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Abstract 

Size effects in out-of-plane bending in elastic 

honeycombs fabricated using additive manufacturing: 

modeling and experimental results 

 

James Kevin Mikulak, Ph.D. 

The University of Texas at Austin, 2011 

 

Supervisor: Desiderio Kovar 

Size effects in out-of-plane bending stiffness of honeycomb cellular materials 

were studied using analytical mechanics of solids modeling, fabrication of samples and 

mechanical testing.  Analysis predicts a positive size-effect relative to continuum model 

predictions in the flexure stiffness of a honeycombed beam loaded in out-of-plane 

bending.  A method of determining the magnitude of that effect for several different 

methods of constructing or assembling square-celled and hexagonal-celled materials, 

using both single-walled and doubled-walled construction methods is presented.  

Hexagonal and square-celled honeycombs, with varying volume fractions were 

fabricated in Nylon 12 using Selective Laser Sintering.  The samples were mechanically 
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tested in three-point and four point-bending to measure flexure stiffness.  The results 

from standard three-point flexure tests, did not agree with predictions based on a 

mechanics of solids model for either square or hexagonal-celled samples.  Results for 

four-point bending agreed with the mechanics of solids model for the square-celled 

geometries but not for the hexagonal-celled geometries.  A closed form solution of an 

elasticity model for the response of the four-point bending configuration was 

developed, which allows interpretation of recorded displacement data at two points and 

allows separation the elastic bending from the localized, elastic/plastic deformation that 

occurs between the loading rollers and the specimen’s surface.  This localized 

deformation was significant in the materials tested.  With this analysis, the four-point 

bending data agreed well with the mechanics of solids predictions.   
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Chapter 1: Introduction and motivation for research 

INTRODUCTION  

One definition of cellular solids is “an assembly of cells with solid edges or faces 

packed together to fill space” (Gibson and Ashby 1997).  Many examples of cellular 

solids exist in nature; cork, sponges, and coral are examples of three-dimensional 

cellular materials, while a beehive is an example of honeycomb cellular material.  Man-

made cellular materials have been produced from many materials including metals, 

ceramics, plastics and even composites.  Interesting applications of manufactured 

cellular structures include lightweight space and aerospace construction materials 

(Labuhn 2005) (Bianchi, Aglietti and Richardson 2010), materials for impact absorption 

(Banhart 2001) and materials used to provide reaction sites for catalysis (Gruppi and 

Tronconi 2005). 

A defining feature of cellular solids is that they exhibit a high stiffness-to-mass 

ratio.  Conventional theory predicts that this ratio depends on the properties of the solid 

material used, the volume fraction of solid, and the shape of the cells (Gibson and Ashby 

1997).  Nature to date has succeeded in constructing cellular materials with far more 

complex architectures than human-kind; to paraphrase Sir Michael Ashby, nature builds 

with cells while man builds with solids (Simancik 2002).  The point is that, until recently, 

the ability to tailor the architectural parameters that define a cellular solid such as cell 
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size, cell geometry and volume fraction has been limited by existing materials 

processing technologies.  So unlike what we see in nature, the majority of existing 

cellular solids and even appropriate tools to analyze the behavior of cellular solids have 

been limited to materials that have uniform cell size, cell geometries, and relative 

densities.  

The first effective honeycomb manufacturing technique was developed by 

Heilburn in 1901.  As early as 1915, honeycomb cores were patented for aircraft 

applications.  (EconHP Holding GmbH 2011) In these applications, honeycombs are very 

often used in a core and sandwich arrangement in which the cellular material has walls 

parallel with the thickness direction and is sandwiched between solid sheets of material.  

Typically in these configurations, honeycombs have a relatively short thickness 

compared to the width or length of the sandwich panel.  These configurations have 

been well studied and are generally treated as continuum materials because the 

number of cells relative to the specimen size is large.  In this work, we take a different 

approach by examining configurations with long z-axis lengths.  

Recent advances in additive layered manufacturing (Marcus and Bourell 1993) 

and other new materials processing routes (Crumm and Halloran 1998) (Van Hoy, et al. 

1998) have greatly enhanced the ability to tailor the defining parameters of cellular 

materials.  When building cellular materials with 3D CAD-driven, additive manufacturing 

processes, the use of multi-scale cells, varying wall thickness, mixed geometries or non-

uniform relative densities is as easy as the use of uniform size, geometry, and density.  
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These parameters can now be varied so that cell topology and scale effects can now be 

reasonably considered.  However, to date there has been no design guidance available 

to leverage these processing capabilities to build non-uniform cellular materials with 

properties that are superior to uniform cellular materials. 

Of interest in determining the influence of cellular architectures on stiffness is 

the issue of a size effect that occurs when there is a small specimen-to-cell size ratio.  

This effect has been known alternatively as an edge effect and its recognition, as an 

effect seen in honeycombs or foam materials, traces back to attempts to make accurate 

measurements of Young’s modulus of cellular ceramic foams (Brezny and Green 1990) 

(Anderson and Lakes 1994).  Measurements made on small samples “simply didn’t make 

sense” and in practical terms few attempts were made to measure and characterize 

properties below a certain specimen-to-cell size ratio.   

Size effects are known in to exist in the plastic deformation of dense metals.  

Indentations, conducted by L.M. Brown and reported by N.A. Fleck, showed the inferred 

hardness of a sample increases with a decreasing indent size for indents in the micron to 

submicron range (Fleck and Hutchinson 1993).  Fleck also reported copper wires in the 

12-170 µm diameter range showed the thinner wires exhibiting stronger behavior than 

the thicker wires in torsion testing.  M.I. Idiart reports the effect in micro-bending of 

thin metallic foils in the 10-150 µm range (Idiart, et al. 2009).  Mechanistically this 

behavior has been explained as strain hardening resulting from the accumulation of 

statistically stored or geometrically necessary dislocations while from a 
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phenomenological standpoint, conventional continuum theories of plasticity, like those 

of elasticity possess no material length scale.  In the case of plasticity, the generalized 

continuum theory, has been expanded to account for this size effect (Fleck, et al. 1994) 

(Fleck and Hutchinson 1997).  These modifications of the generalized continuum theory 

are higher order theories such as strain gradient theories.  

In general size effects are considered significant when two characteristic lengths 

in a material are of the same order.  For example, the characteristic length scale in 

dense metals is of the order of 1 µm while the length scales for commercially available 

honeycombs can be closer to 1 mm.  Assuming typical specimen or feature dimensions 

are 1 mm and above, then honeycombs are far more likely to experience overlap of the 

macro-scale specimen or feature lengths with the micro-scale characteristic lengths.   

Experiments have demonstrated that in some loading configurations these size 

effects cannot be ignored when characterizing the elastic response of cellular solids or 

foam (Lakes 1983) (Andrews, Gioux, et al. 2001) (Anderson and Lakes 1994) (Brezny and 

Green 1990).  Greatly varying, both positive and negative size effects have been 

documented in different loading conditions such as uniaxial compression, torsion, 

indentation, bending and around notches and holes.  (Andrews & Gibson, 2001) (Mora 

and Waas 2000)  Like in the case of plasticity of dense metals, the elastic continuum 

analysis of cellular materials as developed by Gibson and Ashby does not include a 

length scale and does not account for any size effect (Gibson and Ashby 1997). 
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The possible loading configurations, together with the geometries of cellular 

solids, honeycombs or foams, their volume fractions, their cell shapes, and whether 

loading is in-plane or out-of-plane creates a large space to examine.  Some reduction in 

the number of possible configurations is possible by recognizing that foams and cellular 

honeycomb structures can act as models for each other in some configurations that lend 

themselves to two dimensional analyses.  Foams loaded in compression and 

honeycombs loaded in in-plane compression are examples.  However, other 

configurations require more complicated two and a half dimensional or three 

dimensional analyses.  Our interest is in honeycomb-type cellular solids with a focus on 

out-of-plane bending which requires higher order analyses. 

BACKGROUND AND PREVIOUS WORK 

Both analytical and discrete two dimensional models have been proposed (Onck, 

Andrews and Gibson 2001) (Tekoglu & Onck, 2005) (Dai and Zhang 2009) (Tekoglu & 

Onck, 2008) to characterize the elastic behavior of honeycombs.  These models have 

been compared to a small set of experiments, most of which were performed on foams.  

Onck et al. developed an analysis for infinitely long, regular hexagonal honeycombs 

loaded 1) in-plane uniaxially in compression and 2) in shear (Onck, Andrews and Gibson 

2001).  They used a combination of analytical analysis and 2D finite element modeling 

using a commercial FEM code.  Their model used a combination of conventional beam 

bending analysis, rigid body assumptions, and equations of compatibility of deformation 
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to predict an elastic size effect in uniaxial compression and shear.  They used their 

model to predict enhanced compliance in compression and enhanced stiffness relative 

to the predictions of the continuum model of Gibson and Ashby for cellular materials 

loaded in shear.  Thus, the size effect can be either positive or negative, but the 

predicted shear stiffening was short lived, being observed only for very small values of 

specimen-to-cell size ratio.  It was also shown that the location of specimen edge 

relative to the cellular architecture was important.  For example, specimens can 

terminate at a closed cell or an open cell.  The weakening effect seen in compression 

was attributed to decreased constraint from open cells and for cells located near a free 

surface.  The mechanism for the shear stiffening was not explicitly addressed.  

Experimental work was done in conjunction with the previously described 

modeling (Andrews & Gibson, 2001).  A seven volume percent, 20 pore per inch, open-

cell Al 6101-T6 (trade name Duocel) foam and 8% dense, closed-cell Al foam (trade 

name Alpora) were tested in compression and in shear at different size ratios of 

specimen-to-cell size.  Their results showed qualitative agreement with the trends in the 

modeling, but with quantitative differences. 

Tekoglu et al. considered extensions to the generalized continuum theories to 

determine a theory that could best match the results of discrete models (Tekoglu & 

Onck, 2008).  They addressed both higher-order theories, such as micropolar theory, 

micromorphic theory and microstrech theory and higher-grade theories, such as strain 

gradient theory, stress couple theory and a variation of the stress couple theory that 
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they call strain divergence theory.  Both the higher-order and higher-grade theories 

require an introduction of additional degrees of freedom into the continuum.  The 

higher order theories do this by introducing a new independent degree of freedom.  In 

the case of micropolar theory, a rotational degree of freedom is introduced.  The higher 

grade theories introduce the new degrees of freedom by tying the deformation 

measures to additional gradients in the strain.  Tekoglu evaluated two potential 

extensions of generalized continuum theory, the micropolar rotation and strain 

divergence theory, against numerical modeling.  For shear, the two theories converged, 

i.e. the fit characteristic length was of the same order as the cell size, and they reported 

excellent agreement in strain fields.  However for pure bending, this was not the case, 

i.e. the analytical solution using micro-polar and strain divergence theories both 

predicted an increase in stiffness while the discrete analysis predicted a reduction in 

stiffness. 

Dai and Zhang (Dai and Zhang 2009) modeled the elastic behavior of cellular 

materials using an analytical bending energy method for in-plane bending of four types 

cellular structures built with different unit cells including rectangular, hexagonal, 

triangular and Kagome structures, and compared those results to the predictions of two 

continuum calculations. The two continuum models included a general homogenization 

method and what the authors described as a meso-mechanics method that was based 

on Gibson and Ashby’s work.  Neither continuum method predicted a size effect while 

their bending energy method did.  They reported different responses for the differing 
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cell shapes.  The rectangular cells showed an increase in stiffness, while the triangular 

and kagome cells showed a decrease in stiffness, and the hexagonal cells at low 

specimen-to-cell size ratios first exhibited a decrease in stiffness then an increase in 

stiffness before converging with the continuum predictions. 

