = 7, i2 = 9 and i3 = 5. If j is in group 2, {i1, i2, i3, j} is categorized as a

non star and j pairs with i3. If j is in group 1, {i1, i2, i3, j} is either categorized as a star or it is

categorized as a non star and j pairs with i1 or i2.

Algorithm 2 Partition all the nodes in complementary subtrees.

Input - Observed Covariance Matrix (Σo), Set of 4 nodes({i1, i2, i3, i4})
Output - The smallest subtree containing i1 and i2(group1) and the complementary subtree
(group2).

1: procedure SmallestSubtree(Σo, {i1, i2, i3, i4})
2: n rows← size(Σo, 1)
3: index← {i1, i2, i3, 0}
4: for j = 1 to n rows do
5: if j in group1 or group2 then
6: continue
7: end if
8: index[4] = j
9: status, pair1, pair2← IsStarShape(index,Σo)

10: if status then . If {i1, i2, i3, j} forms a star shape, add j to group1.
11: group1.append(j)
12: else
13: if j pairs with index[3] then . If j pairs with i3, add j to group2.
14: group2.append(j)
15: else
16: group1.append(j) . Otherwise add j to group1.
17: end if
18: end if
19: end for
20: return group1, group2
21: end procedure

77

Proof of Correctness of Algorithm 2

Consider the tree T ∗. We denote the smallest subtree containing nodes i1 and i2 by

B. Let ik′ denote the node in B that has an edge with the connected component formed by

A \ B. Let ik be the node in A \ B that has an edge with a node in B. In this case ik is

a node such that nodes i1 and i2 lie in the same connected component of T ∗ \ ik. By the

definition of non-star shape, i3 cannot be in B. Also, a node j can be in A \ B if and only

if nodes {i1, i2, i3, j} are non star and j pairs with i3 as nodes i1 and i2 still lie in the same

connected component of T ∗ \ ik. This is illustrated in Figure A.4.

Using different i1 and i2, we get all the possible partitions of the tree T ∗.

A.2.3 Proof of Part (iii) - Recovering the tree up to unidentifiability using tree

partitions

Before going to the proof of this part, we define the terms equivalence cluster, cluster

tree, cluster subtrees, complementary cluster subtrees and the root of a cluster subtree as

follows:

Definition A.2.3. A set containing an internal node and all the leaf nodes connected to

it forms an equivalence cluster. We say that there is an edge between two equivalence

clusters if there is an edge between any node in one equivalence cluster and any node in the

other equivalence cluster. An equivalence cluster which has an edge with at most one more

equivalence cluster is called a leaf equivalence cluster.

Definition A.2.4. A tree with equivalence clusters as vertices and edges between equivalence

clusters as the edges is called a cluster tree.

78

Figure A.5: (a) Equivalence clusters for the given tree. (b) The cluster tree with equivalence

clusters as vertices.

Example of equivalence clusters and a cluster tree are presented in Figure A.5. The cluster

tree completely defines the set TT ∗ .

Definition A.2.5. A cluster subtree is a set where the equivalence clusters are plugged in

for the corresponding nodes in a subtree. Complementary cluster subtrees are the subtrees

obtained when this is done for a pair of complementary subtrees.

Definition A.2.6. The root of a cluster subtree is the equivalence cluster that has an

edge with the complementary cluster subtree.

To prove this theorem we show that the partitions obtained in part (ii) completely define

the cluster tree. We call the subtrees obtained from part (ii) input subtrees. Note that each

input subtree has at least 2 nodes. We prove this in 2 steps:

(i) The input subtrees define the equivalence clusters.

(ii) The input subtrees define the edges between the equivalence clusters.

79

Algorithm to find equivalence clusters

The algorithm to find the equivalence clusters takes all the input subtrees and per-

forms the following steps:

1. Initialize the set of discovered equivalence clusters as an empty set.

2. Identify one input subtree which does not have a subset of nodes forming another

input subtree. This input subtree forms an equivalence cluster. Append it to the list

of equivalence clusters.

3. Construct trimmed subtrees by removing the equivalence cluster from the input sub-

trees.

4. Repeat steps 2 and 3 with trimmed subtrees as input subtrees.

Proof of Correctness:

We prove the correctness of this algorithm by induction on the number of equivalence

clusters.

Base Case (k = 1):

When there is 1 equivalence cluster, there is 1 input subtree and it is the equivalence cluster.

Inductive Step:

Assume the algorithm works for a tree with k or less equivalence clusters. We prove that

the algorithm works for a tree with k + 1 equivalence clusters.

Relabeling if necessary, assume that k + 1 is a leaf equivalence cluster. Hence it forms a

subtree and no subset of the equivalence cluster can form a subset of another input subtree

(as the smallest input subtree which contains at least 2 of these nodes is the whole equivalence

80

cluster). Thus in Step 2, k + 1 is recognized as an equivalence cluster.

By trimming in Step 3, we remove the k + 1st equivalence cluster from all the subtrees.

Hence, we are left with a tree with k equivalence clusters. By inductive assumption, the

algorithm can find these k equivalence clusters. Therefore, the algorithm finds all the k + 1

equivalence clusters.

Algorithm to find the edges between equivalence clusters

For this part we identify the root of every cluster subtree as follows:

An equivalence cluster is the root of a cluster subtree if and only if, upon its removal, the

remaining elements can be written as a union of smaller cluster subtrees which are a subset

of the original cluster subtree.

To prove this claim, assume that we remove an equivalence cluster other than the root. In

that case the root must have an edge with the complementary cluster subtree and hence it

cannot be obtained by a union of smaller cluster subtrees which are a subset of the original

cluster subtrees.

The algorithm to find the edges between equivalence clusters performs the following steps:

1. Initialize the set of edges as a null set and the set of unexplored complementary cluster

subtrees as the set of all the complementary cluster subtrees.

2. Select a pair of complementary cluster subtrees from the set of unexplored complemen-

tary cluster subtrees.

3. Find the root nodes of both the cluster subtrees and append an edge between the two

roots in the set of edges.

81

4. Trim the currently selected cluster subtrees from all the cluster subtrees in the un-

explored set for which the currently explored cluster subtrees are a subset(this also

deletes the currently selected cluster subtrees from the unexplored set). Repeat Steps

2, 3 and 4 with the trimmed cluster subtrees till the unexplored set is empty.

Proof of Correctness:

We prove the correctness of this algorithm by induction on the number of equivalence

clusters.

Base Case (k = 2): In this case there are 2 cluster subtrees which are complementary cluster

subtrees. Both of them have 1 equivalence cluster which is also the root. Hence the algo-

rithm finds the edge between the two cluster subtrees.

Inductive Step: Suppose the algorithm works for a tree with k or less equivalence clusters.

We prove that the algorithm works for a tree with k + 1 equivalence clusters.

Relabeling if necessary, assume that k + 1 is a leaf equivalence cluster. Hence there exists a

pair of complementary cluster subtrees where one cluster subtree contains the k + 1 equiva-

lence cluster and the other cluster contains the first k equivalence cluster. Hence the edge of

the (k + 1)st equivalence cluster is added to the list of edges. Once this edge is recognized,

the (k + 1)st equivalence cluster is trimmed and the algorithm correctly finds the edges of

the remaining cluster tree by the inductive assumption.

Hence the input subtrees completely define the equivalence clusters and the edges

between them. This completes the proof of theorem 2.

82

A.3 Proof of Theorem 4

To prove this claim, we consider the decomposition of Σo = Σ′ + D′ such that the

conditional independence structure T ′ for Σ′ has leaf node b and its neighbor node a. We

show that Ω′bb < |Ω′ab|, that is, the leaf node b in T ′ violates the constraint. Hence, any

decomposition of Σo which results in an exchange of a leaf node with its neighbor is infeasible.

Therefore, the problem becomes identifiable.

Relabeling if necessary, assume that node n is a leaf node connected to node n− 1 in

T ∗. Recall that the decomposition of Σo = Σ′ + D′ from Proposition A.1.1 to obtain a tree

structure T ′ in which node n− 1 is a leaf node connected to node n is given by:

Σ′ij =

Σ∗ij − 1

Ω∗ij
if i = j = n

Σ∗ij + c 0 < c < D∗n−1n−1 if i = j = n− 1

Σ∗ij otherwise.

We derive the expression of Ω′ = (Σ′)−1. We denote B1 and B2 as follows:

B1 =

 c 0 < c < D∗n−1n−1 if i = j = n− 1

0 otherwise
,

B2 =

 − 1
Ω∗nn

if i = j = n

0 otherwise
.

This gives us Σ′ = Σ∗ + B1 + B2. Hence Σ′ is Σ∗ plus a rank 2 matrix. To calculate its

inverse, we first evaluate:

(Σ∗ +B1)−1 = Ω∗ − 1

1 + tr(Ω∗B1)
Ω∗B1Ω∗

= Ω∗ −
cΩ∗:,n−1Ω∗n−1,:

1 + cΩ∗n−1n−1

.

(A.26)

83

We next evaluate Ω′ as follows:

Ω′ = (Σ∗ +B1 +B2)−1 = (Σ∗ +B1)−1 − 1

1 + tr((Σ∗ +B1)−1B2)
(Σ∗ +B1)−1B2(Σ∗ +B1)−1.

This expression can be simplified by substituting the value of (Σ∗ + B1)−1 from Equation

(A.26) to arrive at:

Ω′ = Ω∗ +
(1 + cΩ∗n−1n−1)

c(Ω∗n−1n)2
Ω∗:,nΩ∗n,: −

1

Ω∗n−1n

(Ω∗:,n−1Ω∗n,: + Ω∗:,nΩ∗n−1,:). (A.27)

Now we look at the terms in positions (n− 1, n− 1) and (n− 1, n) of Ω′.

Ω′n−1n−1 = Ω∗n−1n−1 +
(1 + cΩ∗n−1n−1)

c
− 2Ω∗n−1n−1

=
1

c
.

Ω′n−1n = Ω∗n−1n +
(1 + cΩ∗n−1n−1)

cΩ∗n−1n

Ω∗nn − Ω∗n−1n −
Ω∗nnΩ∗n−1n−1

Ω∗n−1n

=
Ω∗nn

cΩ∗n−1n

.

By the original assumption we have Ω∗nn > |Ω∗n−1n|, hence Ω′n−1n−1 < |Ω′n−1n|. Therefore the

leaf node n− 1 in T ′ violates the additional constraint and hence this decomposition of Σo

is infeasible. Extending the argument, any decomposition of Σo which results in a tree T ′ in

which leaf node of T ∗ exchanges position with its neighbor is infeasible. Hence T ∗ and T ′

have the same structure.

A.4 Proof of Theorem 6

To prove this theorem, we consider Σ′ such that the conditional independence struc-

ture has b as the leaf node and a as its neighbor. Rest of the struture is the same as T ∗. We

84

find a lower bound on the minimum eigenvalue of Σ′, λ′min. If this lower bound is greater

than λmin, this implies that there exists a feasible decomposition which has conditional

independence structure different from T ∗.

In order to lower bound the minimum eigenvalue of Σ′, we upper bound the maximum

eigenvalue of Ω′. We do this using a corollary of Gerschgorin’s Theorem. We use the result

that the maximum eigenvalue of Ω′ is upper bounded by the maximum of the sum of absolute

values of all the row entries:

1

λ′min
≤ max

i

(n∑
j=1

|Ω′ij|
)
. (A.28)

From the expression of Ω′ stated in Equation (A.27) (by relabeling the nodes n and n − 1

as nodes a and b respectively), we have:

n∑
j=1

|Ω′ij| =

1
c

(
(Ω∗aa)2

(Ω∗ab)
2 + Ω∗aa

Ω∗ab

)
+

Ω∗aa(Ω∗aaΩ∗bb−(Ω∗ab)
2)

(Ω∗ab)
2 +

∑n
j=1
j 6=a,b

Ω∗aa|Ω∗qj |
|Ω∗ab|

if i = a,

1
c

(
1 + Ω∗aa

Ω∗ab

)
if i = b.(∑n

j=1
j 6=a,b
|Ω∗ij|+

Ω∗aa|Ω∗qi|
|Ω∗ab|

)
otherwise.

Using the definitions in Equation 6, we can rewrite the upper bound in Equation (A.28) as

follows:

1

λ′min
≤ max (

eab

c
,
fab

c
+ gab, hab).

Rewriting this as:

1

λ′min
≤

eab

c
if c ≤ eab−fab

gab

fab

c
+ gab if eab−fab

gab
< c ≤ fab

hab−gab

hab otherwise.

First, let us concentrate on the first case. For unidentifiability, we need:

c ≥ eabλmin.

85

To remain in the first case, we need c ≤ eab−fab
gab

. Therefore, if λmin ≤ (eab−fab)
eabgab

and D∗bb ≥

eabλmin, there would exist a feasible value of c which allows node a and b to switch positions.

Next we look at the second case. If λmin <
1
gab

, for unidentifiability, we need:

c ≥ fab

1/λmin − gab
.

To remain in the second case, we need c ≤ fab

hab−gab . Therefore, if λmin <
1
hab

and D∗bb ≥
fab

1/λmin−gab , there would exist a feasible value of c which allows node a and b to switch positions.

If λmin >
1
gab

, nothing can be said about unidentifiability. To enter the third case, we need

λmin >
1
hab

which would again imply that nothing could be said about identifiability.

86

Appendix B

Robust Estimation of Tree Structured Ising Models

B.1 Proof of Lemma 3.3.5

We prove this by induction on the number of nodes k in the path (Xi1 → Xi2 →

Xi3 · · · → Xik) for any 2 nodes Xi1 , Xik .

Base Case k = 3:

The path is (Xi1 → Xi2 → Xi3), therefore we have Xi1 ⊥ Xi3|Xi2 . For random

variables with a support size of 2, this is true if and only if they are conditionally uncorrelated,

that is,

E[Xi1Xi3|Xi2] = E[Xi1|Xi2]E[Xi3|Xi2]. (B.1)

E[Xi1|Xi2] is linear in Xi2 since the support size of Xi2 is 2 and therefore we need to need to

fit only 2 points E[Xi1|Xi2 = 1] and E[Xi1|Xi2 = −1] to completely represent the conditional

expectation. Therefore the linear least square error (LLSE) estimator of Xi1 given Xi2 is also

the minimum mean squared estimator E[Xi1|Xi2]. Utilizing the standard result for LLSE,

we have:

E[Xi1 |Xi2] = E[Xi1] + Σi1,i2Σ
−1
i2,i2

(Xi2 − E[Xi2]). (B.2)

87

Similarly we have:

E[Xi3|Xi2] = E[Xi3] + Σi3,i2Σ
−1
i2,i2

(Xi2 − E[Xi2]). (B.3)

Substituting E[Xi1|Xi2] and E[Xi3|Xi2] from Equations (B.2) and (B.3) in Equation (B.1)

we get:

E[Xi1Xi3|Xi2] =E[Xi1]E[Xi3] + E[Xi1]Σi3,i2Σ
−1
i2,i2

(Xi2 − E[Xi2])+

E[Xi3]Σi1,i2Σ
−1
i2,i2

(Xi2 − E[Xi2])+

Σi1,i2Σi3,i2(Σ
−1
i2,i2

(Xi2 − E[Xi2]))
2

E[Xi1Xi3] =E[E[Xi1Xi3 |Xi2]]

=E[Xi1]E[Xi3] + Σi1,i2Σi3,i2Σ
−1
i2,i2

.

Therefore we get Σi1,i3Σi2,i2 = Σi1,i2Σi3,i2 which implies ρi1i3 = ρi1i2ρi2i3 .

Inductive Case:

Let the statement be true for any path involving k nodes. For a path (Xi1 → Xi2 →

Xi3 · · · → Xi(k+1)
) we have Xi1 ⊥ Xi(k+1)

|Xik . Therefore the same calculation as the base

case holds true by replacing Xi2 by Xik and Xi3 by Xi(k+1)
. Therefore ρi1i(k+1)

= ρi1ikρiki(k+1)
.

By the inductive assumption, ρi1ik =
∏k

l=2 ρil−1,il , therefore, ρi1i(k+1)
=
∏k+1

l=2 ρil−1,il .

B.2 Proof of Covariance of noisy variables.

Lemma B.2.1. Consider 2 Random variables Xi and Xj with support on {−1, 1} whose

covariance is denoted by Σi,j. Now consider the noisy version of these random variables Xe
i

88

and Xe
j whose covariance is denoted by Σ′i,j. Then we have:

E[Xe
i] = (1− 2qi)E[Xi]

Σ′i,j = (1− 2qi)(1− 2qj)Σi,j

Proof. By the noise model we have:

E[Xe
i] = (1− qi)E[Xi] + qiE[−Xi]

E[Xe
i] = (1− 2qi)E[Xi].

(B.4)

We also have:

E
[
Xe
iX

e
j

]
=(1− qi)(1− qj)E[XiXj] + (1− qj)qiE[−XiXj]+

(1− qi)qjE[−XiXj] + qiqjE[XiXj]

=(1− 2qi)(1− 2qj)E[XiXj].

(B.5)

Therefore,

Σ′i,j = E
[
Xe
iX

e
j

]
− E[Xe

i]E
[
Xe
j

]
= (1− 2qi)(1− 2qj)(E[XiXj]− E[Xi]E[Xj])

= (1− 2qi)(1− 2qj)Σi,j

(B.6)

We can use Equation (B.4) to calculate the variance of every random variable in terms

of the variance of its noisy counterpart as follows:

Σi,i =1− E[Xi]
2

=1− E[Xe
i]

2

(1− 2qi)2

=1−
1− Σ′i,i

(1− 2qi)2

(B.7)

89

Figure B.1: Different possible configurations of any set of 3 nodes.

B.3 Proof that the Quadratic gives a valid solution

Consider the quadratic in Equation (3.2). We prove that this equation always has a

valid solution q1 < 0.5 for any set of 3 nodes in a tree structured graphical model.

Whenever 0 < 1− Σ′1,1 +
Σ′1,2Σ′1,3

Σ′2,3
< 1, the solution is of the form q1 = η, 1− η where

0 ≤ η < 0.5. From Equations (B.6) and (B.7), we have:

1− Σ′1,1 +
Σ′1,2Σ′1,3

Σ′2,3
= (1− 2q2

1)(1− Σ1,1 +
Σ1,2Σ1,3

Σ2,3

). (B.8)

The different possible configurations of any 3 nodes X1, X2 and X3 in any tree

structured graphical model are shown in Figure B.1. For case (a) we have Σ2,2Σ1,3 = Σ1,2Σ2,3

by Lemma 3.3.5. This gives us:

1− Σ′1,1 +
Σ′1,2Σ′1,3

Σ′2,3
= (1− 2q1)2(1− Σ1,1 +

Σ2
1,2

Σ2,2

).

