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With the increase in compute power and the advent of the big data

era, inverse problems have grown more complex, attempting to extract more

information and to use more data. While this evolution manifests itself in

multiple forms, we focus in this dissertation on three specific aspects: multi-

source, multi-parameter, and multi-physics inverse problems.

The computational cost of solving a multi-source inverse problem in-

creases linearly with the number of experiments. A recently proposed method

to decrease this cost uses only a small number of random linear combinations

of all experiments for solving the inverse problem. This approach applies to

inverse problems where the PDE solution depends linearly on the right-hand

side function that models the experiment. As this method is stochastic in

essence, the quality of the obtained reconstructions can vary, in particular

when only a small number of combinations are used. We propose to replace

the random weights traditionally used in the linear combinations of the exper-

iments, with deterministic weights (or, encoding weights). We approach the

computation of these weights as an optimal experimental design problem, and
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develop a Bayesian formulation for the definition and computation of encod-

ing weights that lead to a parameter reconstruction with the least uncertainty.

We call these weights A-optimal encoding weights. Our framework applies to

inverse problems where the governing PDE is nonlinear with respect to the

inversion parameter field. We formulate the problem in infinite dimensions

and follow the optimize-then-discretize approach, devoting special attention

to the discretization and the choice of numerical methods in order to achieve

a computational cost that is independent of the parameter discretization. We

elaborate our method for a Helmholtz inverse problem, and derive the adjoint-

based expressions for the gradient of the objective function of the optimization

problem for finding the A-optimal encoding weights. The proposed method

is potentially attractive for real-time monitoring applications, where one can

invest the effort to compute optimal weights offline, to later solve an inverse

problem repeatedly, over time, at a fraction of the initial cost.

We define a multi-parameter inverse problem, also called joint inverse

problem, as the simultaneous inference of multiple parameter fields. In this

dissertation, we concentrate on two types of multi-parameter inverse problems.

In the first case, we have at our disposal a single type of observations, generated

by a single physical phenomenon which depends on multiple parameters. In

the second case, we utilize multiple datasets generated from physical phenom-

ena that depend on different parameters; when the data are generated from

different physics, this is a multi-physics inverse problem. The regularization

of a multi-parameter inverse problem plays a critical role. It not only acts as

a regularizer to the inverse problem, but can also be used to impose coupling

between the inversion parameters when they are known to share similar struc-

tures. We compare four joint regularizations terms: the cross-gradient, the
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normalized cross-gradient, the vectorial total variation, and a novel regular-

izer based on the nuclear norm of a gradient matrix. Following comprehensive

numerical investigations, we concluded that vectorial total variation leads to

the best reconstructions. We next devoted our attention to develop an efficient

primal-dual Newton solver for joint inverse problems regularized with vecto-

rial total variation. Introducing an auxiliary dual variable in the first-order

optimality condition, which we then solve using Newton method, we were able

to reduce the nonlinearity in the inverse problem. Through an extensive nu-

merical investigation, we showed that this solver is scalable with respect to the

mesh size, the hyperparameter, and the number of inversion parameters. We

also observed that it significantly outperforms the classical Newton method

and the popular lagged diffusivity method when fine convergence tolerances

are needed.

Multi-physics inverse problems are becoming more popular as a way

to enhance the quality of the reconstructions by combining the strengths of

multiple imaging modalities. In this dissertation, we specialize to the case

of full-waveform inversion, and the presence of local minima in its objective

function when using high-frequency data. The most practical workaround to-

day remains a continuation scheme over the frequency of the source term.

However, in a seismic exploration setting, modern equipment does not allow

to generate data of sufficiently low frequencies. One potential application of

multi-physics inverse problems is to allow an auxiliary physical phenomenon,

e.g., electromagnetic waves, to provide the missing low-frequency information

for full-waveform inversion. In this dissertation, we provide supporting evi-

dence for this approach when using the vectorial total variation functional as

a regularization.

viii



Table of Contents

Acknowledgments v

Abstract vi

List of Tables xiii

List of Figures xiv

Chapter 1. A primer on the numerical solution of large-scale
inverse problems constrained by PDEs 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Examples of inverse problems . . . . . . . . . . . . . . . 2

1.2 Regularization functional . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Tikhonov regularization . . . . . . . . . . . . . . . . . . 6

1.2.2 Total variation regularization . . . . . . . . . . . . . . . 7

1.2.2.1 Modified TV . . . . . . . . . . . . . . . . . . . 8

1.2.2.2 Numerical solution . . . . . . . . . . . . . . . . 9

1.3 Numerical solution of large-scale inverse problems . . . . . . . 12

1.3.1 Derivatives of the objective function . . . . . . . . . . . 12

1.3.1.1 First derivative . . . . . . . . . . . . . . . . . . 13

1.3.1.2 Second derivative . . . . . . . . . . . . . . . . . 17

1.3.2 Numerical optimization techniques . . . . . . . . . . . . 20

1.4 Full-waveform inversion . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 The forward problem . . . . . . . . . . . . . . . . . . . 23

1.4.2 Inverse problem for the time-domain acoustic wave equa-
tion with absorbing boundary conditions . . . . . . . . . 26

1.4.2.1 Derivatives of the inverse problem . . . . . . . . 27

1.4.2.2 Discretization . . . . . . . . . . . . . . . . . . . 28

1.5 Scope of research . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



1.5.1 Multi-source inverse problems . . . . . . . . . . . . . . . 32

1.5.2 Multi-parameter inverse problems . . . . . . . . . . . . 34

1.5.2.1 The joint regularization term . . . . . . . . . . 35

1.5.2.2 Efficient solver for the solution of joint inverse
problems regularized with VTV . . . . . . . . . 37

1.5.3 Can a multi-physics inverse problem provide low-frequency
information for full-waveform inversion? . . . . . . . . . 38

Chapter 2. A-optimal encoding weights for nonlinear inverse
problems 40

2.1 Bayesian formulation of the inverse problem with encoded sources 41

2.1.1 MAP point . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.2 Approximation to the posterior covariance . . . . . . . . 44

2.2 A-optimal approach to source encoding . . . . . . . . . . . . . 45

2.2.1 Dependence of the operators CG
post and CL

post on w . . . . 46

2.2.2 A-optimal encoding weights . . . . . . . . . . . . . . . . 47

2.3 Application to the Helmholtz inverse problem . . . . . . . . . 50

2.3.1 The inverse problem: medium parameter reconstruction 50

2.3.1.1 MAP point . . . . . . . . . . . . . . . . . . . . 51

2.3.1.2 Gradient and Hessian of the inverse problem . . 52

2.3.2 The optimization problem for A-optimal encoding weights 52

2.3.2.1 Gradient of the A-optimal weight problem . . . 54

2.3.2.2 Discretization . . . . . . . . . . . . . . . . . . . 55

2.3.2.3 Computational cost . . . . . . . . . . . . . . . . 57

2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4.1 One-dimensional weight space . . . . . . . . . . . . . . . 60

2.4.2 A-optimal encoding weights in higher dimensional weight
spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.3 Remarks on the Gauss–Newton formulation . . . . . . . 69

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



Chapter 3. A comparative study of regularizations for multi-
parameter inverse problems 72

3.1 Cross-gradient terms . . . . . . . . . . . . . . . . . . . . . . . 74

3.1.1 The cross-gradient term . . . . . . . . . . . . . . . . . . 74

3.1.2 Normalized cross-gradient . . . . . . . . . . . . . . . . . 78

3.2 Vectorial total variation . . . . . . . . . . . . . . . . . . . . . . 79

3.3 Nuclear norm joint regularization . . . . . . . . . . . . . . . . 81

3.3.1 Gradient of the nuclear norm joint regularization . . . . 82

3.3.2 Modified nuclear norm joint regularization . . . . . . . . 83

3.3.3 Joint regularization, or structural similarity term? . . . 85

3.3.4 Numerical solution of joint inverse problems regularized
with the nuclear norm joint regularization . . . . . . . . 86

3.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.1 Joint Poisson inverse problems . . . . . . . . . . . . . . 89

3.4.1.1 Truth parameter fields have identical interface
locations . . . . . . . . . . . . . . . . . . . . . . 90

3.4.1.2 Truth parameter fields have different interface lo-
cations . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.2 Joint inversion of bulk modulus and density in the acous-
tic wave equation . . . . . . . . . . . . . . . . . . . . . . 95

3.4.2.1 Problem description . . . . . . . . . . . . . . . 95

3.4.2.2 Solution of the acoustic wave joint inverse problem 95

3.4.3 Multi-physics inverse problem . . . . . . . . . . . . . . . 97

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 4. A primal-dual Newton method for the solution of
joint inverse problems regularized with vectorial to-
tal variation 105

4.1 Vectorial total variation . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1 Joint total variation regularization . . . . . . . . . . . . 106

4.1.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2 Primal-dual Newton method for the solution of joint inverse
problems regularized with VTV . . . . . . . . . . . . . . . . . 111

4.2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



4.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . 118

4.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.1 Scalability with respect to the hyperparameter ε . . . . 120

4.3.1.1 Joint Poisson inverse problem . . . . . . . . . . 121

4.3.1.2 Joint inversion of bulk modulus and density in
the acoustic wave equation . . . . . . . . . . . . 123

4.3.2 Scalability with respect to the mesh size h . . . . . . . . 124

4.3.3 Scalability with respect to the number of inversion pa-
rameters n . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Appendices 131

Appendix A. Appendix for chapter 2 132

A.1 Gradient of the optimization formulation (2.20) . . . . . . . . 132

Appendix B. Appendices for chapter 3 136

B.1 Singular values of a matrix A ∈ R
2×2 . . . . . . . . . . . . . . 136

B.2 Relative medium misfits for examples in section 3.4 . . . . . . 137

Appendix C. Appendix for chapter 4 139

C.1 Relative medium misfits for examples in section 4.3 . . . . . . 139

Bibliography 141

Vita 153

xii



List of Tables

2.1 Computational cost for objective function and gradient evalua-
tion of the optimization problem for finding A-optimal encod-
ing weights. We report the computational cost, in terms of the
number of forward PDE solves, for ΦGN(w), ΦL(w), and Φ0(w)
defined in (2.12)–(2.14) respectively. Notations: ncg = number
of Conjugate-Gradient iterations to compute the search direc-
tion in Newton’s method; nnewt = number of Newton steps to
compute the MAP point. . . . . . . . . . . . . . . . . . . . . . 57

B.1 Relative medium misfits (measured in the L2-norm) for the ex-
ample in section 3.4.1.1 . . . . . . . . . . . . . . . . . . . . . . 137

B.2 Relative medium misfits (measured in the L2-norm) for the ex-
ample in section 3.4.1.2 . . . . . . . . . . . . . . . . . . . . . . 137

B.3 Relative medium misfits (measured in the L2-norm) for the ex-
ample in section 3.4.2 . . . . . . . . . . . . . . . . . . . . . . . 137

B.4 Relative medium misfits (measured in the L2-norm) for the ex-
ample in section 3.4.3 . . . . . . . . . . . . . . . . . . . . . . . 138

C.1 Relative medium misfits (in the L2-norm) at the minimizer for
the joint inverse problem in section 4.3.1.1 . . . . . . . . . . . 139

C.2 Relative medium misfits (in the L2-norm) at the minimizer for
the joint inverse problem in section 4.3.1.2 . . . . . . . . . . . 139

C.3 Relative medium misfits (in the L2-norm) at the minimizer for
the joint inverse problem in section 4.3.3 . . . . . . . . . . . . 140

xiii



List of Figures

1.1 Time signal (left), and (non-negative) frequency content (right),
of a Ricker wavelet centered at f0 = 4Hz. . . . . . . . . . . . . 25

2.1 Target medium parameters, along with the locations of the
sources (green squares) and receivers (yellow circles). . . . . . 60

2.2 Plots of tr(H−1) with H−1(mMAP(w1)), H−1
GN(mMAP(w1)) and

H−1
GN(m0) for both target media. m0 ≡ 1, same as the back-

ground value for the medium parameter. . . . . . . . . . . . . 62

2.3 Plots of objective function Φ0 (2.11) for weights w1 ∈ [−1, 1]
(right), at medium m̄s, with s = 0, 0.5, 1 (left). Here m0 ≡ 1
(the background medium). . . . . . . . . . . . . . . . . . . . 63

2.4 Plots of the objective function in (2.13) when the trace of the
posterior covariance is computed exactly or with a trace estima-
tor (ntr = 1, 10, 30). For each ntr, we used a fixed realization
of the trace estimator vectors. . . . . . . . . . . . . . . . . . . 64

2.5 Target medium parameter and locations of the 10 sources (green
squares), and receivers (yellow circles). . . . . . . . . . . . . . 64

2.6 Plot of ΦL(w) (2.10) against relative medium misfit (Ns = 10
and Nw = 1, 2, 3, 6) for reconstructions using random encod-
ing sources sampled from the uniform spherical distribution
(blue) or A-optimal encoding weights computed with formula-
tion (2.12) (black) and (2.13) (red). Target model 2 with source
configuration as shown in figure 2.5. Sample size = 500, and
ntr = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7 Four examples of reconstructions using different number of sour-
ces, with target parameter 2: (a) 10 independent sources; (b) 3
A-optimally encoded sources; (c) 3 randomly encoded sources;
(d) 3 other randomly encoded sources. . . . . . . . . . . . . . 66

2.8 Variability of the A-optimal weights for different numbers of
trace estimator vectors, ntr = 30 (red), 10 (black) and 4 (ma-
genta). A-optimal encoding weights are computed with formu-
lation (2.13) (Ns = 10 and Nw = 3), using different realizations
of the trace estimator vectors and different initial guess of the
weights. Sample size = 100. . . . . . . . . . . . . . . . . . . . 68

xiv



3.1 Sketch of a level set for the parameters m1 (red) and m2 (blue),
with their respective gradients at a point. . . . . . . . . . . . . 74

3.2 Eigenvalues of the Hessian operator (blue) and block-diagonal
part of the Hessian operator (red) for the (iii) cross-gradient
term (3.1) and the (iv) normalized cross-gradient term (3.7)
with ε = 10−4, for two combinations of truth parameter fields
(i) m1 and (ii) m2. The domain is a unit square discretized
by a 40 × 40 mesh, and the parameter fields m1 and m2 are
discretized using continuous piecewise linear finite elements. . 78

3.3 Values of the VTV regularization (3.9), for two parameter fields
m1 and m2 defined over Ω = [0, 2], with both parameter fields
having a single jump of the same amplitude, and RTV(m1) =
RTV(m2). This informal argument can be made rigorous by
using piecewise linear functions for m1 and m2. . . . . . . . . 80

3.4 Truth parameter fields for (a) m1 and (b) m2 in the exam-
ple of section 3.4.1.1. White dots in (a) and (b) indicate the
location of the pointwise observations. The observations for pa-
rameter m1 only cover the top-right quadrant of the domain,
forming a square lattice of 25× 25 pointwise observations. The
observations for parameter m2 form a square lattice of 50× 50
pointwise observation distributed over the entire domain. . . 90

3.5 Reconstructions for the parameter fields (a) m1 and (b) m2,
obtained by solving the inverse problem (3.20) regularized with
TV (ε = 10−3, γ1 = 3· 10−7, and γ2 = 4· 10−7). The legend for
both plots is as in figure 3.4. . . . . . . . . . . . . . . . . . . . 91

3.6 Reconstructions for the parameter fields (a) m1 and (b) m2,
obtained by solving a joint inverse problem (1.36) regularized
with (i) the cross-gradient (γ = 2· 10−8) paired with two inde-
pendent TV regularizations, (ii) the normalized cross-gradient
(γ = 6· 10−6 and ε = 10−3) paired with two independent TV
regularizations, (iii) the VTV joint regularization (γ = 3· 10−7

and ε = 10−3), and (iv) the nuclear norm joint regularization
(γ = 3· 10−7 and ε = 10−3). The parameters for the inde-
pendent TV regularizations are as for the independent inverse
problems (see caption of figure 3.5). The legend is as in figure
3.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 Truth parameter fields for (a) m1 and (b) m2 in the example of
section 3.4.1.2. White dots in (a) and (b) indicate the location
of the pointwise observations (see caption of figure 3.4). . . . . 93

xv



3.8 Reconstructions for the parameter fields (a) m1 and (b) m2,
obtained by solving the inverse problem (3.20) regularized with
TV (ε = 10−3, γ1 = 4· 10−7, and γ2 = 4· 10−7). The legend for
both plots is the same as in figure 3.7. . . . . . . . . . . . . . 93

3.9 Reconstructions for the parameter fields (a) m1 and (b) m2,
obtained by solving a joint inverse problem (1.36) regularized
with (i) the cross-gradient paired with 2 independent TV reg-
ularizations (γ = 5· 10−9), (ii) the normalized cross-gradient
paired with 2 independent TV regularizations (γ = 7· 10−7

and ε = 10−3), (iii) the VTV joint regularization (γ = 4· 10−7

and ε = 10−3), and (iv) the nuclear norm joint regularization
(γ = 4· 10−7 and ε = 10−3). The parameters for the indepen-
dent TV regularizations are the ones selected for the indepen-
dent inverse problems (see caption figure 3.8). The legend for
all plots is the same as in figure 3.7. . . . . . . . . . . . . . . . 94

3.10 Truth parameter fields for (a) α and (b) β in the joint acoustic
inverse problem (1.28) used in section 3.4.2. The yellow stars
in (a) indicate the locations of the sources. The green triangles
in (b) indicate the locations of the pointwise observations. . . 96

3.11 Reconstructions for the parameter fields (a) α and (b) β when
solving (1.28) regularized with two independent TV regulariza-
tions (ε = 10−3, γα = 5· 10−6, and γβ = 9· 10−6). . . . . . . . . 97

3.12 Reconstructions for the parameter fields (a) α and (b) β, ob-
tained by solving inverse problem (1.28) regularized with (i)
the cross-gradient (γ = 10−2) paired with two independent TV
regularizations, (ii) the normalized cross-gradient (γ = 9· 10−6

and ε = 10−6) paired with two independent TV regularizations,
(iii) the VTV joint regularization (γ = 7· 10−6 and ε = 10−3),
and (iv) the nuclear norm joint regularization (γ = 7· 10−6 and
ε = 10−3). The parameters for the independent TV regulariza-
tions are the ones selected for the independent inverse problems
(see caption in figure 3.11). The legend for all plots is the same
as in figure 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.13 Plots of (a) truth parameter field for m in the Poisson inverse
problem (3.21), and (b) its reconstruction using TV regulariza-
tion (γm = 2· 10−8 and ε = 10−3), and initial parameter field
set to a constant value of 0.625. The white dots in (a) indicate
the location of the pointwise observations. . . . . . . . . . . . 100

xvi



3.14 Plots of (a) truth parameter field for α in the acoustic inverse
problem (3.22), and (b,c) its reconstructions using TV regular-
ization (γα = 3· 10−8 and ε = 10−3), and initial value for the
parameter field set to 0.25, and a source fα of frequency (b)
2Hz, and (c) 4Hz. The green triangles in (a) indicate the loca-
tions of the pointwise observations, and the yellow star in (a)
indicates the location of the source. . . . . . . . . . . . . . . . 101

3.15 Reconstructions for the parameter fields (a) m in (3.21) and (b)
α in (3.22), obtained by solving a joint inverse problem with
seismic source fα of frequency 4Hz, and regularized with (i) the
cross-gradient (γ = 8· 10−7) paired with two TV regularizations,
(ii) the normalized cross-gradient (γ = 8· 10−8 and ε = 10−5)
paired with two TV regularizations, (iii) the VTV joint regular-
ization (γ = 4· 10−8 and ε = 10−3), and (iv) the nuclear norm
joint regularization (γ = 5· 10−7 and ε = 10−3). The parameters
for the independent TV regularizations are as for the indepen-
dent inverse problems (see captions of figures 3.13 and 3.14).
Legend is the same as in figures 3.13 and 3.14. . . . . . . . . . 102

4.1 Plots of the (0) truth and pointwise observations (white dots),
and (i-iv) reconstructions for parameter fields (a) m1 and (b)
m2, obtained by solving the joint Poisson inverse problem (3.20)
regularized with VTV (γ = 3· 10−7) with hyperparameter (i) ε =
10, (ii) ε = 10−1, (iii) ε = 10−3, and (iv) ε = 10−5. . . . . . . . 121

4.2 Plots of the norm of the gradient against the number of forward
PDE solves performed during the solution of the joint Poisson
inverse problem (3.20) regularized with VTV (γ = 3· 10−7), and
solved using the Newton method (dashed), the lagged diffusivity
method (dotted), and the primal-dual Newton method (solid).
The hyperparameter in VTV is set to (i) ε = 10, (ii) ε = 10−1,
(iii) ε = 10−3, and (iv) ε = 10−5. . . . . . . . . . . . . . . . . . 122

4.3 Plot of the norm of the gradient against the number of forward
PDE solves performed in the solution of the joint inverse prob-
lem (3.20) regularized with VTV, and solved using the primal-
dual Newton method. . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Plots of the (0) truth and (i-iii) reconstructions for parameter
fields (a) α and (b) β, obtained by solving the acoustic wave
inverse problem (1.28) regularized with VTV (γ = 4· 10−7). The
hyperparameter ε in VTV is set to (i) ε = 10−1, (ii) ε = 10−3,
and (iii) ε = 10−5. The locations of the sources (yellow stars)
and pointwise observations (green triangles) are plotted in (0). 124

xvii



4.5 Plots of the norm of the gradient against the number of forward
PDE solves performed during the solution of the acoustic wave
inverse problem (1.28) regularized with VTV (γ = 4· 10−7), and
solved using the Newton method (dashed), the lagged diffusivity
method (dotted), and the primal-dual Newton method (solid).
The hyperparameter ε in VTV is set to (i) ε = 10−1, (ii) ε =
10−3, (iii) ε = 10−5. The numbers of forward PDE solves for
the primal-dual Newton only, with all values of ε, are plotted
in (iv). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 Plot of the norm of the gradient against the number of forward
PDE solves performed during the solution of the joint Poisson
inverse problem (3.20) regularized with VTV (γ = 3· 10−7 and
ε = 10−3), and solved with the primal-dual Newton method.
The realization of the noise is different from section 4.3.1. The
mesh parameter h was defined in section 3.4. . . . . . . . . . . 126

4.7 Truth parameter fields for parametersmi, i = 1, . . . , 16 (reading
from left to right, from top to bottom), for the example in
section 4.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8 Reconstructions for parameter field m1 obtained from solving a
joint inverse problem with n parameters, n = 1, . . . , 16 (reading
from left to right, from top to bottom), for the example in
section 4.3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.9 Scalability of the primal-dual Newton method with respect to
the number of inversion parameters n. (a) Plot of the norm of
the gradient against the number of forward PDE solves per num-
ber of inversion parameters n, for the solution of the joint Pois-
son inverse problem (3.20) regularized with VTV (ε = 10−3×n)
and solved with the primal-dual Newton method. (b) Plot of
the number of forward PDE solves per number of inversion pa-
rameters n, at the minimizer, against the number of inversion
parameters n. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.10 Plot of the number of Newton steps required to solve the joint
Poisson inverse problem (3.20) regularized with VTV against
the number of inversion parameters n. . . . . . . . . . . . . . 130

xviii



Chapter 1

A primer on the numerical solution of

large-scale inverse problems constrained by

Partial Differential Equations

We start this chapter with an introduction to inverse problems governed

by Partial Differential Equations (PDEs), and the computational methods en-

abling their efficient solution. In section 1.4, we concentrate on full-waveform

inversion, a specific example of inverse problems that poses some unique chal-

lenges. We close this chapter by introducing three aspects of inverse problems

that will be developed in the rest of this dissertation: multi-source, multi-

parameter, and multi-physics inverse problems.

1.1 Introduction

Inverse problems are ubiquitous in science and engineering. They arise

whenever one attempts to infer parametersm from indirect observations d and

from a mathematical model—the parameter-to-observable map, F(·)—for the

physical phenomenon that relates m and d. For some applications, it is com-

mon to use observations obtained from different experiments, when available,

to improve the quality of the parameter estimation. Suppose Ns experiments

are conduced, indexed by i ∈ {1, . . . , Ns}. The i-th experiment results in ob-

servations di and the corresponding parameter-to-observable map is denoted

by Fi(m). Following a deterministic approach to this inverse problem results
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in the least-squares minimization problem

min
m

{

1

2Ns

Ns
∑

i=1

‖Fi(m)− di‖2 + R(m)

}

, (1.1)

where the objective function is the sum of a data-misfit term, and an appro-

priate regularization operator R to cope with the ill-posedness of the inverse

problem. We discuss the role of the regularization term R in more details in

section 1.2. For PDE-constrained inverse problems, which are the focus of this

dissertation, each evaluation of Fi(m) entails the solution ui of a PDE, i.e.,

A(m; ui) = fi, and this ui is then restricted by an observation operator B to

a subset of the domain where observations are available, i.e., Fi(m) = Bui.

We do not make any assumptions on the PDE, and the operator A could be

nonlinear in m and/or ui, as well as time-dependent. The norm ‖· ‖ for the

data-misfit term in (1.1) is dictated by the type of observations we have. In

the case of a finite number of observations, i.e., di ∈ R
q, this norm is the

Euclidean norm. In the case of B being the identity operator and ui ∈ L2(Ω),

with Ω ⊂ R
d the physical domain, we choose the L2-norm. In the next section,

we also show an example where B is a trace operator.

1.1.1 Examples of inverse problems

We now illustrate the framework (1.1) with a few examples of inverse

problems and their formulations.

Imaging applications Denoising and deblurring are two imaging techniques

used to reconstruct a picture that was either polluted by noise, or was blurred

out. This is a central problem for the field of imaging science, and this problem

can be formulated as an inverse problem [86]; albeit a simpler one as no PDE
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is involved. We denote by K the operator that corrupted the original picture;

in the case of a denoising application K is the identity operator, whereas in

the case of a deblurring problem K corresponds to the blurring kernel. Given

a blurry or noisy image d ∈ R
n×n made of n2 pixels, we look for a reconstruc-

tion ud by solving the minimization problem

ud := min
u∈Rn×n

{

1

2
|Ku− d|2 + R(u)

}

. (1.2)

This is an example of a linear inverse problem, as the parameter-to-observable

map, given by F(u) = Ku, is linear with respect to the inversion parameter u.

Porous media flow A more complex example of imaging technique targets

geological properties of a domain using observation of a subsurface flow [69].

Using pressure information at different locations of the domain, one can at-

tempt to reconstruct the log-permeability md of the subsurface. If the flow

reached a steady state, its pressure can be described by a Poisson equation

with an heterogeneous coefficient. Denoting the pressure in the subsurface

by u, the inverse problem is defined by

md := min
m∈L2(Ω)

{

1

2
|Bu− d|2 + R(m)

}

where,














−∇· (em∇u) = f, in Ω

em∇u·n = g, on ∂Ωn

u = h, on ∂Ωd,

(1.3)

where the boundary of the physical domain Ω is split into ∂Ω = ∂Ωn ∪ ∂Ωd.

The observation operator in that case could be a pointwise observation, that

is, Bu = [u(x1), u(x2), . . . , u(xq)]
T . This requires the solution u to be con-

tinuous, which in turn requires sufficient regularity of the source term f . If
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that is not the case, Bu can be defined by convolutions between the solution u

and smooth compactly supported functions φi that are centered at different

locations of the domain. The inverse problem (1.3) is nonlinear. Denoting

the PDE constraint in (1.3) by A(m)u = f , we can write the parameter-to-

observable map as F(m) = Bu = B[A(m)]−1f , which depends nonlinearly

on the log-permeability m. Not all PDE constrained inverse problems are

nonlinear, however. A closely related example would be to assume m to be

known, and instead attempt to recover the source term f . In that case, the

parameter-to-observable map becomes F(f) = B[A(m)]−1f , which is a linear

operator of the source term. An example of such an inverse problem is the re-

construction of a heat source that is not directly observable, using temperature

measurements away from the source.

