TEXAS BUSINESS REVIEW

A MONTHLY SUMMARY OF THE BUSINESS AND ECONOMIC CONDITIONS IN TEXAS
BUREAU OF BUSINESSRESEARCH THEUNIVERSITYOFTEXAS
Texas State
Historical
Associatiore
JANUARY I962 VOL. XXXVI, NO. I \$3.00 A YEAR

A primer of urban ecology by Robert H. Ryan / fallout shelters: construction boon by Charles O. Bettinger/Lp Goes the rural route by James D. Gordon

TEXAS BUSINESS REVIEW

```
VOL. XXXVI, NO. I JANUARYIg62
```

I: THE BUSINESS SITUATION IN TEXAS by Francis B. May 3: A PRIMER OF URBAN ECOLOGY by Robert H. Ryan
8: population estimates for texas counties, April 1, 1961, Prepared by The Population Research Center, Department of Sociology, The University of Texas
9: FALLOUT SHELTERS: CONSTRUCTION BOON by Charles O. Bettinger

I I: LP GOES THE RURAL ROUTE by James D. Gordon

Editor: John R. Stockton
Managing Editor: James J. Kelly

BUSINESS RESEARCH COUNCIL
John Arch White, Dean of the College of Business Administration (ex officio) ; John R. Stockton; W. E. Adams; Jessamon Dawe; G. H. Newlove; B. H. Sord; W. T. Tucker; and E. W. Walker.

```
BUREAU OF BUSINESS RESEARCH
```

Director: John R. Stockton
Associate Director E Resources Specialist: Stanley Arbingast
Assistant to the Director: Florence Escott
Statistician: Francis B. May
Administrative Assistant: Marjorie Cornwell
Research Assistant: James D. Gordon, Thomas V. Greer Research Associate: Ruth Ashcroft, Charles O. Bettinger, Alfred G. Dale, Marie Fletcher, James J. Kelly, Ida M. Lambeth, Robert M. Lockwood, Elizabeth R. Turpin Cartographer: Roberta Steele, Tim M. Duffee Library Assistant: Merle Danz
Senior Clerk Typist: Claire Howard, Josephine Knippa, Elnora Mixson, Marilyn Whites
Senior Secretary: Cynthia Bettinger, Carole Rutledge, Margaret Smith
Statistical Technician: Eva A. Arias
Statistical Assistant: Mildred Anderson, Jane Bowen, Alfred C. Mitchell, J. D. Monk

Programmer: Mary Blanche Fanett
Clerical Assistant: Sara Connally, Robert A. Crenshaw
Offset Press Operator: Robert Dorsett, Daniel P. Rosas
COOPERATING FACULTY
Charles T. Clark: Associate Professor of Business Statistics Robert H. Ryan: Special Instructor in Business Writing

[^0]
at the beginning of 1961, the state and national economies were near the bottom of a mild recession that began in May 1960. At that time there was a general feeling that there would be a recovery in the latter part of the year but that it would be a mild one. To what extent have these expectations been realized?

As far as Texas is concerned, the recovery has been more vigorous than was expected. The seasonally adjusted Index of Texas Business Activity reached an all-time high of 256% of the 1947-49 average in August of this year. It dropped sharply in September but rose again in October. For the first three quarters of this year, the index averaged 5% above the first three quarters of 1960 . If a comparison by months is made for the first ten months of the two years, every month of 1961 except February was above the corresponding month of 1960 . This is a good record for a year in which proration clamped tighter on the oil industry, one of the state's large employers and one of its high wage industries.

Despite a continuation of 8-day allowables for November, the seasonally adjusted index of crude pretroleum production rose 1%. At 109.2% of the 1947-4.9 average monthly volume of production, the index was 2% above November 1960. The increase was due to allowables granted to new wells and variations in producing rates of old wells.

The steady decline in the number of producing days allowed explains the small increase of the index of production over the base period. The index reached its postWorld War II peak of 138.5 in May 1957. It has declined irregularly to its present value during the intervening months. This has caused declining employment in oil and gas production from a peak of more than 125,000 jobs to the current level of 112,500 . This is a reduction of more than 12,500 jobs. The current average weekly wage paid oil and gas field production workers is $\$ 112.74$. At this average wage, the loss is equivalent to the elimination of a weekly payroll of $\$ 1,409,250$ or an annual wage bill of $\$ 73,281,000$. It is small wonder that the state's economy

Texas Business Activity

has begun to experience a declining growth rate at a time when new job opportunities are needed to take care of a growing labor force.

The following table shows the number of producing days allowed in each of the past several years:

	NUMBER	OF PRODUCING DAYS ALLOWED				
	1957	1958	1959	1960	1961	1962
	16	12	12	10	9	9
January	16	11	11	10	8	-
February	15	11	-			
March	18	9	12	10	10	-
April	16	8	11	9	9	-
May	16	8	12	8	8	-
June	15	8	10	8	8	-
July	13	9	9	8	8	-
August	13	11	9	8	8	-
September	13	12	9	8	8	-
October	12	11	9	8	8	-
November	12	11	9	8	8	-
December	12	12	10	9	9	-
	-	-	-	-	-	-
Total	171	122	123	104	101	9

Seasonally adjusted total electric power consumption declined 1% in November. At 429\% of the 1947-49 average rate of consumption, the index was 12% above November 1960. The decline was caused by a drop in residential and commercial consumption. Industrial power consumption rose 5% over October to a level 10% above November 1960.

Seasonally adjusted sales of ordinary life insurance rose 5% in November after rising to a new high value in October. This makes November the second record-breaking month for this index.
The seasonally adjusted index of total retail sales in Texas rose again in November. At 110\% of the 1957-59 average monthly volume the index was 1.9% above its October level. It was 6% above its November 1960 value. This rise, coming after a 3.8% rise in October, points the way to a definite improvement in fourth quarter sales over the third quarter. It gives added color to expectations of an excellent volume of December sales. Increases in sales of both durable and nondurable goods contributed to the rise.

Seasonally adjusted sales of durable goods rose 1.8% in November to a value of 112% of the 1957-59 average. Increases in sales of automotive stores and furniture and household appliance stores pushed the index higher. The usual seasonal drop in sales of automotive stores from October to November is 1%. November sales of this class of stores rose 2% instead of dropping as expected. Sales of motor vehicle dealers rose 4% to a level 17% above November 1960. The improvement in automobile sales in Texas was part of a nationwide increase. National sales of U.S.-made cars amounted to 585,000 units, up 10% from the 530,600 sold in November 1960. Compact cars took 35% of the market for the U.S.-made automobiles.

Sales of furniture and household appliance stores usually experience the same percentage of seasonal decline, 1% in November, as automotive stores. Instead they rose 5% to a volume 13% above November 1960. Sales of furniture stores rose 4%. This indicates that appliance sales rose more than the 5% rise for the combined groups.

Lumber, building material, and hardware stores suffered
a 12% decline in November. This is more than the usual 9% seasonal drop. Despite the fall in volume, sales for these stores were 10% above November 1960. Sales of farm implements were 6% above November of last year. Hardware store sales were 5% above November 1960. Sales of lumber and building material dealers were 12% above November 1960.

November sales of nondurable goods were 2.8% above October after seasonal adjustment. Greater than seasonal increases in sales of apparel, drug stores, food stores, general merchandise stores, and "other" retail stores were responsible for the rise. November sales of nondurables were 2% above November of last year.
Sales of apparel stores rose 8% in November instead of experiencing the usual 1% seasonal decline. Family cloth-

				Percent change	
Index	$\begin{gathered} \text { Nov } \\ 1961 \end{gathered}$	$\begin{array}{r} \text { Oct } \\ 1961 \\ \hline \end{array}$	$\begin{gathered} \text { Nov } \\ 1960 \end{gathered}$	Nov 1961 from Oct 1961	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
Texas business activity	251	243	226	+ 3	+11
Miscellaneous freight carloadings in S.W. district	62	79	74	-22	-16
Crude petroleum production	109.2*	107.6 r	107.3	+ 1	+ 2
Crude oil runs to stills	140	151	145	-7	- 3
Total electric power consumption \qquad	429*	433 r	384 r	-1	$+12$
Industrial power consumption..	419*	398 r	380 r	+ 5	$+10$
Bank debits	298	289	270	+ 3	$+10$
Ordinary life insurance sales ...	487	463	453	+ 5	+ 8
$(1957-59=100)$	110*	108 r	104r	$+2$	$+6$
Durable-goods sales $(1957-59=100)$	112*	110 r	98 r	$+2$	$+14$
Nondurable-goods sales $(1957-59=100)$	110*	107r	108r	$+3$	$+2$
Urban building permits issued $(1957-59=100)$	119.7	113.9	98.8	$+5$	$+21$
Residential $(1957-59=100)$	115.0	114.5	90.2	**	$+27$
Nonresidential $(1957-59=100)$	127.1	116.8	115.1	$+9$	$+10$
Average weekly hours manu- facturing ($1957-59=100$)	100.8*	101.2 r	97.5	**	+ 3
Adjusted for seasonal variatio * Preliminary. r Revised. * $*$ Change is less than one-half	one p	ercent.			

ing stores and women's ready-to-wear did particularly well with increases of 18% and 10%. Men's and boys' clothing stores also had a 10% increase in sales. Shoe stores had a 4% rise in volume of business.
Drug stores had a 3% increase instead of the usual 5% seasonal decline in sales in November.
Sales of food stores in November held up to the October volume instead of dropping the usual 3%.
Sales of gasoline and service stations dropped 3%. This is more than the usual 1% seasonal decline. These sales are measured in dollar volume. Gasoline price wars caused by surplus refining capacity and efforts to expand markets in terms of gallonage undoubtedly contributed to the overall decline. Profits, however, are measured in dollars not in gallons.

General merchandise stores had a sales rise of 8% instead of the usual 2%. The rise was due entirely to a 10% increase in sales of department stores.
"Other" retail stores-a category which includes florists, nurseries, and jewelry stores-had an overall increase of 8% in November instead of the usual seasonal rise of 1%.

A PRIMER OF URBAN ECOLOGY

by Robert H. Ryan

SINCE THE WORLD'S FIRST POPULATION SHIFT--OUT OF EDEN -people have been moving, on a variety of pretexts but for a very few basic reasons. These reasons, in fact, might be reduced to two:

Primarily they move to make a living, or a better living. Secondarily they seek a pleasant environment.
In many ways, not all of them readily apparent, urban places, from hamlets to megalopolises, generally serve both of those needs better than rural areas. However, towns and cities do not all offer economic, social, and aesthetic rewards in equal measure. As sources of income rise and fall, so do the cities that depend upon that income.

It is clear from common experience that no one moves in order to accommodate a statistical formula that appears to predict his movement. Consider the cases of four hypothetical but familiar Texas families:

Houston Bowie: Houston and his wife, now in their late fifties, have farmed a small tract of poor East Texas land since 1929. Both they and the land are nearly exhausted. Yet, Houston hoped his three children might stay and perhaps improve the farm. But all three left the farm and farming. One took a job at a brick factory in the county seat; the other two moved to Dallas.
Asuncion Garza: Garza and his wife were born in northern Mexico and migrated to Texas in their teens. They live in a small South Texas town where it is not always possible for them to remember that they were worse off in their native pueblo. There are seven Garza children. One moved to Detroit and later to California, where he works as a machinist's helper. One has returned to Mexico and is employed as an industrial laborer in Monterrey. Five are still at home and do not expect to leave unless they hear of promising job openings elsewhere.
Jim Jefferson: The Jeffersons moved to Odessa from Oklahoma. Rather, they were moved, by the major oil company that employs Jim as a petroleum geologist. For a time he was busy charting new geologic hori-
zons in the Permian basin oil fields. But exploration has declined sharply in the area. At 61, Jim faces retirement from the company. They will probably leave Odessa, Jim thinks. His wife adds that whereever they move they will be looking for a warm climate and pleasant recreational facilities.
Sylvia Spriegel: Sylvia is young, unmarried, a talented dress designer who moved to Dallas from New York, bringing her widowed mother with her. She is trying to interest her two brothers, still in the East, in coming to Texas to establish a small sportswear manufacturing plant in one of the satellite towns near Dallas. She thinks the wage rates for female labor may be lower there than in the metropolitan area.
These four cases illustrate all the basic determinants of population change, and they hint at the element of indeterminacy, as well. The Bowies, Houston and his wife, are still clinging to a dwindling resource, their farm. It produces barely enough to sustain them, not enough to afford the mechanization and soil improvement that would increase its resource value. The Bowies will stay, though, for the rest of their lives, partly out of the inertia that comes with advancing age, partly for lack of skills that would make them more productive elsewhere. Even the ghost towns of the Far West are inhabited by a few old miners who worked the veins of silver long since exhausted.

The Bowie children, on the other hand, have gone to town to help make new resources. For resources are not resources until man does something to make them so.* Nevertheless, certain raw materials and ways of transportation, as well as human labor, are prerequisite to resourcemaking. Where these raw materials and means of shipping occur in fortuitous patterns, the human labor will come. The first major cities of the United States were seaports, where goods were traded, packed for reshipment, and sometimes manufactured: Boston, New York, Philadelphia, Baltimore. The next generation of cities grew up on navigable rivers: New Orleans, St. Louis, Pittsburgh, and others. The third generation were mostly railroad towns. Today, with a more flexible, more extensive transportation network, the rapidly growing cities are those with ready access to material or energy resources and those that serve as central markets for regions well endowed with those resources.

Mr. and Mrs. Asuncion Garza, of South Texas, have done more than their share to swell the state's population; five of their children are still in Texas. What is more, the children are likely, according to life expectancy tables, to live longer than their parents. A rising birth rate combines with a declining death rate to give an even faster-rising rate of natural increase, as illustrated on the chart below. For the nation as a whole, if one disregards the relatively small immigration, this rate of natural increase is equivalent to population growth. But for an individual city or state, this is not so. If better jobs appear elsewhere, the Garza children will not stay in Texas but will migrate. The American people today are astonishingly mobile; thus, some cities with high birth rates are declining in population, while others with low birth rates are growing. Ob-

[^1]viously one cannot draw conclusions regarding the future of an area from its present population size or characteristics.

Between 1940 and 1950, Texas population gained $1,163,407$ by natural increase, only 132,900 by net migration into the state. This latter figure, though, conceals the fact that many more persons than 132,900 moved into Texas during the decade-and many left Texas. It is these two components, natural increase and net migration, that add up to overall population growth, as the next chart indicates.

Of course the rate of natural increase is not the same in all cities. It depends largely upon the proportion of residents within the childbearing ages, roughly 15 to 45 . This proportion varies more widely than one might expect, and

some of the "old towns" of East Texas are in some danger of extinction as most of their youngsters leave as soon as they finish school. Thus, a close analysis of the age composition of the population is necessary to accuracy in forecasting.

Nationwide, a broad shift in age distribution has been seen in recent years. Sociologists Conrad and Irene Taeuber have written on the relative shrinkage of that part of the population in the productive years from 15 to 65.* As they point out, the young and the aged today make up increasingly large proportions of the total population, with profound economic and social effects. Concentrating on the lower end of the age scale, market analysts have promoted the sale of "teen-age products" and have adapted advertising of still other products to readers in that age group.

At the other end of the scale are petroleum geologist Jim Jefferson, his wife, and millions like them. They are potential retiree-migrants. With increasing numbers of oldsters in the population and generally larger retirement incomes than in the past, some significant new trends are taking shape. The $65+$ group is traditionally the most stable in the population, the least likely to move. Yet, in several recent years Texas, Louisiana, and Florida drew relatively more newcomers over 65 than in any other age group. All three of these southern states are of course popular retirement havens. On the other hand, the $65+$

[^2]residents were the quickest to depart from such states as Delaware, Illinois, Massachusetts, New York, New Jersey, Pennsylvania, and several other high-income northeastern states.

The Jim Jeffersons, like the Houston Bowies, are victims of a shift in resource flow. Odessa, where the Jeffersons live, is the central city of the only Standard Metropolitan Area in all Texas that declined in population from 1960 to 1961 (according to The University of Texas Population Research Center, which developed the estimates tabulated on these pages). The Odessa area decline presumably resulted mainly from loss of employment due to cutbacks in oil exploration and production.

Development of a new resource pattern commonly brings a spectacular population influx during its early stages.

Notably rapid growth from 1950 to 1960 is indicated on the accompanying map for the West Texas oil centers, Odessa, Midland, Andrews, and Kermit. But eventually the rate of growth must decline, even though the actual population may not. Margaret Gordon remarks, rather wistfully one might think, that the rush to California may slow as that state's rich pudding of resources has to be sliced progressively thinner to feed its swelling population.*

Some students of regional science would refer to young Sylvia Spriegel, the dress designer, as a "city founder," if she is successful in establishing an apparel factory. Not that she will be starting her own city. She will, however, be adding a new economic module to the city she chooses as her plant site.
Sylvia's revenue from the sale of dresses will come almost entirely from outside the area where she manufactures them, and the largest share of this revenue will be distributed among her employees. These workers will then spend most of their wages in local establishments: barber shops, garages, groceries, clothing stores, and so forth. This circle of local businesses will depend partly, some of them perhaps wholly, on income from Sylvia's enterprise. And many of them will have to increase their payrolls to serve the needs of Sylvia's workers. By injecting new economic support into the community, the apparel factory will tend to increase the population. Or, if some other local industries are moribund, Sylvia's payroll may support some

[^3]of their discharged workers and keep the population from declining.
Who could have guessed, though, that an apparel factory would spring up in the city Sylvia chooses? The answer is, almost anyone with a thorough knowledge of resources and industrial economics might foresee a development of this kind. The town has an underemployed female labor force; a relatively low wage scale; two vacant industrial buildings for lease; and a short, first-class highway to Dallas, Southwestern center of apparel wholesaling. The probability of local apparel manufacturing is clear to those who would look closely.