Using the assumption that the absolute value of correlation is upper bounded away from

1 and lower bounded away from 0, we have 0 < Σ2
1,2 < Σ1,1Σ2,2. Also, 0 < Σ1,1 ≤ 1 and

0 < (1 − 2q1)2 ≤ 1. Therefore, for case (a), 0 < 1 − Σ′1,1 +
Σ′1,2Σ′1,3

Σ′2,3
< 1 and the quadratic

equation has valid roots. By symmetry, the quadratic equation gives valid roots for case (b)

too.

90

Case (c) is the underlying truth, therefore the quadratic equation recovers the true

underlying error.

For case(d), we have Σk,kΣ1,3 = Σ1,kΣ3,k, Σk,kΣ1,2 = Σ1,kΣ2,k and Σk,kΣ2,3 = Σ2,kΣ3,k.

This gives us:

1− Σ′1,1 +
Σ′1,2Σ′1,3

Σ′2,3
= (1− 2q1)2(1− Σ1,1 +

Σ2
1,k

Σk,k

). (B.9)

The same arguments as case (a) hold true for case (d) with node 2 replaced by node k.

Therefore, the quadratic has a valid solution in this case too.

B.4 Proof of Lemma 3.3.6, Lemma 3.3.7 and Star/Non-star Con-

dition for Generic Trees

B.4.1 Proof of Lemma 3.3.6(a)

Proof. Note that q̂2,3
1 and q̂2,4

1 are given by solving an equation similar to (3.2). As

the solution to the quadratic is defined completely by the covariance terms, all we need to

prove is:
Σ′1,2Σ′1,3

Σ′2,3
=

Σ′1,2Σ′1,4
Σ′2,4

⇐⇒
Σ′1,3
Σ′2,3

=
Σ′1,4
Σ′2,4

.

By substituting the value of Σ′i,j from Equation B.6, we now need to prove that:

Σ1,3

Σ2,3

=
Σ1,4

Σ2,4

⇐⇒ ρ1,3

ρ2,3

=
ρ1,4

ρ2,4

.

Using the correlation decay property, we get that ρ1,3 = ρ1,2ρ2,3, ρ1,4 = ρ1,2ρ2,3ρ3,4 and

ρ2,4 = ρ2,3ρ3,4. Therefore LHS = RHS = ρ1,2.

91

B.4.2 Proof of Lemma 3.3.6(b)

Proof. Using the same arguments as in the proof of Lemma 3.3.6(a), we can conclude

that we need to prove:
Σ′1,3Σ′2,4
Σ′2,1Σ′3,4

6= 1,
Σ′2,3Σ′1,4
Σ′1,2Σ′3,4

6= 1

Substituting Σ′i,j from Equation (B.6), we get:

Σ′1,3Σ′2,4
Σ′2,1Σ′3,4

=
ρ1,3ρ2,4

ρ2,1ρ3,4

,
Σ′2,3Σ′1,4
Σ′1,2Σ′3,4

=
ρ2,3ρ1,4

ρ1,2ρ3,4

.

Using the correlation decay property, we get that:

ρ1,3ρ2,4

ρ2,1ρ3,4

=
ρ2,3ρ1,4

ρ1,2ρ3,4

= ρ2
2,3 ≤ ρ2

max < 1 (B.10)

B.4.3 Proof of Lemma 3.3.7

Proof. This is equivalent to proving that

Σ′1,3
Σ′2,3

=
Σ′1,4
Σ′2,4

,
Σ′1,2
Σ′2,4

=
Σ′1,3
Σ′3,4

which is again equivalent to:

ρ1,3

ρ2,3

=
ρ1,4

ρ2,4

,
ρ1,2

ρ2,4

=
ρ1,3

ρ3,4

.

Using the correlation decay property it is easy to see that:

ρ1,3

ρ2,3

=
ρ1,4

ρ2,4

= ρ1,2,
ρ1,2

ρ2,4

=
ρ1,3

ρ3,4

.

B.4.4 Proof of Star/Non-star Condition for Generic Trees

We show how to utilize the result on a set of 4 nodes to classify any set of 4 nodes as

star/non-star in a generic tree.

92

Figure B.2: Possible conditional independence relations for non-star shape if they don’t form a

chain

If any 4 nodes {X1, X2, X3, X4} in a tree graphical model form a non-star shape such

that (X1, X2) from a pair and are not arranged in a chain, there exist nodes Xk and Xk′

such that the conditional independence structure is given by either Figure B.2(a) or B.2(b).

For the conditional independence in Figure B.2(a), we know that:

q̂2,3
4 = q̂k,24 By Lemma 3.3.7 on {X2, X3, X4, Xk},

q̂1,3
4 = q̂k,14 By Lemma 3.3.7 on {X1, X3, X4, Xk},

q̂k,24 = q̂k,14 6= q̂1,2
4 By Lemma 3.3.6(a) and Lemma 3.3.6(b)

on {X1, X2, Xk, X4}.

(B.11)

This gives us q̂2,3
4 = q̂1,3

4 6= q̂1,2
4 . Similarly, we have q̂2,4

3 = q̂1,4
3 6= q̂1,2

3 .

93

We also know that:

q̂1,3
2 = q̂1,k

2 6= q̂k,32 By Lemma 3.3.6(a) and Lemma 3.3.6(b)

on {X1, X2, Xk, X3},

q̂1,4
2 = q̂1,k

2 6= q̂k,42 By Lemma 3.3.6(a) and Lemma 3.3.6(b)

on {X1, X2, Xk, X4},

q̂k,32 = q̂3,4
2 = q̂k,42 By Lemma 3.3.7 on {X2, X3, X4, Xk},

q̂2,3
1 = q̂2,k

1 6= q̂k,31 By Lemma 3.3.6(a) and Lemma 3.3.6(b)

on {X1, X2, Xk, X3},

q̂2,4
1 = q̂2,k

1 6= q̂k,41 By Lemma 3.3.6(a) and Lemma 3.3.6(b)

on {X1, X2, Xk, X4},

q̂k,31 = q̂3,4
1 = q̂k,41 By Lemma 3.3.7 on {X1, X3, X4, Xk}.

(B.12)

These equations imply q̂1,3
2 = q̂1,4

2 6= q̂3,4
2 and q̂2,3

1 = q̂2,4
1 6= q̂3,4

1 . If the conditional indepen-

dence is as shown in Figure B.2(b), we have:

q̂2,3
1 = q̂k

′,2
1 = q̂2,4

1 = q̂k
′,4

1 By Lemma 3.3.7 on

{X1, X2, X3, Xk′} and on {X1, X2, X4, Xk′},

q̂k
′,4

1 6= q̂k,41 By Lemma 3.3.6(b) on {X1, Xk, Xk′ , X4},

q̂k,41 = q̂3,4
1 By Lemma 3.3.7 on {X1, Xk, X3, X4}.

(B.13)

These equations give us q̂2,3
1 = q̂2,4

1 6= q̂3,4
1 . Furthermore, by Equation (B.10), we have:

ρ′1,3ρ
′
2,4

ρ′1,2ρ
′
3,4

≤ ρ2
max < 1

ρ′1,3ρ
′
2,4

ρ′1,4ρ
′
2,3

= 1

(B.14)

94

Figure B.3: Possible conditional independence relations for a star shape.

By symmetry, the remaining conditions in Equation (3.3) are also satisfied.

When the 4 nodes form a star structure in the tree, their conditional independence is

given by either Figure 3.2 or there exists a node Xk such that the conditional independence is

as shown in Figure B.3. Lemma 3.3.7 proves that Equation 3.3 is satisfied if the conditional

independence is given by Figure 3.2. If the conditional independence is given by Figure B.3,

we have:

q̂2,3
1 = q̂2,k

1 = q̂k,31 By Lemma 3.3.7 on {X1, X2, X3, Xk},

q̂4,3
1 = q̂4,k

1 = q̂k,31 By Lemma 3.3.7 on {X1, X3, X4, Xk},

q̂2,4
1 = q̂2,k

1 = q̂k,41 By Lemma 3.3.7 on {X1, X2, X4, Xk}.

(B.15)

This implies that q̂2,3
1 = q̂4,3

1 = q̂4,2
1 . By symmetry, all the remaining conditions of Equation

3.3 are also satisfied.

This completes the proof that just by having access to the noisy probability distribu-

tion, it is possible to categorize any set of 4 nodes as a star/non-star shape.

B.5 Proof of Theorem 3.3.8

Given the noisy variance Σ′i,j and an estimate of the error probability vector q̂, we

estimate the non-noisy covariance as:

Σ̂i,j =
Σ′i,j

(1− 2q̂i)(1− 2q̂j)
=

Σi,j(1− 2qi)(1− 2qj)

(1− 2q̂i)(1− 2q̂j)
∀i 6= j. (B.16)

95

For the error probability vector q̂, using Equation (B.7) the non-noisy variance is estimated

as:

Σ̂i,i = 1−
1− Σ′i,i

(1− 2q̂i)2
(B.17)

To check if any conditional independence relation Xi ⊥ Xj|Xk is true, we need to

verify if it satisfies the correlation decay equation Σ̂i,jΣ̂k,k = Σ̂i,kΣ̂k,j.

We first consider T ′ where only one leaf node exchanges position with its neighbor.

Suppose in the original tree, node X1 is a leaf node connected to node X2.

Consider the error vector q̂:

q̂i = qi ∀ i 6= 1, 2,

q̂1 =
1

2

1− (1− 2q1)

√
Σ2

1,2

Σ2,2

− Σ1,1 + 1

 ,

q̂2 = 0.

(B.18)

To prove that this error vector results in T ′, we need to prove that any node Xk 6= X1, X2

which satisfies X1 ⊥ Xk|X2 in T ∗ must satisfy X2 ⊥ Xk|X1 in T ′. We note that:

Σ̂1,2 =
Σ1,2(1− 2q1)(1− 2q2)

(1− 2q̂1)
, Σ̂1,k =

Σ1,k(1− 2q1)

(1− 2q̂1)

Σ̂2,k = Σ2,k(1− 2q2), Σ̂1,1 = 1− (1− Σ1,1)(1− 2q1)2

(1− 2q̂1)2

(B.19)

Using Σ1,kΣ2,2 = Σ1,2Σ2,k, it is easy to check that Σ̂2,kΣ̂1,1 = Σ̂1,kΣ̂1,2.

Furthermore, we need to prove that any pair of nodes Xk1 , Xk2 6= X1, X2 such that

Xk1 ⊥ Xk2|X2 in T ∗ satisfy Xk1 ⊥ Xk2|X1 in T ′. Doing similar substitutions by replacing

node 2 by node k1 and node k by node k2 gives us Σ̂1,1Σ̂k1,k2 = Σ̂1,k1Σ̂1,k2 which proves that

Xk1 ⊥ Xk2|X1.

96

The remaining conditional independences not involving X1 and X2 remain intact as

the error probability for the remaining nodes is assigned to the original probability of error.

Now, consider a tree T ′ in which a set of leaf nodes S′ exchange positions with their

neighbors. For this case consider the error probability vector q̂ such that:

q̂i =
1

2

1− (1− 2qi)

√
Σ2
i,j

Σj,j

− Σi,i + 1

 ,

∀ i ∈ S′, j = Parent(i)

q̂j =0 ∀ i ∈ S′, j = Parent(i)

q̂k =qk, otherwise.

This is obtained by performing the same procedure on each leaf node one by one.

97

Appendix C

Recoverability Landscape of Tree Structured Markov

Random Fields under Symmetric Noise

C.1 Proof of Lemma 1

This proof relies on the classification of a set of 4 nodes as star/non-star. We use the

information distance metric di,j as defined in Equation (4.2) in order to achieve this

A set of 4 nodes (X1, X2, X3, X4) forms a non-star with (X1, X2) forming a pair if:

d1′,3′ + d2′,4′ = d1′,4′ + d2′,3′ 6= d1′,2′ + d3′,4′ .

The set forms a star if:

d1′,3′ + d2′,4′ = d1′,4′ + d2′,3′ = d1′,2′ + d3′,4′ .

Next, we see why these conditions for star/non-star classification are correct.

Non-Star condition: When any 4 nodes (X1, X2, X3, X4) form a non-star such that

(X1, X2) form a pair, the 4 nodes can have one of the four configurations as shown in Figure

C.1. There exist more configurations with X1 and X2 exchanging positions or X3 and X4

exchanging positions. Since X1 and X2 always occur interchangeably, the results continue

98

Figure C.1: Four possible configurations of (X1, X2, X3, X4) when they form a non-star such that

(X1, X2) form a pair.

to hold for the configurations where X1 and X2 exchange positions. Same argument holds

for X3 and X4.

Note that the distances di,j are additive along the paths connecting Xi and Xj.

Therefore for all the cases, it is easy to see that:

d1,3 + d2,4 = d1,4 + d2,3.

Therefore we have that :

d1,3 + d2,4 + d1,1′ + d2,2′ + d3,3′ + d4,4′ = d1,4 + d2,3 + d1,1′ + d2,2′ + d3,3′ + d4,4′ ,

d1′,3′ + d2′,4′ = d1′,4′ + d2′,3′(As di′,j′ = di,i′ + di,j + dj,j′).

Furthermore, one can see that

d1,3 + d2,4 − (d1,2 + d3,4) ≥ 2dmin.

Adding and subtracting the noise distances again, we get that

d1′,3′ + d2′,4′ − (d1′,2′ + d3′,4′) ≥ 2dmin.

99

Figure C.2: Two possible configurations of (X1, X2, X3, X4) when they form a star.

Star condition: When the 4 nodes form a star, they can have either of the two configura-

tions in Figure C.2. All the nodes are allowed to exchange positions with each other. Using

the distance additivity for this setting, it is easy to see that, for both the cases,

d1,3 + d2,4 = d1,4 + d2,3 = d1,2 + d3,4.

Furthermore using di′,j′ = di,i′ + di,j + dj,j′ , we get that

d1′,3′ + d2′,4′ = d1′,4′ + d2′,3′ = d1′,2′ + d3′,4′ .

This concludes the proof that the distances between noisy random variables can be

used to classify a set of 4 nodes as star/non-star thereby proving that the only unidentifia-

bility could possibly be within a leaf cluster.

C.2 Obtaining Equation (4.6)

From Equation (4.3), we have P1′,3′ = E1P1,3E3, P1′,2′ = E1P1,2E2, P2′,3′ = E2P2,3E3.

From Equation (4.4), we have P2′ = (1− q2)P2 + q2
k
I. Substituting these in Equation (4.5),

we get:

P2′,3′P
−1
1,′3′P1′,2′ =E2

1

(1− q2)

(
P2′ −

q2

k
I
)
E2 (C.1)

100

P2′,3′P
−1
1′,3′P1′,2′ =E2

1

(1− q2)

(
P2′ −

q2

k
I
)
E2 (C.2)

P2′,3′P
−1
1′,3′P1′,2′ =

E2

1− q2

(1− q2)
(
P2′ −

q2

k
I
) E2

1− q2(
E2

1− q2

)−1

P2′,3′P
−1
1′,3′P1′,2′

(
E2

1− q2

)−1

=(1− q2)
(
P2′ −

q2

k
I
) (C.3)

Note that:
E2

1− q2

= I +
q2O

k(1− q2)(
E2

1− q2

)−1

= I − q2O

k

(C.4)

Substituting this back in Equation (C.3)(
I − q2O

k

)
P2′,3′P

−1
1′,3′P1′,2′

(
I − q2O

k

)
= (1− q2)

(
P2′ −

q2

k
I
)

q2
2

k2
(OP2′,3′P

−1
1′,3′P1′,2′O − kI)− q2

k
(OP2′,3′P

−1
1′,3′P1′,2′ + P2′,3′P

−1
1′,3′P1′,2′O − kP2′ − I)

+ P2′,3′P
−1
1′,3′P1′,2′ − P2′ = 0

(C.5)

To simplify this, we observe that:

OP2′,3′ = OP1′,3′ = OP ′3

P2′,3′O = P2′O

P1′,2′O = P1′,3′O = OP ′1

OP1′,2′ = OP2′

(C.6)

Substituting these back in Equation (C.5), we get:

q2
2

k2
(O − kI)− q2

k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1′,3′P1′,2′ − P2′ = 0 (C.7)

101

C.3 Proof of Theorem 4.4.2

Proof. Note that a graphical model on any subset of 3 nodes comprising of a leaf node X2,

it’s parent X1 and an arbitrary third node X3 always forms a tree and satisfies X2 ⊥ X3|X1.

However, due to the unidentifiability between X2 and X1, we don’t know a priori whether

X2 ⊥ X3|X1 or X1 ⊥ X3|X2. Therefore, we attempt to estimate the probability of error for

both the cases using an equation equivalent to Equation (4.7). All the cases for which the

equation has a feasible solution can explain the noisy observations.

Clearly, the case corresponding to the ground truth X2 ⊥ X3|X1 has a solution. Now

we see what happens when we check whether node X2 is the middle node by solving Equation

(C.1) when the ground truth has node 1 in the middle. That is, we try to estimate q̃1,3
2 when

X2 ⊥ X3|X1.

In the current setting, we have:

P2,3 = P2,1P
−1
1 P1,3.

We also have:

P ′2,3 = E2P2,3E3, P
′
1,3 = E1P1,3E3, P

′
1,2 = E1P1,2E2.

Substituting these in Equations (C.1) and (4.6), we get:

E2P2,1P
−1
1 P1,2E2 =Ẽ1,3

2

1

(1− q̃1,3
2)

(
P2′ −

q̃1,3
2

k
I

)
Ẽ1,3

2

s.t.0 ≤ q̃1,3
2 < 1,

(C.8)

(q̃1,3
2)2

k2
(O − kI)− q̃1,3

2

k
(OP2′ + P2′O − kP2′ − I)

+ E2P2,1P
−1
1 P1,2E2 − P2′ = 0 s.t. 0 ≤ q̃1,3

2 < 1.