Transport problem Other quantities of interest besides a medium param-

eter or a source term can be inverted for. An example of inversion for the

initial conditions of a PDE is to reconstruct the original concentration of a gas

displacing through the air, given recordings of its concentration at different

locations and times [36]. The propagation of the gas follows a convection-

diffusion equation. The formulation for that type of inverse problem is given

by

ū0 := min
u0

{

1

2

∫ T

0

|Bu(t)− d(t)|2 dt+ R(u0)

}

where,






























ut − k∆u+ v· ∇u = 0, in Ω× (0, T ),

u = u0, in Ω× {t = 0},

k∇u · n = 0, on ∂Ωn × (0, T ),

u = 0, on ∂Ωd × (0, T ).

4



Another specificity of that example is the time dependence of the PDE oper-

ator and the observations. This plays a subtle role in the discretization of the

inverse problem; we discuss this issue in section 1.4.

Creeping flow of ice sheets Our last example is the inversion for a friction

coefficient in the boundary conditions of a creeping ice sheet, given displace-

ments at the surface of the ice sheet [55]. Precise knowledge of the sliding rate

of the ice over the bedrock is key to better understand the movement of large

ice sheets. This sliding at the base is modeled by a Robin boundary condi-

tion, parametrized by the inversion parameter β. The corresponding inverse

problem is given by

βd :=
1

2

∫

Γt

|Bu− d|
|d|2 + ε

ds+ R(β)

where,






























−∇· [η(u)(∇u+∇uT )− Ip] = ρg, in Ω,

∇· u = 0, in Ω,

σn = 0, on Γt,

u·n = 0, Tσun+ eβTu = 0, on Γb,

and some additional constitutive relations that are omitted here for brevity.

Another specificity of that example is that the observation operator is a trace

operator, and the data-misfit is integrated over a part of the boundary of the

domain Γt.

1.2 Regularization functional

Except in some very rare cases, like the denoising or deblurring appli-

cations, the minimization of the data-misfit term alone in (1.1) is an ill-posed
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problem. A problem can fail to be well-posed if it doesn’t have a solution, if

the solution is not unique, or if the solution doesn’t depend continuously on

the data given in the problem [33]. Formulation (1.1) is generally ill-posed

because it does not have a unique solution. This is due to the limited num-

ber of observations and the relative insensitivity of the observations to some

perturbations in the inversion parameter. The mathematical solution to that

problem is to regularize the ill-posed formulation. There exist multiple ways

to do so [21, 86], but in this dissertation, we concentrate on penalization tech-

niques that regularize formulation (1.1) by adding a penalty term R(m) to the

objective function. This regularization term is chosen to eliminate the solu-

tions the parameter-to-observable is insensitive to. This approach is preferred

for large-scale inverse problems, as it facilitates a matrix-free approach to the

numerical solutions of the inverse problem (1.1) (see section 1.3). We now

introduce two popular regularization terms among penalization techniques for

inverse problems, the Tikhonov regularization and the total variation (TV)

regularization.

1.2.1 Tikhonov regularization

The Tikhonov regularization is given, for m ∈ H1(Ω), by

R(m) =
1

2

∫

Ω

(α|m|2 + β|∇m|2) dx,

where α, β ≥ 0, and (α, β) 6= (0, 0). In the most common case of β > 0, the

Tikhonov functional will penalize oscillatory solutions of the inverse problem,

and the reconstructed parameter will be smooth, with m ∈ H1(Ω). It is a

popular choice of regularization in the literature. The main reasons for that

popularity are: (1) the Tikhonov functional is quadratic, leading to simple
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derivatives; (2) its Hessian (second derivative) is the sum of the identity op-

erator and the Laplacian, making the use of Newton’s method to solve the

inverse problem simpler (see section 1.3); and (3) the question of choosing

coefficients α, β has been extensively studied in the literature. We mention

two popular methodologies for that selection process. If the noise level in

the observations d is known, the Discrepancy Principle selects the regular-

ization coefficients that leads to a data misfit residual, at the minimizer, of

the same magnitude as the noise level [66]. With less assumptions on the

noise in the observations, the L-curve proposes a geometric approach to se-

lect regularization parameters leading to a good trade-off between under- and

over-regularization [49].

However, for certain applications, particularly in seismic or medical

imaging, the reconstructed parameter field is expected to present disconti-

nuities across hypersurfaces, a feature that Tikhonov regularization cannot

preserve [18]. This is the main motivation to use the total variation regular-

ization.

1.2.2 Total variation regularization

The total variation regularization was developed inside the imaging

community [74] in an attempt to obtain reconstructions displaying sharp edges.

It is a non-smooth convex functional, often presented in the form

RTV(m) =

∫

Ω

|∇m| dx. (1.4)

Although formulation (1.4) is the most commonly used for computational ap-

plications, it is only well-defined for reconstructions m ∈ W 1,1(Ω) that are

almost surely continuous functions [18]. An alternative definition that requires
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less regularity is given by (1.5), for m ∈ L1(Ω),

RTV(m) = sup

{

−
∫

Ω

m divφ dx; φ ∈ C∞
c (Ω;Rd), |φ(x)| ≤ 1, ∀x ∈ Ω

}

, (1.5)

where Ω ⊂ R
d is the physical domain. The functions that verify RTV(m) < +∞

in (1.5) are said to have bounded variations, and form the space BV (Ω). This

space, equipped with the norm ‖m‖BV := RTV(m) + ‖m‖L1 , forms a Banach

space. The space BV (Ω) is much larger than W 1,1(Ω), and contains functions

with jump-discontinuities or edges [20].

A fundamental property of TV that helps understand its effect on the

solution to (1.1) is the co-area formula. It shows that the total variation of a

function is also the accumulated surfaces of all its level sets, which translates

into the formula,

RTV(m) =

∫ +∞

−∞
Per({m > s}) ds,

with the perimeter of a set E, Per(E), defined as the total variation of its

characteristic function [18]. A characteristic feature of reconstructions ob-

tained using the TV functional is their tendency to be piecewise constant; a

phenomenon known as staircasing effect. The explanation of that phenomenon

is a complex matter, not fully understood in the general case, but seems to

be related to the co-area formula [56]. Despite the many advantages of the

TV regularization, its use in PDE-constrained inverse problems presents some

challenges.

1.2.2.1 Modified TV

The total variation functional is highly nonlinear, and non-differentiable

when |∇m| = 0. The non-differentiability of the TV functional is often ad-

dressed, in the inverse problem community, by approximating the L1 norm
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in (1.4). Two popular approximations are the modified TV,

RTV,ε(m) :=

∫

Ω

√

|∇m|2 + ε dx, (1.6)

with ε > 0, and the Huber switching function, R̃TV(m) := ϕ(|∇m|), where

ϕ(t) =







t , when t ≥ ε,

t2

2ε
+
ε

2
, when t < ε.

Although an approximation to the square root regularizes the TV functional, it

also reduces the staircasing phenomenon by smearing the sharp discontinuities.

This approximation to the square root therefore introduces a trade-off between

sharp edges in the reconstruction and rapid convergence of the inverse problem.

To accommodate the scale of a specific inverse problem (e.g., noise level

in the data, size of the domain, type of misfit function), we also introduce a

regularization parameter γ > 0 in the definition of the inverse problem,

min
m

{

1

2
|F(m)− d|2 + γ

∫

Ω

|∇m| dx
}

.

Over the years, several methodologies have been developed to automatically se-

lect the constants ε and γ (see for instance [29]). Unlike in the case of Tikhonov

regularization, none of these methodologies gained sufficient traction, and to

this day, the values of these constants are generally selected empirically (see

for instance [6]).

1.2.2.2 Numerical solution

A single modification of the TV functional alone is not sufficient to

obtain good computational performance, and the numerical solution of inverse

problems regularized with TV also requires the use of specialized numerical
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methods. In section 4 we introduce a primal-dual Newton method for joint

inverse problems regularized with vectorial total variation; it generalizes ex-

isting second-order methods for inverse problems regularized with TV. Two

methods help illustrate the primal-dual Newton method; the Augmented La-

grangian method, and the primal-dual method. We spend the rest of this

section discussing both approaches.

Augmented Lagrangian approach The Augmented Lagrangian approach

[67], also connected to the Split Bregman method [39] and Alternating direc-

tions method of multipliers (ADMM) [13], consists of relaxing the computa-

tionally challenging term, here the L1 norm of the gradient of the parameter,

by introducing an auxiliary variable. In the case of an inverse problem regu-

larized by TV, we would replace the initial formulation,

min
m

{

1

2
|F(m)− d|2 + γ

∫

Ω

|∇m| dx
}

,

with

min
(m,p)
p=∇m

{

1

2
|F(m)− d|2 + γ

∫

Ω

|p| dx
}

.

We next write down a Lagrangian for that constrained minimization problem,

augmenting the Lagrangian with a penalty term,

L (m, p, λ) =
1

2
|F(m)− d|2 + γ

∫

Ω

|p| dx+ (λ, p−∇m) +
α

2
‖p−∇m‖2.

A minimizer is then computed iteratively. At every step, one alternates a

minimization step over m, a minimization step over p, and a gradient ascent
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step for the Lagrange multiplier, i.e.,

mk+1 = argmin
m

L (m, pk, λk),

pk+1 = argmin
p

L (mk+1, p, λk),

λk+1 = λk + α(pk+1 −∇mk+1).

Primal-dual approach The primal-dual approach hinges on the concept

of duality, a central concept of convex optimization [72]. Let us consider a

functional F : X → R, defined on a Hilbert space X. Its Legendre-Fenchel

conjugate, at a point p ∈ X, is defined by

F ∗(p) = sup
x∈X

〈p, x〉 − F (x).

A central result of convex analysis is that for functionals F ∈ Γ0(X), i.e.,

for functionals that are convex, proper, and lower-semicontinuous, we have

F ∗∗(p) = F (p). Let us now define the prototypical imaging problem

min
x∈X

F (Ax) +G(x), (1.7)

where F ∈ Γ0(Y ), Y a Hilbert space, G : X → R a convex functional, and

A : X → Y a linear operator; for instance, with F (y) =
∫

Ω
|y| dx, Ax = ∇x,

and G(x) = |x − d|2/2, we recover the denoising problem (1.2) regularized

with TV. Since F ∈ Γ0(Y ), we can re-write the first term in (1.7) using the

Legendre-Fenchel transformation, to obtain the primal-dual form (1.8),

min
x∈X

max
y∈Y

〈y, Ax〉 − F ∗(y) +G(x). (1.8)

The idea of the primal-dual approach consists of replacing the solution of prob-

lem (1.7) with the iterative solution of problem (1.8), by alternating between
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a gradient descent in x and a gradient ascent in y. The functionals F and G

being potentially non-differentiable, the gradient descent (resp. ascent) step

is replaced by a proximal gradient descent (resp. ascent) step. The proximal

operator, (I + γ∂F )−1, is defined as

(I + γ∂F )−1(x) := argmin
p∈X

1

2
‖p− x‖2 + γF (p).

The complete primal-dual algorithm to solve problem (1.8) is then given by

yk+1 = (I + σ∂F ∗)−1(yk + σAxk),

xk+1 = (I + τ∂G)−1(xk − τA∗yk+1),

where σ, τ > 0. In the case of the denoising application (1.2), the Legendre-

Fenchel conjugate of F is given by the characteristic function of the set K :=
{

p ∈ X; p = −∇· ξ, ξ ∈ Xd,
∑d

i=1 ξi(x)
2 ≤ 1, ∀x ∈ Ω

}

, i.e., F ∗(p) = 0 if p ∈
K, and F ∗(p) = +∞ if p 6∈ K. The proximal operator for F ∗ is then an

orthogonal projection onto the set K, a rather simple step to compute.

1.3 Numerical solution of large-scale inverse problems

The solution of inverse problem (1.1) typically requires the use of it-

erative methods. Iterative methods require the availability of the first (and

ideally, also second) derivative of the objective function with respect to the

parameter field m [67, 86]. In this section, we discuss the computation of these

derivatives, and methods from numerical optimization that can be utilized to

solve large-scale nonlinear inverse problems constrained by PDEs.

1.3.1 Derivatives of the objective function

Without loss of generality, let us assume the observation operator B

is a pointwise observation operator, and let us call J({ui}i,m) the objective
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function of the inverse problem (1.1), i.e.,

J({ui}i,m) :=
1

2Ns

Ns
∑

i=1

|Bui − di|2 + R(m), (1.9)

where each ui, for i = 1, . . . , Ns, solves the PDE A(m,ui) = fi. There exist two

approaches to compute discrete derivatives of the objective functional (1.9).

One can discretize the objective function first, then compute derivatives of the

discrete functional; this approach is called discretize-then-optimize (DTO).

DTO is guaranteed to produce a gradient that is consistent with the discrete

objective functional. However, the calculations for the derivatives of the dis-

crete objective functional are often tedious, and the definition of the adjoint

equation (see later in this section) is sometimes unintuitive. In the alterna-

tive approach, optimize-then-discretize (OTD), we formulate the optimization

problem in function space, then discretize that infinite-dimensional optimiza-

tion problem. The calculations are often easier to carry out, but the discrete

derivatives are not guaranteed to be consistent with the discrete objective

function (see [88] for an example where the OTD approach requires a correc-

tion). In the rest of this dissertation, the OTD approach is the method of

choice, and we spend the rest of this section reviewing the main techniques to

compute derivatives of J with respect to the parameter field m [26, 51].

1.3.1.1 First derivative

Sensitivity approach Let us assume that the PDE operator A is continu-

ously Fréchet differentiable. We can then apply the implicit function theorem

to define a solution operator for that PDE. This solution operator maps the pa-

rameterm onto a unique solution ui(m). Replacing ui with ui(m) in (1.9) leads

to the reduced unconstrained optimization problem, minm {J({ui(m)}i,m)}.
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Let us also assume that the objective function J and all solution operators ui(· )
are continuously Fréchet differentiable. We denote by Jm (resp. Jui

) the partial

derivative of the objective function J with respect to the parameter field m

(resp. ui). We can then apply the chain-rule to differentiate the objective

function in a direction m̃,

dJ

dm
({ui(m)}i,m)m̃ =

Ns
∑

i=1

Jui
({ui(m)}i,m)u′i(m)m̃+ Jm({ui(m)}i,m)m̃

=
1

Ns

Ns
∑

i=1

(Bui(m)− di, Bu
′
i(m)m̃) + R′(m)m̃. (1.10)

We can find the expression for the directional derivative of the ith solution

operator, u′i(m)m̃, by differentiating the forward problem, A(m,ui(m)) = fi,

with respect to the parameter field m, in a direction m̃. This gives

Am(m,ui(m))m̃+Au(m,ui(m))u′i(m)m̃ = 0.

Assuming Au is invertible at (m,ui(m)), we can write the sensitivity of the ith

solution operator as

u′i(m)m̃ = − [Au(m,ui(m))]−1
Am(m,ui(m))m̃. (1.11)

Plugging expression (1.11) into (1.10), we obtain the expression for the direc-

tional derivative of the objective function (1.9) in a direction m̃,

dJ

dm
({ui(m)}i,m)m̃ = R′(m)m̃

− 1

Ns

Ns
∑

i=1

(Bui(m)− di, B [Au(m,ui(m))]−1
Am(m,ui(m))m̃). (1.12)

We derived expression (1.12) following the sensitivity approach. This ap-

proach is rarely used today in reason of its unfavorable computational cost.
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Indeed, following discretization of (1.12), the computation of the gradient

requires the evaluation of the directional derivative of the objective func-

tional in as many directions as the dimension of the parameter space, i.e.,

one would need to evaluate dJ
dm

({ui(m)}i,m)ek for all basis functions ek of

the discrete parameter space. Since each evaluation requires to solve a PDE,

[Au(m,ui(m))]−1
Am(m,ui(m))ek, the computational cost of the gradient, for

large-scale applications where the PDE operator cannot be factored, becomes

prohibitively expensive.

Adjoint approach The adjoint approach avoids the repeated solution of

equation (1.11) by taking the adjoint of the operator [Au(m,ui(m))]−1 in (1.12).

We then write the directional derivative of the objective functional as,

dJ

dm
({ui(m)}i,m)m̃ = R′(m)m̃

− 1

Ns

Ns
∑

i=1

([Au(m,ui(m))]−∗B∗(Bui(m)− di),Am(m,ui(m))m̃). (1.13)

The computational advantage of formulation (1.13) is best illustrated by in-

troducing the adjoint variables {pi}Ns

i=1, that each solve the following adjoint

equation,

[Au(m,ui(m))]∗ pi = −B∗(Bui(m)− di). (1.14)

The directional derivative of (1.9) becomes

dJ

dm
({ui(m)}i,m)m̃ =

1

Ns

Ns
∑

i=1

(pi,Am(m,ui(m))m̃) + R′(m)m̃. (1.15)

The number of PDE solves required to compute the gradient of (1.9), when us-

ing the adjoint approach, is independent of the discretization of the parameter

space. It requires Ns PDE solves to compute the state variables {ui(m)}i, and
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Ns PDE solves to compute the adjoint variables {pi}i, for a total of 2Ns PDE

solves.

Lagrangian approach The last technique we discuss in this section is the

Lagrangian approach [82]. It provides a clear, systematic way to compute

derivatives with the adjoint approach. Let us define a Lagrangian by aug-

menting the objective functional (1.9) with the Ns PDE constraints, in weak

form,

L ({ui}i, {pi}i,m) :=
1

2Ns

Ns
∑

i=1

|Bui−di|2+R(m)+
1

Ns

Ns
∑

i=1

(pi,A(m,ui)− fi) .

(1.16)

The factor 1/Ns in front of the PDE constraints in (1.16) is not a requirement

of the Lagrangian approach, but simply a convenient re-scaling we adopt. Note

that the variables {ui}i in (1.16) are not necessarily solutions to the PDE con-

straints; all variables in the Lagrangian are treated, a priori, as independent.

The first-order optimality condition of the inverse problem is given by the

system of equations,















Lui
({ui}i, {pi}i,m)ũ = 0, ∀ũ,

Lpi({ui}i, {pi}i,m)p̃ = 0, ∀p̃,

Lm({ui}i, {pi}i,m)m̃ = 0, ∀m̃.

One can either tackle that optimization problem through a full-scale approach,

by solving for all variables ({ui}i, {pi}i,m) at the same time [10, 11], or

one can adopt a reduced-scale approach. In the latter case, one first solves

Lpj({ui}i, {pi}i,m) = 0 to obtain uj, i.e.,

A(m,uj)− fj = 0, ∀j = 1, . . . , Ns.
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This corresponds to solving theNs PDE constraints, and results in setting uj =

uj(m). The second step is to solve the equations Luj
({ui(m)}i, {pi}i,m) = 0

to obtain pj, i.e.,

B∗(Buj(m)− dj) + [Au(m,uj(m))]∗ pj = 0, ∀j = 1, . . . , Ns.

We recognize this to be the adjoint equations (1.14). The final step is to

plug the quantities computed in the first two steps, the solutions to the con-

straints {ui(m)}i and the adjoint variables {pi}i, into Lm. We then obtain

the directional derivative (1.15),

Lm({ui(m)}i, {pi}i,m)m̃ = R′(m)m̃+
1

Ns

Ns
∑

i=1

(pi,Am(m,ui(m))m̃).

1.3.1.2 Second derivative

We now compute the second-order derivative of the objective func-

tion (1.9), first using the sensitivity approach, then using the Lagrangian

method with a reduced-space approach.

Sensitivity approach Assuming the PDE operator A, the objective func-

tion J , and the solution operators ui(m) are all twice continuously Fréchet

differentiable, we can compute the action of the Hessian of the objective func-

tional (1.9) in a direction m̂. Following the sensitivity approach, we obtain

d2J

dm2
({ui(m)}i,m)(m̃, m̂) =

1

Ns

Ns
∑

i=1

[(Bu′i(m)m̃, Bu′i(m)m̂)

+(Bui(m)− d, Bu′′i (m)(m̃, m̂))] + R′′(m)(m̃, m̂). (1.17)

The only unknown quantities in (1.17) are u′′i (m)(m̃, m̂). We find those quan-

tities by computing the second derivative of the PDE constraints with respect
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to m, i.e.,

Amm(m,ui(m))(m̃, m̂) +Amu(m,ui(m))(m̃, u′i(m)m̂)

+Aum(m,ui(m))(u′i(m)m̃, m̂) +Auu(m,ui(m))(u′i(m)m̃, u′i(m)m̂)

+Au(m,ui(m))u′′i (m)(m̃, m̂) = 0.

This leads to expression (1.18) for u′′i (m)(m̃, m̂),

u′′i (m)(m̃, m̂) = − [Au(m,ui(m))]−1 [
Amm(m,ui(m))(m̃, m̂)+

Amu(m,ui(m))(m̃, u′i(m)m̂) +Aum(m,ui(m))(u′i(m)m̃, m̂)

+Auu(m,ui(m))(u′i(m)m̃, u′i(m)m̂)
]

. (1.18)

We now plug expressions (1.18) and (1.14) into expression (1.17) to get the

second-derivative of J ,

d2J

dm2
({ui(m)}i,m)(m̃, m̂) = R′′(m)(m̃, m̂) +

1

Ns

Ns
∑

i=1

[

(Bu′i(m)m̂, Bu′i(m)m̃)

(pi,Amm(m,ui(m))(m̃, m̂)) + (pi,Amu(m,ui(m))(m̃, u′i(m)m̂))+

(pi,Aum(m,ui(m))(u′i(m)m̃, m̂)) + (pi,Auu(m,ui(m))(u′i(m)m̃, u′i(m)m̂))
]

.
(1.19)

Lagrangian approach In the Lagrangian approach, we assume that each

variable ui (resp. pi) solves its corresponding state (resp. adjoint) equation, i.e.,

ui = ui(m) (resp. pi solves (1.14)). We next proceed by introducing auxiliary

variables, the incremental state variables {ûi}i and the incremental adjoint

variables {p̂i}i, respectively solutions to the incremental state equations and

the incremental adjoint equations. In the first step of the Lagrangian approach,

we compute the incremental state variables ûi, for each i ∈ {1, . . . , Ns}, by
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solving the incremental forward equations corresponding to the variation of

the forward equation with respect to all variables, i.e.,

(p̃,Am(m,ui(m))m̂) + (p̃,Au(m,ui(m))ûi) = 0.

In strong form, this gives the following expression for the incremental state

variable ûi,

ûi = − [Au(m,ui(m))]−1
Am(m,ui(m))m̂,

= u′i(m)m̂. (1.20)

The last equality in (1.20) comes from (1.11). The ith incremental state vari-

able ûi is therefore the sensitivity of the ith solution operator with respect to

the parameter field m, in a direction m̂. The second step of the Lagrangian

approach consists of computing the incremental adjoint variable p̂i by solving

the incremental adjoint equation, i.e.,

(Bûi, Bũ) + (p̂i,Au(m,ui(m))ũ) + (pi,Aum(m,ui(m))(ũ, m̂))

+ (pi,Auu(m,ui(m))(ũ, û)) = 0.

We can then write p̂i, in strong form, as

p̂i = − [Au(m,ui(m))]−∗ (B∗Bûi

+ [Aum(m,ui(m))(· , m̂)]∗ pi + [Auu(m,ui(m))(· , û)]∗ pi
)

. (1.21)

Finally, the action of the Hessian in a direction m̂ is given by the variation

of Lm, with respect to all variables, in the direction ({ûi}i, {p̂i}i, m̂), i.e.,

R′′(m)(m̃, m̂) +
1

Ns

Ns
∑

i=1

[

(p̂i,Am(m,ui(m))m̃)

+ (pi,Amm(m,ui(m))(m̃, m̂)) + (pi,Amu(m,ui(m))(m̃, ûi)
]

. (1.22)

19



Plugging the expressions for the incremental state variables ûi (1.20), and the

incremental adjoint variables p̂i (1.21) into expression (1.22), we obtain

R′′(m)(m̃, m̂) +
1

Ns

Ns
∑

i=1

[

(Bu′i(m)m̂, Bu′i(m)m̃)+

(pi,Aum(m,ui(m))(u′i(m), m̂)) + (pi,Auu(m,ui(m))(u′i(m), u′i(m)m̂))

+ (pi,Amm(m,ui(m))(m̃, m̂)) + (pi,Amu(m,ui(m))(m̃, u′i(m)m̂)
]

,

which corresponds to expression (1.19), found using the sensitivity approach.

1.3.2 Numerical optimization techniques

We saw in section 1.3.1 that inverse problems of the form (1.1) can

be formulated as nonlinear unconstrained optimization problems, for which

the derivatives are readily available using adjoint methods. The numerical

solution of such problems can be handled using line search methods, or trust-

region methods [67]. We restrict our attention to the former, as this is the

method of choice in the rest of this dissertation.

At the kth iteration of a line search method, one updates the iterate

of the medium parameter mk along a search direction pk to obtain mk+1 =

mk + αkpk. To guarantee convergence, the search direction must be a descent

direction, i.e., it must verify 〈dJ(mk)/dm, pk〉 < 0. The step length αk can be

chosen to minimize the objective functional (1.9) along that search direction pk.

Solving that minimization problem exactly is too expensive for large-scale

applications, as a single evaluation of the objective functional requires the

solution of Ns PDEs. Instead, one can look for an approximate minimizer.

The Wolfe conditions (1.23)-(1.24) safeguard how much approximation can be
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introduced in the line search,

J(mk + αkpk) ≤ J(mk) + c1αk
dJ

dm
(mk)pk, (1.23)

dJ

dm
(mk + αkpk)pk ≥ c2

dJ

dm
(mk)pk, (1.24)

with 0 < c1 < c2 < 1. However, the curvature condition (1.24) still requires

a new evaluation of the first derivative, i.e., the solution of an additional

Ns PDEs. The computationally expensive curvature condition is therefore

avoided by using a backtracking line search [32, 67]; the step length is com-

puted by starting from an initial guess α
(0)
k , then shortening until the sufficient

decrease condition (1.23) is verified. When computing the search direction

with a Newton-type method (see next paragraph), it is recommended to use

α
(0)
k = 1, as this is guaranteed to be a successful step length in a neighborhood

of a minimum [67].

The high computational cost of PDE-constrained optimization makes

the choice of the search direction critical to the success of the optimization.

In the steepest descent method, one chooses the search direction to be the

opposite of the first derivative, i.e., pk = −dJ/dm(mk). This method is un-

fortunately extremely slow to converge, and is almost never a good choice.

On the other hand, the convergence rate of Newton’s method is quadratic in

a neighborhood of a minimum. The Newton search direction is solution to

the equation, d2J/dm2(mk)pk = −dJ/dm(mk). Therefore, the Newton search

direction will only be a descent direction if the Hessian is positive definite; this

is only guaranteed when mk is in a neighborhood of a minimum. When the

Hessian is indefinite, one solution is to replace the Hessian with a positive def-

inite approximation, a common choice being the Gauss-Newton Hessian [70].

The Gauss-Newton Hessian is obtained by setting the adjoint variables {pi}i
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to zero in the computation of the Hessian. Another option is to retain the full

Hessian but solve the Newton system approximately, in a way that guarantees

the computed solution to be a descent direction. For large-scale problems,

assembling the Hessian requires too much memory. A solution is to solve the

Newton system using the conjugate gradient (CG) method [81], which only

requires the computation of Hessian-vector products (see section 1.3.1.2). The

conjugate gradient method is a Krylov-subspace iterative method that solves

linear systems of equations for symmetric positive definite matrices. Hence,

the conjugate gradient method applied to a Newton system with an indefinite

Hessian will eventually fail, as some intermediate quantities become negative.

However, one can use the previous iterate of the solution, before the itera-

tion failed, as the search direction; this choice is guaranteed to be a descent

direction [67]. Often, it is recommended to add another criterion to termi-

nate the CG iterations early, regardless of the definiteness of the Hessian.

When far from a minimum, where Newton’s method is not guaranteed to con-

verge quadratically, the accurate computation of the Newton search direction

is wasteful. Instead, it is more efficient to solve the Newton system with a

coarse tolerance, and only apply a few iterations of the conjugate gradient

method [27]. As the optimization converges, the tolerance should be gradually

decreased to allow more and more accurate computation of the Newton search

direction.