The motivation for this research is to understand of how cell architectural 

features; specimen-to-cell size ratio, geometry, and volume fraction influence the final 

stiffness of honeycomb cellular materials loaded in out-of-plane bending.  To this end, 

we have conducted preliminary experiments by fabricating using selective laser 

sintering, differing sets of honeycomb structures.  These honeycombs contain a solid 

fraction of between 15 and 45 percent, have uniform cell sizes, and have varying shapes 

and specimen-to-cell size ratios.  We then experimentally measured the out-of-plane 

bending stiffness with the aim of documenting a size effect and determining what 

models can be used to correctly predict the effect.  Ultimately, this information can be 

used to design and test materials with non-uniform architectures which may out-

perform their more conventional counterparts.  
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Chapter 2: Modeling size effects of honeycombs loaded elastically 

in tension and bending 

MOTIVATION AND SCOPE 

From a practical standpoint, the design of honeycomb and foam structures has 

been limited by available manufacturing routes.  When producing honeycomb 

structures from ceramics, plastics and metals, there are only a limited number of 

processing routes that exist for each material class.  Several recent advances in 

manufacturing techniques such as additive manufacturing and micro-fabrication by co-

extrusion have opened up new and as of yet unexplored methods for creating 

honeycomb structures with more complex architectures  (Marcus and Bourell 1993).  

These methods allow much greater customization of the defining parameters of a 

honeycomb than the current methods that include expansion, corrugation, molding or 

direct extrusion (Banhart 2001) (Wadley 2003).   

We start by looking at the parameters that define a honeycomb.  Cell size, cell 

shape, and volume fraction or wall thickness are typically used to define the honeycomb 

architecture.  For most commercially available honeycombs, these parameters are 

usually constant throughout the specimen.  That is, the cell size, shape, wall thickness 

and thus volume fraction all remain the same throughout the structure, mainly because 

the manufacturing or processing route makes these parameters difficult or expensive to 

vary.  However newer processing routes do not have these limitations.  3D additive 
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manufacture methods such as selective laser sintering, (Marcus and Bourell 1993) 

(Deckard 1986) 3D printing (Rosochowski 2000) and fused deposition modeling (Crump 

1989) allow the fabrication of structures with varying cell shapes, sizes and volume 

fractions without a differential production cost. 

The combination of manufacturing and measurement constraints has resulted in 

limitation of the analysis of the elastic properties of honeycombs to configurations that 

have large specimen-to-cell size ratios.  Expanding the use of honeycomb structures 

beyond the current architectures with uniform cell sizes to use them more effectively 

leads to designs with a longer z-axis length.  This increases the exposure of these types 

of structures to bending as a limiting loading condition. 

As discussed in the preceding chapter, one well established starting point for 

predicting the elastic response of cellular structures is the work of Gibson and Ashby 

(Gibson and Ashby 1997). These models are continuum analyses that do not include a 

length scale in the effective modulus. Instead, the out-of-plane elastic modulus    is 

predicted to depend only on 1) the relative density of the honeycomb,     ⁄  and 2) the 

Young’s modulus of the solid portion of the honeycomb. 

As part of this work, we will compare the effective stiffness predicted from 

Gibson and Ashby’s continuum model with the predictions of effective stiffness made 

using a conventional mechanics of solids technique.  To do this we consider multiple 

sets of sample structures chosen to highlight these effects. The goals of this part of our 

work are to 1) determine the magnitude of the size effect for specimens with small 
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specimen-to-cell size ratios 2) determine the necessary specimen-to-cell size ratio 

where a continuum model can be used to predict effective stiffness, 3) examine the 

influence of relative density on the size effect and 4) examine the effects of cell 

geometry by varying the cell shape and configuration choices such a single verses 

double-walled structures.  

CALCULATIONS 

TENSION 

We begin by employing a mechanics of solids analysis and considering 

honeycombs with small specimen-to-cell size ratios loaded in tension or compression 

and comparing these materials to a solid material, as shown in Figure 2-1.  The top part 

of Figure 2-1 shows a side view and cross section of a solid.  The bottom part of the 

figure shows the side view and cross section of a square–celled honeycomb consisting of 

a single cell. The single celled honeycomb is considered here because, if there is a size 

effect, it is expected that this architecture would show the largest effect.  Both beams 

have the same perimeter and are loaded by an axial force F. They have areas A and As, 

respectively.  We also define the Young’s modulus of the solid specimen, E, and the 

effective Young’s modulus of the single-celled square honeycomb, Es.    
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The stress on each of these beams is  

  
 

 
          Equation 2.1 

   
 

  
         Equation 2.2 

and assuming linear elasticity  

  
 

  
          Equation 2.3 

   
 

    
         Equation 2.4 

Since the areas of the cross sections are the same  

              Equation 2.5 

Where,   is the volume fraction of solid in the honeycomb. Comparing the 

stresses and the strains and we obtain 

 

  
 
  

 
           Equation 2.6 

 

  
 
    

  
 
    

  
 
   

 
       Equation 2.7 

 

FIGURE 2-1: SINGLE CELL SQUARE HONEYCOMB AND SOLID ROD IN TENSION 
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Thus, for the axial strains in each specimen to be the same under a load F,  

               Equation 2.8 

and substituting  Equation 2.7  into Equation 2.8, we obtain 

 

  
 
   

   
           Equation 2.9 

This calculation shows that we do not expect to observe a size effect in tension 

or compression.  Thus, we expect that the continuum analysis of Gibson and Ashby 

should be capable of predicting the elastic response of honeycombs loaded axially in 

tension and compression, independent of their specimen size-to-cell size ratios. 

BENDING 

To compare the predictions of the Gibson and Ashby continuum model to those 

obtained from a mechanics of solids analysis, a method for normalizing the stiffness is 

required.  Recognizing that several normalization schemes are possible and that no one 

normalization method is intrinsically superior to another, the following method of 

normalizing bending stiffness and comparing the two methods was selected.   

The flexure rigidity is defined as  

             Equation 2.10 

where    is a material property and   is the structure-dependent second 

moment of inertia.  A continuum mechanics equivalent of the same flexure rigidity 

would be 

      
  

  
            Equation 2.11 
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where    is the second moment of inertia of the entire enclosed or filled cross 

sectional area, and    is the continuum effective modulus and      ⁄   is the relative 

density or equivalently, the volume fraction of solid in the honeycomb. 

To compare the two results we define a continuum effective second moment of 

inertia,   , such that  

   
  

  
           Equation 2.12 

The ratio of the two flexure rigidities can then be expressed as 

    

     
 

    
  

  
    

  
    

    
 

 

  
       Equation 2.13 

with     the Young’s modulus of the solid canceling out. 

When normalized in this manner the mechanics of solids analysis converges with 

the continuum solution when the ratio of    ⁄  is equal to one.  Thus, predicting the size 

effect of the elastic response of these structures is reduced to calculating the ratios  

   ⁄  as a function of specimen-to-cell size ratio. There were several approaches taken to 

determining this ratio.  First for the single walled sample sets,   was calculated using the 

output of the SolidWorks™ 3D CAD system (Dassault Systemes SolidWorks Corp., 

Concord MA) on which the geometries were drawn.  These calculations where then 

checked using analytical calculations.  For the double walled structures, each sample set 

was analyzed by first developing an expression for the second moment of each member 

in the sample set, then examining those derived relationships to find generalized 
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expressions for the second moment for the entire set as well as defining a relationship 

for    .  This relationships were then evaluated and the ratio of      ⁄ reported.  

For the single-walled architectures,   was calculated using SolidWorks™ 3D CAD 

system.  This software calculates numerically the value of   from the geometry of the 

cross-section.  These numerical solutions where then checked using analytical 

calculations.  For the double-walled structures, each architecture was analytically 

modeled by first deriving an expression for the second moment of each member in the 

sample set for values of R from one to six.  These relationships were then examined to 

determine generalized expressions for   as a function of n.  The value of     for each 

architecture was also determined. 

 

 
FIGURE 2-2: SINGLE WALLED SQUARE-CELLED MODELED SET 
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SAMPLE DESIGNS 

 

Two different basic geometries were examined, square-celled honeycombs and 

regular, hexagonal-celled honeycombs.  Within each of these geometries, the cellular 

architectures were varied systematically to explore their effects on effective stiffness.  

For example, in Figure 2-2, a set of square-celled samples is shown with a single wall 

thickness.  In this case the sample size is fixed and the cell-size-to-specimen size is varied 

by reducing the cell size proportionally.  Figure 2-3 shows an example of alternative 

construction rule for square-celled honeycombs.  In this case the cell size is fixed and 

the specimen-to-cell size is varied by adding cells, which results in a double-walled 

FIGURE 2-4 SINGLE WALLED HEXAGONAL-CELLED 
MODELED SET 

FIGURE 2-3:  DOUBLE WALLED SQUARE-CELLED MODELED SET 
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geometry. These construction rules result in a sample set that only has odd values of R, 

i.e. R = 1, 3, 5, and 7.  

 Figure 2-4 shows an example of a set of hexagonal-celled honeycombs with 

single wall thicknesses for R = 1 to 5, with two configurations shown for R = 2. And 

Figure 2-5 shows a sample set of hexagonal double walled architecture that also has odd 

values of R i.e. R = 1, 3, 5, and 7.  Figure 2-6 and Figure 2-7 are hexagonal-celled 

honeycombs built using the double wall, constant cell size approach.  Figure 2-5 shows 

an architecture that uses construction rules that also yield only an odd set of specimen-

to-cell size ratios.  However, Figure 2-6 and Figure 2-7 are constructed in a slightly 

different way, with the intent of defining an architecture that has both even and odd 

specimen-to-cell size ratios, yet the second moment of inertia can still be varied.  One 

additional design rule was used for all of the different geometry sets:  No half or quarter 

cells were used, only whole or complete cells were allowed.   

FIGURE 2-5: DOUBLED WALLED HEXAGONAL-CELLED MODELED SET 
– CONFIGURATION B 
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To illustrate the methodology for utilizing a mechanics of solids approach to 

analyzing the elastic bending response, we present two cases below.  First the double-

walled, hexagonal celled structures shown in Figure 2-5 are presented.  This case is 

representative of the calculation method used when analyzing architectures where the 

cell size was held constant and the specimen size was increased to vary the specimen-

to-cell size ratio.  The second case presented is for single-walled, square honeycombs 

that were designed to keep the specimen size constant and with decreasing the cell size, 

as shown in Figure 2-2.  A summary of the results of the analyses for the other cases are 

then presented in Table 2-1. 

We start by calculating   for each of the samples using the parallel axis theorem 

to obtain an expression for   in terms of   , the second moment of one unit cell, and 

FIGURE 2-6 DOUBLED WALLED HEXAGONAL-CELLED MODELED SET 
– CONFIGURATION C 

FIGURE 2-7: DOUBLED WALLED HEXAGONAL -CELLED MODELED SET – 
CONFIGURATION A 
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   , where   is the area of the unit cell and    is the square of the distance from the 

neutral axis to the second row of cells.  Extending this to all the architectures we obtain 

a series of equations as shown below: 

 

 (   )             Equation 2.14 

 (   )          
         Equation 2.15 

 (   )           
        Equation 2.16 

 (   )            
        Equation 2.17 

 (   )             
       Equation 2.18 

In these expressions it is important to note that n is not the specimen-to-cell size 

ratio but rather a counting variable and that, the specimen-to-cell size, R, is given by  

R = (    ).         Equation 2.19 

From these equations we can generalize an expression for  ( ) such that 

 ( )  (        )   ∑   (     ) 
        Equation 2.20 

Equation 2.20 represents the value of   for a cross-section that has the outer 

perimeter shown in Figure 2-5, but is solid rather than cellular.  To obtain the values of 

 ( ) for the cellular architecture, the values of  ( ) for the open portions of the cellular 

structure,       ,  must be subtracted from the  ( )  for the solid to obtain     . 