No city is self-sufficient. If one tries to visualize a city or small area that produces all its own bread and meat, motion pictures, diamond rings, automobiles and gasoline, and books, this point becomes quite clear. Evidently there can be no such place. Even the largest cities-entire nations,
for that matter-must buy from outside many of the goods they consume. To buy these, the city must earn exchange credit. This is accomplished by producing more of certain goods, like Sylvia's dresses, and more of certain services than the local residents require.

These surplus-producing facilities are called "basic industries" by most analysts. Their workers are paid from revenue that originates outside the city. Some of the money they earn is saved in local financial institutions and helps provide employment for banks and savings and loan personnel. Some is used to buy homes and thus to help support local construction workers and suppliers of building goods. Some is spent in retail stores, restaurants, and laundries. Subsequently, the local dependent workers-the bankers, builders, and bakers-spend the money they receive in much the same way. Eventually most of the money is sent back out of the city to buy goods not made there

and services not performed there. But in the meantime the recirculated earnings of each basic industrial worker have provided support for about two workers not in basic industry, that is, two dependent workers. In addition, the earnings of each employed person, whether in basic or dependent industry, support two or three persons not in the labor force-children, housewives, retired persons. The ratios of basic to dependent workers and of all workers to nonworkers vary with certain key characteristics of the city, but gross changes in these ratios can generally be foreseen.

Take, for example, the city of Odessa, where Jim Jefferson lives. Tremendous expansion of oil activity in the Odessa area brought in thousands of petroleum drilling and production workers during the 1930's and 1940's. The population was typical of boom areas: many basic-industry employees, the oil people, but relatively few dependent workers. The fast growth of the oil business outstripped development of new retail and wholesale establishments and personal and business services. For a time, the ratio of basic to dependent employment in Odessa was radically different from that in most cities. But by the late 1950's enough dependent businesses had been established to serve local needs that the relationship was approaching an apparent equilibrium.

An analyst forecasting the population of Odessa during the years when dependent employment was disproportionately low should have taken that fact into account and should have based some of his expectation of further growth on the probability that dependent employment would ultimately assume normal proportions.

Often the growth of population in an area is forecast by projecting the past population trend according to some statistical formula, usually a logistic curve. The chart above illustrates the potential danger of assuming that population will follow such a path. Of the Texas cities indicated on the chart, only Austin has come close to following this pseudonormal line of development. And this is probably due to the fact that the growth of Austin, the state government and educational center, has been keyed to the growth of Texas as a whole rather than to the rise of a particular industry. On the contrary, the Lubbock curve traces clearly the de-

A POPULATION BOOKLIST

Recent studies of population trends and regional science

Richard B. Andrews
MECHANICS OF THE URBAN ECONOMIC BASE
A series of twelve articles in Land Economics, vols. 29-32 (1953-56).
Hans Blumenfeld
THE ECONOMIC BASE OF THE METROPOLIS
An article in the Journal of the American Institute of Planners, 21: 114-32 (1955).
Otis Dudley Duncan $\overline{e t} a l l^{-}----$
METROPOLIS AND REGION
Baltimore: The Johns Hopkins Press, 1960.
Margaret S. Gordon
EMPLOYMENT EXPANSION AND POPULATION GROWTH
The California Experience, 1900-1950
Berkeley: University of California Press, 1954.
P. M. Hauser and O. $\overline{\mathrm{D}} . \mathrm{Du} \overline{\text { uncan }}$, éditors

THE STUDY OF POPULATION: AN INVENTORY AND APPRAISAL
Chicago: University of Chicago Press, 1959.
Walter Isard
LOCATION AND SPACE-ECONOMY
Cambridge: The Technology Press of the Massachusetts Institute of Technology, and
New York: John Wiley \& Sons, Inc., 1956.
Everett S. Lee et al.
POPULATION REDISTRIBUTION AND ECONOMIC
GROWTH, UNITED STATES, 1870-1950
Philadelphia: American Philosophical Society, 1957.
Harvey S. Perloff
EDUCATION FOR PLANNING: CITY, STATE, AND REGIONAL
Baltimore: The Johns Hopkins Press, 1957.
J. J. Spengler and O. $\overline{\mathrm{D}} . \overline{\text { Duncan, }} \overline{\text { editors }} \overline{-}$

POPULATION THEORY AND POLICY
Glencoe, Ill.: Free Press, 1956.
Conrad Taeuber and Irene B. Taeuber -
THE CHANGING POPULATION OF THE UNITED STATES
New York: John Wiley \& Sons, Inc., 1958.
Edward Ullman
AMERICAN COMMODITY FLOW
Seattle: University of Washington Press, 1957.
W. E. Woytinsky and $\overline{\mathrm{E}}$. S. Woytinsky -

WORLD POPULATION AND PRODUCTION
New York: The Twentieth Century Fund, 1953.
Erich W. Zimmermann
WORLD RESOURCES AND INDUSTRIES
New York: Harper \& Bros., 1951.
velopment of High Plains irrigated agriculture and trade; and the Wichita Falls curve, most irregular of all, soars during the early years of North Texas oil development, then lags until the economic push of World War II. Most logistic-curve formulas assume that population will grow at an evenly decreasing rate and gradually level off. This idea incorporates the general validity and particular haz-
ards of most truisms. It tends to be true, that is, only if nothing exceptional takes place to deflect progress from its neatly logistic course. And as often as not, something exceptional does take place.
Rather than being based on analyses of population data as such, forecasts published by The University of Texas Bureau of Business Research and many similar agencies elsewhere have been made in the light of actual and potential economic development. The belief underlying these studies is that small-area population forecasting is concerned far more with economics than with biology. These are the steps taken in a forecast founded on this assumption:

1. Basic employment in the city or small area is measured, sometimes through examination of employment statistics already gathered, sometimes through questioning

POPULATION ESTIMATES FOR STANDARD METROPOLITAN STATISTICAL AREAS IN TEXAS, APRIL 1, 1961
Prepared By The Population Research Center, Department of Sociology, The University of Texas

Standard metropolitan statistical areas	Estimated population, April 1, 1961	$\begin{aligned} & \text { Est. } \\ & \text { percent } \\ & \text { growth, } \\ & \text { April 1, } \\ & \text { Apro- } \\ & \text { April 1, } \\ & \text { 1961 } \end{aligned}$	Standard metropolitan statistical areas	Estimated population, April 1, 1961	Est. percent growth, April 1, April 1 , 1961
Abilene ${ }^{1}$	123,752	2.8	Galveston-		
Amarillo ${ }^{2}$	156,084	4.4	Texas City ${ }^{10}$	10 142,504	1.5
Austin ${ }^{3}$	216,988	2.3	${ }_{\text {Houston }}{ }^{\text {Laredo }}{ }^{12}$	1,261,411	1.5
Beaumont-Port				66.529	2.7
Arthur ${ }^{4}$	311,398	1.8	Lubbock ${ }^{13}$	160,933	3.0
Brownsville-			Midland ${ }^{14}$	68,780	1.6
Harlingen-			Odessa ${ }^{15}$	90,993	-0.002
San Benito ${ }^{5}$	5 153,959	1.9	San Angelo ${ }^{16}$	66,438	2.8
Corpus Christi	tis 223,099	0.7	San Antonio ${ }^{17}$ Texarkana ${ }^{18}$	708,610	3.1
Dallas ${ }^{7}$	1,107,727	2.2		60,306	0.6
El Paso ${ }^{8}$	323,828	3.1	Texarkana ${ }^{18}$ Tyler ${ }^{19}$	88,114	2.0
Fort Worth ${ }^{9}$	581,328	1.4	Waco ${ }^{20}$ Wichita Falls ${ }^{21}$	152,243	1.4
				21 133,782	3.2

Counties included: ${ }^{1}$ Jones and Taylor; ${ }^{2}$ Potter and Randall; ${ }^{3}$ Travis ; ${ }^{4}$ Jefferson and Orange; ${ }^{5}$ Cameron ; ${ }^{6}$ Nueces; ${ }^{7}$ Collin, Dallas, Denton, and Ellis: ${ }^{8} \mathrm{El}$ Paso; ${ }^{9} \mathrm{Johnson}$ and Tarrant; ${ }^{10}$ Galveston; ${ }^{11} \mathrm{Harris}$; ${ }^{12} \mathrm{Webb}$ ${ }^{13}$ Lubbock; ${ }^{14}$ Midland; ${ }^{15}$ Ector ; ${ }^{16}$ Tom Green; ${ }^{17}$ Bexar; ${ }^{18}$ Bowie ; does not include Miller County, Arkansas; ${ }^{19}$ Smith; ${ }^{20}$ McLennan; ${ }^{21}$ Archer and Wichita.
all local employers. The objective, either way, is to find out how much of the local income derives from out-oftown purchases. A large oil refinery in a small town would presumably ship virtually all its product to external markets. Its payroll, then, would be allocated entirely to the column of basic industries. On the other hand, if a large department store made 20% of its sales to out-of-town customers, just 20% of its employees would be classified as basic.
2. Taking into account the relative wage rates in the various basic and dependent industries of the city, the number of dependent workers supported by each basic worker and the number of nonworkers supported by each worker would be determined.
3. Through a critical study of the area resource pattern and of national industrial and economic trends, a growth potential is assigned each of the local basic industries. For example, the probable number of workers in local steel mills might be projected to 1975. Or if there seemed strong promise of the development of new industries not currently represented in the city, a conservative estimate of that industry's potential employment would be established.
4. On the basis of the probable overall industrial growth and the population-supporting strength of each industry represented, the total population in one or several future years would then be computed.
Obviously the accuracy of this economic-base forecast would depend upon the preciseness of the input datathe measures of current employment and income. Even more critical would be the estimating of future industrial growth. These estimates, upon which the whole structure of the forecast rests, must be made after thorough examination of the resources available to local industry, both now and in the foreseeable future. Allowance must be made here for technological progress that may make resources of materials now useless. (In just this way, Minnesota taconite, formerly a worthless mineral, has become iron ore in recent years.) All forecasts of course may be invalidated by the

POPULATION ESTIMATES FOR URBANIZE AREAS IN TEXAS, APRIL 1, 1961 Prepared By The Population Research Center, Department of Sociology, The University of Texas					
Urbanized areas	Estimated population, April 1, 1961	Est. percent, growth, April 1, 1960April 1, 1961	Urbanized areas	Estimated population, April 1, 1961	Est. percent, growth, April 1, 1960April 1, 1961
Abilene ${ }^{1}$	96,275	5.4	Houston	1,163,021	2.0
Amarillo ${ }^{2}$	145,158	5.2	Laredo	62,404	2.8
Austin	192,251	2.7	Lubbock	135,023	4.4
Beaumont	120,987	1.5	Midland	64,860	2.5
Corpus Christi ${ }^{3}$	$\mathrm{ti}^{3} 177,141$	1.3	Odessa	86,352	2.5
Dallas ${ }^{4}$	958,502	3.3	Port Arthur	119,441	2.6
El Paso	291,445	5.2	San Angelo	60,658	3.1
Fort Worth	512,751	2.0	San Antonio	664,676	3.5
Galveston-	121,128	2.2	Texarkana, Texas ${ }^{5}$	34,133	3.3
Harlingen-			Tyler	53,485	3.4
San Benito	-64,663	4.9	Waco ${ }^{\text {Wichita }}$ Falls ${ }^{\text {e }}$	118,750 107,293	2.2 5.1
${ }^{1}$ Excluding that part of the Urbanized Area in Jones County (1960 population 221). ${ }^{2}$ Includes both Potter and Randall counties. ${ }^{3}$ Excluding that part of the Urbanized Area in San Patricio County (1960 population 2,540). ${ }^{4}$ Excluding those parts of the Urbanized Area in Collin County (1960 population 3,756), Denton County (no inhabitants in 1960), and Tarrant					
County (1960 population 984). ${ }^{5}$ Excluding that part of the Urbanized Area in Miller County, Arkansas (1960 population 20,371). ${ }^{6}$ Excluding that part of the Urbanized Area in Archer County (no inhabitants in 1960).					

discovery of unsuspected resources or ways of using them or by cataclysmic changes in the economy, like those often brought about by major wars. But these imponderables do not invalidate the conceptual framework of economic base studies, they only limit the accuracy and comprehensiveness of the information on which the studies are founded.

Perloff complains, with some justice, that elaborate planning of highways, cities, water resources, and the like is often built on flimsy and unqualified projections.* His point is well taken. Projections are not safely undertaken by small-city chambers of commerce unstaffed with professional industrial economists.

With care and expertise, however, it is possible to make a good guess as to where the Bowies, the Garzas, the Jeffersons, and the Spriegels-and all their childrenmay be living several years in the future. For, where a living is to be made and where some of the amenities are to be enjoyed, there will the population increase and the cities grow.

[^4]
POPULATION ESTIMATES FOR TEXAS COUNTIES, APRIL 1, 1961

Prepared By The Population Research Center, Department of Sociology, The University of Texas

Population estimates for April 1, 1961, indicate that 195060 trends have not continued for 111 of the 254 Texas counties. The 1961 estimates shown in the accompanying table reveal that of the 143 counties which lost population between 1950 and 1960 no less than 94 registered an increase during $1960-61$. The 49 remaining counties continued to lose population. Seventeen of the 111 counties which gained population between 1950 and 1960 experienced a loss during 1960-61.

Perhaps most significant is the fact that only 66 counties lost population between 1960 and 1961, as compared with 143 counties during 1950-60. However, there are only a few cases of sharp changes in population trends. Most counties which lost population between 1950 and 1960 either continued to lose or grew only slightly during 1960-61. Changes in population trends may have begun long before 1960, because the 1950 and 1960 census figures reveal only what happened over a decade. A large number of Texas counties suffered extreme drouth conditions during the decade and may have begun to recover only toward the end of the 1950's. The 1960-61 figures cannot be taken as indicative of a long-run trend but, generally, it appears likely that extreme differences in the growth rates of Texas counties do not prevail as much now as they
did in the 1950-60 period.
Although there are numerous exceptions, certain geographical patterns appear in the 1950-60 and 1960-61 growth rates of Texas counties. Counties which have grown throughout the eleven year period, 1950-61, are concentrated in three areas of the state: the Gulf Coast region, the Northwestern, and in a belt of counties running from Cooke and Grayson to Travis and then curving southwest toward Maverick. Counties with an eleven year loss are scattered but tend to be concentrated in a wide zone running from southeast to northwest in the center of the state. Counties which lost population during 1950-60 but gained between 1960 and 1961 are also widely scattered, but they tend to concentrate in two broad belts -one running from the extreme northeastern part of the state toward the Valley and the other running from Collingsworth County toward the Valley. Nine of the seventeen counties which gained population between 1950 and 1960 but lost between 1960 and 1961 are concentrated in a zone running from Crockett County to Andrews County. Finally, practically all of the counties west of the Pecos gained population between 1960 and 1961, in contrast to the 1950-60 decade when roughly half of them lost population.