1.4 Full-waveform inversion

Full-waveform inversion describes a special case of inverse problem (1.1)

for which observations {di}i are produced by seismic waves. Although the

oil & gas industry has traditionally relied on methods using simplified models
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(see [9] for an extensive treatment of those), the approaching shortage of easily

accessible fossil fuel energy forced oil & gas companies to turn to more precise

imaging techniques. The promises of full-waveform inversion for enhanced

accuracy are theoretically very high [85], making it an attractive technique

for the future of seismic imaging. In regional and global-scale seismology,

full-waveform inversion now represents the state-of-the-art for inferring earth

properties from earthquake data [32, 35, 90]. Different types of mathematical

models are used to represent the forward wave propagation in full-waveform

inversion, and we discuss these alternatives in the first part of this section.

In section 1.4.2, we study the inverse problem for the time-domain acoustic

wave equation with absorbing boundary conditions, and use that example to

illustrate some computational issues specific to full-waveform inversion.

1.4.1 The forward problem

We now introduce two mathematical models describing the propaga-

tion of seismic waves that appear in this dissertation, the time-domain and

frequency-domain acoustic wave equations.

Time-domain acoustic wave equation The propagation of acoustic waves

depends on the bulk modulus λ and the density ρ of the medium of propa-

gation. Let us define the acoustic pressure, u(x, t) := −λ(x)∇·u(x, t), with
u(x, t) the displacement vector at the location x at time t. The time-domain

acoustic wave equation [80], with absorbing boundary conditions [31] and ini-
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tial conditions at rest is given by

1

λ
ü−∇·

(

1

ρ
∇u
)

= f, in Ω× (0, T ),

u(x, 0) = u̇(x, 0) = 0, in Ω,














1

ρ
∇u·n = 0, on ∂Ωn × (0, T ),

1

ρ
∇u·n = − 1√

λρ
u̇, on ∂Ωa × (0, T ),

(1.25)

where f is a forcing term, u̇ and ü are the first and second time derivatives

of u, and the boundary of the domain is partitioned into ∂Ω = ∂Ωa∪∂Ωn. The

acoustic wave velocity of the medium is given by c, with the relation λ = ρc2.

Equation (1.25) is a more general formulation of the acoustic wave equation

than usually found in the literature. More commonly, the density ρ is assumed

constant, which allows (1.25) to be re-written as

1

c2
ü−∆u = f̃ , in Ω× (0, T ). (1.26)

Forcing term The forcing term f̃ in (1.26) corresponds to the divergence

of the forcing term in the elastic wave equation f(x, t), i.e.,

f̃ := ∇·
(

1

ρ
f

)

.

Depending on the application targeted, different levels of complexity are uti-

lized to model the forcing term f , ranging from the Ricker wavelet [9], popular

in seismic exploration, to the more complex seismic moment tensor [2], a typ-

ical choice for global tomography. The Ricker wavelet, paired with a point

source in space (e.g., explosive source [57]), leads to the forcing term

f(x, t) =
(

1− 2π2f 2
0 t

2
)

e−π2f2
0 t

2

δ(x− xs)(1, 1, 1)
T .
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Figure 1.1: Time signal (left), and (non-negative) frequency content (right),
of a Ricker wavelet centered at f0 = 4Hz.

The Ricker wavelet has a compact frequency spectrum, peaking at the fre-

quency f0 (see figure 1.1). The seismic moment tensor, given by

f(x, t) = −Mpq(t)
∂

∂x
δ(x− xs),

provides a way to model most types of fault mechanisms generating earth-

quakes. In this definition, Mpq(t) models both the orientation of the earth-

quake and its loading pattern [2, 30], while xs corresponds to the hypocenter

of the earthquake.

Frequency-domain acoustic wave equation The frequency-domain acous-

tic wave equation is obtained by taking a Fourier transform, in time, of for-

mulation (1.26) at a given frequency w,

−w
2

c2
ū−∆ū = f̄ , in Ω, (1.27)

where ū (resp. f̄) is the Fourier transform in time of the quantity u (resp. f̃).

Equation (1.27) is also known as the Helmholtz equation. The quantity w2/c2

is called the square of the wavenumber, and is often denoted by k, i.e., k2 =

w2/c2.
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1.4.2 Inverse problem for the time-domain acoustic wave equation

with absorbing boundary conditions

In this section, we assume that both the bulk modulus λ and the den-

sity ρ are unknown, and formulate an inverse problem governed by the acoustic

wave equation (1.25). The choice of this inverse problem is motivated by two

reasons: (1) we will use this inverse problem in chapter 3; and (2) the acoustic

wave equation allows to discuss issues related to the time-discretization of the

inverse problem. As both λ and ρ appear in (1.25) through their inverse, we

introduce the parameters α := 1/λ and β := 1/ρ, and formulate the inverse

problem in terms of α and β. As is typically the case in seismic inversion,

we consider multiple experiments, characterized by their forcing term fi and

dataset di. The acoustic wave inverse problem is then defined as

min
α,β

{

1

2Ns

Ns
∑

i=1

∫ T

0

|Bui(t)− di(t)|2 dt+ R(α, β)

}

, (1.28)

where each ui solves the forward problem (1.25) with forcing term fi,

αüi −∇· (β∇ui) = fi, in Ω× (0, T ),

ui(x, 0) = u̇i(x, 0) = 0, in Ω,
{

β∇ui·n = 0, on ∂Ωn × (0, T ),

β∇ui·n = −
√

αβu̇i, on ∂Ωa × (0, T ).

The question of the choice of the regularization term R(α, β) in (1.28) is dis-

cussed in chapter 3. Let us introduce the function spaces,

Vf :=
{

u ∈ L2(0, T ;H1(Ω)); u̇ ∈ L2(0, T ;L2(Ω)); u(x, 0) = u̇(x, 0) = 0
}

,

Va :=
{

v ∈ L2(0, T ;H1(Ω)); v̇ ∈ L2(0, T ;L2(Ω)); v(x, T ) = v̇(x, T ) = 0
}

.

We can then write the weak form of the forward problem as
∫ T

0

(

(αüi, v) + (β∇ui,∇v) +
∫

∂Ωa

√

αβ u̇iv ds− (fi, v)

)

dt = 0, (1.29)
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for all admissible test functions v ∈ Va.

1.4.2.1 Derivatives of the inverse problem

Derivatives of the inverse problem (1.28) are computed through the

Lagrangian approach introduced in section 1.3.1. Although the time dimension

can be handled separately from the spatial dimensions (e.g., using a semi-

discrete Lagrangian approach), we here follow a fully Lagrangian approach,

and form the Lagrangian,

L ({ui}i, {vi}i, α, β) =
1

2Ns

Ns
∑

i=1

∫ T

0

|Bui(t)− di(t)|2 dt+ R(α)

+
1

Ns

Ns
∑

i=1

∫ T

0

(

(αüi, vi) + (β∇ui,∇vi) +
∫

∂Ωa

√

αβ u̇ivi ds− (fi, vi)

)

dt.

(1.30)

Gradient As detailed in section 1.3.1, the gradient of the inverse prob-

lem (1.28), in a direction (α̃, β̃), is given by

R′(α, β)(α̃, β̃) +
1

Ns

Ns
∑

i=1

∫ T

0

(

(α̃üi, vi) + (β̃∇ui,∇vi)

+
1

2

∫

∂Ωa

(

α̃

√

β

α
+ β̃

√

α

β

)

u̇ivi ds
)

dt, (1.31)

where each ui solves the state equation (1.29), and each vi solves the adjoint

equation,

∫ T

0

(

(αũ, v̈i) + (β∇ũ,∇vi)−
∫

∂Ωa

√

αβ ũv̇i ds+ (Bũ,Bui − di)

)

dt = 0,

(1.32)

for all admissible test functions ũ ∈ Vf .
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Hessian The action of the Hessian of the objective function (1.28) in a

direction (α̂, β̂) is given by

R′′(α, β)(α̂, β̂)+
1

Ns

Ns
∑

i=1

∫ T

0

[

(α̃¨̂ui, vi)+(α̃üi, v̂i)+(β̃∇ûi,∇vi)+(β̃∇ui,∇v̂i)

+
1

2

∫

∂Ωa

(

α̃

√

β

α
+ β̃

√

α

β

)

( ˙̂uivi + u̇iv̂i) ds

+
1

4

∫

∂Ωa

(

1√
αβ

α̃β̂ −
√

β

α3
α̃α̂ +

1√
αβ

β̃α̂−
√

α

β3
β̃β̂

)

u̇ivi ds
]

dt, (1.33)

for all admissible test functions (α̃, β̃). Each variable ûi solves the incremental

state equation,

∫ T

0

(

(α¨̂ui, ṽ) + (β∇ûi,∇ṽ) +
∫

∂Ωa

√

αβ ˙̂uiṽ ds

)

dt =

−
∫ T

0

(

(âüi, ṽ) + (β̂∇ui,∇ṽ) +
1

2

∫

∂Ωa

(

α̂

√

β

α
+ β̂

√

α

β

)

u̇iṽ ds

)

dt,

and each variable p̂i solves the incremental adjoint equation,

∫ T

0

(

(αũ, ¨̂vi) + (β∇ũ,∇v̂i)−
∫

∂Ωa

√

αβ ũ ˙̂vi ds

)

dt =

−
∫ T

0

(

(α̂ũ, v̈i)+(β̂∇ũ,∇vi)+(Bũ,Bûi)−
1

2

∫

∂Ωa

(

α̂

√

β

α
+ β̂

√

α

β

)

ũv̇i ds
)

dt.

1.4.2.2 Discretization

A typical approach to discretize time-dependent PDEs is to handle

the discretization in time and space separately. We are going to use con-

tinuous Galerkin finite elements in space, and a finite difference scheme in

time. Starting with the spatial discretization, we introduce the finite-element

space Vf (resp. Va), as a finite dimensional approximation to the function
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space Vf (resp. Va), with a basis {φi}i (resp. {ϕi}i). Let us now introduce

the matrices, M =
(∫

Ω
αφiϕj dx

)

ij
, K =

(∫

Ω
β∇φi· ∇ϕj dx

)

ij
, and D =

(

∫

∂Ωa

√
αβφiϕj ds

)

ij
. The semi-discrete formulation, in space, of the ith for-

ward PDE (1.29) at time t is given by

Müi(t) +Du̇i(t) +Kui(t) = fi(t),

where the dots denote time derivatives. We now deal with the time discretiza-

tion. Let us introduce a time step ∆t, and the discrete time variable tn = n∆t

for n = 0, . . . , T/∆t. The second order time derivative üi is typically dis-

cretized using an explicit second-order centered scheme [53]. This type of

time-discretization is particularly efficient when the mass matrix M is diag-

onal. In situations where the mass matrix is not diagonal, equally efficient

solvers can be obtained by replacing the mass matrix with a diagonal approx-

imation; this is also called matrix lumping. This type of approximation is

discussed below. For the first-order time derivative u̇i, on the other hand,

we use a backward-in-time scheme. The motivation behind that choice is the

more complicated structure of the derivatives for the damping term Du̇i; the

combination of an explicit time-stepping with a lumped matrix would not, in

that case, be beneficial, as it would require costly matrix assembly at each

time step. The fully-discrete formulation of the ith forward PDE at time t is

given by

M
un+1
i − 2un

i + un−1
i

∆t2
+D

un
i − un−1

i

∆t
+Kun

i = fni . (1.34)

The semi-discrete formulation of the adjoint equation (1.32) is,

Mv̈i(t)−Dv̇i(t) +Kvi(t) = −BT (Bui(t)− di(t)).

The adjoint equation is solved backward-in-time, i.e., starting at time t =

T . To guarantee consistency of the discretized gradient with the discretized
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cost functional, it is critical to select a time discretization for the adjoint

equation that is the adjoint of the time discretization used for the forward

equation. Centered difference schemes, like the one used for the acceleration

term in (1.34), are self-adjoint, that is, whenever a centered difference scheme

is used in the forward equation, the same centered difference scheme must

be used in the adjoint equation. On the other hand, one-directional schemes

are not self-adjoint. In the case of the backward-in-time scheme used for the

time-derivative in (1.34), the adjoint time discretization is a forward-in-time

scheme, which leads to the fully discrete adjoint equation

M
vn+1
i − 2vn

i + vn−1
i

∆t2
−D

vn+1
i − vn

i

∆t
+Kvn

i = −BT (Bun
i − dn

i ).

We can verify this adjoint relation by deriving the discrete form of the adjoint

equation through the discretize-then-optimize approach. To simplify the mat-

ter, we only look at a single time-step n, and a single source i. In the discrete

Lagrangian, the only terms that involve the state variable un
i in the damping

term are

(vn
i )

TD
un
i − un−1

i

∆t
+ (vn+1

i )TD
un+1
i − un

i

∆t
.

Grouping these terms according to the state variable un
i gives the expression

for the discrete damping term in the adjoint equation,

−
(

vn+1
i − vn

i

∆t

)T

Dun
i .

The solution to the forward PDE (1.34) is computed iteratively. Know-

ing the solutions at time steps n− 1 and n, we compute the solution at time

step n+ 1 with the formula,

un+1
i = 2un

i − un−1
i +∆t2M−1

[

fni −D
un
i − un−1

i

∆t
−Kun

i

]

.

30



Each iteration requires the inversion of the matrix M, a step that could be

computationally intensive for large-scale systems. Instead, an efficient solution

is to replace the original sparse matrix M with a diagonal approximation Ml;

this action is often called mass lumping. There exist several ways to diagonalize

a mass matrix. A stable and accurate way to diagonalize a mass matrix is by

keeping its diagonal, and rescaling it to maintain the same total mass as the

full matrix [53]. Let us call diag(M) the diagonal of M. We then define the

lumped mass matrix as

Ml := ν diag(M),

where ν := 1T ·M·1/tr(M), and 1 is a vector of one’s. The use of a lumped

mass matrix in the forward, adjoint, incremental forward, and incremental

adjoint equations require to modify the gradient (1.31) and Hessian-vector

product (1.33) expressions to maintain consistency. Indeed, with a full mass

matrix, the term (α̃üi(t), vi(t)) in (1.31) (resp. (α̃¨̂ui(t), vi(t)) in (1.33)) would

become, after discretization, (vn
i )

TMün
i (resp. (vn

i )
TM¨̂un

i ). With a lumped

mass matrix, for general functions u =
∑

j ujϕj and v =
∑

i viφi, we obtain

vTMlu = ν
∑

i

uivi

∫

Ω

α̃φiϕi dx.

Let us define the matrix (M′
l)ij = ν

∫

Ω
ψiφjϕj dx, and the vector wi = uivi.

We can then write,
∂

∂α

(

vTMlu
)

= M′
lw.

Provided one is allowed to store the matrix M′
l, the gradient and Hessian-

vector products of the lumped mass matrix can be computed efficiently.
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1.5 Scope of research

With the increase in compute power and the advent of the big data

era, inverse problems have grown more complex, attempting to extract more

information and to use more data. While this evolution manifests itself in

multiple forms, we focus in this dissertation on three specific aspects: multi-

source, multi-parameter, and multi-physics inverse problems.

1.5.1 Multi-source inverse problems

As discussed in section 1.3, the numerical computation of the gradient

of an inverse problem, or the application of the Hessian along a direction,

scales linearly with the number of sources Ns. Therefore both gradient-based

methods and Newton-type methods become impractical for large-scale appli-

cations relying on a large number of sources. This is, for instance, the case

of full-waveform inversion, where 3D large-scale applications routinely use on

the order of 1,000 experiments. There have been some recent breakthroughs

to address this computational bottleneck using the concept of random source

encoding, sometimes also referred to as simultaneous random sources [59, 73].

In [43] the authors give a mathematical justification of the idea of ran-

dom source encoding for a discrete problem and we apply their argument,

here, to the general inverse problem (1.1). We gather all Fi(m) (resp. di)

into the columns of a matrix F(m) (resp. De) and call the data misfit ma-

trix S(m) := F(m) − De. Ignoring the regularization term for now, the

inverse problem can be written as, minm∈V

{

‖S(m)‖2F
}

, where ‖· ‖F is the

Frobenius norm [81]. Note that ‖S(m)‖2F = trace(S(m)TS(m)), which can

be approximated efficiently using randomized trace estimators [8, 54]. In-

deed, for random vectors z with mean zero and identity covariance matrix,
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one finds that, trace(S(m)TS(m)) = Ez

(

‖S(m)z‖22
)

. Typical choices of dis-

tribution for z include the Rademacher distribution, where samples take val-

ues ±1 with probability 1/2, and the standard normal distribution N(0, INs
).

Among other possible choices we mention the discrete distribution that takes

values ±
√
3 with probability 1/6 and 0 otherwise, or the uniform spher-

ical distribution on a sphere of radius
√
Ns that we denote U(

√
Ns); the

fact that U(
√
Ns) has identity covariance matrix can be shown using results

from [5], along with the observation that z̃ ∼ U(
√
Ns) iff z̃ =

√
Ns(z/|z|)

with z ∼ N(0, INs
). We now write the data-misfit term as an expectation, i.e.,

‖F(m)−De‖2F = Ez(‖(F(m)−De)z‖2), leading to the stochastic optimization

problem

min
m∈V

{

Ez

(

‖(F(m)−De)z‖2
)

}

.

There exist two main techniques to solve these types of problems [76]. Using

stochastic average approximation (SAA), one approximates the cost functional

with a Monte-Carlo-type approach before solving a deterministic optimization

problem, i.e., for fixed samples zi ones solves

Ez

(

‖(F(m)−De)z‖2
)

≈ 1

M

M
∑

i=1

‖(F(m)−De)zi‖2.

In an alternative approach called stochastic approximation (SA), one re-samples

the random vector z at each step of the iteration.

The method of random source encoding, stochastic in essence, suffers

from a few limitations. The key idea of the random source encoding approach

is the conversion of the deterministic optimization (1.1) into a stochastic op-

timization problem. The expectation to be minimized is then approximated

using a Monte-Carlo technique. To reduce the computational cost of solving

the inverse problem, one would like to choose the number of samples used in
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this Monte-Carlo approximation small. A small number of samples translates

into a large variance for the Monte-Carlo estimator of the expectation. In

practice, this manifests itself in large differences in the reconstructions ob-

tained with different samples of encoding weights. An approach to remedy

that difficulty is to select the weights deterministically [48, 79]. In particular,

in [79], the author considers to select the weights that generate the greatest

improvement from the current reconstruction, but the results are inconclusive.

In [48], the authors choose the weights that minimize the expected medium

misfit in the case of a discrete linear inverse problem. In chapter 2, we propose

a new way to select the weights deterministically, that is related to [48].

1.5.2 Multi-parameter inverse problems

We define a joint inverse problem as the simultaneous inference of n dis-

tinct parameter fields. In this dissertation, we consider two types of joint

inverse problems. In the first case, we have at our disposal a single type of

observations d, generated from a single physical phenomenon which depends

on multiple parameter fields {mi}ni=1. The parameter-to-observable map is de-

fined as F(m1, . . . ,mn) = B
[

A(m1, . . . ,mn)
]−1

f . A prototypical formulation

for that type of joint inverse problem is given by

min
{mi}i

{

1

2
|F(m1, . . . ,mn)− d|2 + R(m1, . . . ,mn)

}

. (1.35)

The role played by the term R in (1.35) is discussed in section 1.5.2.1. One

example of joint inverse problem (1.35) is the inversion for both the primary

and secondary wave speeds inside the Earth given recordings of the ground

acceleration at the surface [32, 60, 63]. In the second type of joint inverse

problem we are interested in, we utilize n datasets, generated from physi-

cal phenomena that depend on different parameter fields. Without loss of
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generality, let us assume that each physical phenomenon depends on a single

parameter field mi, and let us call di the dataset corresponding to the physical

phenomenon depending on parameter mi. The parameter-to-observable maps

are defined by Fi(mi) = Bi

[

Ai(mi)
]−1

fi. The formulation for this type of joint

inverse problem is given by

min
{mi}i

{

1

2

n
∑

i=1

|Fi(mi)− di|2 + R(m1, . . . ,mn)

}

. (1.36)

Among the different physical phenomena that can be combined, we mention

electromagnetic and seismic waves [1, 75], DC resistivity and seismic wave [37],

or current resistivity and groundwater flow [77].

1.5.2.1 The joint regularization term

The role of the joint regularization term R(m1, . . . ,mn) in (1.35) and

(1.36) is twofold. It plays the role of a regularization term for each parame-

ters {mi}i, and it introduces coupling between the parameters, if desired. In

the case of a joint inverse problem (1.36), coupling may be desirable when

the parameter fields are known in advance to share a similar structure. Or in

the case of a joint inverse problem (1.35), this coupling may help improve the

quality of the reconstruction. For instance, in the case of full-waveform inver-

sion, despite the wave equation coupling both wave speeds, it is notoriously

difficult to obtain good quality reconstructions for both parameters without

providing additional coupling to the inverse problem [32].

Both regularization and coupling in R(m1, . . . ,mn) can be handled sep-

arately, or in a unified fashion. To separate regularization and coupling, we
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can decompose the joint regularization term R(m1, . . . ,mn) as

R(m1, . . . ,mn) =
n
∑

i=1

Ri(mi) + R̂(m1, . . . ,mn),

where the terms Ri are regularization terms for each medium parameter mi,

and are typically chosen to be Tikhonov regularizations or total variation regu-

larizations. The structural similarity term R̂(m1, . . . ,mn) defines the coupling

between all parameters {mi}i. We now list a few possible choices for the struc-

tural similarity term R̂. In [37], the authors introduced the cross-gradient term

for two parameters m1 and m2,

R̂cg(m1,m2) =
1

2

∫

Ω

|∇m1 ×∇m2|2 dx.

It is today the most popular choice in geophysics [1, 37, 75, 77]. Instead of

dealing with the gradient of each parameter, one can instead use normalized

gradients, and obtain the normalized cross-gradient term

Rncg(m1,m2) =

∫

Ω

∣

∣

∣

∣

∇m1

|∇m1|
× ∇m2

|∇m2|

∣

∣

∣

∣

2

dx.

The normalized cross-gradient was first introduced in the context of image

registration [47]. The main idea behind both of these structural similarity

terms is to force the level sets of both inversion parameters, m1 and m2,

to align. Alternatively, when an empirical constitutive relation between all

parameters is known, one could use it in place of the structural similarity

term R̂ [1, 44]. This approach is however not recommended in practice as

these relations are typically uncertain and the resulting optimization problem

is harder to solve [38, 44].

On the other hand, one can apply both regularization and coupling

through a single functional by using, for instance, the vectorial total varia-
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tion (VTV),

RVTV(m1, . . . ,mn) =

∫

Ω

√

√

√

√

n
∑

i=1

|∇mi|2 dx.

The VTV functional was first introduced in the context of multi-channel imag-

ing [12, 14], and later applied to PDE-constrained joint inverse problems [44].

In [58], the authors introduced a vector-valued equivalent of the total general-

ized variation, using the nuclear norm to enforce gradient alignment. Building

on that idea, we introduce in chapter 3 a novel joint regularization term for

PDE-constrained joint inverse problems, based on the nuclear norm. In chap-

ter 3, we also analyze in details the four joint regularizations introduced above,

and conduct a comprehensive numerical comparison of these functionals over

three joint inverse problems covering both types of joint inverse problems (1.35)

and (1.36).

1.5.2.2 Efficient solver for the solution of joint inverse problems

regularized with VTV

Because the evaluation of the objective function and the computation of

the gradient each require the solution of the forward PDE Ns times, an efficient

solver must use curvature information, i.e., be of Newton type. However,

the straightforward use of Newton linearization for TV regularization leads

to extremely poor performance [86]; the number of PDE solves required to

converge increases dramatically when the hyperparameter ε in (1.6) decreases,

corresponding to reconstructions with increasingly sharper edges. Because of

the strong connection between TV and VTV, similar numerical difficulties

are expected when using Newton method to solve a joint inverse problem

regularized with VTV. Building on the work of [19, 50], we introduce, in
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chapter 4, a scalable primal-dual Newton method for joint inverse problems

regularized with VTV.

1.5.3 Can a multi-physics inverse problem provide low-frequency

information for full-waveform inversion?

A major impediment of full-waveform inversion is the existence of mul-

tiple local minima in the objective function when using high frequency sources;

this phenomenon is also known as cycle skipping. This happens, for in-

stance, by shifting along the time component of the recorded seismogram;

in a layered medium this corresponds to applying constant perturbations to

each layer. More generally the least-squares data misfit part of the objective

functional (1.28) is oscillatory along smooth directions of the Lamé parame-

ters [32].

The traditional remedy is a continuation scheme over the frequency of

the source term, also called multilevel waveform inversion [16]. The idea of

frequency continuation is to solve a sequence of inverse problems with sources

of increasing frequencies, using the reconstruction from the lower-frequency as

initial guess for the higher frequency problem. The restriction in frequency is

achieved by filtering the frequency content of data and sources. Because the

spatial grid size is dictated by the frequency content of the problem, one can

adjust the grid size to the frequency level. Although this affects the quality of

the reconstruction, this allows important savings in compute time. The key

observation to motivate that approach is that the objective function is less

oscillatory for low-frequency waves and therefore a good initial guess has a

better chance of lying within the basin of attraction of the global minimum.

A major drawback of the frequency continuation approach is that low-
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frequency data is rarely available in practice. One solution is to replace the

missing data with low-frequency information coming from a different physics,

or a different type of inversion, e.g., first-time arrival [89]. In chapter 3, we

investigate how a Poisson inverse problem can be used to provide the missing

low-frequency information for full-waveform inversion, provided the truth pa-

rameter fields for the Poisson inverse problem and full-waveform inversion have

similar structures. We connect both inverse problems through the formulation

of a multi-physics inverse problem.
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Chapter 2

A-optimal encoding weights for nonlinear

inverse problems, with application to the

Helmholtz inverse problem

Drawing from recent developments in optimal experimental design for

high- or infinite-dimensional inverse problems [3, 4, 45, 46], and following a

Bayesian view of inverse problems, we develop a method for the computation

of encoding weights that lead to a parameter reconstruction with the least

uncertainty—as measured by the average of the posterior variance. We refer

to these (deterministic) weights as A-optimal encoding weights, a nomenclature

motivated by the use of the A-optimal experimental design criterion from opti-

mal experimental design theory [83]. The method we propose extends the work

in [48] by addressing inverse problems with nonlinear parameter-to-observable

maps, and allows for infinite-dimensional parameters. The infinite-dimensional

formulation has two main advantages: (a) the use of weak forms facilitates the

derivation of adjoint-based expressions for the gradient of the objective func-

tion to compute the A-optimal encoding weights; (b) it allows us to follow the

optimize-then-discretize approach, which, along with devoting special atten-

tion to the discretization of the formulation and the choice of the numerical

methods employed, helps control the computational cost independently of the

parameter discretization. We elaborate our method for the Helmholtz inverse

problem and derive the adjoint-based gradient of the optimization problem for
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finding the A-optimal encoding weights. We also analyze the computational

cost—in terms of Helmholtz PDE solves—of objective and gradient evaluation

for this optimization problem. For this Helmholtz problem, we present an ex-

tensive numerical study and discuss the potential and pitfalls of our approach.

The results from this chapter were published in [22]1.

The rest of this chapter is organized as follows. In section 2.1, we sum-

marize elements of Bayesian inverse problems and introduce approximations to

the posterior covariance in function space. The framework for the A-optimal

encoding weights is presented in section 2.2. In section 2.3, we elaborate our

formulation for the Helmholtz inverse problem. We derive adjoint-based ex-

pressions for the gradient of the A-optimal objective function, and analyze

computational cost of evaluating the objective function and its gradient. Nu-

merical results are presented in section 2.4, and we provide some concluding

remarks in section 2.5.

