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Biodiversity is distributed unevenly across geographic space and the

tree of life. A key task of biology is to understand the ecological and evolu-

tionary processes that generate these patterns. I investigate how the structure

and geometry of a landscape, for example the sizes and arrangements of is-

lands in an archipelago, affects processes contributing to the generation and

conservation of biodiversity patterns. In the first chapter, I integrate two dis-

parate bodies of theory, ecological neutral theory and network theory into a

powerful new framework for investigating patterns of biodiversity in a com-

plex landscape. I examine the consequences of network structure, such as size,

topology, and connectivity, for diversity patterning across the metacommunity.

The second chapter focuses on how the position of a node within a network

controls local community (node) diversity. Network statistics, such as node

centrality, are found to predict diversity patterns with more central nodes

accumulating the most diversity. In the third chapter, I use the theory to
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evaluate how well fundamental concepts in conservation biology perform when

neutral metacommunity processes generate diversity patterns. I find that con-

temporary diversity patterns are poor predictors of the long-term capacity of a

network to support diversity, challenging a host of conservation concepts and

applications. In the fourth chapter, I consider biodiversity dynamics in a net-

work with a different model of speciation, where spatial structure is needed for

divergence. In this case, speciation hotspots form where the dispersal proper-

ties of an organism and the spatial structure of the landscape coincide. In the

final chapter I study the biodiversity of a natural structured metacommunity,

the ants of the Fijian archipelago. I used a variety of collecting techniques to

inventory the ant species occurring across a system of islands in the southwest

Pacific. Approximately 50 new species were discovered, and the distributions

of the ant species across the islands are firmly established. Radiations are

observed in the genera Pheidole, Camponotus, Lordomyrma, Leptogenys, Cer-

apachys, Strumigenys, Poecilomyrma, and Hypoponera.
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Chapter 1

Species diversity in neutral metacommunities:

a network approach

1.1 Abstract

Biologists seek an understanding of the processes underlying spatial bio-

diversity patterns. Neutral theory links those patterns to dispersal, speciation,

and community drift. Here we advance the spatially explicit neutral model by

representing the metacommunity as a network of smaller communities. Ana-

lytic theory is presented for a set of equilibrium diversity patterns in networks

of communities, facilitating the exploration of parameter space not accessi-

ble by simulation. We use this theory to evaluate how the basic properties

of a metacommunity- connectivity, size, and speciation rate- determine over-

all metacommunity gamma diversity, and how that is partitioned into alpha

and beta components. We find spatial structure can increase gamma-diversity

relative to a well-mixed model, even when θ is held constant. The magni-

tude of deviations from the well-mixed model and the partitioning into alpha

and beta diversity is related to the ratio of migration and speciation rates.

Gamma diversity scales linearly with metacommunity size even as alpha and

beta diversity scale nonlinearly with size.
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1.2 Introduction

Understanding variation in species diversity and community composi-

tion is a central problem in biology (Brown, 1995; Rosenzweig, 1995). Neutral

ecological theory links biodiversity pattern to an elementary set of ecological

and evolutionary processes (Hubbell, 2001). Despite this simplicity, the theory

holds promise for generating a set of baseline expectations, and serves as a use-

ful touchstone for building more complex theory (Alonso et al., 2006). Recent

work has extended several dimensions of the model including the mechanism of

speciation (Hubbell, 2005; Etienne et al., 2007b; Mouillot and Gaston, 2007),

the density dependence of population dynamics (Volkov et al., 2005), the zero-

sum assumption (Etienne et al., 2007a), among others (Chave, 2004). Here we

focus on the model of space underlying the theory, moving beyond simple spa-

tial templates to develop theoretical results for metacommunities with more

complex structure.