Counties	Estimated population, April 1, 1961	$\begin{gathered} \text { Est. } \\ \text { percent } \\ \text { growth, } \\ \text { April 1, } \\ \text { 1960- } \\ \text { April 1, } \\ 1961 \end{gathered}$	Counties	Estimated population, April 1, 1961	Est. percent growth, April 1, April 1 1961	Counties	Estimated population, April 1, 1961	Est. percent growth, April 1, 1960April 1 1961	Counties	Estimated population, April 1, 1961	$\begin{aligned} & \text { Est. } \\ & \text { percent } \\ & \text { growth, } \\ & \text { April 1, } \\ & \text { 1960- } \\ & \text { April 1, } \\ & 1961 \end{aligned}$
Anderson	28,470	1.1	Duval	13,535	1.0	Kenedy	880	-0.5	Refugio	11,128	1.4
Andrews	13,435	-0.1	Eastland	19,414	-0.6	Kent	1,748	1.2	Roberts	1,064	-1.0
Angelina	40,307	1.2	Ector	90,993	-0.002	Kerr	17,371	3.4	Robertson	16,042	-0.7
Aransas	7,253	3.5	Edwards	2,266	-2.2	Kimble	3,971	0.7	Rockwall	5,879	0.02
Archer	6,204	1.5	Ellis	43,512	0.3	King	630	-1.6	Runnels	15,014	-0.01
Armstrong	2,049	4.2	El Paso	323,828	3.1	Kinney	2,485	1.3	Rusk	36,551	0.4
Atascosa	18,993	0.9	Erath	16,372	0.8	Kleberg	30,969	3.1	Sabine	7,371	0.9
Austin	13,821	0.3	Falls	20,980	-1.3	Knox	7,842	-0.2	San Augustine	e 7,697	-0.3
Bailey	9,516	4.7	Fannin	23,741	-0.6	Lamar	34,249	0.04	San Jacinto	6,179	0.4
Bandera	3,959	1.7	Fayette	20,309	-0.4	Lamb	22,296	1.8	San Patricio	45,386	0.8
Bastrop	16,934	0.1	Fisher	8,014	1.9	Lampasas	9,366	-0.6	San Saba	6,492	1.7
Baylor	5,957	1.1	Floyd	12,833	3.8	La Salle	6,062	1.5	Schleicher	2,867	2.7
Bee	24,428	2.8	Foard	3,096	-0.9	Lavaca	20,227	0.3	Scurry	19,983	-1.9
Bell	97,718	3.8	Fort Bend	41,261	1.8	Lee	8,949	0.0	Shackelford	3,993	0.1
Bexar	708,610	3.1	Franklin	5,109	0.2	Leon	10,111	1.6	Shelby	20,524	0.2
Blanco	3.569	-2.4	Freestone	12,467	-0.5	Liberty	32,013	1.3	Sherman	2,753	5.7
Borden	1,039	-3.4	Frio	10,218	1.0	Limestone	20,141	-1.3	Smith	88,114	2.0
Bosque	10,693	-1.1	Gaines	12,284	0.1	Lipscomb	3,493	2.6	Somervell	2,530	-1.8
Bowie	60,306	0.6	Galveston	142,504	1.5	Live Oak	7,897	0.7	Starr	17,731	3.5
Brazoria	78,080	2.5	Garza	6,615	0.1	Llano	5,222	-0.3	Stephens	9,006	1.4
Brazos	45,638	1.7	Gillespie	10,094	0.5	Loving	230	1.8	Sterling	1,173	-0.3
Brewster	6,601	2.6	Glasscock	1,107	-1.0	Lubbock	160,933	3.0	Stonewall	3,017	0.0
Briscoe	3,600	0.6	Goliad	5,363	-1.2	Lynn	11,013	0.9	Sutton	3,756	0.5
Brooks	8.634	0.3	Gonzales	17,652	-1.1	McCulloch	8,783	-0.4	Swisher	10,873	2.5
Brown	25,127	1.6	Gray	31,747	0.7	McLennan	152,243	1.4	Tarrant	546,061	1.4
Burleson	11,044	-1.2	Grayson	74,112	1.5	McMullen	1,152	3.2	Taylor	104,307	3.2
Burnet	9,212	-0.6	Gregg	71,016	2.3	Madison	6,879	1.9	Terrell	2,622	0.8
Caldwell	17,390	1.0	Grimes	12,682	-0.2	Marion	7,877	-2.1	Terry	16,641	2.2
Calhoun	17,021	2.6	Guadalupe	29,137	0.4	Martin	5,128	1.2	Throckmorton	2,773	0.2
Callahan	8,265	4.2	Hale	37,661	2.3	Mason	3,824	1.2	Titus	16,946	1.0
Cameron	153,959	1.9	Hall	7,466	2.0	Matagorda	26,728	3.8	Tom Green	66,438	2.8
Camp	7,966	1.5	Hamilton	8,381	-1.3	Maverick	15,010	3.5	Travis	216,988	2.3
Carson	7,949	2.2	Hansford	6,423	3.5	Medina	19,079	0.9	Trinity	7,550	0.1
Cass	23,335	-0.7	Hardeman	8,222	-0.6	Menard	3,034	2.4	Tyler	10,672	0.1
Castro	9,113	2.1	Hardin	25,052	1.7	Midland	68,780	1.6	Upshur	19,937	0.7
Chambers	10,556	1.7	Harris	1,261,411	1.5	Milam	22,096	-0.8	Upton	6,183	-0.9
Cherokee	33,282	0.5	Harrison	45,458	-0.3	Mills	4,450	-0.4	Uvalde	17,374	3.3
Childress	8,449	0.3	Hartley	2,315	6.6	Mitchell	11,416	1.4	Val Verde	25,141	2.8
Clay	8,160	-2.3	Haskell	11,192	0.2	Montague	14,902	0.1	Van Zandt	19,311	1.2
Cochran	6,360	-0.9	Hays	20,362	2.1	Montgomery	27,115	1.0	Victoria	47,417	2.0
Coke	3,572	-0.5	Hemphill	3,150	-1.1	Moore	14,559	-1.4	Walker	21,633	0.7
Coleman	12,428	-0.2	Henderson	22,070	1.3	Morris	12,428	-1.2	Waller	12,347	2.3
Collin	41,921	1.6	Hidalgo	184,519	2.0	Motley	3,014	5.0	Ward	14,784	-0.9
Collingsworth	6,401	2.0	Hill	23,352	-1.3	Nacogdoches	28,439	1.4	Washington	19,101	-0.2
Colorado	18,704	1.3	Hockley	22,462	0.5	Navarro	34,553	0.4	Webb	66,529	2.7
Comal	19,935	0.5	Hood	5,394	-0.9	Newton	10,276	-0.9	Wharton	38,221	0.2
Comanche	12,047	1.5	Hopkins	18,779	1.0	Nolan	18,849		Wheeler	7,937	-0.1
Concho	3,792	3.3	Houston	19,517	0.7	Nueces	223,099	0.7	Wichita	127,578	3.3
Cooke	22,976	1.8	Howard	40,835	1.7	Ochiltree	9,850	5.0	Wilbarger	18,068	1.8
Coryell	25,016	4.4	Hudspeth	3,397	1.6	Oldham	2,058	6.7	Willacy	20,172	0.4
Cottle	4,212	0.1	Hunt	39,819	1.1	Orange	62,043	2.8	Williamson	35,172	0.4
Crane	4,604	-2.0	Hutchinson	34,937	1.5	Palo Pinto	20,562	0.2	Wilson	13,436	1.3
Crockett	4,199	-0.2	Irion	1,172	-0.9	Panola	16,885	0.1	Winkler	13,528	-0.9
Crosby	10,617	2.6	Jack	7,383	-0.5	Parker	23,164	1.2	Wise	17,338	1.9
Culberson	2,830	1.3	Jackson	14,174	1.0	Parmer	9,866	3.0	Wood	17,937	1.6
Dallam	6,397	1.5	Jasper	22,330	1.0	Pecos	12,114	1.3	Yoakum	8,111	1.0
Dallas	973,098	2.3	Jeff Davis	1,521	-3.9	Polk	13,966	0.8	Young	17,048	-1.2
Dawson	19,696	2.7	Jefferson	249,355	1.5	Potter	119,783	3.6	Zapata	4,312	-1.8
Deaf Smith	13,840	5.0	Jim Hogg	5,148	2.5	Presidio	5,534	1.4	Zavala	12,808	0.9
Delta	5,579	-4.8	Jim Wells	34,766	0.6	Rains	3,003	0.3			
Denton	49,196	3.7	Johnson	35,267	1.6	Randall	36,301	7.0	All Counties	9,743,949	1.7
De Witt	20,875	0.9	Jones	19,445	0.8	Reagan	3,585	-5.2			
Dickens	5,007	0.9	Karnes	15,118	0.8	Real	2,058	-1.0			
Dimmit	10,196	1.0	Kaufman	29,941	0.03	Red River	15,638	-0.3			
Donley	4,415	-0.8	Kendall	5,909	0.3	Reeves	17,665	0.1			

FALLOUT SHELTERS: CONSTRUCTION BOON

by Charles O. Bettinger

THE SUBJECT OF FALLOUT SHELTERS RATES AS THE NUMBER one conversational topic in the nation since the nuclear test explosions conducted by Russia in the past few months. The resumption of testing, the magnitude of the bombs involved, and the publicity given the Russian announcements have created a surge of interest in protection which overshadows anything the civil defense officials have been able to accomplish. As a result of this interest, pressure has been brought to bear on all levels of government for a revaluation of the situation and for specific proposals for action. Another immediate result of this public concern has been the recognition by the construction industry that the fallout shelter could be very good business indeed.

The problem seems to have such a complex answer that even major details have not yet been worked out satisfactorily. Perhaps the biggest question to resolve is to determine the type of shelter which should be specified. The simplest type is the shelter which provides for fallout protection only. This shelter is the most difficult to describe because its physical appearance can take any form, shape, or size. Included in this category would even be natural shelters such as caves, caverns, and tunnels. This fallout shelter serves one purpose only: as a shield from radioactive dust particles that might contaminate the air after an atomic or hydrogen explosion.

The materials used in a man-made shelter of this type consist of many elements, with the products of greater density offering the most protection. Clay brick, concrete block, sand, and dirt are commonly used for this purpose.

Shelters offering fallout protection only are usually much less expensive than the second type of shelter which offers blast and fire protection as well as fallout safety. Even in a shelter with some blast and fire protection, the effect is limited to the exact pressure specifications of the individual shelter and its relation to ground zero or point of explosion. At ground zero to almost a three-mile radius, shelter is of little use because of the tremendous heat, the explosive force, and direct radiation. In the case of a larger bomb, the destroyed area has an even greater radius.

Fallout, however, is not restricted to a few miles, but can be wind-borne for thousands of miles with deadly effect. Fallout danger is at a maximum if the bomb is exploded at ground level where radioactive dust is sucked up by the explosion and blown to other areas. Conversely, radioactive fallout is at a minimum when the bomb is exploded in the atmosphere. Proximity to a high priority military or industrial target might dictate that a shelter provide blast and fire protection, whereas a reasonable distance may permit some kind of fallout protection only.

Another basic controversy in fallout shelter construction is the practical one involving cost. Advocates of group shelters say that the construction expense per person can be greatly reduced below that of a family shelter. Recent experiments on group blast- and fire-resistant shelters have placed the cost of group shelters at approximately $\$ 200$ per person. One shelter tested withstood a pressure of 35 pounds per square inch as blast protection and was insulated for protection against fire to a reasonable degree. It was equipped with food, water, medicine, generators, batteries, and radiation detectors. Cost estimates of similar protection in a family shelter were more than double those in the group shelter on the same per-person basis.

The government attitude toward shelters originally leaned toward family shelters as demonstrated by the booklet, The Family Fallout Shelter published by the Department of Defense, Office of Civil Defense. More recently, this stand is being reversed because of the high construction costs involved. A new publication being prepared is said to emphasize other types of shelters including group shelters and natural shelters. Some families have decided to pool finances and build a stronger shelter for the same cost. Others have included shelter provisions in a new home with plans to use the shelter area as a den, playroom, or even a spare bedroom for guests.

The possible effect of shelter construction on the building industry in Texas can be shown by using the conservative estimate of $\$ 200$ per person and multiplying it by the state's population of nearly 10 million persons. With only one shelter per person this total would exceed $\$ 2$ billion. However, it is generally acknowledged that more than one shelter per person will be needed for adequate protection at home, work, and school.

To illustrate the effect that such construction could have on a single industry, the construction of 10,000 family shelters made of standard brick for six persons would require approximately 45 million brick. Similar estimates could be calculated for concrete block, iron and steel, wood, and other structural products. Needless to say, the potential boost to the entire industry is great indeed.

Recognizing this fact, steel companies and metal fabricators were quick to seize the opportunity. Steel companies such as Lone Star Steel, Armco Steel and others quickly organized new divisions and went into mass production. New companies making prefabricated shelters grew overnight. Fly-by-nighters, too, are taking advantage of the special situation for quick profits.
Now the Russians have eased off with their nuclear tests and the crisis has lessened, but the interest in protection still runs high. Except in isolated areas, the family fallout shelter will not get as much attention as the group shelter in the future. Yet many families still desire some protection at home and feel that this should be incorporated in the cost of the house. However, the expense of building a
family shelter near the site of an existing house will probably remain prohibitive for most of the population. Exceptions to this could occur in the event federal loans are made available at a nominal interest rate.

This possibility seems remote for the present, but some companies have made similar proposals to their employees for shelter construction. International Business Machines, for example, has offered interest-free loans to their employees of up to $\$ 1,000$ for such projects. Many other businesses have established group shelters for employees and sometimes their families. Others have gone well underground to insure that business records are maintained in the event of attack.

ESTIMATED VALUE OF BUILDING AUTHORIZED Source: Bureau of Business Research in cooperation with the Bureau of the Census, U. S. Department of Commerce				
Classification (th		$\begin{gathered} \text { Jan-Nov } \\ 1961 \end{gathered}$	Percent change	
	$\frac{1961}{\text { (thousands }}$		Nov 1961 from	$\begin{aligned} & \text { Jan-Nov } 1961 \\ & \text { from } \\ & \text { Jan-Nov } 1960 \end{aligned}$
ALL PERMITS	\$101,980	1,261,180	- 9	+ 6
New construction	92,118	1,125,022	- 9	+ 6
Residential (housekeeping)..).. 52,193	648,728	- 14	$+11$
One-family dwellings	44,150	564,267	- 8	+ 3
Multiple-family dwellings..	s. 8,043	84,461	-36	+113
Nonresidential buildings 39,925	476,294	-1	1
Nonhousekeeping buildings (residential)	$\begin{array}{ll} \text { ings } \\ & 1,695 \end{array}$	27,857	- 76	+ 21
Amusement buildings	693	7,922	+600	6
Churches	4,745	35,725	+ 53	-13
Industrial buildings	2,604	33,212	- 65	,
Garages (commercial and private)	639	8,896	- 63	- 12
Service stations	1,105	10,956	+ 2	+ 13
Hospitals and institutions	2,568	46,149	+120	$+20$
Office-bank buildings	10,924	79,117	+ 73	- 11
Work and utilities	71	20,837	-96	+ 20
Educational buildings	4,864	78,704	+ 27	- 14
Stores and mercantile buildings \qquad	6,136	96,019	+ 26	$+$
Other buildings and structures	3,881	30,900	+134	+ 39
Additions, alterations, and repairs	9,862	136,158	- 6	$+13$

The current federal budget for civil defense is $\$ 207$ million with almost half that amount ($\$ 93$ million) designated for surveying and marking public buildings that can be used as shelters. Over one-fourth of this amount will be used for shelter equipment and supplies and another $\$ 38$ million on warning and detection systems and on research and development.

After the federal shelter inventory search, the budget will probably be greatly enlarged to modify existing structures. Expectations of the most optimistic are that this current budget will serve to locate 50 million possible shelter spaces-enough for less than one-fourth of the population. In addition to a larger budget, other aids to provide shelter protection might come in the form of tax incentives such as deductions given to business and individuals for shelter construction. The need for shelter does exist, and a nationwide policy will probably emerge in the near future.

Other government action might occur at the state level. For instance, Governor Rockefeller has urged that the State of New York pass a compulsory shelter-building program for that state. Wisconsin officials have exempted shelters from local property taxes as an incentive. Others have considered state income tax exemptions in the amount
of the shelter constructed or some smaller set amount. Many of these programs will be tabled as group shelters get the spotlight. Preference is being given to group shelters on a government basis, not for the improved protection during an actual attack, but for additional facilities such as equipment and supplies that could be provided. Also, special skills and talents in the group could be utilized in the post-attack which would not be available to individual families that might be caught half-prepared and isolated.

At any rate the future market for shelter construction will depend upon all levels of the government as well as the individual. Due to the nature of shelters and their respective physical characteristics, this market will be highly diversified as to type of materials used and the contracting units which will build them. Smaller contractors and companies will be able to enter the market for the family shelter as they have in the past few months. Some of these will provide inadequate structures and eventually be driven out by the quality builders who know their business. Compotential buyer who will value information about shelters, hundreds of new companies springing up overnight to meet this new demand. Much of this growth has just served to confuse the shelter buyer, forcing him to make a decision between different materials and supplies.

This has caused the potential buyer in many instances to just look and not buy in the midst of his confusion. The marketing of family shelters must be oriented toward the potential buyer who will value information about shelters about the fallout and blast protection which is offered, about survival measures, and about the corresponding costs of each. An explanation that even a hole in the ground covered with sandbags will offer some fallout protection might be necessary. However, it should be emphasized that the average family probably does not want to have anything so unsightly in their back yard. Therefore, a happy medium must be reached by the buyer which will agree with his income and current budget. The buyer should be completely informed as to what he is getting as well as what he is not getting in the form of protection.
Group shelters will receive the attention of the larger contractors and companies, and heavy structural products will benefit from group shelter construction. One company is already offering a basic group shelter for 200 to 400 persons for $\$ 15,000$. Livermore, California is currently considering a bond issue to build a $\$ 2$ million shelter for the city's entire population of 16,000 . Conversion of institutional basements or underground parking lots seems a logical approach since the major costs of conversion are for medical supplies, water, ventilation, food supplies, and sanitary systems. Additional construction costs are sometimes encountered in this situation if the building is strengthened structurally for more blast protection. Many buildings with some protection can be modified to reduce fallout radiation greatly. For example, window exposures which provide very little fallout protection may be modi. fied with a variety of shields which reduce radiation penetration.
The fallout shelter is indeed a challenge to the construction industry. To those who help in solving the problems of shelter construction and the unique market involved, a good profit will be reaped. To others who fail to meet the challenge, it could prove to be only a costly venture.

LP GOES THE RURAL ROUTE

by James D. Gordon

NEVER AGAIN WILL THE MOST PRODUCTIVE FARMER BE THE one who simply rises earliest, plows deepest, knows intuitively what weather to prepare for and puts in the most hours pampering his crops and stock. Agriculture is progressively demanding a more technical approach, denying reliance upon tradition or custom. The individual farm owner, while still beset with the age-old problem of nature's inconsistency, must now be versed in genetics hybridization, chemistry, governmental policy, nutrition, mechanics, economics, and so on endlessly. Granted, not all farmers are so qualified, but those neglecting these subjects are most prevalent among the enormous farm exodus of the past half century.

Nor has this trend ceased. The obvious implication is that the land left behind is being absorbed by larger farms. The absorbers are, needless to say, expanding in size while dwindling in numbers. The following statistical testimony should suffice: 50 years ago Texas had 420,000 farms and ranches averaging 265 acres in size, while at present there are only 225,000 averaging 630 acres. This constitutes a 45% decrease in numbers and more than a doubling in average size. Moreover, the per-acre value of the land comprising Texas farms has catapulted 600% during the same period.

In sum, the typical Texas farm owner of today has invested in land alone an amount practically ten times as great as did his counterpart of a half century ago. At the same time, farmers are being subjected to a major and prolonged profit squeeze seldom paralleled in times past. Thus, the majority of farm owners have with little hesitation adopted new methods to increase or insure productivity. Obvious examples are fertilization and soil conservation. But, while related practices may enhance land value and/or crop yields, they give the farmer no assurance that the use made of his land-his choice of products-is suffcient to return the maximum profits possible.

Yet a tool has been developed which caters to such demands, though it is, regrettably, a rather mysterious subject to the vast majority of farmers. While not the panacea that some profess, it has proved itself effective in numerous instances since its recent inception. The technique is var-
iously labeled linear programming (LP), activity analysis, or mathematical programming. Though many are repelled by its apparent complexity, in essence it is simply a highly formalized system of farm planningstatend budgeting.

The budget analogy is worthy of elaboration for it may well remove at least a portion of the mystery which enshrouds the concept of linear programming. The budget, defined as an estimation of income and expenses for a given period of time, may rightfully claim linear programming as its offspring. The inheritance is significant. The two methods utilize the same general technique. Both necessitate the assumption of linearity. Stated negatively, neither functions properly if a constant input-output ratio does not exist. Were either method employed, it would be assumed that both revenue and expense incurred would double if production of slaughter calves was increased from 50 to 100 or corn from 10 to 20 acres.