2.1 Bayesian formulation of the inverse problem with

encoded sources

This section contains a brief presentation of the Bayesian formulation

of inverse problems with infinite-dimensional inversion parameters; for details

we refer the reader to [25, 78] for theory and to [15] for the numerical approx-

imation. In the Bayesian framework, the unknown parameter function m is

modeled as a random field. Starting from a prior distribution law for m, we

1[22] was co-authored by the author, Alen Alexanderian, Georg Stadler, and Omar Ghat-
tas. The author implemented the numerical methods presented in that work; the presen-
tation of those methods, and the design of the numerical experiments testing them, was a
collaborative effort between the author, Prof. Alexanderian, and Prof. Stadler; Prof. Ghat-
tas aided in the editing of the work, provided guidance, and advised.
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use observation data to obtain an improved description of the law of m. This

updated distribution law of m is called the posterior measure. The prior mea-

sure, which we denote by µ0, can be understood as a probabilistic model for

our prior beliefs about the parameter field m. The posterior measure, which

we denote by µpost, is the distribution law of m, conditioned on observation

data. A key ingredient of a Bayesian inverse problem is the data likelihood,

πlike(d|m), which describes the conditional distribution of the data given the

parameter field m; this is where the parameter-to-observable map enters the

Bayesian inverse problem.

Let Ω ⊂ R
d be a bounded domain with piecewise smooth bound-

ary and (S,Σ,P) a probability space. We consider an inference parameter

m = m(x, ω), with (x, ω) ∈ Ω × S, such that for any ω ∈ S, m(· , ω) ∈ V

where V is an infinite-dimensional Hilbert space. Considering the law of m as

a probability measure on (V,B(V)), the infinite-dimensional Bayes’ theorem

relates the Radon-Nikodym derivative of µpost with respect to µ0 with the data

likelihood πlike(d|m):
dµpost

dµ0

∝ πlike(d|m). (2.1)

The use of non-Gaussian priors in infinite-dimensional Bayesian inverse prob-

lems represents a new, interesting area of research (see for instance [25, 52]).

However, since the Bayesian inverse problem, in the formulation we introduce

in section 2.2, only represents the inner problem, the additional complications

created by the use of non-Gaussian priors are not justified. We instead rely

on Gaussian priors for the Bayesian inverse problem; i.e., µ0 = N(m0,C0) is a

Gaussian measure on V. In that case, we require C0 to be symmetric, positive

and trace-class [78]. A common choice for C0 (in two and three space dimen-

sions) is the squared inverse of a Laplacian-like operator K, i.e., C0 = K−2.
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We also assume that the noise in the data is additive, and independent and

identically distributed (over the different experiments); the distribution of each

noise vector is normal with mean zero and covariance matrix Γnoise. That is,

di|m ∼ N
(

Fi(m),Γnoise

)

, for any i ∈ {1, . . . , Ns}. Consequently, each encoded

observation d(wi) will be normally distributed with mean zero and covariance

matrix Γnoise,i := (
∑Ns

j=1(w
i
j)

2)Γnoise, i.e., d(w
i)|m ∼ N

(

F(wi;m),Γnoise,i

)

, for

i ∈ {1, . . . , Nw}. Therefore, the likelihood function has the form

πlike(d(w)|m) ∝ exp

(

− 1

2Nw

Nw
∑

i=1

‖F(wi;m)− d(wi)‖2
Γ
−1
noise,i

)

.

2.1.1 MAP point

In finite dimensions, the MAP point is the parameter mMAP that maxi-

mizes the posterior probability density function. Although this definition does

not extend directly to the infinite-dimensional case, a MAP point can still

be defined as a minimizer of a regularized data-misfit cost functional over an

appropriate Hilbert subspace of the parameter space [78]. Let us define the

Cameron-Martin space E = Im(C
1/2
0 ), endowed with the inner-product

〈x, y〉E := 〈C−1/2
0 x,C

−1/2
0 y〉 = 〈Kx,Ky〉, ∀x, y ∈ E. (2.2)

Then the MAP point is defined as

mMAP(w) = argmin
m∈E

{J(w;m)} , (2.3)

where, for the inverse problems considered in the present work, the func-

tional J(w; · ) : E → R is defined as

J(w;m) :=
1

2Nw

Nw
∑

i=1

∥

∥F(wi;m)− d(wi)
∥

∥

2

Γ
−1
noise,i

+
1

2
‖m−m0‖2E . (2.4)

Here, the function m0 ∈ E is the mean of the prior measure.
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2.1.2 Approximation to the posterior covariance

In general, there are no closed-form expressions for moments of the

posterior measure. Thus, one usually relies on sampling-based methods to

explore the posterior. For inverse problems governed by PDEs and problems

with high-dimensional parameters (as, for instance, arising upon discretiza-

tion of an infinite-dimensional parameter field), sampling of the posterior can

quickly become infeasible since every evaluation of the likelihood requires a

PDE solve. We thus rely on approximations of the posterior, namely Gaus-

sian approximations about the MAP estimate. After finding the MAP point,

we consider two commonly used approximations of the posterior measure by

a Gaussian measure N(mMAP,Cpost), as discussed next [15, 65].

Gauss–Newton approximation Assuming the parameter to observable

map F(wi; · ) is Fréchet differentiable at the MAP point, one strategy to ap-

proximate the posterior is to linearize around the MAP point, i.e.,

F(wi;m) ≈ F(wi;mMAP) + Jwi(m−mMAP),

with Jwi : V → R the Fréchet derivative of the parameter-to-observable

map F(wi; · ) evaluated at the MAP point (2.3). Calling (Jwi)∗ the adjoint of

Jwi , the covariance operator of the resulting Gaussian approximation of the

posterior is given by

CG
post =

(

1

Nw

Nw
∑

i=1

(Jwi)∗Γ−1
noise,iJwi + C−1

0

)−1

. (2.5)

Note that the operator that appears inside the brackets in (2.5) is the so called

Gauss–Newton Hessian of the functional (2.4) evaluated at the MAP point,

HGN(mMAP) :=
1

Nw

Nw
∑

i=1

(Jwi)∗Γ−1
noise,iJwi + C−1

0 .
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Laplace approximation Assuming J(w; · ), in (2.4), is at least twice Fréchet

differentiable at the MAP point, a second approach called Laplace approxima-

tion consists of using the second derivative of J(w; · ), i.e., the Hessian, at the

MAP point as an approximation to the posterior covariance

CL
post = (J′′(w;mMAP))

−1
= H−1(mMAP), (2.6)

where the derivative in J′′ is taken in terms of the parameter fieldm. Note that

the Laplace approximation can be related, in finite dimensions, to a quadratic

local approximation of J(w; · ) around the MAP point.

2.2 A-optimal approach to source encoding

Combining the results from section 2.1 with elements from optimal

experimental design, we propose a rigorous method to compute A-optimal en-

coding weights. In the Bayesian framework, the posterior covariance quantifies

the uncertainty in the reconstruction. Since the posterior covariance depends

on the weights (see section 2.2.1), we can select the weights that lead to a

reconstruction with the least uncertainty. In the field of optimal experimental

design, there are various design criteria that measure the statistical quality of

the reconstructed parameter field [71]. In the present work, we rely on the

A-optimal design criterion [7, 71], which aims to minimize the trace of the

posterior covariance, or equivalently, to minimize the average posterior vari-

ance. That is, we compute the weights with the smallest trace of the posterior

covariance Φ(w) = tr(Cpost), with Cpost given by CG
post (2.5) or C

L
post (2.6).

An alternate view of the A-optimal design criterion is that of minimiz-

ing the expected Bayes risk of the MAP estimator, which coincides with the

trace of the posterior covariance for a linear inverse problem [3, 17, 45]. This

45



interpretation of the A-optimal criterion can be stated as the average mean

squared error between the MAP estimator (i.e., the parameter reconstruction)

and the true parameter (e.g., see [3]). While this interpretation of A-optimality

is restricted to linear inverse problems, it provides another motivation for our

choice of the design criterion. In our numerical results, we explore this rela-

tion between minimizing the trace of the posterior covariance and the mean

squared distance between the MAP point and the true parameter and observe

that minimizing the trace of the posterior covariance correlates with smaller

errors for the parameter reconstruction.

2.2.1 Dependence of the operators CG
post and CL

post on w

The dependence of the operators CG
post (2.5) and CL

post(2.6) on the weights

is twofold. First these operators depend on the encoded parameter to observ-

able maps that depend explicitly on the weights, F(wi;m) =
∑Ns

j=1w
i
jFj(m).

Moreover, the posterior covariance operators also depend on the weights through

the MAP point (2.3), which depends on the weights as illustrated by (2.3)

and (2.4).

The dependence of the covariance operator CG
post onw is straightforward

to see. In particular, using the chain-rule on the forward problem A(m)ui =

f(wi), the Fréchet derivative of the parameter-to-observable at the MAP point

is given by

Jwi = −BA(mMAP(w))−1∂A(m)ui
∂m

∣

∣

∣

∣

∣

m=mMAP(w)

. (2.7)

Given Nw encoding weights w = (w1, . . . ,wNw) where wi ∈ R
Ns , we em-

phasize the dependence of the posterior covariance on the weights by writing

CG
post = CG

post(w). The structure of the covariance operator CL
post is more com-
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plicated. We detail the dependence of CL
post on w for the application problem

considered in the present chapter in section 2.3. Note that in the case of a

linear parameter-to-observable map, both posterior covariances (2.5) and (2.6)

are equal.

In the present formulation, tr
(

Cpost(w)
)

scales with the weights. For

instance, applying a constant multiplicative factor λ > 1 to all weights would

reduce the influence of the prior in the computation of the MAP point (2.3) for

once. It would also inflate the norm of the state variable ui by that factor λ,

which would then increase the size of the derivative (2.7). This would in turn

artificially reduce the trace of the posterior covariance (2.5). A solution is to

restrict the codomain of each encoding weight to a sphere of radius r in R
Ns .

We denote the corresponding space, for the weights w, by Sr, i.e., Sr :=
{

w = (w1, . . . ,wNw) ∈ R
NwNs ; |wi| = r, ∀i

}

. As discussed in section 1.5.1, the

theory of randomized trace estimation dictates the use of r =
√
Ns. However

this value is arbitrary and can be compensated by an equivalent re-scaling of

the regularization parameter. Therefore for simplicity we use the value r = 1

along with the notation S := S1. Another implication of that choice, |wi| = 1,

is that the covariance matrices for the encoded noise vectors, introduced in

section 2.1, simplify to Γnoise,i = Γnoise, for i ∈ {1, . . . , Nw}.

2.2.2 A-optimal encoding weights

We propose to compute the A-optimal encoding weights as the solution

to the constrained minimization problem

min
w∈S

Φ(w) := tr
(

Cpost(w)
)

. (2.8)

Since there are no closed-form expressions for moments of the posterior mea-

sure, we replace the exact posterior covariance in (2.8) with one of the two
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approximations introduced in section 2.1.2. The Gauss–Newton formulation

of the A-optimal encoding weights,

ΦGN(w) = tr(H−1
GN
(w;mMAP(w))), (2.9)

is based on the posterior covariance approximation (2.5), and the Laplace

formulation,

ΦL(w) = tr(H−1(w;mMAP(w))), (2.10)

is based on the posterior covariance (2.6). Note that both formulations (2.9)

and (2.10) require the computation of the MAP point which is computationally

expensive for large-scale problems. To avoid the cost associated with the

computation of the MAP point, an additional simplification of (2.9) can be

achieved by evaluating the posterior covariance (2.5) at a reference parameter

field m0, which leads to the following (simplified) objective function,

Φ0(w) = tr(H−1
GN
(w;m0)). (2.11)

A-optimal encoding weights formulation for large-scale applications

Formulation (2.8) is a nonlinear optimization problem that requires the use of

iterative methods. These methods involve repeated evaluations of the trace

of the posterior covariance. Following discretization, the posterior covariance

is a high-dimensional operator that is defined implicitly, i.e., through its ap-

plications to vectors. The exact computation of the trace of such operators,

and their derivatives with respect to encoding weights, is computationally in-

tractable. For this reason, we propose an approximate formulation using a

randomized trace estimator (see [8, 54] for the theory, and [3, 48] for examples

of applications). Following the formulation in [4], we introduce the Gaussian

measure µδ = N(0,Cδ) where Cδ := (I − δ∆)−2. Here ∆ denotes the Laplacian
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operator with homogeneous Neumann boundary conditions and δ > 0 a suffi-

ciently small real number. Then for any positive, self-adjoint and trace-class

operator T, we may use an estimator of the form,

tr(T) ≈ 1

ntr

ntr
∑

i=1

〈Tzi, zi〉H ,

where the zi are drawn from µδ. In practice, reasonable approximations of the

trace can be obtained with a relatively small ntr.

The optimization problem for finding A-optimal encoding weights is

formulated as follows

min
w∈S

1

ntr

ntr
∑

i=1

〈Cpost(w)zi, zi〉.

Specializing to the cases of ΦGN(w) (2.9) and ΦL(w) (2.10) results in the

following formulations,

min
w∈S

{

1

ntr

ntr
∑

i=1

〈H−1
GN
(w;mMAP(w))zi, zi〉

}

, (2.12)

min
w∈S

{

1

ntr

ntr
∑

i=1

〈H−1(w;mMAP(w))zi, zi〉
}

. (2.13)

Again to avoid the cost associated with the computation of the MAP point,

one can evaluate the Gauss–Newton Hessian in (2.12) at a fixed reference pa-

rameter field m0; this leads to the following (simplified) optimization problem,

min
w∈S

{

1

ntr

ntr
∑

i=1

〈H−1
GN
(w;m0)zi, zi〉

}

. (2.14)

The formulation (2.14) can be seen as an extension of the formulation pro-

posed in [48] to a fully nonlinear inverse problem formulated at the infinite-

dimensional level.
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2.3 Application to the Helmholtz inverse problem

In this section, we elaborate the A-optimal encoding weights formula-

tion introduced in section 2.2 for the Helmholtz inverse problem. Recall that

high resolution reconstructions in this application require a large number of

experiments and that the computational cost of the inversion scales linearly

with the number of experiments (see section 1.3). Source encoding can provide

a trade-off between high-quality reconstruction and computational cost.

We begin by describing the inverse problem used in our study (section

2.3.1). Then the optimization problem to compute the A-optimal encoding

weights, including the adjoint-based expressions for the gradient of this objec-

tive function, is detailed in section 2.3.2.

2.3.1 The inverse problem: medium parameter reconstruction

For simplicity of the presentation, we derive the formulation using a

single frequency but extensions to the case of multiple frequencies are straight-

forward. We use homogeneous Neumann boundary conditions. The frequency-

domain Helmholtz equation is given, for i = 1, . . . , Nw, by

−∆ui − κ2mui = f(wi), in Ω,

∇ui·n = 0, on ∂Ω.
(2.15)

Solutions ui (2.15) are considered in H1(Ω), i.e., the Sobolev space of functions

in L2(Ω) with square integrable weak derivatives. The original source terms

are in the dual space of H1
0 (Ω), i.e., fj ∈ H−1(Ω). The (medium) parameter

field m ∈ L∞(Ω) corresponds to the square of the slowness (or the squared

inverse local wave speed) and the constant κ is the frequency of the wave (in

rad/s).
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2.3.1.1 MAP point

The MAP point is the solution to a deterministic inverse problem (see

section 2.1.1) with the norms in the data-misfit and regularization terms

weighted by the noise and prior covariance operators respectively. In par-

ticular, with a Gaussian prior µ0 = N(m0,C0) and the norm corresponding to

the inner product (2.2), we have

mMAP(w) = argmin
m∈E

{

1

2Nw

Nw
∑

i=1

∥

∥Bui − d(wi)
∥

∥

2

Γ
−1
noise

+
1

2
‖m−m0‖2E

}

,

(2.16)

where ui solves (2.15).

To properly define the source terms fi, appearing in the right hand-

side of the forward problem, and the observation operator B, we define the

mollifier ϕε(x; y) as follows:

ϕε(x; y) =
1

αε

e
− 1

ε2−|x−y|2 1B(y,ε)(x), (2.17)

where αε = 2πKε2e−1/ε2 , K =
∫ 1

0
re−1/(1−r2)dr, 1B(y,ε) is the indicator function

for the ball of radius ε centered at y, and 0 < ε≪ 1. This function is smooth

and integrates to one. We choose each source terms fi to be a mollifier cen-

tered at one of the Ns source locations that we denote x
s
i for i = 1, . . . , Ns, i.e.,

fi(x) = ϕε(x; x
s
i ). The observation operator B : H1(Ω) → R

q is the evaluation,

at each of the receiver locations which we denote xrj for j = 1, . . . , q, of a convo-

lution between the solution to the forward problem ui and a mollifier ϕε′(x; 0),

i.e., (Bui)j = (ui ∗ϕε′(· ; 0))(xrj). These choices of the source terms and obser-

vation operator guarantee that the forward, adjoint, incremental forward and

incremental adjoint solutions belong to H1(Ω).
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2.3.1.2 Gradient and Hessian of the inverse problem

Availability of derivatives of the function in brackets on the right hand

side of (2.16) is required for the computation of mMAP. The second deriva-

tive, i.e., the Hessian operator, also enters the A-optimal formulation laid

down in section 2.2. We derive both gradient and Hessian following the for-

mal Lagrangian approach (see section 1.3.1). The first-order necessary op-

timality condition for the MAP point is a coupled system of PDEs: Find

(mMAP, {ui}i, {pi}i) ∈ E × H1(Ω)Nw × H1(Ω)Nw such that for all variations

(m̃, {ũi}i, {p̃i}i) ∈ E×H1(Ω)Nw ×H1(Ω)Nw

〈∇ui,∇p̃i〉 − κ2〈mMAP(w)ui, p̃i〉 − 〈f(wi), p̃i〉 = 0, ∀i

〈∇ũi,∇pi〉 − κ2〈ũi,mMAP(w)pi〉+ 〈Bũi, Bui − d(wi)〉
Γ
−1
noise

= 0, ∀i

〈mMAP(w)−m0, m̃〉E −
1

Nw

Nw
∑

i=1

κ2〈uipi, m̃〉 = 0.

(2.18)

For the Hessian, we describe the solution to the equation y = H−1(mMAP)z.

This leads to the coupled system of PDEs: Find (y, {vi}i, {qi}i) ∈ E×H1(Ω)Nw×
H1(Ω)Nw such that for all (m̃, {ũi}i, {p̃i}i) ∈ E×H1(Ω)Nw ×H1(Ω)Nw the fol-

lowing equations are satisfied:

〈∇vi,∇p̃i〉 − κ2〈mMAP(w)vi, p̃i〉 − κ2〈uiy, p̃i〉 = 0, ∀i

〈∇ũi,∇qi〉 − κ2〈ũi,mMAP(w)qi〉 − κ2〈ũi, piy〉+ 〈Bũi, Bvi〉Γ−1
noise

= 0, ∀i

〈y, m̃〉E − 1

Nw

Nw
∑

i=1

κ2
[

〈vipi, m̃〉+ 〈uiqi, m̃〉
]

= 〈z, m̃〉.

(2.19)

2.3.2 The optimization problem for A-optimal encoding weights

Here we formulate the optimization problem for computing A-optimal

source encoding weights for the frequency-domain seismic inverse problem
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(2.15). We restrict ourselves to the case of the Laplace formulation (2.13)

as the other two functionals, (2.12) and (2.14), can be treated as special cases

of the Laplace formulation.

In its original format, the optimization problem for A-optimal encoding

weights (2.13) is a bi-level optimization, as the MAP point is itself the solution

to a minimization problem (2.3). However this is not a practical formulation to

compute derivatives. We therefore reformulate (2.13) as a PDE-constrained

optimization problem in which the MAP point is defined as a solution of

the first-order optimality condition (2.18). The other PDE constraint is the

solution to the Hessian system (2.19) along the random directions of the trace

estimator, i.e., we define the objective functional for the computation of the

A-optimal encoding weights by

1

ntr

ntr
∑

k=1

〈yk, zk〉,

where zk is a random direction for the trace estimator and yk = H−1(mMAP)zk

according to (2.19). We can then enforce these PDE constraints with Lagrange

multipliers and compute derivatives of the optimization problem (2.13) using

the formal Lagrangian approach. We account for the constraint on the weights

through a penalty term,

λ

2Nw

Nw
∑

j=1

(

‖wj‖2 − 1
)2
,

with λ > 0. Although a penalty term is not the only option, we found this

relaxation of the constraint to be efficient and easy to implement.

We now present the complete formulation for (2.13). The A-optimal
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encoding weights are solutions to the minimization problem

min
w

{

1

ntr

ntr
∑

k=1

〈yk, zk〉+
λ

2Nw

Nw
∑

j=1

(

‖wj‖2 − 1
)2

}

, (2.20)

where for every k = 1, . . . , ntr, (yk, {vi,k}i, {qi,k}i) ∈ E×H1(Ω)Nw ×H1(Ω)Nw

solves the system

〈∇vi,k,∇p̃i,k〉 − κ2〈mMAP(w)vi,k, p̃i,k〉 − κ2〈uiyk, p̃i,k〉 = 0, ∀i

〈∇ũi,k,∇qi,k〉 − κ2〈ũi,k,mMAP(w)qi,k〉 − κ2〈ũi,k, piyk〉

+〈Bũi,k, Bvi,k〉Γ−1
noise

= 0, ∀i

〈yk, m̃〉E −
1

Nw

Nw
∑

i=1

κ2
[

〈vi,kpi, m̃〉+ 〈uiqi,k, m̃〉
]

= 〈zk, m̃〉,

(2.21)

for all (m̃, {ũi,k}i, {p̃i,k}i) ∈ E×H1(Ω)Nw×H1(Ω)Nw and where (mMAP, {ui}i, {pi}i)
∈ E × H1(Ω)Nw × H1(Ω)Nw solves the first-order optimality system for the

Helmholtz inverse problem

〈∇ui,∇p̃i〉 − κ2〈mMAP(w)ui, p̃i〉 − 〈f(wi), p̃i〉 = 0, ∀i

〈∇ũi,∇pi〉 − κ2〈ũi,mMAP(w)pi〉+ 〈Bũi, Bui − d(wi)〉
Γ
−1
noise

= 0, ∀i

〈mMAP(w)−m0, m̃〉E − 1

Nw

Nw
∑

i=1

κ2〈uipi, m̃〉 = 0,

for all (m̃, {ũi}i, {p̃i}i) ∈ E×H1(Ω)Nw ×H1(Ω)Nw .

2.3.2.1 Gradient of the A-optimal weight problem

We derive the gradient of the objective function defined in (2.20), with

respect to w, using a formal Lagrangian approach. We refer the reader to ap-

pendix A.1 for this derivation. Since we enforce the PDE constraints weakly us-

ing Lagrange multipliers, we introduce adjoint variables that are indicated with
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a star superscript, e.g., m∗ is the adjoint variable for m. The gradient is given

by [δw1ΦL(w), δw2ΦL(w), . . . , δwNwΦL(w)]T , where for any i = 1, . . . , Nw,

δwiΦL(w) = − 1

Nw











〈f1, u∗i 〉 + 〈Bp∗i ,d1〉Γ−1
noise

〈f2, u∗i 〉 + 〈Bp∗i ,d2〉Γ−1
noise

...
〈fNs

, u∗i 〉 + 〈Bp∗i ,dNs
〉
Γ
−1
noise











.

The variables u∗i and p
∗
i are computed by solving the following Hessian-

like system (compare with (2.19)): Find (m∗, {u∗i }i, {p∗i }i) ∈ E × H1(Ω)Nw ×
H1(Ω)Nw such that for all (m̃, {ũi}i, {p̃i}i) ∈ E × H1(Ω)Nw × H1(Ω)Nw the

following equations are satisfied:

〈∇p∗i ,∇p̃i〉 − κ2〈mp∗i , p̃i〉 − κ2〈uim∗, p̃i〉 = − 2

ntr

ntr
∑

k=1

κ2〈vi,kyk, p̃i〉,

〈∇u∗i ,∇ũi〉 − κ2〈mu∗i , ũi〉 − κ2〈pim∗, ũi〉

+〈Bp∗i , Bũi〉Γ−1
noise

= − 2

ntr

ntr
∑

k=1

κ2〈ykqi,k, ũi〉,

〈m∗, m̃〉E −
1

Nw

Nw
∑

i=1

κ2 [〈uiu∗i , m̃〉+ 〈p∗i pi, m̃〉] = − 2

ntrNw

ntr
∑

k=1

Nw
∑

i=1

κ2〈vi,kqi,k, m̃〉.

(2.22)

The variables {vi,k} (resp. {qi,k}) are the incremental state (resp. adjoint)

variables which occur in the application of the inverse Hessian in the direction

of the k-th trace estimator direction zk.

2.3.2.2 Discretization

The numerical solution of (2.20) is done via the OTD approach (see

section 1.3.1), where the discretization is based on continuous Galerkin finite

element with Lagrange nodal basis functions. Extra care is needed for the
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discretization of the covariance operator to ensure that its discrete represen-

tation faithfully represents the properties of the target infinite-dimensional

object. We do not provide full details of the discretization and refer the reader

to [3, 15]. However, we show how to select the discrete random directions zk in

the trace estimator. Let us call Vh the finite-dimensional approximation to the

space H1(Ω) used for the finite-element representations of all state, adjoint,

corresponding incremental variables and their respective adjoints. And let

V m
h be the finite-dimensional space for the medium parameter m. Let us call

{ψi}ti=1 (resp. {φi}li=1) a basis for Vh (resp. V m
h ). Let us introduce the vector

notations xk = (y1k, . . . , y
l
k)

T (resp. zk = (z1k, . . . , z
l
k)

T ) for the finite element

representations of yk (resp. zk) in V
m
h . The finite-dimensional approximation

to the trace estimation is then

1

ntr

ntr
∑

k=1

〈yhk , zhk 〉L2 =
1

ntr

ntr
∑

k=1

l
∑

i,j=1

yikz
j
k〈φi, φj〉L2 =

1

ntr

ntr
∑

k=1

〈xk, zk〉M,

with Mij = 〈φi, φj〉L2 the mass matrix in V m
h . From the definition of yk, we

see that each yhk solves the system 〈Hyhk , φi〉L2 = 〈zhk , φi〉L2 , for i = 1, . . . , l.

Substituting the representation of yhk and zhk in the basis of V m
h , we obtain the

matrix system Hxk = Mzk, where H is the standard Hessian matrix obtained

from finite-element discretization of system (2.19), i.e., Hij = 〈Hφj, φi〉L2 .

The finite-dimensional approximation to the trace estimation becomes

1

ntr

ntr
∑

k=1

〈yhk , zhk 〉L2 =
1

ntr

ntr
∑

k=1

〈H−1Mzk, zk〉M =
1

ntr

ntr
∑

k=1

〈H−1
M
zk, zk〉M,

where we defined H−1
M

:= H−1M. The matrix H−1
M

is M-symmetric [15], i.e.,

self-adjoint with respect to theM inner-product. Then it was proved in [3] that

1
ntr

∑ntr

k=1〈H−1
M
zk, zk〉M is indeed a trace estimator provided zk ∼ N(0,M−1). In

practice, vectors zk are sampled by taking draws xk from multivariate standard

normal distribution, xk ∼ N(0, I), and using zk = M−1/2xk
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2.3.2.3 Computational cost

Problem (2.20) is highly nonlinear and requires iterative methods to

be solved. The gradient, derived in section 2.3.2.1, allows us to use quasi-

Newton methods [67]. In table 2.1, we report the dominating terms of the

computational cost of evaluating the objective function and its gradient in

all three cases (2.12)-(2.14). Additionally, it is possible to reduce the cost

of formulation (2.12) by computing a low-rank approximation of the Hessian

operator [36]. One must keep in mind, however, that the incremental state

variables {vi,k} and incremental adjoint variables {qi,k} corresponding to each

random directions {zk} are required to compute the gradient. For this reason,

a low-rank approximation of the Hessian will only lower the computational

cost when ntr > ncgnnewt.