(C.9)

102

Note that this equation does not depend on the random variable X3. Therefore,

whether a leaf node and its parent are unidentifiable depends solely on the joint distribution

of the parent node X1 and the noisy leaf node X ′2. When this equation does not have a

solution, we can conclude that X2 is a leaf node. Thus any tree in TT ∗ which has X1 as a

leaf node can be ruled out.

Now, let us focus on the case when Equation (C.9) has a solution. We aim to obtain

X̃ whose graphical model is T̃ . In order to do that, we assign the probability of error q̃i

which resulted in each of the observed noisy random variable X ′i as follows:

q̃1 = 0, q̃2 = q̃1,3
2 , q̃i = qi ∀i /∈ {1, 2}. (C.10)

Therefore we have that X̃i = Xi ∀i /∈ {1, 2}. Note that, by construction, this results in

X̃1 ⊥ Xi|X̃2 ∀i /∈ {1, 2}. We next prove that for any pair of nodes such that Xk1 ⊥ Xk2|X1

and k1, k2 /∈ {1, 2}, we have that Xk1 ⊥ Xk2|X̃2. This is equivalent to proving that Pk1,k2 =

Pk1,2̃P
−1
2̃
P2̃,k2

where Pk1,2̃, P2̃ and P2̃,k2
are the joint PMF matrix of Xk1 and X̃2, diagonal

marginal of X̃2, and the joint PMF matrix of X̃2 and Xk2 respectively. We have that:

Pk1,2 = Pk1,1P
−1
1 P1,2, P2,k2 = P2,1P

−1
1 Pk2,1.

Substituting these in Pk1,k2 = Pk1,1P
−1
1 P1,k2 , we get:

Pk1,k2 = Pk1,2P
−1
1,2P1P

−1
2,1P2,k2 .

Note that Pk1,2E2 = Pk1,2̃Ẽ
1,3
2 = Pk1,2′ . Using this along with Equation (C.8) we get Pk1,k2 =

Pk1,2̃P
−1
2̃
P2̃,k2

.

The above analysis of ruling out the trees with X1 as a leaf node when Equation

(C.9) does not have a solution and constructing X̃ when Equation (C.9) has a solution,

103

holds true for every pair of parent and leaf nodes. Thus any tree in TT ∗ \ TsubT ∗ can be ruled

out. Furthermore, for any tree T̃ ∈ TsubT ∗ in which leaf nodes LT̃ ⊆ Lsub exchange positions

with their parents, we can define the probability of error for q̃i for every node X̃i ∈ X̃ as

follows:

q̃i = q̃pi,3i ∀i ∈ LT̃ ,

q̃pi = 0 ∀i ∈ LT̃ ,

q̃i = qi otherwise,

where Xpi is the parent node of Xi. It is straightforward to see that the graphical model of

X̃ is T̃ .

C.4 Proof of Theorem 4.4.3

We first present a simple equation that helps in working with symmetric and per-

turbed symmetric models:(
α1I + (1− α1)

O

k

)(
α2I + (1− α2)

O

k

)
=

(
α1α2I + (1− α1α2)

O

k

)
. (C.11)

When X2 is a leaf node, X1 is its parent node and X3 is an arbitrary third node, X3 ⊥ X2|X1.

This gives us:

P2,3 = P2,1P
−1
1 P1,2.

Substituting this in P2′,3′P
−1
1′,3′P1′,2′ while noting that Pa′,b′ = EaPa,bEb, we get that:

P2′,3′P
−1
1′,3′P1′,2′ = E2P2,1P

−1
1 P1,2E2. (C.12)

104

Now, using P1 = I/k, P2|1 = α1,2I + (1− α1,2)O
k

, E2 = (1− q2)I + q2
O
k

and Equation C.11,

we get that:

P2′,3′P
−1
1′,3′P1′,2′ = E2P2,1P

−1
1 P1,2E2 =

1

k

(
(1− q2)2α2

1,2I + (1− (1− q2)2α2
1,2)

O

k

)
.

With these expressions, along with P2′ = I
k
, we now look at the quadratic in Equation (4.7).

x2

k2
(O − kI)− x

k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1,′3′P1′,2′ − P2′

=
x2

k2
(O − kI)− 2x

k
(O/k − I) +

1

k

(
(1− q2)2α2

1,2I + (1− (1− q2)2α2
1,2)

O

k

)
− I

k

=
(x− 1)2 − (1− q2)2α2

2,1

k
(O − kI).

Thus, Equation 4.7 has a solution x = 1− (1− q2)α1,2.

C.5 Proof of Theorem 4.4.4

Using Equation (C.12), and recalling that P1 = P1′ = P2 = P2′ = I
k
, we have that:

x2

k2
(O − kI)− x

k
(OP2′ + P2′O − kP2′ − I) + P2′,3′P

−1
1,′3′P1′,2′ − P2′ (C.13)

=
x2

k2
(O − kI)− 2x

k2
(O − kI) + E2P2,1P

−1
1 P1,2E2 −

I

k
(C.14)

=

(
x− 1

k

)2

(O − kI)− O

k2
+ kE2P2,1P1,2E2. (C.15)

Substituting E2 = (1− q2)I + q2
O
k

and P2,1 = (αa,b − δa,b)I + (1− αa,b)Ok + ∆a,b, we get:

E2P2,1P1,2E2 =

(
(1− q2)I + q2

O

k

)(
(αa,b − δa,b)I + (1− αa,b)

O

k
+ ∆a,b

)
(C.16)(

(αa,b − δa,b)I + (1− αa,b)
O

k
+ ∆T

a,b

)(
(1− q2)I + q2

O

k

)
. (C.17)

105

Now we have:

E2P2,1 =

(
(1− q2)I + q2

O

k

)(
(αa,b − δa,b)I + (1− αa,b)

O

k
+ ∆a,b

)
=(1− q2)(αa,b − δa,b)I + (1− q2)(1− αa,b)

O

k
+ (1− q2)∆a,b

+ q2(αa,b − δa,b)
O

k
+ q2(1− αa,b)

O

k
+ q2δa,b

O

k

= (1− q2)(αa,b − δa,b)I + (1− (1− q2)αa,b)
O

k
+ (1− q2)∆a,b

Define α′a,b , (1− q2)αa,b, δ
′
a,b , (1− q2)δ′a,b and ∆′a,b = (1− q2)∆a,b, we get:

E2P2,1 = (α′a,b − δ′a,b)I + (1− α′a,b)
O

k
+ ∆′a,b.

Noting that P1,2E2 = (E2P2,1)T , we get:

E2P2,1P1,2E2 =
1

k2

(
((α′a,b − δ′a,b)2 + (δ′a,b)

2)I +
O

k
(1− (α′a,b)

2) + (α′a,b − δ′a,b)((∆′a,b)T + ∆′a,b)

)
This gives us:

Q2(x) =‖
(
x− 1

k

)2

(O − kI)− O

k2
+ kEbPb,aPa,bEb‖2

F

=‖
(
x− 1

k

)2

(O − kI) + ((α′a,b − δ′a,b)2 + δ′
2
a,b)

I

k
− α′2a,b

O

k2
+

(α′a,b − δ′a,b)
k

(∆′
T
a,b + ∆′a,b)‖2

F

Each diagonal element (total k) of the matrix is
(
x−1
k

)2− (x−1)2

k
+

(α′a,b−δ
′
a,b)

2+δ′2a,b
k

−α′2a,b
k2

.

Each element at the positions of the support (∆′a,b + ∆′Ta,b) (total 2k) is
(
x−1
k

)2 − α′2a,b
k2

+

δ′a,b(α
′
a,b−δ

′
a,b)

k
.

Every remaining element (total k2 − 3k) is
(
x−1
k

)2 − α′2a,b
k2

. To simplify the above equation,

we define γ = (1− x)2 − α′2a,b, e = δ′a,b(α
′
a,b − δ′a,b). Each diagonal element is γ

k2
− γ

k
− 2e

k
.

106

Each element at the positions of the support (∆′a,b + ∆′Ta,b) (total 2k) is γ
k2

+ e
k
.

Every remaining element (total k2 − 3k) is γ
k2

. Thus, we get:

Q2(x) =k

(
γ

k2
− γ

k
− 2e

k

)2

+ 2k
(γ
k2

+
e

k

)2

+ (k2 − 3k)
γ2

k4

= 1
k3

((k − 1)γ + 2ke)2 + 2
k3

(γ + ke)2 + k−3
k3
γ2

Q2(x) is minimized for γ = − 2ke
k−1

. Substituting this, we get:

Q2(x) ≥ 2(k − 3)e2k2

k − 1
.

When k > 4, Q2(x) ≥ 0. This completes the proof that when k > 4, Equation (4.7) does

not have a solution.

Next we look at the case when k = 3. For k = 3, when γ = −3e, we get Q2(x) = 0.

The only thing that remains is to check that γ = −3e corresponds to a valid solution of x.

(1− x)2 − α′2a,b = γ

(1− x)2 − α′2a,b + 3e = 0

(1− x)2 = α′
2
a,b − 3δ′a,b(α

′
a,b − δ′a,b)

Note that α′2a,b−3δ′a,b(α
′
a,b−δ′a,b) ≥

α′2a,b
4

. Also note that for P2|1 to be a valid PMF, we need

that α > δ, 0 < α < 1. Under these constraints, it is easy to see that α′2a,b−3δ′a,b(α
′
a,b−δ′a,b) ≤

1. Therefore (1− x)2 = α′2a,b − 3δ′a,b(α
′
a,b − δ′a,b) has a solution for 0 ≤ x ≤ 1. This concludes

the proof that for k = 3, solution to Equation (4.7) always exists. In other words, for k = 3

the joint PMF matrix being circulant is a sufficient condition for unidentifiability.

107

Next we go on to prove that for k = 3, the joint PMF matrix being circulant is also a

necessary condition for unidentifiability. In order to arrive at this, note that, from Equation

C.2, a solution exists for Equation (4.7) if and only if it exists for:

P2′,3′P
−1
1′,3′P1′,2′ = Ẽ1,3

2

1

(1− q̃1,3
2)

(
P2′ −

q̃1,3
2

k
I

)
Ẽ1,3

2 s.t. 0 ≤ q̃1,3
2 < 1. (C.18)

Recall that Ẽ1,3
2 = (1 − q̃1,3

2)I + q̃1,3
2

O
k

We would like to prove that if Equation (C.18)

has a solution then the matrix P2,1 is circulant. Since P2′ = I
k
, P1 = I

k
, P2′,3′P

−1
1′,3′P1′,2′ =

E2P2,1P
−1
1 P1,2E2, we have that for some 0 ≤ q̃1,3

2 < 1:

9P2,1P1,2 = E−1
2 Ẽ1,3

2 Ẽ1,3
2 E−1

2 . (C.19)

Note that E−1
2 = ((1−q2)I+q2

O
k

)−1 = 1
1−q2 (I+ q2

1−q2
O
k

)−1 = 1
1−q2 (I−

q2
1−q2

O
k

1+
q2

1−q2
) (using Woodbury

Matrix Identity). Simplifying, we get:

E−1
2 =

1

1− q2

(I − q2
O

k
) =

1

1− q2

I + (1− 1

1− q2

)
O

k
.

Now, using Equation (C.11), we get:

E−1
2 Ẽ1,3

2 =
1− q̃1,3

2

1− q2

I +

(
1− 1− q̃1,3

2

1− q2

)
O

k

Again, using Equation (C.11), we get:

E−1
2 Ẽ1,3

2 Ẽ1,3
2 E−1

2 = (E−1
2 Ẽ1,3

2)2 =

(
1− q̃1,3

2

1− q2

)2

I +

(
1−

(
1− q̃1,3

2

1− q2

)2
)
O

k
.

We note that in Equation (C.19), the RHS has equal off-diagonal elements and equal diagonal

elements.

Before proceeding further, for the ease of notation, we define M = 3P1,2 and Mi is the ith

column of M .

Since Equation (C.19) has a solution, we have the following properties of M :

108

Figure C.3: Position of the three column vectors of matrix M for unidentifiability.

1. M is doubly stochastic (as P1 = P2 = I/3),

2. ||Mi||2 = ||Mj||2 ∀i, j ∈ {1, 2, 3} (as the diagonal elements of MTM are equal),

3. < Mi,Mj > is equal ∀i 6= j ∈ {1, 2, 3} (as the off-diagonal elements of MTM are

equal).

These properties can hold true only if the columns of M are circulant. In order to see this,

note that:

1. A necessary condition for property 1 is that M1,M2 and M3 lie on the probability

simplex.

2. For property 2 to hold, M1,M2 and M3 lie on a circle on the plane of the probability

simplex with center at (1/3, 1/3, 1/3).

3. For property 3 to hold, M1,M2 and M3 lie on an equilateral triangle of this circle.

This can be visualized in Figure (C.3). In order to see that they would be circulant,

note that once we are given the vector M1, vectors M2 and M3 are also determined. Given

109

that we know that circulated versions of M1 satisfy 1, 2 and 3, vectors M2 and M3 have to

be the circulated M1.

C.6 Proof of Lemma 4.4.5

We first analyze what happens to the solution of Equation (4.7) for 3 nodes (X1, X2, X3)

such that no 2 nodes are independent conditioned on the third. That is, their marginal dis-

tribution is not tree structured. We perform this analysis for general support size k > 2. In

this case, there exists another node, say X4, such that X1 ⊥ X2 ⊥ X3|X4. This analysis is

going to be useful in the proof of Lemma 4.4.5 as well as the algorithm design.

Lemma C.6.1. Consider any three nodes (X1, X2, X3) in a tree graphical model whose

marginals are not tree structured. Then there exists a node X4 such that X1 ⊥ X2 ⊥ X3|X4.

Solving Equation (4.7) outputs X2 as a potential center node among (X1, X2, X3) if and only

if it outputs X2 as a potential center node among (X4, X2, X3)

Proof. In this setting, we would like to estimate the probability of error of X2 using Equation

(4.7). We have that:

P2,3 = P2,4P
−1
4 P4,3,

P1,3 = P1,4P
−1
4 P4,3,

P1,2 = P1,4P
−1
4 P1,2

Using these expressions coupled with Equation (4.3) and substituting them in Equation (4.6)

we get the following quadratic equation:

(q̃1,3
2)2

k2
(O − kI)− q̃1,3

2

k
(OP ′2 + P ′2O − kP ′2 − I) + E2P2,4P

−1
4 P4,2E2 − P ′2 = 0. (C.20)

110

This is the same equation with X1 replaced by X4.

Next we go on to prove Lemma 4.4.5

Proof. First, let us look at the case when (X1, X2, X3) form a tree. If X1 ⊥ X3|X2, solution

to Equation (4.7) exists and it recovers the true error for X2. We see what happens when

X2 ⊥ X3|X1. We consider the case when there is no noise in X2 and X3. This is analysis

is sufficient, as even if there was independent noise in X2 and X3, we would have had

X ′2 ⊥ X ′3|X2. Thus we can assume that X2 and X3 already have the noise factored in.

For this case, we know that Equation (4.7) boils down to Equation (C.9) with E2 = I.

Using basic algebra, we see that all the quadratic equations corresponding to the different

matrix components are equal to the following:

(q̃1,3
2)2

4
− (q̃1,3

2)

2
+

(P2,1)0,0(P2,1)1,0

(P2,1)0,0 + (P2,1)1,0

+
(P2,1)0,1(P2,1)1,1

(P2,1)0,1 + (P2,1)1,1

= 0 s.t. 0 ≤ q̃1,3
2 < 1 (C.21)

Since the entries of P2,1 are positive and sum up to 1, the smallest root of this equation

is 0 (when one of (P2,1)0,0, (P2,1)1,0 and one of (P2,1)0,1, (P2,1)1,1 are 0) and the largest root is

1 (when all entries of P2,1 are 1/4). Since P2,1 is full rank, we can conclude that Equation

(C.21) has a solution.

Next, consider the case when (X1, X2, X3) do not form a tree. There exists a node

X4 such that X1 ⊥ X2 ⊥ X3|X4. Using the above result, we know that Equation (4.7)

has a solution when we estimate the probability of error of X2 which enforces X4 ⊥ X3|X2.

Using Lemma C.6.1, we conclude that Equation (4.7) has a solution which enforces X1 ⊥

X3|X2.

111

C.7 Algorithm Details

In this section, we provide the details of the algorithm to recover the tree upto uniden-

tifiability. When we have access to t0 (Assumption 4.5.1), we can recover TsubT ∗ . In the absence

of the knowledge of t0 , the algorithm returns one tree from TsubT ∗ . We discuss the details after

presenting the pseudocode. Also, if we have prior knowledge that the tree is identifiable only

upto TT ∗ (for instance, when k = 2 or for symmetric models), we can gain in runtime by O(n).

Obtaining ηmax We first prove that ηmax = (1− k) log(1− qmax)− 0.5k log(kpmin). First

note that for any node Xi, we have that:

Pi′|i = (1− qi)I + qi
O

k
.

Note that:

di′,i = − log

(
|det(Pi′,i)|√
det(Pi′)det(Pi)

)
= − log

(
det(Pi′|i)

√
det(Pi)

det(Pi′)

)
.

Using the matrix determinant lemma, we get det(Pi′|i) = (1− qi)k−1. Also det(Pi′) < (1/k)k

and det(Pi) ≥ pkmin. This gives us:

di′,i ≤ (1− k) log(1− qi)− 0.5k log(kpmin) , ηmax

Neighborhood Vectors We define for each node Xi, a neighborhood vector N(Xi), which

is the array of nodes Xj sorted by di′,j′ in ascending order and only contains nodes such that

di′,j′ is smaller than a threshold treal. This is given as follows:

N(Xi) = sort(Xj : di′,j′ ≤ treal, key = di′,j′) (C.22)

112

The threshold is treal = 4dmax + 3ηmax.

C.7.1 Pseudocode and runtime analysis

We first provide the pseudocode for the two building blocks - FindCenter and

QuadraticError. FindCenter returns the center node among 3 nodes as long as no

2 nodes are in the same leaf cluster. Otherwise it returns the nodes that belong to the

same leaf cluster. QuadraticError is used by the LeafClusterResolution routine

to find the parent node within a leaf cluster. Using these, we present the FindLeafParent

subroutine that returns a leaf parent pair given an active set of nodes that form a subtree.