The essence of the dissimilarity arises in the computational methods employed. Further, the budget infrequently considers more than two alternative production plans. It leaves all other possibilities unexamined. Typically, the conventional budget demands the maximum use of some single resource, almost invariably land but perhaps labor or capital.

Consider a Texas Blackland farmer who devotes the maximum amount of available land to the production of corn, maize, and cotton. Though such a plan fully exhausts the one resource-land, there remains an excess of both labor and capital. The situation appears to him ideal for the installation of a feedlot operation. Such a decision necessitates the reduction of one of the original crop allocations so that small grains may be produced to be included in the livestock ration. The chance that this final combination of products will maximize profits is infinitesimally small. Moreover, an attempt to prepare individual budgets for every possible combination of crops and livestock would require an inconceivable amount of time.

Linear programming assumes the otherwise impractical task of determining that particular assembly of enterprises which utilizes existing resources in the most effective manner. It will designate the combination which is superior to all others, a chore which budgeting does not normally attempt to undertake. In brief, linear programming permits the simultaneous consideration of numerous activities as well as their interrelations and demands upon existing resources.
The linear programming solution requires an elaborate procedure of trials and retrials. This process of iteration begins with a workable budget and with each successive reallocation it assures an improvement, i.e., a greater profit, until an optimal status has been attained.

Linear programming should be considered for use only on relatively large scale problems. If a problem is subject to budgeting, the more complex technique should be avoided.

Linear programming is the more efficient procedure only where the number of restricting resources and possible enterprises and techniques are large, particularly if answers must be precise.

Identity of a Problem Susceptible to Linear Programming

The following list of conditions summarizes those features which combined provide a basis for the application of linear programming.

1. The problem must involve the maximization or minimization of a specified activity. This could be an analysis of profit opportunities or an attempt to discover a plan incurring a minimum cost.
2. Only one objective may be sought. This is usually a plan which maximizes profits.
3. There must be alternative courses of action available. If a farmer is unwilling or incapable of considering any crop save peanuts and abhors livestock and poultry, his dilemma is not subject to mathematical treatment.
4. Resources must be limited to the extent that not all of the alternative projects may be performed most effectively. If land, labor, and capital are in such abundance that all activities may be sustained, linear programming is ineffective.
5. A linear relationship among the variables is necessitated. The matter of a constant input-output ratio has been discussed.
6. An assumption of independence must be made. Resource requirements and net profit must be the same whether an individual activity functions alone or is combined with other farm enterprises.
7. Finally, all data is required to be in numerical terms.

This may appear to be an unrealistic assembly of prerequisites. Nevertheless, most farm problems which evolve from efficiency conscieusness may be made to comply with each of these conditions.

Primary Applications

As has been persistently asserted, linear programming facilitates the most efficient use of farm resources. The prerequisite conditions have been enumerated and the essential data specified. Having complied, the farmer may then proceed to apply linear programming to any one of the following inquiries:

LP in Practice

The ensuing are intended to illustrate typical, though simplified, instances in which this technique has been successfully applied. While only 5 crops are considered in the first illustration, the latter problems treat as many as 25 or more activities. Further, there is herein no attempt made to enable the reader actually to compute an optimum program. The procedure normally employed is as tedious as it is time consuming. Were it not for the ability of electronic computers to assume this burden, linear programming could seldom be considered a practical approach to an allocation problem.

Example 1.

A farmer, familiar with the production of cotton, alfalfa, barley, sugar beets, and potatoes, purchased a 150 acre farm in Deaf Smith County and requested a program which would utilize his resources in the most profitable manner. He indicated that the only factors which would restrict the production plan were: (1) the number of acres available, (2) the amount of water available during different periods of the season, and (3) the size of the acreage allotment of cotton. However, in addition to these absolute limitations, the farmer decided voluntarily to restrict his potato acreage to not more than 50 acres because of the extreme variability of potato prices. His cotton acreage allotment was 60 acres and the water limitations were 2,200 acre-inches during period 1, 2,100 for period 2 , and 730 for period 3. The resource requirements of the various crops were as follows:

				Sugar	
Item	Cotton	Potatoes Alfalfa	beets	Barley	
Cropland	1	1	1	1	1
Water, period 1	4.0	13.3	15.8	13.0	6.3
Water, period 2	16.6	0	22.2	42.7	0
Water, period 3	7.8	0	11.1	3.3	0
Net cash return	$\$ 207$	$\$ 200$	$\$ 86$	$\$ 136$	$\$ 29$

The final iteration in the solution process indicated that profits would be maximized if the following plan were employed: 5 acres of barley, 16 acres of sugar beets, 19 acres
of alfalfa, 60 acres of cotton, and 50 acres of potatoes. Inserting these figures into the linear function, the actual profit figure is deduced.

$$
\begin{aligned}
& \$ 207(60)+\$ 200(50)+\$ 86(19)+\$ 136(16)+\$ 29 \\
& (5)=\$ 26,375.00
\end{aligned}
$$

With this program, only one resource was in excess supply, 755 units of water during period 1.

Example 2.

This problem, encountered by a North Texas stockman, involves the selection of a livestock enterprise which will fit a given cropping system. The farm under analysis consists of 320 acres, half in corn and a quarter each in oats and an alfalfa-brome grass mixture. Two men provide 480 labor hours per month. However, the amount which may be applied to livestock is that which remains after crop requirements have been met.

Consideration is to be given 5 operations: spring litter hogs, x_{1}; fall litter hogs, x_{2}; full-feed drylot cattle, x_{3}; full-feed pasture cattle, \mathbf{x}_{4}; and delayed-feeding cattle, \mathbf{x}_{5}. In addition, the production cost occasioned by the use of corn, $\left(x_{6}\right) ;$ protein feed, $\left(x_{7}\right)$; and the purchase of feeder calves, $\left(x_{3}\right)$, would be taken into account. From the foregoing, the net income equation may be constructed by introducing expected prices: $\mathrm{I}=\$ 305 \mathrm{x}_{1}+\$ 280 \mathrm{x}_{2}+\$ 370 \mathrm{x}_{3}$ $+\$ 355 \mathrm{x}_{4}+\$ 355 \mathrm{x}_{5}-\$ 1.48 \mathrm{x}_{6}-\$ 0.47 \mathrm{x}_{7}-\$ 130 \mathrm{x}_{8}$

A refined solution necessitates the formulation of 19 restraints. Twelve of these are created by the monthly labor supply. The January restriction typifies each of these relationships. The labor consumed during this month by the livestock operations may not exceed 420 hours. Each unit of x_{1} requires 1.4 hours, $x_{2} 1.8$ hours, $x_{3} 1.4$ hours, and x_{4} and $x_{5} 1.4$ hours. Hence, the January inequality

$$
1.4 x_{1}+1.8 x_{2}+1.5 x_{3}+1.4 x_{4}+1.4 x_{5} \leq 420 .
$$

The 80 acres of alfalfa-brome grass, which may be utilized as either pasture or hay, creates a restriction for each of the three two-month periods during which grass

1. Best combination of (a) crops, (b) livestock, (c) both.
2. Best or least cost technique (a) type of mechanization, (b) strains and quality of livestock or crops.
3. Optimum assembly of all factors considered as a unit.
The more common of these procedures is the allinclusive analysis. A program thus intended may inspect 25 or more possible activities. A realistic examination may demand that individual crops be compared using various types and grades of seed, a number of fertilizer applications, or with several unique irrigational plans. Livestock requires equivalent elaboration concerning the numerous feeding programs, each with a specific duration and feed mix. Yet, if several resources have specific limits, linear programming will designate the one optimal combination.

The sophisticated practitioner of the linear programming method, upon confronting a problem area, will immediately assemble the relevant information into two divisions. Likewise, he will acknowledge an indispensable condition which all activities must meet. This initial arrangement facilitates the computational process. The ensuing discussion lists each
of these three necessary components.

1. The Linear Function. Of ultimate concern is that sum denoted by the letter Z, for this represents the amount to be maximized (profit) or minimized (cost). If maximum profit is the objective of a farmer who has proposed corn and maize as alternatives to cotton, the linear function would be (net profit per acre of cotton) \times (acres of cotton $)+$ (net profit per acre of corn $) \times($ acres of corn $)+$ (net profit per acre of maize) \times (acres of maize) $=\mathrm{Z}$.
2. Resource Restrictions. If, in the above, land was the only limitation upon productivity capacity, a pencil would be a more appropriate tool than a computer. However, few farmers are so fortunate. Were this not the case, linear programming for farms would be a superfluous activity.
3. Nonnegativity Condition. The mathematical gymnastics of the iterative computation requires every problem to specify that all of the variables (each activity to which resources may be allocated) be equal to or greater than zero. The method used to compute the optimal solution has no appreciation for the fact that the farmer is incapable of planting, for example, -20 acres of cotton. Were this requirement deleted, the final solution would invite programs providing for negative allocations.
would be provided. For example, no more than 5,200 pasture days may be consumed between April 15 and June 15. The unit pasture acre signifies the amount of pasture required per day to sustain a cow receiving no other feed. These units convert to a ton of hay at a rate of 50 to 1 . Computing the pasture-day demands made by each activity during the same period and introducing them as coefficients, the following inequality is obtained:

$$
16 \mathrm{x}_{1}+0 \mathrm{x}_{2}+0 \mathrm{x}_{3}+12 \mathrm{x}_{4}+35 \mathrm{x}_{5} \leq 5,200
$$

Thus, the restraints associated with the limited quantities of labor and pasture have been imposed. The remaining requirements are stated as equalities-sums which must be identical to other sums. These pertain to the utilization of the corn, protein feed, and feeder calves purchased as well as hay produced. The quantities produced or purchased may neither exceed nor fall short of the amounts consumed. The condition for calf purchases affords an example. The number of animals demanded in the implementation of systems x_{3}, x_{4}, and x_{5} should be reflected in x_{8}, the number bought. Therefore,

$$
x_{3}+x_{4}+x_{5}-x_{8}=0
$$

In less time than it took the farmer to slop his pigs, an electronic digital computer emitted the following advice: profits would be maximized with 3 litters of fall pigs, \mathbf{x}_{2}, and 72 cattle conforming with system x_{4}. The employment of these two activities incurred 4,302 units of $x_{6}, 14,370$ of x_{7} and 72 of x_{8}. Consequently, profits were projected to be $\$ 10,080$ if this optimum allocation of resources was installed.

Example 3.

A somewhat more elaborate model, this illustration sought for a Blackland farmer the most profitable combination of 27 possible activities in the face of 20 restraints. Resources included 240 acres of cropland plus the labor of two men at a uniform rate of 480 hours per month.

Of the 11 livestock activities to be considered, one
through four are systems of handling hogs, five and six are methods of feeding 400 -pound calves, seven and eight are feeding systems for 650 -pound yearling steers, nine is a yearling heifer feed plan, and ten and eleven are a beef-cow and dairy-cow enterprise, respectively. Activities 12 through 19 represent various crop rotation plans. Costs for each include both production and soil conservation expenses. Activity 20 is for supplement buying, 21 grain buying, and 22 indicates grain selling. Activities 23 through 25 are associated with various hay-making activities. Finally, 26 signifies calf selling, and 27 calf buying.

Individual restrictions on labor, 1 through 12, are constructed for each month. Next, the solution must assume that the quantity of supplement purchased is equated with the amount consumed by the livestock. This is accomplished in an equation, restraint 13. In a like manner, equations 14 through 19 treat grain, hay, pasture, and calf purchases. Imposed by the final restriction, 20 , is the limit of land available.

In the deduction of an optimal combination of the 27 activities, the computer whirled through 39 iterations. The exercise lasted twenty-five minutes. The machine then yielded the following program:

Livestock

(1) Two-litter system of hogs

Number

(5) Calves on pasture
(7) Yearling steers on pasture 40
(9) Yearling heifers-dry lot

Crops

Acres
Corn-corn-oats, clover-clover rotation, contoured 12
Corn-corn-oats-clover rotation, contoured 228
Bushels of corn equivalent sold 160.7
Hundredweight of supplement purchased $\quad 712.7$
Substituting these values into the profit equation, the net income is determined to be $\$ 22,200$.

Restrictions upon the ability to produce have various origins but all focus upon the triad of land, labor, and capital. Each of these resources may be subject to any number of influences, the more frequent of which are indicated in the following:

LAND

1. no more available for either sale or lease
2. government regulation on crop acreage
3. pasture lands incapable of cultivation
4. fertility of soil insufficient for raising certain crops
5. leases stipulating the extent to which particular crops can be grown

LABOR

1. dependence upon family labor
2. help available only during certain seasons, as with migrant labor or school children
3. other required activities which limit time available

CAPITAL

1. limits on credit obtainable
2. individual policy
3. funds available for some activities but not others

Again, the restrictions prevailing upon a particular problem are the limits of available resources. Yet only in isolated cases will the final plan utilize 100% of every resource at the farmer's disposal. For this reason the restrictions are normally written as inequalities, meaning that the total demands made upon land, labor, or capital must be equal to or less than the amount available of each. For example, consider a farmer who is capable of mustering 1,200 hours of labor during the growing season and has chosen wheat and oats as possible crops. He calculates that an acre of wheat while requiring 5 hours of labor will yield 25 bushels, or .2 hours per bushel. Oats, on the other hand, average 30 bushels and use 3 hours of labor, or .1 hours per bushel. The labor restriction would therefore be stated: .2 hours (per bushel of wheat) +.1 hours (per bushel of oats) $\leqslant 1,200$ hours. With few exceptions, all restrictions, whether on land, labor, or capital, are formulated in an equivalent manner.

Increasing the Scope

Determined agricultural economists, eagerly engaged in developing the capabilities of linear programming, have succeeded in adapting it to a progressively greater range of practical farm problems. A fundamental impediment to the utility of this technique had previously been that resources were in fact seldom subject to absolute restrictions. This was particularly evident with regard to capital and labor. As a consequence, farm economists have busied themselves in the perfection of methods which derive optimum plans for each of a series of different resource levels. This is necessitated because of the fact that an alteration of any one restriction will most likely change the optimum plan.

Similarly, the inability of economists to provide reliable price projections precipitated the development of methods to determine the best plans at various price ranges. A par-
allel technique for varying per acre yields has also been implemented. Perhaps the ultimate device in practical programming is a method which allows consideration of risk aversion. This approach attempts to compensate for factors which the farmer has no way of predicting, such as the implications of bad weather, machine breakdowns, or the disability of a laborer.

Professional Applicators

The practice of planning farm operations through linear programming has in the past several years emerged from the journals of university agricultural economists and has been assumed by enterprising farm consulting services. Certainly, mathematical programming provides an impressive supplement to the battery of tools intended to aug. ment efficient farm management. Sporting IBM electronic computers, one such firm assures a prospective client that after a thorough analysis of the farm plant, they will provide an optimum plan which will normally increase operating profits by 25% and frequently as much as 33%. Upon request, they will furnish a $\$ 100$ per day consultant to ascertain sufficient information to feed their computers.

The firm asserts that linear programming, as "agricul. ture's most advanced analysis technique," is designed to put farm or ranch operations on a business-like basis. The primary objective is to indicate to the farm owner "how to use his resources-land, labor, and capital-to the best possible advantage."

In proceeding with the formulation of a precision plan, several steps are necessitated. First, consideration must be given both the farm's resources and every influencing factor such as climate, soils, credit, type and location of markets, topography, machinery and facilities. Next, the analyst should derive all of the adapted farm income opportunities. An enduring program demands the careful determination of revenue and expense projections for each enterprise system. Finally, the information is coded into punched cards and devoured by a computer. The result is invariably, they profess, a more efficient and more profitable farm operation.

Nor has professional programming been restricted to individual farms. The entire 900 square-mile area of Sherman County on the northern border of the Panhandle was the site of a recent regional development program. Linear programming facilitated formulations for county-wide plans of alternating livestock and cropping enterprises. A typical farm was set up in several areas of the county and optimum plans of resource allocation computed for each. Working both with farmers and Extension Service specialists, the consultants provided (1) detailed cost and return budgets for each of 30-40 activities, and (2) a table of the amounts of resources-land, labor. and capital-that each activity required to produce $\$ 1,000$ of income. Optimum plans for the typical farms were calculated for as many as a dozen levels of capital. Thus, as input-output data were quite similar for each of the areas surrounding the model farms, individual programming was unnecessary.

Various enterprises have been engaged in agricultural development programming since the mid-1940's. However, the Sherman County project was the first attempt at employing linear programming and computer analysis. The availability of this technique has provided no small impetus to further large-scale endeavors.

Local Business Conditions

As a reader's guide to better utility of retail sales data, an average per cent change from the preceding month has been computed for each month of the year. This percent change is marked with a dagger (\dagger) following that figure. The next percent change represents the actual change from the preceding month. A large variation in the normal seasonal from the actual figure represents an abnormal month. This third percent change is the percent change for the identical period the preceding year showing the change between the two years. Postal receipt information which is marked by an asterisk ${ }^{(*)}$) indicates cash receipts received during the four-week postal accounting period ending December 8, 1961, and the percent changes from the preceding period and the comparable period in the previous year. Annual postal data are for 13 four-week periods falling closest within 1960 and 1961 calendar years. Changes less than one-half of one percent are marked with a double asterisk (${ }^{* *)}$. Houston and Waco retail sales information are reported in cooperation with the University of Houston Center for Research in Business and Economics and Baylor Bureau of Business Research, respectively. End-of-month deposits as reported represent money on deposit in individual demand deposit accounts on the last day of the month. All population figures are final 1960 census data. Figures under Texarkana with the following symbol (§) are for Texarkana, Texas, only.