Table 2.1: Computational cost for objective function and gradient evaluation
of the optimization problem for finding A-optimal encoding weights. We re-
port the computational cost, in terms of the number of forward PDE solves,
for ΦGN(w), ΦL(w), and Φ0(w) defined in (2.12)–(2.14) respectively. Nota-
tions: ncg = number of Conjugate-Gradient iterations to compute the search
direction in Newton’s method; nnewt = number of Newton steps to compute
the MAP point.

Φ0(w) ΦGN(w) andΦL(w) ΦGN(w)
(no low-rank) (with low-rank)

objective evaluation
MAP point 2Nw 2Nwncgnnewt 2Nwncgnnewt

tr(H−1) 2Nwncgntr 2Nwncgntr 2Nwncg

gradient evaluation
vik, qik – – 2Nwntr

m∗ – 2Nwncg –
u∗i , p

∗
i Nw – 2Nw

total 2Nwncgntr 2Nwncg(nnewt+ntr) 2Nw(ncgnnewt+ntr)
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Following the OTD approach, the optimization problem (2.20) is for-

mulated in function space, before being solved with algorithms whose perfor-

mance does not depend on the discretization size. This results in the overall

computational cost being independent of the discretization of the parameter

space, or in other words, each of the quantities nnewt, ncg and ntr in table 2.1

remain constant when the mesh gets refined. We spend the rest of this section

discussing the choice of such discretization-invariant algorithms. First, we use

Newton’s method, with Armijo line search, to compute the MAP point; the

number of Newton steps needed to converge, nnewt, is typically independent

of the size of the parameter space [28]. Moreover, the Hessian system (2.19)

needed to compute the MAP point, to evaluate the objective function (2.20),

and to compute the adjoint variable m∗ (2.22), is solved using the precon-

ditioned Conjugate Gradient method [67]. The Conjugate Gradient solver is

preconditioned by the prior covariance operator; the number of iterations ncg

needed to solve the Hessian system then depends on the spectral properties

of the prior-preconditioned data-misfit part of the Hessian operator (i.e., the

Hessian in function space) and is therefore independent of the discretization.

The trace estimator displays a similar type of behaviour. The number of trace

estimator vectors ntr one should use depends on the spectral properties of

the underlying infinite-dimensional operator. The choice of a discrete inner-

product weighted by the mass matrix (see section 2.3.2.2) guarantees that our

discrete operator will be a valid approximation of the infinite-dimensional op-

erator and will conserve its spectral properties. The actual evaluation of the

trace is performed through the repeated solution of the Hessian system (2.21),

which was shown above to be discretization-independent.
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2.4 Numerical results

In this section, we present numerical results for the Helmholtz inverse

problem in two (spatial) dimensions. We start with a low-dimensional exam-

ple (Nw = 1 for Ns = 2), which allows us to visualize the objective func-

tions defined in section 2.2.2 over the entire weight space. This facilitates a

qualitative comparison of the different approximations introduced, the Gauss–

Newton (2.9) and Laplace objective functions (2.10), along with the linearized

formulation (2.11). We then present an example with a higher-dimensional

weight space (Ns = 10) in which we study the distribution of the A-optimal

encoding weights and random weights sampled from the uniform spherical

distribution and how the number of encoded weight vectors influence these

results.

The setting for this section is a square domain with 20 receivers located

at the top of the domain, and sources positioned on the bottom and left edges

of the domain. The source term is a mollifier (2.17) with ε = 10−6. This choice

of source terms was numerically found to be reasonably well approximated, at

the discrete level, by a point source; we utilize that approximation in this

section. We use a wave frequency of κ = 2π in equation (2.15). All partial

differential equations are discretized by continuous Galerkin finite elements

(linear elements for the parameters and quadratic elements for the state and

adjoint variables). This results in a (medium) parameter space of 182 degrees

of freedom. We work with synthetic data that are polluted by a 2% additive

Gaussian noise.
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(a) medium parameter 1 (b) medium parameter 2

Figure 2.1: Target medium parameters, along with the locations of the sources
(green squares) and receivers (yellow circles).

2.4.1 One-dimensional weight space

In this section, we study a one-dimensional source encoding problem

corresponding to a single linear combination of two sources (Ns = 2 and

Nw = 1). Although this setting represents an unrealistic situation (low number

of sources, and high ratio of number of encoded sources over total number of

sources), it is informative for the following reasons: (1) It provides numerical

evidence of the strong and highly nonlinear dependence of the objective func-

tions (2.9)–(2.11) on the encoding weights. (2) It demonstrates the presence of

multiple local minima in the minimization problem (2.8). (3) It highlights the

difference between the Gauss–Newton and Laplace formulations. The sources

are located on the bottom and left edges of the domain, and we study two dif-

ferent medium parameters, each made of a constant background and a smooth

compactly supported perturbation (see figure 2.1).

We next define the noise covariance and the prior covariance operators

used in these numerical applications. Let us introduce the non-singular, pos-

itive definite, elliptic operator Y = −γ∆+ βI, with γ, β positive constants, I

the identity operator and ∆ the Laplacian operator with homogeneous Neu-
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mann boundary conditions. Then we define the prior covariance operator as

C−1
0 = Y+ ηY2 with η > 0. One can verify that this choice of prior covariance

operator is symmetric, positive definite and trace-class as long as γ, η, β > 0.

The noise covariance operator for the observations is chosen to be a multiple of

the identity matrix, i.e., Γnoise = σ2I—in our examples we choose σ = 1. The

parameters γ, β, and η are chosen as γ = 10−3, β = 10−4 and η = 10−2, and we

have verified that this choice approximately satisfies the discrepancy principle.

In the (discrete) numerical applications, we use δ = 0 in the measure µδ the

trace estimator vectors zi are sampled from (see section 2.2.2).

To enforce the constraint w ∈ S, i.e.,
√

w2
1 + w2

2 = 1 in this case,

we parameterize the weight vector as (w1,±
√

1− w2
1). The parameter w1,

alone, controls the combination of both sources. Moreover, the weight vectors

(w1,−
√

1− w2
1) and (−w1,

√

1− w2
1) lead to the same reconstruction, such

that it suffices to consider the encoding weights (w1,
√

1− w2
1) for w1 ∈ [−1, 1].

In figure 2.2, we plot the three objective functions (2.9)–(2.11) from sec-

tion 2.2.2. For each w1 ∈ [−1, 1], the Gauss–Newton (2.9) and Laplace (2.10)

formulations are evaluated at the MAP point, mMAP(w1), corresponding to

the encoding weight (w1,
√

1− w2
1); in other words, the Hessian for these

two criteria is evaluated at a medium parameter mMAP(w1) that varies with

the weight w1. For formulation (2.11), we choose m0 to be a constant value

equal to the background medium, i.e., m0 ≡ 1. We observe that the result

for the Gauss–Newton formulation (2.9) differs from the Laplace approxima-

tion (2.10). In addition, we clearly observe that each formulation contains

local minima.

61



−1 −0.5 0 0.5 1

500

550

600

w1

−1 −0.5 0 0.5 1
w1

H−1(mMAP)

H−1
GN(mMAP)

H−1
GN(m0)

(a) medium parameter 1 (b) medium parameter 2

Figure 2.2: Plots of tr(H−1) with H−1(mMAP(w1)), H−1
GN(mMAP(w1)) and

H−1
GN(m0) for both target media. m0 ≡ 1, same as the background value

for the medium parameter.

Robustness of the Gauss–Newton formulation (2.9) Since the com-

putation of the MAP point mMAP(w1) is a computationally intensive task for

large-scale problems, it might be useful to solve the optimization (2.8) with-

out having to recompute the exact MAP point for each iterate of the weights.

The Laplace formulation (2.10) is based on the full Hessian which is guar-

anteed to be positive definite only in a neighbourhood of the MAP point.

The Gauss–Newton approximation, however, is always positive definite and

we observe numerically that it preserves relevant information about the ob-

jective function, even far away from the MAP point. In figure 2.3, we plot

the objective function (2.9), for all values of w1 ∈ [−1, 1], for different (fixed)

medium parameters m̄s ranging from the background medium, m0 ≡ 1, to

the MAP point m♯ computed using both sources independently (for medium

parameter 2). The sources are located at the points (0, 0.1) and (0, 1.1). That

is, we define

m̄s = (1− s)m0 + sm♯.

62



(a) s = 0 (b) s = 0.5

(c) s = 1
−1 −0.5 0 0.5 1

500

550

600

w1

tr
(H

−
1

G
N
)

H−1
GN(m̄1)

H−1
GN(m̄0.5)

H−1
GN(m̄0)

Figure 2.3: Plots of objective function Φ0 (2.11) for weights w1 ∈ [−1, 1]
(right), at medium m̄s, with s = 0, 0.5, 1 (left). Here m0 ≡ 1 (the background
medium).

It appears that the medium parameter needs to include the main fea-

tures of the target medium sufficiently accurately (s > 0.5) to match the main

features of the exact trace of the posterior covariance; this can be seen from

the behavior of tr
(

H−1
GN(w1, m̄s)

)

in the interval w1 ∈ [0.2, 1.0].

The effect of trace estimation When computing A-optimal encoding

weights, one only needs the local minima of the trace to be well charac-

terized. We show in figure 2.4 that trace estimation does indeed affect the

shape of the objective function in the formulations of the A-optimal encoding

weights (2.13). However, in our example, the objective function using a trace

estimation preserves the local minima of the objective function using an exact

trace when a sufficient number of trace estimator vectors are used.

2.4.2 A-optimal encoding weights in higher dimensional weight spaces

We now consider a problem with 10 sources (i.e., Ns = 10). Here,
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Figure 2.4: Plots of the objective function in (2.13) when the trace of the
posterior covariance is computed exactly or with a trace estimator (ntr =
1, 10, 30). For each ntr, we used a fixed realization of the trace estimator
vectors.

Figure 2.5: Target medium parameter and locations of the 10 sources (green
squares), and receivers (yellow circles).

we focus on qualitative properties of the A-optimal source encoding weights

by performing statistical tests, in which we study how successful A-optimal

encoding weights are in reducing posterior variance and relative medium misfit

compared to encoding weights sampled from the uniform spherical distribution.

We also compared with random weights sampled, then re-scaled, from the

Rademacher distribution (see section 1.5.1). Since the results we obtained

were not statistically different from the results presented in this section using

random weights sampled from the uniform spherical distribution, we decided
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to omit these results. Throughout this section, the relative medium misfit is

taken to be the relative L2-error between the reconstruction of interest and

the reconstruction obtained using all 10 sources independently. The penalty

parameter was empirically selected to be λ = 103.

10−2 10−1
400

500

600

700

800

rel. med. misfit

Φ
L

(a) Nw = 1

10−2 10−1

400

500

600

rel. med. misfit

Φ
L

(b) Nw = 2
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(d) Nw = 6

Figure 2.6: Plot of ΦL(w) (2.10) against relative medium misfit (Ns = 10 and
Nw = 1, 2, 3, 6) for reconstructions using random encoding sources sampled
from the uniform spherical distribution (blue) or A-optimal encoding weights
computed with formulation (2.12) (black) and (2.13) (red). Target model 2
with source configuration as shown in figure 2.5. Sample size = 500, and ntr

= 30.

We show the results in figure 2.6. Each plot shows, for different number
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of encoded sources (Nw = 1, 2, 3 and 6), the objective function ΦL(w) de-

fined in (2.10) against the relative medium misfit of the reconstruction, which

is an indication for the quality of the reconstruction. Each reconstruction is

indicated by a translucent dot; a darker shade indicates a higher concentra-

tion of reconstructions in that part of the plot. This shows the variation in

the quality of the reconstruction. The blue dots correspond to reconstruc-

tions that use random encoding weights sampled from the uniform spherical

distribution. The red dots indicate A-optimal encoding weights based on the

Laplace formulation (2.13). The reconstructions marked with black dots use

A-optimal encoding weights based on the Gauss–Newton formulation (2.12).

In order to detect potential local minima, the A-optimal encoding weights are

re-computed several times, starting from different initial conditions.

(a) (b) (c) (d)

Figure 2.7: Four examples of reconstructions using different number of sources,
with target parameter 2: (a) 10 independent sources; (b) 3 A-optimally en-
coded sources; (c) 3 randomly encoded sources; (d) 3 other randomly encoded
sources.

Notice that with one encoded source, A-optimal encoding weights do

not provide a clear advantage over random weights. The overall distribution

of random weights does not indicate a strong connection between the trace of

the posterior covariance (2.10) and the relative medium misfit. On the other

hand, the A-optimal encoding weights outperform the random weights (on
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average), when sufficiently many encoding weights are used (see in particular

Nw = 2 and 3 in figure 2.6). In that case, the random weights appear to

indicate a linear correlation between our objective function and the relative

medium misfit, which translates into the best reconstruction being also the one

with smallest trace of the posterior covariance. Overall, these results suggest

the existence of a threshold, in the number of encoding sources, above which

optimal weights provide improvement in both variance and medium misfit over

random encoding weights. Moreover, based on these results, there does not

appear to be a clear advantage in using the Laplace approximation (2.13) over

the Gauss–Newton approximation (2.12), provided sufficiently many encoded

sources are used. In the last row of figure 2.6, optimal weights computed with

both formulations provide similar results, although the actual values of the

weights do not necessarily agree.

In addition, we provide a comparison of the reconstructions computed

using all sources independently (figure 2.7a), using three A-optimally encoded

sources (figure 2.7b), and two examples of reconstructions computed using

three randomly encoded sources: one resulting in a good reconstruction (fig-

ure 2.7c), and one resulting in a poor reconstruction (figure 2.7d). There is vir-

tually no difference between the reconstructions computed using all 10 sources

and using three A-optimally encoded sources. On the other hand, using ran-

dom encoding weights drawn from the same distribution may lead to good or

poor reconstructions, as is shown in figures 2.7c, d. This is consistent with the

results in figure 2.6 (bottom left), where the blue dots show large variations

in terms of relative medium misfit.
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Variability of the A-optimal encoding weights The A-optimal encoding

weight formulation introduced in section 2.2 relies on a fixed realization of

the trace estimator vectors. Note that the A-optimal encoding weights are

solutions to a highly nonlinear optimization problem that in general exhibits

local minima. However, we show numerically that, provided sufficiently many

encoding weights are chosen and a large enough number of trace estimator

vectors are used, the computation of the A-optimal encoding weights is stable

with respect to trace estimation. In figure 2.8, we show 100 results obtained

10−2 10−1
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300

320

340

360

rel. med. misfit

Φ
L

ntr = 30
ntr = 10
ntr = 4

10−2 10−1

rel. med. misfit

Figure 2.8: Variability of the A-optimal weights for different numbers of trace
estimator vectors, ntr = 30 (red), 10 (black) and 4 (magenta). A-optimal
encoding weights are computed with formulation (2.13) (Ns = 10 and Nw = 3),
using different realizations of the trace estimator vectors and different initial
guess of the weights. Sample size = 100.

with Laplace A-optimal encoding weights (2.13), in the case of 3 encoded

sources, with different numbers of trace estimator vectors (ntr = 4, 10, 30).

Each computation uses different realizations of the trace estimator vectors,

and different initial guess of the weights.
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We observe that with ntr = 10 and 30 the computations of the A-

optimal encoding weights provide similar results. On the other hand, the use

of 4 trace estimator vectors leads to a much wider range in the quality of

the results, both in terms of relative medium misfit and trace of the posterior

covariance.

2.4.3 Remarks on the Gauss–Newton formulation

Here, we discuss the justification for and advantages of using the Gauss–

Newton formulation for finding A-optimal encoding weights. In many impor-

tant situations, the Gauss–Newton formulation appears accurate enough to

compute the A-optimal encoding weights. The Gauss–Newton approximation

to the Hessian is most accurate when the data misfit residual is small at the

solution of the inverse problem. This is the case, for instance, when the noise

level in the observations is low. In our numerical experiments we observed

that, provided sufficiently many encoded sources are used, the Gauss–Newton

formulation represents a sufficiently accurate approximation to the Laplace

formulation for the purpose of computing A-optimal encoding weights.

The Gauss–Newton formulation holds strong promises to reduce the

computational cost of the A-optimal encoding weights. The data-misfit part

of the Gauss–Newton Hessian is guaranteed to be positive semi-definite at any

evaluation point, and hence the Gauss–Newton Hessian is positive definite.

This allows two main improvements to the computations of the A-optimal

weights. First, and as detailed in section 2.3.2.3, one can incorporate a low-

rank approximation of the Gauss–Newton Hessian to reduce the computational

cost. The magnitude of that reduction is problem-dependent, but will be most

noticeable when large numbers of trace estimator vectors are required.
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Another advantage of the positive definiteness of the Gauss–Newton

Hessian is that the objective function (2.9) of the Gauss–Newton formulation

does not have to be evaluated in a small neighbourhood of the MAP point

for the objective function to make sense. This could allow one, for instance,

to solve the MAP point inexactly when the A-optimal objective function is

far from its minimum, which would reduce the overall computational cost. In

section 2.4.1, we studied how the objective function varies with the evalua-

tion point m̄s (figure 2.3), and observed that the objective function tends to

maintain similar local minima away from the MAP point.

Finally, we want to point out that in certain situations, the full Hessian

may not be available, may be too complicated to derive, or too expensive to

compute, rendering the Laplace formulation inadequate. This can be the case

for inverse problems with highly nonlinear forward problems.

2.5 Conclusion

We have developed a method for the computation of A-optimal encod-

ing weights aiming at large-scale non-linear inverse problems. As we show

numerically, reconstructions obtained using A-optimal encoding weights not

only minimize the average of the posterior variance, but consistently outper-

form random encoding weights in terms of the quality of the reconstructions.

While in this work, we relied on quasi-Newton methods for solving the opti-

mization problem for A-optimal encoding weights, we will explore the deriva-

tion and implementation of a Newton solver for this optimization problem in

future work. We point out that, thanks to the optimize-then-discretize ap-

proach we adopted, the derivation of the analytical expression for the action

of the Hessian in a direction is possible with little more effort than what was
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required to get the gradient.

We introduced two formulations for the computation of the A-optimal

encoding weights, namely the Gauss–Newton formulation (2.12) and the Laplace

formulation (2.13). Although the Gauss–Newton formulation represents an ap-

proximation to the Laplace formulation, it holds several advantageous features

from computational point of view.

We note that computing A-optimal encoding weights can entail a sig-

nificant computational effort. However, the method can be attractive for real-

time monitoring applications where one needs to solve an inverse problem

repeatedly over time. In this case, one first computes the A-optimal encoding

weights offline, and then can use those weights to solve the inverse problem re-

peatedly at a fraction of the original cost. An example for such an application

is the monitoring of an oil reservoir, where seismic or electro-magnetic inverse

problems are solved repeatedly to characterize the evolution of the reservoir

properties over time.
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Chapter 3

A comparative study of regularizations for

multi-parameter inverse problems

We now turn our attention to multi-parameter and multi-physics in-

verse problems. In this chapter, we investigate what joint regularization terms

are both, amenable for large-scale applications, and best able to reconstruct

sharp edges in the truth parameter fields. Indeed, truth parameter fields in

geophysical and medical applications often present sharp variations in con-

trast, which are of critical importance for diagnostic and analysis. Based on

these criteria and a current literature review, we shortlisted the following four

joint regularization terms: the cross-gradient paired with independent TV

regularizations, the normalized cross-gradient paired with independent TV

regularizations, the vectorial total variation joint regularization, and a novel

nuclear norm joint regularization that we introduce in section 3.3. Note that

in [44], the authors compared a number of joint regularizations, including the

cross-gradient and VTV, but our study updates the candidate list of the joint

regularizations, compare them over a more diverse range of examples, and

put the emphasis on reconstructing sharp interfaces, a challenge for numerical

applications.

The main contributions of this chapter are as follows: (1) We carry

out a detailed comparison of the four joint regularization terms we identi-

fied, within the computational framework of large-scale inverse problems (sec-
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tion 1.3). We illustrate the strengths and weaknesses of all four regularizations

through a comprehensive numerical study that covers a range of practical sit-

uations. (2) We introduce a novel joint regularization term, for joint inverse

problems constrained by PDEs, that promote gradient alignment through the

use of the nuclear norm. Although a similar idea was used previously in med-

ical imaging [58], this is, to the best of our knowledge, the first time such

a regularization is used in the context of PDE-constrained inverse problems.

(3) We demonstrate numerically how a Poisson inverse problem can supply

low-frequency information to an inverse problem governed by the acoustic

wave equation through the formulation of a multi-physics inverse problem.

The first three sections of this chapter are dedicated to introducing

the four joint regularization terms whose performance we will compare in sec-

tion 3.4. The cross-gradient and normalized cross-gradient are discussed in

sections 3.1.1 and 3.1.2. The vectorial total variation is presented in sec-

tion 3.2, and the nuclear norm joint regularization is defined and discussed

in section 3.3. The numerical section 3.4 presents results from three different

examples of joint inverse problems. In section 3.4.1, we use two joint Poisson

inverse problems to illustrate some key features of each structural similar-

ity term. We then study, in section 3.4.2, how joint inversion can improve

the reconstructions of the bulk modulus and the density in the acoustic wave

equation. In section 3.4.3, we look at a multi-physics joint inverse problem,

combining a Poisson inverse problem and an acoustic wave inverse problem.

We provide some concluding remarks in section 3.5.

Although this is not a limitation of the methods we present, for the sake

of brevity, we restrict ourselves to two inversion parameters in this chapter; We

consider larger number of inversion parameters in chapter 4. In sections 3.1
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to 3.3, we denote the inversion parameters by m1 and m2. In this chapter, we

make extensive use of the notation for the modified TV, RTV,ε (1.6), introduced

in section 1.2.2.1.

3.1 Cross-gradient terms

In this section, we introduce the cross-gradient term and its normalized

version. The main idea behind both structural similarity terms is to force the

level sets of the inversion parameters m1 and m2 to align. As illustrated in

figure 3.1, alignment of the level sets is equivalent to the alignment of the

gradients of the fields m1 and m2 at each point. By definition of the cross-

∇m1

level set
of m1

∇m2

level set
of m2

Figure 3.1: Sketch of a level set for the parameters m1 (red) and m2 (blue),
with their respective gradients at a point.

product of two vectors, the gradients of two parametersm1 andm2 are aligned,

at a given point, when |∇m1 ×∇m2|2 vanishes.

3.1.1 The cross-gradient term

The cross-gradient term R̂cg, defined as

R̂cg(m1,m2) :=
1

2

∫

Ω

|∇m1 ×∇m2|2 dx, (3.1)
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was introduced in [37] and has become a popular choice in geophysical ap-

plications, particularly in seismic imaging. Although the formulation (3.1)

is intuitive, it is not convenient for numerical discretization and to compute

derivatives. Using vector calculus, we re-write (3.1) as

R̂cg(m1,m2) =
1

2

∫

Ω

|∇m1|2|∇m2|2 − (∇m1· ∇m2)
2 dx. (3.2)

Combining the cross-gradient term (3.2) with independent TV regularizations

for m1 and m2, we obtain the joint regularization

R(m1,m2) = γ1RTV,ε(m1) + γ2RTV,ε(m2) + γR̂cg(m1,m2), (3.3)

where γ, γ1, γ2 > 0. In [44] the authors propose a different formulation, in

which each independent TV regularization is weighted by a non-linear func-

tion of the gradient of the other parameter. The goal of this weighting is to

apply TV regularization only for points in the parameter space where the cross-

gradient term alone is not sufficient to prevent oscillatory solutions. Such oscil-

lations may occur where the gradient of one parameter is very small, resulting

in an (almost) vanishing cross-gradient term. Because this formulation further

increases the nonlinearity of the problem (nonlinear inverse problem, nonlinear

regularization, nonlinear structural similarity term), we instead use (3.3).

Derivatives of the cross-gradient structural similarity term can provide

insight about its action on the reconstructions of the joint inverse problem.

Using formulation (3.2), we compute the gradient, and the action of the Hes-

sian in a given direction, for the cross-gradient term [26]. The weak form

of the gradient, evaluated at a point m := (m1,m2), and acting in a direc-
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tion m̃ := (m̃1, m̃2) is given by

δm1
R̂cg(m; m̃1) =

∫

Ω

|∇m2|2(∇m̃1· ∇m1)− (∇m1· ∇m2)(∇m̃1· ∇m2) dx,

δm2
R̂cg(m; m̃2) =

∫

Ω

|∇m1|2(∇m̃2· ∇m2)− (∇m1· ∇m2)(∇m̃2· ∇m1) dx.

Then the weak form of the action of the Hessian of the cross-gradient term,

at a point m, along a direction m̂ = (m̂1, m̂2), is given block-wise by

δ2m1
R̂cg(m; m̂1, m̃1) =

∫

Ω

|∇m2|2(∇m̃1· ∇m̂1)− (∇m̃1· ∇m2)(∇m2· ∇m̂1) dx,

δ2m1,m2
R̂cg(m; m̂2, m̃1) =

∫

Ω

2(∇m̃1· ∇m1)(∇m2· ∇m̂2)

− (∇m1· ∇m2)(∇m̃1· ∇m̂2)− (∇m̃1· ∇m2)(∇m1· ∇m̂2) dx,

δ2m2
R̂cg(m; m̂2, m̃2) =

∫

Ω

|∇m1|2(∇m̃2· ∇m̂2)− (∇m̃2· ∇m1)(∇m1· ∇m̂2) dx.

The Hessian provides insight about the shape of the objective function at the

minimizer, where the gradient vanishes. It also affects the Newton search

direction through its inverse. The weak form of the Hessian is, however, not

convenient to analyze its action. In strong form, the Hessian H acts, in a

direction m̂, like a vector anisotropic diffusion operator, i.e.,

Hm̂ = −∇· (Acg(m)∇m̂),

where Acg is a diffusion tensor. The diffusion tensor controls the diffusive

action of the Hessian operator. In particular, the kernel of the diffusion tensor

contains search directions that will not be smoothed out, hence potentially

preserving sharp edges.

This diffusion tensor, in the case of the cross-gradient (3.2), is given by

Acg(m) =

[

D(m2) B(m)
B(m)T D(m1)

]

, (3.4)

76



where we introduced the notations

D(mi) := |∇mi|2I −∇mi∇mT
i ,

B(m) := 2∇m1∇mT
2 − (∇m1· ∇m2)I −∇m2∇mT

1 .

This should be compared with the diffusion tensor of the Hessian of the TV

regularization for a parameter mi, which is given by

ATV(mi) =
1

|∇mi|

(

I − ∇mi∇mT
i

|∇mi|2
)

, (3.5)

or equivalently, D(mi) = |∇mi|3ATV(mi). The block-diagonal part of Acg

indicates a TV-like behaviour but where parameter m1 (resp. m2) preserves

sharp edges in directions where parameter m2 (resp. m1) presents sharp edges;

this illustrates the coupling between both parameters. As we show numerically

in figure 3.2, because of the presence of the off-diagonal blocks B in Acg, the

Hessian of the cross-gradient term can be indefinite. The TV regularization

being a convex operator, its Hessian is guaranteed to be positive semidefinite.

Therefore the Hessian obtained by keeping the block diagonal parts of the

diffusion tensor (3.4), i.e., Hdm̂ := −∇· (Acg,d(m)∇m̂), with

Acg,d(m) :=

[

D(m2) 0
0 D(m1)

]

, (3.6)

is also guaranteed to be positive semidefinite. For this reason, when using the

cross-gradient paired with two independent TV regularizations, we precondi-

tion the Newton system with a block-diagonal matrix containing the Hessian

of the independent TV regularizations, plus a small fraction of the mass matrix

in each block, plus the block-diagonal part of the Hessian of the cross-gradient

term (3.6).
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Figure 3.2: Eigenvalues of the Hessian operator (blue) and block-diagonal part
of the Hessian operator (red) for the (iii) cross-gradient term (3.1) and the (iv)
normalized cross-gradient term (3.7) with ε = 10−4, for two combinations of
truth parameter fields (i) m1 and (ii) m2. The domain is a unit square dis-
cretized by a 40×40 mesh, and the parameter fields m1 and m2 are discretized
using continuous piecewise linear finite elements.