     ( )         ( )         ( )      Equation 2.21 

Substituting for   and     in terms of   and    which are the outer and inner 

side dimensions of the hexagon as and solving for        ( ) and         ( ) 
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Equation 2.22 
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Equation 2.23 

Subtracting the two results in: 
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 )   

Equation 2.24 

   ( ) and    ⁄  can then be calculated  

   ( )  
  

  
       ( )  (  
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Equation 2.25 

 ( )

  ( )
 
(  
    

 )(        )(
 √ 

  
)   

 ∑   (     )(
 √ 

 
) 

 (
 

 
)

(  
    

 )[(        )(
 √ 

  
) ∑   (     )(

 √ 

 
)(
 

 
) 

 ]
     Equation 2.26 

To simplify the expression we define  

  ( )   (        ) (
 √ 

  
)        Equation 2.27 

  ( )     (     ) (
 √ 

 
) (

 

 
)       Equation 2.28 

           ⁄  can then be expressed as 

 ( )

  ( )
 
(  
    

 )  ( )   
 ∑   ( )
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 ]

        Equation 2.29 
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This expression can be further simplified if     , where    is equal to the 

length of the outer side of and individual cell: 

 ( )

  ( )
 
(    

 )  ( ) ∑   ( )
 
 

[  ( ) ∑   ( )
 
 ]

       Equation 2.30 

Similar calculations were performed for the all the double-walled architectures 

and the results presented in Table 2-1 

TABLE 2-1  EXPRESSIONS FOR DOUBLE-WALLED ARCHITECTURES 

Cell Geometry Fig # F1(n) F2(n) 

Hex  
Double 
wall 

2.5 (        ) (
 √ 

  
)   

EQUATION 2.31 

  (     )(
 √ 

 
) (
 

 
)  

EQUATION 2.32 

Hex 3 
wide – 
odd  

Double 
wall 

2.6 
 

 
(   (  )(   )   )(

 √ 

  
) 

EQUATION 2.33 

((  )(   )

  )  (
 √ 

 
) (
 

 
) 

EQUATION 2.34 

Hex 3 
wide –
even 

Double 
wall 

2.7 

 

 
(   (  )(   )  

 ) (
 √ 

  
)   

EQUATION 2.35 

((  )( )   )( 

  ) (
 √ 

 
) (
 

 
)  

EQUATION 2.36 

Square  
Double 
wall 

2.3 
 

  
(    )   

EQUATION 2.37 

 (    )∑  
 

 

 

EQUATION 2.38 

The square celled architecture shown in Figure 2-3 has the summation term 

inside the f2 function and this slightly changes the final form of    ⁄  so that for this case   

 ( )

  ( )
  

(    
 )  ( )   ( )

[  ( )   ( )]
       Equation 2.39 

Also note that for square-celled architectures, we have replaced               

where      represents the length of the inside of the square unit cell.  
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These functions were evaluated by varying the specimen-to-cell size ratios and 

the volume fractions.  A representative set of calculations is presented in Table 2-2.  

 

Next we present the calculations for the architecture where the specimen-to-cell 

size ratio was varied by decreasing the cell size. The beginning of the sample set 

analyzed is shown in Figure 2-2.  However only the odd values of the specimen-to-cell 

size ratios, R,  were analyzed, i.e. R = 1, 3, 5, 7 and 9 which correspond to n = 0, 1, 2, 3 

and 4 . Also, in these calculations we have let the outer size of the specimen, which is 

constant in this arrangement, arbitrarily set equal one, thus creating a unit-sized cell.  

We again start by calculating   for each of the architectures using the parallel axis 

theorem to obtain an expression for   in terms of   
 , the second moment of one “hole” 

in the unit cell, and     
 , where   is the area of the hole and   

  is the square of the 

n Rank si Vf Inet/Io

f1/C1 C1 f1 f2n/C2 ∑fn/C2 C2 ∑fn 1>si>0 (1-si^2)

(n+1) 1/2(6n+ (-1)^(n+1)+3) (5*3^.5)/16 ((-1)^(n-1)+3)n^2 ((3*3^0.5)/2)(3/4)
0.98 0.0396

n Rank f1a c1 f1 f2a f2b c2 f2
a

0 1 1 0.5413 0.541 0 0 1.949 0 1.9604

1 2 5 0.5413 2.706 4 4 1.949 7.794229 1.247526

2 3 7 0.5413 3.789 8 12 1.949 23.38269 1.13392

3 4 11 0.5413 5.954 36 48 1.949 93.53074 1.057478

4 5 13 0.5413 7.036 32 80 1.949 155.8846 1.041479

5 6 17 0.5413 9.202 100 180 1.949 350.7403 1.024552

6 7 19 0.5413 10.284 72 252 1.949 491.0364 1.019702

7 8 23 0.5413 12.449 196 448 1.949 872.9536 1.013504

8 9 25 0.5413 13.532 128 576 1.949 1122.369 1.011441

9 10 29 0.5413 15.697 324 900 1.949 1753.701 1.00852

10 11 31 0.5413 16.779 200 1100 1.949 2143.413 1.00746

11 12 35 0.5413 18.944 484 1584 1.949 3086.515 1.005859

12 13 37 0.5413 20.027 288 1872 1.949 3647.699 1.005244

13 14 41 0.5413 22.192 676 2548 1.949 4964.924 1.004274

14 15 43 0.5413 23.274 392 2940 1.949 5728.758 1.003886

15 16 47 0.5413 25.439 900 3840 1.949 7482.459 1.003254

16 17 49 0.5413 26.522 512 4352 1.949 8480.121 1.002994

17 18 53 0.5413 28.687 1156 5508 1.949 10732.65 1.00256

f1 f2

TABLE 2-2: SHOWING REPRESENTATIVE ANALYSIS FOR HEXAGONAL-CELLED SAMPLES  
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distance from the neutral axis to the second row of cells.  Extending this to all the 

architectures we obtain a series of equations as shown below: 

 (   )  
 

  
   

         Equation 2.40 

 (   )  
 

  
 (   

       
 )      Equation 2.41 

 (   )  
 

  
 (    

        
 )       Equation 2.42 

 (   )  
 

  
 (    

         
 )      Equation 2.43 

 (   )  
 

  
 (    

         
 )      Equation 2.44 

 ( )  
 

  
 [(    )   

   (    )∑    
     

 ]   Equation 2.45 

We can then derive the following relationships (see appendix for details of these 

calculations) 

  
   

 

  
(
  (    )  

(    )
)
 

       Equation 2.46 

    (
  (    )  

(    )
)
 

)        Equation 2.47 

  
  {

    

         (
    

(    )
)
       Equation 2.48 

 ( )  (  (    )          Equation 2.49 

Where  ( ) is the relative density of the honeycomb. Setting the relative 

density for all of the architectures in this set equal, we obtain: 

 ( )   (   )         Equation 2.50 

(    )   = ( (   )   )  (   )      Equation 2.51 
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(    )   = (    )  (   )       Equation 2.52 

(    ) (
  (    )  

(    )
)
 

= (    ) (
  ( (   )  ) (   )

( (   )  )
)
 

    Equation 2.53 

(1- (    )  )
  (     (   ))

 
      Equation 2.54 

    
  

(    )
 (   )         Equation 2.55 

     ∑
  

(    )
 
          Equation 2.56 

Substituting Equations 2.45, 2.46, and 2.47 into Equation 2.44 , we obtain 
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 [(    ) 

 

  
(
  (    )  
(    )

)

 

 

  (    )∑    
 (

  (    )  

(    )
)
 

{
    

         (
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    Equation 2.57 

And substituting Equation 2.57 into the above equations, 
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Equation 2.58 

And we can then find     

    
 

  
            Equation 2.59 

     (
  (    )  

(    )
)
   (    ) 

  
        Equation 2.60 

Giving us  
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Equation 2.61 

The results of the calculations for this architecture for n equal zero to 10 are 

summarized in Table 2-3. 

 

R t(0) t(n) A(n) Vf y(n)^2 I*(n) I(n) I(o) I(n)/i(0) 

1 0.0013 0.0013 0.9950 0.005 0.00E+00 8.25E-02 8.30E-04 4.16E-04 2.00 

3  0.0006 0.1106 0.005 1.11E-01 1.02E-03 5.54E-04 4.16E-04 1.33 

5   0.0004 0.0398 0.005 4.00E-02 1.32E-04 4.99E-04 4.16E-04 1.20 

7  0.0003 0.0203 0.005 2.04E-02 3.44E-05 4.75E-04 4.16E-04 1.14 

9  0.0003 0.0123 0.005 1.23E-02 1.26E-05 4.62E-04 4.16E-04 1.11 

11  0.0002 0.0082 0.005 8.26E-03 5.64E-06 4.54E-04 4.16E-04 1.09 

13  0.0002 0.0059 0.005 5.92E-03 2.89E-06 4.48E-04 4.16E-04 1.08 

15  0.0002 0.0044 0.005 4.44E-03 1.63E-06 4.44E-04 4.16E-04 1.07 

17  0.0001 0.0034 0.005 3.46E-03 9.88E-07 4.41E-04 4.16E-04 1.06 

19  0.0001 0.0028 0.005 2.77E-03 6.33E-07 4.38E-04 4.16E-04 1.05 

21  0.0001 0.0023 0.005 2.27E-03 4.24E-07 4.36E-04 4.16E-04 1.05 

Table 2-3 Representative calculations evaluating Equation 2.61 
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RESULTS AND DISCUSSION 

The results of the calculations for all of the architectures considered are 

presented below. Figure 2-8 shows the effect of specimen-to-cell size variations of the 

square-celled, single walled honeycombs with a constant specimen size, where the 

normalized second moment or flexure stiffness,     ⁄ , is plotted versus the specimen-to-

cell size ratio, R.  From this plot, it is apparent that a significant size effect is predicted at 

small specimen-to-cell ratios.  For example, at a specimen-to-cell size ratio of one (R 
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FIGURE 2-8: GRAPH OF SINGLE WALLED SQUARE CELLED HONEYCOMBS SHOWING THE CALCULATED NORMALIZED 
MOMENT OF INERTIA VERSUS SPECIMEN-TO-CELL RATIO FOR FIVE VOLUME FRACTIONS 
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equal one), the structures with a small volume fraction of solid have an 

     ⁄ approaching two, which represents a hundred percent increase in flexural stiffness 

over the continuum model.  At sixty percent volume fraction of solid, which would 

represent a thick-walled honeycomb,     ⁄  = 1.4 which is a forty percent increase over 

the continuum predictions. This drops off as the specimen-to-cell ratio 

increases, until at a specimen-to-cell size ratio of ten to one, it is reduced to only a ten 

percent increase over continuum estimates even at low volume fractions.  One range of 

interest is for volume fractions of less than thirty percent (thin-walled honeycombs).  

For these architectures we predict a significant size effect persisting until at least R 
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FIGURE 2-9:  GRAPH OF SINGLE WALLED SQUARE-CELLED HONEYCOMBS SHOWING THE CALCULATED NORMALIZED 
MOMENT OF INERTIA VERSUS VOLUME FRACTION OF SOLID FOR FOUR SAMPLES WITH SPECIMEN-TO-CELL SIZE RATIOS 

OF ONE TO FOUR 
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equals ten. Full agreement with the continuum calculations (    ⁄  1) occurs at Rs 

greater than twenty, although the size effect between R equal ten and R equal twenty is 

minor.  

Figure 2-9 shows the results of the calculations for the same square-celled 

honeycombs, but here the relative stiffness is plotted versus volume fraction for R equal 

one to R equal four.  For R equal one --     ⁄  is approximately two and this value drops 

as volume fraction increases until it reaches one, as expected at a hundred percent 

volume fraction.  In a similar manner we can see that for R equal two,     ⁄ equal to one 
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and a half, dropping to      ⁄  is equal to one and quarter for R equal four.   

Figure 2-10 shows that the size effect is much larger for the single-walled 

architecture than for the double-walled architecture. This results from differences in 

how the solid material is distributed across the cross section of beams, i.e. there is more 

mass further from the neutral axis at a given volume fraction for the single-walled 

architectures than for the double-walled architectures.  

