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We study the regularity of weak solutions for the Stefan and Hele-Shaw prob-

lems with Gibbs-Thomson law under special conditions. The main result says

that whenever the free boundary is Lipschitz in space and time it becomes

(instantaneously) C2,α in space and its mean curvature is Hölder continuous.

Additionally, a similar model related to the Signorini problem is introduced, in

this case it is shown that for large times weak solutions converge to a stationary

configuration.
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Chapter 1

Introduction

The Stefan problem is a well known model for phase transitions of materials

whose temperature is undergoing diffusion. It says that if u(x, t) is the tem-

perature of a material with two different phases (say liquid and solid) in some

container Ω, then

(u+ χ)t = ∆u in Ω

where χ = characteristic function of the solid phase

Usually, one assumes that u ≡ 0 along the solid-liquid interface. The Gibbs-

Thomson law is a correction to this model which makes it more accurate

at smaller scales. It says that the the temperature of the interface is not

constant but proportional to the mean curvature of the interface. There is a

vast literature considering the heuristics and rigorous justification of this law

[10].

In this work we study the smoothness of u and of the solid-liquid interface for

this model, we require the interface to be a Lipschitz hypersurface in space

and time. Additionally, we review the existence theory for weak solutions

developed by Luckhaus [14] and apply his method to a new modification of

the Stefan problem.
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The main results can be summarized informally as follows. See section 2 for

details.

Any weak solution of the Stefan or Hele-Shaw problems with Gibbs-Thomson

law is automatically C2,α in space whenever its interface is Lipschitz in space

and time. In the case of the Signorini-Gibbs-Thomson law one gets C1,1 in

space.

The Gibbs-Thomson law is actually used indirectly in this result. What will

actually be shown is that in general any weak solution to the “Stefan condi-

tion” is Hölder continuous, as long as the free boundary (∂{χ = 1}) is given

locally by a Lipschitz graph in space and time. This is true independently

of what other condition might be imposed on u (in particular, it gives a new

Hölder continuity estimate for u for the classical Stefan problem). In the case

of the Gibbs-Thomson law we get that the mean curvature of the free bound-

ary is Hölder continuous, thus one has a Lipschitz surface with a continuous

curvature to which the well known elliptic regulariy estimates can be applied.

For the classical case where u ≡ 0 on the interface, one can use comparison

principles and viscosity solutions and a greater deal is known. In terms of

regularity of weak (viscosity) solutions a lot of progress has taken place since

the the work of Athanasopoulos, Caffarelli and Salsa [3–5] for the parabolic

case and Caffarelli [6–8] for the elliptic case. Drawing inspiration from the

theory of minimal surfaces, these works have brought forward a paradigm

for the study of regularity of (parabolic/elliptic) free boundary problems: free
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boundaries which are either Lipschitz or very flat1 ought to be smooth. As can

be expected, proving the smoothness result under the Lipschitz assumption

tends to be easier, and is often a first step in developing the machinery to

address the more general and harder case of free boundaries that are a priori

only flat.

Instead, when one includes the effects of the Gibbs-Thomson law the compar-

ison principle and viscosity solution approach no longer works. Heuristically,

this is because the free boundary velocity is of the same order as (−∆s)
1
2κ,

where ∆s denotes the Laplace-Beltrami operator on the interface. This is a

non-local, third order operator (as the mean curvature is already of order 2)

acting on the free boundary. In particular, as it has greater than 2 one can-

not expect anything like a comparison principle. More concretely, most of

the arguments in the works of Athanasopoulos et al cited above break down

when the temperature is not constant along the interface, such as Harnack-like

principles or the Alt-Caffarelli-Friedman monotonicity formula.

However, the free boundary regularity is now more directly connected to the

function u: if the temperature were bounded or have enough integrability in

space then the interface would be2 C1,α in space. As mentioned in a previous

paragraph, under the Lipschitz assumption it will be shown that a solution to

the Stefan condition (regardless of the values of u along the interface) becomes

1this means the free boundary is trapped between two parallel planes that are close
together.

2that this is so follows from the regularity of almost minimal boundaries (cf. Section 4)
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Hölder continuous for all positive times, thus proving for the Gibbs-Thomson

law that Lipschitz free boundaries become C2,α in space instantaneously.

The Hölder continuity of u (in space and time) will be proved pushing the De

Giorgi-Nash-Moser regularity theory for linear parabolic equations so that it

can handle singular right hand sides, namely the distribution χt, which under

the Lipschitz assumption lives in H−1. This will be proven in two ways: first

by a modification of the usual iterations that will lead to a non linear and

homogeneous estimate and secondly by a maximum principle related to that

proven by Stampacchia, which will give a linear but non-homogeneous esti-

mate. These estimates are proven for weak solutions in the sense of Luckhaus,

but they can also be seen as a priori estimates for classical solutions and from

that perspective a corollary of these results is that whenever singularities form,

they must be felt at least at the level of Lipschitz regularity, one could hope

that similar estimates might help understand the formation of singularities, as

it has been done for geometric flows.

Besides reviewing Luckhaus’ method, we also modify it to treat a new toy

problem motivated by porous flow through semipermeable walls and the Sig-

norini problem, the original model is discussed in [11]. The problem is similar

to Hele-Shaw or Stefan with Gibbs-Thomson law, except that instead of the

asking u = mean curvature on the interface, we ask only that u ≤ mean

curvature and that it be the largest subharmonic (resp. subcaloric) function

satisfying that property, which gives a time-dependent Signorini problem.
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The organization of the paper is as follows: in Section 2 we state the main

results in detail; in Section 3 we review Luckhaus’ construction of weak solu-

tions, almost minimal surfaces and adapt these ideas to the Stefan-Signorini

problem; sections 4 and 5 deal with the regularity of Lipschitz free boundaries.

Finally, the appendix contains a review of the linear the parabolic De Giorgi -

Nash - Moser theory, where we prove the oscillation lemma adapting an esti-

mate from the work of Caffarelli-Vasseur [9] on the quasigeostrophic equation,

with this lemma in hand one can prove continuity without using a covering

argument as it is usually done [15].
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Chapter 2

Main results

2.1 Definitions and notation

To state the main results it will be helpful to fix some notation.

We will denote by Ω a generic bounded domain of Rn with a Lipschitz bound-

ary. If T > 0 we shall also write ΩT for the product Ω × (0, T ).

The functional spaces we will work with are: the Sobolev space H1
0 (Ω) of func-

tions with square-summable gradients and vanishing on the boundary and the

space BV (Ω) of functions with finite perimeter (see [12] for properties of BV

functions). We are restricting ourselves to the case of zero Dirichlet bound-

ary conditions for simplicity, although our methods allow to handle generic

prescribed boundary values.

Definition 2.1.1. A pair (u, χ) of functions

u ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω))

χ ∈ L∞(0, T ;BV (Ω)), χ ∈ {0, 1} a.e.

are called a weak solution to the Stefan problem with Gibbs-Thomson law in

ΩT if they satisfy 1) The weak Stefan condition∫ T

0

∫
Ω

(u+ χ)ϕtdxdt+

∫ T

0

∫
Ω

∇u · ∇ϕdxdt = 0 ∀ϕ ∈ C∞
c (ΩT )

6



and 2) The Gibbs-Thomson law in the BV sense: for a.e. t ∈ (0, T ) and every

Y ∈ C∞
c (Ω; Rn) we have∫
Ω

(div(Y ) − ν ·DY (ν))|∇χ(t)| =

∫
Ω

u(t)Y · ν|∇χ(t)|, ν =
∇χ(t)

|∇χ(t)|

Definition 2.1.2. A pair (u, χ) of functions

u ∈ L2(0, T ;H1
0 (Ω))

χ ∈ L∞(0, T ;BV (Ω)), χ ∈ {0, 1} a.e.

are called a weak solution to Hele-Shaw with Gibbs-Thomson law in ΩT if they

satisfy the same condition 2) above and instead of the weak Stefan condition

we have ∫ T

0

∫
Ω

χϕtdxdt+

∫ T

0

∫
Ω

∇u · ∇ϕdxdt = 0 ∀ϕ ∈ C∞
c (ΩT )

2.1.1 Additional conventions

Throughout this work we will refer to the Stefan problem with Gibbs-Thomson

law simply as (SGT) and to the Hele-Shaw problem with Gibbs-Thomson law

as (HS). Whenever we talk about a solution to (SGT) or (HS) we will mean

it in the sense of Definitions 2.1.1 and 2.1.2. When we say that they have

an initial condition (u0, χ0) we will mean it in the usual sense obtained by

integrating by parts and allowing test functions to be non-zero at t = 0.

As it is standard we will work with the parabolic cylinders

Qr(x, t) =
{
(y, s) : |x− y| ≤ r, t− r2 < s < t

}
7



By Qr we will mean simply Qr(0, 0). All of our estimates are interior estimates

so we may assume we are always working at (say) Q2.

2.2 Main results

Now we can state the two main results concerning Lipschitz free boundaries:

Theorem 2.2.1. Let (u, χ) solve (SGT) in Q2 and such that its free boundary

is a special Lipschitz domain of the form:

{(x′, xn, t) ∈ Q2 : xn = f(x′, t)}, f Lipschitz in both x′ and t

If L and V denote respectively the Lipschitz constants of f in x′ and t, we

have for every α ∈ (0, 1) that

∥u∥L∞(Q1) ≤ g
(
∥u∥L2(Q2)

)
∥u∥Cα(Q1) ≤ CL,n,α

(
∥u∥L2(Q2) + V

)
where g(t) is the inverse to the function

t→ Cn
t2+δ

(t2 + CLV 2)
1+δ
2δ

δ =
2

n

The result for Hele-Shaw is very similar, except we get no further regularity

in time.