C.7.1.1 QuadraticError

In this subroutine, we test if Equation (4.7) has a solution. Note that the quadratic

in Equation (4.7) with matrix coefficients is equivalent to having k2 quadratic equations.

Equation (4.7) has a solution if all the k2 quadratic equations have a common root in

[0, qmax]. Since we are working with the finite sample empirical estimates of the PMFs, we

do not get an exact solution. To work in the finite sample domain, we find the mean of the

root of all the k2 quadratic equations and use that as an estimate of the common root. We

return the Frobenius norm of the quadratic with the estimated root plugged in.

113

Algorithm 3 Find the Error of the quadratic in Equation (4.7)

Input - Pairwise noisy distributions, a set of 3 nodes, test center node among the three nodes.
Output - Error of the quadratic in Equation (4.7).

1: procedure QuadraticError(Pi′,j′ , NodeTriplet, T estCenter)
2: A,B,C ← Matrix Quadratic Coefficients from Equation (4.7) for given
NodeTriplet, T estCenter.

3: MeanRoot← 0
4: for i1 in 1 . . . k do
5: for i2 in 1 . . . k do

6: MeanRoot←MeanRoot+ root(A[i1,i2]x2+B[i1,i2]x+C[i1,i2])
k2

7: end for
8: end forreturn ‖A(MeanRoot)2 +B(MeanRoot) + C‖F
9: end procedure

C.7.1.2 FindCenter

The key idea is based on the observation that for any 3 nodes (X1, X2, X3), if X2 is

the center node, then any set of 4 nodes (X1, X2, X3, j) which forms a non-star, never has

(X2, j) as a pair. Thus we can scan through all the nodes j and rule out the nodes that pair

with j. This procedure could potentially detect a leaf node as the center node if its parent

is the center node. However, this is as expected since using the star/non-star procedure, it

is impossible to differentiate between leaf and parent nodes.

Algorithm 4 Recover Center Node in the Unidentifiable setting

Input - Pairwise noisy distributions and 3 nodes
Output - Candidate Center Nodes

1: procedure FindCenter(Pi′,j′ , NodeTriplet)
2: x← NodeTriplet[0], y ← NodeTriplet[1], z ← NodeTriplet[2]
3: CenterCand← {x, y, z}
4: for j ∈ N(x) ∩N(y) ∩N(z) do
5: if (x, y, z, j)- Non-star and pair(j) ∈ CenterCand then
6: CenterCand← CenterCand \ pair(j)
7: end if
8: end forreturn CenterCand
9: end procedure

114

C.7.1.3 GetLeafParent

This routine finds a leaf parent pair given an active set of nodes that form a subtree.

We maintain two nodes - a left node l, and a right node r. The idea is to move both the

nodes towards the right side till r is a leaf node and l is its parent node. In order to do this

we consider a third node z and perform the following operations:

1. If the center node in (l, r, z) is z, we shift node l to node z,

2. If the center node in (l, r, z) is r, we shift node l to node r and node r to node z.

Selecting nodes l, r and z: When the GetLeafParent subroutine is called for the

first time, node r is randomly initialized. For any subsequent calls to GetLeafParent,

node r is initialized to one of the nodes that was detected as a parent node in the previous

iterations and is still in the active set. l is initialized to the node closest to r in terms of

di′,j′ . z is obtained by iterating through N(Xi) \ l in the increasing order of distance.

When for a given (l, r, z), there are more than one candidate center nodes, we conclude

that they belong to the same leaf cluster. We check if we have already discovered the right

node in one of the previous iterations if we have, we return the leaf parent pair. Otherwise,

we attempt to find the parent node in that leaf cluster using the LeafClusterResolution

routine.

Further robustifying FindCenter: At any point in the algorithm, suppose in the previ-

ous iterations we have recovered the edges {z, z1}, {z, z2}, . . . {z, zj}, then all the star/non-

star tests involving (l, r, z, zi) ∀i ∈ {1, 2, . . . j} are have the same star/non-star character-

ization and if they are non-star then zi pairs with z in all the tests. We have the same

115

phenomena for the already recovered edges of l and r. Thus, when executing the algorithm

with finite samples, we can robustify the FindCenter subroutine by considering all the

nodes whose edge with node z has been recovered and assign them the same star/non-star

classification as the majority. We do the same for nodes l and r also.

Algorithm 5 Find a leaf parent pair.

Input - Pairwise noisy distributions and Active nodes
Output - Leaf Node and its parent in the subtree of Active Nodes.

1: procedure GetLeafParent(Pi′,j′ , ActiveSet, Edges, Parents)
2: if |ActiveSet ∩ Parents| > 0 then
3: r ← ActiveSet ∩ Parents[0]
4: else
5: r ← ActiveSet[0]
6: end if
7: l← N(r)[0] ∩ ActiveSet
8: i← 1, visited← {l, r}
9: while i < len(N(r)) do

10: z ← N(r)[i]
11: if z ∈ visited or z /∈ ActiveSet then
12: i← i+ 1
13: continue
14: end if
15: visited← visited ∪ z
16: C ←FindCenter(Pi′,j′ , (l, r, z))
17: if |C| == 1 then
18: l r order = True
19: end if
20: if C == z then
21: l← z
22: else if C == r then
23: l← r, r ← z, i← 0
24: else if |C| > 1 then
25: if l r order == True and r, l ∈ C then
26: break
27: end if
28: r, l ← LeafClusterResolution(C,Parents, ActiveSet)
29: break
30: end if
31: end whilereturn r, l
32: end procedure

116

C.7.1.4 LeafClusterResolution

When we have more than one nodes from the same leaf cluster, we find the parent

node of that leaf cluster. If one of the nodes has been detected as a parent node in an earlier

iteration, it is selected as the parent node. Otherwise, we perform the following operation

on every subset of two nodes Xi1 , Xi2 in C:

1. Consider a third node Xi3 ∈ Xi1 ∩Xi2 .

2. Check if Xi3 also belongs to the same leaf cluster as Xi1 and Xi2 .

(a) If Xi3 is not in the same leaf cluster, record the value Q2(x) in Equation (4.7),

for two cases - (i) if Xi1 is the center node, (ii) if Xi2 is the center node.

(b) If Xi3 is in the same leaf cluster, record the value Q2(x) in Equation (4.7), for

three cases - (i) if Xi1 is the center node, (ii) if Xi2 is the center node, (iii) if Xi3

is the center node.

Select the center node with the lowest value of the residual Q2(x) as the parent node. Note

that in order to check if 3 nodes are in the same leaf cluster, we attempt to find the center

node using the star/non-star subroutine. If we cannot eliminate the possibility of any node

being a center node, all the nodes are in the same leaf cluster.

117

Algorithm 6 Find the parent node in a leaf cluster

Input - Nodes of the leaf cluster, parents.
Output - A parent leaf pair from the leaf cluster.

1: procedure LeafClusterResolution(Pi′,j′ , C, Parents)
2: if |C ∩ Parents| > 0 then
3: l← C ∩ Parents[0] return C \ {l}[0], l
4: end if
5: MinError ←∞
6: for (Xi1 , Xi2) ∈ C do
7: for Xi3 ∈ N(Xi1) ∩N(Xi2) do
8: if Xi3 ∈ FindCenter(Pi′,j′ , (Xi1 , Xi2 , Xi3)) and dX′i3 ,X

′
i1
, dX′i3 ,X

′
i2
≤ dmax +

2ηmax then
9: CandidateParent← (Xi1 , Xi2 , Xi3)

10: else CandidateParent← (Xi1 , Xi2)
11: end if
12: for Xi ∈ CandidateParent do
13: err ← QuadraticError((Xi1 , Xi2 , Xi3), Xi)
14: if err < MinError then
15: MinError ← err, l← Xi
16: end if
17: end for
18: end for
19: end for
20: r ← C \ {l}[0]
21: return r, l
22: end procedure

C.7.1.5 Runtime Analysis

Following are the runtime for constant k:

1. QuadraticError: O(1).

2. FindCenter: O(n) as in the worst case, the intersection of the neighborhood can

contain O(n) nodes. The star/non-star test is O(1).

3. LeafClusterResolution: The for loop on line 6 can execute n times in the worst

case calling FindCenter in each iteration. Thus the total time complexity is O(n2).

118

4. FindLeafParent: In the worst case LeafClusterResolution is called O(n) times

thereby making the sample complexity O(n3).

5. FindTree: This calls FindLeafParent O(n) times. Thus the sample complexity of

the algorithm is O(n4).

Note that when we know apriori that all the nodes within leaf clusters are unidentifiable,

we only use the LeafClusterResolution subroutine to check if the parent node was

already selected in the previous iteration (lines 1-5). We do not use the QuadraticEr-

ror subroutine, thereby making it LeafClusterResolution an O(1) operation. In that

case, FindLeafParent is now dominated by FindCenter and becomes an O(n2) making

FindTree an O(n3) operation (a gain of O(n))

C.7.1.6 Recovering TsubT ∗

Once we recover a tree from TsubT ∗ , we can obtain the complete set TsubT ∗ by considering

all the parent leaf pairs within every cluster along with an arbitrary third node. We call the

function QuadraticError with this triplet and only TestCenter node with err < t0/2 is

a candidate parent node. This operation does not increase the time complexity as it is an

O(n3) operation in the worst case.

C.7.1.7 Modifications for the unidentifiable setting

If we know apriori that the nodes within a leaf cluster are unidentifiable, we do not

hope to achieve anything from the QuadraticError subroutine. Therefore, we do not

execute any for loops in the LeafClusterResolution subroutine, thereby making it an

119

O(1) operation. Therefore, the GetLeafParent subroutine becomes an O(n2) operation

making FindTree an O(n3) operation.

C.7.2 Proof of correctness

C.7.2.1 Proof of correctness of FindLeafParent subroutine

We first prove that while no two nodes among (l, r, z) are in the same leaf cluster, the

subroutine FindCenter returns C such that |C| ≤ 1. For the next part, we assume that

no two nodes among (l, r, z) are in the same leaf cluster.

Notation: For any node, the adjacent node on its left is denoted with subscript − and the

adjacent node on the right is denoted by subscript +. lt+1, rt+1 and zt+1 are the selection of

nodes l, r and z in the next iteration respectively.

We have already proved the correctness of the star/non-star routine in the proof of

Lemma 4.4.1. Recall from the functionality of FindCenter that when we consider nodes

(l, r, z) with another node j, if (l, r, z, j) forms a non-star, we eliminate the node that pairs

with node j from the candidate center nodes.

With this in mind, we enumerate all the possible configurations of nodes (l, r, z) such

that no two of these nodes are in the same leaf cluster. For each case, we present two nodes

which, when considered with (l, r, z) would eliminate different nodes from (l, r, z). This is

equivalent to proving that |C| ≤ 1.

Claim: dr,l, dr,z ≤ dmax + ηmax

We first show that this holds true in the initialization of l, r, z. When r is an internal node,

120

Figure C.4: All the possible when node z lies to the left of node l

we have that:

dr,l ≤ dr,l′ ≤ dr,r′− ≤ dmax + ηmax, dr,z ≤ dr,z′ ≤ dr,r′+ ≤ dmax + ηmax.

When r is a leaf node, since l, z are not in the same leaf cluster as r, l 6= z 6= r−. Therefore,

we have that:

dr,l ≤ dr,l′ ≤ dr,r′− ≤ dmax + ηmax, dr,z ≤ dr,z′ ≤ dr,r− ≤ dmax + ηmax.

Now, we assume that dr,l′ , dr,z′ ≤ dmax + ηmax is true at the beginning of any iteration and

prove that it will continue to hold true at the end of every iteration.

Case 1: We first enumerate all the cases when node z lies to the left of node l. These are

presented in Figure C.4.

Case 1(a): Node z lies to the left of node l and is adjacent to it and r+ exists.

In the case there exists a node z− to the left of z such that there is an edge between z and

z−. (If such a node did not exist, node l and z would have been in the same leaf cluster.)

dr′,z′− =dr,r′ + dr,z + dz,z′−

≤ηmax + (dmax + ηmax) + (dmax + ηmax)

=2dmax + 3ηmax

dl′,z′− =dl,l′ + dl,z + dz,z′−

121

≤ηmax + (dmax + ηmax) + (dmax + ηmax)

=2dmax + 3ηmax

dz′,r′+ =dz′,z + dz,r + dr,r′+

≤2dmax + 3ηmax

dl′,r′+ =dl,l′ + dl,r + dr,r′+

≤2dmax + 3ηmax

Thus z−, r+ ∈ N(r) ∩N(l) ∩N(z). z− eliminates z and r+ eliminates r. In this case, nodes

l and r do not change in this iteration. Therefore, dlt+1,rt+1 = dl,r ≤ dmax + ηmax. Also,

dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

Case 1(b): Node z lies to the left of node l and is adjacent to it and r+ does not

exists.

When r+ does not exist, it is easy to see that ∃r− 6= l, z. The first 2 inequalities continue to

hold true. We also have:

dz′,r′− =dz′,z + dz,r− + dr−,r′−

≤dmax + 3ηmax

dl′,r′− ≤dmax + 3ηmax

Thus r−, z− ∈ N(r) ∩N(z) ∩N(l). r− eliminates r and z− eliminates z. In this case, nodes

l and r do not change in this iteration. Therefore, dlt+1,rt+1 = dl,r ≤ dmax + ηmax. Also,

dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax.

Case 1(c): Node z lies to the left of node l and there exists a node between l and z.

Also, r+ exists.

122

Figure C.5: All the possible when node z lies to the right of node r

We consider the nodes z+ and r+.

dr′,z′+ = dr′, r + dr,z+ + dz+,z′+ ≤ dmax + 3ηmax,

dl′,z′+ = dl′, l + dl,z+ + dz+,z′+ ≤ dmax + 3ηmax.

For dz′,r′+ and dl′,r′+ , Case 1(a) calculations are valid.

Thus r+, z+ ∈ N(r) ∩N(z) ∩N(l). r+ eliminates r and z+ eliminates z. In this case, nodes

l and r do not change in this iteration. Therefore, dlt+1,rt+1 = dl,r ≤ dmax + ηmax. Also,

dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

Case 1(d): Node z lies to the left of node l and there exists a node between l and

z. r+ does not exist.

In this case, we have z′+, r
′
− ∈ N(r)∩N(l)∩N(z). The derivation comes from Case 1(b) and

1(c). r− eliminates r and z+ eliminates z. In this case, nodes l and r do not change in this

iteration. Therefore, dlt+1,rt+1 = dl,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax.

Case 2: We next enumerate all the cases when node z lies to the right of node r.

These are presented in Figure C.5.

Case 2(a): z lies to the right of r and there exists at least one node between l and

r and but no node between r and z.

dl′,z′+ = dl′,l + dl,r + dr,z′+ ≤ 3dmax + 3ηmax,

123

dr′,z′+ ≤ 2dmax + 2ηmax,

dr′−,z′ ≤ 2dmax + 2ηmax,

dl′,r′− = dl′,l + dl,r− + dr−, r
′
− ≤ dmax + 3ηmax.

Thus r−, z+ ∈ N(r) ∩N(z) ∩N(l). r− eliminates l and z+ eliminates z. In this case, lt+1 =

r, rt+1 = z Therefore, dlt+1,rt+1 = dz,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dz′+,z ≤ dmax + ηmax.

Case 2(b): z lies to the right of r and there exists at least one node between l and

r and also between r and z.

Nodes of interest - r+, r−. dl′,r′− is the same as case 2(a).

dl′,r′+ = dl′,r + dr,r′+ ≤ 2(dmax + ηmax)

Similarly, dz′,r′− ≤ 2(dmax + ηmax), dz′,r′+ ≤ dmax + 3ηmax. Thus r−, r+ ∈ N(r)∩N(z)∩N(l).

r− eliminates l and r+ eliminates z. In this case, lt+1 = r, rt+1 = z Therefore, dlt+1,rt+1 =

dz,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dz′−,z ≤ dmax + ηmax.

Case 2(c): z lies to the right of r and there exists at least one node between r and

z but no node between r and l.

This is symmetric to Case 2(a). Thus l−, r+ ∈ N(r) ∩ N(z) ∩ N(l). l− eliminates l and r+

eliminates z. In this case, lt+1 = r, rt+1 = z Therefore, dlt+1,rt+1 = dz,r ≤ dmax + ηmax. Also,

dzt+1,rt+1 ≤ dz′−,z ≤ dmax + ηmax.

Case 2(d): z lies to the right of r and no nodes exist between r and z or r and l.

Since all the nodes are within a radius of 3, it is easy to see that l−, r+ ∈ N(r)∩N(z)∩N(l).

l− eliminates l and r+ eliminates z. In this case, lt+1 = r, rt+1 = z Therefore, dlt+1,rt+1 =

dz,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dz′+,z ≤ dmax + ηmax.

124

Figure C.6: All the possible when node z does not lie to the left of l or right of r

Case 3(a): z lies between l and r. Consider l− and r+.

dl′−,r′ = dl′−,l + dl,r + dr,r′ ≤ 2dmax + 3ηmax

dl′−,z′ = dl′−,l + dl,z + dz,z′ ≤ 2dmax + 3ηmax

dl′,r′+ = dl′,l + dl,r + dr,r′+s ≤ 2dmax + 3ηmax

dz′,r′+ = dz′,z + dz,r + dr,r′+ ≤ 2dmax + 3ηmax

Thus l−, r+ ∈ N(r) ∩N(z) ∩N(l). l− eliminates l and r+ eliminates r. In this case, lt+1 =

z, rt+1 = r Therefore, dlt+1,rt+1 = dz,r ≤ dmax + ηmax. Also, dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

If l− does not exist, we use l+. Similarly, if r+ does not exist, we use r−.

Case 3(b): Nodes l, r, z form a Y-shape, that is, there exists a node y such that

l ⊥ r ⊥ z|y. There exists at least one node between l and y as well as between y and r.

Consider nodes y−, y+.

dy′−,z′ = dz,z′ + dy,z + dy,y′− ≤ 2dmax + 3ηmax

dy′−,l′ = dl′,l + dl,y− + dy−,y′− ≤ dmax + 3ηmax

dy′−,r′ = dr′,r + dr,y− + dy−,y′− ≤ dmax + 3ηmax

125

dy′+,z′ = dz,z′ + dy,z + dy,y′+ ≤ 2dmax + 3ηmax

dy′+,l′ = dl′,l + dl,y+ + dy+,y′+ ≤ dmax + 3ηmax

dy′+,r′ = dr′,r + dr,y+ + dy+,y′+ ≤ dmax + 3ηmax

Thus y−, y+ ∈ N(r) ∩ N(z) ∩ N(l). y− eliminates l and y+ eliminates r. If z is also

eliminated, lt+1 = l, rt+1 = r and dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax. If z is not eliminated,

lt+1 = z, rt+1 = r, dlt+1,rt+1 = dr,z ≤ dmax + ηmax dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax.