City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	Percent change	
		$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
ABILENE (pop. 90,368)			
Retail sales	- $1{ }^{\dagger} \dagger$	+ 2	- 1
Apparel stores	- $1 \dagger$	- 7	-14
Automotive stores	- $1 \dagger$	**	+ 3
Drug stores	- 5i	+ 1	- 1
Food stores	- 3i	- 3	- 4
General merchandise stores	$+2 \dagger$	+ 9	+ 4
Lumber, building material, and hardware stores	- $9 \dagger$	+ 5	- 7
Postal receipts* \$	121,025	+ 13	+ 4
Building permits, less federal contracts \$	814,439	-62	-46
Bank debits (thousands) \$	110,021	+ 1	+ 4
End-of-month deposits (thousands) $\ddagger . . . \$$	70,764	- 1	$+10$
Annual rate of deposit turnover	18.6	-	+ 12
Employment (area)	36,800	+ 2	$+16$
Manufacturing employment (area)	4,140	+ 5	+ 27
Percent unemployed (area)	5.1	- 4	-12
ALICE (pop. 20,861)			
Retail sales			
Lumber, building material, and hardware stores	- $9 \dagger$	-2	
Postal receipts* \$	16,596	+ 13	+ 5
Building permits, less federal contracts \$	165,191	+ 7	+ 22

Local Business Conditions

	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$		
		$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
ALPINE (pop. 4,740)			
Postal receipts*	4,582	+ 15	**
Building permits, less federal contracts \$	1,600	+256	
Bank debits (thousands)	3,026	5	+ 14
End-of-month deposits (thousands) \ddagger.	4,072	- 1	+ 5
Annual rate of deposit turnover.	8.9	- 8	+ 9
AMARILLO (pop. 137,969)			
Retail sales	$1 \dagger$	**	- 9
Apparel stores	$1 \dagger$	+ 12	- 3
Automotive stores	$1 \dagger$	- 3	- 13
Eating and drinking places		- 8	- 6
Furniture and household appliance stores	$1 \dagger$	- 4	- 11
Postal receipts*	209,882	+ 1	- 3
Building permits, less federal contracts \$	2,660,925	+ 56	+ 49
Bank debits (thousands)	237,717	- 4	+ 6
End-of-month deposits (thousands) \ddagger.	117,055	- 2	
Annual rate of deposit turnover	24.1	- 2	+
Employment (area)	52,100	**	
Manufacturing employment (area)	4,810	**	-20
Percent unemployed (area)	5.6	+ 30	$+30$
ANDREWS (pop. 11,135)			
Postal receipts*	8,798	+ 61	+ 12
Building permits, less federal contracts \$	139,810	+ 19	+ 59
Bank debits (thousands)	4,915		
End-of-month deposits (thousands) $\ddagger \ldots$ \&	10,192	+ 8	+ 7
Annual rate of deposit turnover ...	6.0	- 21	- 13
ARANSAS PASS (pop. 6,956)			
Postal receipts*	4,498	+ 13	
Building permits, less federal contracts \$	14,000	+ 39	+ 57
Bank debits (thousands) \$	4,843	-13	+ 14
End-of-month deposits (thousands) $\ddagger \ldots \ldots$	5,470	+ 3	+ 24
Annual rate of deposit turnover	10.8	- 17	- 6

ARLINGTON (pop. 44,775)

Retail sales

Lumber, building material, and hardware stores	- $9 \dagger$	- 22	2
Postal receipts*	45,021	+ 11	**
Building permits, less federal contracts \$	1,141,696	+ 1	$+73$
Bank debits (thousands) \$	32,861	**	$+17$
End-of-month deposits (thousands) \ddagger ¢ $\$$	21,725	**	+ 9
Annual rate of deposit turnover	18.1	- 3	+ 9
Employment (area)	216,200	**	+ 2
Manufacturing employment (area)	51,250	1	4
Percent unemployed (area)	5.3	+ 8	**

ATHENS (7,086)

Postal receipts*	6,550	5	-
Bank debits (thousands) \$	7,933	- 15	$+$
End-of-month deposits (thousands) $\ddagger \ldots$... \$	7,977	6	-
Annual rate of deposit turnover	11.6		$+$

AUSTIN (pop. 186,545)

Retail sales			4		**
Apparel stores	$1 \dagger$		2		2
Automotive stores	$1 \dagger$	$+$	2		8
Drug stores	$5 \dagger$	-	1		2
Eating and drinking places	$6 \dagger$	-	6		5
Food stores	$3 \dagger$		9		2
Furniture and household appliance stores	$1 \dagger$	-	1		3
Lumber, building material, and hardware stores	${ }^{9 \dagger}$	-	6		4
Postal receipts* \$	394,757	$+$	2		6
Building permits, less federal contracts \$	6,454,809	$+$	59		
Bank debits (thousands) \$	229,154	-	10		11
End-of-month deposits (thousands) $\ddagger \ldots \$$	160,975	$+$	5		13
Annual rate of deposit turnover	17.5		12		1
Employment (area)	80,400		**		6
Manufacturing employment (area)	5,600	+			6
Percent unemployed (area)	3.9	+	11		7

City and item
BAY CITY (pop. 11,656)

Retail sales
Automotive stores

$-1 \dagger$	+12	+8
13,371	+13	+8
15,716	-10	+16
24,161	+3	+15
7.9	-16	+1

BAYTOWN (pop. 28,159)

Postal receipts*
Building permits, less federal contracts \$
Bank debits (thousands)
End-of-month deposits (thousands) $\ddagger \ldots \$$
Annual rate of deposit turnover
Employment (area)
Manufacturing employment (area)
Percent unemployed (area)
BEAUMONT (pop. 119,175)

Retail sales	$1 \dagger$	**	+ 22
Apparel stores	- 1才	$+15$	+ 13
Automotive stores	$1 \dagger$	- 7	$+37$
Furniture and household appliance stores	$1 \dagger$	7	- 26
Lumber, building material, and hardware stores	$9 \dagger$	-16	
Postal receipts* \$	126,067	$+$	8
Building permits, less federal contracts \$	5,400,573	- 8	+179
Bank debits (thousands) \$	176,693	**	
End-of-month deposits (thousands) $\ddagger \ldots \$$	105,623	$+$	
Annual rate of deposit turnover	20.3	- 3	
Employment (area)	105,200	- 3	- 1
Manufacturing employment (area)	30,420		- 10
Percent unemployed (area)	6.9	+ 17	

BEEVILLE (pop. 13,811)

Retail sales

Lumber, building material,
and hardware stores.

$-9 \dagger$	-4	+4
12,897	+21	+1
67,280	-29	+94
9,707	+1	+4
13,893	+2	+5
8.5	-2	-1

Postal receipts*
Building permits, less federal contracts $\$$
Bank debits (thousands) …
End-of-month deposits (thousands) \ddagger....\$
Annual rate of deposit turnover

BELLAIRE (pop. 19,872)

Postal receipts* \$	36,641		
Building permits, less federal contracts \$	159,480	+121	+104
Bank debits (thousands) \$	13,052	5	
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	9,154	1	
Annual rate of deposit turnover	17.0	5	
Employment (area)	513,900	1	
Manufacturing employment (area)....	93,900	**	**
Percent unemployed (area)	4.5	+ 7	

BIG SPRING (pop. 31,230)
Retail sales

Furniture and household appliance stores	$1 \dagger$	6	+ 23
Lumber, building material, and hardware stores	- 9才	-13	+ 3
Postal receipts* $\$$	31,934	*	+ 6
Building permits, less federal contracts \$	350,881		+113
Bank debits (thousands) \$	45,703	+ 7	+ 8
End-of-month deposits (thousands) $\ddagger \ldots \$$	28,305	- 1	+ 1
Annual rate of deposit turnover	19.2	+ 2	
BISHOP (pop. 3,722)			
Postal receipts*	2,446	- 8	- 14
Building permits, less federal contracts \$	3,700	- 63	
Bank debits (thousands) \$	2,183	20	+ 11
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	3,125	- 9	+ 19
Annual rate of deposit turnover	8.0	- 14	

Local Business Conditions		Percent change	
City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	Nov 1961 from Nov 1960
BRADY (pop. 5,338)			
Postal receipts* - ${ }^{\text {d }}$	4,951	+ 11	+
Building permits, less federal contracts \$	15,800	- 66	-65
Bank debits (thousands) \$	4,552	- 13	**
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	7,610	1	
Annual rate of deposit turnover	7.1	-15	- 9
BRENHAM (pop. 7,740)			
Postal receipts*	8,190	+ 7	- 6
Building permits, less federal contracts \$	111,498	$+256$	+323
Bank debits (thousands) \$	10,456	-16	+ 10
End-of-month deposits (thousands) $\ddagger \ldots$ \$	13,145	- 3	+ 4
Annual rate of deposit turnover	9.4	-17	
BROWNSVILLE (pop. 48,040)			
Retail sales ...	- $1 \dagger$	- 8	- 10
Automotive stores	$1 \dagger$	- 14	- 24
Lumber, building material, and hardware stores	$9 \dagger$	- 15	+ 28
Postal receipts* ${ }^{\text {S }}$	30,363	- 1	-1
Building permits, less federal contracts \$	412,006	+183	+134
Bank debits (thousands) \$	31,024	-12	9
End-of-month deposits (thousands) \ddagger. \$	20,085	-	- 5
Annual rate of deposit turnover	18.3	-12	6
BROWNWOOD (pop. 16,974)			
Retail sales			
Apparel stores	$1 \dagger$	-1	- 5
Furniture and household			
Postal receipts* $\$$	26,239	$+21$	6
Building permits, less federal contracts \$	21,300	-43	- 40
Bank debits (thousands) \$	15,314	-	$+10$
End-of-month deposits (thousands) $\ddagger \$$	13,448	$+$	+ 5
Annual rate of deposit turnover	13.9	- 9	+ 8
BRYAN (pop. 27,542)			
Retail sales Food stores	$\begin{array}{ll} -1 \dagger \\ - & 3 \dagger \end{array}$	+ ${ }_{\text {* }}$	$\begin{array}{r} +1 \\ -8 \end{array}$
Postal receipts* ${ }^{\text {\% }}$	21,480	- 7	-8
Building permits, less federal contracts \$	57,874	- 64	-62
Bank debits (thousands)	26,147	-17	+ 13
End-of-month deposits (thousands) $\ddagger . . . \$$	17,875	-	$+10$
Annual rate of deposit turnover	17.5	- 18	**
CALDWELL (pop. 2,204)			
Postal receipts*	2,536	+ 14	- 7
Bank debits (thousands) \$	2,618	-	+ 14
End-of-month deposits (thousands) \ddagger....\$	4,314	$+3$	+ 5
Annual rate of deposit turnover	7.4	- 11	$+10$
CAMERON (pop. 5,640)			
Postal receipts* \$	6,376	$+38$	+ 22
Building permits, less federal contracts \$	30,859	$+236$	+482
Bank debits (thousands) \$	5,522		+ 12
End-of-month deposits (thousands) $\ddagger \ldots \ldots$	5,185		+ 7
Annual rate of deposit turnover	12.4		$+15$
CANYON (pop. 5,864)			
Bank debits (thousands) \$	6,261		
End-of-month deposits (thousands) \ddagger...\$	6,674	- 3	
Annual rate of deposit turnover	11.1	- 11	
CARROLLTON (pop. 4,242)			
Building permits, less federal contracts \$	576,716	+204	+930
Bank debits (thousands) \$	3,564		
End-of-month deposits (thousands) $\ddagger . .$. \$	2,411		+ 6
Annual rate of deposit turnover	17.4		-13
CHHLDRESS (pop. 6,399)			
Postal receipts*	5,482	- 11	- 30
Building permits, less federal contracts \$	31,475	-26	$+272$
Bank debits (thousands) .-.............. \$	11,885	+ 17	
End-of-month deposits (thousands) $\ddagger \ldots$... \$	7,913	$+10$
Annual rate of deposit turnover	18.8	+ 3	

Local Business Conditions		Percent change	
City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
CISCO (pop. 4,499)			
Postal receipts*	54	+ 21	**
Bank debits (thousands)	3,273	- 7	
End-of-month deposits (thousands) $\ddagger \ldots$	3,910	**	- 3
Annual rate of deposit turnover	10.1		
CLEBURNE (pop. 15,381)			
Postal receipts* ${ }^{\text {a }}$	16,779	+ 20	
Building permits, less federal contracts \$	100,439	+133	
Bank debits (thousands) .- \$	10,208	- 8	**
End-of-month deposits (thousands) $\ddagger \ldots$	11,691	**	
Annual rate of deposit turnover	10.5	- 8	
Employment (area)	451,100	**	
Manufacturing employment (area)	96,100		
Percent unemployed (area)	4.3		
CLUTE (pop. 4,501)			
	2,420	+ 34	11
Building permits, less federal contracts \$	52,600	-47	+ 46
Bank debits (thousands) .-............. \$	1,299	- 35	+
End-of-month deposits (thousands) $\ddagger \ldots$	1,797	+ 13	+ 33
Annual rate of deposit turnover	9.2	-42	-32
COLLEGE STATION (pop. 11,396)			
Postal receipts* ...-	17,808		+ 44
Building permits, less federal contracts \$	78,888	+109	
Bank debits (thousands) ${ }^{\text {\$ }}$	3,793	- 4	+ 11
Annual rate of deposit turnover	16.8	**	
End-of-month deposits (thousands) $\ddagger \ldots$...	2,696		+ 12
COLORADO CITY (pop. 6,457)			
Lumber, building material, and hardware stores			- 23
Postal receipts*	6,580	+ 28	
Bank debits (thousands) ...-. \$	7,356	+ 18	- 4
End-of-month deposits (thousands) $\ddagger \ldots .8$	6,195		- 19
Annual rate of deposit turnover	14.5	+ 10	+ 15
COPPERAS COVE (pop. 4,567)			
Postal receipts* -..-	3,028	+ 33	
Building permits, less federal contracts \$	368,400	$+28$	+399
Bank debits (thousands) \$	1,062	**	+ 54
End-of-month deposits (thousands) \ddagger. ${ }^{\text {S }}$	739		- 11
Annual rate of deposit turnover	17.5		+ 55
CORPUS CHRISTI (pop. 167,690)			
Retail sales	- 1t		+ 19
Apparel stores ...	$-1{ }^{\dagger}$	$+17$	
Automotive stores	- $1 \dagger$	$+$	$+20$
Nurseries		- 15	- 6
Postal receipts*	172,783	+ 4	
Building permits, less federal contracts \$	1,354,845	-22	+ 54
Bank debits (thousands) ...	209,238		+ 11
End-of-month deposits (thousands) $\ddagger \ldots$...	112,363	-	$+$
Annual rate of deposit turnover	21.7	+ 4	+
Employment (area)	64,200	**	**
Manufacturing employment (area)	8,500	**	**
Percent unemployed (area)	5.7	$+10$	16
CORSICANA (pop. 20,344)			
Postal receipts* ... ${ }^{\text {a }}$	95,107	+155	
Building permits, less federal contracts \$	22,200	- 65	+ 71
Bank debits (thousands) ...-	18,749	- 7	+ 17
End-of-month deposits (thousands) $\ddagger \ldots$...	20,372	**	+ 4
Annual rate of deposit turnover	11.0	- 10	+ 13
CRYSTAL CITY (pop. 9,101)			
Postal receipts*	2,798	-18	
Building permits, less federal contracts \$	28,350	- 62	+ 37
Bank debits (thousands)_	2,834		+ 15
End-of-month deposits (thousands) $\ddagger \ldots$	2,929		+ 17
Annual rate of deposit turnover	11.5		

Local Business Conditions		Percent change	
	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
DALLAS (pop. 679,684)			
Retail sales	$+3 \dagger$		
Apparel stores	$-{ }^{1 \dagger}$	$+20$	$+$
Automotive stores	+ $7 \dagger$	+	+ 28
Eating and drinking places	$-15 \dagger$	- 12	
Florists	$+3 \dagger$	+	
Food stores		- 3	
Furniture and household appliance stores \qquad		-	+ 12
General merchandise stores	$+6 \dagger$	+ 22	
Lumber, building material, and hardware stores	- 14 \dagger		+ 13
Nurseries			
Office, store, and school supply dealers	**		
Postal receipts*	2,575,206	$+$	
Building permits, less federal contracts \$1	1,860,854	- 30	+ 25
Bank debits (thousands) .-............. ${ }^{\text {\% }}$	3,107,190	-	+
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	1,249,869	**	
Annual rate of deposit turnover - .-.....	29.8	- 5	
Employment (area)	451,100	**	
Manufacturing employment (area)	96,100	+ 2	
Percent unemployed (area)	4.3		
DEER PARK (pop. 4,865)			
Postal receipts*	4,454	-	
Building permits, less federal contracts \$	66,550	- 74	+178
Bank debits (thousands) .-............. \$	3,524	+ 11	$+33$
End-of-month deposits (thousands) $\ddagger \ldots$ -	2,168		+ 46
Annual rate of deposit turnover	18.9	-2	- 5
Employment (area)	513,900		
Manufacturing employment (area)	93,900	*	*
Percent unemployed (area)	4.5		

DEL RIO (pop. 18,612)

Lumber, building material,

Annual rate of deposit turnover ..
DENISON (pop. 22,748)

Retail sales	$1 \dagger$	$+1$	
Automotive stores	$5 \dagger$	$+17$	$+$
Postal receipts* ${ }^{\text {\$ }}$	21,658	$+13$	-
Building permits, less federal contracts \$	325,744	+ 73	+
Bank debits (thousands) \$	15,861	+ 1	-
End-of-month deposits (thousands) $\ddagger . . . \$$	14,802	- 1	$+$
Annual rate of deposit turnover	12.8	+ 2	

DENTON (pop. 26,844)