Theorem 2.2.2. Let (u, χ) solve (HS) in Q2 and such that its free boundary

is a special Lipschitz domain as above. If L and V denote respectively the

Lipschitz constants of f in x′ and t, we have for each α ∈ (0, 1) and each

t ∈ (−2, 0) that

∥u(t)∥L∞(B1) ≤ g
(
∥u(t)∥L2(B2)

)
∥u(t)∥Cα(B1) ≤ CL,n,α

(
∥u(t)∥L2(B2) + V

)
8



where g(t) is of the same form as in the previous theorem.

The third result deals with the existence of weak solutions for the Stefan-

Signorini problem (explained in the introduction), the Stefan condition is to

be understood in the same sense as in Definition 2.1.1, and the Signorini

condition is also understood in the BV sense.

Theorem 2.2.3. Let Ω ⊂ Rn (n ≤ 3) be bounded with Lipschitz boundary.

Given u0 ∈ H1
0 (Ω) and χ0 = χE0 ∈ BV (Ω) there exits a weak solution to the

Stefan-Signorini problem defined for all positive times. M oreover, as t→ +∞

the free boundary converges uniformly to the boundary of the smallest domain

with positive mean curvature containing E0.

9



Chapter 3

Luckhaus Theorem revisited and the mixed

Stefan-Signorini problem

In this chapter we shall review the Luckhaus existence theorem for (SGT) and

apply the same ideas to the Stefan-Signorini problem. We start by introducing

discrete solutions and reviewing their basic properties, that is done in the next

section. We shall make a parenthesis to talk about almost minimal surfaces,

which have an important role in Luckhaus’ proof, once is done we will continue

to prove the existence theorems. The result on long time behavior is proved

at the end.

3.1 Luckhaus discrete solutions

As discussed in the introduction, the nature of the Gibbs-Thomson law is such

that one cannot exploit the known methods for building weak solutions (as one

can in the classical Stefan problem, Porous medium equation, etc). On the

other hand, as was first pointed out by Visintin and Gurtin (cf. Section 2 of

[14]), for smooth solutions one has the inequality

d

dt

{
Per(Γ(t)) +

1

2

∫
u(t)2dx+

1

2

∫ t

0

∫
|∇u(t)|2dxdt

}
≤ 0 (3.1)

10



This Lyapunov functional points to an intrinsic gradient flow structure. In-

spired by this fact Luckhaus [14] developed a scheme to built weak solutions

starting from arbitrary initial data and defined for all times. The main idea

was to discretize time and solve an elliptic variational problem at each dis-

crete time step, the functional being determined by the Lyapunov functional

above. Given the Gibbs-Thomson law relating u and the mean curvature of

the interface, is not surprising that this minimization problem falls under the

scope of the regularity theory of almost minimal surfaces. Thanks to this, and

estimates for the velocity obtained by Luckhaus one has enough compactness

to guarantee the existence of a limit as the time step goes to zero. This limit

is then shown easily to be a solution in a weak sense that will be explained

below.

A closely related result is that of Almgren and Wang [2], where time is also

discretized. Their approximations are built in a somewhat different manner,

in particular their idea involves the use of the Wasserstein distance. Both of

these works just predate the emergence of gradient flows in Wasserstein space

as a robust approach to many non-linear evolution problems. An entirely

different approach we won’t discuss here is that of phase fields, with it, Soner

[16] managed to prove existence of weak solutions for large times.

Definition 3.1.1. Let Ω be a domain with Lipschitz boundary and T > 0.

Given N > 0, we fix a time step h = 2−NT . By a discrete solution to

11



(SGT) with time step h > 0 we will mean a pair of functions

u : ΩT → R
χ : ΩT → {0, 1}

Which are piece-wise constant in time

u(x, t) = uk(x)
χ(x, t) = χk(x)

}
if t ∈ [(k − 1)h, kh)

where the sequence {uk, χk}k≥0 satisfies the following

• u0, χ0 are given initial conditions with

u0 ∈ H1
0 (Ω), χ = χE0 ∈ BV (Ω)

• For any k ≥ 0 the pair (uk+1, χk+1) achieves the minimum of the func-

tional

Fk,h(u, χ) =

∫
Ω

|∇χ| + h

2

∫
Ω

|∇u|2dx+
1

2

∫
Ω

u(u− uk)dx (3.2)

among all pairs (u, χ) with u ∈ H1
0 (Ω) and χ : Ω → {0, 1} ∈ BV (Ω) that

satisfy the constraint

u− uk + χ− χk = h∆u in H−1 (3.3)

Remark. It will be convenient to take the following convention: we will

denote with the latin letter t a generic time in (0, T ), we will use the greek

letter τ to refer to a time τ ∈ (0, T ) which happens to be a multiple of the time

step h. Moreover, we will denote by E or F the solid phase, i.e. E = {χ = 1}.

12



When shall also write sometimes χE or χF for the characteristic function of

the solid phase E or F .

Remark. By standard methods from calculus of variations one can show that

for each h > 0, T > 0 and any initial data (u0, χ0) one can build a discrete

weak solution with time step h in (0, T ). The challenge is to get an actual

weak solution when h→ 0.

Remark. The minimization condition on Fk,h is a way to force the Lyapunov

condition (3.1) on the weak solutions. This will be seen in Proposition 3.3.3.

3.2 Almost minimal surfaces

Heuristically speaking, an almost minimal boundary E is a set whose perimeter

cannot decrease too much by perturbations at a small scale, so in some sense

it is close to a minimal surface in a neighborhood of each point. One might

expect that if this closeness happens in a strong enough sense then such a set

must be smooth, this is the content of the Almgren-Tamanini theory. Let us

make some concrete definitions.

Definition 3.2.1. Fix a modulus of continuity ρ(r). A set E of finite perime-

ter is said to be almost minimal in Ω with respect to ρ(r) if ∃d > 0 such

that ∫
Ω

|∇χE| ≤
∫

Ω

|∇χF | + ρ(r)rn−1

for any F such that F∆E ⊂ Ω has diamater smaller than 2r, r < d.

It turns out that the solid phases Ek = {χk = 1} from the discrete solutions

13



have such a property. In fact, pick k ∈ N and let be (ũ,χ̃) a competing function

for the variational problem (3.2) solved by (u, χ) = (uk+1, χk+1), then

Fk,h(u, χ) ≤ Fk,h(ũ, χ̃)

⇒
∫

Ω

|∇χ| ≤
∫

Ω

|∇χ̃|+ h

2

∫
Ω

|∇ũ|2 − |∇u|2dx+
1

2

∫
Ω

ũ(ũ− uk)− u(u− uk)dx

=

∫
Ω

|∇χ̃| − 1

2

∫
Ω

ũ (χ̃− χk) − u (χ− χk) dx

We rewrite the above inequality:∫
Ω

|∇χ| ≤
∫

Ω

|∇χ̃| + 1

2

∫
Ω

u (χ− χ̃) − (ũ− u)(χ̃− χk)dx

Observe that w = ũ − u satisfies w − h∆w = χ̃ − χ, by performing a few

integrations it can be shown that∫
Ω

|w|dx ≤ 2

∫
Ω

|χ̃− χ|dx

This allows to bound the second term and conclude that∫
Ω

|∇χ| ≤
∫

Ω

|∇χ̃| + 1

2

∫
Ω

u (χ− χ̃) dx+

∫
Ω

|χ̃− χ|dx

What does this say?, applying Hölder inequality with p > n to the term

containing u we get further∫
Ω

|∇χ| ≤
∫

Ω

|∇χ̃| + Cp∥u∥Lp(Ω)

(∫
Ω

|χ− χ̃|dx
) p−1

p

+

∫
Ω

|χ̃− χ|dx

Since
∫
Ω
|χ− χ̃|dx = |E∆F | and |E∆F | ≤ cnr

n this implies (α = 1 − n
p
) that∫

Ω

|∇χ| ≤
∫

Ω

|∇χ̃| + Cn,p

(
∥u∥Lp(Ω)r

α + r
)
rn−1

14



If n ≤ 3 then 2∗ > n, so plugging above the Sobolev embedding ∥u∥L2∗ ≤

C∥∇u∥H1 . Since we can pick any set of finite perimeter to play the role of

the solid phase, we above inequality holds with χ̃ = χF for any F . We have

proven the following proposition:

Proposition 3.2.2. Suppose the space dimension is n ≤ 3, and let (u, χ) be

a discrete solution to the Stefan problem. Then each set E(t) = {χ = 1} is an

almost minimal set with respect to ρt(r), where

ρt(r) = Cn,p (∥∇u(t)∥H1rα + r) , α = 1 − n

2∗

Remark. Note that the estimate above is independent of the time-step h.

If anything, as h → 0 the only thing that deteriorates in the estimate is the

supremum in time of H1 norm of the discretized temperature.