Case 3(c): Nodes l, r, z form a Y-shape, that is, there exists a node y such that

l ⊥ r ⊥ z|y. There exists at least one node between l and y but no node between y and r.

Consider nodes y−, r+. Analysis for y− is the same as in case 3(b).

dr′+,z′ = dz,z′ + dr,z + dr,r′+ ≤ 2dmax + 3ηmax

dr′+,l′ = dl′,l + dl,r + dr,r′+ ≤ 2dmax + 3ηmax

Thus y−, r+ ∈ N(r) ∩ N(z) ∩ N(l). y− eliminates l and r+ eliminates r. If z is also

eliminated, lt+1 = l, rt+1 = r and dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax. If z is not eliminated,

lt+1 = z, rt+1 = r, dlt+1,rt+1 = dr,z ≤ dmax + ηmax dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

Case 3(d): Nodes l, r, z form a Y-shape, that is, there exists a node y such that

l ⊥ r ⊥ z|y. There exists at least one node between r and y but no node between y and l.

Consider nodes l−, y+. Analysis for y+ is the same as Case 3(b).

dl′−,z′ = dz,z′ + dz,y + dy,l′− ≤ dr,z′ + dy,l′− ≤ 3dmax + 3ηmax

dl′−,r′ = dr′,r + dr,l + dl,l′− ≤ 2dmax + 3ηmax

126

Thus y+, l− ∈ N(r)∩N(z)∩N(l). y+ eliminates r and l− eliminates l. If z is also eliminated,

lt+1 = l, rt+1 = r and dzt+1,rt+1 ≤ dr′−,r ≤ dmax+ηmax. If z is not eliminated, lt+1 = z, rt+1 = r,

dlt+1,rt+1 = dr,z ≤ dmax + ηmax dzt+1,rt+1 ≤ dr′−,r ≤ dmax + ηmax.

Case 3(e): Nodes l, r, z form a Y-shape, that is, there exists a node y such that

l ⊥ r ⊥ z|y. There exists no nodes between r and y and between y and l.

Consider nodes l−, r+. Analysis follows from Cases 3(c) and 3(d). Thus r+, l− ∈ N(r) ∩

N(z) ∩ N(l). r+ eliminates r and l− eliminates l. If z is also eliminated, lt+1 = l, rt+1 = r

and dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax. If z is not eliminated, lt+1 = z, rt+1 = r, dlt+1,rt+1 =

dr,z ≤ dmax + ηmax dzt+1,rt+1 ≤ dr′+,r ≤ dmax + ηmax.

Thus at each iteration, we visit one node and remove it from the set of nodes that get

visited in subsequent iterations until we get (l, r, z) such that at least 2 of the nodes are in the

same leaf cluster. Note that the maximum distance in the above analysis is 3dmax + 3ηmax.

However our threshold for the neighborhood set is 4dmax + 3ηmax. The extra dmax is there

to account for the fact that in the unidentifiable case, a parent node from a leaf cluster may

have been confused with a leaf node. In that case, the leaf node is retained in the active set

while the parent node is removed from the active set for the subsequent iterations. In order

to account for that, we add a factor of dmax to the neighborhood threshold.

Proof of correctness of LeafClusterResolution From the above analysis, we know

that LeafClusterResolution is called with nodes in C belonging in the same leaf clus-

ter. The idea is to check if any on the nodes in C are such that when they act as the center

node, Equation (4.7) has a solution. In order to do this, we consider 2 nodes in C at a time

and scan through all the nodes in their common neighborhood as the third node. We check

127

if the third node is also in the same leaf cluster in which case we also see if the error for this

node as the parent node is small. If it is not in the same leaf cluster, we just use it as the

third node needed for Equation (4.7). We first show that the routine to check if Xi3 is in

the same leaf cluster as (Xi1 , Xi2) is correct:

If Xi3 is in the same leaf cluster as (Xi1 , Xi2), it is easy to see that any star/non-star test

on (Xi1 , Xi2 , Xi3 , j) always returns a non-star. When Xi3 is not in the same leaf cluster as

(Xi1 , Xi2), then there exists a node Xi+3
adjacent to Xi3 either away from the path connect-

ing Xi3 to (Xi1 , Xi2) or on that path such that (Xi1 , Xi2 , Xi3 , Xi+3
) forms a non-star where

(Xi3 , Xi+3
) forms a pair. It is easy to see that dX′1,(Xi+3

)′ , dX′2,(Xi+3
)′ ≤ 2dmax+3ηmax. Therefore,

Xi+3
∈ N(Xi1) ∩N(Xi2) ∩N(Xi3). Thus it is ruled out from being a parent candidate.

Now it is easy to see that if any leaf node is identifiable, it will have a non-zero error for

Equation (4.7). For an unidentifiable leaf node, both the leaf and parent have a solution to

Equation (4.7) and one of them is randomly selected as the parent node.

Any subsequent calls with nodes from the same leaf cluster always select the correct

parent in line (2).

From the correctness of LeafClusterResolution, we conclude that FindLeaf-

Parent subroutine is correct. Once we have the correctness of GetLeafParent, the

correctness of FindTree is easy to understand. We prove this by induction on the number

of nodes.

Base Case (n=2): Line 9 recovers the lone edge.

Inductive Case: Let us assume that the algorithm works for all n < k. For n = k+ 1,

by the correctness of GetLeafParent, the algorithm correctly recovers one leaf parent

128

pair and adds that edge to the edge set. Once the leaf node is removed, the algorithm is

effectively running on k nodes and by the inductive assumption that is correct.

This completes the proof of correctness of the algorithm.

C.7.3 Modification for finite sample domain

In this section we present the necessary modifications needed to execute the algorithm

using finite samples.

Classifying 4 nodes as star/non-star using finite samples: Let us denote κi′,j′ =

exp−di′,j′ , κmax = exp(−dmin). We denote the finite sample estimate of κi′,j′ by ˆκi′,j′

In the infinite sample setting, a set of 4 nodes (X1, X2, X3, X4) forms a non-star with

(X1, X2) forming a pair if:

√
κ1′,3′κ2′,4′κ1′,4′κ2′,3′

κ1′,2′κ3′,4′
≤ κ2

max

√
κ1′,2′κ3′,4′κ1′,4′κ2′,3′

κ1′,3′κ2′,4′
≥ 1/κ2

max

√
κ1′,3′κ4′,2′κ1′,2′κ4′,3′

κ1′,4′κ2′,3′
≥ 1/κ2

max

The finite sample test is as follows:√
κ̂1′,3′κ̂2′,4′κ̂1′,4′κ̂2′,3′

κ̂1′,2′κ̂3′,4′
≤ (1 + κ2

max)/2√
κ̂1′,2′κ̂3′,4′κ̂1′,4′κ̂2′,3′

κ̂1′,3′κ̂2′,4′
≥ 1√

κ̂1′,3′κ̂4′,2′κ̂1′,2′κ̂4′,3′

κ̂1′,4′κ̂2′,3′
≥ 1

129

A set of 4 nodes (X1, X2, X3, X4) is classified as a star if:√
κ̂1′,3′κ̂2′,4′κ̂1′,4′κ̂2′,3′

κ̂1′,2′κ̂3′,4′
≥ (1 + κ2

max)/2√
κ̂1′,2′κ̂3′,4′κ̂1′,4′κ̂2′,3′

κ̂1′,3′κ̂2′,4′
≥ (1 + κ2

max)/2√
κ̂1′,3′κ̂4′,2′κ̂1′,2′κ̂4′,3′

κ̂1′,4′κ̂2′,3′
≥ (1 + κ2

max)/2

If neither of the above conditions is satisfied for any pair, the test fails and this set

of 4 nodes is not classified as star/non-star.

Neighborhood Thresholding: In the finite sample setting, we allow for a slack

in the threshold to ensure that, with high probability, the empirical neighborhood vector

contains all the nodes from the underlying neighborhood vector. The empirical neighborhood

vector is defined as follows:

N ′(Xi) = sort(Xj : d̂i′,j′ ≤ temp, key = d̂i′,j′),

where the threshold is temp = 0.5(4dmax + 3ηmax).

C.8 Sample Complexity Upper Bound

Let us define 2 events:

B1 = {(Ea′)i,i < 0.1pmin,∀a, i},B2 = {‖Ea′,b′‖ < ε∀a, b}

For any Xa, Xb we only consider nodes such that:√
|det(P̂a′|b′P̂b′|a′)| > 0.5 exp(−4dmax)(1− qmax)3(k−1)(kpmin)1.5k

130

=⇒ |det(P̂a′,b′)|√
|det(P̂a′P̂b′)|

> 0.5 exp(−4dmax)(1− qmax)3(k−1)(kpmin)1.5k.

In the event B1, det(P̂a′), det(P̂b′) > (0.9pmin)k, therefore we have:

|det(P̂a′,b′)| ≥ 0.5 exp(−4dmax)(1− qmax)3(k−1)(kpmin)1.5k(0.9pmin)k

Next we bound the minimum absolute eigenvalue of P̂a′,b′ .

Lemma C.8.1. For any k×k matrix M such that Mi,j ≥ 0,
∑

i,jMi,j = 1 and |det(M)| ≥ c

where 0 < c ≤
(

1
k

)k
, then the minimum absolute eigenvalue of M satisfies c(k − 1)k−1 ≤

|λmin(M)| ≤ ckk−1.

Proof. Let λ1, λ2 . . . λk be the eigenvalues of M such that |λ1| ≥ |λ2| ≥ · · · ≥ |λk|. Standard

results tell us that:

∑
i

|λi| ≤
∑
i,j

Mi,j = 1, |det(M)| =
∏
i

|λi| ≥ c

We are interested in the solution to the following optimization problem:

min |λk| (C.23)

s.t.
k∑
i=1

|λi| ≤ 1 (C.24)

k∏
i=1

|λi| ≥ c, (C.25)

|λ1| ≥ |λ2| . . . |λk|, (C.26)

131

where 0 < c ≤ (1/k)k. Denote the optimal solution to the above problem by λ∗1, λ
∗
2, . . . λ

∗
k.

Claim:
∑

i |λ∗i | = 1,
∏k

i=1 |λ∗i | = c, |λ∗1| = |λ∗2| = · · · = |λ∗k−1|.

In order to prove this, we prove that if these do not hold true, there exists a smaller |λk|.

By contradiction, let us assume that
∑

i |λ∗i | = 1− ε for some 0 < ε < 1. Then it is easy to

see that ∃λ̃i, ε′ > 0 such that |λ̃i| = |λ∗i |+ ε
k−1
∀i ∈ {1, 2 . . . , k − 1} and |λ̃k| = |λ∗i | − ε′ such

that
∏k

i=1 |λ̃i| = c. Therefore, |λ∗i | is not optimal. Thus,
∑

i |λ∗i | = 1.

By contradiction, let us assume that
∏

i |λ∗i | = (1 + ε)c for some 0 < ε. Consider λ̃i such

that λ̃i = λ∗i ∀i ∈ {1, 2 . . . , k − 1} and λ̃k = λ∗k/(1 + ε). Then λ̃i is feasible and has smaller

objective value, thus
∏

i |λ∗i | = c.

We prove the last part by contradiction too. Let us assume by contradiction that at least

one of |λ∗i | is not equal for i ∈ {1, 2, . . . k − 1}. Consider λ̃i such that |λ̃i| =
∑k−1
j=1 |λ

∗
j |

k−1
. Then,

by the AM-GM inequality, we have that:

k−1∏
i=1

|λ̃i| =

(∑k−1
j=1 |λ∗j |
k − 1

)k−1

= (1 + ε)
k−1∏
i=1

|λ∗i |

for some ε > 0. Choosing |λ̃k| = |λ∗k|/(1 + ε), we get a feasible λ̃i with a smaller objective

function. This concludes the proof of the claim.

Thus, the solution to the optimization problem C.23 satisfies:

|λ∗1| = |λ∗2| = · · · = |λ∗k−1| =
1− λ∗k
k − 1

,

(
1− λ∗k
k − 1

)k−1

λ∗k = c.

Therefore, Equation C.23 has the same solution as the following optimization problem:

min |λk|

s.t. 0 < |λk| ≤
1

k

132

|λk|
(

1− |λk|
k − 1

)k−1

= c,

where 0 < c ≤ (1/k)k. The solution to the above optimization problem satisfies |λ∗k|
(

1−|λ∗k|
k−1

)k−1

=

c. The solution exists because |λk|
(

1−|λk|
k−1

)k−1

is monotonically increasing in |λk| and:

|λk|
(

1− |λk|
k − 1

)k−1

= 0, when |λk| = 0,

|λk|
(

1− |λk|
k − 1

)k−1

=

(
1

k

)k
, when |λk| = 1/k.

Therefore, |λ∗k| satisfies:

|λ∗k| = c

(
(k − 1)

1− |λ∗k|

)k−1

Since 0 < |λ∗k| ≤ 1/k, we have that c(k − 1)k−1 ≤ |λ∗k| ≤ ckk−1

Using Lemma C.8.1, the minimum absolute eigenvalue of P̂a′,b′ is lower bounded by

|det(P̂a′,b′)|(k − 1)k−1. Therefore, we have that:

‖P̂−1
a′,b′‖ ≤

1

0.5 exp(−4dmax)(1− qmax)3(k−1)(kpmin)1.5k(0.9pmin)k(k − 1)k−1

≤ 8(k − 1)

exp(−4dmax)(1− qmax)3(k−1)(kpmin)2.5k(0.9)k
,

1

z1

(C.27)

where the second inequality uses the fact that (k−1
k

)k ≥ 1/4

C.8.1 Sample Complexity for Existence of a solution to Equation 4.7

We are interested in the error in the estimate of Q(x) as defined below:

Q̂(x) = ‖x
2

k2
(O − kI)− x

k
(OP̂ ′b + P̂ ′bO − kP̂ ′b − I) + P̂b′,c′P̂

−1
a′,c′P̂a′,b′ − P̂

′
b‖F

Q(x) = ‖x
2

k2
(O − kI)− x

k
(OP ′b + P ′bO − kP ′b − I) + Pb′,c′P

−1
a′,c′Pa′,b′ − P

′
b‖F

133

We derive the error bound for the term Pb′,c′P
−1
a′,c′Pab when estimated using the respective

empirical estimates.

Pb′,c′P
−1
a′,c′Pa′,b′ = (P̂b′,c′ + Eb′,c′)(P̂a′,c′ + Ea′,c′)

−1(P̂a′,b′ + Ea′,b′)

= (P̂b′,c′ + Eb′,c′)

(
P̂−1
a′,c′ +

∞∑
m=1

(−P̂−1
a′,c′Ea′,c′)

mP̂−1
a′,c′

)
(P̂a′,b′ + Ea′,b′)

= P̂b′,c′P̂
−1
a′,c′P̂ab + Eb′,c′P̂

−1
a′,c′P̂a′,b′ + P̂b′,c′P̂

−1
a′,c′Ea′,b′ + P̂b′,c′ẼacP̂a′,b′

+ Eb′,c′P̂
−1
a′,c′Ea′,b′ + Eb′,c′ẼacP̂a′,b′ + P̂b′,c′ẼacEa′,b′ + Eb′,c′ẼacEa′,b′ ,

here we use the notation Ẽac :=
∑∞

m=1(−P̂−1
a′,c′Ea′,c′)

mP̂−1
a′,c′ . Using the triangle inequality and

submultiplicative property of the spectral norm, we get that:

‖Ẽac‖2 ≤
‖P̂−1

a′,c′‖2
2‖Ea′,c′‖2

1− ‖P̂−1
a′,c′‖2‖Ea′,c′‖2

We choose such an ε in the event B2 that ensures that ‖P−1
a′,c′‖2‖Ea′,c′‖2 < 0.5. This gives us:

‖Ẽac‖2 ≤ 2‖P̂−1
a′,c′‖

2
2‖Ea′,c′‖2

In the event B2, ‖Ea′,b′‖2, ‖Eb′,c′‖2‖Ea′,c′‖2 < ε. In the event B1, from Equation (C.27),

‖P̂−1
a′,c′‖2 ≤ z−1

1 . Therefore, ‖Ẽac‖2 ≤ 2z−2
1 ε. Since P̂a′,b′ , P̂b′,c′ are joint PMF matrices,

we have that ‖P̂a′,b′‖2, ‖P̂b′,c′‖2 < 1. Substituting these along with triangle inequality and

submultiplicative property of the spectral norm gives us the following:

‖P̂b′,c′P̂−1
a′,c′P̂a′,b′ − Pb′,c′P

−1
a′,c′Pa′b′‖2 ≤ 3εz−1

1 + 8εz−2
1

This gives us:

Q̂(x) = ‖x
2

k2
(O − kI)− x

k
(OP̂ ′b + P̂ ′bO − kP̂ ′b − I) + P̂b′,c′P̂

−1
a′,c′P̂a′,b′ − P̂

′
b‖F

134

≤ Q(x) + (3x+ 1)‖Eb′‖F + ‖P̂b′,c′P̂−1
a′,c′P̂a′,b′ − Pb′,c′P

−1
a′,c′Pab‖F

=⇒ |Q̂(x)−Q(x)| ≤ 4
√
kε+ 3

√
kεz−1

1 + 8
√
kεz−2

1 ≤ 15
√
kεz−2

1

We need that |Q̂(x)−Q(x)| < t0/2. This is satisfied when:

ε <
t0z

2
1

30
√
k

(C.28)

C.8.2 Sample Complexity for Star/Non-Star test

Consider a set of 4 nodes {X1, X2, X3, X4} such that they form a non-star such that

{X1, X2} form a pair.

|det(P1,3P2,4)|
|det(P1,4P2,3)|

=
|det((P̂1,3 + E1,3)(P̂2,4 + E2,4))|
|det((P̂1,4 + E1,4)(P̂2,3 + E2,3))|

(C.29)

Using the analysis from [73], a set of 4 nodes is correctly classified if for any pair of nodes

{a, b} that are in each other’s neighborhood sets, we have that |det(Pa,b)−det(P̂a,b)| < z1(1−α)
20

,

where α = 1+exp(−2dmin)
2

. We can bound the difference in the empirical estimate of the

determinant and the true determinant using the matrix perturbation result in Chapter 5 of

[3] as follows:

|det(Pa,b)− det(P̂a,b)| ≤ kmax{‖Pa,b‖, ‖P̂a,b‖}k−1‖Ea,b‖2 ≤ k‖Ea,b‖2

Under event B2 we have that ‖Ea,b‖ < ε. Thus the algorithm correctly classifies nodes as

star/non-star when:

ε <
z1(1− α)

20k
. (C.30)

From Equations (C.28), (C.30) we choose ε as follows:

ε < min

{
z1(1− α)

20k
,
t0z

2
1

30
√
k

}
. (C.31)

135

Next, we find the number of samples needed for B1 and B2 to hold true with high probability.