The neutral perspective views diversity as an outcome of stochastic

speciation, migration, and ecological drift due to birth-death dynamics of in-

dividuals. This occurs in a spatial context where a local community receives

migrants from a metacommunity (Hubbell, 2001). Various implementations of

this general idea can be found in the literature, focusing on different aspects

of neutral pattern (Chave, 2004; McGill et al., 2006). McGill et al. (2006)

classify neutral metacommunity models as either spatially implicit, where the

local community draws migrants from a separate pool of individuals, or spa-

tially explicit, where the metacommunity is an actual set of local communities
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with connections among them. The degree to which the behavior of a truly

spatially explicit metacommunity deviates from the spatially implicit model

is an open question. A somewhat different definition for spatially explicit is

used in the broader metacommunity literature, for example by Leibold et al.

(2004): A model in which the arrangement of patches or distance between

patches can influence patterns of movement or interaction. The theoretical

approach we present is spatially explicit according to both definitions. Spa-

tially explicit neutral models have been explored with stochastic simulation

and with analytic theory (Durrett and Levin, 1996a; Bell, 2000b; Hubbell,

2001; Chave and Leigh, 2002; Chave et al., 2002; Houchmandzadeh and Val-

lade, 2003; McGill et al., 2005; Rosindell and Cornell, 2007; Zillio et al., 2005).

However, little attention has been paid to how the internal structure of spa-

tially explicit metacommunities determines equilibrium spatial patterns under

neutrality. As neutral theory emphasizes the role of dispersal limitation, the

number and strengths of connections a local community has with other com-

munities will influence patterns of species diversity and similarity. Beyond

these primary connections, the position of a community in the broader meta-

community may have a cascading influence on the local community.

Most spatially explicit applications of neutral theory have been focused

on two dimensional continuous habitats, some specifically inspired by spatially

extended lowland forest communities (Chave et al., 2002). While this is a log-

ical approach for metacommunities extended in continuous space, many real

metacommunities are characterized by discontinuous, or patchy internal struc-
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ture. Habitats can be distributed unevenly in space from landscape-level scales

to the largest scales- their distribution on and among continents. Network the-

ory is a versatile framework for representing these complex structures, where

habitat patches, islands, or even continents, are nodes in a graph, and edges

represent some rate of individual movement. Network tools are commonly used

in landscape ecology (Urban and Keitt, 2001), metapopulation ecology (Han-

ski, 1999), and a variety of other fields where a set of units has heterogeneous

connections among them (Albert and Barabasi, 2002).

The present study examines how the network structure of metacommu-

nities determines patterns of diversity and similarity among individual com-

munities undergoing ecological drift, speciation, and dispersal. Central to

the neutral theory are stochastic biological rates interacting with spatial con-

straints, and while spatial complexity complicates neutral expectations, it also

provides an opportunity to make use of spatial pattern to discriminate neutral

processes from competing ideas in ecology. Neutral pattern should respond to

the structure of island archipelagoes and the shape of domain boundaries, -the

geographic structure of the metacommunity.

We develop analytical theory which predicts equilibrium diversity pat-

terns within and among localities in metacommunities with a diverse set of

spatial structures. Following previous spatially explicit theory (Chave and

Leigh, 2002), we borrow tools from population genetics and derive spatially

explicit predictions for a family of diversity indices based on the Simpson con-

centration (Simpson, 1949). By connecting this approach to network theory,
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we facilitate the investigation of a broad set of questions about neutral diver-

sity patterns in structured geographies.

In this paper we focus on a basic question about spatially explicit meta-

communities; how the broad scale structure of the network controls patterns

of alpha, beta, and gamma diversity. Using a well-mixed metacommunity as a

benchmark, we investigate the effects of spatial structure on overall metacom-

munity gamma diversity. Metacommunity diversity can be partitioned into

within (α) and among (β) community components (Whittaker, 1972; Lande,

1996; Magurran, 2003). We investigate how the basic components of the

model- connectivity, speciation, and metacommunity size, determine spatial

pattern under neutrality.

1.3 Theory: Neutral biodiversity pattern in a network
of communities

The resemblance, if not identity, of ecological neutral theory to the

more mathematically mature neutral theory of population genetics (Kimura,

1983) allows concepts and quantitative tools from the latter to be adapted

by ecologists. Indeed much of the extant ecological neutral theory has been

inspired at least in part by population genetics (Hubbell, 2001; Chave, 2004;

Hu et al., 2006). Here we follow a mathematical approach used in population

genetics and based on the concept of probability of identity to derive novel

theory for species diversity in networks of communities.