This fact is key in the existence result of Luckhaus (discussed in the next sec-

tion), thanks to the regularity theory of F. Almgren and I. Tamanini, which

extends the regularity theory of minimal surfaces of E. De Giorgi. We sum-

marize the facts we need from this theory as a single result

Theorem 3.2.3 (Almgren-Tamanini). Let E be almost minimal in some do-

main Ω with respect to ρ(r) = Arα and let n ≤ 7. Then there exists r0 =

r0(A,α) such that if x0 ∈ ∂E ∩ Ω and d(x0,Ω
c) > r0 we have

E ∩Br0(x0) = {(x′, xn) : xn < f(x′)} ∩Br(x0)

(after possibly rotating the coordinate system)

15



Here f(x′) is a function defined in B′
r(x

′
0) such that

∥f∥
C1, α

2
≤ C(A,α)

The theory behind the above result can be found for example in [1]. Before

we go back to the Stefan problem we will prove a stability property of almost

minimal surfaces which will be useful in the future.

Lemma 3.2.4 (Stability of almost minimal surfaces). Assume n ≤ 7. Let

{Ek}k∈N be a sequence of sets each of which are almost minimal in Ω with

respect to some ρk(r), s.t. ρk(r) ≤ ρ0(r) and ρ0(r) = Crα. If ρk → ρ uniformly

and Ek → E uniformly (i.e. in the Haussdorff metric) then E is also almost

minimal in Ω with respect to ρ(r).

Proof. Let F be such that E∆F ⊂ Br(x) ⊂⊂ Ω and let us write Ek = {χk =

1}, E = {χ = 1} and F = {χ̃ = 1}. We may assume without loss of generality

that F has a smooth boundary, thus we may pick another sequence Fk with

smooth boundary and such that Fk∆Ek has radius less than r + ϵk, ϵk → 0.

Using a covering argument and the Almgren-Tamanini theorem to control the

oscillation of the normals we may also assume that∫
Ω

|∇χk| →
∫

Ω

|∇χ|,
∫

Ω

|∇χ̃k| →
∫

Ω

|∇χ̃|

For each k, we have by assumption∫
Ω

|∇χk| ≤
∫

Ω

|∇χ̃k| + ρk(r + ϵk)(r + ϵk)
n−1

16



Taking k → +∞ we obtain∫
Ω

|∇χ| ≤
∫

Ω

|∇χ̃| + ρ(r)rn−1

which finishes the proof.

3.3 Existence of weak solutions

The goal of this section is to review the following theorem of Luckhaus (see

[14]) which is the base for Theorem 2.2.3.

Theorem 3.3.1. [14] Given u0 and χ0 there is a sequence of discrete solutions

(u(N), χ(N)) with time step hN → 0 that converges in L1(ΩT ) to a pair (u, χ)

with the following properties:

u ∈ L2 (0, T ;H1(Ω)) ∩ L∞ (0, T ;L2(Ω))
χ ∈ L∞ (0, T ;BV (Ω))
(u+ χ)t ∈ L2 (0, T ;H−1(Ω))
u(0) = u0, χ(0) = χ0

Moreover, for almost every time t ∈ (0, T ) we have

i) (u+ χ)t = ∆u in the H−1 sense.

ii) The set E(t) has a C1,α boundary and its mean curvature in the BV sense

agrees with the trace of u on ∂E(t).

To start the proof we will collect some basic facts about discrete solutions that

follow easily from their definition.

Proposition 3.3.2. Let (u, χ) be a discrete solution with time step h. Then:

17



(Discrete Stefan condition) For any ϕ ∈ C∞
c (ΩT ) we have∫ T

0

∫
Ω

(u+ χ)(∂h
t ϕ)dxdt+

∫
Ω

(u0 + χ0)ϕ(x, 0)dx =

∫
ΩT

∇u · ∇ϕ dxdt (3.4)

(Discrete Gibbs-Thomson Law) For any t ∈ (0, T ), Y ∈ C∞
c (Ω; Rn) we have∫

Ω

(div(Y ) − ν ·DY (ν))|∇χ(t)| =

∫
Ω

u(t)Y · ν|∇χ(t)|, ν =
∇χ(t)

|∇χ(t)|
(3.5)

Proof. We omit the details as the proof is standard. For condition (3.4) one

only needs to test against the constraint (3.3) which is satisfied by (uk, χk).

So testing (in space) against an arbitrary test function ϕ(x, t) for each k and

adding up the resulting integral equation over k we get (3.4). The (discrete)

Gibbs-Thomson condition (3.5) is nothing but the Euler-Lagrange equation

associated to the functional Fk,h defined in (3.2).

Proposition 3.3.3. Let (u, χ) be again a discrete solution with time step

h > 0. For any pair τ1 < τ2 we have the estimates:∫
Ω

|∇χ(τ2)| ≤
∫

Ω

|∇χ(τ1)| (3.6)

sup
τ∈(τ1,τ2)

{
1

2

∫
Ω

u(τ)2dx

}
+

1

2

∫ τ2

τ1

∫
Ω

|∇u|2dxdt (3.7)

≤ Per(E(τ1)) − Per(E(τ2)) ≤ Per(E(0))

∥e(τ2) − e(τ1)∥H−1
0 (Ω) ≤ (τ2 − τ1)

1/2(2 Per(E0))
1/2, e(t) = χ(t) + u(t) (3.8)

Proof. Inequalities (3.6) and (3.7) wil follow from the fact that (0, χk) is itself

an admissible pair for the variational problem solved by (uk+1, χk+1). In other
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words, we have∫
Ω

|∇χk+1| +
h

2

∫
Ω

|∇uk+1|2dx+
1

2

∫
Ω

uk+1(uk+1 − uk)dx

= Fh(uk+1, χk+1) ≤ Fh(0, χk) =

∫
Ω

|∇χk|

Adding these inequalities for each k with τk in (τ1, τ2) one gets the first esti-

mate. For the second inequality, let v = χm+k − χm + um+k − um and let ϕ be

an arbitrary function in H1
0 (Ω), then∫

Ω

vϕdx =

∫
Ω

k∑
i=1

(χm+i−χm+i−1+um+i−um+i−1)ϕdx =

∫
Ω

k∑
i=1

(h∆um+i)w dx

= −
∫ (m+k)h

mh

∫
Ω

∇u · ∇w dxdt

then by Hölder inequality∣∣∣∣∫
Ω

vwdx

∣∣∣∣ ≤ (hk)1/2

(∫
ΩT

|∇u|2dxdt
)1/2

||w||H1
0

From the first estimate, the right hand side is bounded by (kh)1/2(2 Per(E0))
1/2∥w∥,

and since w was arbitrary this gives the estimate for e(τ).

Observe that equation (3.8) gives a (discrete) Hölder estimate on u + χ over

time. Since one would not think that the discontinuities of u and χ cancel

each other, we may expect to derive continuity for u and χ individually from

the estimate for u + χ. This is done in the following lemma, particularly, in

the first step of the proof.
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Lemma 3.3.4 (Luckhaus time estimates). Given a discrete solution with time

step h, the following integral time-continuity estimates hold (recall τ is a mul-

tiple of h): ∫ T−τ

τ

∫
Ω

|χ(x, t± τ) − χ(x, t)|dxdt ≤ Cτ γ

∫ T−τ

τ

∫
Ω

|u(x, t± τ) − u(x, t)|dxdt ≤ Cτ γ

Where C depends on the initial data (u0, χ0) and γ is a small dimensional

constant.

Proof. Step 1. For any given f ∈ H1 and g ∈ BV satisfying g(Ω) ⊂ {−2, 0, 2},

it can be shown that∫
Ω

|g|dx ≤ 4

∫
Ω

|f + g|dx+ Cn

(∫
Ω

|f + g|dx
) n

2n−2

∥∇f∥
n

n−1

L2 (3.9)

One only needs to apply the Sobolev inequality to h = min{(f − 1
2
)+, 1} ∈ H1

and use the fact that since g can only take the values 0 and ±2 then{
g ̸= 0, |f | < 3

2

}
⊂
{
|f + g| > 1

2

}

Therefore

1

2

∫
|g|dx ≤

∣∣∣∣{|f | > 3

2

}∣∣∣∣+ 2

∫
Ω

|f + g|dx

and then the estimate follows.

Step 2. Next we show that for a discrete solution u, χ we have with τ = |τ1−τ2|∫
Ω

|e(τ1)−e(τ2)|dx ≤ CΩ

(
1 + A+ τ−

1
2∥e(τ1) − e(τ2)∥H−1

)
B|τ1−τ2|

1
4 (3.10)
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Where A =
∫

Ω
|∇(χ(τ1) − χ(τ2))| and B2 = ∥∇ (u(τ1) − u(τ2)) ∥L2(Ω). This

is a standard interpolation estimate. To obtain it let ϕϵ = ϵ−nϕ(ϵ−1x) be an

approximation to the identity, then∫
Ω

|e(τ1) − e(τ2)|dx ≤
∫

Ω

|(e(τ1) − e(τ2)) ∗ ϕϵ − (e(τ1) − e(τ2))| dx

+

∫
Ω

|(e(τ1) − e(τ2)) ∗ ϕϵ| dx

Thinking of ϕϵ as a function in H1 (and assuming ϕ1 is supported in B1) we

see that the second integral is bounded by

CΩ

ϵ
∥e(τ1) − e(τ2)∥H−1(Ω) +

∫
{d(x,∂Ω)<ϵ}∩Ω

|e(τ1) − e(τ2)|dx

For the first integral, we obtain via the triangle inequality∫
Ω

|(e(τ1) − e(τ2)) ∗ ϕϵ − (e(τ1) − e(τ2))| dx ≤ ϵCϕ

(
1 +

∫
Ω

|∇(χ(τ1) − χ(τ2))|
)

+ϵCϕ

∫
Ω

|∇(u(τ1) − u(τ2))|dx

We bound the L1 norm of the gradient of u(τ1) − u(τ2) in terms of its L2

norm, and take ϵ = |τ1−τ2|
B

to get the estimate, after using inequality (3.8)

from Proposition 3.3.3.