Postal receipts* \$	34,744	-10	$+$
Building permits, less federal contracts \$	326,400	- 26	
Bank debits (thousands) \$	20,029	- 11	$+$
End-of-month deposits (thousands) $\ddagger \ldots . . \$$	22,768	1	$+$
Annual rate of deposit turnover	10.5	-15	
Employment (area)	451,100	**	$+$
Manufacturing employment (area)....	96,100		$+$
Percent unemployed (area)	4.3	+ 8	-

DONNA (pop. 7,522)
Postal receipts* \$
Building permits, less federal contracts
End-of-month deposits (thousands) \ddagger....
Annual rate of deposit turnover

3,476	+9	-2
16,515	+4	-49
2,495	-1	+12
2,974	+1	+6
10.1	-4	+7

EDINBURG (pop. 18,706)

Postal receipts* Building permits, less federal contracts \$

Bank debits (thousands) \$

11,918	+24	-4
104,475	-9	+12
17,433	+32	+21
8,609	-13	-7
22.6	+27	+21

Local Business Conditions		Percent change	
City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
ELECTRA (pop. 4,759)			
Postal receipts* -	4,207	+ 12	
Bank debits (thousands) - \$	2,623	+ 3	$+$
End-of-month deposits (thousands) $\ddagger \ldots$... $\$$	3,391	+	+ 31
Annual rate of deposit turnover-....	9.4		- 14
EL PASO (pop. 276,687)			
Retail sales Automotive stores	- ${ }^{1} \dagger$	- 28	**
Postal receipts**	318,947	+ 7	
Building permits, less federal contracts \$	3,478,693	+	- 31
Bank debits (thousands) - \$	377,045	+	$+$
End-of-month deposits (thousands) $\ddagger \ldots$... ${ }^{\text {d }}$	179,551	-	$+$
Annual rate of deposit turnover	25.1	+	
Employment (area)	93,300	**	
Manufacturing employment (area)	14,150		
Percent unemployed (area)	4.3	$+13$	
ENNIS (pop. 9,347)			
Building permits, less federal contracts \$	40,813	+ 71	-27
Bank debits (thousands) -_-	7,619	- 14	$+$
End-of-month deposits (thousands) $\ddagger \ldots$	7,676	**	
Annual rate of deposit turnover	11.9	-14	
FORT STOCKTON (pop. 6,373)			
Bank debits (thousands) -	5,402	-15	
End-of-month deposits (thousands) $\ddagger \ldots \ldots$	5,044	- 16	
Annual rate of deposit turnover	12.8	- 16	
FORT WORTH (pop. 356,268)			
Retail sales			
Apparel stores	$7{ }^{7}$	-	+
Automotive stores	$+6 \dagger$	$+$	$+17$
Drug stores	- 3†	+	+ 18
Eating and drinking places .-	- $8 \dagger$	-	-
Food stores ...Furniture and household			
Furniture and household appliance stores	- 3i	+ 16	- 11
Gasoline and service stations.	$-{ }^{\text {¢ }}$	- 4	+13
General merchandise stores ...-			
Lumber, building material, and hardware stores \qquad	-14†	- 13	
Postal receipts* ${ }^{\text {a }}$ - \$	840,289	$+$	
Building permits, less federal contracts \$	2,035,827		-47
Bank debits (thousands) - \$	804,973	- 2	+
End-of-month deposits (thousands) $\ddagger \ldots$...	387,705	-	+
Annual rate of deposit turnover	24.7	-	+
Employment (area)	216,200	**	+
Manfacturing employment (area)...-	51,250		
Percent unemployed (area)	5.3		**
FREDERICKSBURG (pop. 4,629)			
Retail sales	- ${ }^{\dagger} \dagger$		
Food stores	- 3†	+ 6	
General merchandise stores	$+{ }^{+} \dagger$	+ 11	+
Postal receipts* .-... ${ }^{\text {a }}$	6,314	+ 48	+
Building permits, less federal contracts \$	82,400	+100	+ 35
Bank debits (thousands) .- \$	8,126	**	+ 16
End-of-month deposits (thousands) $\ddagger \ldots .$.	8,290		+ 4
Annual rate of deposit turnover	11.6	$+3$	+ 12
GALVESTON (pop. 67,175)			
Retail sales	$-1 \dagger$		+ 29
Apparel stores	- $1^{\dagger}{ }^{+}$	-	+
Food stores	- $3 \dagger$	- 8	
Postal receipts*	86,588	**	-
Building permits, less federal contracts \$	376,537	- 75	+13
Bank debits (thousands) ..._	90,293	**	$+$
End-of-month deposits (thousands) $\ddagger \ldots$ \$	65,433		+ 12
Annual rate of deposit turnover	16.7		
Employment (area)	52,600	**	
Manufacturing employment (area)....	10,600	**	
Percent unemployed (area)	8.5		+ 49

City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	Percent change		
		$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$	
GAINESVILLE (pop. 13,083)				
Apparel stores	$-1 \dagger$	+ 30	+ 11	
Furniture and household appliance stores \qquad			$+10$	
Postal receipts* \$	14,563	+ 11		
Building permits, less federal contracts \$	30,573	- 65		
GALENA PARK (pop. 10,852)				
Postal receipts* .- \$	4,744	- 7	- 18	
Building permits, less federal contracts \$	11,600	- 85	+209	
Bank debits (thousands) .- \$	4,652	-	+ 16	
End-of-month deposits (thousands) $\ddagger \ldots$. $\$$	2,845	- 8		
Annual rate of deposit turnover .-	18.8	-		
Employment (area)	513,900	- 1		
Manufacturing employment (area)	93,900	**		
Percent unemployed (area)	4.5			
GARLAND (pop. 38,501)				
Retail sales				
	${ }^{1} \dagger$	- 14	$+25$	
Drug stores	- ${ }^{5} \dagger$	-	+ 13	
Postal receipts*	31,387	-	+ 1	
Building permits, less federal contracts \$	2,198,277	+161	+ 57	
Employment (area)	451,100	**	$+$	
Manufacturing employment (area)	96,100			
Percent unemployed (area) .-.	4.3			
GATESVILLE (pop. 4,626)				
Postal receipts*	5,210	+ 37		
Bank debits (thousands) - .-.	5,290		$+$	
End-of-month deposits (thousands) $\ddagger \ldots$ \$	5,646		$+$	
Annual rate of deposit turnover	11.1			
GIDDINGS (pop. 2,821)				
Postal receipts* - ${ }^{\text {d }}$ (${ }^{\text {a }}$	3,569	+ 1	- 12	
Bank debits (thousands)	2,890	- 9	+ 13	
End-of-month deposits (thousands) $\ddagger \ldots .$.	3,985	+ 2		
Annual rate of deposit turnover	8.8	- 11		
GLADEWATER (pop. 5,742)				
Postal receipts* ..._ \$	6,470	+ 17	-	
Building permits, less federal contracts \$	64,700	+327	-21	
Bank debits (thousands) .- \$	3,480	**	+	
End-of-month deposits (thousands) $\ddagger \ldots$...	5,625		+ 19	
Annual rate of deposit turnover	7.1	5	-10	
Employment (area)	28,800	**		
Manufacturing employment (area)	5,740	**		
Percent unemployed (area)	3.6		- 28	
GOLDTHWAITE (pop. 1,383)				
Postal receipts*-.	1,826		- 25	
Bank debits (thousands) .-_ \$	2,883			
End-of-month deposits (thousands) $\ddagger \ldots$...	3,889		+ 10	
Annual rate of deposit turnover	8.9		-12	
GRAHAM (pop. 8,505)				
Postal receipts** ${ }^{\text {a }}$ (7,838	- 9	-	
Building permits, less federal contracts \$	14,520	+123	- 72	
Bank debits (thousands) .-......... 8	8,727			
End-of-month deposits (thousands) $\ddagger \ldots$... $\$$	10,379	- 1	**	
Annual rate of deposit turnover	10.1	-		
GREENVILLE (pop. 19,087)				
Retail sales .-................				
Apparel stores	$-1 \dagger$	- 15	+ 2	
Automotive stores	$-1 \dagger$	+26	+ 38	
Drug stores	$5 \dagger$	+	+ 18	
Lumber, building material, and hardware stores		23		
Postal receipts* .-.	31,320	+37 +37	- 1	
Building permits, less federal contracts \$	120,415	-33	- 18	
Bank debits (thousands) .._ \$	15,194	- 9	-	
End-of-month deposits (thousands) $\ddagger \ldots$	16,849	+ 2		
Annual rate of deposit turnover	10.9	-11	-10	

Local Business Conditions		Percent change		Local Business Conditions	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	Percent change		
City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$			$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$	
GRANBURY (pop. 2,227)				HUMBLE (pop. 1,711)				
Postal receipts* .-. \$	4,600	+119		Building permits, less federal contracts \$	1,000			
Bank debits (thousands) - \$	1,488	- 3		Bank debits (thousands)	2,212		-93 +23	
End-of-month deposits (thousands) \ddagger. $\$$	2,086			End-of-month deposits (thousands) \ddagger - \$	2,500		+ 23 -15	
Annual rate of deposit turnover	8.9			Annual rate of deposit turnover	10.6		+15 +45	
GRAND PRAIRIE (pop. 30,386)				JACKSONVILLE (pop. 9,590)				
Postal receipts* .-. ${ }^{\text {a }}$	24,663	+ 24						
Building permits, less federal contracts \$	602,670	+ 21	+138	Building permits, less federal contracts \$	19,569 420,000	+1028	+11 +10	
Bank debits (thousands) .- \$	15,616	- 13	+ 17	Bank debits (thousands)	$\begin{array}{r} 420,000 \\ 11,470 \end{array}$		+ 10 +23	
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	10,186	- 28	+ 12		$\begin{array}{r} 11,470 \\ 9,204 \end{array}$		$\begin{aligned} & +23 \\ & +\quad 8 \end{aligned}$	
Annual rate of deposit turnover	15.4	- 13	+18	Annual rate of deposit turnover	$\begin{array}{r} 9,204 \\ 14.8 \end{array}$		$\begin{aligned} & +8 \\ & +\quad 13 \end{aligned}$	
Employment (area)	451,100	**		Annual rate of deposit turnover				
Manufacturing employment (area)	96,100	+ 2	$+$	JA				
Percent unemployed (area)	4.3			Retail sales				
HALE CENTER (pop. 2,196)				Automotive stores	$-1{ }^{1 \dagger}$	+ 18	+ 8	
Postal receipts* .._p \$	2,095	$+20$		ostal receipts*	7,182	**	15	
Building permits, less federal contracts \$	22,500	+ 74	+423	Building permits, less federal contracts \$	24,000	- 39		
Bank debits (thousands) ${ }^{\text {8 }}$	4,211	$+$	- 6	Bank debits (thousands) ..._ \$	8,140			
End-of-month deposits (thousands) $\ddagger . .$. \$	4,663	$+17$	+ 11	End-of-month deposits (thousands) $\ddagger \ldots$...	8,444			
Annual rate of deposit turnover	11.7			Annual rate of deposit turnover	11.4			
HARLINGEN (pop. 41,207)				JUSTIN (pop. 622) \& Postal receipts *) $620+13$				
Retail salesAutomotive stores				Bank debits (thousands)	$\begin{array}{r} 15,000 \\ 1,293 \end{array}$			
Postal receipts*	37,585	+ 5	18	End-of-month deposits (thousands) $\ddagger \ldots$	1,293 855			
Building permits, less federal contracts \$	1,709,550	+1901	+310	Annual rate of deposit turnover	17.9			
Bank debits (thousands) .-............	37,724		- 1	Annual rate of deposil turnover	17.9			
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	27,443			KATY (pop. 1,569)				
Annual rate of deposit turnover	16.1		- 5	Building permits, less federal contracts \$	7,500	21		
HEMPSTEAD (pop. 1,505)				Bank debits (thousands) .- \$	1,990	19	+ 13	
	4,398	- 46	+ 9	End-of-month deposits (thousands) $\ddagger \ldots .$.	2,012	8		
Bank debits (thousands) - \$	1,461	+ 24	+ 34	nual rate of deposit turnover	11.4	- 28	+ 16	
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	1,914	+1 $+\quad 1$	- ${ }^{2}$	KENEDY (pop. 4,301)				
Annual rate of deposit turnover	9.2	+ 21	+ 42	Retail sales				
HENDERSON (pop. 9,666)				Lumber, building material, and hardware stores \qquad Postal receints*				
				4,138	+ 9	+ 8		
Food stores	- ${ }^{3 \dagger}$	-4	- 12		Building permits, less federal contracts \$	80,500	+683	+178
Postal receipts* .__ \$	11,551	+ 45	+ 8					
Building permits, less federal contracts \$	48,425	37	62	KILGORE (pop. 10,092)				
Bank debits (thousands) .-.......... \$,077	-13	- 1		14,838	+ 12		
End-of-month deposits (thousands) $\ddagger \ldots$....	5,920	+	+ 2	Building permits, less federal contracts \$	136,527	+ 51	+720	
				Bank debits (thousands)End-of-month deposits (thousands) $\ddagger \ldots \$ \$ 8$	12,087	-10		
HEREFORD (pop. 7,652)					14,897			
				Annual rate of deposit turnover-	9.8	- 10		
Postal receipts* ... \$	9,549			Employment (area)	28,800	**		
Building permits, less federal contracts \$	57,700	- 25	-67	Manufacturing employment (area) ...-	5,740	**		
Bank debits (thousands) . \$	15,350	+ 7	- 5	Percent unemployed (area)	3.6		- 28	
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	12,624	**	+ 11					
Annual rate of deposit turnover	14.6		16	KILLEEN (pop. 23,377)				
HOUSTON (pop. 938,219)					34,115			
				Building permits, less federal contracts \$	305,721		+ 58	
etail sales				Bank debts (thousands) ${ }^{\text {d }}$	1,154		+ 22	
Apparel stores	+ ${ }^{+}{ }^{\dagger}$	$+$	+	End-of-month deposits (thousands) \ddagger. $\$$	8,975	*	+ 15	
Automotive stores	- ${ }^{5 \dagger}$	- 14 $+\quad 6$	+22 $+\quad 11$	Annual rate of deposit turnover	14.9	- 3		
Drug stores	- ${ }^{1 \dagger}$	**		KINGSVILLE (pop. 25,297)				
Eating and drinkin	- ${ }^{3 \dagger}$							
Food stores				Postal receipts* \$	14,753	+ 14		
Furniture and household appliance stores \qquad	$2 \dagger$	+ 13	+ 27	Building permits, less federal contracts \$	101,369		-42	
Gasoline and service stations	+ $1 \dagger$	- 5	- 1	Bank debits (thousands) \$	10,588			
General merchandise stores			+12	End-of-month deposits (thousands) $\ddagger \ldots$. $\$$	13,072 9.8			
Liquor stores ... ${ }^{* * \dagger}+10$ +				Annual rate of deposit turnover	9.8			
Lumber, building material, and hardware stores	11†	- 28	+ 12	LA MARQUE (pop. 13,969)				
	1,881,000	+ 15	+ 2	Postal receipts** . ${ }^{\text {* }}$	11,109	+ 95	+32	
Building permits, less federal contracts \$	15,554,638	-38	+ 8	Building permits, less federal contracts \$	41,290	-39	+710	
Bank debits (thousands) .-	2,871,002		+14	Bank debits (thousands)	7,898		+24 $+\quad 25$	
End-of-month deposits (thousands) $\ddagger \ldots$. $\$$	1,352,593			End-of-month deposits (thousands) $\ddagger \ldots$ \$	6,376			
Annual rate of deposit turnover	25.4			Annual rate of deposit turnover -.....	14.8 52,600			
Employment (area)	513,900 93,900				52,600	**		
Manufacturing employment (area)	93,900				8.5		$+49$	
Percent unemployed (area)				Percent unemployed (area)				

Local Business Conditions		Percent change	
City and item	${ }_{1961}^{\text {Nov }}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{gathered} \text { Nov } 1961 \\ \text { from } \\ \text { fov } 1960 \end{gathered}$
KIRBYVILLE (pop. 1,660)			
Postal receipts** - (pop. 1,66) \$	${ }^{3,326}$		- ${ }^{15}$
Bank debits (thousands) _- s	2,129		
End-of-month deposits (thousands) $\ddagger \ldots$ -	2,421		
Annual rate of deposit turnover	10.2		
LA FERIA (pop. 3,047)			
Postal receipts**	2,346	+ 11	
Building permits, less federal contracts \$	10,700	- 26	+265
Bank debits (thousands) - \$	1,409	+	+ 13
End-of-month deposits (thousands) $\ddagger \ldots$ -	1,399		
Annual rate of deposit turnover	11.6	+ 10	
LAMESA (pop. 12,438)			
Retail sales (${ }^{\text {Lep }}$ (12,438)			
Automotive stores		-21	
Drug stores	${ }^{5}$	-18	
Postal receipts*	13,650	-11	-12
Building permits, less federal contracts \$	207,700	+ 72	+ 82
Bank debits (thousands) - \$	34,240		- ${ }^{13}$
End-of-month deposits (thousands) \ddagger -	23,151	+	+ 15
Annual rate of deposit turnover	18.2	-24	- 25
LAMPASAS (pop. 5,061)			
Postal receipts* (pop. 5,	6,253	+ 40	+ 13
Building permits, less federal contracts \$	92,000	+ 90	+283
Bank debits (thousands) .-_ \$	6,483		
End-of-month deposits (thousands) \ddagger ¢	6,660		+
Annual rate of deposit turnover	11.6		
LAREDO (pop. 60,678)			
Postal receipts* ${ }^{\text {a }}$ (${ }^{\text {a }}$	32,214		
Building permits, less federal contracts \$	118,365	+148	+ 4
Bank debits (thousands) .-	26,673		+
End-of-month deposits (thousands) \ddagger \&	22,454	**	
A nnual rate of deposit turnov	14.3		
LEVELLAND (pop. 10,153)			
Postal receipts* ._ (p) \$	8,486		
Building permits, less federal contracts \$	120,450	36	- 32
Bank debits (thousands) - \&	18,039	+ 13	
End-of-month deposits (thousands) \ddagger - \$	12,557	+	
Annual rate of deposit turnover	18.0		
LLANO (pop. 2,656)			
	2,411		**
Building permits, less federal contracts \$	8,650		
Bank debits (thousands) .- ${ }_{\text {s }}$	3,493	- 18	
End-of-month deposits (thousands) \ddagger	4,241		
Annual rate of deposit turnover	9.9		
LOCKHART (pop. 6,084)			
Food stores	$-3 \dagger$	+ 1	**
Postal receipts** \%	4,272	+109	- 12
Building permits, less federal contracts	12,515	+158	
Bank debits (thousands) -_ \&	4,426	- 2	
End-of-month deposits (thousands) \ddagger - \$	5,665		
Annual rate of deposit turnover	9.2	**	
$\underset{\text { Retail sales }}{\text { LONGV }}$ (pop. 40,050)			
Lumber, building material,			
and hardware stores			
Postal receipts**	54,793	+ 15	+ 6
Building permits, less federal contracts \$ 1, Employment (area)	080,662	+ ${ }_{\text {\% }}$	+84
Employment (area)	28,800	**	
Manufacturing employment (area) -...			
Percent unemployed (area)	3.6		-28
LOS FRESNOS (pop. 1,289)			
Building permits, less federal contracts \$	7,000	- ${ }^{37}$	- 26
Bank debits (thousands) - \$	1,173	+ 10	+ 17
End-of-month deposits (thousands) \ddagger - \$	1,535		
Annual rate of deposit turnover	8.9	+ 14	