The other cases we considered are the hexagonal-celled honeycombs which are 

presented in Figure 2-11 and Figure 2-12.  From  Figure 2-11, we see that response of 

the hexagonal cells is similar to the  response of the square celled honeycombs. For 
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example, for R equal one,     ⁄  approaches two at low volume fractions, decreasing 

with both specimen-to-cell size ratio and volume fraction.  In Figure 2-11, the relative 

stiffness is plotted for single walled hexagonal-celled architectures for R = 1 to R = 4.  

Figure 2-12 the relative stiffness of the double walled is plotted for R = 1 to R = 3.  These 

figures again show that the size effect is greatest for single-walled architectures and 

decreases with both wall thickness and volume fraction. 
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CONCLUSIONS 

As we mentioned earlier, the goals of this part of our work are to 1) determine 

the magnitude of the size effect for specimens with small specimen-to-cell size ratios 2) 

determine the necessary specimen-to-cell size ratio where a continuum model can be 

used to predict effective stiffness, 3) examine the influence of relative density on the 

size effect and 4) examine the effects of cell geometry by varying the cell shape and 
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configuration choices such as single versus double-walled structures.  We predicted an 

increase in stiffness of up to a hundred percent for both the square and hexagonal 

samples at   equal one and decreasing with both specimen-to-cell size ratio and volume 

fraction.  For volume fractions of less than the thirty percent (thin-walled honeycombs) 

with single wall architectures, we predict a significant size effect persisting until at least 

R equal ten.  Full agreement with the continuum calculations (    ⁄ approaches one) 

occurs at R is greater than twenty, although the size effect between R equal ten and R 

equal twenty is minor.  The effect of choosing between double walled or single-walled 

construction is significant and shows that the size effect is much larger for the single-

walled architecture than for the double-walled architecture.  Again this results from 

differences in how the solid material is distributed across the cross section of beams, 

with more mass further from the neutral axis at a given volume fraction for the single-

walled architectures than for the double-walled architectures.   
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Chapter 3: Characterization of the size effect in the elastic 
response of honeycomb beams in bending. 

MOTIVATION AND SCOPE 

Measurement of the Young’s modulus of foam and honeycomb structures has 

been recognized as a difficult task when the size of the sample being tested becomes 

too small in relation to the size of the cells in the foam or honeycomb. (Brezny and 

Green 1990)  Previous measurements made on small samples “simply didn’t make 

sense” and in practical terms, few attempts were made to measure and characterize the 

elastic properties of samples below a certain specimen size.  This effect which is also 

known as an edge effect has not been studied in detail previously.  

We have designed, built and tested polyamide honeycombs to characterize the 

effect of specimen-to-cell size ratio variation on the Young’s modulus of a honeycomb in 

out-of-plane bending.  The test sample sets were designed using a 3D CAD program, 

converted to digital files, and then transferred to and built using a free form fabrication 

process from a polyamide powder.  The samples were tested on a mechanical test frame 

in three-point bending and four-point bending.  Results of experiments are compared to 

the predicted behavior using three models, an elastic continuum model as described by 

Gibson and Ashby (Gibson and Ashby 1997), a conventional mechanics of solid analysis, 

and a full elastic analysis.  Finally, additional issues associated with the difficulty in 

measuring the Young’s modulus of honeycomb structures are addressed and discussed. 
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DESIGN AND FABRICATION OF SAMPLES 

Honeycombs with two different cellular geometries, square and hexagonal, each 

with two different volume fractions, were designed using SolidWorks™.  The geometries 

of honeycombs with square unit cross section cells are shown in Figure 3-1 and the 

geometries of honeycombs with regular hexagonal cross section unit cells are shown in 

Figure 3-2.  The lengths of the samples, out of the plane of the page, were standardized 

at a length of 200 mm.  The square-celled samples had cross-sectional dimensions of 

twenty mm by twenty mm while the dimensions of the hexagonal-celled samples varied, 

FIGURE 3-2: CROSS SECTION GEOMETRY OF HEXAGONAL-CELLED 
HONEYCOMB SAMPLE SET, WITH SINGLE WALL CONSTRUCTION AND 

CONSTANT CELL SIZE, R= 1-5 

FIGURE 3-1: CROSS-SECTION GEOMETRY OF SQUARE-
CELLED HONEYCOMB SAMPLE SET, SINGLE-WALLED 

WITH R = 1-4 
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as described below.  

Two differing approaches were taken in designing the square and hexagonal-

celled honeycombs.  The square-celled samples had a constant specimen size and the 

variation in the specimen-to-cell size ratio was accomplished by varying the size of the 

cell.  This required varying the wall thickness for each sample set to maintain a constant 

volume fraction for all values of R.  However, the geometry of a hexagon does not allow 

construction of an analogous sample set.  Thus, for the hexagons, the samples were 

built using a constant cell size of eight millimeters and the variation in the specimen-to-

cell size ratio was accomplished by increasing the height and width of the specimens.  A 

summary of the sample set construction rules is provided in Table 3-1. 

The samples were built using a Hi-Q Selective Laser Sintering System (3D 

Systems, Rockhill SC).  Selective Laser Sintering (SLS) is a powder-based, layer-based, 

additive manufacturing process shown schematically below in Figure 3-3.  SLS is one of 

several competitive additive manufacturing processes that have been invented and 

commercialized during the past twenty years.  In the SLS process a part is constructed 

one layer at a time inside a thermally controlled process chamber which is held a 

temperature slightly below the melting point of the polymer being used.  A laser beam is 

raster scanned across the surface of a layer of powder, turning on and off to selectively 

sinter or fuse the polymer powder particles into a shape defined by a computer which 

has converted a three dimensional CAD image into profile slices equal in thickness to the 

powder layer thickness.  The powder is deposited in thin layers, in the range of 0.15 to 
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0.25 mm deep, uniformly across a piston.  After a given layer has been fused, the piston 

is lowered and a new layer of powder is added on top of the just completed layer.  The 

new layer is then fused, based on the defined shaped, and in this manner a three-

dimensional object can be fabricated from multiple layers.  (Beaman 1997)  

Two grades of polyamide 12 were used in building the parts.  The first is 3D 

Systems Corporation, Duraform® PA and the second is an equivalent PA 12 made by 

Advanced Laser Materials LLC, (Belton, Texas).  The published mechanical data for both 

polymers is presented in Appendices B and C.   

Table 3-2:  Selective Laser Sintering Processing Parameters 

 Units  Quantity 

Part Bed Temperature    (⁰C) 170 

Feed Bed Temperature (⁰C) 140 

Laser Power Watts 40 

Powder Layer Level (mm) 7 

Table 3-1: Honeycomb sample set design rules  

 

Cell Shape 
Specimen-to-cell size  

ratio (R) 

Fabrication 

Method 

Volume  

fraction of solid 

Square 1 to 4 
Constant Specimen Size, 

Variable Cell Size   
Constant = 0.15 

Square 1 to 4 
Constant Specimen Size, 

Variable Cell Size 
Constant= 0.25 

Regular Hexagon 1 to 6 
Constant Cell Size 

Variable Specimen Size 
Varying = 0.30 to 0.19 

Regular Hexagon 1 to 6 
Constant Cell Size 

Variable Specimen Size 
Varying = 0.49 to 0.35 
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While the two polymers appear nearly identical and they are from the same 

primary polymer supplier, all data was analyzed separately for each.  Only virgin, non-

recycled powder was used.   

Prior to beginning to build the samples used for this project, the thermal 

distribution characteristics and the laser power levels of the SLS system were calibrated 

and adjusted to bring the platform into operating specifications.  This required 

replacement of the part piston seal and refocusing of the laser.  The build and part 

processing parameters were held constant between all runs and are presented in Table 

3-2.  The samples were built with a 2.5 cm (one inch) powder warm up layer and utilized 

a heat shield which was used to create a uniform temperature distribution before 

building the first layer.  Fabrication of the samples was started 0.625 cm (0.25 inches) 

FIGURE 3-3: SCHEMATIC OF SELECTIVE LASER SINTERING PROCESS 
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above the heat shield.  A slow, fully controlled cool down process was used to increase 

the uniformity of temperature and thus increase the uniformity of the resulting 

mechanical properties of the finished part.  

Initially, several solid test parts were built to evaluate the influence of the build 

orientation on the elastic properties of the polymer.  The test parts were built in three 

FIGURE 3-4: ORIENTATIONS OF PARTS RELATIVE TO THE BUILD 
DIRECTION (Z-AXIS) 

FIGURE 3-5: A SQUARE-CELLED HONEYCOMB SAMPLE SET FABRICATED USING SLS 
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orientations as shown in Figure 3-4.  Two of these samples were built with the long axis 

of the specimen parallel to the x-y plane.  In one case the largest face of the specimen 

was parallel to the x-y plane.  In the other case the specimen was rotated forty-five 

degrees so that it was “built on a corner.”  The third sample was built so that the long 

axis was parallel to the z-axis. 

A photograph of a representative set of square samples, built using SLS is shown 

In Figure 3-5 and a photograph of a representative set of hexagonal samples is shown in 

Figure 3-6.  An item to note is that two of the square-celled samples with specimen-to-

cell sizes of three and four and with solid fractions of fifteen percent had wall 

thicknesses that were too thin to be successfully built using the SLS system.  Thus, these 

samples could not be tested and these data points do not appear in the presented 

results.   

FIGURE 3-6: A HEXAGONAL-CELLED HONEYCOMB SAMPLE SET FABRICATED USING SLS 
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TESTING OF SAMPLES 

Three-point bending and four-point bending tests were performed to determine 

FIGURE 3-7: PHOTOGRAPH OF TEST FRAME SHOWING SAMPLE 
UNDERGOING FOUR- POINT BENDING 

FIGURE 3-8:BENDING TEST FIXTURE, USED FOR 
BOTH  3PT. AND 4PT. TESTING, SHOWN 

CONFIGURED FOR 4 PT TESTING 
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the elastic response of the samples.  Testing of the samples was performed on a MTS 

Sintech 2/G test frame shown in Figure 3-7 equipped with a 10,000N load cell and an 

MTS Model 642.01A bend bending jig shown in Figure 3-8.  The bending jig was outfitted 

with 2.5 mm diameter, spring-retained, steel rollers and a MTS Model 632.06H-20 

deflectometer.  Testing methods generally followed ASTM standards for measuring 

flexural properties in plastics (D790 n.d.) (D6272 n.d.), although there were some 

modifications to account for the differences required for testing on honeycomb 

structures rather than solid samples and differences in the sample sizes. 

THREE-POINT BENDING TESTS 

The three-point bending setup is shown schematically in Figure 3-9.  The sample 

rests on two supports and is loaded by means of a roller located midway between the 

supports.  The span between the supports,  , is 150 mm and steel rollers with a 

diameter of 2.5 mm are used to both support and load the sample.  The deflectometer 

is placed at the center-point of the sample on the bottom face of the sample and 

FIGURE 3-9:  GEOMETRY USED FOR THREE-POINT BENDING TESTS 
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directly beneath the load point.  All samples were tested at a constant displacement 

rate of 1 mm/min.  The load cell and deflectometer were calibrated prior to testing.  

Since the strains were small enough that no measurable plastic deformation took place, 

each sample was tested multiple times.  Data from the load cell, the deflectometer and 

the cross head position was collected for each test.  To verify that the system was 

operating correctly, the Young’s modulus for a mild steel sample was measured and 

evaluated.  The measured modulus for the mild steel test sample was 198 GPa which 

agrees well with the expected values of approximately 200 GPa.  