3.1.2 Normalized cross-gradient

A disadvantage of the cross-gradient term (3.2) is that it is minimum

where one of the inversion parameters, or both, are constant, hence potentially

ignoring sharp discontinuities. A workaround, first introduced for image seg-

mentation [47], is to normalize the gradient of both inversion parameters in

the formulation of the cross-gradient. The normalized cross-gradient is given

by

R̂(m1,m2) =
1

2

∫

Ω

∣

∣

∣

∣

∇m1

|∇m1|
× ∇m2

|∇m2|

∣

∣

∣

∣

2

dx =
1

2

∫

Ω

1−
( ∇m1· ∇m2

|∇m1||∇m2|

)2

dx.
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Since this formulation is non-differentiable where |∇m1| = 0 or |∇m2| = 0, we

introduce the modified normalized cross-gradient,

R̂ncg(m1,m2) :=
1

2

∫

Ω

1−
(

∇m1· ∇m2
√

|∇m1|2 + ε
√

|∇m2|2 + ε

)2

dx, (3.7)

with ε > 0. Pairing the normalized cross-gradient term (3.7) with two TV

regularizations, we obtain the joint regularization

R(m1,m2) = γ1RTV,ε(m1) + γ2RTV,ε(m2) + γR̂ncg(m1,m2), (3.8)

where γ, γ1, γ2 > 0. Unlike for the cross-gradient term, the derivatives of

the normalized cross-gradient term give little insight about its regularization

action. Instead, we illustrate numerically that the normalized cross-gradient

often behaves as a concave operator. In figure 3.2, we plot the eigenvalues

of its full Hessian and of the block-diagonal part of its Hessian for different

parameter fields m1 and m2, and observe that most eigenvalues are negative.

The main practical consequence of this observation is that the Hessian of the

joint regularization (3.8) may be indefinite. For this reason, the precondi-

tioner for the Newton system is formed by the Hessians of the independent

TV regularizations alone.

3.2 Vectorial total variation

The vectorial total variation functional [14], or color TV [12], is the

multi-parameter equivalent of the total variation functional. It was first in-

troduced for multi-channel imaging applications [12, 14], and later applied to

joint inverse problems [44]. Unlike the cross-gradient and normalized cross-

gradient, VTV acts as a regularization in itself and does not require additional
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regularization terms. It is given by

R(m1,m2) = γ

∫

Ω

√

|∇m1|2 + |∇m2|2 dx, (3.9)

with γ > 0. Formulation (3.9) is non-differentiable where |∇m1| = |∇m2| = 0.

For this reason, we introduce a modified VTV regularization given by

RVTV(m1,m2) := γ

∫

Ω

√

|∇m1|2 + |∇m2|2 + ε dx, (3.10)

with ε, γ > 0. Whereas the cross-gradient terms (see section 3.1) work by

aligning the level sets of both inversion parameters, VTV appears to favors

superimposition of discontinuities in both parameter fields. A simple, intuitive

way to explain this, given the understanding of the TV regularization [18],

is sketched in figure 3.3. Given two parameter fields with a single jump of

same amplitude, the VTV functional is minimum when both jumps occur at

the same location. This informal argument can be made rigorous by using

piecewise linear functions for m1 and m2 instead of the Heaviside function in

figure 3.3.

0 1 2
0

0.5

1
m1

m2

0 1 2
0

0.5

1

RVTV(m1,m2) = ”2
∫

Ω

√

|∇m1|2 dx” ”
√
2
∫

Ω

√

|∇m1|2 dx”

Figure 3.3: Values of the VTV regularization (3.9), for two parameter fieldsm1

andm2 defined over Ω = [0, 2], with both parameter fields having a single jump
of the same amplitude, and RTV(m1) = RTV(m2). This informal argument can
be made rigorous by using piecewise linear functions for m1 and m2.

The derivatives of the VTV regularization resemble those of the TV

regularization. For clarity, we set γ ≡ 1 in the rest of section 3.2. The weak
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form of the gradient, evaluated at a point m = (m1,m2), and acting in a

direction m̃ = (m̃1, m̃2), is given by

δm1
RVTV(m; m̃1) =

∫

Ω

∇m1· ∇m̃1
√

|∇m1|2 + |∇m2|2 + ε
dx

δm2
RVTV(m; m̃2) =

∫

Ω

∇m2· ∇m̃2
√

|∇m1|2 + |∇m2|2 + ε
dx,

(3.11)

The diffusion tensor for the Hessian of the VTV regularization, in strong form

(see section 3.1.1), is given by

AVTV(m) :=
1

|∇m|ε

[

I − ∇m1∇mT
1

|∇m|2ε
−∇m1∇mT

2

|∇m|2ε
−∇m2∇mT

1

|∇m|2ε
I − ∇m2∇mT

2

|∇m|2ε

]

, (3.12)

where |∇m|2ε = |∇m1|2 + |∇m2|2 + ε. Comparing with the diffusion tensor

for the Hessian of the TV regularization (3.5), we find similar terms along the

diagonal, to the exception of the normalization factor at the denominator; it

is |∇mi| in the case of TV, and |∇m|ε in the case of VTV, i.e., it involves the

gradient of both parameters, hence introducing coupling between the parame-

ter fields. Since the focus of the current chapter is on a qualitative comparison

of several joint regularization terms, we postpone further discussion about the

VTV functional until chapter 4. A more detailed analysis of the VTV func-

tional is carried out in section 4.1. In section 4.2, we introduce a primal-dual

Newton method for the efficient, scalable solution of PDE-constrained joint

inverse problems regularized with VTV.

3.3 Nuclear norm joint regularization

In [58], the authors extended the total generalized variation to vector-

valued parameters, and by doing so, employed the pointwise nuclear norm

of a matrix field to force alignment of image edges. Building on their work,
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we propose a joint regularization utilizing the nuclear norm. As the methods

discussed in section 3.1, this term aims at promoting alignment of parameter

level sets by being minimal when gradients align. Let us introduce the matrix

function G : Ω → R
d×2, with Ω ⊂ R

d the physical domain, defined by

G(x) :=
[

∇m1|∇m2

]

=







∂x1
m1 ∂x1

m2
...

∂xd
m1 ∂xd

m2






.

The gradients ∇m1 and ∇m2 are aligned at x ∈ Ω if the columns of G(x) are a

multiple of each other, in which case the rank of G(x) is 1. One could seek to

promote gradient alignment by minimizing the quantity
∫

Ω
rank(G(x)) dx. In

practice, minimization of the rank of a matrix is notoriously difficult. However,

the nuclear norm of a matrix, denoted ‖· ‖∗, is often a good proxy for the

rank [34]. The nuclear norm of a matrix is defined as the ℓ1-norm of its

singular values. We therefore define the nuclear norm joint regularization as

R∗(m1,m2) := γ

∫

Ω

‖G(x)‖∗ dx, (3.13)

with γ > 0.

3.3.1 Gradient of the nuclear norm joint regularization

We now show how to compute derivatives of (3.13), using the chain

rule. Let us introduce the notation f(G) := ‖G‖∗, such that R∗(m1,m2) =

γ
∫

Ω
f(G(x)) dx. Denoting the gradient of f with respect to the entries of

matrix G by ∇f(G) ∈ R
d×2, the first directional derivatives of (3.13) with

respect to the inversion parameters mi, i = 1, 2, are given by

∂mi
R∗(m1,m2)m̃i = γ

∫

Ω

(∇f(G), ∂mi
G(x)m̃i) dx, (3.14)
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where

∂m1
G(x)m̃1 =







∂x1
m̃1 0
...

∂xd
m̃1 0






and ∂m2

G(x)m̃2 =







0 ∂x1
m̃2

...
0 ∂xd

m̃2






,

and the inner-product for matrices M = (mij)ij, N = (nij)ij ∈ R
d×2 is defined

as (M,N) =
∑d

i=1

∑2
j=1mijnij. We next compute the gradient of the nuclear

norm ∇f .

Given a full-rank matrix M ∈ R
a×b, i.e., r := rank(M) = min(a, b),

and singular values {σk}rk=1, we define its (reduced) singular value decompo-

sition (SVD) by M = UΣV T , with U ∈ Ra×r, V ∈ R
b×r, and Σ ∈ R

r×r

a diagonal matrix containing the singular values of M , i.e., Σkk = σk > 0,

k = 1, . . . , r. The (i, j)-entry of the gradient of the nuclear norm is given by

(∇f(M))ij =
r
∑

k=1

∂σk
∂mij

=
r
∑

k=1

uikvjk,

where the second equality uses the singular value sensitivity [68]. The gradient

of the nuclear norm with respect to the entries of M is then given by

∇f(M) = UV T .

3.3.2 Modified nuclear norm joint regularization

The nuclear norm f(M) is non-differentiable when the matrixM is not

full-rank, corresponding to the case where at least one of the singular values

vanishes. A workaround, similar to the one employed for the TV functional,

is to define the modified nuclear norm

fε(M) := ‖M‖∗,ε =
min(a,b)
∑

k=1

√

σ2
k + ε, (3.15)
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where ε > 0. We then define the modified nuclear norm joint regularization as

R∗,ε(m1,m2) := γ

∫

Ω

fε(G(x)) dx, (3.16)

with γ > 0.

The (i, j)-entry of the gradient of the modified nuclear norm (3.15) is

given by

(∇fε(M))ij =
∂

∂mij

min(a,b)
∑

k=1

√

σ2
k + ε =

r
∑

k=1

σk
√

σ2
k + ε

∂σk
∂mij

,

where in the last expression the sum is up to r since, by definition of the

rank of a matrix, σk = 0 for all k > r. Let us now introduce the diagonal

matrixWε ∈ R
r×r, with entries (Wε)ii = σi/

√

σ2
i + ε. Using the expression for

the sensitivity of the singular values [68], the gradient of the modified nuclear

norm is then given by

∇fε(M) = UWεV
T . (3.17)

The first directional derivatives of (3.16) with respect to the inversion param-

eters mi, i = 1, 2, are given by

∂mi
R∗,ε(m1,m2)m̃i = γ

∫

Ω

(∇fε(G), ∂mi
G(x)m̃i) dx, (3.18)

The modified nuclear norm (3.15) is however not twice differentiable

when two singular values are equal (crossing singular values). This is because

the second-derivative requires the sensitivity of the individual singular vectors,

which are not differentiable where singular values cross. We have not found a

practical workaround for that singularity, and thus proceed with a gradient-

based method to solve joint inverse problems regularized with the nuclear norm

joint regularization; the solver is detailed in section 3.3.4.

In the rest of this chapter, we refer to the modified nuclear norm joint

regularization (3.16) simply as the nuclear norm joint regularization.
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3.3.3 Joint regularization, or structural similarity term?

An important question is whether the functional (3.16) requires to be

supplemented by an actual regularization as in the case of the cross-gradient

(section 3.1), or if it acts as a joint regularization as in the case of VTV

(section 3.2). It turns out functional (3.16) acts like a joint regularization, as

we verify numerically in section 3.4. However, we supply analytical evidence

of that fact, in the case of two inversion parameters m1 and m2 defined over

a domain Ω ⊂ R
2. In that case, G is a 2 × 2 matrix and we can derive

an analytical expression for (3.16). As we show in the next paragraph, this

expression displays strong resemblance with the VTV regularization.

For clarity of the presentation, we derive the analytical expression

of (3.16) in the case ε ≡ 0 and γ ≡ 1. Using the analytical solution for

the singular values of a matrix M ∈ R
2×2 (see appendix (B.1)), we obtain

∫

Ω

‖G(x)‖∗ dx =

∫

Ω

[

σ1(G(x)) + σ2(G(x))
]

dx

=
1√
2

∫

Ω

[

√

|∇m1|2 + |∇m2|2 +
√

(|∇m1|2 − |∇m2|2)2 + 4(∇m1· ∇m2)2

+

√

|∇m1|2 + |∇m2|2 −
√

(|∇m1|2 − |∇m2|2)2 + 4(∇m1· ∇m2)2
]

dx.

This expression simplifies in the following situations.

• if ∇m1· ∇m2 = 0, i.e., if both parameters are orthogonal to each other,

the nuclear norm joint regularization is equal to the sum of two indepen-
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dent TV regularizations,

R∗(m1,m2) =
1√
2

∫

Ω

√

|∇m1|2 + |∇m2|2 + ||∇m1|2 − |∇m2|2|+
√

|∇m1|2 + |∇m2|2 − ||∇m1|2 − |∇m2|2| dx

=

∫

Ω

|∇m1|+ |∇m2| dx

= RTV(m1) + RTV(m2).

• if ∇m1· ∇m2 = ±|∇m1| |∇m2|, i.e., if the level sets of both parameters

are aligned, we recover the VTV functional,

R∗(m1,m2) =
1√
2

∫

Ω

[

√

|∇m1|2 + |∇m2|2 +
√

(|∇m1|2 + |∇m2|2)2

+

√

|∇m1|2 + |∇m2|2 −
√

(|∇m1|2 + |∇m2|2)2
]

dx

=

∫

Ω

√

|∇m1|2 + |∇m2|2 dx

= RVTV(m1,m2).

3.3.4 Numerical solution of joint inverse problems regularized with

the nuclear norm joint regularization

To solve joint inverse problems regularized with the nuclear norm joint

regularization, we use a BFGS quasi-Newton method with damped update [67].

That is, at each step k we compute the search direction pk by computing

pk = −Hkgk, where gk is the gradient of the objective function to be minimized

at step k, and Hk is a positive definite approximation to the inverse of the

Hessian of that objective function. This approximation is improved by a rank-

2 update at each step, using the formula

Hk+1 = (I − ρkrky
T
k )Hk(I − ρkykr

T
k ) + ρkrkr

T
k , (3.19)
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where yk is the difference between the gradient at step k+1 and k, ρk := 1/yTk rk,

and rk is the damped form of sk, the difference between the parameter at

step k + 1 and k, and is defined as rk := θksk + (1− θk)Hkyk, with

θk :=











1, if sTk yk ≥ αyTkHkyk,

(1− α)yTkHkyk
yTkHkyk − sTk yk

, otherwise.

The classic BFGS method requires the curvature condition, i.e., sTk yk > 0, to be

satisfied at all steps. The curvature condition is necessary to maintain positive

definiteness of the BFGS approximation Hk. However, the curvature condition

is only guaranteed to be true at all steps when the objective function is strictly

convex everywhere, which is typically not the case for inverse problems. This

can be remedied by performing an inexact line search verifying the Wolfe

conditions [67]; but such a line search requires the computation of the gradient

and can be computationally expensive (see section 1.3.2). Using a damped

update allows us to apply a backtracking line-search, while avoiding to skip

some updates of Hk entirely. In the numerical applications, we found that

α = 0.2 worked well. The BFGS formula (3.19) requires the initialization of

the approximation of the inverse Hessian, i.e., the definition of H0. BFGS-type

methods perform well when the true Hessian is a compact operator [40, 41].

This is typically not the case for PDE-constrained inverse problems where the

regularization is a non-compact differential operator. As a remedy, we set H0

to the inverse of the Hessian of the regularization operator. This quantity

is not available for the nuclear norm joint regularization, but based on the

insight gained in section 3.3.3, we set H0 to the inverse of the Hessian of the

VTV joint regularization at the current parameter location.
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3.4 Numerical examples

In this section, we present a comprehensive numerical comparison of the

four joint regularization terms introduced in sections 3.1 to 3.3, i.e., the regu-

larization (3.3) for the cross-gradient, the regularization (3.8) for the normal-

ized cross-gradient, the vectorial total variation (3.10), and the nuclear norm

regularization (3.15). Reconstructions obtained with these joint regularization

terms are compared with each other, and with the reconstructions obtained

from solving a joint inverse problem with two independent TV regularizations.

The parameters for all joint regularization terms are selected empirically as

leading to the best reconstructions. The values of ε are chosen small enough

to provide reconstructions with sharp interfaces, but large enough to avoid

unreasonable numerical difficulties (see for instance the discussion in [6]).

The four joint regularization terms are compared in three examples cov-

ering both types of joint inverse problems (1.35) and (1.36). In section 3.4.1,

we combine two uncoupled Poisson inverse problems to create a joint inverse

problem (1.36). To justify the use of a joint inversion, we assume to have

knowledge about the truth parameter fields of both Poisson problems having

similar structure. In section 3.4.2, we compare how the use of joint regular-

ization terms can help improve the reconstruction of the bulk modulus and

the density in an acoustic wave equation, an example of joint inverse prob-

lem (1.35). In section 3.4.3, we formulate a multi-physics joint inverse prob-

lem (1.36), combining a Poisson inverse problem and an acoustic wave inverse

problem. The Poisson parameter and the wave velocity are assumed to have

similar structure.

In all examples, the domain is a 2D unit square, meshed by regular

isosceles square triangles obtained by cutting in half N ×N squares; we define
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the mesh size parameter h := 1/N . All data are generated synthetically at

the truth parameter fields, then polluted by adding independent and identi-

cally distributed Gaussian noise; the noise level is specific to each example.

We use continuous finite elements to discretize the inverse problems and the

PDE constraints, with the state, adjoint, incremental state, and incremental

adjoint variables using quadratic elements, and the parameter fields using lin-

ear elements. For all examples, the solvers are implemented in Python with

the finite-element library FEniCS [61, 62]. For the examples in section 3.4.1

and 3.4.3, we used the optimization routines from hIPPYlib [84], a Python

library for deterministic and Bayesian inverse problems.

3.4.1 Joint Poisson inverse problems

In the first two examples, we solve a joint inverse problem (1.36) with

two parameters, m1 and m2. Considered separately, each parameter mi, i =

1, 2, is solution to a Poisson inverse problem,

mi := argmin
m

{

1

2
|Biu− di|2 + γi

∫

Ω

√

|∇m|2 + ε dx

}

,

where,
{−∇· (em∇u) = 1, in Ω,

u = 0, on ∂Ω.

(3.20)

The operators Bi represent pointwise observation operators, and the data di

are synthetic observations polluted with 2% Gaussian noise. The domain Ω is

meshed with 8192 identical isosceles square triangles (h = 1/64).

The differences between the inverse problems for m1 and m2 reside in

the truth parameter fields, and in the number and locations of the observa-

tion points. In the first example (section 3.4.1.1), the truth parameter fields
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differ but have interfaces at the same spatial locations. In the second example

(section 3.4.1.2), some interfaces in the truth parameter field for m2 do not

appear in the truth parameter field for m1. In both examples, the data for

parameter m1 are observations that only cover the top-right quadrant of the

domain, whereas the data for parameter m2 are observations distributed over

the entire domain. The locations of the observations for each inverse problem

are shown in figures 3.4 and 3.7.

3.4.1.1 Truth parameter fields have identical interface locations

In the first example, the truth parameter fields for both m1 and m2

have sharp interfaces at the same locations (see figure 3.4). For reference,

(a) m1 (b) m2

Figure 3.4: Truth parameter fields for (a) m1 and (b) m2 in the example
of section 3.4.1.1. White dots in (a) and (b) indicate the location of the
pointwise observations. The observations for parameter m1 only cover the top-
right quadrant of the domain, forming a square lattice of 25 × 25 pointwise
observations. The observations for parameter m2 form a square lattice of 50×
50 pointwise observation distributed over the entire domain.

we show in figure 3.5 the reconstructions for parameters m1 and m2 obtained

by solving two independent inverse problems (3.20). The reconstructions for

all four joint inverse problems are shown in figure 3.6, and the corresponding

values of the relative medium misfit are given in table B.1.
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(a) m1 (b) m2

Figure 3.5: Reconstructions for the parameter fields (a) m1 and (b) m2, ob-
tained by solving the inverse problem (3.20) regularized with TV (ε = 10−3,
γ1 = 3· 10−7, and γ2 = 4· 10−7). The legend for both plots is as in figure 3.4.

The reconstructions for parameter m2 do not vary significantly from

one another (figure 3.6b); due to the large number of observation points, this

parameter was already well reconstructed by an independent inverse problem

(figure 3.5b). We observe an improvement in the reconstruction of parame-

ter m1 for all four joint inverse problems, over the independent reconstruction

shown in figure 3.5a. Using the cross-gradient only marginally improves the

reconstruction for parameter m1, most likely because the independent recon-

struction for m1 shows large areas of constant values, where the cross-gradient

term is equal to zero; these areas can therefore not be improved by the cross-

gradient. The normalized cross-gradient improves over the cross-gradient but

fails to fully recover the circular interface. Both the VTV joint regularization

and the nuclear norm joint regularization perform better in this example, and

lead to reconstructions that contain all sharp interfaces in the target image.

3.4.1.2 Truth parameter fields have different interface locations

Here, the only difference with the previous example is that the truth pa-

rameter field form1 no longer has a vertical discontinuity along the line x = 0.5
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(a
)
m

1
(b
)
m

2

(i) cr-gd (ii) norm.cr-gd (iii) vectorial TV (iv) nuclear norm

Figure 3.6: Reconstructions for the parameter fields (a) m1 and (b) m2, ob-
tained by solving a joint inverse problem (1.36) regularized with (i) the cross-
gradient (γ = 2· 10−8) paired with two independent TV regularizations, (ii)
the normalized cross-gradient (γ = 6· 10−6 and ε = 10−3) paired with two in-
dependent TV regularizations, (iii) the VTV joint regularization (γ = 3· 10−7

and ε = 10−3), and (iv) the nuclear norm joint regularization (γ = 3· 10−7 and
ε = 10−3). The parameters for the independent TV regularizations are as for
the independent inverse problems (see caption of figure 3.5). The legend is as
in figure 3.4.

(see figure 3.7). For reference, in figure 3.8, we show the reconstructions for

parameters m1 and m2 obtained by solving two independent inverse prob-

lems (3.20). The reconstructions for the four joint inverse problems are shown

in figure 3.9, and the corresponding values of the relative medium misfit are

given in table B.2.

For parameter m2, we are in the situation of the first example (sec-

tion 3.4.1.1), and the reconstructions from the four joint inverse problems do

not vary significantly from one another (see figure 3.9b). However, we observe
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(a) m1 (b) m2

Figure 3.7: Truth parameter fields for (a) m1 and (b) m2 in the example of
section 3.4.1.2. White dots in (a) and (b) indicate the location of the pointwise
observations (see caption of figure 3.4).

(a) m1 (b) m2

Figure 3.8: Reconstructions for the parameter fields (a) m1 and (b) m2, ob-
tained by solving the inverse problem (3.20) regularized with TV (ε = 10−3,
γ1 = 4· 10−7, and γ2 = 4· 10−7). The legend for both plots is the same as in
figure 3.7.

differences among the reconstructions for parameter m1. The joint inverse

problem using the cross-gradient only marginally improves the reconstruction

for parameterm1. Here, the use of the normalized cross-gradient does not show

any improvement over the cross-gradient. As in the first example, both the

VTV joint regularization and the nuclear norm joint regularization perform

the best, and their corresponding reconstructions contain all sharp interfaces

present in the target image. But we also see, in figures 3.9a (iii) and (iv),

the presence of a vertical discontinuity that was not in the target image 3.8a.
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(a
)
m

1
(b
)
m

2

(i) cross-gradient (ii) norm. cross-gd (iii) vectorial TV (iv) nuclear norm

Figure 3.9: Reconstructions for the parameter fields (a) m1 and (b) m2, ob-
tained by solving a joint inverse problem (1.36) regularized with (i) the cross-
gradient paired with 2 independent TV regularizations (γ = 5· 10−9), (ii)
the normalized cross-gradient paired with 2 independent TV regularizations
(γ = 7· 10−7 and ε = 10−3), (iii) the VTV joint regularization (γ = 4· 10−7

and ε = 10−3), and (iv) the nuclear norm joint regularization (γ = 4· 10−7

and ε = 10−3). The parameters for the independent TV regularizations are
the ones selected for the independent inverse problems (see caption figure 3.8).
The legend for all plots is the same as in figure 3.7.

This ghost interface is due to the presence of such a discontinuity in the other

parameter m2, and highlights the tendency of the VTV joint regularization

and nuclear norm joint regularization to super-impose discontinuities in both

parameters. Note, however, that the amplitude of this ghost interface is small

compared to the amplitudes of the other true interfaces.
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3.4.2 Joint inversion of bulk modulus and density in the acoustic

wave equation

We now study an example of joint inverse problem (1.35), where both

parameters enter the same equation, namely the acoustic wave equation.

3.4.2.1 Problem description

The propagation of acoustic waves depends on the bulk modulus λ and

the density ρ of the medium of propagation. The acoustic wave equation (1.25)

was introduced in section 1.4.1. In this section, we assume that both the bulk

modulus λ and the density ρ are unknown, and we use the acoustic wave

inverse problem (1.28) defined in section 1.4.2.

3.4.2.2 Solution of the acoustic wave joint inverse problem

Because of the coupling between parameters α and β coming from the

acoustic wave equation, the inverse problem (1.28) could be regularized by

two independent TV regularizations, i.e., R(α, β) = RTV,ε(α) + RTV,ε(β) [32].

However, the acoustic wave inverse problem with independent regularizations

can be difficult to solve. Going beyond the use of ad-hoc methods to handle

both parameters at once, some researchers have looked at solving (1.28) as

a joint inverse problem [60, 63]. Previous attempts have not considered the

normalized cross-gradient, the VTV regularization, or the nuclear norm reg-

ularization. In this section, we study how the use of joint regularization can

result in improved reconstructions for α and β.

In our numerical tests, we use 6 sources, fi(x, t), located on the top

boundary of the domain at 0.1, 0.25, 0.4, 0.6, 0.75, and 0.9 from the left

boundary (yellow stars in figure 3.10a); each source is a point source in space,
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and a Ricker wavelet in time with a peak frequency of 2Hz. The data are

recorded at 20 locations equally spaced along the top boundary (green triangles

in figure 3.10b), and polluted by independent Gaussian noise with zero mean

and variance corresponding to a signal-to-noise ratio of 20 dB. The bound-

ary conditions are homogeneous Neumann boundary conditions along the top

boundary ∂Ωn = [0, 1] × {1}, and absorbing boundary conditions along the

left, bottom, and right boundaries ∂Ωa = {0, 1} × [0, 1] ∪ [0, 1] × {0}. The

truth parameter fields for α and β are shown in figure 3.10; they correspond

to an acoustic wave velocity varying from 2km/s to 3km/s1. Those are typical

values for the surface of the earth (see for instance [64, 85]). The domain is

meshed with 800 identical isosceles square triangles (h = 1/20).

(a) α (b) β

Figure 3.10: Truth parameter fields for (a) α and (b) β in the joint acoustic
inverse problem (1.28) used in section 3.4.2. The yellow stars in (a) indicate
the locations of the sources. The green triangles in (b) indicate the locations
of the pointwise observations.

For reference, we show in figure 3.11 the reconstructions for parame-

ters α and β obtained by solving (1.28) regularized with two independent TV

regularizations. Whereas parameter α is well reconstructed, the reconstruc-

1with the following units: distance in km, velocity in km/s, density in g/cm3, and bulk
modulus in GPa.
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tion for parameter β appears rather blurry. We next solve (1.28) regularized

(a) α (b) β

Figure 3.11: Reconstructions for the parameter fields (a) α and (b) β when
solving (1.28) regularized with two independent TV regularizations (ε = 10−3,
γα = 5· 10−6, and γβ = 9· 10−6).

with the four joint regularization terms studied. The results are shown in fig-

ure 3.12, and the corresponding values of the relative medium misfit are given

in table B.3.

The different reconstructions for parameter α (figure 3.12a) do not differ

significantly from each other, as α is also well reconstructed by solving the

inverse problem with two independent regularizations (figure 3.11a). However,

the use of a joint regularization improves the quality of the reconstruction for

the parameter β (figure 3.12b). Whereas the use of the cross-gradient only

results in marginal improvement to the reconstruction in figure 3.11b, the use

of the normalized cross-gradient allows to recover all interfaces more clearly.

The best reconstructions are obtained using the VTV or the nuclear norm

joint regularizations.