Step 3. We derive first the estimate for χ:∫ T−τ

τ

∫
Ω

|χ(t± τ) − χ(t)|dxdt ≤
∫
{t:∥∇u(t)∥2

L2>K}

∫
Ω

|χ(t± τ) − χ(t)|dxdt

+

∫
{τ<t<T−τ :∥∇u(t)∥2

L2≤K}

∫
Ω

|χ(t± τ) − χ(t)|dxdt = I1 + I2
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We proceed to bound each integral, the first can be controlled via Tchebyschev’s

inequality

I1 ≤
2Ω

K

∫
ΩT

|∇u|2dxdt

To bound I2, we apply for each t inequality (3.9) from step 1 with

g = χ(t± τ) − χ(t), f = u(t± τ) − u(t)

Then

I2 ≤ 4

∫ T−τ

τ

|e(t± τ) − e(t)|dx+ Cn

∫ T−τ

τ

(
K

∫
Ω

|e(t± τ) − e(t)|dx
) n

2n−2

dt

We now want to apply inequality (3.10) from step 2. First, we use the basic

estimates from the previous lemma to see that for some C0 = C0(u0, χ0) we

have

1 + A+ τ−
1
2∥e(t± τ) − e(t)∥H−1 ≤ C0

Then plugging in the inequality we arrive at

I2 ≤ CΩC04TK|τ |
1
4 + CΩTK

n
n−1C

n
2n−2

0 τ
n

8n−8

We still have the freedom to chose K, if we take K = τ γ, with γ small enough

(depending only on the n), we get

I1 + I2 ≤ C(u0, χ0,Ω)Tτ γ

Which is the desired estimate for χ(t). For u(t), now we only need to use the

triangle inequality:∫ T−τ

τ

∫
Ω

|u(x, t± τ) − u(x, t)|dxdt ≤
∫ T−τ

τ

∫
Ω

|χ(t± τ) − χ(t)|dxdt
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+

∫ T−τ

τ

∫
Ω

|e(t± τ) − e(t)|dxdt ≤ C(u0, χ0,Ω)Tτ γ + C(u0, χ0,Ω)Tτ
1
4

This finishes the proof.

Now we are ready to prove existence of solutions in the sense of Definition

2.1.1.

Proof of Theorem 3.3.1. The proof will consist in taking a converging sequence

of discrete solutions as h → 0. After that, one must show that the limiting

solutions satisfy both the Stefan condition (weakly) and the Gibbs-Thomson

law (in the sense of sets of finite perimeter). This we do step by step.

Convergence: The velocity estimates of Luckhaus and a compactness theorem

of Kolmogorov tells us that the sequence {χh} and {uh} has a converging

subsequence in L1(ΩT ). Thus there is a pair of functions χ and u that are

both the L1(ΩT ) and pointwise a.e. limit of a subsequence of {χh}h and

{uh}h, respectively.

Stefan condition: By the basic estimates for discrete solutions we also con-

clude that χ ∈ L∞(0, T ;BV (Ω)) and that χ = 0, 1 almost everywhere. By

the same reasoning we conclude that u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)).

Moreover, using test functions we can use the “Discrete Stefan condition”

along the subsequence to get (in the limit) for any ϕ ∈ C∞
c (ΩT ) the weak

Stefan condition∫
ΩT

(u+ χ)ϕtdxdt+

∫
Ω

ϕ(x, 0)(u0 + χ0)dx =

∫
ΩT

∇ϕ · ∇u dxdt
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This, and the fact that u ∈ L2((0, T );H1(Ω)) imply that (u+χ)t ∈ L2((0, T );H−1).

Gibbs-Thomson Law: Observe that {uhk}k∈N lies in a bounded set of L2 (0, T ;H1(Ω))

and additionally
∫ T

0

∫
Ω
|∇u|2dxdt < ∞. Therefore, for some M ⊂ (0, T ) of

measure zero we know that if t /∈M then there is some positive number C(t)

such that ∫
Ω

|∇u(t)|2dx ,
∫

Ω

|∇uhk(t)|2dx < C(t) ∀k ∈ N (3.11)

Additionally, we can prove the time estimate (see first part of Proposition

3.3.3) ∫
Ω

|∇χhk(t)| ≤ C(χ0) ∀ t ∈ (0, T )

Therefore, for any t /∈M we have

{u(hk)(t)}k is bounded in H1(Ω), χ(hk)(t) → χ(t) in L1(Ω)

Now, recall1 that n ≤ 3. Then inequalities in (3.11) together with 3.2.3

(Almgren-Tamanini) guarantee that whenever t /∈M then along another sub-

sequence (that now may depend on t) we have ∂Ek(t) → ∂E(t) in the C1

topology. Where E(t) is some set with C1, α
2 boundary. This convergence

allows us to (fixing a text function ξ ∈ C∞
c (Ω,Rn) to the pass discrete Gibbs-

Thomson Law (3.5) to the limit and conclude that the mean curvature ∂E (in

the BV sense, cf Definition 2.1.1) is given by u(t), with this we have finished

the proof of Theorem 3.3.1.

1This is the only step in the proof where the dimensional restriction n ≤ 3 is used
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3.4 Handling the Stefan-Signorini problem

The goal of this section is to adapt the Luckhaus argument to the case of the

Stefan-Signorini problem.

Following Luckhaus, we consider discrete approximations to our potential so-

lutions. How do we do that? The Stefan condition should be obtained in the

same way, that is by an implicit discretization in time. The Signorini condition

for the mean curvature will need some modifications.

Definition 3.4.1. Let Ω be a domain with Lipschitz boundary and T > 0.

Given N > 0, we fix a time step h = 2−NT . By a discrete solution to the

Stefan-Signorini problem with time step h we will mean a pair of functions

u : ΩT → R
χ : ΩT → {0, 1}

Which are piece-wise constant in time

u(x, t) = uk(x)
χ(x, t) = χk(x)

}
if t ∈ [(k − 1)h, kh)

where the sequence {uk, χk}k≥0 satisfies the following

• u0, χ0 are given initial conditions with

u0 ∈ H1
0 (Ω), χ = χE0 ∈ BV (Ω)

• For any k ≥ 0 the pair (uk+1, χk+1) solves the following obstacle prob-

lem, that is, it minimizes the functional

Fk,h(u, χ) =

∫
Ω

|∇χ| + h

2

∫
Ω

|∇u|2dx+
1

2

∫
Ω

u(u− uk)dx
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among all pairs (u, χ) with u ∈ H1
0 (Ω) and χ : Ω → {0, 1} ∈ BV (Ω) that

satisfy the constraint

u− uk + χ− χk = h∆u in H−1

and such that the new solid phase contains the previous one, that is

{χk = 1} ⊂ {χ = 1}

Remark. The added constraint makes the variational problem considered at

each time step a parametric obstacle problem. As before, usual calculus of

variations methods guarantee existence of discrete solutions for all times and

all time steps h > 0.

Remark. The obstacle constraint forces the inclusion E(τ1) ⊂ E(τ2) whenever

τ1 < τ2, so that the free boundary is always expanding. It also will guarantee

that the free boundary does not move at those points where its mean curvature

is positive.

For this notion of weak solution, one can prove easily corresponding estimates

as for the Stefan problem:

Proposition 3.4.2. Let (u, χ) be a discrete solution with time step h.Then:

(Discrete Stefan condition) For any ϕ ∈ C∞
c (ΩT ) we have∫ T

0

∫
Ω

(u+ χ)(∂h
t ϕ)dxdt+

∫
Ω

(u0 + χ0)ϕ(x, 0)dx =

∫
ΩT

∇u · ∇ϕ dxdt

26



(Discrete Signorini condition) For any t ∈ (0, T ), Y ∈ C∞
c (Ω; Rn) we have the

following two conditions: If Y · ∇χ(t) ≥ 0 almost everywhere with respect to

|∇χ(t)| then∫
Ω

(div(Y ) − ν ·DY (ν))|∇χ(t)| ≥
∫

Ω

u(t)Y · ν|∇χ(t)|, ν =
∇χ(t)

|∇χ(t)|

Plus, if suppY is a positive distance away from E(t− h) then∫
Ω

(div(Y ) − ν ·DY (ν))|∇χ(t)| =

∫
Ω

u(t)Y · ν|∇χ(t)|, ν =
∇χ(t)

|∇χ(t)|

Proof. Again we omit the proof since it is standard, the conditions on the

Signorini condition represent nothing but the standard variational inequality

satisfied by the solution of a parametric obstacle problem.

Remark. Heuristically, the Signorini condition is saying nothing else but the

fact that u|∂E is not larger than the mean curvature of ∂E, and that it agrees

with it at those points where ∂E is moving, which is exactly what we want to

have in the limit.

The basic energy and time estimates and the more delicate Luckhaus velocity

estimates carry through to the Stefan-Signorini case. This we state without

proof as the details are similar.

Claim. For discrete solutions to the Stefan-Signorini problem there are anal-

ogous estimates corresponding to the basic estimates and the Luckhaus time

estimates from the previous section.
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We are now ready to prove the existence result for the Stefan-Signorini prob-

lem.