In Figure 3-10 a representative graph shows the load versus center-point 

deflection from a three-point test on a hexagonal-celled honeycomb.  This data is from 

the loading curve only, and we see generally that the response is linear.  In this figure 
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FIGURE 3-10   THREE-POINT BENDING OF A HONEYCOMB WITH REGULAR HEXAGONAL CELLS 
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the sample designations a, b and c in the legend represents the three sides, 120 degrees 

apart, that each hexagonal sample was tested on.  The variation in this data was then 

used to bracket the error or uncertainty in the measurements.  It is interesting to note 

that the unloading data for the three-point testing showed hysteresis, where at the 

beginning of the unloading curve, the slope was greater than the slope for the loading 

line.  This variation in slope upon unloading occurs for only a small displacement before 

returning to the slope measured during loading.  This apparent “stiffening” upon 

reversing of the loading, is thought to be a result of sticking of the rollers and is not 

addressed further. 

FOUR-POINT BENDING TESTS  

The four-point bending was conducted on the same test frame and bend fixture as used 

for the three-point bending described previously.  The four-point bending configuration 

is shown in Figure 3-11.  The sample is supported by two lower support rollers with a 

diameter of 2.5 mm positioned on the outside of the bend fixture and separated by a 

FIGURE 3-11 GEOMETRY USED FOR FOUR-POINT BENDING TESTS 
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distance of 150 mm.  The sample is then loaded from the top by two additional 2.5 mm 

diameter rollers, which are separated from each other by 75 mm ( /2) and are inset 

from the bottom support roller by 37.5 mm.  A deflectometer is used to measure the 

center-point deflection while the displacement of the upper rollers is captured using the 

cross head displacement.  Like for the three-point tests, all samples were tested at a 

constant displacement rate of 1 mm/min.   

The load cell and deflectometer were calibrated prior to beginning the testing.  

Each sample again was tested in multiple orientations and each sample was tested 

multiple times.  Data from the load cell, the deflectometer and the cross head position 

were collected for each test.  In Figure 3-12 representative data collected from a four-

point test from a hexagonal solid sample is presented.  Both center-point data taken 

with the deflectometer and crosshead displacement are shown.  These points are 

labeled    and   , respectively, as shown in Figure 3-13.  The a, b and c designations 

represent three successive tests on each of the three sides of the hexagonal beam.  The 

nearly linear data in Figure 3-12 are from the deflectometer while the crosshead 

displacement data appears as two piece-wise linear curve sections.  The first section of 

the cross head response results from a “settling-in” of the steel rollers in the sample 

caused by localized deformation.  Additional discussion about localized deformation 

follows in Chapter 4.  
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ANALYSIS OF DATA 

As mentioned previously, one of the aims of this work was to compare the 

results of experiments to the predicted behavior using three models – an elastic 

continuum model as described by Gibson and Ashby, a conventional mechanics of solid 

analysis, and a full elastic analysis.  These models increase in complexity from the 

continuum model to mechanics of solids model to the full elastic analysis.   

CONTINUUM MODEL 

Classical continuum mechanics views bodies as homogenous and continuous and 

is used in engineering analysis of deformable objects under small strains.  When applied 

to honeycombs, which are loaded in out-plane bending, it predicts the flexure stiffness 

is only a function of the solid volume fraction of material and the Young’s modulus of 

the solid, thus the continuum model does not predict a scale dependence.  Predictions 

FIGURE 3-14: PHOTOGRAPH OF HEXAGONAL HONEYCOMB SAMPLE 
BEING TESTED IN THREE-POINT BENDING 
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using the continuum model can be made without load displacement data if an accurate 

value for the Young’s modulus is known.   

MECHANICS OF SOLIDS MODEL 

The well-known expression used for evaluating the three-point bending data is 

shown in Equation 3.1 where  ( )is the displacement in the x direction as a function of 

the length z as shown in Figure 3-9, and   is the length between the two supports on the 

bending jig, also as shown in Figure 3-9.  Equation 3.2 shows this expression evaluated 

at      ⁄  , the mid-point of the sample and the location of the deflectometer during 

testing. 

 ( )   {

  (       )

    
        

 

 

 (   )(          )

    
    

 

 
    

} `  Equation 3.1 

 (    ⁄ )  
   

    
        Equation 3.2 

The conventional mechanics of solids equation used to evaluate the four-point 

bending results is Equation 3.3, where  (    ⁄ )  is the displacement in the x 

direction as a function of the length z along the beam, evaluated at     ⁄  or the mid-

point of the beam, with L being the length between the two supports on the bending jig 

as shown in Figure 3-11 and a being determined by the location of the load as shown in 

the same figure.   
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 (    ⁄ )  
  

    
(       )    Equation 3.3 

In both three-point and four-point bending we can rearrange the equations and 

use the deflectometer and the load data, to solve for   , the beam flexural rigidity, 

which we have defined in the previous chapter.  

ANALYSIS OF BENDING DATA 

We have previously described a method for analyzing load and displacement 

data to determine flexural modulus.  This is traditionally done using a mechanics of 

solids approach.  The analysis presented here is an alternative method that utilizes 

elasticity theory to determine the relative displacement between two arbitrary points 

on the beam    and    as shown in Figure 3-13.  

Given a beam in pure bending, as shown in Figure 3-15, we can derive the 

following relationships 

   
   

 
         Equation 3.4 

Where,    is the component of stress in the z direction, 

  is the Young’s modulus, 

FIGURE 3-15: BEAM IN PURE BENDING 
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R is the radius of curvature of the beam,  

X is the position on the beam in the x-direction 
 

                          Equation 3.5 

Where ,   is the normal component of stress parallel to x-axis, 

    is the normal component of stress parallel to y-axis, 

      is the shearing-stress component in the xy-plane, 

    is the shearing-stress component in the xz-plane, and 

    is the shearing-stress component in the yz-plane 

 

  ∫         
 

 
∫     

   

 
     Equation 3.6 

 Where,  is the bending moment, 

     is the cross-sectional area, 

     is the Young’s modulus, 

      is the moment of inertia of a cross section with respect 

to the y axis, and 

  is displacement in the x direction 

 

From this equation we find 

 

 
 

 

   
           Equation 3.7 

The strains can be expressed as follows 

   
  

  
         Equation 3.8 

   
  

  
         Equation 3.9 

   
  

  
        Equation 3.10 
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 Where,   is the unit elongation parallel to z axis, 

     is the unit elongation parallel to x axis, 

     is the unit elongation parallel to y axis, 

    is the component of displacement parallel to z axis, 

    is the component of displacement parallel to x axis, and 

    is the component of displacement parallel to y axis 

 

Thus, 
  

  
 
 

 
         Equation 3.11 

  

  
   

 

 
         Equation 3.12 

  

  
   

 

 
         Equation 3.13 

Where,   is Poisson’s ratio 

From the shear stresses we have  

  

  
 
  

  
          Equation 3.14 

  

  
 
  

  
         Equation 3.15 

  

  
 
  

  
         Equation 3.16 

Rearranging Equation 3.11 and then integrating  

   
 

 
            Equation 3.17 

  
  

 
             Equation 3.18 

Where    is a function of x and y only.   
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We can then rearrange Equation 3.15 and Equation 3.16 and substitute Equation 

3.18 into both 

  

  
  

  

  
  

 (
  

 
    )

  
   

  

 
 
   

  
     Equation 3.19 

  

  
  

  

  
  

 (
  

 
    )

  
   

   

  
   Equation 3.20 

Then integrating these two expressions we get  

   
  

  
 
    

  
         Equation 3.21 

   
    

  
       ``   Equation 3.22 

Where    and    are functions of x and y only.  Plugging these back into 

Equations 3.12 and 3.13 

  

  
 
 ( 

  

  
 
    
  

   )

  
  

     

   
 
   

  
   

 

 
  Equation 3.23 

  

  
 
 ( 
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   Equation 3.24 

And recognizing 

    

   
 
    

   
          Equation 3.25 

Reducing the two expressions and rearranging 



 

52 
 

      
 

 
           Equation 3.26 

      
 

 
         Equation 3.27 

Integrating the two functions we obtain  

     
  

  
          Equation 3.28 

     
  

 
           Equation 3.29 

 

Where    is a function of y only and    is a function of x only.  Then substituting 

these back into Equation 3.21 and Equation 3.22 

   
  

  
 
    

  
  

  

  
        Equation 3.30 

   
    

  
  

  

 
         Equation 3.31 

Recalling Equation 3.14, we can take the derivative of Equation 3.30 and 

Equation 3.31 and substituting them into Equation 3.14 

   

  
 
     

    
 
   

  
 
     

    
 
  

 
      Equation 3.32 

Recognizing 

    

    
          Equation 3.33 

We can reduce Equation 3.32 to 

   

  
 
   

  
 
  

 
         Equation 3.34 

Returning to    we can write it in the form 
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                    Equation 3.35 

And separating and integrating Equation 3.34 we find 

   
   

  
              Equation 3.36 

                  Equation 3.37 

Substituting back 

   
  

  
     

   

  
 
   

  
           Equation 3.38 

        
  

 
            Equation 3.39 

  
  

 
                  Equation 3.40 

We now need to develop a set of boundary conditions so we can eliminate or 

determine the above constants. From Figure 3-13, we chose an origin as shown with the 

distance l, in the z-direction between    and     and we can evaluate   at (0,0,l) and at 

(0,0,-l) which by symmetry are equal. 

 (     )   (      )       Equation 3.41 

 
  

  
         

  

  
            Equation 3.42 

This can only be possible if   

            Equation 3.43 

Appling further boundary conditions 

 (     )           Equation 3.44 

And since all other terms cancel out 
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            Equation 3.45 

In a similar manner, we can obtain     

  (0,0,0)=0        Equation 3.46 

            Equation 3.47 

We see that  

  

  
          Equation 3.48 

  

  
           Equation 3.49 

Leading to  

            Equation 3.50 

            Equation 3.51 

leaving only    to resolve.  To do this we choose two points    and    as shown 

in Figure 3-13 with a Cartesian coordinate system (x,y,z) with its origin set at the center 

of the beam cross section.  

    ( 
 

 
    )       Equation 3.52 

    (
 

 
     )       Equation 3.53 

Plugging back in and further reducing we obtain the difference between    and 

   and eliminate    
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(     )  
  

  
 
   

   
      Equation 3.54 

Rearranging, we have a relationship that can be used to determine the flexure 

stiffness based on the relative displacement of    and     

   
   

 (     )
        Equation 3.55 

This relationship can now be used to evaluate the data taken from the four-point 

bending tests.   

 

NORMALIZATION OF THE FLEXURE STIFFNESS 

As discussed in Chapter Two, it is necessary to normalize the flexural stiffness to 

compare the predictions of the Gibson and Ashby continuum model to those obtained 

from a mechanics of solids analysis and to experimental results.  Although the choice of 

normalization methods is somewhat arbitrary and does not influence the findings, we 

have chosen to normalize the data to the continuum flexure stiffness as discussed in 

Chapter Two. 

RESULTS  

We start by presenting results and observations from the SLS build process itself.  

Then we present the results of the testing from both the three-point and four-point 

testing of both the square-celled and hexagonal-celled samples.  First, we address the 

square cell sample sets at low volume fractions, then the higher volume fraction 
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samples.  We label the four cases presented as square-thin, square-thick, hexagonal-

thin, and hexagonal-thick.  For each case we present first our predictions using the 

continuum model and from the mechanics of solids analysis, and then we present the 

experimental results of the three-point and four-point bending tests.  The experimental 

results for the both the three-point and four-point bending tests were analyzed using 1) 

conventional beam calculations using the normalized flexure stiffness versus specimen-

to-cell size ratio and 2)using the elasticity solution presented in the previous section. 

GENERAL RESULTS REGARDING SAMPLES PRODUCED USING SELECTIVE LASER SINTERING  

The dimensional tolerances of sample parts built with the SLS system was good-

to-excellent.  In Table 3-3 we present the data from the measurement of cross sectional 

area of the square samples.  The target dimension was 20.00 mm x 20.00 mm and all of 

the samples exhibited about a two percent RMS error or less in the target dimensions.  