3.4.3 Multi-physics inverse problem

As last problem, we study a multi-physics inverse problem (1.36) com-

bining a Poisson inverse problem and an acoustic wave inverse problem (as-
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(a
)
α

(b
)
β

(i) cross-gradient (ii) norm. cross-gd (iii) vectorial TV (iv) nuclear norm

Figure 3.12: Reconstructions for the parameter fields (a) α and (b) β, obtained
by solving inverse problem (1.28) regularized with (i) the cross-gradient (γ =
10−2) paired with two independent TV regularizations, (ii) the normalized
cross-gradient (γ = 9· 10−6 and ε = 10−6) paired with two independent TV
regularizations, (iii) the VTV joint regularization (γ = 7· 10−6 and ε = 10−3),
and (iv) the nuclear norm joint regularization (γ = 7· 10−6 and ε = 10−3).
The parameters for the independent TV regularizations are the ones selected
for the independent inverse problems (see caption in figure 3.11). The legend
for all plots is the same as in figure 3.10.

suming the density ρ is known). The Poisson inverse problem is identical to

the one used in section 3.4.1,

min
m

{

1

2
|Bu− d|2 + γm

∫

Ω

√

|∇m|2 + ε dx

}

,

where,
{−∇· (em∇u) = 1, in Ω,

u = 0, on ∂Ω.

(3.21)

The observations form a square lattice of 20 × 20 points equally distributed

over the entire domain (white dots in figure 3.13a). The data are polluted with
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1% Gaussian noise. For the acoustic wave inverse problem, we set parameter β

to β ≡ 1 in (1.28), and invert only for the parameter α = 1/λ = 1/c2,

min
α

{

1

2

∫ T

0

|Bu(t)− d(t)|2 dt+ γα

∫

Ω

√

|∇α|2 + ε

}

dx,

where,

αü−∆u = fα, in Ω× (0, T ),

u(x, 0) = u̇(x, 0) = 0, in Ω,
{ ∇u·n = 0, on ∂Ωn × (0, T ),

∇u·n = −
√
αu̇, on ∂Ωa × (0, T ).

(3.22)

We use a single source fα of frequency 4Hz, located at (0.5, 0.1) (yellow star

in figure 3.14a), and 20 pointwise observations equally spaced along the top

boundary (green triangles in figure 3.14a). The boundary conditions, the

noise level in the data, the mesh, and the numerical discretization are as in

section 3.4.2.

Although the goal of this example is to study how each joint regular-

ization performs in a multi-physics joint inverse problem (1.36), we mention a

potential application to seismic imaging for this specific combination of inverse

problems. As discussed in section 1.5.3, a successful full-waveform inversion

requires low-frequency data, which are rarely available in practice, or a good

starting model. Practitioners have traditionally built these starting models

using other, more rudimentary imaging techniques [9]. One potential applica-

tion of joint inverse problems is to allow an auxiliary physical phenomenon,

e.g., electromagnetic waves, to provide the missing low-frequency information

for full-waveform inversion. When taking the frequency of the electromagnetic

source term toward the low-frequency regime, Maxwell’s equation behaves

more and more like an elliptic PDE [42]; this combination of elliptic inverse
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problem and acoustic wave inverse problem corresponds to the example of this

section.

As a reference, we first show the reconstructions for parametersm and α

when (3.21) and (3.22) are solved independently. In figure 3.13b, we show the

reconstruction for the Poisson inverse problem (3.22), where the horizontal

interface is well reconstructed, but the shape of the rectangular perturbation

is smeared out. For the acoustic wave inverse problem (3.22), we show two

(a) truth (b) reconstruction

Figure 3.13: Plots of (a) truth parameter field for m in the Poisson in-
verse problem (3.21), and (b) its reconstruction using TV regularization
(γm = 2· 10−8 and ε = 10−3), and initial parameter field set to a constant
value of 0.625. The white dots in (a) indicate the location of the pointwise
observations.

reconstructions in figure 3.14, one with a source fα of frequency 2Hz (fig-

ure 3.14b), and one with a source fα of frequency 4Hz (figure 3.14c). Whereas

the reconstruction at 2Hz is excellent, the reconstruction at 4Hz lacks sufficient

low-frequency information and converges toward a local minimum, missing the

horizontal discontinuity present in the truth parameter field (figure 3.14a). The

reconstructions for all four joint inverse problems, with a seismic source fα of

frequency 4Hz, are shown in figure 3.15, and the corresponding values of the

relative medium misfit are given in table B.4.
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(a) truth (b) reconstr. 2Hz (c) reconstr. 4Hz

Figure 3.14: Plots of (a) truth parameter field for α in the acoustic inverse
problem (3.22), and (b,c) its reconstructions using TV regularization (γα =
3· 10−8 and ε = 10−3), and initial value for the parameter field set to 0.25,
and a source fα of frequency (b) 2Hz, and (c) 4Hz. The green triangles in (a)
indicate the locations of the pointwise observations, and the yellow star in (a)
indicates the location of the source.

The use of either the cross-gradient term, or the normalized cross-

gradient term, improves the reconstruction for the Poisson parameter m (fig-

ures 3.15a, (i) and (ii)), compared to the reconstruction from the Poisson

inverse problem (3.21) alone (figure 3.13b). However, neither of the cross-

gradient terms brings any improvement to the reconstruction of the acoustic

wave velocity (figures 3.15b, (i) and (ii)); in particular, the reconstructions do

not show the horizontal discontinuity that was missing in the reconstruction of

the acoustic wave velocity alone (figure 3.14c). On the other hand, the use of

either the VTV joint regularization, or the nuclear norm joint regularization,

leads to significant improvements in the reconstruction of the acoustic wave

velocity (figures 3.15b, (iii) and (iv)). Both reconstructions contain all features

of the truth parameter field (figure 3.14a); most noticeably, the horizontal dis-

continuity that was missing in the independent reconstruction (figure 3.14c)

is now fully reconstructed. The use of the VTV joint regularization provides

only marginal improvement to the reconstruction of the Poisson parameter m,
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(a
)
m

(b
)
α

(i) cross-gradient (ii) norm. cross-gd (iii) vectorial TV (iv) nuclear norm

Figure 3.15: Reconstructions for the parameter fields (a) m in (3.21) and (b)
α in (3.22), obtained by solving a joint inverse problem with seismic source fα
of frequency 4Hz, and regularized with (i) the cross-gradient (γ = 8· 10−7)
paired with two TV regularizations, (ii) the normalized cross-gradient (γ =
8· 10−8 and ε = 10−5) paired with two TV regularizations, (iii) the VTV joint
regularization (γ = 4· 10−8 and ε = 10−3), and (iv) the nuclear norm joint
regularization (γ = 5· 10−7 and ε = 10−3). The parameters for the independent
TV regularizations are as for the independent inverse problems (see captions
of figures 3.13 and 3.14). Legend is the same as in figures 3.13 and 3.14.

in terms of relative medium misfit (table B.4); however, the shape of the

rectangular perturbation, which was smeared out in the reconstruction from

the Poisson inverse problem alone (figure 3.13b), is much more clear in fig-

ure 3.15a(iii). The reconstruction of the Poisson parameter obtained with the

nuclear norm joint regularization indicates that the optimization converged to

a local minimum. Despite all discontinuities present in the truth parameter

field (figure 3.13a) being clearly reconstructed in figure 3.15a(iv), the values of

the parameters are significantly different. Similar, or worse, performance was

observed when setting H0 to be a multiple of the identity matrix in the BFGS
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solver [67]. Moreover, almost identical results were obtained when solving the

Poisson-acoustic joint inverse problem, regularized by VTV, using the BFGS

method described in section 3.3.4. We can therefore conjecture that the poor

performance of the nuclear norm joint regularization, in the case of a multi-

physics joint inverse problem, is due to the use of a gradient-based method

for the solution of the joint inverse problem. The significant difference in the

structure of the gradients, coming from the Poisson and acoustic wave inverse

problems, dictate the use of a second-order method, in order to harmonize the

search direction, and avoid diverging or falling into local minima.

3.5 Conclusion

We conducted a comprehensive review of regularization terms for joint

inverse problems. We considered two types of joint inverse problems: (1)

joint inverse problems combining multiple independent inverse problems, and

(2) joint inverse problems where all inversion parameters depend on the same

physics. Based on current literature review, we identified three joint regular-

ization terms for this study that are amenable for the large-scale solution of

PDE constrained joint inverse problems. The cross-gradient is a popular choice

in geophysical applications and operates by forcing alignment of the level sets.

The normalized cross-gradient was designed to overcome some of the poten-

tial weaknesses of the cross-gradient term. The vectorial total variation is an

extension of the total variation regularization to joint inverse problems, and

originated from the imaging community. In addition, we introduced a fourth

novel joint regularization term based on the nuclear norm of a gradient matrix.

The comparison of these joint regularization terms was performed over three

examples: (1) a joint Poisson inverse problem for which the truth parameter
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fields are known to share structures, (2) an acoustic wave inverse problem

where we invert for the bulk modulus and the density, and (3) a joint Poisson-

acoustic inverse problem providing an example of multi-physics joint inverse

problem.

Based on this study, we recommend to use the vectorial total variation

joint regularization. It led to excellent results for all examples, and scalable,

efficient solvers for joint inverse problems regularized with vectorial total vari-

ation are available (see section 4). The cross-gradient similarity term does not

improve significantly over independent reconstructions. In particular, it can

fail to reconstruct some edges entirely, as the cross-gradient term is minimum

where one parameter field is constant. The normalized cross-gradient similar-

ity term leads to a joint inverse problem that is numerically challenging. Even

though it improves over the cross-gradient, the improvement is generally mi-

nor, and the reconstructions did not compare favorably with the ones obtained

with vectorial total variation. The nuclear norm joint regularization showed

encouraging results, even leading to slightly better reconstructions than with

vectorial total variation for some examples, but is missing a formulation that

is twice differentiable for its use with Newton’s method.

The last example showed evidence that a Poisson inverse problem and

an acoustic wave inverse problem can be solved jointly as a way to provide

missing low-frequency information to the acoustic wave inverse problem. Such

results were however only made possible when regularizing with the vectorial

total variation joint regularization.
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Chapter 4

A primal-dual Newton method for the

solution of joint inverse problems regularized

with vectorial total variation

In chapter 3, we compared four joint regularizations over three examples

of multi-parameter and multi-physics inverse problems, and identified vectorial

total variation as the best regularization to reconstruct sharp edges. In sec-

tion 1.3, we discussed the importance of using Newton-type methods to solve

inverse problems constrained by PDEs. However, the use of the classical New-

ton linearization (section 1.3) on joint inverse problems regularized with VTV

leads to extremely poor performance (see section 4.3); the number of PDE

solves required to converge increases dramatically when the hyperparameter ε

decreases, corresponding to reconstructions with increasingly sharper edges.

Motivated by this, we developed a primal-dual Newton method whose perfor-

mance depends only mildly on ε. The introduction of a dual variable allows

an equivalent expression of the first-order optimality system that avoids the

appearance of unknowns in both the numerator and the denominator. Com-

pared to the primal system, the primal-dual first-order optimality system ef-

fectively reduces the nonlinearity of the problem as it involves only products

of the unknowns. Through a comprehensive range of numerical examples, we

demonstrate scalability of our solver with respect to the hyperparameter ε,

the mesh size, and the number of parameter fields n that we invert for.
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In section 4.1, we study vectorial total variation in the case of an arbi-

trary number of inversion parameters, and we analyze its action on the solution

of a joint inverse problem. We introduce the primal-dual Newton solver for

joint inverse problems regularized with VTV in section 4.2. We carefully dis-

cuss discretization issues (section 4.2.2), and the solution of the Newton system

(section 4.2.3). The numerical section 4.3 contains three subsections where we

demonstrate scalability of the primal-dual Newton solver with respect to the

hyperparameter ε (section 4.3.1), the mesh size (section 4.3.2), and the number

of inversion parameters (section 4.3.3). We provide some concluding remarks

in section 4.4.

4.1 Vectorial total variation

As a preamble to the VTV joint regularization, we consider a joint reg-

ularization that allows reconstructions with sharp edges, but does not impose

any coupling between the inversion parameters; we call it joint TV regular-

ization (section 4.1.1). In section 4.1.2, we introduce the formulation of VTV

with n parameter fields. In section 4.1.3, we compute derivatives of VTV, and

carry out a comparative analysis of VTV and joint TV.

4.1.1 Joint total variation regularization

Let us assume that for all i = 1, . . . , n, mi ∈ W 1,1(Ω). We define the

joint TV regularization as the sum of n independent TV regularizations,

RjTV(m1, . . . ,mn) :=
n
∑

i=1

RTV,ε(mi), (4.1)

where RTV,ε was defined in (1.6). The derivatives of a joint regularization pro-

vide information about its action onto the solution of the joint inverse problem.
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In the case of the joint TV regularization (4.1), with hyperparameter ε = 0, the

weak form of the gradient [26] evaluated at a pointm := (m1, . . . ,mn) and act-

ing in a direction m̃ := (m̃1, . . . , m̃n) is given, block-wise for any i = 1, . . . , n,

by

δmi
RjTV(m; m̃) =

∫

Ω

∇mi· ∇m̃i

|∇mi|
dx. (4.2)

Then the action of the Hessian of the joint TV regularization, at a pointm, and

along a direction m̂ := (m̂1, . . . , m̂n) is given, block-wise for any i, j = 1, . . . , n,

by

δ2mi,mj
RjTV(m; m̃, m̂) =






∫

Ω

∇m̃i· ∇m̂i

|∇mi|
− (∇m̃i· ∇mi)(∇mi· ∇m̂i)

|∇mi|3
dx, if i = j,

0, otherwise.

(4.3)

The strong form of the Hessian H in (4.2) is an anisotropic diffusion oper-

ator, Hm̂ = −∇· (AjTV(m)∇m̂). In the case of the joint TV, the diffusion

tensor AjTV(m) is block-diagonal with ith diagonal entry given by

(

AjTV(m)
)

i
=

1

|∇mi|

(

I − ∇mi∇mT
i

|∇mi|2
)

. (4.4)

The action of the Hessian H can be analyzed through its diffusion tensor,

which can be characterized by its eigen-decomposition. For any i = 1, . . . , n,

we have the following eigenpairs,





























...
0

∇mi

0
...















, 0















,


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























...
0

(∇mi)
⊥

0
...















,
1

|∇mi|















.

107



The joint TV regularization acts on the search direction of each parameter mi

independently from the other parameters, and in the same way the TV func-

tional would for a single inverse problem, i.e., by preserving sharp interfaces

(large values of |∇mi|) and smoothing out along orthogonal directions.

4.1.2 Formulation

The VTV joint regularization (see also section 3.2), in addition to

preserving sharp discontinuities in the reconstructions, imposes some cou-

pling between the parameter fields. Let us assume that for all i = 1, . . . , n,

mi ∈ W 1,1(Ω). The VTV joint regularization is defined as

RVTV(m) =

∫

Ω

√

√

√

√

n
∑

i=1

|∇mi|2 dx. (4.5)

From the equality
√
∑

k ak ≤
∑

k

√
ak, we see that when ε = 0 in (4.1),

RVTV(m) ≤ RjTV(m).

This shows that the VTV functional is well defined when all mi ∈ W 1,1(Ω).

However formulation (4.5) will be non-differentiable where |∇mi| = 0 for all

i = 1, . . . , n. We therefore introduce the modified VTV defined as

RVTV(m) =

∫

Ω

√

√

√

√

n
∑

i=1

|∇mi|2 + ε dx, (4.6)

with ε > 0.

4.1.3 Derivatives

Preliminary analysis of the VTV functional was already carried out

in section 3.2. We here focus on gaining additional insight about the VTV
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functional through careful study of its derivatives. We study the gradient of

the VTV functional (4.5), and the action of its Hessian in a given direction.

In weak form, the ith block of the gradient is given, for any i = 1, . . . , n, by

δmi
R(m; m̃) =

∫

Ω

∇mi· ∇m̃i
√
∑n

k=1 |∇mk|2
dx (4.7)

This expression resembles the one for the independent TV regularization (4.2),

with the difference that the denominator now is the root-mean square of the

norms of the gradients of all parameter fields; we denote that quantity by

|∇m| :=
√
∑n

k=1 |∇mk|2. The action of the Hessian of the VTV functional,

at a point m, along a direction m̂ = (m̂1, . . . , m̂n), is given, block-wise, by

δ2mi,mj
RVTV(m; m̃, m̂) =















∫

Ω

1

|∇m|

[

∇m̃i· ∇m̂i −
(∇m̃i· ∇mi)(∇mi· ∇m̂i)

|∇m|2
]

dx, if i = j,

−
∫

Ω

1

|∇m|3 (∇m̃i· ∇mi)(∇mj· ∇m̂j) dx, otherwise.

(4.8)

Then the (i, j)-block of the diffusive tensor, AVTV(m), of the strong form of

the Hessian of the VTV functional is given by

(AVTV(m))i,j =
1

|∇m|

(

δijI −
∇mi∇mT

j

|∇m|2

)

, (4.9)

where δij is 1 when i = j and 0 otherwise.

We can gain additional insight about the difference of behaviour be-

tween the joint TV regularization and the VTV regularization by compar-

ing the eigenpairs of their diffusion tensors. First of all, we notice that,

unlike for the joint TV regularization, for any i = 1, . . . , n, the direction

[. . . , 0,∇mi, 0, . . .]
T is not in the kernel of the diffusion tensor AVTV. However,
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the following is in the kernel of AVTV,

AVTV(m)











∇m1
...
...

∇mn











= 0.

In the case of the VTV joint regularization, all directions ∇mi have to be

considered altogether, instead of independently as it was the case for the joint

TV regularization. For the directions that are smoothed out, we see that for

any i = 1, . . . , n,

AVTV(m)















...
0

(∇mi)
⊥

0
...


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





=
1
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





.

Also, for any i < j = 1, . . . , n,

AVTV(m)
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In the end, the eigenpairs for the diffusion tensor AVTV are
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The kernel of the diffusion tensor contains the search directions that will not

be smoothed out, and will therefore be able to display sharp edges. Whereas

there was no connections between all the different elements of the kernel in

the case of the joint TV, the kernel of the diffusion tensor of VTV will favor

parameter fields that vary sharply at the same physical locations.

4.2 Primal-dual Newton method for the solution of joint

inverse problems regularized with VTV

As discussed in section 1.3.2, the use of a Newton-type method is pre-

scribed for the solution of large-scale nonlinear inverse problems governed by

PDEs, due to the high computational costs of the evaluation of the objective

function, the computation of the gradient, or the computation of a Hessian-

vector product. However, the use of the classical Newton method to solve

a joint inverse problem regularized with VTV can require a large number of

iterations and backtracking steps in the line search, and as a result a large

number of PDE solves (see section 4.3); this can render the computational

cost of large-scale applications prohibitively expensive. Building on the work

of [19, 50], we propose instead a primal-dual Newton method.
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In the rest of this chapter, we assume that for all i = 1, . . . , n, mi ∈
H1(Ω), i.e., the Sobolev space of functions in L2(Ω) with square integrable

weak derivatives, and m̃i ∈ H1
0 (Ω). Because Ω is a bounded domain, we have

the embedding of the Lebesgue spaces L2(Ω) ⊂ L1(Ω), and we can conclude

that H1(Ω) = W 1,2(Ω) ⊂ W 1,1(Ω), guaranteeing well-posedness of the VTV

functional.

4.2.1 Formulation

To facilitate the presentation, we introduce a general joint inverse prob-

lem of type (1.35) or (1.36) regularized with VTV. The Lagrangian [82] for

that prototypical joint inverse problem is defined as

L (u,m, p) = M(u, d) + γ

∫

Ω

√

|∇m|2 + ε dx+ 〈A(u,m), p〉, (4.10)

where γ > 0, u (resp. p) is the state variable (resp. adjoint variable), M(u, d)

denotes the data misfit part, and A(u,m) the PDE constraints. For instance,

in the case of a joint inverse problem (1.35), u and p each represent a single

variable, M(u, d) = 1
2
|Bu− d|2, and 〈A(u,m), p〉 is the weak form of a single

PDE constraint; in the case of a joint inverse problem (1.36), u = {ui}i,
p = {pi}i, d = {di}i, M(u, d) =

∑n
i=1

1
2
|Biui − di|2, and 〈A(u,m), p〉 =

∑n
i=1〈Ai(ui,mi), pi〉 is the sum of the n PDE constraints. The weak form of

the gradient of the VTV joint regularization with respect to m is given by

summing the individual contributions (4.7) to obtain

δmRVTV(m; m̃) =
n
∑

k=1

∫

Ω

∇mk· ∇m̃k
√

|∇m|2 + ε
dx.
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The first-order optimality condition for the Lagrangian (4.10) is given by:

Find m such that for all variations m̃,

(G(m), m̃) + γ

n
∑

k=1

∫

Ω

∇mk· ∇m̃k
√

|∇m|2 + ε
dx = 0, (4.11)

where G is the derivative of the data-misfit part of the objective function,

M(u(m), d), with respect to m.

We next introduce the dual variable w := (w1, . . . , wn), to approximate

the quantities ∇mk/
√

|∇m|2 + ε, and its test function w̃ := (w̃1, . . . , w̃n). We

assume that for all i = 1, . . . , n, wi, w̃i ∈ [L2(Ω)]
d
. We re-write the first-order

optimality condition (4.11) in primal-dual form as: Find (m,w) such that for

all variations (m̃, w̃),























(G(m), m̃) + γ
n
∑

k=1

∫

Ω

wk· ∇m̃k dx = 0,

n
∑

k=1

∫

Ω

(wk

√

|∇m|2 + ε−∇mk)· w̃k dx = 0.

(4.12)

We then solve the first-order optimality condition (4.12) using Newton’s method.

The introduction of the dual variable w allows an equivalent expression of the

first-order optimality system (4.11) that avoids the appearance of the terms

∇mk/
√

|∇m|2 + ε. As discussed in [19], Newton method applied to formula-

tion (4.12) represents a more efficient linearization of the first-order optimality

condition than the classical Newton method, and make the problem effectively

less nonlinear. The Newton system for (4.12) is given by: Find (m̂, ŵ) such
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that for all variations (m̃, w̃),























































(Hd(m)m̂, m̃)+

γ

n
∑

k=1

∫

Ω

∇m̃k· ŵk dx = −
[

(G(m), m̃) + γ

n
∑

k=1

∫

Ω

∇m̃k·wk dx

]

,

n
∑

k=1

[ ∫

Ω

w̃k· (wk

∑n
l=1 ∇ml· ∇m̂l
√

|∇m|2 + ε
−∇m̂k) dx+

∫

Ω

w̃k· ŵk

√

|∇m|2 + ε dx

]

= −
n
∑

k=1

∫

Ω

w̃k· (wk

√

|∇m|2 + ε−∇mk) dx,

(4.13)

where Hd is the Hessian of the data-misfit part of the objective function,

M(u(m), d), with respect to m.

4.2.2 Discretization

The joint inverse problem is discretized using the finite-element method.

It is typical to use linear continuous Galerkin elements CG1 for the medium

parameters {mk}k, and we follow that usage here. The dual variables {wk}k
are discretized with vector-valued constant discontinuous Galerkin elements

(DG0)d. Let us call {ϕi}i a finite element basis for the space CG1. Let us

call {ψi}i a basis for the vector-valued space (DG0)d. We denote with the

subscript h the finite element approximations to the parameter fields intro-

duced in the previous sections, i.e., mh (resp. mk,h, wk,h) is the finite element

approximation to the parameter field m (resp. mk, wk); we denote the vector

containing all the finite-element coefficients of mk,h by mk := (m1
k,h,m

2
k,h, . . .),

and we have the relation mk,h =
∑

im
i
k,hϕi. Similar notations are used for the

other parameter fields (e.g., m̂, ŵ, w). Let us call Hd the matrix for the data
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misfit part of the Hessian Hd. We also introduce the following notations,

(HTV)i,j :=

∫

Ω

∇ϕi·ψj dx,

(Mw)i,j :=

∫

Ω

ψi·ψj

√

|∇mh|2 + ε dx,

(B(mk,h, wk′,h))i,j :=

∫

Ω

−ψi·
(

wk′,h
∇mk,h· ∇ϕj
√

|∇mh|2 + ε

)

dx,

(gk)i :=

∫

Ω

ψi· (wk

√

|∇mh|2 + ε−∇mk) dx.

(4.14)

For convenience, we also define the shorthand notation Bk,k′ := B(mk,h, wk′,h).

Following discretization, the Newton system (4.13) becomes



















γHTV 0

Hd(m)
. . .

0 γHTV

−(HT
TV

+B1,1) −Bn,1 Mw 0
. . . . . .

−B1,n −(HT
TV

+Bn,n) 0 Mw





































m̂1
...

m̂n

ŵ1
...

ŵn



















= −



















gd,1 + γHTVw1
...

gd,n + γHTVwn

g1
...
gn



















. (4.15)

The Newton system in primal-dual form (4.15) comes from a saddle-point

problem [19]. Although this could be handled directly, we instead reduce

system (4.15) to its primal form by eliminating the dual variables ŵi from the

equation, then employ a quasi-Newton method to recover a symmetric positive

definite Hessian for the VTV term. Because wk,h is piecewise constant, the

matrix Mw is diagonal. Using that fact, we can easily compute the expression
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of the variables (ŵ1, . . . , ŵn) in (4.15),







ŵ1
...

ŵn






= −







M−1
w g1
...

M−1
w gn






+







M−1
w 0

. . .

0 M−1
w













HT
TV

+B1,1 Bn,1

. . .

B1,n HT
TV

+Bn,n













m̂1
...

m̂n






.

We use this expression to eliminate the variables (ŵ1, . . . , ŵn) in (4.15), and

we obtain the reduced Newton’s system in terms of the variables (m̂1, m̂2, . . .),

(Hd(m) +HVTV)







m̂1
...

m̂n






= −







gd,1 + γHTV(w1 −M−1
w g1)

...
gd,n + γHTV(wn −M−1

w gn)






, (4.16)

where we introduced the notation HVTV, for the reduced Hessian of the VTV

functional, defined as

HVTV :=







γHTVM
−1
w 0

. . .

0 γHTVM
−1
w













HT
TV

+B1,1 Bn,1

. . .

B1,n HT
TV

+Bn,n






.

(4.17)

In (4.16), the reduced Hessian HVTV is neither guaranteed to be sym-

metric, nor positive definite. Although this could be handled by appropriate

methods, it is more efficient to try and preserve the structure of the VTV

functional, which naturally leads to a symmetric positive definite Hessian. We

decompose the reduced Hessian HVTV (4.17) into a symmetric positive definite

term and the rest which we denote by Hw,

HVTV =







γHTVM
−1
w HT

TV
0

. . .

0 γHTVM
−1
w HT

TV






+Hw(wh),
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with

Hw(wh) :=







γHTVM
−1
w 0

. . .

0 γHTVM
−1
w













B1,1 Bn,1

. . .

B1,n Bn,n






.

We obtain the Newton system of the primal-dual Newton method, by replacing

HVTV in (4.16) with a symmetric positive definite approximation H̄VTV,

(

Hd(m) + H̄VTV

)







m̂1
...

m̂n






= −







gd,1 + γHTV(w1 −M−1
w g1)

...
gd,n + γHTV(wn −M−1

w gn)






. (4.18)

The matrix H̄VTV is defined as

H̄VTV =







γHTVM
−1
w HT

TV
0

. . .

0 γHTVM
−1
w HT

TV






+

1

2

(

Hw(w̄h) +HT
w(w̄h)

)

,

where w̄h := (w̄1,h, . . . , w̄n,h) and

Hw(w̄h) :=







γHTVM
−1
w 0

. . .

0 γHTVM
−1
w













B(m1,h, w̄1,h) B(mn,h, w̄1,h)
. . .

B(m1,h, w̄n,h) B(mn,h, w̄n,h)






.