A common construction of neutral theory assumes point speciation,
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with new species arising randomly as one individual, with zero-sum stochastic

community dynamics. This model maps on exactly to the infinite alleles model

of population genetics (Kimura and Crow, 1964; Hubbell, 2001). A useful

concept in population genetics is the probability of identity in state of two

alleles chosen from a population. In this model, two alleles are identical in

state if -looking backwards in time- their lineages coalesce into a common

ancestor before a mutation has occurred in either lineage. This probability

depends on both the coalescence time, how far back in time existed most recent

common ancestor, and the rate at which mutations accumulate on the lineages.

Coalescence times will normally be dependent on population sizes, migration

rates, and the spatial separation of the sampled alleles, as the lineages have to

move to the same location before coalescing (Hudson, 1990).

Identity probabilities underlie population genetics statistics describing

patterns of genetic diversity (Nei, 1987). Interestingly, we can convert these

into diversity statistics that are traditionally used by ecologists, a connection

that has been made before in the context of neutral theory (Chave and Leigh,

2002; Condit et al., 2002; Etienne, 2005a; He, 2005; Hu et al., 2006). The Simp-

son concentration, by definition, is the probability that two randomly chosen

individuals chosen at random from a set are the same type (Simpson, 1949).

In ecology this is applied to individuals chosen from a community (Magurran,

2003) and is usually calculated directly from the set of species frequencies.

Therefore to the extent that genetic models map on to ecological models, the-

ory for allelic probabilities of identity in state also mechanistically predict

6



community diversity. We develop this further and show how a host of metrics

describing diversity patterns in metacommunity with network structure can

be analytically found using population genetics theory.

Neutral ecological dynamics in a network of communities correspond

to migration matrix models (Bodmer and Cavalli-Sforza, 1968) in population

genetics. In this representation a network of n local populations is represented

by a stochastic backward migration matrix (M). Each mij reflects the fraction

of individuals in a given subpopulation i that originated from a parent in

subpopulation j in the previous generation, and
∑
j

mij = 1 . Edge weights

mij, and local population sizes N can vary to capture the underlying spatial

structure of the metacommunity. In the following derivation, directed networks

(matrices where some mij 6= mji) are permitted but descendents of individuals

in each node must be able to eventually reach every other node (mij 6= 1).

Speciation rate v takes the place of mutation, and reflects the per generation

probability of change in state of a single individual.

The probability of identity in state (fij) for alleles sampled from com-

munities i and j under the infinite alleles model can be calculated with a

recursive equation originally discovered by Malcot (Malécot and Yermanos,

1970; Malécot, 1948) and developed extensively by later authors (Nagylaki,

1980, 1982; Laporte and Charlesworth, 2002). The equation for the probabil-

ity of identity in state f ′ij in the current generation in terms of the set of fij

in the previous generation can be written as a recursion:

7



f ′ij = (1− v)2

[∑
k,l

mikmjlfkl +
∑
k

mikmjk
1

Nk

(1− fkk)

]
(1.1)

Where k and l index over all n nodes. This converges to an equilib-

rium(Nagylaki, 1980).

f̂ij = (1− v)2

[∑
k,l

mikmjlf̂kl +
∑
k

mikmjk
1

Nk

(1− f̂kk)

]
(1.2)

We rearrange this equation to the form:

fij = (1− v)2

[ ∑
k,l,k 6=l

mikmjlfkl +
∑
k

mikmjk

(
1− 1

Nk

)
(fkk)+

∑
k

mikmjk(
1

Nk

)

] (1.3)

Two sampled individuals are the same type if neither has speciated

since the previous generation (the first term), and i) they were from parents

of the same type from different patches (the first summation) or ii) they were

from different parents of the same type located in the same patch (second

summation), or iii) they had the same parent (coalesced) in the previous gen-

eration (third summation).