Recalling that a set of solid parts were built in three orientations (in the x-y 

plane, built “on a corner” in the x-y plane and built in the z-axis plane) these samples 

were tested to determine their flexural stiffness.  From the results of these tests we saw 

less than a two percent variation in flexural stiffness and thus we concluded that the 

stiffness of parts built using the SLS fabrication process is not dependent of build 

orientation.  
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Table 3-3: Square-celled honeycomb samples, the dimensional tolerance that were obtained, and the 
associated errors in the cross-sectional areas 

Sample Number 
Cross Section Size 

(target 20.00 x20.00 (mm x mm)) 
RMS error 

Square  #1 20.06 x 20.32 1.63% 
Square  #2 20.04 x 20.39 1.96% 
Square  #3 20.13 x 20.22 1.28% 
Square  #4 20.19 x 20.07 1.01% 
Square  #5 20.07 x 20.11 0.65% 
Square  #6 20.10 x 20.06 0.58% 
Square  #7 20.40 x 19.94 2.02% 
Square  #8 20.25 x 19.93 1.30% 
Square  #9 20.37 x 20.06 1.87% 
Square  #10 20.07 x 20.21  1.11% 
Square  #11 19.86 x 20.39 2.07% 
Square  #12 20.07 x 20.16 0.87% 



 

58 
 

THREE-POINT AND FOUR-POINT BENDING RESULTS FOR SQUARE-CELLED HONEYCOMBS: 

FIFTEEN PERCENT SOLID FRACTION 

We start by presenting the normalized flexure stiffness as predicted by the 

Gibson and Ashby continuum model.  This is shown in Figure 3-16 for the first set of 

samples, the square-cross section samples with the thinnest wall sections.  Here we see 

the continuum model predicts no size effects and the normalized flexure stiffness is 

simply one for all values of R.  Next, we present in Figure 3-17 the predictions results 

from the mechanics of solids model.  Here we see that the normalized flexure stiffness is 

predicted to vary as a function of the specimen-to-cell size ratio with the flexure 

stiffness increasing to around 180% of the continuum value when the specimen-to-cell 

size ratio is one and dropping to a 120% of continuum stiffness at R equal four.  

Figure 3-18 shows the first of the experimental data and compares the 
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experiments to the models.  The results reported on this graph only include two values 

of R, R = 1 and R =2.  This is because of limitations of the SLS process because the wall 

thickness of the samples with specimen-to-cell size ratios of three and above where too 

thin to build on the system available.  While only samples with specimen-to-cell size 

ratios of R=1 and R=2 were successfully built for these experiments, it worth noting that 

multiple samples of the R=1 and the R=2 samples were built and tested.  We see that 

both of the data points for the samples tested in three-point loading lie below the 

predictions of the mechanics of solids model, and one of the points also does not agree 

with the continuum model .  
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Figure 3-19 and Figure 3-20 respectively present results of experimental four 

point bending tests, but with the same results analyzed using both the mechanics of 

solids approach (Equation 3.3) and the elasticity approach (Equation 3.55).  The 

elasticity approach is based on the difference in the relative positions of two points on 

the beam when in four point bending.  Those points are Ub and Ua as defined in Figure 3-

13.  From Figures 3-19 and 3-20 we see that the data for four-point bending agree 

equally well with the mechanics of solids model, whichever analysis method is used.  

Note that the four-point bending measurements analyzed using the elasticity solution 

resulted in a large error bar; this data can be considered equivalent.  We will discuss our 

interpretation of these results a little later after the remainder of the results are 

presented, but at this point we note that by obtaining a valid elastic measurement, we 

are in effect verifying that the beam is bending to the curved shaped predicted by 

elasticity. Finally in Figure 3-21 we present all the modeled and experimentally data for 

the square sample set with fifteen volume percent solids. 
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FIGURE 3-18:  NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, FIFTEEN 
VOLUME PERCENTAGE CONTINUUM MODEL PREDICTIONS, MECHANICS OF SOLIDS MODEL AND EXPERIMENTAL 3PT BEAM 

MEASUREMENTS ANALYZED USING BEAM THEORY 
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FIGURE 3-19: NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, FIFTEEN 
VOLUME PERCENTAGE CONTINUUM MODEL PREDICTIONS, MECHANICS OF SOLIDS MODEL AND EXPERIMENTAL DATA TESTED IN 

4PT BENDING AND ANLAYZED USING BEAM THEORY 
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FIGURE 3-20 NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, FIFTEEN 
VOLUME PERCENTAGE CONTINUUM MODEL PREDICTIONS, MECHANICS OF SOLIDS MODEL AND EXPERIMENTAL DATA TESTED IN 

4PT BENDING AND ANLYZED USING ELASTICITY THEORY 
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FIGURE 3-21 NORMALIZED FLEXURE STIFFNESS VERSES SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, FIFTEEN 
VOLUME PERCENTAGE ALL EXPERIMENTAL DATA AND MODEL PREDICTIONS 
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THREE-POINT AND FOUR-POINT BENDING RESULTS FOR SQUARE-CELLED HONEYCOMBS: 

TWENTY FIVE PERCENT VOLUME FRACTION  

Starting in Figure 3-22 and continuing to Figure 3-27 we present experimental 

and predicted results for the square-celled thick-walled sample set.  We start with the 

predictions from the Gibson and Ashby continuum model in Figure 3-22 and the 

predictions of the mechanics of solids model in Figure 3-23.  Both models predict a 

result similar to what we described for the 0.15 volume fraction samples.  As noted 

previously, the continuum model predicts that there is no size effect and the normalized 

flexure stiffness is again unity.  Additionally the normalized flexure stiffness from the 

mechanics of solids model is predicted to vary as a function of the specimen-to-cell size 

ratio, with the flexure stiffness increasing to slightly less than the 180% of the 

continuum value when the specimen-to-cell size ratio is one and falling to about a 120% 

of continuum stiffness at a specimen-to-cell ratio of four. 
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FIGURE 3-22: NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, TWENTY 
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Figure 3-24 shows the results of the three-point testing for the thicker walled 

square specimen set.  This set of data, in contrast to the square celled 0.15 volume 
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FIGURE 3-23 NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, TWENTY 
FIVE VOLUME FRACTION, CONTINUUM MODEL AND MECHANICS OF SOLIDS PREDICTIONS 
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FIGURE 3-24 NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, TWENTY 
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fraction samples included specimens with R= 1 to 4, thus giving us a more complete set 

of results.  From the data in Figure 3-24 we see the measured flexure stiffness is less 

than predicted by the mechanics of solids model but has the same trend as the 

mechanics of solid predictions.  Comparing the three-point bending data with the 

continuum model we see the measured flexure stiffness at R=1 is greater than the 

continuum prediction and decreases as the specimen-to-cell ratio increases.  At R=3 and 

R=4 the measured flexure stiffness is less than the Gibson and Ashby continuum model 

prediction. 
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FIGURE 3-25 NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, TWENTY 
FIVE  VOLUME PERCENTAGE CONTINUUM MODEL PREDICTIONS, MECHANICS OF SOLIDS MODEL AND EXPERIMENTAL DATA TESTED 

IN 4PT BENDING AND ANALYZED USING ELASTICITY THEORY 
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Figure 3-25 and Figure 3-26 show the results of the four-point testing for the 

square-celled, 0.25 volume fraction sample set, first evaluated using the mechanics of 

solids model and then using the elasticity analysis.  Both analysis methods resulted in a 

measured flexure that closely agrees with the predictions of the mechanics of solids 

model.  The elasticity analysis of the experimental four-point data showed normalized 

flexure stiffness slightly less the mechanics of solid predictions, but again both analysis 

methods yield good agreement with the mechanics of solids model predictions.  Finally 

in Figure 3-27 we present all of the predictions and experimental data for the square 

sample set with twenty-five volume percent.   
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FIGURE 3-26: NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, TWENTY 
FIVE VOLUME PERCENTAGE CONTINUUM MODEL PREDICTIONS, MECHANICS OF SOLIDS MODEL AND EXPERIMENTAL DATA TESTED 

IN 4PT BENDING AND ANALYZED USING ELASTICITY THEORY 
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FIGURE 3-27 NORMALIZED FLEXURE STIFFNESS VERSES SPECIMEN-TO-CELL SIZE RATIO: SQUARE-CELLED HONEYCOMBS, 
TWENTYFIVE VOLUME PERCENTAGE ALL EXPERIMENTAL DATA AND MODEL PREDICTIONS 
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THREE-POINT AND FOUR-POINT BENDING RESULTS FOR HEXAGONAL-CELLED 

HONEYCOMBS: THIN WALLED SAMPLES 

We next present the results from testing of the thin walled samples with a 

hexagonal cell structure, keeping the cell size constant and increasing the specimen size 

to vary the specimen-to-cell size ratio.  We present in Figure 3-28 and Figure 3-29 the 

predictions of the continuum models and the mechanics of solids model.  The pattern in 

the data is similar to what we observed in the corresponding figures for the square-

celled sample sets.  The continuum model predicts no size effect and the mechanics of 

solids model predicts an increase in stiffness for small specimen-to-cell size ratios with 

that effect decreasing with increasing R.  In Figure 3-30 we see the results of the three-

point testing for the thinner walled hexagonal specimen set.  Again we report the 
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FIGURE 3-28: NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: HEXAGONAL-CELLED HONEYCOMBS, THIN 
WALLED SAMPLES, CONTINUUM MODEL PREDICTIONS 
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measured normalized flexure stiffness for the three point data analyzed using Equation 

3.1.  We see the measured flexure stiffness is significantly lower than that predicted by 

the mechanics of solids model.  The trend in the measured flexure stiffness appears to 

be similar to that predicted by the mechanics of solids model, just offset to lower values 

of stiffness.   Comparing the three-point experimental data to the continuum prediction 

for the R=1 case, the measured value of the experimentally measured flexure stiffness is 

slightly higher.  For R=2 and above the measured flexure stiffness decreases and drops 

below the continuum model predictions. 

In Figure 3-31 we present the results of the experimental four-point data 

analyzed using beam theory.  Here we see a different result from that found for the 

square-celled specimens.  The measured normalized flexure stiffness is less than the 
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FIGURE 3-29: NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: HEXAGONAL-CELLED HONEYCOMBS, THIN 
WALLED SAMPLES, CONTINUUM MODEL AND MECHANICS OF SOLIDS PREDICTIONS 
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predictions of the mechanics of solids model, again with a general trend similar to the 

mechanics of solids model yet offset in a similar manner to what we observed in the 

three-point bending of the square-celled samples.  There is no clear relationship 

between the four point data using the beam analysis and the continuum predictions.  

In Figure 3-32 we present the same four-point data set but now analyzed using 

the elasticity approach.  Valid elasticity calculations were obtained only for R=1 

specimen-to-cell ratio hexagonal sample.  The data from the hexagonal samples with 

specimen-to-cell size ratios above one had excessive localized deformation so no valid 

analysis was possible.  However the data for the R=1 specimen-to-cell size ratio did yield 

a result that matched the mechanics of solids model.  Finally in Figure 3-33 we present 

all the predicted and experimental data for the thin walled regular hexagonal sample set  
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FIGURE 3-32: NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: HEXAGONAL-CELLED HONEYCOMBS, THIN 
WALLED SAMPLES, CONTINUUM MODEL PREDICTIONS, MECHANICS OF SOLIDS PREDICTIONS AND EXPERIMENTAL 4PT BEAM 

MEASUREMENTS ANALYZED USING ELASTICITY THEORY 
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THREE-POINT AND FOUR-POINT BENDING RESULTS FOR HEXAGONAL-CELLED 

HONEYCOMBS: THICK WALLED SAMPLES 

Finally, we present the results from testing of the thick walled hexagonal 

samples.  We present in Figure 3-34 and Figure 3-35 the predictions of the continuum 

models and the mechanics of solids model.  The pattern in the data we see here is 

similar to what we observed in the preceding sample sets.  The continuum model 

predicts no size effect and the mechanics of solids again shows increased flexural 

stiffness.   