Proof of Theorem 2.2.3. As for the Stefan case, proving the existence of a

solution requires three steps: showing there is convergence, proving the Stefan

condition holds and proving that the Signorini condition holds. We focus only

on the last one.

Signorini condition. The main obstacle is getting in a situation where one can

use the Almgren-Tamanini theorem. We overcome it by making the following

observation

Claim . Suppose the space dimension is n ≤ 3, and let (u, χ) be a discrete

solution. Then each set E(t) = {χ = 1} is an almost minimal set with respect

to ρt(r), where

ρt(r) = Cn,p (max{∥∇u(t)∥H1 , ∥∇u0∥H1}rα + r) , α = 1 − n

2∗

Moreover: If F is another set containing E(t) and χ̃ denotes the characteristic

function of F we have∫
Ω

|∇χ(t)| ≤
∫

Ω

|∇χ̃| +
∫

Ω

u(t)(χ̃− χ)dx

Let us take the claim granted for a second and prove the statement of the

theorem. Just as for the Gibbs-Thomson case we can now prove that there

exists a set of measure zero M ⊂ (0, T ) such that: t /∈ M implies there

exists some subsequence (uhk(t), χhk(t)) such that ∥uhk(t)∥H1 ≤ C(t) ∀k, thus
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the Almgren-Tamanini theorem guarantees that the boundaries of the sets

{Ek(t)}k are uniformly bounded in the C1,α norm. This allows to pass the

discrete Signorini condition to the limit.

It only remains to prove the claim. Let F ⊂ Ω such that E(t)∆F ⊂ Br(x0) ⊂⊂

Ω, for some x0 and r > 0 small enough. It is enough to consider the special

cases E(t) ⊂ F and F ⊂ E (for a general F we can decompose it in two pieces

with the corresponding properties).

If E(t) ⊂ F then F ⊃ E(t−h), so F itself is an candidate admissible candidate

for the variational problem solved by (u(t), χ(t)). In this case we can use the

same inequality F (u, χ) ≤ (uF , χF ) as for the Gibbs-Thomson law to get∫
Ω

|∇χ| ≤
∫

Ω

|∇χ̃| + Cn,p (∥∇u(t)∥H1rα + r)

The difference arises when F ⊂ E(t). In this case, let F = F1 ∪ F2, where

F2 ⊂ E(t − h)c. Then one can show easily by induction that with χ̃i := χFi

we have ∫
Ω

|∇χ| ≤
∫

Ω

|∇χ̃1| + Cn,p (∥∇u(0)∥H1rα + r)∫
Ω

|∇χ| ≤
∫

Ω

|∇χ̃2| + Cn,p (∥∇u(t)∥H1rα + r)

Which proves the claim.

Long time behavior. The remaining issue is the behavior of χ(t) as t → +∞.

We also divide this proof in a series of observations.
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Step 1. Existence of a limit E∞. From the previous theorem we have that any

global weak solution (u, χ) satisfies the estimate∫ +∞

0

∥∇u(t)∥2
H1(Ω)dt < +∞

In particular, we may pick a sequence {tk}k, tk → +∞ along which the Gibbs-

Thomson condition holds and such that u(tk) → 0 in H1(Ω). Since n ≤ 3

the Almgren-Tamanini theorem tells us that {E(tk)}k has a boundary which

is uniformly C1,α in k and thus along some subsequence E(tk) converges (in

the C1 topology) to a set E∞ with a C1,α boundary.

Step 2. E∞ has positive mean curvature in the weak sense. We can now apply

the stability lemma to conclude that E∞ is almost minimal with respect to

ρ(r) = lim
k→0

{Cn,p (max{∥∇u(tk)∥H1 , ∥∇u0∥H1}rα + r)}

= Cn,p (∥∇u0∥H1rα + r) , α = 1 − n

2∗

so again by the Almgren-Tamanini E∞ has a C1, α
2 boundary. Moreover, if we

restrict to those sets such that E∞ ⊂ F we can remove the ∥∇u0∥ and r terms

above (due to the second half of the Signorini condition) . In that case we

may conclude, with an argument similar to Proposition 3.2.2 that∫
Ω

|∇χ∞| ≤
∫

Ω

|∇χ̃F |

since F can be any set containing E∞ we have proven that ∂E∞ has positive

mean curvature in the weak sense.
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Step 3. E∞ lies inside any positive mean curvature domain containing E(0).

This can be seen even at the level of the discrete solutions. Let h > 0, if F is

a set with positive mean curvature containing E(0) and E intersects F c in a

set of positive volume one readily sees that 1) the pair E ∩ F has perimeter

no larger than E and 2) uE\F has a strictly smaller H1 norm in comparison

to that of uE. Thus the pair (χE, uE) cannot be minimal, this means for each

time step h > 0 the solid phases corresponding to the minimizers {χk}k must

lie inside F . We conclude that E(t) lies inside F for every t > 0 and the

assertion for E∞ follows.

With steps 2 and 3 we have proved that E∞ is the smallest domain with

positive mean curvature containing the initial data E(0).

Step 4. Uniform convergence: since E(t) is a domain increasing with t, we

conclude from the previous 3 steps that as t → +∞ the set E(t) converges

uniformly to the smallest domain with positive mean curvature containing

E(0), and that finishes the proof.
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Chapter 4

Stefan: Lipschitz free boundaries

In this chapter we observe how the De Giorgi - Nash - Moser theory allows us

to prove continuity of the temperature in the Stefan and Hele-Shaw problems

whenever the free boundary is Lipschitz in space and time. Moreover, we prove

an estimate that doesn’t require Lipschitz in time but only some integrability

of the free boundary velocity. In the first section we prove an interpolation

lemma at the trace that will lead to an energy inequality with a non-linearity

which will help redo de L∞ bound.

From now on, whenever we speak of a solution we will assume it has a Lipschitz

free boundary in space and time. The constants L and V will always denote

the Lispchitz norm of the hypersurface with respect to space and time (cf

statement of Theorem 2.2.1)

4.1 L∞ bound

The first lemma uses the Lipschitz assumption on the free boundary to show

how the Stefan condition holds in a stronger sense.

Lemma 4.1.1. Let (u, χ) be a weak solution to (SGT) in Q2 such that Γ∩Q2
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is a special Lipschitz hypersurface of the form

{(x′, xn, t) ∈ Q2 : xn = f(x′, t)}, f Lipschitz in both x′ and t

Then:

χt is a measure and it equals v|∇χ(t)|, for some bounded function v : Γ → R.

In particular, χt ∈ L∞H−1 and ut ∈ L2H−1.

Proof. The assumption says E(t) = {x : χ(x, t) > 0} is a Lipschitz domain

changing in a Lipschitz manner over time, thus for every ϕ ∈ C∞
c (Q) and a.e.

t ∈ (−2, 0) we have

d

dt

∫
ϕχdx =

∫
vϕ|∇χ(t)| +

∫
χϕtdx

where v is the normal speed of Γ which is a bounded function defined on Γ, a

direct consequence of Rademacher’s theorem. Integrating the above identity

with respect to t ∈ (−2, 0) we get

0 =

∫
B

ϕ(0)χ(0)dx−
∫

B

ϕ(−2)χ(−2) =

∫ 0

−2

d

dt

(∫
B

ϕχdx

)
dt

⇒
∫

Q

vϕ|∇χ|dt = −
∫

Q

χϕtdxdt

Given that ϕ was an arbitrary test function, we conclude that for almost every

time we have χt = v|∇χ(t)|. The Sobolev trace theorem for Lipschitz domains

(see lemma below) then says the measures v|∇χ(t)| lie in a bounded set of

H−1, so χt ∈ L∞H−1. By definition (χ+ u)t ∈ L2H−1, thus ut ∈ L2H−1.
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The next tool we need uses the arithmetic-geometric mean inequality to bound

traces of u. This we will need in order to control terms involving integrals of the

temperature along the free boundary in terms of the L2 norm of u and a small

enough multiple of the norm of its gradient. The Lipschitz assumption will

be key as we will use the Sobolev trace theorem for boundaries of (Lipschitz)

domains.