Local Business Conditions

LOWER RIO GRANDE VALLEY (pop. 352,086) (Cameron, Willacy, and Hidalgo Counties)

Retail sales	$1 \dagger$		
Apparel stores	$1 \dagger$	$+$	+ 3
Automotive stores	$1 \dagger$	+	+
Drug stores	$5^{\dagger} \dagger$	$+$	-11
Food stores	$3 \dagger$	$+$	**
Furniture and household appliance stores	- 1t	$+17$	- 10
General merchandise stores	$+2 \dagger$	+ 2	+ 2
Lumber, building material, and hardware stores	$9 \dagger$		+ 15
Postal receipts* \$	+ 40	7
Building permits, less federal contracts \$	-	+203	+133
Bank debits (thousands) \$	**	+ 2
End-of-month deposits (thousands) \ddagger....\$		- 4	+ 3
Annual rate of deposit turnover	15.3	+ 2	2
LUBBOCK (pop. 128,691)			
Retail sales		$+18$	+ 18
Apparel stores	$1 \dagger$	$+$	+ 6
Automotive stores	$1 \dagger$	$+21$	$+36$
Furniture and household appliance stores	- 1†		+ 40
Postal receipts* \$	176,073	$+$	*
Building permits, less federal contracts \$	2,849,100	-21	
Bank debits (thousands) \$	270,600		+ 11
End-of-month deposits (thousands) \ddagger...§	126,858	+ 5	+9
Annual rate of deposit turnover .-.........	26.3		- 1
Employment (area)	52,000	$+$	- 5
Manufacturing employment (area)...-	5,370	**	4
Percent unemployed (area)	4.7	+ 7	

LUFKIN (pop. 17,641)

Retail sales

Automotive stores	$-1 \dagger \quad-9 \quad-17$				
Postal receipts* ._._._................... \$	22,952		16		
Building permits, less federal contracts \$	69,020	-	44		
Bank debits (thousands) \$	24,163	-	3		
End-of-month deposits (thousands) $\ddagger \ldots$. \$	27,761	$+$	5		
Annual rate of deposit turnover	10.7	-	7		

McALLEN (pop. 32,728)

Postal receipts* \$	2,640	-	6	- 19
Bank debits (thousands) ${ }^{\text {S }}$	2,012	-	2	+ 21
End-of-month deposits (thousands) $\ddagger \ldots$...	2,105	-	6	+ 6
Annual rate of deposit turnover	11.1	$+$	6	+ 13

McGREGOR (pop. 4,642)

Building permits, less federal contracts \$	28,563	+116	-79	
Bank debits (thousands)	$\$$	2,996	+	+
End-of-month deposits (thousands) $\ddagger \ldots$	$\$$	4,979	-6	+1
Annual rate of deposit turnover	7.0	+1	+35	

End-of-month deposits (thousands) $\ddagger \ldots \$$

MARSHALL (pop. 23,846)

Retail sales Apparel stores	$\begin{array}{ll} -1 \dagger \\ - & 1 \dagger \end{array}$	- 4	-
Postal receipts*	25,388	+ $+\quad 9$	
Building permits, less federal contracts \$	72,137	- 77	
Bank debits (thousands)	16,462	- 5	$+$
End-of-month deposits (thousands) $\ddagger . .$. \$	21,567	+ 1	$+$
Annual rate of deposit turnover	9.2	- 10	-

Local Business Conditions		Percent change	
City and item	Nov 1961	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
McKINNEY (pop. 13,763)			
Postal receipts* (pop, 13,763) \$	11,995		
Building permits, less federal contracts \$	91,950	-68	- 5
Bank debits (thousands) --_ \$	10,815	-21	
End-of-month deposits (thousands) $\ddagger \ldots$ \$	9,448	-	$+$
Annual rate of deposit turnover	13.3	-20	
MERCEDES (pop. 10,943)			
Postal receipts* ... ${ }^{\text {a }}$ (${ }^{\text {a }}$	4,925	- 2	- 45
Building permits, less federal contracts \$	34,745	$+27$	+ 79
Bank debits (thousands) .-......... ${ }^{\text {a }}$	5,162	**	+ 1
End-of-month deposits (thousands) $\ddagger \ldots$....	3,916	-	
Annual rate of deposit turnover	15.5		**
MESQUITE (pop. 27,526)			
Postal receipts* ...)	10,225	- 17	
Building permits, less federal contracts \$	1,895,304	+144	+348
Bank debits (thousands) $\$$	6,263		+13
End-of-month deposits (thousands) $\ddagger \ldots$... $\$$	6,931	+ 44	+ 22
Annual rate of deposit turnover	12.8	- 21	$+$
Employment (area)	451,100	**	
Manufacturing employment (area)	96,100		
Percent unemployed (area)	4.3		
MEXIA (pop. 6,121)			
Postal receipts** - \%	5,566	$+15$	
Building permits, less federal contracts \$	14,000		+126
Bank debits (thousands) -- \$	3,678	-	+ 13
End-of-month deposits (thousands) $\ddagger \ldots . .$.	4,719	-1	
Annual rate of deposit turnover	9.3	-	+ 12

MIDLAND (pop. 62,625)

Retail sales

Drug stores	$5 \dagger$		+ 17
Postal receipts \$	94,074	+ 6	+ 25
Building permits, less federal contracts \$	1,464,785	+ 22	+ 27
Bank debits (thousands) \$	119,534	+ 1	$+21$
End-of-month deposits (thousands) $\ddagger \ldots$... \$	105,629		+ 15
Annual rate of deposit turnover	14.1	5	+ 8
Employment (area)	54,400	**	+ 2
Manufacturing employment (area)....	2,330	+ 2	+ 1
Percent unemployed (area)	3.3	+ 22	- 23
MIDLOTHIAN (pop. 1,521)			
Building permits, less federal contracts \$	74,715	+ 79	$+42$
Bank debits (thousands) \$	1,202		$+11$
End-of-month deposits (thousands) $\ddagger \ldots$. $\$$	1,703	- 6	$+7$
Annual rate of deposit turnover	8.2		$+$

MISSION (pop. 14,081)

Postal receipts* $-\ldots$

Building permits, less federal contracts Bank debits (thousands)
End-of-month deposits (thousands) \ddagger....
Annual rate of deposit turnover

MONAHANS (pop. 8,567)

Postal receipts*

Bank debits (thousands) \$
End-of-month deposits (thousands) \ddagger.... \&
Annual rate of deposit turnover
MUENSTER (pop. 1,190)
Postal receipts* Building permits, less federal contracts \$
Bank debits (thousands) $\$$
End-of-month deposits (thousands) $\ddagger . .$. \$
Annual rate of deposit turnover

NEDERLAND (pop. 12,036)
Bank debits (thousands) \$
End-of-month deposits (thousands) $\ddagger \ldots$.... $\$ 3,754$ -

Annual rate of deposit turnover...........$~$	3,754	15.7	+8
A			

Local Business Conditions		Percent change	
City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
NACOGDOCHES (pop. 12,674)			
Retail sales Apparel stores)		
Postal receipts*	18,400	+12 $+\quad 20$	+ $+\quad 2$
Building permits, less federal contracts	1,338,605	$+1846$	+6269
Bank debits (thousands) \$	16,192	+ 7	$+18$
End-of-month deposits (thousands) $\ddagger . .$. \$	15,488	**	+
Annual rate of deposit turnover	12.6	+ 7	$+12$
NEW BRAUNFELS (pop. 15,631)			
Postal receipts*- \$	23,575	+ 25	- 5
Building permits, less federal contracts \$	98,855	+ 32	-44
Bank debits (thousands) \$	9,297	- 12	- 6
End-of-month deposits (thousands) $\ddagger \ldots \$$	11,313	**	**
Annual rate of deposit turnover	9.9	- 9	- 7
ODESSA (pop. 80,338)			
	81,372	+ 27	- 1
Building permits, less federal contracts \$	655,078	- 38	- 11
Bank debits (thousands) \$	72,767	- 1	**
End-of-month deposits (thousands) \ddagger.... \$	65,442	- 5	- 4
Annual rate of deposit turnover	13.0	+ 2	- 1
Employment (area)	54,400	**	+
Manufacturing employment (area)	2,330	+ 2	$+$
Percent unemployed (area)	3.3	+ 22	- 23
ORANGE (pop. 25,605)			
Retail sales Apparel stores	- 1 ${ }^{+}$		
Postal receipts* \$	26,763	+ 7	7
Building permits, less federal contracts \$	128,872	-43	- 29
Bank debits (thousands) \$	29,102	+ 4	+ 8
End-of-month deposits (thousands) $\ddagger . .$. \$	22,504	+ 2	+ 6
Annual rate of deposit turnover	15.6	- 1	+ 2
Employment (area)	105,200	- 3	- 1
Manufacturing employment (area)	30,420	-11	- 10
Percent unemployed (area)	6.9	+ 17	+ 5
PALESTINE (pop. 13,974)			
Postal receipts* ... -	18,318	+ 26	$+20$
Building permits, less federal contracts \$	215,459	-64	+ 46
Bank debits (thousands) \$	12,468	+ 16
End-of-month deposits (thousands) $\ddagger \ldots$...	14,538	----	
PAMPA (pop. 24,664)			
Retail sales	$1 \dagger$	2	-7
Automotive stores	- 1才	-	- 8
Eating and drinking places	- $6 \dagger$	- 14	- 10
Food stores	- 3i	**	- 12
Lumber, building material, and hardware stores	- $9 \dagger$	- 8	
Postal receipts* \$	25,767	+ 18	- 7
Building permits, less federal contracts \$	64,850	-17	- 26
Bank debits (thousands) \$	23,731	-	+ 3
End-of-month deposits (thousands) $\ddagger \ldots$...	22,477	+ 2	- 12
Annual rate of deposit turnover	12.8	4	+ 19
PARIS (pop. 20,977)			
Retail sales .-.	- $1 \dagger$	+ 6	$+12$
Apparel stores	$1{ }^{\dagger}$	- 11	- 7
Automotive stores	- $1 \dagger$	+ 12	$+15$
Lumber, building material, and hardware stores	- $9 \dagger$	- 15	
Postal receipts* ..._ \$	21,067	+ 17	- 8
Building permits, less federal contracts \$	274,586	+ 42	+ 36
Bank debits (thousands) \$	18,552	- 9	$+11$
End-of-month deposits (thousands) $\ddagger \ldots$.	14,133	- 2	+ 4
Annual rate of deposit turnover	15.6	-14	$+23$
PHARR (pop. 14,106)			
Postal receipts* \$	6,574		
Bank debits (thousands)	3,614	2	- 6
End-of-month deposits (thousands) \ddagger....\$	3,377	- 1	-12
Annual rate of deposit turnover	12.8	- 1	+ 3

Local Business Conditions	$\begin{aligned} & \text { Nov } \\ & 1061 \end{aligned}$	Percent change	
		$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct. } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
PASADENA (pop. 58,737)			
Postal receipts*_ \$	35,839	**	-
Building permits, less federal contracts \$	1,089,850	+ 19	+ 93
Bank debits (thousands) . \$	44,167	+ 10	+ 29
End-of-month deposits (thousands) \ddagger. $\$$	23,559	-	-
Annual rate of deposit turnover	22.2		+ 26
Employment (area)	513,900	-	+
Manufacturing employment (area) ...-	93,900	**	**
Percent unemployed (area)	4.5		
PILOT POINT (pop. 1,254)			
Building permits, less federal contracts \$	400	-98	- 91
Bank debits (thousands) \$	970	- 29	
End-of month deposits (thousands) $\ddagger \ldots \$$	1,718	- 3
Annual rate of deposit turnover	6.7	- 29	

PLAINVIEW (pop. 18,735)

Retail sales

Retail sales			
Apparel stores	$1 \dagger$	$+5$	$+1$
Automotive stores	$1 \dagger$	+ 14	$+$
Postal receipts* \$	21,765	+ 4	+ 7
Building permits, less federal contracts \$	252,450	-67	- 54
Bank debits (thousands) \$	38,816	+ 7	- 12
End-of-month deposits (thousands) $\ddagger \ldots$. $\$$	24,855	+ 5	-
Annual rate of deposit turnover	19.2	+ 1	- 15

PLANO (pop. 3,695)

Postal receipts*	\$	4,313	-14	+24
Building permits, less federal contracts $\$$	438,225	-11	+375	
Bank debits (thousands)	$\$$	2,125	-7	+48
End-of-month deposits (thousands) $\ddagger \ldots . . . \$$	2,181	+5	+14	
Annual rate of deposit turnover		12.0	-2	+36

PORT ARTHUR (pop. 66,676)

Retail sales	$1 \dagger$	+ 6	- 4
Apparel stores	$-1{ }^{1 \dagger}$	+ 1	5
Automotive stores	$1 \dagger$	+ 24	11
Food stores	$3 \dagger$	+ 2	4
Furniture and household appliance stores	$1 \dagger$		+ 11
Gasoline and service stations	$1 \dagger$	- 2	+ 5
Postal receipts* \$	64,580	+ 16	- 5
Building permits, less federal contracts \$	231,020	62	- 1
Bank debits (thousands)	63,756	- 4	$+$
End-of-month deposits (thousands) $\ddagger \ldots .$.	46,331	**	$+3$
Annual rate of deposit turnover	16.6		**
Employment (area)	105,200	- 3	- 1
Manufacturing employment (area)	30,420		
Percent unemployed (area)	6.9		+ 5

PORT ISABEL (pop. 3,575)

Postal receipts* \$	2,014	$+29$	$+3$
Building permits, less federal contracts \$	3,854	+ 62	- 71
Bank debits (thousands) \$	1,058	7	+103
End-of-month deposits (thousands) $\ddagger . . . \$$	894	3	+ 63
Annual rate of deposit turnover	14.0	9	+ 11

PORT NECHES (pop. 8,696)

Postal receipts*	6,074	- 30	- 12
Building permits, less federal contracts \$	42,249	- 78	- 64
Bank debits (thousands) \$	7,239	-12	- 17
End-of-month deposits (thousands) $\ddagger \ldots$ \$	5,668	+ 3
Annual rate of deposit turnover	15.5	5	

RAYMONDVILLE (pop. 9,385)

Postal receipts*	5,347	4	- 15
Building permits, less federal contracts \$	10,800	$+18$	68
Bank debits (thousands) \$	5,958	5	6
End-of-month deposits (thousands) $\ddagger \ldots . .$.	8,351	1	+ 6
Annual rate of deposit turnover	8.5	3	-10

Local Business Condifions		Percent change	
City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	Nov 1961 from Nov 1960
ROBSTOWN (pop. 10,266)			
Postal receipts*	6,872	+ 9	+ 34
Building permits, less federal contracts \$	37,500	- 62	+ 13
Bank debits (thousands)	9,023	- 10	+ 22
End-of-month deposits (thousands) $\ddagger . . \$$	10,764	- 7	+ 10
Annual rate of deposit turnover	9.7	- 8	+
ROCKDALE (pop. 4,481)			
Postal receipts*	4,718	+ 39	- 2
Building permits, less federal contracts \$	5,980	+ 16	- 69
Bank debits (thousands) \$	3,600	- 4	- 5
End-of-month deposits (thousands) \ddagger.... \$	5,422	- 1	- 3
Annual rate of deposit turnover	7.9	- 2	- 4
SAN ANGELO (pop. 58,815)			
Retail sales	$1 \dagger$	$+$	-
Apparel stores	- $1 \dagger$	+ 9	+ 15
Postal receipts*	81,792	$+11$	+ 17
Building permits, less federal contracts \$	346,325	- 40	$+11$
Bank debits (thousands)	54,216		+ 6
End-of-month deposits (thousands) $\ddagger \ldots$....	49,983	+ 2	
Annual rate of deposit turnover	13.2	- 10	
Employment (area)	19,700		- 3
Manufacturing employment (area)	2,710	-	- 11
Percent unemployed (area)	4.9		

SAN ANTONIO (pop. 587,718)