In Figure 3-36 we see the results of the three-point testing for the thicker walled 

hexagonal specimen set.  Comparing the three-point data to the continuum model 

predictions, there is poor agreement.  From the measured flexure stiffness for the 
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FIGURE 3-34: NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: HEXAGONAL-CELLED HONEYCOMBS, THICK 
WALLED SAMPLES, CONTINUUM MODEL PREDICTIONS 
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three-point data analyzed using Equation 3.1, we see the measured flexure stiffness is 

lower than that predicted by the mechanics of solids model.  The trend in the measured 

flexure stiffness is similar but offset relative to the slope of the mechanics of solids 

model predictions.   

In Figure 3-37 we present the results of the experimental four-point data 

analyzed using beam theory.  Here we again observe a different result for the regular 

hexagonal honeycombs than we saw for the square-celled honeycombs.  The measured 

flexure stiffness of the regular hexagonal-celled honeycombs is less than the predictions 

of the mechanics of solids model, again with a general trend similar to the trend of the 

mechanics of solids model yet offset in similar manner to what we observed in the 

three-point bending of the square celled samples.  There is again poor agreement 
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FIGURE 3-35: NORMALIZED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO: HEXAGONAL-CELLED HONEYCOMBS, THICK 
WALLED SAMPLES, CONTINUUM MODEL AND MECHANICS OF SOLIDS PREDICTIONS 



 

75 
 

between the experimental data measured in four-point loading and the continuum 

predictions. 

In Figure 3-38 we show the same four-point data set but analyzed using the 

elasticity approach and the crosshead displacement and the center-point displacements.  

As was the case for the thin walled hexagonal samples, valid calculations were obtained 

only for the R=1 specimen..  The other samples with specimen-to-cell size ratios above 

one had excessive localized deformation so no valid analysis was possible.  However the 

data for the R=1 specimen-to-cell size ratio did yield a result that matched the 

mechanics of solids model within the calculated error.  Finally in Figure 3-39 we present 

all the model predictions and experimental data for the thick walled regular hexagonal 

sample set.   
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Chapter 4:  Discussion of experimental results 

INTRODUCTION 

The goal of this chapter is to determine under what conditions appropriate 

models can be used to predict the flexural response of honeycomb structures loaded in 

out-of-plane bending.  We do this by further comparing the predictions of our models to 

our experimental results.  Our predictions in Chapter Two showed that the continuum 

model and the mechanics of solids model converged for high R values.  For example, as 

shown in Figure 2-8, for the square celled, single-walled, honeycombs, for R values 

greater than 20, the predictions agree within five percent or less.  Thus for high values 

of R, we have shown both models are equally valid.    

In the case of the samples sets tested in Chapter Three, the R values where less 

than five and none showed good agreement with the predictions of the continuum 

model.  The mechanic of solids model predictions were shown to be are a much better 

fit to the experimental data than the continuum model.  In the section that follows we 

proceed to examine under what conditions our testing methods agree with the 

mechanics of solids predictions and then, attempt to analyze and explain the cases 

where the testing does not agree with the predictions. 
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SPECIMEN LENGTH-TO-HEIGHT RATIO 

The discussion of these results is complicated by the two different sample set 

geometries and the different construction rules that are required to build the sample 

sets.  Recall that the square-celled sample set was designed with a constant specimen 

size and a varying cell size while the hexagonal-celled sample set was designed with a 

fixed cell size and with a varying specimen size.  The practical implications of this is that 

the square-celled samples all have the same height while the height of the hexagonal-

celled samples increases as the specimen-to-cell size ratio increases.  Since both our 

testing methods, three-point and four-point, flexure were conducted with a fixed 

bending length, as shown in Figures 3.9 and 3.11, this resulted in length-to-height ratios 

that remained constant (7.5) for the square-celled honeycombs and increased with 

increasing specimen-to-cell size ratio for the hexagonal-celled honeycombs.  The length-

to-height ratio of hexagonal-celled samples was 10.5 for R=1, 9.8 for R=2 and 5.5 for 

R=3.  For the samples with larger specimen-to-cell size ratios, R=4, 5 and 6, the length-

to-height ratio of these samples was so low that the experimental data from testing 

these samples was not used because the slender beam assumption was violated.  This 

difference in the sample sets and the nature of the results themselves dictate that we 

look at each of the three experimental methods in combination with the two sample 

architectures.   
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EXPERIMENTAL RESULTS COMPARED TO MECHANICS OF SOLIDS PREDICTIONS 

Figures 4-1 and 4-2 show the ratio of the measured flexure stiffness to the 

predicted flexural stiffness based on a mechanics of solids model for the three-point 

bending of the square-celled and hexagonal-celled samples, respectively.  In Figure 4-1 

we see than the measured stiffnesses for all of the square-celled samples are about 75% 

or three-quarters of the predicted flexure stiffnesses.  Figure 4-2 shows that the 

measured stiffnesses for the hexagonal-celled are also lower than the mechanics of 

solids predictions.  However, for the hexagonal-celled specimens the ratio of measured-

to-predicted stiffness decreases as the specimen-to-cell size ratio increases. The ratio of 
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Three-point bending: using beam theory 

Square-Cells - .15 volume fraction

Square-Cells - .25 volume fraction

FIGURE 4-1 : THREE-POINT BENDING, SQUARE-CELLED SAMPLES, MEASURED FLEXURE STIFFNESS/PREDICTED FLEXURE STIFFNESS 
VERSUS SPECIMEN-TO-CELL SIZE RATIO 
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measured-to-predicted stiffness is also lower for the thin walled sample set compared 

to the thick walled set.   

Figures 4-3 and 4-4 present the same results for the four-point bending data 

analyzed using beam theory, first for the square-cells and then in Figure 4-4 for the 

hexagonal-cells.  Figure 4-3 shows generally good agreement between the predicted 

values and the experimentally obtained values for all values of the specimen-to-cell size 

ratios, while we see in Figure 4-4 the measured stiffness for the hexagonal-celled 

honeycombs is again below the predictions and decreases with increasing specimen-to-

cell size ratio.    

From these results we see that only the four-point bending of the square-celled 
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Three-point bending: using beam theory 

Hexagonal-Cells - thin wall

FIGURE 4-2: THREE-POINT BENDING, HEXAGONAL-CELLED SAMPLES, MEASURED FLEXURE STIFFNESS/PREDICTED FLEXURE 
STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO 
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samples, with a height-to-length ratio of 7.5 resulted in a measured stiffness consistent 

with the mechanics of solids predictions.  The measured stiffnesses of the hexagonal-

celled samples, which have height-to-length ratios both above and below the value for 

the square-celled samples, were not consistent with the mechanics of solids predictions.  

This strongly suggests that the minimum length-to-height ratio needed to obtain 

agreement between the measurement and model is different for the square-celled 

samples and the hexagonal-celled samples, with the hexagonal-celled samples requiring 

a larger length-to-height ratios.  Alternatively there could be additional effects that we 

have not accounted for which are more significant in the hexagonal-celled samples than 

in the square-celled samples.   
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Four-point bending: using beam theory 

Square-Cells - .15 volume fraction

Square-Cells - .25 Volume fraction

FIGURE 4-3-  FOUR-POINT BENDING – EVALUATED USING BEAM THEORY, SQUARE-CELLED SAMPLES, MEASURED FLEXURE 
STIFFNESS/PREDICTED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO 
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We look to the results of the four-point bending tests that were analyzed using 

the elasticity analysis for more insight into this issue.  When we examine the four-point 

elasticity data we go from relying on a single point to determine the displacement of the 

beam as it is being bent to using two points of measurement along the beam.  It is the 

difference between these two points that are used to evaluate the flexure stiffness as 

explained in Chapter Three.   

In Figure 4-5 we present the flexure stiffness, again normalized to the mechanics 

of solid predicted flexure stiffness, for the square-celled four-point data, and analyzed 

using the elasticity theory.  We see here good agreement between the predictions and 

measured values, like we saw for the square-celled four-point bending data analyzed 

using conventional beam theory that utilizes only a single displacement point.  In Figure 

4-6 the normalized flexure stiffness for the hexagonal-celled four-point bending data 

analyzed using the elasticity solution is presented.  Here we were only able to report a 

value for the sample with the specimen-to-cell size ratio of R=1.  Samples with larger 

values of R did not yield a meaningful result.  The reasons for this will be discussed in 

the section that follows. 
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Four-point bending: using beam theory 

Hexagonal-Cells - thin wall

Hexagonal-Cells - thick
walled

FIGURE 4-4: FOUR-POINT BENDING – EVALUATED USING BEAM THEORY, HEXAGONAL-CELLED SAMPLES, MEASURED FLEXURE 
STIFFNESS/PREDICTED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO 

1.04 1.02 
0.96 0.94 0.97 

0.93 

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1 2 3 4

M
ea

su
re

d
 F

le
xu

re
 S

ti
ff

n
es

s/
P

re
d

ic
te

d
 

Fl
ex

u
re

 S
ti

ff
n

es
s 

Specimen-to-cell size ratio 

 
Four-point bending: using elasticity 

Square-Cells - .15 volume fraction

Square-Cells - .25 Volume fraction

FIGURE 4-5  FOUR-POINT BENDING – EVALUATED USING ELASTICITY THEORY, SQUARED-CELLED SAMPLES, MEASURED FLEXURE 
STIFFNESS/ PREDICTED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO 
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Four-point bending: using elasticity 

Hexagonal-Cells - thin walled

Hexagonal-Cells - thick walled

FIGURE 4-6 FOUR-POINT BENDING – EVALUATED USING ELASTICITY THEORY, HEXAGONAL-CELLED SAMPLES, MEASURED FLEXURE 
STIFFNESS/PREDICTED FLEXURE STIFFNESS VERSUS SPECIMEN-TO-CELL SIZE RATIO 
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ELASTIC BENDING AND CORRECTIONS FOR LOCALIZED ELASTIC/PLASTIC DEFORMATION 

In Figure 4-7 we show the expected geometric relationship in four-point bending 

of the points    and     where    is measured by the displacement of roller and    is 

measured in the center of the beam using a deflectometer. In this figure the location of 

the bottom rollers would correspond with point where the upward acting forces labeled 

P/2 are shown.  When the beam is in pure elastic bending as shown in Figure 4-7, we 

expect the displacement of    to be greater than for   .   

Observations of the data showed two general patterns to the data taken during 

the four-point bending.  Figure 4-8 shows representative raw load versus deflection data 

from testing of the square-celled samples.  As shown in Figure 4-8, the data from the 

center-point measurement,    , is reasonably linear for all displacements, while the 

crosshead displacement data,   , is piece-wise linear with a first linear section at one 

slope and a second section at a significantly different slope.  Figure 4-9 shows 

FIGURE 4-7 SCHEMATIC SHOWING THE LOCATION OF THE DISPLACEMENTS USED FOR THE ELASTICITY ANALYSIS 
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schematically the pattern seen in this data set and how it can be corrected to determine 

what values to use in the elasticity analysis.  The conventional explanation for this 

behavior is that the roller is “settling-in” during the first section and after some period 

that “settling-in” is completed.  This “settling-in” behavior is not observed in the 

deflectometer data.  To account for this we can obtain a measure of the flexure 

stiffness, separate from the localized “settling-in,” by shifting the second part of the     

linear-piece wise data to intersect the origin, as shown in Figure 4-9.  Then   
  can be 

used in place of    in Equation 3.55 to solve for   .  This was the procedure used to 
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FIGURE 4-8: REPRESENTATIVE DATA FROM FOUR-POINT BENDING TESTS (SQUARE CELLED SAMPLES) 
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obtain the data shown in Figure 4-5 for all the squared-celled samples.  When evaluated 

in this manner our measured flexure stiffness showed good agreement with the 

mechanics of solids model predictions.   