Lemma 4.1.2 (Trace Lemma). Let Ω be an open domain in Rn and Σ a

hypersurface such that Σ∩Ω is given by the graph of a Lipschitz function with

Lipschitz constant L. Then there exists C = C(L) > 0 such that for every

ϵ > 0 and every ϕ ∈ H1
0 (Ω) we have∫

Σ

ϕ2dσ ≤ C

(
1

4ϵ

∫
Ω

ϕ2dx+ ϵ

∫
Ω

|∇ϕ|2dx
)

(4.1)

Proof. By a density argument we may assume ϕ ∈ H1
0 (Ω) ∩ C∞

c (Ω) without

losing generality. If Σ ∩ Ω is given by the graph of a Lipschitz function then

we can find a bi-Lipschitz diffeomorphism T that flattens Σ into (say) the

hyperplane Π = {xn = 0}. Thus if ψ = ϕ ◦ T we know that

C−1∥ψ∥L2 ≤ ∥ψ∥L2 ≤ C∥ψ∥L2

C−1∥∇ψ∥L2 ≤ ∥∇ϕ∥L2 ≤ C∥∇ψ∥L2

For C = C(L). Because of this we only need to prove the estimate for ϕ∗,

namely ∫
Π

ψ(x′, 0)2dx′ ≤ C

(
1

4ϵ

∫
Ω∗
ψ2dx+ ϵ

∫
Ω∗

|∇ψ|2dx
)
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If we denote by y the coordinate corresponding to the axis orthogonal to Π,

we have

(ψ2)y = 2ψψy

so that

ψ(x′, y)2 − ψ(x′, 0)2 =

∫ y

0

ψ(x′, s)ψs(x
′, s)ds

if for each x′ we take y = y(x′) so that (x, y′) lies in Ω∗ \ suppψ we get

ψ(x′, y) = 0. Therefore

ψ(x′, 0)2 = −
∫ y(x′)

0

ψ(x′, s)ψs(x
′, s)ds

⇒
∫

Π

ψ(x′, 0)2dx′ = −
∫

Ω∗∩{y>0}
ψψsdx ≤

∫
Ω∗

|ψψs|dx

Now we finish via Cauchy-Schwartz, for each ϵ > 0 we have∫
Π

ψ(x′, 0)2dx′ ≤
∫

Ω∗

1

4ϵ
ψ2 + ϵψ2

sdx

⇒
∫

Π

ψ(x′, 0)2dx′ ≤ 1

4ϵ

∫
Ω∗
ψ2dx+ ϵ

∫
Ω∗

|∇ψ|2dx

Now we are ready to prove the energy inequality for Lipschitz solutions of

(SGT).

Lemma 4.1.3 (Energy inequality). There exists a constant CL = C(L) such

that for a.e. t ∈ (−2, 0), any m > 0 and η ∈ C∞
c (B2) we have

(ut, η
2um) +

1

2

∫
|∇(ηum)|2dx ≤

∫
|∇η|2u2

mdx+ CL
V 2

m2

∫
η2(um)2dx

where um(x, t) = max{u(x, t),m}.
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Proof. By the previous proposition, for a.e. t ∈ (−2, 0) and any ϕ ∈ H1
0 (B2)

we have (omitting t to simplify notation)

(ut, ϕ) +

∫
∇u · ∇ϕdx = −

∫
ϕv|∇χ|

Fix an arbitrary η ∈ C∞
c (B2) and take ϕ = η2um ∈ H1

0 (Ω). Using this test

function in the equation above we get

(ut, η
2um) +

∫
η2∇u · ∇umdx+

∫
2ηum∇u · ∇ηdx = −

∫
η2umv|∇χ|

⇒ (ut, η
2um) +

∫
|∇(ηum)|2dx =

∫
u2

m|∇η|2dx−
∫
η2umv|∇χ|

Since um ≥ m have 1 ≤ um

m
a.e. with respect to |∇χ|, so that∫

|η2umV ||∇χ(t)| ≤ m−1

∫
(ηum)2|v||∇χ|

Applying the previous lemma with ϕ = η2um and Σ = Γ(t) we get∫
η2|um||V ||∇χ| ≤ CLV

m

(
ϵ−1

∫
(ηum)2dx+ ϵ

∫
|∇(ηum)|2dx

)
Taking ϵ = m

2CLV
so that CLV ϵ

m
≤ 1

2
we obtain

(ut, η
2um) +

1

2

∫
|∇(ηum)|2dx ≤

∫
|∇η|2u2

mdx+ CL
V 2

m2

∫
η2u2

mdx

We remark further: by integrating this inequality in time, we may rewrite the

energy inequality as a time average:∫
(ηum(T2))

2dx−
∫

(ηum(T1))
2dx+

1

2

∫ T2

T1

∫
|∇(ηum)|2dxdt

36



≤
∫ T2

T1

∫
|∇η|2u2

mdxdt+ CL
V 2

m2

∫ T2

T1

∫
η2u2

mdxdt

∀ T1, T2 : −2 < T1 < T2 < 0

The energy inequality together with the Sobolev embedding theorem allows us

to show via modified De Giorgi-Nash-Moser iterations that the temperature

becomes bounded in the interior (and by the scale invariance of the estimate, it

does so instantaneously), similar to Evans and Caffarelli’s work on the standard

Stefan problem. Here we will omit the details of this proof as the L∞ bound

will already be implied by the estimates of the next section, which follow a

classical extension of Stampacchia of work De Giorgi.

4.2 Hölder continuity

Next we prove that the temperature is even Hölder continuous (and thus the

free boundary is C2,α for some α). For this, we prove a second L∞ bound for

our solutions using ideas of Stampacchia ([13]).

Lemma 4.2.1 (Non-homogenous bound). Let w solve (with χt as in the pre-

vious lemmas)

wt − ∆w = −χt in Q2

w = 0 on ∂pQ2

Then for any p > n− 1 we have

∥w∥L∞(Q2) ≤ C(L, n)∥v∥Lp(Γ∩Q2)

(∫
Q2

|∇χ|
) 1

n−1
− 1

p
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Proof. Step 1. (Energy inequality) Let wλ = (w − λ)+ ∈ H1
0 (B2), then for

almost every time we have

(wt, wλ) +

∫
∇w · ∇wλdx =

∫
Γ

wλv|∇χ|

We now bound the right hand side. For every ϵ > 0 we have∫
Γ

wλv|∇χ| ≤ ϵ

∫
Γ

w2
λ|∇χ| + ϵ−1

∫
Γ∩{w>λ}

v2|∇χ|

≤ CLϵ

∫
|∇wλ|2dx+ ϵ−1

∫
Γ∩{w>λ}

v2|∇χ|

Where in the second inequality we used the Sobolev trace theorem and Poincare’s

inequality. Taking ϵ = 1
2CL

we have the energy inequality

(wt, wλ) +
1

2

∫
|∇wλ|2dx ≤ 2CL

∫
Γ∩{w>λ}

v2|∇χ|

Step 2. (Iteration) Fix M > 0 and for each k ∈ N let

λk = M(1 − 1

2k
), wk := (w − λk)+

Integrating the previous energy inequality from −2 to 0 (recall that w(−2) = 0)

we have

1

2

∫
wk(0)2dx+

1

2

∫ 0

−2

∫
|∇wk|2dxdt ≤ 2CL

∫ T

−2

∫
Γ∩{w>λk}

v2|∇χ(t)|dt

⇒
∫

Q2

|∇wk|2dxdt ≤ 4CL

∫ 0

−2

∫
Γ∩{w>λk}

v2|∇χ(t)|dt
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We now apply Hölder’s inequality on the right hand side with p
2
, we get∫ 0

−2

∫
Γ∩{w>λk}

v2|∇χ(t)|dt ≤
(∫

Q2

|v|p|∇χ|dt
) 2

p
(∫ 0

−2

|∇χ(t)(Γ ∩ {w > λk})|dt
)1− 2

p

Since wk−1 > 0 ⇒ wk > 2−kM , we have the relation for any q > 1

|∇χ(t)(Γ ∩ {w > λk})|
2
q ≤ 22k

M2

(∫
wq

k−1|∇χ(t)|
) 2

q

Moreover, taking1 q = 1 + n
n−2

> 2 one can apply the Sobolev trace inequality

and get the bound

|∇χ(t)(Γ ∩ {w > λk})|
2
q ≤ CL

22k

M2

∫
|∇wk−1|2dx

Integrating this relation and applying the energy inequaliy as above, we reach

the relation

∫ 0

−2

|∇χ(t)(Γ∩{w > λk})|
2
q dt ≤ 4C2

L

(
2k

M

)2

∥v∥2
p

(∫ 0

−2

|∇χ(t)(Γ ∩ {w > λk−1})|dt
)1− 2

p

Finally, since 2 < q, we can apply Jensen’s inequality to the left side of the

inequality and get (∫ 0

−2

|∇χ(t)(Γ ∩ {w > λk})|dt
) 2

q

≤ 4C2
L

(
2k

M

)2

∥v∥2
p

(∫ 0

−2

|∇χ(t)(Γ ∩ {w > λk−1})|dt
)1− 2

p

1if n = 2 we may pick any q > 2
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Define Ak =
∫ 0

−2
|∇χ(t)(Γ∩ {w > λk})|dt, the last inequality can be rewritten

as

Ak−1 ≤ 2qCq
L

(
2k

M

)q

∥v∥q
pA

(1− 2
p)

q
2

k∫ 0

−2

|∇χ(t)(Γ∩{w > λk−1})|dt ≤ 2qCq
L

(
2k

M

)q

∥v∥q
p

(∫ 0

−2

|∇χ(t)(Γ ∩ {w > λk})|dt
)(1− 2

p)
q
2

Note that
(
1 − 2

p

)
q
2
> 1 iff p > n − 1, then we can apply to our sequence

Ak the same argument we used to get the first L∞ bound. This way we may

check that Ak → ∞ and thus u ≤M a.e. in Q2 as long as

M = C(L, n)∥v∥Lp(Γ∩Q2)

(∫
Q2

|∇χ|
) 1

n−1
− 1

p

similarly we may prove the lower bound for u and we are done.

The above estimate together with the regularity for the homogenous linear

case (see Appendix) grant us the second L∞ bound for the temperature.

Proposition 4.2.2. (Second L∞ bound) For a solution u in Q3 and p > n−1

we have

∥u∥L∞(Q1) ≤ C(L, n)
(
∥u∥L2(Q3) + C(P, p, n)∥v∥Lp(Γ∩Q3)

)
where P =

∫
Q3

|∇χ| and C(P, p, n) = P 1− 2(n−1)
np + P

1
n−1

− 1
p .