The re-scaled dual variables, w̄i,h =
∑

j w̄
j
iψj, are defined through their finite

element coefficients, w̄j
i = (w̄j

i,1, . . . , w̄
j
i,d) ∈ R

d, by the formula

w̄j
i :=

wj
i

max(1,
√

∑n
k=1 |w

j
k|2)

, ∀i = 1, . . . , n,

where |wj
k|2 =

∑d
s=1(w

j
k,s)

2 is the l2-norm of the jth finite-element coefficient

of wk. The re-scaled dual variables verify
∑n

i=1 |w̄
j
i |2 ≤ 1. This choice of

the scaling factor can be justified with a duality argument (see, for instance,

the P2 elements in [14]). We also verified numerically that the choice of the

unitary l2-ball guaranteed positive definiteness, and was optimal.
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4.2.3 Numerical solution

We solve the Newton system (4.18) using the preconditioned conjugate

gradient method [67]. While the regularization Hessian H̄VTV is guaranteed

positive definite, the full Hessian (including the data misfit term Hd) can

lead to directions of negative curvature away from a minimum. We use early

truncation of the Krylov iterations to cope with this situation and to guarantee

a descent direction at each nonlinear iteration [27]. To limit the cost of the

line search, we use a backtracking line search [67].

Since we solve the linear systems (4.18) that arise at each Newton it-

eration using the conjugate gradient method, it is essential to have both a

scalable and effective preconditioner. The Hessian of the regularization H̄VTV

usually has full rank, while the data misfit Hessian Hd is often compact with

an (approximately) finite-dimensional range space. Thus preconditioning by

approximately inverting the Hessian of the regularization term produces a

“compact + identity” structure for which a Krylov method converges in a

mesh-independent number of iterations. In practice, we found a BFGS ap-

proximation to the full Hessian, initialized by the inverse of the regulariza-

tion Hessian H̄VTV performs better than the use of the regularization Hessian

alone. Since the full Hessian is not guaranteed to be positive definite, we use a

damped update to build our BFGS preconditioner; more details can be found

in section 3.3.4. Remains the question of applying the inverse of the Hessian of

the VTV functional. By construction, in the primal-dual Newton algorithm,

H̄VTV is symmetric and positive definite, and has the structure of a (vector)

anisotropic elliptic PDE operator. Thus, a few V-cycles of an algebraic multi-

grid method is sufficient to approximately invert the regularization Hessian,

and we have used this approach for the results reported here.
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4.3 Numerical examples

We verify scalability of the primal-dual Newton method with respect to

the regularization hyperparameter ε, the mesh size h (defined in section 3.4),

and the number of inversion parameters n. The examples use the joint acoustic

inverse problem (1.28) and a joint Poisson inverse problem combining n inde-

pendent Poisson inverse problems (3.20), and cover both types of joint inverse

problems (1.35) and (1.36). We now present the joint inverse problems used

in this section.

The joint acoustic wave problem (1.28), introduced in section 1.4.2,

is defined in terms of the inverse of the bulk modulus λ and the density ρ

which we denote by α := 1/λ and β := 1/ρ. We use 3 independent forcing

terms of frequency 1.5Hz, located at (0.1, 0.1), (0.5, 0.1), and (0.9, 0.1). The

acoustic wave inverse problem regularized with VTV is an example of joint

inverse problem (1.35). The formulation of the independent Poisson inverse

problem regularized with TV for parameter mi, for any i = 1, . . . , n, is given

by (3.20). The joint Poisson inverse problem is a joint inverse problem (1.36)

for n inverse problems (3.20). The n inverse problems are uncoupled, but to

justify the use of a joint inverse problem, we assume that their truth parameter

fields are known to share structure.

In all examples, the observation operators B and Bi are pointwise ob-

servation operators, and the data di are synthetic observations computed at

the truth parameter field for mi, then polluted with additive, independent

and identically distributed Gaussian noise. The noise level for the Poisson

inverse problem (3.20) is set to 2%. The variance of the noise for the acoustic

wave inverse problem (1.28) is set to have a noise-to-signal ratio of 20 dB. The

domain is a unit square, meshed with a structured grid of identical isosceles
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square triangles. The minimization problem and the PDE constraints are dis-

cretized with the finite-element method using continuous Galerkin elements;

for the state, adjoint, incremental state, and incremental adjoint variables we

use quadratic elements, and for the parameter fields we use linear elements.

The values of the regularization parameter γ for VTV in all joint inverse prob-

lems are selected empirically as leading to the best reconstructions. For all

examples, the numerical solution is implemented in Python with the finite-

element library FEniCS [61, 62]. For the Poisson joint inverse problems, the

examples are solved using the optimization routines from hIPPYlib [84], a

Python library for deterministic and Bayesian inverse problems.

4.3.1 Scalability with respect to the hyperparameter ε

We show how the performance of the primal-dual Newton solver varies

with the hyperparameter ε in two examples. This hyperparameter introduces

a trade-off between sharp edges in the reconstruction and a smooth regulariza-

tion; the smaller the hyperparameter ε, the more nonlinear the inverse problem

becomes, and thus, the more forward PDE solves it may require. We com-

pare the performance and scalability of the primal-dual Newton solver with

the primal Newton solver (see section 1.3.2) and the lagged diffusivity. The

lagged diffusivity consists of freezing the values of the parameter fields mi at

their current estimate, inside the Hessian of the VTV regularization [86]. It is

a Picard method, and as such only has a linear rate of convergence, but it is

popular in applications [19, 87].
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4.3.1.1 Joint Poisson inverse problem

We solve a joint inverse problem (3.20) with two parametersm1 andm2.

The mesh, the truth parameter fields (section 4.1(0)), and the observation op-

erators are as in the joint Poisson inverse problem of section 3.4.1.1. The

solution of two independent inverse problems (3.20) leads to a very good re-

construction for m2 and a poor one for m1. In particular, the edges in the

truth parameter field for m1 (figure 4.1a(0)) are only visible in the top right

quadrant of the reconstruction (figure 3.5a).

(a
)
m

1
(b
)
m

2

(0) truth (i) ε = 10 (ii) ε = 10−1 (iii) ε = 10−3 (iv) ε = 10−5

Figure 4.1: Plots of the (0) truth and pointwise observations (white dots),
and (i-iv) reconstructions for parameter fields (a) m1 and (b) m2, obtained by
solving the joint Poisson inverse problem (3.20) regularized with VTV (γ =
3· 10−7) with hyperparameter (i) ε = 10, (ii) ε = 10−1, (iii) ε = 10−3, and
(iv) ε = 10−5.

In order to transfer some structural information from the reconstruction

of m2 onto m1, we solve a joint Poisson inverse problem (1.36) for m1 and

m2 regularized with VTV. We show the reconstructions obtained for different

values of the hyperparameter ε in figure 4.1(i-iii), and the relative medium

misfits are listed in table C.1. As the hyperparameter ε is set smaller, the
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reconstructions become sharper (compare figures 4.1b(i) and 4.1b(iv)), and

the reconstructions for m1 capture more and more of the originally missing

edges (compare figures 4.1a(i) and 4.1a(iv)).

In figure 4.2, we plot the norm of the gradient of the joint Poisson

inverse problem against the number of forward PDE solves performed, for dif-

ferent values of the hyperparameter ε, and using three different solvers, namely

the primal Newton method, the lagged diffusivity method, and the primal-dual

Newton method introduced in section 4.2. As the hyperparameter ε is set

101 103 105
10−14

10−7

100

# fwd PDEs

‖G
‖

primal
lagged diffusivity
primal-dual

101 103 105

# fwd PDEs
101 103 105

# fwd PDEs
101 103 105

# fwd PDEs

(i) ε = 10 (ii) ε = 10−1 (iii) ε = 10−3 (iv) ε = 10−5

Figure 4.2: Plots of the norm of the gradient against the number of forward
PDE solves performed during the solution of the joint Poisson inverse prob-
lem (3.20) regularized with VTV (γ = 3· 10−7), and solved using the Newton
method (dashed), the lagged diffusivity method (dotted), and the primal-dual
Newton method (solid). The hyperparameter in VTV is set to (i) ε = 10, (ii)
ε = 10−1, (iii) ε = 10−3, and (iv) ε = 10−5.

smaller, the number of PDE solves required to solve the joint inverse problem

with the primal Newton method and the lagged diffusivity method grows by

orders of magnitudes. In figure 4.3, we show the norm of the gradient against

the number of forward PDE solves for the different values of ε but only for
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0 2,000 4,000
10−14

10−7

100

# forward PDE solves
‖G

‖

ε = 10

ε = 10−1

ε = 10−3

ε = 10−5

Figure 4.3: Plot of the norm of the gradient against the number of forward PDE
solves performed in the solution of the joint inverse problem (3.20) regularized
with VTV, and solved using the primal-dual Newton method.

the primal-dual Newton method. The number of PDE solves required in the

primal-dual Newton method grows mildly as the hyperparameter ε becomes

smaller.

4.3.1.2 Joint inversion of bulk modulus and density in the acoustic

wave equation

We study scalability of the primal-dual Newton method with respect to

the hyperparameter ε in the joint inverse problem (1.28). The mesh contains

3200 isosceles square triangles (h = 1/40). The initial value of the parame-

ter fields are chosen as the background values of the truth parameter fields

(see figure 4.4(0)). The locations of the sources and receivers are shown in

figure 4.4(0)), along with the reconstructions for parameters α and β, corre-

sponding to increasingly smaller hyperparameters ε (see figure 4.4(i-iii)). The

relative medium misfits corresponding to these reconstructions are given in

table C.2.

In figure 4.5, we plot the norm of the gradient of the joint inverse prob-

lem (1.28) again the number of forward PDE solves performed. We observed
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(a
)
α

(b
)
β

(0) truth (i) ε = 10−1 (ii) ε = 10−3 (iii) ε = 10−5

Figure 4.4: Plots of the (0) truth and (i-iii) reconstructions for parameter fields
(a) α and (b) β, obtained by solving the acoustic wave inverse problem (1.28)
regularized with VTV (γ = 4· 10−7). The hyperparameter ε in VTV is set to
(i) ε = 10−1, (ii) ε = 10−3, and (iii) ε = 10−5. The locations of the sources
(yellow stars) and pointwise observations (green triangles) are plotted in (0).

similar results as for the joint Poisson inverse problem (see section 4.3.1.1),

i.e., the number of PDE solves required by the primal Newton method and the

lagged diffusivity method grow at a much larger rate than with the primal-

dual Newton method. In figure 4.5(iv), we plot the number of PDE solves for

the primal-dual Newton method only. Although this number does grow as the

hyperparameter ε is made smaller, the dependence is mild.

4.3.2 Scalability with respect to the mesh size h

We use the joint Poisson inverse problem (3.20) to illustrate scalability

of the primal-dual Newton method with respect to the mesh size. The regular-

ization hyperparameter is set to ε ≡ 10−3, and we vary the mesh parameter h.

The results are shown in figure 4.6.
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101 103 105
10−13

10−6

101

# fwd PDEs

‖G
‖

primal
lagged diffusivity
primal-dual

101 103 105

# fwd PDEs
101 103 105

# fwd PDEs

0 2,000 4,000

# fwd PDEs

ε = 10−1

ε = 10−3

ε = 10−5

(i) ε = 10−1 (ii) ε = 10−3 (iii) ε = 10−5 (iv) primal-dual

Figure 4.5: Plots of the norm of the gradient against the number of forward
PDE solves performed during the solution of the acoustic wave inverse prob-
lem (1.28) regularized with VTV (γ = 4· 10−7), and solved using the Newton
method (dashed), the lagged diffusivity method (dotted), and the primal-dual
Newton method (solid). The hyperparameter ε in VTV is set to (i) ε = 10−1,
(ii) ε = 10−3, (iii) ε = 10−5. The numbers of forward PDE solves for the
primal-dual Newton only, with all values of ε, are plotted in (iv).
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Figure 4.6: Plot of the norm of the gradient against the number of forward
PDE solves performed during the solution of the joint Poisson inverse prob-
lem (3.20) regularized with VTV (γ = 3· 10−7 and ε = 10−3), and solved with
the primal-dual Newton method. The realization of the noise is different from
section 4.3.1. The mesh parameter h was defined in section 3.4.

The number of forward PDE solves required to solve the joint inverse

problem (3.20) regularized with VTV grows mildly as the mesh gets refined.

Such mild growth should however be expected, here. The magnitude of the

norm of the discrete gradients inside the VTV functional grows in the order

of 1/h2. Therefore since the hyperparameter ε is kept constant while the mesh

is being refined, the inverse problem becomes more nonlinear. As the exact

relationship between mesh refinement and hyperparameter ε is not known, we

instead present the results for a constant hyperparameter ε.

4.3.3 Scalability with respect to the number of inversion parame-

ters n

We show scalability of the primal-dual Newton method with respect

to the number of inversion parameters n on the Poisson joint inverse prob-

lem (3.20). The mesh contains 8192 isosceles square triangles (h = 1/64).

The observations for parameter mi are pointwise observations at 160 locations
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randomly sampled from a square lattice of 50 × 50 pointwise observations

covering the entire domain, with higher concentrations in one of the quad-

rants (100 observations in this quadrant vs 20 elsewhere); observations for mi,

for i = 1, 5, 9, 13 (resp. i = 2, 6, 10, 14; i = 3, 7, 11, 15; i = 4, 8, 12, 16), have a

higher number of observations in the top-left (resp. bottom-left; bottom-right;

top-right) quadrant. We show the truth parameter fields for each parameter

field mi on figure 4.7.

Figure 4.7: Truth parameter fields for parameters mi, i = 1, . . . , 16 (reading
from left to right, from top to bottom), for the example in section 4.3.3.

Next we solve a sequence of joint Poisson inverse problems (3.20) reg-

ularized with VTV for n parameter fields (m1, . . . ,mn) using the primal-

dual Newton method, with n varying from 1 to 16. As the number of in-

version parameters n gets bigger, the effective value of the hyperparame-

ter ε on the solution of the joint inverse problem, i.e., its value against the

norm of the n gradients in the VTV functional, will become smaller. There-

fore keeping ε constant as the number of inversion parameters gets bigger

will make the problem more nonlinear. In order to maintain the influence

of the hyperparameter ε constant across all joint inverse problems, we nor-

malize the contribution of the gradients in the expression for VTV (4.6) to

obtain RVTV(m) =
∫

Ω

√

1
n

∑n
i=1 |∇mi|2 + ε dx, or equivalently RVTV(m) =

1√
n

∫

Ω

√
∑n

i=1 |∇mi|2 + nε dx. In the latter formulation, the factor 1/
√
n can
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be absorbed by the regularization parameter γ, leaving the expression

RVTV(m) =

∫

Ω

√

√

√

√

n
∑

i=1

|∇mi|2 + εn dx,

where we introduced the quantity εn := nε1. In this example we used ε1 =

10−3. In figure 4.8, we show the reconstructions for parameter field m1 ob-

tained by solving the joint inverse problem (3.20) with n parameter fields. In

table C.3, we show the relative medium misfits for each joint inverse problem.

The quality of the reconstructions, for all parameter fields, increases with the

Figure 4.8: Reconstructions for parameter field m1 obtained from solving a
joint inverse problem with n parameters, n = 1, . . . , 16 (reading from left to
right, from top to bottom), for the example in section 4.3.3.

number of inversion parameters n, indicating that more information is added

to the joint inverse problem.

In figure 4.9a, we compare how quickly the joint inverse problem con-

verges when the number of inversion parameters n increases. In figure 4.9b,

we plot the final number of PDE solves per number of inversion parameters n,

at the minimizer, against the number of inversion parameters n, and com-

pare this plot with a linear growth of that quantity. The number of forward

PDE solves, despite our rescaling of the hyperparameter ε, grows at a constant

rate; however this growth is moderate. On the other hand, as the number of
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Figure 4.9: Scalability of the primal-dual Newton method with respect to the
number of inversion parameters n. (a) Plot of the norm of the gradient against
the number of forward PDE solves per number of inversion parameters n, for
the solution of the joint Poisson inverse problem (3.20) regularized with VTV
(ε = 10−3 × n) and solved with the primal-dual Newton method. (b) Plot of
the number of forward PDE solves per number of inversion parameters n, at
the minimizer, against the number of inversion parameters n.

inversion parameters n grows, the number of Newton steps it takes to solve

the joint inverse problem remains nearly constant (see figure 4.10). Hence,

this growth in the number of forward PDE solves can be explained by the

additional information being added to the joint inverse problem. As more

information is added to the joint inverse problem, the rank of the Hessian in-

creases, which translates into a higher number of conjuage gradient iterations

required to solve the Newton system, and therefore a higher number of forward

PDE solves.
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Figure 4.10: Plot of the number of Newton steps required to solve the joint
Poisson inverse problem (3.20) regularized with VTV against the number of
inversion parameters n.

4.4 Conclusion

The vectorial total variation joint regularization is an extension of total

variation to the case of multi-parameter joint inverse problems. It originated

from the imaging community, but was found to perform well for joint inverse

problems constrained by PDEs (see section 3). In this chapter, we developed

a primal-dual Newton method for the solution of joint inverse problems reg-

ularized with the vectorial total variation. This primal-dual Newton method

introduces an auxiliary variable to construct a more efficient linearization of

the first-order optimality condition. To make the method amenable for large-

scale problems, we use a quasi-Newton method, replacing the reduced Hessian

of the primal-dual formulation with a symmetric positive definite approxima-

tion. As the method converges, this approximation becomes negligible. We

demonstrated numerically through a comprehensive set of examples that the

primal-dual Newton solver scales with respect to the mesh size, the hyperpa-

rameter ε, and the number of inversion parameters. In addition, for practical

situations, the primal-dual Newton method significantly outperforms the pri-

mal Newton method and the lagged diffusivity approach.
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Appendix A

Appendix for chapter 2

A.1 Gradient of the optimization formulation (2.20)

We detail the derivation of the gradient of the Laplace formulation of

the A-optimal weights in the case of the Helmholtz inverse problem, as defined

in (2.20). In that formulation, we enforce the PDE constraints weakly using

Lagrange multipliers. Therefore, we need to introduce adjoint variables that

are indicated with a star superscript, e.g., m∗ is the adjoint variable for m.

Following the formal Lagrangian approach [82], we define the Lagrangian L ,

L (w,m, {ui}, {pi}, {vi,k}, {qi,k}, {yk},m∗, {u∗i }, {p∗i }, {v∗i,k}, {q∗i,k}, {y∗k}) =
1

ntr

ntr
∑

k=1

〈yk, zk〉+

1

ntrNw

ntr
∑

k=1

Nw
∑

i=1

[

〈∇vi,k,∇v∗i,k〉 − κ2〈mvi,k, v∗i,k〉 − κ2〈uiyk, v∗i,k〉
]

+
1

ntrNw

ntr
∑

k=1

Nw
∑

i=1

[

〈∇q∗i,k,∇qi,k〉 − κ2〈q∗i,k,mqi,k〉 − κ2〈q∗i,k, piyk〉

+ 〈Bq∗i,k, Bvi,k〉Γ−1
noise

]

+
1

ntr

ntr
∑

k=1

[

〈yk, y∗k〉E −
1

Nw

Nw
∑

i=1

κ2 (〈vi,kpi, y∗k〉+ 〈uiqi,k, y∗k〉)− 〈zk, y∗k〉
]

+
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1

Nw

Nw
∑

i=1

[

〈∇ui,∇u∗i 〉 − κ2〈mui, u∗i 〉 − 〈f(wi), u∗i 〉
]

+
1

Nw

Nw
∑

i=1

[

〈∇p∗i ,∇pi〉 − κ2〈p∗i ,mpi〉+ 〈Bp∗i , Bui − d(wi)〉
Γ
−1
noise

]

+ 〈m−m0,m
∗〉E −

1

Nw

Nw
∑

i=1

κ2〈uipi,m∗〉. (A.1)

The gradient is then given by δwL = [δw1L , δw2L , . . . , δwNwL ]T , where for

any i = 1, . . . , Nw,

δwiL = − 1

Nw











〈f1, u∗i 〉 + 〈Bp∗i ,d1〉Γ−1
noise

〈f2, u∗i 〉 + 〈Bp∗i ,d2〉Γ−1
noise

...
〈fNs

, u∗i 〉 + 〈Bp∗i ,dNs
〉
Γ
−1
noise











.

Before we specify the steps that lead to the evaluation of the variables u∗i

and p∗i , we identify some important symmetries between the state variables and

their adjoints. Indeed, for each k = 1, . . . , ntr, the variables (yk{vi,k}i, {qi,k}i)
solve a Hessian system similar to (2.19), and the corresponding adjoint vari-

ables (y∗k{v∗i,k}i, {q∗i,k}i) solve the system of equations given (formally) by δvikL =

δqikL = δykL = 0. While the former system of equations solve Hyk = zk, the

latter solves Hy∗k = −zk. This leads to the symmetry relations

yk = −y∗k, vik = −q∗ik, and qik = −v∗ik, (A.2)

for any i = 1, . . . , Nw and k = 1, . . . , ntr.

For any i = 1, . . . , Nw, the variable u∗i (resp. p∗i ) solves the equa-

tion δui
L = 0 (resp. δpiL = 0). That is, for any ũ ∈ H1(Ω), u∗i solves

〈∇u∗i ,∇ũ〉 − κ2〈mu∗i , ũ〉

− κ2〈pim∗, ũ〉+ 〈Bp∗i , Bũ〉Γ−1
noise

− κ2
1

ntr

ntr
∑

k=1

[

〈ykv∗i,k, ũ〉+ 〈qi,ky∗k, ũ〉
]

= 0.
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On the other hand, for any p̃ ∈ H1(Ω), p∗i solves

〈∇p∗i ,∇p̃〉 − κ2〈p∗i ,mp̃〉 − κ2〈uim∗, p̃〉 − κ2
1

ntr

ntr
∑

k=1

[

〈q∗i,kyk, p̃〉+ 〈vi,ky∗k, p̃〉
]

= 0.

Using (A.2), this reduces, for any i = 1, . . . , Nw, to the system of equations

〈∇u∗i ,∇ũ〉 − κ2〈mu∗i , ũ〉 − κ2〈pim∗, ũ〉+

〈Bp∗i , Bũ〉Γ−1
noise

+
2

ntr

ntr
∑

k=1

κ2〈ykqi,k, ũ〉 = 0,

〈∇p∗i ,∇p̃〉 − κ2〈mp∗i , p̃〉 − κ2〈uim∗, p̃〉+ 2

ntr

ntr
∑

k=1

κ2〈vi,kyk, p̃〉 = 0.

(A.3)

Therefore, computation of the u∗i ’s and p∗i ’s requires knowledge of the quan-

tities {ui}, {pi}, m∗, {vi,k}, {qi,k} and {yk}. Variables {ui}, {pi}, {vi,k},
{qi,k}, and {yk} are all evaluated during the computation of the objective

functional 1/ntr

∑ntr

k=1〈yk, zk〉, such that the only remaining unknown quantity

is m∗. That variable is solution to the equation δmL = 0, that is, for any

m̃ ∈ E, m∗ solves

1

ntrNw

ntr
∑

k=1

Nw
∑

i=1

[

−κ2〈m̃vi,k, v∗i,k〉 − κ2〈q∗i,k, m̃qi,k〉
]

+
1

Nw

Nw
∑

i=1

[

−κ2〈m̃ui, u∗i 〉 − κ2〈p∗i , m̃pi〉
]

+ 〈m̃,m∗〉E = 0.

Using (A.2), we simplify this equation to obtain

2

ntrNw

ntr
∑

k=1

Nw
∑

i=1

κ2〈vi,kqi,k, m̃〉− 1

Nw

Nw
∑

i=1

κ2 [〈uiu∗i , m̃〉+ 〈p∗i pi, m̃〉]+〈m∗, m̃〉E = 0.

This equation can be grouped with the system of equations (A.3) to obtain
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the larger system

〈∇p∗i ,∇p̃〉 − κ2〈mp∗i , p̃〉 − κ2〈uim∗, p̃〉 = − 2

ntr

ntr
∑

k=1

κ2〈vi,kyk, p̃〉

〈∇u∗i ,∇ũ〉 − κ2〈mu∗i , ũ〉 − κ2〈pim∗, ũ〉+

〈Bp∗i , Bũ〉Γ−1
noise

= − 2

ntr

ntr
∑

k=1

κ2〈ykqi,k, ũ〉

〈m∗, m̃〉E −
1

Nw

Nw
∑

i=1

κ2 [〈uiu∗i , m̃〉+ 〈p∗i pi, m̃〉] = − 2

ntrNw

ntr
∑

k=1

Nw
∑

i=1

κ2〈vi,kqik, m̃〉.

This system of equations should be compared to the system of equations for

the Hessian (2.19). From this, it should be clear that the computation of m∗

corresponds to the solution of another Hessian system with a right-hand side

depending on the state and adjoint variables, {ui} and {pi}, the incremental

state and adjoint variables, {vi,k} and {qi,k}, the medium parameter m, and

the {yk}. We denote this right-hand side as F . In strong form, m∗ thus solves

H(mMAP)m
∗ = F ({ui}, {pi}, {vi,k}, {qi,k},m, {yk}).
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Appendix B

Appendices for chapter 3

B.1 Singular values of a matrix A ∈ R
2×2

Let us define the general matrix A ∈ R
2×2 by

A =

[

a b
c d

]

.

And let us denote its singular values decomposition as A = UΣV T , such that

ATA = V Σ2V T . And we can therefore look for the eigenvalues of the matrix

ATA given by

ATA =

[

a2 + c2 ab+ cd
ab+ cd b2 + d2

]

.

We can compute these eigenvalues using the characteristic equation, |ATA −
λI| = 0, in this case given by

λ2 − (a2 + b2 + c2 + d2)λ+ (ad− bc)2 = 0.

The determinant of that equation is given by

∆ = (a2 + b2 + c2 + d2)2 − 4(ad− bc)2

= (a2 + c2 − b2 − d2)2 + 4(ab+ cd)2.

This leads to the singular values,






















σ1 =

√

a2 + b2 + c2 + d2 +
√

(a2 + c2 − b2 − d2)2 + 4(ab+ cd)2

2

σ2 =

√

a2 + b2 + c2 + d2 −
√

(a2 + c2 − b2 − d2)2 + 4(ab+ cd)2

2

(B.1)
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B.2 Relative medium misfits for examples in section 3.4

Table B.1: Relative medium misfits (measured in the L2-norm) for the example
in section 3.4.1.1

m1 m2

independent reconstructions 23.2% 5.1%

cross-gradient 22.3% 5.2%
normalized cross-gradient 21.2% 5.0%
vectorial total variation 20.2% 5.1%
nuclear norm 20.2% 4.8%

Table B.2: Relative medium misfits (measured in the L2-norm) for the example
in section 3.4.1.2

m1 m2

independent reconstructions 46.9% 5.1%

cross-gradient 46.1% 5.6%
normalized cross-gradient 46.7% 5.0%
vectorial total variation 41.1% 5.2%
nuclear norm 40.8% 5.0%

Table B.3: Relative medium misfits (measured in the L2-norm) for the example
in section 3.4.2

α β
independent reconstructions 2.8% 0.8%

cross-gradient 3.1% 0.7%
normalized cross-gradient 2.5% 0.4%
vectorial total variation 2.4% 0.2%
nuclear norm 2.4% 0.2%

137



Table B.4: Relative medium misfits (measured in the L2-norm) for the example
in section 3.4.3

m α
independent reconstructions 9.0% 9.9%

cross-gradient 4.9% 11.0%
normalized cross-gradient 4.9% 10.7%
vectorial total variation 8.9% 3.3%
nuclear norm 20.6% 4.5%

138



Appendix C

Appendix for chapter 4

C.1 Relative medium misfits for examples in section 4.3

Table C.1: Relative medium misfits (in the L2-norm) at the minimizer for the
joint inverse problem in section 4.3.1.1

ε m1 m2

10 21.7% 6.6%
10−1 21.1% 5.3%
10−3 20.9% 5.2%
10−5 20.9% 5.2%

Table C.2: Relative medium misfits (in the L2-norm) at the minimizer for the
joint inverse problem in section 4.3.1.2

ε α β
10−1 4.6% 0.5%
10−3 2.5% 0.2%
10−5 2.1% 0.1%
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