P (B1,B2) ≥ 1− P (B̄1)− P (B̄2)

For a given a, i, by Hoeffding’s inequality we have that:

P ((Ea′)i,i) > 0.1pmin) ≤ exp(−2N(0.1pmin)2).

By the union bound on all the nodes and all the alphabets we get:

P (B̄1) ≤ kn exp(−2N(0.1pmin)2).

In order to achieve P (B̄1) ≤ δ/2, we have the following bound on the sample complexity:

N ≥ 50

p2
min

log

(
2nk

δ

)
. (C.32)

Next, we upper bound the probability P (B̄2).

The matrix Bernstein’s inequality ([74]) states that for independent random matrices S1 . . . SN

with dimension d1 × d2 such that E[Si] = 0, ‖Si‖ < L ∀i and Z =
∑N

i=1 Si, then

P (‖Z‖ > t) ≤ (d1 + d2) exp

(
−t2/2

v(Z) + Lt/3

)
where v(Z) = max{‖

∑N
i=1 E

[
SiS

T
i

]
‖}. In order to apply this in our setting, define Si =

1i
a′,b′ − Pa′,b′ where 1i

a′,b′ is the indicator matrix for sample i with a 1 in the position corre-

sponding to the value of X ′a and X ′b in that sample.

It is easy to see that E[Si] = 0, ‖Si‖ ≤ 2. Also, in this setting, Ea′,b′ = 1
N
Z. Next, we bound

v(Z).

E
[
SiS

T
i

]
= E

[
(1i

a′,b′ − Pa′,b′)(1i
a′,b′ − Pa′,b′)T

]
136

= E
[
(1i

a′,b′)(1i
a′,b′)

T
]
− E

[
Pa′,b′P

T
a′,b′

]
=⇒ ‖

N∑
i=1

E
[
SiS

T
i

]
‖ ≤ 2N

This bounds the probability of ‖Ea′,b′‖ > ε as follows:

P (‖Ea′,b′‖ > ε) = P (‖Z‖ > nε) ≤ 2k exp

(
−Nε2

4(1 + ε/3)

)

By the union bound on all the pair of nodes, we have:

P (B̄2) ≤ kn(n− 1) exp

(
−Nε2

4(1 + ε/3)

)
.

For P (B̄2) ≤ δ/2, the lower bound on the number of samples is given by

N ≥ 2(2 + ε/3)

ε2
log

(
2nk(n− 1)

δ

)
(C.33)

From Equations (C.32) and (C.33), the algorithm outputs the correct tree if:

N ≥ max

{
50

p2
min

log

(
2nk

δ

)
,
2(2 + ε/3)

ε2
log

(
2nk(n− 1)

δ

)}
(C.34)

From the value of ε as defines in Equation (C.31), we can see that the sample complexity

is dominated by the second term. Substituting the value of ε from Equation (C.31), we get

that the sample complexity is of the following order:

N = O

(
max

{
k2 exp(8dmax)

(1−qmax)6(k−1)(0.9p2.5min)2k(1−exp (−2dmin))2(k−1)2(k−1) ,

k exp(16dmax)

t20(1−qmax)12(k−1)(0.9p2.5min)4k(k−1)4(k−1)

}
log
(

2nk(n−1)
δ

))

137

C.9 Sample Complexity Lower Bound

C.9.1 Preliminaries

In this section, we present some definitions, and results that we will use for our lower

bound proof.

Information theoretic lower bound: We now present the information theoretic lower

bound for required samples in recovering a distribution.

We first define the symmetrized KL-divergence between two distributions P and Q

as

J(P,Q) = EX∼P log

(
P (X)

Q(X)

)
+ EX∼Q log

(
P (X)

Q(X)

)
.

Lemma C.9.1 (Fano’s Inequality, Lemma 6.2 in Bresler et al.[8]). For M ≥ 2, given the

(M + 1) distributions {P0, . . . , PM}, for any estimator Ψ : [k]n × N → {0, 1, . . . ,M} that

uses N i.i.d. samples X′(1 : N), and for any δ > 0 we have for

N ≤ (1− δ) log(M)
1

M+1

∑M
k=1 J(P (k), P (0))

, inf
Ψ

max
0≤k≤M

P (j)(Ψ(X′(1 : N)) 6= j) ≥ δ − 1
log(M)

.

The above inequality provides such a characterization in the minimax sense. In

particular, it says among the M distributions there exists at least one from which N (as

defined in the lemma) i.i.d. samples are required to identify that distribution correctly with

probability at least (1− δ + 1
log(M)

).

Symmetric Graphical Models: For symmetric graphical models [16], the marginals of

all the random variables are uniform on the support and the conditional distribution for two

138

random variables Xi, Xj such that (Xi, Xj) ∈ E is given by:

Pi|j = αi,jI + (1− αi,j)
O

k
,

where O is the k × k matrix of all 1′s, k is the support size, and 0 < αi,j < 1. This

characterization has the following property:

Lemma C.9.2. Consider any 2 nodes Xi1, Xit in a symmetric graphical model such that

the path between Xi1 and Xit is Xi1 −Xi2 − · · · −Xit−1 −Xit. Then, the conditional PMF

matrix of Xi1 conditioned on Xit is given as follows:

Pi1|it = αi1,itI + (1− αi1,it)
O

k
=

t−1∏
p=1

αip,ip+1I +

(
1−

t−1∏
p=1

αip,ip+1

)
O

k
,

that is, αi1,it =
∏t−1

p=1 αip,ip+1

We remark that when considering noisy random variables we have that:

Pi′|i = (1− qi)I + qi
O

k
.

For each node Xi, we define αi′,i = 1− qi. Therefore, we get:

Pi′|i = αi′,iI + (1− αi′,i)
O

k
,

such that αi′,i > 0 (as qi ≤ qmax < 1).

Circulant Matrices: Let R be a rotational operation of a vector v ∈ Rk which maps it to

v′ = R(v) ∈ Rk with v′(i) = v((i + 1)modk) for all 1 ≤ i ≤ k. Then we have v′′ = Rj(v) as

v′′(i) = v((i + j)modk) for any j ≥ 1, and for all 1 ≤ i ≤ k.Then a ciculant matrix created

139

from vector v is given as Cir(v) = (v;R(v);R2(v); . . . ;R(k−1)(v)). For any circulant matrix

in Rk×k with vector v, denoted as Cir(v), the determinant is given as

det(Cir(v)) =
k−1∏
j=0

k−1∑
i=0

viω
ji.

The following lemma states that when a graphical model has the conditional PMF as

circulant matrix for each edge, then if one node has uniform marginal then all other nodes

have uniform marginals as well.

Lemma C.9.3. Consider a tree graphical model such that the conditional PMF matrix cor-

responding to every edge is a circulant matrix. Then, if the marginals of one of the nodes

is uniformly distributed on the support, the marginals of all the remaining nodes are also

uniform.

Proof. Suppose the node with uniform marginals is X1. Suppose node X2 has an edge with

X1 and P (X2|X1) is a circulant matrix. Thus we have P (X2, X1) = P (X2|X1)
k

. Therefore,

P (X2, X1) is also a circulant matrix. When the joint PMF matrix is circulant, all the rows

and columns the marginal distribution of both the random variables is uniform. Therefore,

the marginal distribution of X2 is also uniform. Thus the marginal distribution of all the

nodes connected to X1 is uniform. Once we know that the marginals of one hop neighbors of

X1 are uniform, we can infer the same about the two hop neighbors of X1. This can further

be extended for all the nodes in the graph.

Simplifying the Quadratic Bound: Suppose the marginals of all the random variables

are uniform, that is, P ′b = 1
k
I and the underlying graphical model on Xa, Xb, Xc is a chain

140

with Xa as the center node. We want to bound the following quadratic:

Q(x) = ‖x
2

k2
(O − kI)− x

k
(OP ′b + P ′bO − kP ′b − I) + Pb′,c′P

−1
a′,c′Pa′,b′ − P

′
b‖F .

The conditional independence relation gives us Pb,c = Pb,aP
−1
a Pac . Recall that Ea = (1 −

qa)I + qa
k
O and similarly we have Eb, Ec. We have the following:

Pb′,c′P
−1
a′,c′Pa′,b′ = EbPb,cEc(EaPa,cEc)

−1EaPa,bEb

= EbPb,aP
−1
a Pa,cEcE

−1
c P−1

a,cE
−1
a EaPa,bEb

= EbPb,aP
−1
a Pa,bEb

In the circulant setting, we have that Pa = 1
k
I . This gives us Pb′,c′P

−1
a′,c′Pa′,b′ =

kEbPb,aPa,bEb. Substituting these in the quadratic, we get:

Q(x) = ‖x
2

k2
(O − kI)− x

k
(OP ′b + P ′bO − kP ′b − I) + Pb′,c′P

−1
a′,c′Pa′,b′ − P

′
b‖F , (C.35)

= ‖
(
x2 − 2x+ 1

k2

)
O −

(
x2 − 2x+ 1

k

)
I − O

k2
+ kEbPb,aPa,bEb‖F , (C.36)

= ‖
(
x− 1

k

)2

(O − kI)− O

k2
+ kEbPb,aPa,bEb‖F (C.37)

Perturbed Symmetric Distribution: We now focus on a special case of circulant ma-

trices which will be used in our lower bound construction later on. The conditional PMF for

two nodes a and b in a perturbed symmetric distribution model takes the following form:

Pb|a = (α− δ)I + (1− α)
O

k
+ ∆

141

∆ =

0 δ 0 . . . 0

0 0 δ . . . 0
...

...
...

...
...

0 0 0 . . . δ

δ 0 0 . . . 0

.

Note that this is a class that we define by perturbing the discrete symmetric model slightly.

We first consider the noiseless setting (Eb = I). In order to obtain the results for the

noisy case, it is sufficient to replace α by (1− q)α and δ by (1− q)δ. For our model, we have

that:

Pb,a =
1

k

(
(α− δ)I + (1− α)

O

k
+ ∆

)
.

Noting that Pb,a = P T
a,b, ∆∆T = δ2I, ∆O = O∆T = δO, we get:

Pb,aPa,b =
1

k2

(
((α− δ)2 + δ2)I +

O

k
(1− α2) + (α− δ)(∆T + ∆)

)

Lower bounding the Quadratic Bound: Substituting this in Equation (C.35) along

with Eb = I, we get:

Q2(x) =‖
(
x− 1

k

)2

(O − kI)− O

k2
+ kEbPb,aPa,bEb‖2

F

=‖
(
x− 1

k

)2

(O − kI) + ((α− δ)2 + δ2)
I

k
− α2 O

k2
+

(α− δ)
k

(∆T + ∆)‖2
F

Each diagonal element (total k) of the matrix is
(
x−1
k

)2 − (x−1)2

k
+ (α−δ)2+δ2

k
− α2

k2
.

Each element at the positions of the support (∆ + ∆T) (total 2k) is
(
x−1
k

)2 − α2

k2
+ δ(α−δ)

k
.

Every remaining element (total k2 − 3k) is
(
x−1
k

)2 − α2

k2
. To simplify the above equation, we

142

define γ = (1− x)2 − α2, e = δ(α− δ). Each diagonal element is γ
k2
− γ

k
− 2e

k
.

Each element at the positions of the support (∆ + ∆T) (total 2k) is γ
k2

+ e
k
.

Every remaining element (total k2 − 3k) is γ
k2

. Thus, we get:

Q2(x) =k

(
γ

k2
− γ

k
− 2e

k

)2

+ 2k
(γ
k2

+
e

k

)2

+ (k2 − 3k)
γ2

k4

= 1
k3

((k − 1)γ + 2ke)2 + 2
k3

(γ + ke)2 + k−3
k3
γ2

Q2(x) is minimized for γ = − 2ke
k−1

. Substituting this, we get:

Q2(x) ≥ 2(k − 3)δ2(α− δ)2k2

k − 1
. (C.38)

Computing the determinant of conditional PMF: Let us consider the perturbed sym-

metric distribution C(v(θ, θ′)) with the vector

v(θ, θ′) =

(1− θ′ − (K − 2)θ), θ′, θ, . . . , θ︸ ︷︷ ︸
k−2 times

 .

For θ = 1−α
k

and δ = (θ′ − θ) we have C(v(θ, θ′)) = Pb|a. We make this switch as this helps

us computing the determinant easily.

We now derive some of the necessary results which we will apply in our lower bound

graph construction. The determinant of the matrix C(v(θ, θ′)) is derived first. We have for

any j = 0 to k − 1,

k−1∑
i=0

v(θ, θ′)iω
ji = (1− θ′ − (k − 2)θ) + θ′ωj + θ

k−1∑
i=2

ωji

= (1− θ′ − (k − 1)θ) + (θ′ − θ)ωj + θ

k−1∑
i=0

ωji

143

=

1 = (1− θ′ − (k − 1)θ) + (θ′ − θ) + kθ, j = 0

(1− θ′ − (k − 1)θ) + (θ′ − θ)ωj, j 6= 0

Therefore, we have following the derivations in [29]

det(Pb|a) = det(Cir(v(θ, θ′))) =
k−1∏
j=1

(
(1− θ′ − (k − 1)θ)− (θ − θ′)ωj

)
=

(1− θ′ − (k − 1)θ)k

(1− kθ)

k−1∏
j=0

(
1− (θ−θ′)

(1−θ′−(k−1)θ)
ωj
)

=
(1− θ′ − (k − 1)θ)k − (θ − θ′)k

(1− kθ)

= (1− kθ)(k−1)
((

1− θ′−θ
1−kθ

)k − (θ−θ′
1−kθ

)k)
= α(k−1)

((
1− δ

α

)k − (−δ
α

)k)
In the last line we substitute α = (1− kθ) and δ = (θ′− θ) to get back to the form common

to other parts of the proof.

C.9.2 Lower Bound for recovering the equivalence class of trees

In this section we derive the lower bound on the sample complexity to recover the

equivalence class when the underlying model has is totally unidentifiable (no leaf is dis-

tinguishable from it’s parent). For this purpose, we consider the symmetric class of tree

graphical models.

Family of distributions: With the above background, we are now ready to derive the

lower bounds. We consider the family of probability distributions which is structurally similar

to Appendix A in [73], but uses discrete symmetric distribution instead of using Ising models.

144

The family of distributions is given as (P (i) : i = 0, 1, . . . , t2 − 1). The graph P (0) consists

of n = 2t + 1 nodes (1, 2, . . . , 2t + 1). Here, we use odd number of nodes for simplifying

exposition. There are 2t edges where node j = 1, . . . , 2t are connected to node (2t + 1).

Nodes 1, 2 . . . t have distance dmax from node 2t+ 1 and are corrupted with probability qmax.

Nodes t+ 1, t+ 2 . . . 2t have distance dmin from node 2t+ 1 and have 0 probability of error.

Node 2t+ 1 also has 0 probability of error. This is shown in Figure C.7. The edges have two

different type of conditional as described below.

P
(0)
j′|(2t+1)′ = αmin(1− qmax)I + (1− αmin(1− qmax))

O

k
, ∀j ∈ {1, 2 . . . t},

P
(0)
j′|(2t+1)′ = αmaxI + (1− αmax)

O

k
, ∀j ∈ {t+ 1, t+ 2 . . . 2t}.

For any i = 1, . . . , t2−1, the distribution P (i) is constructed from P (0) by disconnecting

the edge (ia, 2t+1), and adding edge (ib+t, 2t+1) where ia = (1+b i−1
t
c), and ib = i−b i−1

t
ct.

As noted in [73], the pair (ia, ib) is unique for every i = 1, . . . , t2−1. We use another discrete

symmetric distribution for all these edges: (ia, ib) for any i = 1, . . . , t2 − 1. Specifically, the

conditional pmf of the different edges of the i-th graphical model is given below.

P
(i)
j′|(2t+1)′ = αmin(1− qmax)I + (1− αmin(1− qmax))

O

k
∀i ∈ {1, 2, 3, . . . t} \ {ia},

P
(i)
j′|(2t+1)′ = αmaxI + (1− αmax)

O

k
∀i ∈ t+ 1, t+ 2 . . . 2t,

P
(i)

i′a|i′b
= αmin(1− qmax)I + (1− αmin(1− qmax))

O

k
.

We finally note that all the graphs P (i) for i ∈ {0, 1, . . . , t2 − 1} have a different

equivalence class. In particular, we see that P (0) admits all possible permutation of star

145

nodes (with node i being the root, and remaining 2t nodes being the leaf nodes, for all

i ∈ {1, . . . , 2t+1}). For P (i), the equivalence structure is given by two leaf clusters connected

by a single edge. The nodes {1, . . . , 2t + 1} \ {ia, ib} forms one leaf cluster, while {ia, ib}

forms the other leaf cluster. As (ia, ib) is unique for all i ∈ {1, . . . , t2 − 1}, all the t2 graphs

under consideration have different equivalence classes (see, Figure C.7). Also, all the leaf

nodes are indistinguishable from it’s parents in each of these graphs.

2t+1

1
2

2t

𝑖! 𝑖"

…

𝑃(")

2t+1

1

2

2t

𝑖!
𝑖"

……

𝑃($)

Figure C.7: The family of distributions used for providing lower bound for completely unidentifiable

case. The graphical model corresponding to P (0) a single recoverable leaf cluster. The graphical

model corresponding to P (i), for each i = 1, . . . , t2 − 1, has nodes {ia, ib} as one recoverable leaf

cluster, and the remaining nodes as another recoverable leaf cluster.