A check calculation was done to determine if the observed settling behavior was 

of an expected magnitude.  Using a compression model with the area of the total wall 

thickness used as the area we estimated a deflection of between 0.091 mm and 0.14 

mm, for the sample in Figure 4-8, which compares well with experimental measured 

value of approximately 0.1 mm. 

An example of the second observed pattern of the data, collected from the 

testing in the hexagonal-celled samples, is presented in Figure 4-10.  While at first 

difficult to observe, close examination shows that both the data collected from the 

center-point deflectometer,    , and the cross-head position,    , show piece-wise 

FIGURE 4-9 ONE PATTERN OF DATA SEEN FROM FOUR POINT TESTING 
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linear behavior.  Figure 4-11 shows schematically the piece-wise behavior observed for 

the hexagonal-celled samples and how the corrections can be implemented to 

determine the relevant parameters for the elasticity analysis.  Since we are measuring 

    at a place where there is no roller contact this cannot be attributed to a “settling-in” 

phenomena.  An additional explanation is the behavior results from a localized 

elastic/plastic deformation that is propagating from the point of contact of the roller, 

along the beam.  Another possibility is that excessive deformation is elastic buckling 

from surface imperfections in the structure.  Visual inspection of the samples during 

testing did not show any signs of large scale buckling.  However this is not considered 

sufficient to eliminate elastic buckling since the deformations could be smaller than 

what would be visually detectable.  

Again we can separate the localized deformation from what should be the larger 

elastic bending response, by shifting the second part of the piece-wise linear curves for 

both     and     to intersect the origin as shown in Figure 4-11.  We then obtain a   
   

and a   
   whose difference can be used in Equation 3.55 to calculate flexure stiffness.  

While the analysis suggested in Figure 4-11 offers some insight in the evaluating the 

results of the four-point bending of the hexagonal-celled samples, it is important to note 

that a solution for the flexure stiffness using the elasticity analysis was only obtained for 

the samples with a specimen-to-cell size ratio of one.  For the samples with the higher 

specimen-to-cell size ratios either one or both of the measured curves, never reached 

the second stage, were the effects of localized elastic/plastic deformation were no 
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longer dominant.  For the hexagonal-celled samples with larger specimen-to-cell size 

ratios, the deformation is dominated by this localized deformation.  This effect is also 

accentuated by the design choices made when designing the hexagonal-celled samples.  

When designing the sample set no open cells were allowed.  This resulted in samples 

where the aspect ratio of the sample, increased quicker that the contact area between 

the roller and the sample 
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FIGURE  4-10 REPRESENTATIVE  DATA FROM FOUR POINT BENDING TESTS (HEXAGONAL-CELLED SAMPLES) 

FIGURE 4-11 ONE PATTERN OF DATA SEEN FROM FOUR POINT TESTING 
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ADDITIONAL DISCUSSION 

Recalling that volume fraction is the main parameter used in the continuum 

model, we saw that varying the volume fraction resulted in similar changes in stiffness in 

both the model and the samples for both the square-celled and hexagonal-celled 

samples.  In our sample set the thinner walled structures, had the lower volume fraction 

and were predicted to have a greater variation from the continuum model stiffness than 

thicker-walled set.  We observed this predicted trend in our experiments, along with an 

additional effect which showed that the lower volume fraction, the greater the effect of 

localized elastic/plastic deformation.     

The length-to-height ratio of the sample is an important geometric parameter 

utilized in three-point and four-point bending to determine the validity of a given 

measurement.  Slender beam theory gives us a rule of thumb that to ignore shear 

deformations we need a length-to-height ratio above some value, usually given as 

between 5-10.  Our samples length-to-height ratios ranged between 5.5 and 10.5.  For 

both geometries, we concluded that for three-point testing this range of ratios was too 

low to yield accurate stiffness for honeycomb structures.  For conventional four-point 

testing we have different results based on cell geometry.  Flexure stiffnesses for the 

square-celled samples were correct while values for the hexagonal-celled samples were 

not.  This is an interesting and somewhat unexpected result and would suggest that a 

higher length-to-height ratio is needed for hexagonal-celled honeycombs.   
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Finally some comments regarding the influence of design constraints on the 

flexure stiffness are warranted.  When using a small specimen-to-cell size ratio, one can 

have an architecture that is either limited to closed-celled elements or alternatively one 

that allows unconnected elements.  These are often referred to as “dangling” or non-

load-bearing elements.  While this work was limited to using closed-celled elements, 

limiting the design to closed-celled architecture combined with the geometric 

considerations also created limits to the way that the resulting hexagonal samples could 

be loaded.  This is one likely component of the difference in increased susceptibility to 

localized elastic deformation that we observed in the hexagonal-celled samples.  From 

this we conclude that for use in non-sandwich low R applications the square-celled 

honeycomb is easier to implement in practical application because they exhibit fewer 

constraints on geometry while allowing only closed celled honeycombs. 
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Chapter 5: Conclusions and future work 

CONCLUSIONS 

Mechanics of solids predicts a positive size-effect relative to continuum model 

predictions in the flexure stiffness of a honeycombed beam loaded in out-of-plane 

bending.  We present a method of determining the magnitude of that effect for several 

different methods of constructing or assembling square-celled and hexagonal-celled 

materials, using both single-walled and doubled-walled construction methods.  The 

predictions are made by deriving a structure-dependent equation for the variation of 

the second moment of inertia and comparing this to the second moment of inertia to a 

solid beam with equivalent cross-sectional area.  The magnitude of the predicted size-

effect is maximum at specimen-to-cell size ratio of 1 and at low volume fractions of 

solids where it is upto 200% of the continuum value.  It drops off quickly as R, the 

specimen-to-cell size ratio, increases, and converges with the continuum model for R 

values greater than about 20.  The predicted size effect is of the same order for both 

square-celled and hexagonal-celled materials and is greater for single-walled 

construction than for double-walled.  For all cases the predicted effect decreases 

smoothly as the volume fraction of solid increases. 

Building test samples using Selective Laser Sintering (SLS) proved to be a 

successful method of creating honeycomb test samples with variable geometries and 
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specimen-to-cell size ratios, and we conclude that additive manufacturing methods and 

SLS in particular are well suited for further investigation of the elastic response of 

honeycombs.   

Obtaining meaningful elastic moduli from mechanical testing of honeycombs 

materials with small specimen-to-cell size and length-to-height ratios is difficult. Our 

results show that data is easy to obtain but difficult to interpret.  The results from 

standard three-point flexure tests, at the length-to-height ratios tested, (L/h = 5.5 to 

10.5) did not agree with predictions for either square or hexagonal-celled samples.   

Four-point bending gave mixed results; valid results were obtained for the square-celled 

geometries but not for the hexagonal-celled geometries.   

The derivation of a closed form solution using an elasticity model for the 

response of the four-point bending configuration was a key tool in this work.  By 

recording displacement data at two points it allowed us to separate the elastic bending 

from the non-bending deformation.  We postulated that the source of the non-bending 

deformation was localized, elastic/plastic deformation that occurs between the loading 

rollers and the specimen’s surface.  We believe that the localized deformation is 

significant in the honeycomb materials we tested.   
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 Figures 5-1 to 5-4 summarize our test results.  Figure 5-1 is a summary of the 

results for the thin walled hexagonal-celled samples.  The left axis shows the measured 

flexure stiffness versus the predicted stiffness for the three testing and analysis methods 

used.  On the right axis of the graph we show the length-to-height ratio of the tested 

samples.  Only for the four-point testing, evaluated using elastic analysis, did the 

measured stiffness match the predicted stiffness.  Figure 5-2 is a similar summary for 

the thick walled hexagonal-celled honeycombs, with the same axis and the same general 

result showing the four-point elasticity method matching with predicted results.  Figures 

FIGURE 5-1: SUMMARY OF THIN WALLED HEXAGONAL-CELLED SAMPLES 
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5-3 and 5-4 show the same data for the square-celled honeycombs.  Here we see that 

both methods of evaluating the four-point test data yielded valid results.   

The validity of the test data can be determined from the examination of the 

sample data.  If the load versus crosshead displacement curve is piece-wise linear than, 

the modulus can likely be determined.  Two methodologies were presented for 

determining flexural stiffness depending on whether or not the deflectometer data is 

linear or not.  If the load versus crosshead displacement is linear, then examination of 

the deflectometer data can determine whether valid data can be obtained.   

FUTURE WORK 

One area of follow-up work suggested by this project is to better understand the 

difference in geometry-based response to the localized deformation between the 

square-celled and the hexagonal-celled honeycombs.  This is a difficult problem to 

approach from a modeling standpoint.  One approach would be to construct a 3D finite 

element model; however preliminary work has highlighted the difficulty in this 

approach.  The required model would need to model both surface contact and bending 

as three dimensional solids, at very different scales, leading to extremely large models, 

with the associated difficulties in the development of converging boundary conditions.   
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An additional area for follow up work would be to determine experimentally the 

length-to-height ratio at which three-point bending yields meaningful results for out-of-

plane bending stiffness of honeycomb beams.  This could require the design and 

building of a new sample set that can span a greater range of length-to-height ratios and 

modifications of three-point and four-point testing fixturing.   

FIGURE 5-2: SUMMARY OF THICK WALLED HEXAGONAL-CELLED SAMPLES 
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FIGURE 5-3: SUMMARY OF THIN-WALLED SQUARE-CELLED SAMPLES 
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FIGURE5-4: SUMMARY OF THICK WALLED SQUARE-CELLED SAMPLES 
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Appendix A: Elastic Response of Honeycomb Materials 

This work is specifically directed at elastic response of honeycomb structures.  

This can be further examined by separating in-plane and out-of-plane properties.  In 

plane elastic properties are defined by five constants     ,        ,     and     where  

    and      are respectively the Young’s modulus and Poisson’s ratio in the direction   , 

while             are the Young’s modulus and Poisson’s ratio for transverse or    

direction.       is the in plane shear modulus.  Continuum treatment for in-plane loading 

of an irregular honeycomb structure assumes thin walls and that the elastic deformation 

is the result of pure bending of the honeycomb walls.  The following relationships for  

Figure taken from Gibson and Ashby 
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   and     as function of the modulus of the solid material  are developed by Gibson 

and Ashby 1988 ,  
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For regular honeycombs with uniform thickness  h=l  and θ=30  these 

relationships reduce to the same expression 

  
 

  
 
  
 

  
 
 

√ 
(
 

 
)
 

 

Several comments must made about these results, first is regarding  the thin wall 

assumption, by assuming thin walls shear and axial deformation has been ignored.  An 

additional term is proposed by Gibson and Ashby to account for this, giving 
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For completeness we present similarly developed expressions for      ,     and 
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And with the regular hexagonal structure these reduce to  
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We now turn our attention to out-of-plane elastic response , which is the 

primary focus of this work.   Five additional moduli are needed to describe the out-of-

plane deformation response of honeycombs.  These include two shear moduli      , and 

     , two Poisson’s ratios      and    , and an additional Young’s modulus     .  Again 

drawing on the classical continuum mechanics theory as we see that the   

   
     

     

The shear moduli are significantly more complicated and while presented below 

are not significantly addressed in this work. 
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Finally we turn our attention to the continuum construction of  the out-of-plane 

Young’s modulus   .  
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This is modulus will be focus of much of the work that follows and is used for 

both out-of-plane bending and out-of-plane compression and tension.  

Summarizing the elastic response of a regular honeycomb we find the following 

compliance matrix 
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Where  
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And in-plane isotropy means that 

    
  

 (     )
 

And from the matrix  

  

   
  

 
   
  

 

Reducing the number of independent elastic constants for regular honeycomb to 

five   ,    ,   ,      and     
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Appendix B: DuraForm PA Plastic; 3DSystem; Technical Data Sheet 
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Appendix C: PA250, Advanced Laser Materials, LLC: Technical Data 

Sheet 
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