Proof. Decompose u in Q2 as w1 + w2, where
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{
(w1)t − ∆w1 = 0 in Q2

w1 = u on ∂pQ2

{
(w2)t − ∆w2 = −χt in Q3

w2 = 0 on ∂pQ3

Therefore

sup
Q1

|u| ≤ sup
Q1

|w1| + sup
Q1

|w2|

From the theory for linear parabolic equations (see appendix) we know that

sup
Q1

|w1| ≤ C∥w1∥L2(Q2), and

∥w1∥L2(Q1) ≤ ∥u∥L2(Q2) + Cn∥∇u∥L2(Q2)

Moreover, by the energy inequality we know that for any p > n − 1 (n ≥ 2)

we have

∥∇u∥2
L2(Q2) ≤ C∥u∥2

L2(Q3) + CL∥v∥2
Lp(Γ∩Q3)

(∫
Γ∩Q3

|∇χ|
)1− 2(n−1)

np

Finally, from the non-homogeneous bound we know that for p > n− 1

sup
Q3

|w2| ≤ CL∥v∥Lp(Γ∩Q3)

(∫
Q3

|∇χ|
) 1

n−1
− 1

p

Putting all the estimates together we get the bound
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sup
Q1

|u| ≤ C(L, n)
(
∥u∥L2(Q2) + (P β + P γ)∥v∥Lp(Γ∩Q3)

)

P =

∫
Γ∩Q3

|∇χ|, β = 1 − 2(n− 1)

np
, γ =

1

n− 1
− 1

p

To finish this chapter (and thus the proof of Theorem 2.2.1) we use again

the estimates for the linear case and the non-homogenous bound to show u is

continuous.

Lemma 4.2.3 (Continuity of the temperature). Let (u, χ) be a weak solution

with a Lipschitz free boundary in Q2, there exists a universal α = α(L, V, n) ∈

(0, 1) such that

[u]Cα(Q1/4) ≤ C

Proof. Fix ρ ∈ (0, 1), let us decompose u as w1 + w2, each given by

{
(w1)t − ∆w1 = 0 in Qρ

w1 = u on ∂pQρ

{
(w2)t − ∆w2 = −χt in Qρ

w2 = 0 on ∂pQρ

Interior regularity for caloric functions tells us that

oscQ ρ
4

w1 ≤ µ oscQ ρ
2

w1
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and the non-homogeneous bound says that (with p = ∞)

oscQ ρ
4

w2 ≤ 2 sup
Q ρ

4

|w2| ≤ C(L, n)V

(∫
Q ρ

4

|∇χ|

) 1
n−1

Since now we may assume Γ is at least C1, we have∫
Q ρ

4

|∇χ| ≤ CΓρ
n

We have obtained

oscQ ρ
4

u ≤ µ oscQ ρ
2

w1 + C(L, n)V ρ1+ 1
n−1

Given the interior estimates for w1 in terms of ∥u∥L2 , we can conclude via a

standard argument that there exists a universal α = α(V, L, n) such that

[u]Cα(Q 1
4
) <∞

with a corresponding estimate in terms of the L2 norm of u.
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Chapter 5

Hele-Shaw: Lipschitz free boundaries

This chapter is very similar to the previous one, except that the estimates are

more “elliptic”. The organization is the same and in many points where the

arguments are similar we refer to the previous chapter.

5.1 L∞ bound

Lemma 5.1.1. Let (u, χ) be a weak solution to (HS) in Q2 such that Γ ∩Q2

is a Lipschitz hypersurface of the form

{(x′, xn, t) ∈ Q2 : xn = f(x′, t)}, f Lipschitz in both x′ and t

Then χt is a measure of the form v|∇χ| for some bounded function v : Γ → R.

Moreover, we have χt ∈ L∞H−1

The proof is exactly the same as for the Stefan problem.

Lemma 5.1.2 (Energy inequality). There exists a constant CL = C(L) such

that for a.e. t ∈ (−2, 0), any m > 0 and η ∈ C∞
c (B2) we have

1

2

∫
|∇(ηum)|2dx ≤

∫
|∇η|2u2

mdx+ CL
V 2

m2

∫
η2(um)2dx

where um(x, t) = max{u(x, t),m}.
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Proof. By the previous proposition, for a.e. t ∈ (−2, 0) and any ϕ ∈ H1
0 (B2)

we have (again we omit t to simplify the formulas)∫
∇u · ∇ϕ dx = −

∫
ϕv|∇χ|

Pick any η ∈ C∞
c (B2) and take ϕ = η2um ∈ H1

0 (Ω), plugging this test function

in the equation above we get∫
η2∇u · ∇umdx+

∫
2ηum∇u · ∇ηdx = −

∫
η2umv|∇χ|

⇒
∫

|∇(ηum)|2dx =

∫
u2

m|∇η|2dx−
∫
η2umv|∇χ|

Since um ≥ m have 1 ≤ um

m
a.e. with respect to |∇χ|, so that∫

|η2umV ||∇χ| ≤ m−1

∫
(ηum)2|v||∇χ|

Applying the previous lemma with ϕ = η2um and Σ = Γ(t) we get

1

m

∫
(ηum)2|v||∇χ| ≤ CLV

m

(
ϵ−1

∫
(ηum)2dx+ ϵ

∫
|∇(ηum)|2dx

)

Taking ϵ = m
2CLV

so that CLV ϵ
m

≤ 1
2

we obtain

1

2

∫
|∇(ηum)|2dx ≤

∫
|∇η|2u2

mdx+ CL
V 2

m2

∫
(ηum)2dx

As we said for the Stefan problem, this energy inequality allows one to get L∞

bounds in the interior, since there is “diffusion” in u for Hele-Shaw it should
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not be surprising that the space L2 norm of the temperature for a given time

controls the pointwise values of u (for that time). Also as done for the Stefan

problem, we give a detailed proof of the L∞ bound (and continuity in space)

following ideas of Stampacchia.

5.2 Hölder continuity in space

The continuity proof follows the same approach as the Stefan case: we prove

an Stampacchia-like maximum principle and apply the estimates for the linear

theory. This will be done in a few lemmas.

Lemma 5.2.1 (Non-homogenous bound). Let w ∈ H1(B2) solve for some

t ∈ (−2, 0)

−∆w = −χt in B2

w = 0 on ∂B2

Then for any p > n− 1 we have

∥w∥L∞(B2) ≤ C(L, n)∥v∥Lp(Γ(t)∩B2)

(∫
B2

|∇χ(t)|
) 1

n−1
− 1

p

Proposition 5.2.2. (Second L∞ bound) Let p > n − 1, and u, χ a solution

with Lipschitz free boundary in Q3. Then for a.e. t we have

∥u(t)∥L∞(B1) ≤ C(L, n)
(
∥u(t)∥L2(B3) + C(P, p, n)∥v∥Lp(Γ(t)∩B3)

)
where P =

∫
B3

|∇χ(t)| and C(P, p, n) = P 1− 2(n−1)
np + P

1
n−1

− 1
p .

Proof. Fix t, decompose u = u(t) in B2 as w1 + w2, where{
−∆w1 = 0 in B2

w1 = u on ∂B2
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{
∆w2 = χt in B3

w2 = 0 on ∂B3

Therefore

sup
B1

|u| ≤ sup
B1

|w1| + sup
B1

|w2|

From the theory for linear parabolic equations (see appendix) we know that

sup
B1

|w1| ≤ C∥w1∥L2(B2), and

∥w1∥L2(B1) ≤ ∥u∥L2(B2) + Cn∥∇u∥L2(B2)

Moreover, by the energy inequality we know that for any p > n − 1 (n ≥ 2)

we have

∥∇u∥2
L2(B2) ≤ C∥u∥2

L2(B3) + CL∥v∥2
Lp(Γ(t)∩B3)

(∫
Γ(t)∩B3

|∇χ|
)1− 2(n−1)

np

Finally, from the non-homogeneous bound we know that for p > n− 1

sup
B3

|w2| ≤ CL∥v∥Lp(Γ(t)∩B3)

(∫
B3

|∇χ(t)|
) 1

n−1
− 1

p

Putting all the estimates together we get the bound

sup
B1

|u| ≤ C(L, n)
(
∥u∥L2(B2) + (P β + P γ)∥v∥Lp(Γ(t)∩B3)

)
with the desired β and γ.

We now state without proof the lemma for the continuity of the temperature,

the proof is done mutatis mutandis the proof of Lemma 4.2.3 at the end of
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the previous chapter. The same observation made before the proof of Lemma

?? explains why we should not be surprised that we have an estimate for each

fixed time.

Lemma 5.2.3 (Continuity of the temperature in space). Let (u, χ) be a weak

solution with a Lipschitz free boundary in Q2. Then for almost every t we have

with a universal α ∈ (0, 1)

[u(t)]Cα(B1/4) ≤ C
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Appendix A

Reviewing De Giorgi-Nash-Moser for

parabolic equations

For the sake of completeness, in this appendix we shall review some aspects of

the regularity theory of linear parabolic equations in divergence form. Namely,

we consider functions such that

{
ut − Lu = 0 in Q2, Lu = div (A(x, t)∇u)
u ∈ L2H1 ut ∈ L2H−1 λI ≤ A(x) ≤ ΛI a.e. (x, t) ∈ Q2

In the sense that for almost every t ∈ (−2, 0) and every ϕ ∈ H1
0 (B2) we have

(ut, ϕ) +

∫
(A(x, t)∇u · ∇ϕ) dx = 0

As it is now well known, to prove continuity of the solution one proceeds in

two stages: first one shows solutions are bounded pointwise (in the interior)

by their L2 norms, the second stage consists in showing that the oscillation

of these (bounded) solutions decays geometrically as we look at a shrinking

sequence of dyadic parabolic cylinders.