Symmetrized KL-divergence: For the symmetrized KL-divergence J(P (0), P (1)) com-

putation we focus our attention on i = 1, in which case ia = 1 and ib = (t + 1). The

computation remains identical for other i ≥ 2 due to symmetry.

For this purpose, we need to compute EX∼P (0) log
(
P (0)(X)

P (1)(X)

)
and EX∼P (1) log

(
P (1)(X)

P (0)(X)

)
.

Let us look at
(
P (0)(X)

P (1)(X)

)
. Recall that the nodes t+1, t+2 . . . 2t+1 have 0 noise. We first see

that the expression for P (0)(X) can be decomposed as follows due to the discrete symmetric

146

conditional PMF and the graph structure:

P (0)(X) = P (0)(X ′2t+1)
2t∏
i=1

P (0)(X ′i|X ′2t+1)

Similarly, the decomposition for P (1)(X) is:

P (1)(X) = P (1)(X ′2t+1)P (1)(X ′1|X ′t+1)
2t∏
i=2

P (0)(X ′i|X ′2t+1)

Furthermore, due to the property of discrete symmetric model we have P (0)(X ′2t+1) =

P (1)(X ′2t+1) = 1/k. This gives us:

P (0)(X)

P (1)(X)
=
P (0)(X ′1|X ′2t+1)

P (1)(X ′1|X ′t+1)
.

Therefore,

EX∼P (0) log

(
P (0)(X)

P (1)(X)

)
= EX∼P (0) log(P (0)(X ′1|X ′2t+1)− EX∼P (0) log(P (1)(X ′1|X ′t+1)))

We find the symmetrized KL divergence between P (0) and P (1). We primarily need

the following four conditional PMF matrices for the calculation of the symmetrized KL

divergence:

P
(0)
1′|(2t+1)′ = (1− qmax)αminI + (1− (1− qmax)αmin)

O

k
(C.39)

P
(0)
1′|(t+1)′ = (1− qmax)αminαmaxI + (1− (1− qmax)αminαmax)

O

k
(C.40)

P
(1)
1′|(2t+1)′ = (1− qmax)αminαmaxI + (1− (1− qmax)αminαmax)

O

k
(C.41)

P
(1)
1′|(t+1)′ = (1− qmax)αminI + (1− (1− qmax)αmin)

O

k
(C.42)

For notational simplicity let us use αn = (1− qmax).

EX∼P (0) log(P (0)(X ′1|X ′2t+1)

147

= EX′1,X′2t+1∼P (0) log(P (0)(X ′1|X ′2t+1)

=
∑

(X′1,X
′
2t+1)∈S2

P (0)(X ′1, X
′
2t+1) log(P (0)(X ′1|X ′2t+1)

=
1

k

∑
(X′1,X

′
2t+1)∈S2

P (0)(X ′1|X ′2t+1) log(P (0)(X ′1|X ′2t+1)

=
1

k

 ∑
(X′1=X′2t+1)

P (0)(X ′1|X ′2t+1) log(P (0)(X ′1|X ′2t+1) +
∑

(X′1 6=X′2t+1)

P (0)(X ′1|X ′2t+1) log(P (0)(X ′1|X ′2t+1)

=

1

k

(
k

(
αminαn +

1− αminαn
k

)
log

(
αminαn +

1− αminαn
k

))
+

1

k

(
(k2 − k)

(
1− αminαn

k

)
log

(
1− αminαn

k

))
For the second term we have similarly,

EX∼P (0) log(P (1)(X ′1|X ′t+1)

=
1

k

 ∑
(X′1=X′t+1)

P (0)(X ′1|X ′t+1) log(P (1)(X ′1|X ′t+1) +
∑

(X′1 6=X′t+1)

P (0)(X ′1|X ′t+1) log(P (1)(X ′1|X ′t+1)

=

1

k

(
k

(
αminαmaxαn +

1− αminαmaxαn
k

)
log

(
αminαn +

1− αminαn
k

))
+

1

k

(
(k2 − k)

(
1− αmaxαminαn

k

)
log

(
1− αminαn

k

))
Recall the p.m.f. for a tree structured graphical model with vertex set V and edge

set E, and alphabet X = [K]|V |, is

P (X) =
∏
i∈V

Pi(Xi)
∏

(i,j)∈E

Pi,j(Xi, Xj)

Pi(Xi), Pj(Xj)
,

In the symmetric setting, we get that:

P (X) = 1
k

∏
(i,j)∈E

Pi,j(Xi|Xj).

148

Computing the symmetrized KL divergence involves calculating the following 4 terms which

can be done using Equation (C.39):

EP (0) log(P (0)(X ′2t+1|X ′1)) =
(
αminαn + (1−αminαn)

k

)
log
(
αminαn + (1−αminαn)

k

)
+
(

(k−1)
k

(1− αminαn) log
(

1−αminαn
k

))
EP (0) log(P (1)(X ′t+1|X ′1)) =

(
αminαmaxαn + (1−αminαmaxαn)

k

)
log
(
αminαn + (1−αminαn)

k

)
+
(

(k−1)
k

(1− αminαmaxαn) log
(

1−αminαn
k

))
EP (1) log(P (1)(X ′t+1|X ′1)) =

(
αminαn + (1−αminαn)

k

)
log
(
αminαn + (1−αminαn)

k

)
+
(

(k−1)
k

(1− αminαn) log
(

1−αminαn
k

))
EP (1) log(P (0)(X ′2t+1|X ′1)) =

(
αminαmaxαn + (1−αminαmaxαn)

k

)
log
(
αminαn + (1−αminαn)

k

)
+
(

(k−1)
k

(1− αminαmaxαn) log
(

1−αminαn
k

))

This gives us:

J(P (0), P (1)) = EP (0) log
(P (0)(X′2t+1|X′1))

(P (1)(X′t+1|X′1))
+ EP (1) log

(P (1)(X′t+1|X′1))

(P (0)(X′2t+1|X′1))

Substituting these quantities from above and simplifying, we get:

J(P (0), P (1)) = 2αminαn(1− αmax)
(
k−1
k

)
log
(

1 + kαminαn
1−αminαn

)
= 2 exp(−dmax

k−1
)(1− qmax)(1− exp(−dmin

k−1
))
(
k−1
k

)
log

(
1 +

k exp(−dmax

k−1
)(1−qmax)

1−exp(−dmax

k−1
)(1−qmax)

)
≤ 2(k − 1) exp(−2dmax

k−1
)(1− qmax)2(1− exp(−dmin

k−1
))

We have the maximum distance between two nodes given as dmax = −(k − 1) log(αmin) and

dmin = −(k−1) log(αmax). The noise is related as αn = (1−qmax). Substituting, these terms

above provides us the second equality. Using log(1 + x) ≤ x gives the final inequality.

149

Lower Bound Proof - Part I: We are now in a position to prove the first part of

Theorem 4.6.2.

By the application of Lemma C.9.1, and expressions of J(P (0), P (k)) we obtain that

for attaining a probability error of at most δ > 0 we require at least N samples where

N > (1− δ + 1
log(n)

)
2 log(n)

n2

n2+1
2(k − 1) exp(−2dmax

k−1
)(1− qmax)2(1− exp(−dmin

k−1
))

≥
(1− δ) exp(2dmax

k−1
) log(n)

(k − 1)(1− qmax)2(1− exp(−dmin

k−1
))

C.9.3 Lower bound for recovering TsubT ∗ when TsubT ∗ ⊂ TT ∗

In this section, we focus on the dependence of t0 which can not be captured when the

graph is completely unidentifiable. Therefore, we create graphs using perturbed symmetric

distribution where the graph is partly identifiable (a subset of leaf nodes is distinguishable

from it’s parent).

Family of distributions: We consider graphical models with random variables whose

support size is k ≥ 4. We construct a family of n+ 1 star structured distributions on n+ 1

nodes (as shown in Figure C.8), P (0), P (1), . . . , P (n), such that P (0) is completely identifiable

while P (i) is such that leaf node i and the center node 0 is unidentifiable.

We next provide the details of the family of graphical models.

150

0

1

2

n

𝑖

…

𝑃(")
Symmetric

Perturbed Symmetric

0

1

2

n

𝑖

…
𝑃($)

Figure C.8: The family of distributions used for providing lower bound with t0 dependence. The

graphical model corresponding to P (0) is completely identifiable. The graphical model correspond-

ing to P (i), for each i = 1, . . . , n, has edge {i, 0} which forms a recoverable leaf cluster, and the rest

are all identifiable.

For P (0), the conditional distribution matrices are as follows:

P
(0)
j|0 = (α− δ)I + (1− α)

O

k
+ ∆,∀j ∈ [n],

where

∆ =

0 δ 0 . . . 0

0 0 δ . . . 0
...

...
...

...
...

0 0 0 . . . δ

δ 0 0 . . . 0

For P (i), the conditional distribution matrices are as follows:

P
(i)
j|0 = (α− δ)I + (1− α)

O

k
+ ∆,∀j ∈ [n], j 6= i.

P
(i)
i|0 = αI + (1− α)

O

k
.

151

Recall from Equation (C.38), this conditional distribution ensures that in P (0), all the leaves

can be identified. It also ensures that in P (i) all the leaves other than i can be identified. It

is easy to see that (α − δ)I + (1 − α)O
k

+ ∆ = C(v(θ, θ′)) for θ = 1−α
k
, θ′ = 1−α

k
+ δ. The

marginals of all the random variables in all the distributions are uniform on the support.

Given the graph structure and the uniform marginals, the joint PMF of the random variables

can be decomposed as follows:

P (0)(X) =
1

k

n∏
j=1

P (0)(Xj|X0), (C.43)

P (i)(X) =
1

k

n∏
j=1

P (i)(Xj|X0). (C.44)

Recall that P
(0)
Xj |X0

is the matrix form of conditional distribution whereas P (0)(Xj|X0) is the

scalar value of the conditional PMF for any Xj and X0.

KL Divergence Computation We now calculate the symmetrized KL divergence be-

tween P (0) and P (i) for i 6= 0 denoted by J(P (0), P (i)).

J(P (0), P (i)) = EX∼P (i) log
P (i)(X)

P (0)(X)
+ EX∼P (0) log

P (0)(X)

P (i)(X)

Substituting P (0)(X), P (i)(X) from equation C.43 and noting that P (0)(Xj|X0) = P (i)(Xj|X0)

∀j 6= i, we get that:

J(P (0), P (i)) = EP (i) log
P (i)(Xi|X0)

P (0)(Xi|X0)
+ EP (0) log

P (0)(Xi|X0)

P (i)(Xi|X0)

Therefore to compute J(P (0), P (i)), we need

EP (i) logP (i)(Xi|X0),

152

EP (i) logP (0)(Xi|X0),

EP (0) logP (0)(Xi|X0),

and

EP (0) logP (i)(Xi|X0)

.

We first calculate EP (i) logP (i)(Xi|X0). Note that P (i)(Xi = xi|X0 = x0) takes only

2 values - α + (1− α)/k(whenever xi = x0, that is, for k combinations of xi, x0), (1− α)/k

(whenever Xi 6= X0, that is, for k2 − k combinations of xi, x0).

EP (i) logP (i)(Xi|X0) =
∑

xi,x0∈S×S

P (i)(Xi = xi, X0 = x0) logP (i)(Xi = xi|X0 = x0)

=
∑
xi=x0

P (i)(Xi = xi, X0 = x0) logP (i)(Xi = xi|X0 = x0)

+
∑
xi 6=x0

P (i)(Xi = xi, X0 = x0) logP (i)(Xi = xi|X0 = x0)

=
∑
xi=x0

P (i)(Xi = xi|X0 = x0)P (i)(X0 = x0) logP (i)(Xi = xi|X0 = x0)

+
∑
xi 6=x0

P (i)(Xi = xi|X0 = x0)P (i)(X0 = x0) logP (i)(Xi = xi|X0 = x0)

=k

(
α +

1− α
k

)
1

k
log

(
α +

1− α
k

)
+ k(k − 1)

1− α
k

1

k
log

(
1− α
k

)
=

(
α +

1− α
k

)
log

(
α +

1− α
k

)
+
k − 1

k
(1− α) log

(
1− α
k

)
.

We next calculate EP (i) logP (0)(Xi|X0). P (0)(Xi|X0) takes 3 different values -
(
α + 1−α

k
− δ
)

(for k combinations of xi, x0), 1−α
k

+ δ (for k combinations of xi, x0), 1−α
k

(for k2 − 2k com-

153

binations of xi, x0).

EP (i) logP (0)(Xi|X0) =k

(
α +

1− α
k

)
1

k
log

(
α +

1− α
k
− δ
)

+ k

(
1− α
k

)
1

k
log

(
1− α
k

+ δ

)
+

+ k(k − 2)
1− α
k

1

k
log

(
1− α
k

)
=

(
α +

1− α
k

)
log

(
α +

1− α
k
− δ
)

+
1− α
k

log

(
1− α
k

+ δ

)
+
k − 2

k
(1− α) log

(
1− α
k

)

Evaluating the remaining terms on similar lines gives us:

EXi,X0∼P (0) logP (0)(Xi|X0) =

(
α +

1− α
k
− δ
)

log

(
α +

1− α
k
− δ
)

+

(
1− α
k

+ δ

)
log

(
1− α
k

+ δ

)
+
k − 2

k
(1− α) log

(
1− α
k

)
,

EXi,X0∼P (0) logP (i)(Xi|X0) =

(
α +

1− α
k
− δ
)

log

(
α +

1− α
k

)
+

(
k − 1

k
(1− α) + δ

)
log

(
1− α
k

)
.

This gives us:

J(P (0), P (i)) =δ

[
log

(
1 +

kδ

1− α

)
− log

(
1− kδ

kα + (1− α)

)]
≤ kδ2

(
1

1− α
+

1

1 + (k − 1)α

)
≤ (k−1)

8k(k−3)α2

(
1

1− α
+

1

1 + (k − 1)α

)
× t20, for t0 ≤ k

√
k−3α2√
2(k−1)

, k ≥ 4.

The second last inequality holds as for log((1 + ax)/(1 − bx)) ≤ (a + b)x for x > 0, a > 0,

b > 0, and b ≤ a.

154

We now reason about the final inequality. We have Q2(x) ≥ 2(k−3)k2

(k−1)
δ2(α − δ)2 for

k ≥ 4. If we have δ < α/4 then we have Q2(x) ≥ (k−3)k2

8(k−1)
δ2α2. But we are dealing with the

situation when Q2(x) ≥ t20. This means we must choose δ in a way such that t20 ≤
(k−3)k2

8(k−1)
δ2α2.

Let δ =

√
(k−1)

k
√

8(k−3)α
t0. This choice satisfies δ ≤ α/4 for t0 ≤

k
√

(k−3)α2

√
2(k−1)

. Hence, replacing
√

(k−1)

k
√

8(k−3)α
t0 gives the final inequality for the symmetrized KL divergence above.

As we have δ ≤ α/4 and k ≥ 4, we can simplify the determinant term as

det(P
(i)
i|0) = α(k−1)

((
1− δ

α

)k − (−δ
α

)k)
det(P

(i)
i|0) ≤ α(k−1), det(P

(i)
i|0) ≥ α(k−1) 3k−1

4k

Since the distance is bounded by dmin and dmax, it enforces:

dmax ≥ −(k − 1) log(α)− log(3k−1
4k

) ≥ −(k − 1) log(α)− k log
(

3
4

)
,

dmin ≤ −(k − 1) log(α)

α ≥ 2 exp(−dmax/(k − 1)), α ≤ exp(−dmin/(k − 1)).

If we use α = exp(−dmin/(k−1)) for our construction, the symmetrized KL divergence

in terms of the distance bounds, for k ≥ 4 and t0 ≤ k
√
k−3α2√
2(k−1)

, is

J(P (0), P (i)) ≤ (k−1)
8k(k−3)α2

(
1

1−α + 1
1+(k−1)α

)
× t20

≤ (k−1)
8k(k−3) exp(−2dmin/(k−1))

(
1 + 1

1−exp(−dmin/(k−1))

)
× t20

Lower Bound Proof - Part II: We now derive the second part of Theorem 4.6.2, thus

concluding its proof.

155

Plugging the above symmetrized KL bound in Lemma C.9.1 we obtain that for a

probability error of at most δ > 0 we require at least N samples where

N > (1− δ + 1
log(n)

)
log(n)

n
n+1

(k−1)
8k(k−3) exp(−2dmin/(k−1))

(
1 + 1

1−exp(−dmin/(k−1))

)
× t20

≥
(1− δ) exp(−2dmin

k−1
)(1− exp(−dmin

k−1
))8k(k − 3) log(n)

(k − 1)(2− exp(−dmin

k−1
))t20

Therefore, we have N = Ω

(
(1−δ) exp(−2dmin

k−1
)(1−exp(−dmin

k−1
))k log(n)

t20

)
Instead using α = 1

2
exp(−dmax/(k − 1)) in our construction, following similar steps,

we obtain

N = Ω

(
(1− δ) exp(−2dmax

k−1
)(1− exp(−dmax

k−1
))k log(n)

t20

)
.

Combining these two we obtain the final lower bound in this setting (k ≥ 4 and

t0 ≤
√

3
4
√

10
k exp(−2dmax

k−1
))as

N = Ω

(
max

d∈{dmax,dmin}

(1− δ) exp(− 2d
k−1

)(1− exp(− d
k−1

))k log(n)

t20

)
.

C.10 Experiments

We present the performance of our algorithm for the perturbed symmetric model. All

the experiments in this section are for k = 4.

C.10.1 Varying qmax

Now, we study the impact of the probability of error on the performance of the

algorithm.

156

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

shape = star Exact, qmax = 0
Exact, qmax = 0.2
Exact. qmax = 0.4
EC, qmax = 0
EC, qmax = 0.2
EC, qmax = 0.4

Figure C.9: Comparing the performance of our algorithm for different values of qmax ∈ {0, 0.2, 0.4}

and different graph shapes - chain, star. Setting: dmin = dmax = exp(−0.7), δ = 0.04 # of

nodes= 7. We provide results for two cases: i) when the exact underlying tree is recovered, ii)

when a tree from the equivalence class is recovered.

Setting: (i) Number of nodes = 7.

(ii) Graph Shape = {Chain, Star}

(iii) Distance of all the adjacent nodes = exp(−0.7).