Retail sales	+ $10 \dagger$		**	$+$	2
Apparel stores	+ $5 \dagger$	+		$+$	5
Automotive stores			**	$+$	4
Drug stores		-	2		1
Eating and drinking places	$1 \dagger$	-	7	+	2
Food stores	$5 \dagger$	-	3	-	5
Furniture and household appliance stores \qquad	$+4 \dagger$	$+$	1	$+$	6
Gasoline and service stations	$3 \dagger$	$+$	2		2
General merchandise stores	$5 \dagger$	+	3	$+$	10
Lumber, building material, and hardware stores	- 11 \dagger	-	4		15
Nurseries		-	24	$+$	11
Postal receipts* \$	816,834	$+$	13	$+$	4
Building permits, less federal contracts \$	4,538,110		**	$+$	48
Bank debits (thousands) \$	643,985		**	$+$	13
End-of-month deposits (thousands) $\ddagger \ldots \$$	395,773		**	$+$	5
Annual rate of deposit turnover	19.6	-	1	$+$	8
Employment (area)	207,400	$+$	1	$+$	1
Manufacturing employment (area)	24,500	$+$	5		4
Percent unemployed (area)	5.0	$+$	4	$+$	22

SAN JUAN (pop. 4,371)

Postal receipts*	3,065	$+16$	$+$
Building permits less federal contracts \$	9,860	-82	56
Bank debits (thousands)	2,158	+ 13	$+19$
End-of-month deposits (thousands) \ddagger	2,144	- 3	
Annual rate of deposit turnover	11.9	$+11$	

SAN MARCOS (pop. 12,713)

Postal receipts*	12,185	$+24$	$+14$
Building permits, less federal contracts \$	29,550	+214	$+937$
Bank debits (thousands) \$	6,310	- 19	*
End-of-month deposits (thousands) \ddagger	8,017	**	
Annual rate of deposit turnover	9.4	- 16	

SAN SABA (pop. 2,728)

Bank debits (thousands) \$	5,408	+ 1		9
End-of-month deposits (thousands) $\ddagger . .$. \$	5,029	**		1
Annual rate of deposit turnover	12.	**		

SEAGOVILLE (pop. 3,745)

Postal receipts*	2,838	$+40$	-11
Building permits, less federal contracts \$	375	-99	98
Bank debits (thousands) \$	1,990	1	$+18$
End-of-month deposits (thousands) \ddagger... \$	1,274	- 4	$+10$
Annual rate of deposit turnover	18.4	2	+ 7

Local Business Conditions		Percent change	
City and item	Nov 1961	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
SEGUIN (pop. 14,299)			
Postal receipts* ... ${ }^{\text {a }}$	11,545	+ 12	
Building permits, less federal contracts \$	64,105	+ 22	-
Bank debits (thousands)	9,923	- 3	+ 13
End-of-month deposits (thousands) \ddagger. $\$$	14,633	**	+ 7
Annual rate of deposit turnover	8.1	- 5	
SHERMAN (pop. 24,988)			
Automotive stores	${ }_{1} \dagger$		
Furniture and household appliance stores \qquad		- 18	
General merchandise stores	+ 2^{\dagger}	+ 22 +1	+ 11
Postal receipts*	35,881	+ 25	-
Building permits less federal contracts \$	268,718	+121	+ 21
Bank debits (thousands) ..._ \$	24,688	- 13	+
End-of-month deposits (thousands) $\ddagger \ldots$... $\$$	19,800	+ 1	
Annual rate of deposit turnover .-......	15.0	-16	- 12
SILSBEE (pop. 6,277)			
Postal receipts*	7,018		+ 16
Bank debits (thousands)	3,840	$+$	+ 11
End-of-month deposits (thousands) $\ddagger \ldots$... $\$$	5,269	-1	+ 13
Annual rate of deposit turnover	8.7	**	
SLATON (pop. 6,568)			
Postal receipts** \$	3,798	-9	+
Building permits, less federal contracts \$	11,850	- 73	-95
Bank debits (thousands) ...	4,569	+ 16	+ 10
End-of-month deposits (thousands) $\ddagger \ldots .$.	4,439	+ 11	+ 13
Annual rate of deposit turnover	13.0	+ 2	1
Employment (area)	52,000		
Manufacturing employment (area)....	5,370	**	
Percent unemployed (area)	4.7		+ 38
SMITHVILLE (pop. 2,933)			
Postal receipts* ._ \$	1,941	- 1	-16
Building permits, less federal contracts \$	4,000	-86	
Bank debits (thousands) $\$$	1,138		
End-of-month deposits (thousands) $\ddagger \ldots$ \$	2,308	+	$+$
Annual rate of deposit turnover	6.0	- 2	
SNYDER (pop. 13,850)			
Postal receipts ...-...-	11,834	- 5	+ 22
Building permits, less federal contracts \$	1,700	-99	- 99+
Bank debits (thousands) \$	14,518	+	- 19
End-of-month deposits (thousands) $\ddagger \ldots$. $\$$	18,767		+ 14
Annual rate of deposit turnover	9.2	- 3	- 21
SOUTH HOUSTON (pop. 7,523)			
Building permits, less federal contracts \$	3,650	-93	-93
Bank debits (thousands) \$	3,864	+	+12
End-of-month deposits (thousands) $\ddagger \ldots .$. \$	2,843	-	+ 17
Annual rate of deposit turnover	16.2		
SULPHUR SPRINGS (pop. 9,160)			
Postal receipts* ..._-_- \$	10,477	+ 29	+ 17
Building permits, less federal contracts \$	35,435	- 66	+ 19
	11,460		+ 14
End-of-month deposits (thousands) $\ddagger \ldots$. ${ }^{\text {d }}$	13,651	**	$+$
Annual rate of deposit turnover	10.1	**	
TEMPLE (pop. 30,419)			
Retail sales	${ }^{1 \dagger}$	+	
Apparel stores		+	
Furniture and household appliance stores \qquad			
Lumber, building material, and hardware stores \qquad	- 9†	- 7	
Postal receipts*_	43,094	+ 22	
Building permits, less federal contracts \$	702,125	+ 80	+94
Bank debits (thousands)	25,097		

Local Business Conditions

		Nov 1961	Nov 1961 from from from City and item
1961			

SWEETWATER (pop. 13,914)

Retail sales

Automotive stores

TAYLOR (pop. 9,434)

Retail sales

Automotive stores		- 6	-16
Postal receipts* \$	8,849	+ 18	$+\quad 1$
Building permits, less federal contracts \$	42,200		+ 45
Bank debits (thousands) \$	7,204	-30	+ 4
End-of-month deposits (thousands) $\ddagger \ldots \$$	13,540	4	+ 7
Annual rate of deposit turnover	6.2	-29	3
TERRELL (pop. 13,803)			
Postal receipts* \$	8,737		13
Building permits, less federal contracts \$	125,570	$+107$	
Bank debits (thousands) \$	7,507	6	$+2$
End-of-month deposits (thousands) $\ddagger . .$. \$	7,528	5	+ 5
Annual rate of deposit turnover	11.7	- 7	- 4

TEXARKANA, TEX. (pop. 30,218)
 Retail sales

Furniture and household appliance stores		+ 8	
Postal receipts*§	57,839	+ 2	*
Building permits, less federal contracts $\$ \$$	277,865	+101	76
Bank debits (thousands) \$	56,014	+ 2	
End-of-month deposits (thousands) \ddagger § \$	17,341	+ 1	
Annual rate of deposit turnover	16.8	+ 1	
Employment (area)	29,900	+1	$+3$
Manufacturing employment (area)	4,280		
Percent unemployed (area)	7.6	+ 6	*

TEXAS CITY (pop. 32,065)

Postal receipts*	27,688	+ 39	$+35$
Building permits, less federal contracts \$	1,975,345	$+518$	+524
Bank debits (thousands)	- 27,118	+ 5	+ 39
End-of-month deposits (thousands) \ddagger.	17,180	$+10$	+ 54
Annual rate of deposit turnover	19.9	- 7	5
Employment (area)	52,600	**	**
Manufacturing employment (area)	10,600	**	
Percent unemployed (area)	8.5	+ 9	$+49$

TOMBALL (pop. 1,713)

TYLER (pop. 51,230)

| | | | | |
| :--- | ---: | :--- | :--- | :--- | :--- |
| Retail sales | | | | |
| Apparel stores | | | | |
| Florists | | | | |

UVALDE (pop. 10,293)

Postal receipts*....... \$	12,193	+66	+64
Building permits, less federal contracts $\$ 8$	82,681	-33	+246
Bank debits (thousands)	$\$$	8,467	-19
End-of-month deposits (thousands) $\ddagger \ldots$	$\$$	8,973	-4
Annual rate of deposit turnover		+17	
A.....	11.1	-17	-18

VERNON (pop. 12,141)

Postal receipts* Building permits, less federal contrac

End-of-month deposits (thousands) $\ddagger \ldots \$$	19,865	+1	+3
Annual rate of deposit turnover	12.2	+9	$+\quad 2$

City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	Percent change	
		$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
VICTORIA (pop. 33,047)			
Retail sales	$1 \dagger$	+ 1	+ 14
Automotive stores	$-1 \dagger$	+ 9	+ 11
Eating and drinking places	- $6 \dagger$	- 8	- 11
Food stores	- 3i	- 1	+ 6
Furniture and household appliance stores	- $1 \dagger$	- 6	+ 37
Postal receipts* \$	37,313	+ 1	**
Building permits, less federal contracts \$	1,948,790	+414	+424
Bank debits (thousands) .-............ \$	59,660	- 2	+ 15
End-of-month deposits (thousands) $\ddagger . . . \$$	77,300	**	- 1
Annual rate of deposit turnover	9.3	- 3	+ 13
WACO (pop. 97,808)			
Retail sales	$1 \dagger$	+ 8	+ 3
Apparel stores	- 1 \dagger	+ 3	- 1
Florists		+ 11	+ 13
General merchandise stores	$+2 \dagger$	+ 12	**
Lumber, building material, and hardware stores	- 9 \dagger		+ 9
Postal receipts* \$	171,787	+ 9	- 1
Building permits, less federal contracts \$	811,559		- 33
Bank debits (thousands) \$	108,481	- 2	+ 6
End-of-month deposits (thousands) $\ddagger \ldots$.	71,316	+ 1	**
Annual rate of deposit turnover	18.4	- 5	+ 6
Employment (area)	48,100		
Manufacturing employment (area)....	9,710	- 1	- 3
Percent unemployed (area)	5.6	+ 17	+ 22

City and item	$\begin{aligned} & \text { Nov } \\ & 1961 \end{aligned}$	Percent change	
		$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Oct } 1961 \end{aligned}$	$\begin{aligned} & \text { Nov } 1961 \\ & \text { from } \\ & \text { Nov } 1960 \end{aligned}$
WAXAHACHIE (pop. 12,749)			
Postal receipts*-........	14,099	+ 12	- 31
Building permits, less federal contracts \$	14,220	- 92	- 77
Bank debits (thousands) \$	10,909	- 11	+ 23
End-of-month deposits (thousands) $\ddagger \ldots \ldots$	10,914	- 14	+ 16
Annual rate of deposit turnover	11.1	**	**
WESLACO (pop. 15,649) $+1{ }^{\text {a }}$			
Postal receipts* ...-......................... ${ }^{\text {d }}$	9,122	+ 14	+ 7
Building permits, less federal contracts \$	81,214	- 2	$+35$
Bank debits (thousands) ... \$	6,129	-10	+ 11
End-of-month deposits (thousands) $\ddagger . . . \$$	7,929	+ 9	+ 25
Annual rate of deposit turnover	9.7	- 11	7
WICHITA FALLS (pop. 101,724)			
Retail sales	- 1 \dagger	+ 5	+ 5
Apparel stores	- 1才	+ 11	+ 13
Automotive stores	- 1 \dagger	+ 8	+ 34
Food stores	- $3 \dagger$	+ 2	- 10
Furniture and household appliance stores	- 1		
Postal receipts \$	130,208	+ 4	+ 7
Building permits, less federal contracts \$	839,157	-72	-68
Bank debits (thousands) \$	121,707	+ 4	+ 8
End-of-month deposits (thousands) \ddagger....\$	99,431	- 1	
Annual rate of deposit turnover	14.6	+ 7	
Employment (area)	45,350	**	
Manufacturing employment (area)	3,710	+ 2	
Percent unemployed (area)	5.3	+ 23	+ 4

BAROMETERS OF TEXAS BUSINESS

All figures are for Texas unless otherwise indicated. All indexes are based on the average months for 1947-49, except where indicated; all are adjusted for seasonal variation, except annual indexes. Employment estimates are Texas Employment Commission data in cooperation with the Bureau of Labor Statistics. The index of Texas Business Activity is based on bank debits in 20 cities, adjusted for price level. An asterisk (*) indicates preliminary data subject to revision. Revised data are marked (r).

	$\begin{gathered} \text { November } \\ 1961 \end{gathered}$		$\begin{aligned} & \text { October } \\ & 1961 \end{aligned}$		$\begin{gathered} \text { November } \\ 1960 \end{gathered}$		Year-to-date average					
				1961				1960				
GENERAL BUSINESS ACTIVITY												
Texas business activity, index ..		251				243		226		239		226
Miscellaneous freight carloadings in SW District, index		62		79		74		74		78		
Ordinary life insurance sales, index ..		487		463		453		410		415		
Wholesale prices in U.S., unadjusted index		118.8		118.7		119.6		119.1		119.5		
Consumers' prices in Houston, unadjusted index		128.0 128.3		128.4		126.4 127.4		126.4 127.8		125.8		
Income payments to individuals in U.S. (billions, at seasonally adjusted annual rate)	\$	429.0	\$	425.2	\$	406.0		415.5	\$	402.4		
		41		43		53		48		43		
Newspaper lineage, index...		173.8		166.8		169.8		167.4		173.3		
TRADE												
Total retail sales, index, 1957-59 $=100$		110^{*}		108r		104 r		\ldots				
Durable-goods sales, index, 1957-59 $=100$		112^{*}		110r		98r		-....				
Nondurable-goods sales, index, $1957-59=100$		110^{*}		107r		108r						
Ratio of credit sales to net sales in department and apparel stores		65.6**		73.3**		65.7 r		70.4**		70.6r		
Ratio of collections to outstandings in department and apparel stores.............		40.7*		$36.8 *$		41.1r						
PRODUCTION												
Total electric power consumption, index		429**		433 r		384 r		419*		407 r		
Industrial electric power consumption, index		419**		398 r		380 r						
Crude oil production, index		$109.2{ }^{*}$		107.6r		107.3 r		$109.1{ }^{*}$		109.0r		
Crude oil runs to stills, index		140		151		145		145		145		
Industrial production in U.S., index .		173		180		172		175		173		
Texas industrial production-total index		178		182		215		220		216		
Texas industrial production-manufacturing index		226		271		251		257		250		
Texas industrial production-durable goods, index		207		209		198		203		201		
Texas industrial production-nondurable goods, index		132		134		131		132		131		
Texas mineral production, index		12.7		12.4		12.5		12.8		12.9		
Average daily production per oil well		119.7		113.9		98.8		112.9		104.9		
Construction authorized, index, 1957-59 Residential building 1957-59=100		115.0		114.5		90.2		102.6		91.6		
Nonresidential building, $1957-59=100$		127.1		116.8		115.1		129.2		127.9		
AGRICULTURE												
Prices received by farmers, unadjusted index, 1910-14 $=100$		265		262		247		255		245 299		
Prices paid by farmers in U.S., unadjusted index, $1910-14=100 \ldots$		301 88		301 87		297 83				29 82		
Ratio of Texas farm prices received to U.S. prices paid by farmers................ ${ }^{\text {a }}$												
FINANCE 2080												
Bank debits, index		298		289 275		270 246		285 264		$\begin{aligned} & 270 \\ & 242 \end{aligned}$		
Bank debits, U.S., index												
Reporting member banks, Dallas Reserve District:		3,191		3,162		2,935		3,050		2,882		
Loans (millions)		5,136		5,139		4,652		4,977		4,529		
Loans and investments (millions)		2,860		2,793		2,725		2,761		2,663		
		119,219		88,735		87,526		105,948		102,521		
Revenue receipts of the State Comptroller (thousands)												
LABOR ${ }^{\text {c }}$												
		2,564.1*		2,570.4r		2,551.9r		2,545.5**		2,539.0r		
Total nonagricultural employment (thousands)		486.2**		489.1r		486.1r		484.3***********		490.6 r		
		233.3**		233.2 r		${ }^{2278.5 r}$		${ }_{2294.7}{ }^{*}$		257.6r		
Nondurable goods employment (thousands) ..----		100.8		101.2		98.9		99.8		99.9		
Average weekly hours ($1957-59=100$) manufacturing, index..		187.8		190.9		176.1		182.0		175.8		
Average weekly earnings-manufacturing, index												

A New Publication
 MARKETING ASPECTS OF CAPITAL-EQUIPMENT LEASING
 Peter D. Bennett

NO. 6 IN THE MARKETING SERIES \$I.OO
This study of the leasing of various types of capital equipment by both large and small companies was written by a member of the faculty in the Department of Marketing, The University of Texas. Findings are reported from 100 companies representing 32 industries, including both the manufacturer-marketer and the companies who leased the equipment.

ORDER YOUR COPY FROM THE BUREAU OF BUSINESS RESEARCH

JANUARY 1962

ENTERED AT THE AUSTIN, TEXAS
BUREAU OF BUSINESS RESEARCH
POST OFFICE AS SECOND-CLASS MATTER
THE UNIVERSITY OF TEXAS
AUSTIN I2, TEXAS
Texas State Historical Assn. Old Library Building 105 FACULII MAIL

[^0]: Published monthly by the Bureau of Business Research, College of Busi-
 ness Administration, The University of Texas Austin 12. Second-class ness Administration, The University of Texas Austin 12. Second-class postage paid at Austin, Texas. Content of this publication is not copyrighted and may be reproduced freely. Acknowledgm
 appreciated, $\$ 3.00$ a year; individual copies, 25 cents.

[^1]: * This thesis is discussed at length by Woytinsky and Woytinsky (pp. 312-412) and by Zimmermann (pp. 3-142). See accompanying booklist.

[^2]: * Taeuber and Taeuber, p. 324. See accompanying booklist.

[^3]: * Gordon, p. 24. See accompanying booklist.

[^4]: * Perloff, p. 112. See accompanying booklist.