The first part uses the Energy and Sobolev inequalities, we state the two key

lemmas used in this part. They are a special case of those proved in the section
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dealing with the Stefan problem. We only need to take in that case v ≡ 0,

thus we will not write the proofs for the linear case.

Lemma A.0.4. There exists C = C(λ,Λ) such that

(ut, um) +

∫
|∇(ηum)|2dx ≤ C

∫
|∇η|2u2

mdx

Here um = (u−m)+, m ∈ R and η ∈ C1
c (B2) are arbitrary.

Lemma A.0.5. There exists C = C(λ,Λ, n) such that if u is a solution then

∥um∥L∞(Q1) ≤ C∥um∥L2(Q2)

Where again we have um = (u−m)+.

Corollary A.0.6. Solutions are bounded in the interior. Moreover, we have

the following scale invariant estimate

∥u∥L∞(Qr) ≤
C

rn+2
∥u∥L2(Q2r)

For the second part of the regularity theorem, we adapt a lemma from Caffarelli

& Vasseur [9] used in the study of the quasi geostrophic equation. It allows

one to do a complete analogue of De Giorgi’s elliptic proof in the parabolic

case. As opposed to Moser’s [15] original parabolic theory this does not rely

on a covering lemma.

Lemma A.0.7. There exists δ = δ(λ,Λ, n) such that if u is a subsolution such

that
a ≤ u ≤ b in Q2r

|{(x, t) : u ≤ a+b
2
}| ≥ 1

2
|Q2r|

|{(x, t) : a+b
2
< u < 1

4
a+ 3

4
b}| ≤ δ|Q2r|
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Then

u ≤ 1

8
a+

7

8
b a.e. in Qr

Proof. Consider the sets (for each t ∈ (−4, 0))

A(t) = {x ∈ B2 : u(x, t) ≤ m}

B(t) = {x ∈ B2 : u(x, t) ≥ m}

C(t) = {x ∈ B2 : m < u(x, t) < m}

and K =
4

ϵ0

∫ 0

−4

∫
C(t)

|∇u|2dxdt, ϵ0 > 0 to be chosen

It is in our interest to bound |B(t)| from above for t ∈ (−1, 0). Namely,∫
Q1

(u−m)2
+dxdt ≤

∫ 0

−1

∫
B1∩B(t)

(b− a)2dxdt ≤ (b− a)2

∫ 0

−1

|B(t)|dt

Suppose that we had ∫ 0

−1

|B(t)|dt ≤ C−18−2

⇒
∫

Q1

(u−m)2
+dxdt ≤ C−1

(
1

8
(b− a)

)2

by taking C as in the previous Lemma, we get

u−m ≤ 1

8
(b− a) in Q 1

2
⇒ u ≤ m∗ in Q 1

2

Note further that since a ≤ u ≤ b and u is a solution in Q3r that we can argue

as in the proof of the previous lemma to get the bound

K ≤ 4C(Γ, n)

ϵ0
(b− a)2
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The key tool to estimate |B(t)| is De Giorgi’s H1-isoperimetric inequality (see

Appendix) which guarantees that

|A(t)||B(t)| ≤ K1/2|C(t)|1/2 whenever

∫
C(t)

|∇u(x, t)|2dx ≤ K

In other words, for such times t we have the bound |B(t)| ≤ |A(t)|−1K1/2|C(t)|1/2.

The times for which this estimate holds turn out to cover most of (−4, 0), for

if we define

I = {t ∈ (−4, 0) : |C(t)|1/2 ≤ ϵ1,

∫
B2

|∇u(x, t)|2dx ≤ K}

then (−4, 0) \ I ⊂ {t : |C(t)|1/2 ≥ ϵ1} ∪ {t :
∫

B2
|∇u(x, t)|2dx ≥ K}, so that by

Tchebyschev’s inequality

|(−4, 0) \ I| ≤ ϵ−2
1

∫ 0

−2

|C(t)|dt+K−1

∫
Q2

|∇u|2dxdt ≤ ϵ−2
1 δ|Q2| +

ϵ0
4

that is, by picking ϵ0,ϵ1 and δ accordingly we can make I cover most of the

time interval. The last thing we need before we effectively use estimate (bla)

is the lower bound for |A(t)|, we claim that for any t ∈ I ∩ (−1, 0) we have

|A(t)| ≥ 1
4
|B2|.

Indeed, since |{(x, t) ∈ Q2 : u ≤ m} ≥ 1
2
|Q2| there is at least one t0 ∈

(−4,−1) ∩ I such that

|{x ∈ B2 : u(x, t0) ≤ m}| ≥ 1

4
|B2|

So that the H1 isoperimetric inequality gives us

|B(t0)| ≤ 4|B2|−1K1/2|C(t0)|1/2 ≤ 4|B2|−1ϵ
−1/2
0 C(Γ, n)1/2(b− a)ϵ1
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On the other hand, since t0 ∈ I∫
B2

(u(x, t0) −m)2
+dx ≤

∫
B(t0)

(b−m)2dx+

∫
C(t0)

(m−m)2dx

≤
(
|B(t0)| +

1

4
|C(t0)|

)
(b− a)2 ≤

(
|B(t0)| +

1

4
ϵ21

)
(b− a)2

so (by the energy inequality) we have for any t > t0∫
Br

(u(x, t) −m)2
+dx ≤

∫
B2

(u(x, t0) −m)2
+dx+ C(Γ, n)(b− a)2(t− t0)

≤
((

|B(t0)| +
1

4
ϵ21

)
+ C(Γ, n)(t− t0)

)
(b− a)2

Taking ϵ0 small enough and using Tchebyschev’s inequality, we see that for

any δ0 ≤ |B2|
4C(Γ,n)

and any t ∈ (t0, t0 + δ0) the following inequality holds:

|{x ∈ Br : u(x, t) ≥ m}| ≤ (b− a)−2

∫
B2

η2(u(x, t) −mk)
2
+dx

≤
((

|B(t0)| +
1

4
ϵ21

)
+ C(Γ, n)(t− t0)

)
≤ 1

2
|B2|

and since |C(t)| ≤ ϵ21 ≤ 1
4
|B2| we have come to

|{x ∈ B1 : u(x, t) ≥ m}| ≤ 3

4
|B2| ⇒ |A(t)| ≥ 1

4
|B2| ∀t ∈ (t0, t0 + δ0) ∩ I

Note that δ0 is independent of δ and ϵ0, so we can choose them all so that

ϵ−2
1 δ + 4−1ϵ0 ≤ 2−1δ0, in which case any interval of lenght δ0 must contain at

least one t ∈ I. Since t0 < −r2, we conclude that the last inequality holds for

any t ∈ (−r2, 0) ∩ I and we get the desired lower bound on |A(t)|.

54



We use the H1 isoperimetric inequality one last time to get that∫ 0

−1

|B(t)|dt =

∫
(−1,0)\I

|B(t)|dt+

∫
I∩(−1,0)

|B(t)|dt

≤ |(−1, 0) \ I||B2| + 4−1|B2|K1/2

∫
I∩(−1,0)

|C(t)|1/2dt

≤ |B1|2n−2
[(
ϵ−2
1 δ|B1| +

ϵ0
4

)
+ Cϵ1ϵ

− 1
2

0 (b− a)
]

which can be made ≤ C by taking first ϵ0 and then δ universally small.

Lemma A.0.8. There exists µ = µ(λ,Λ, n) with 0 < µ < 1 such that if u is

a solution then

oscQr u ≤ µ oscQ2r u

Proof. We may assume without loss of generality that

sup
Q2r

u = 1, inf
Q2r

u = 0 ⇒ oscQ2r u = 1

Moreover, we may also assume that

|{(x, t) : u ≤ 1

2
}| ≥ 1

2
|Q2r|

Otherwise, we apply the argument below to v = 1 − u and reach a similar

conclusion. Consider then the sequence λk = 1 − 1
2k . Suppose k0 is such that

|{(x, t) : λk−1 < u < λk}| > δ|Q2r|, ∀k ≤ k0

Since these k0 sets are disjoint all contained in Q2r, it must be that

δ|Q2r|k0 < |Q2r| ⇒ k0 < δ−1
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In other words, there is always some k0 < δ−1 for which we have the inequality

|{(x, t) : λk0−1 < u < λk0}| ≤ δ|Q2r|

Picking such a k0 = [δ] + 1, consider w = max{u, λk0−2}, it is a subsolution

to which we can apply the previous lemma with a = λk0−2, b = 1, the lemma

tells us that

u ≤ w ≤ 1

8
λk0−2 +

7

8
= λk0+1 in Qr

Let µ0 = λk0 . Note that µ0 < 1 is completely determined by δ and thus it is

a constant depend only on λ,Λ and n, moreover we have showed that

oscQr u = µ0 − 0 ≤ µ0 oscQ2r u

and that proves the lemma.

Corollary A.0.9. There exists C = C(λ,Λ, n) and α = α(λ,Λ, n) such that

any solution u is Cα in the interior. Specifically, we have the estimate

∥u∥Cα(Q1) ≤ C∥u∥L2(Q2)
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