(iv) Error probability is uniformly sampled from [0, qmax], where, qmax ∈ {0, 0.2, 0.4}.

(v) δ = 0.04

(vi) Assume access to qmax, dmin but not to dmax, t0.

(vii) Number of iterations = 100

Takeaway: The convergence is slower for higher qmax as demonstrated in Figure C.9.

C.10.2 Varying d

Finally, we present the results for different values of d.

157

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

shape = chain

102 103 104

Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

or
re

ct
 re

co
ve

rie
s

shape = star Exact, log d = 0.5
Exact, log d = 0.7
Exact, log d = 0.92
EC, log d = 0.5
EC, log d = 0.7
EC, log d = 0.92

Figure C.10: Comparing the performance of our algorithm for different values of d and different

graph shapes - chain, star. Setting: qmax = 0.2, δ = 0.02 # of nodes= 7. We provide results for

two cases: i) when the exact underlying tree is recovered, ii) when a tree from the equivalence class

is recovered.

Setting: (i) Number of nodes = 7.

(ii) Graph Shape = {Chain, Star}.

(iii) Distance of all the adjacent nodes ∈ {exp(−0.5), exp(−0.7), exp(−0.92)}.

(iv) Error probability is uniformly sampled from [0, 0.2].

(v) δ = 0.02

(vi) Assume access to qmax, dmin but not to dmax, t0.

(vii) Number of iterations = 100

Takeaway: The algorithm performs the best for intermediate values of d. When the distance

is too high or too low, the convergence is slower. Interestingly, the performance for exact

recovery and equivalence class recovery show different trends - exact recovery is more difficult

when the distance is large whereas the recovery of the equivalence class is more difficult when

the distance is small. The results are presented in Figure C.10.

158

Index

Abstract, xii

Acknowledgments, v

Appendices, 158

Bibliography, 171

Dedication, iv

159

Bibliography

[1] Anima Anandkumar, Daniel J Hsu, Furong Huang, and Sham M Kakade. Learning

mixtures of tree graphical models. In Advances in Neural Information Processing

Systems, pages 1052–1060, 2012.

[2] Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model selection

through sparse maximum likelihood estimation for multivariate gaussian or binary data.

Journal of Machine learning research, 9(Mar):485–516, 2008.

[3] Rajendra Bhatia. Perturbation bounds for matrix eigenvalues. SIAM, 2007.

[4] Arnab Bhattacharyya, Sutanu Gayen, Eric Price, and NV Vinodchandran. Near-

optimal learning of tree-structured distributions by Chow-Liu. arXiv preprint arXiv:2011.04144,

2020.

[5] Guy Bresler. Efficiently learning ising models on arbitrary graphs. In Proceedings

of the forty-seventh annual ACM symposium on Theory of computing, pages 771–782.

ACM, 2015.

[6] Guy Bresler, David Gamarnik, and Devavrat Shah. Hardness of parameter estimation

in graphical models. In Advances in Neural Information Processing Systems, pages

1062–1070, 2014.

160

[7] Guy Bresler, David Gamarnik, and Devavrat Shah. Structure learning of antiferro-

magnetic ising models. In Advances in Neural Information Processing Systems, pages

2852–2860, 2014.

[8] Guy Bresler, Mina Karzand, et al. Learning a tree-structured ising model in order to

make predictions. Annals of Statistics, 48(2):713–737, 2020.

[9] Guy Bresler, Elchanan Mossel, and Allan Sly. Reconstruction of markov random fields

from samples: Some observations and algorithms. In Approximation, Randomization

and Combinatorial Optimization. Algorithms and Techniques, pages 343–356. Springer,

2008.

[10] Stephen G Brush. History of the lenz-ising model. Reviews of modern physics,

39(4):883, 1967.

[11] Marta Casanellas, Marina Garrote-López, and Piotr Zwiernik. Robust estimation of

tree structured models. arXiv preprint arXiv:2102.05472, 2021.

[12] Robert Castelo and Alberto Roverato. A robust procedure for gaussian graphical

model search from microarray data with p larger than n. Journal of Machine Learning

Research, 7(Dec):2621–2650, 2006.

[13] Joseph T Chang. Full reconstruction of markov models on evolutionary trees: identifi-

ability and consistency. Mathematical biosciences, 137(1):51–73, 1996.

[14] Yuxin Chen. Learning sparse ising models with missing data.

161

[15] Myung Jin Choi, Joseph J Lim, Antonio Torralba, and Alan S Willsky. Exploiting

hierarchical context on a large database of object categories. In 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, pages 129–136. IEEE,

2010.

[16] Myung Jin Choi, Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky.

Learning latent tree graphical models. Journal of Machine Learning Research, 12(May):1771–

1812, 2011.

[17] C Chow and Cong Liu. Approximating discrete probability distributions with depen-

dence trees. IEEE transactions on Information Theory, 14(3):462–467, 1968.

[18] George R Cross and Anil K Jain. Markov random field texture models. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, (1):25–39, 1983.

[19] Sanjoy Dasgupta. Learning polytrees. In Proceedings of the Fifteenth conference on

Uncertainty in artificial intelligence, pages 134–141. Morgan Kaufmann Publishers Inc.,

1999.

[20] Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. Testing ising mod-

els. IEEE Transactions on Information Theory, 2019.

[21] Constantinos Daskalakis and Qinxuan Pan. Tree-structured ising models can be learned

efficiently. arXiv preprint arXiv:2010.14864, 2020.

[22] Sacha Epskamp, Lourens J Waldorp, René Mõttus, and Denny Borsboom. The gaus-

sian graphical model in cross-sectional and time-series data. Multivariate Behavioral

Research, 53(4):453–480, 2018.

162

[23] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance

estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[24] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. IEEE Transactions on pattern analysis and machine

intelligence, (6):721–741, 1984.

[25] Sergei Konstantinovich Godunov, AG Antonov, OP Kiriljuk, and VI Kostin. Guar-

anteed accuracy in numerical linear algebra, volume 252. Springer Science & Business

Media, 2013.

[26] Surbhi Goel, Daniel M Kane, and Adam R Klivans. Learning ising models with inde-

pendent failures. arXiv preprint arXiv:1902.04728, 2019.

[27] Linus Hamilton, Frederic Koehler, and Ankur Moitra. Information theoretic properties

of markov random fields, and their algorithmic applications. In Advances in Neural

Information Processing Systems, pages 2463–2472, 2017.

[28] Martin Hassner and Jack Sklansky. The use of markov random fields as models of

texture. In Image Modeling, pages 185–198. Elsevier, 1981.

[29] Leon Sot (https://math.stackexchange.com/users/214617/leon sot). Simple identity in-

volving q-pochhammer symbol. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/2081765

(version: 2017-01-03).

[30] Takeshi Inagaki. Critical ising model and financial market. arXiv preprint cond-

mat/0402511, 2004.

163

[31] Ilse CF Ipsen and Rizwana Rehman. Perturbation bounds for determinants and char-

acteristic polynomials. SIAM Journal on Matrix Analysis and Applications, 30(2):762–

776, 2008.

[32] Ernst Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik A

Hadrons and Nuclei, 31(1):253–258, 1925.

[33] Ariel Jaimovich, Gal Elidan, Hanah Margalit, and Nir Friedman. Towards an integrated

protein–protein interaction network: A relational markov network approach. Journal

of Computational Biology, 13(2):145–164, 2006.

[34] Majid Janzamin and Animashree Anandkumar. High-dimensional covariance decompo-

sition into sparse markov and independence models. The Journal of Machine Learning

Research, 15(1):1549–1591, 2014.

[35] Ashish Katiyar, Jessica Hoffmann, and Constantine Caramanis. Robust estimation of

tree structured gaussian graphical models. In International Conference on Machine

Learning, pages 3292–3300. PMLR, 2019.

[36] Adam Klivans and Raghu Meka. Learning graphical models using multiplicative

weights. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science

(FOCS), pages 343–354. IEEE, 2017.

[37] Mladen Kolar and Eric P Xing. Estimating sparse precision matrices from data with

missing values. 2012.

[38] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-

niques. MIT press, 2009.

164

[39] Nicole Krämer, Juliane Schäfer, and Anne-Laure Boulesteix. Regularized estimation of

large-scale gene association networks using graphical gaussian models. BMC bioinfor-

matics, 10(1):384, 2009.

[40] James A Lake. Reconstructing evolutionary trees from dna and protein sequences:

paralinear distances. Proceedings of the National Academy of Sciences, 91(4):1455–

1459, 1994.

[41] Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.

[42] Su-In Lee, Varun Ganapathi, and Daphne Koller. Efficient structure learning of markov

networks using l 1-regularization. In Advances in neural Information processing sys-

tems, pages 817–824, 2007.

[43] Binglin Li, Shuangqing Wei, Yue Wang, and Jian Yuan. Chernoff information of

bottleneck gaussian trees. In Information Theory (ISIT), 2016 IEEE International

Symposium on, pages 970–974. IEEE, 2016.

[44] Erik M Lindgren, Vatsal Shah, Yanyao Shen, Alexandros G Dimakis, and Adam Klivans.

On robust learning of ising models. In NeurIPS Workshop on Relational Representation

Learning, 2019.

[45] Han Liu, Fang Han, Ming Yuan, John Lafferty, Larry Wasserman, et al. High-

dimensional semiparametric gaussian copula graphical models. The Annals of Statistics,

40(4):2293–2326, 2012.

165

[46] Po-Ling Loh and Martin J Wainwright. High-dimensional regression with noisy and

missing data: Provable guarantees with non-convexity. In Advances in Neural Infor-

mation Processing Systems, pages 2726–2734, 2011.

[47] Andrey Y Lokhov, Marc Vuffray, Sidhant Misra, and Michael Chertkov. Optimal

structure and parameter learning of ising models. Science advances, 4(3):e1700791,

2018.

[48] Karim Lounici. High-dimensional covariance matrix estimation with missing observa-

tions. Bernoulli, 20(3):1029–1058, 2014.

[49] Fabio Martinelli, Alistair Sinclair, and Dror Weitz. The ising model on trees: Boundary

conditions and mixing time. In 44th Annual IEEE Symposium on Foundations of

Computer Science, 2003. Proceedings., pages 628–639. IEEE, 2003.

[50] Nicolai Meinshausen, Peter Bühlmann, et al. High-dimensional graphs and variable

selection with the lasso. The annals of statistics, 34(3):1436–1462, 2006.

[51] Nicolas Guenon des Mesnards and Tauhid Zaman. Detecting influence campaigns in

social networks using the ising model. arXiv preprint arXiv:1805.10244, 2018.

[52] Elchanan Mossel, Sébastien Roch, and Allan Sly. Robust estimation of latent tree

graphical models: Inferring hidden states with inexact parameters. IEEE transactions

on information theory, 59(7):4357–4373, 2013.

[53] Konstantinos E. Nikolakakis, Dionysios S. Kalogerias, and Anand D. Sarwate. Learn-

ing tree structures from noisy data. In Proceedings of Machine Learning Research,

166

volume 89 of Proceedings of Machine Learning Research, pages 1771–1782. PMLR,

2019.

[54] Konstantinos E Nikolakakis, Dionysios S Kalogerias, and Anand D Sarwate. Learning

tree structures from noisy data. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 1771–1782, 2019.

[55] Konstantinos E Nikolakakis, Dionysios S Kalogerias, and Anand D Sarwate. Non-

parametric structure learning on hidden tree-shaped distributions. arXiv preprint

arXiv:1909.09596, 2019.

[56] Konstantinos E. Nikolakakis, Dionysios S. Kalogerias, and Anand D. Sarwate. In-

formation thresholds for non-parametric structure learning on tree graphical models,

2020.

[57] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible infer-

ence. Elsevier, 2014.

[58] Judea Pearl and Michael Tarsi. Structuring causal trees. Journal of Complexity,

2(1):60–77, 1986.

[59] Garvesh Raskutti, Bin Yu, Martin J Wainwright, and Pradeep K Ravikumar. Model

selection in gaussian graphical models: High-dimensional consistency of `1-regularized

mle. In Advances in Neural Information Processing Systems, pages 1329–1336, 2009.

[60] Pradeep Ravikumar, Martin J Wainwright, John D Lafferty, et al. High-dimensional

ising model selection using l1-regularized logistic regression. The Annals of Statistics,

38(3):1287–1319, 2010.

167

[61] Stefan Roth and Michael J Black. Fields of experts: A framework for learning image

priors. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), volume 2, pages 860–867. Citeseer, 2005.

[62] Adam J Rothman, Peter J Bickel, Elizaveta Levina, Ji Zhu, et al. Sparse permutation

invariant covariance estimation. Electronic Journal of Statistics, 2:494–515, 2008.

[63] Narayana P Santhanam and Martin J Wainwright. Information-theoretic limits of se-

lecting binary graphical models in high dimensions. IEEE Transactions on Information

Theory, 58(7):4117–4134, 2012.

[64] Elad Schneidman, Michael J Berry II, Ronen Segev, and William Bialek. Weak pairwise

correlations imply strongly correlated network states in a neural population. Nature,

440(7087):1007, 2006.

[65] Didier Sornette. Physics and financial economics (1776–2014): puzzles, ising and agent-

based models. Reports on progress in physics, 77(6):062001, 2014.

[66] Nathan Srebro. Maximum likelihood bounded tree-width markov networks. Artificial

intelligence, 143(1):123–138, 2003.

[67] G.W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Computer science and

scientific computing. Academic Press, 1990.

[68] Makram Talih and Nicolas Hengartner. Structural learning with time-varying compo-

nents: tracking the cross-section of financial time series. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 67(3):321–341, 2005.

168

[69] Vincent YF Tan, Animashree Anandkumar, Lang Tong, and Alan S Willsky. A large-

deviation analysis of the maximum-likelihood learning of markov tree structures. IEEE

Transactions on Information Theory, 57(3):1714–1735, 2011.

[70] Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky. Learning gaussian

tree models: Analysis of error exponents and extremal structures. arXiv preprint

arXiv:0909.5216, 2009.

[71] Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky. Learning gaussian

tree models: Analysis of error exponents and extremal structures. IEEE Transactions

on Signal Processing, 58(5):2701–2714, 2010.

[72] Anshoo Tandon, Vincent YF Tan, and Shiyao Zhu. Exact asymptotics for learning

tree-structured graphical models with side information: Noiseless and noisy samples.

arXiv preprint arXiv:2005.04354, 2020.

[73] Anshoo Tandon, Aldric HJ Yuan, and Vincent YF Tan. Sga: A robust algorithm for

partial recovery of tree-structured graphical models with noisy samples. arXiv preprint

arXiv:2101.08917, 2021.

[74] Joel A Tropp. An introduction to matrix concentration inequalities. arXiv preprint

arXiv:1501.01571, 2015.

[75] Dorina Andru Vangheli. Ising-like statistical models and stock markets real evolution.

Annals of the West University of Timisoara. Physics Series, 49:170, 2006.

169

[76] Marc Vuffray, Sidhant Misra, Andrey Lokhov, and Michael Chertkov. Interaction

screening: Efficient and sample-optimal learning of ising models. In Advances in Neural

Information Processing Systems, pages 2595–2603, 2016.

[77] Martin J Wainwright and Michael Irwin Jordan. Graphical models, exponential families,

and variational inference. Now Publishers Inc, 2008.

[78] Jun-Kun Wang and Shou-de Lin. Robust inverse covariance estimation under noisy

measurements. In International Conference on Machine Learning, pages 928–936, 2014.

[79] Lingxiao Wang and Quanquan Gu. Robust gaussian graphical model estimation with

arbitrary corruption. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 3617–3626. JMLR. org, 2017.

[80] Wolfgang Weidlich. The statistical description of polarization phenomena in society.

British Journal of Mathematical and Statistical Psychology, 24(2):251–266, 1971.

[81] Wolfgang Weidlich. Physics and social science—the approach of synergetics. Physics

reports, 204(1):1–163, 1991.

[82] Eleanor Wong, Suyash Awate, and P Thomas Fletcher. Adaptive sparsity in gaussian

graphical models. In International Conference on Machine Learning, pages 311–319,

2013.

[83] John Woods. Markov image modeling. IEEE Transactions on Automatic Control,

23(5):846–850, 1978.

[84] Jiansheng Wu. Ising model as a model of multi-agent based financial market.

170

[85] Shanshan Wu, Sujay Sanghavi, and Alexandros G Dimakis. Sparse logistic regression

learns all discrete pairwise graphical models. arXiv preprint arXiv:1810.11905, 2018.

[86] Shanshan Wu, Sujay Sanghavi, and Alexandros G Dimakis. Sparse logistic regres-

sion learns all discrete pairwise graphical models. In Advances in Neural Information

Processing Systems, pages 8071–8081, 2019.

[87] Eunho Yang and Aurélie C Lozano. Robust gaussian graphical modeling with the

trimmed graphical lasso. In Advances in Neural Information Processing Systems, pages

2602–2610, 2015.

[88] Ming Yuan. High dimensional inverse covariance matrix estimation via linear program-

ming. Journal of Machine Learning Research, 11(Aug):2261–2286, 2010.

[89] Ming Yuan and Yi Lin. Model selection and estimation in the gaussian graphical model.

Biometrika, 94(1):19–35, 2007.

[90] Kun Zhang, Mingming Gong, Joseph Ramsey, Kayhan Batmanghelich, Peter Spirtes,

and Clark Glymour. Causal discovery in the presence of measurement error: Identifia-

bility conditions. arXiv preprint arXiv:1706.03768, 2017.

[91] W-X Zhou and Didier Sornette. Self-organizing ising model of financial markets. The

European Physical Journal B, 55(2):175–181, 2007.

171

Vita

Ashish Katiyar received M.S. in Electrical and Computer Engineering from Texas

A&M University in 2017 and B.Tech in Electrical Engineering from the Indian Institute of

Technology Jodhpur in 2012. He is currently working towards Ph.D. in Electrical and Com-

puter Engineering at the University of Texas at Austin. His research interests are broadly

in theoretical machine learning with current focus on robust graphical model estimation. He

has held internship positions at Facebook (2020); InterDigital (2019); IIT Kanpur (2011);

University of Technology of Troyes (2010). He was a scientist at Defence Research and

Development Organization, India from 2012-2015.

Permanent address: a.katiyar@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald

Knuth’s TEX Program.

172