Equation 1.3 is linear and may be further rearranged and written in

the form:

(1− v)−2f̂ij −
∑
k,l

mikmjlf̂kl +
∑
k

mikmjk
1

Nk

f̂kk =
∑
k

mikmjk
1

Nk

(1.4)
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For a network of n nodes, there are n2 (i,j) pairs, and thus n2 linear equations

in this form describe the system at equilibrium. Since there are n2 unknowns

in n2 equations, the system can be solved for the vector ~f of all fij. For the

analyses in this paper, we coded the left side of equation 4 as a n2×n2 matrix

X, and the right side as a vector ~q of length n2, where

X(ij),(kl) = (1− v)−2δ(ij),(kl) −mikmjl + δk,lmikmjk(
1

Nk

) (1.5)

and

q(ij) =
∑
k

mikmjk(
1

Nk

) (1.6)

and where δi,j is the Kronecker delta (δi,j = 1 when i = j and δi,j = 0 oth-

erwise), and solved the formula X ~f = ~q for ~f with Matlab. Migration and

speciation rates as well as local community sizes can take on any value without

loss of computational efficiency. This allows the exploration of large regions of

parameter space inaccessible to simulation. The limitations are mainly in the

number of nodes n in the network; as the matrix of length n2 must be compu-

tationally tractable. However, if most nodes in the network are connected to a

relatively small number of other nodes (likely a common biological situation)

large networks can be computed with sparse matrix methods. In this paper,

we used sparse matrix routines for networks with more than 30 nodes.

The set of all fij represent the probability two individuals, randomly

chosen from within local patches i and j at any locations in the network, are

identical in state. In terms of the neutral ecological model, it is the equilibrium

9



probability they are the same species. From these values we can calculate a

number of diversity metrics of ecological interest for the local and metacom-

munity.

1.3.1 Alpha diversity

As discussed before, fii is equivalent to the Simpson concentration λ

for a local community i. In population genetics this is also related to the

heterozygosity (1 − fii) of a population. This can be written as Simpsons

index of diversityαi.

αi = 1− fii (1.7)

For many purposes such as diversity partitioning, a raw Simpson’s in-

dex is undesirable as a measure of alpha diversity as it converges to 1 as

diversity increases unbounded, with highly misleading behavior(Jost, 2006).

The index can be linearized by converting to an effective number of species or

Hill number(Hill, 1973), which is the species richness that would produce a

given Simpson’s index if all species abundances were equal.

D(αi) = fii
−1

(1.8)

The average alpha diversity expressed as Simpsons index and as an

effective number of species over the whole metacommunity are,

10



αM = (1− fkk) (1.9)

D(αM) = fkk
−1

(1.10)

where both averages are taken over all k.

1.3.2 Gamma diversity

Metacommunity diversity, or gamma diversity, can be calculated with

similar averages. Averaging the whole fij vector gives the Simpson concentra-

tion for the metacommunity, which can be used to give the Simpsons index

and effective number of species for the whole metacommunity,

γ = 1− fij (1.11)

D(γ) = fij
−1

(1.12)

where both are averaged over all (i, j) pairs.

1.3.3 Beta diversity

Beta diversity, broadly speaking the component of diversity reflected

in differences among locations or samples, can also be calculated using the

Malcot equation. Gamma diversity can be partitioned into independent al-

pha and beta components with multiplicative(Whittaker, 1972) or additive

11



(Lande, 1996) methods. Given the scaling problems of using raw Simpson di-

versity indices, we can partition total metacommunity (gamma) diversity into

alpha and beta components in terms of Hill numbers. There is one caveat,

problems of concavity arise when calculating metacommunity-wide (but not

node specific) figures for alpha, beta, and gamma diversity based on Simpsons

index when community weights are unequal (e.g. when local community sizes

are variable, see (Jost, 2006) for further discussion). This paper will consider

only networks where nodes are the same size.

Multiplicative Partition: An effective number of communities, the number

of distinct communities with the average alpha diversity needed to account for

overall gamma diversity, can be calculated as follows. In panmixia, this is 1,

if all communities are distinct, this is n, the number of local communities.

Ce =
D(γ)

D(αM)
=
fij

fkk
(1.13)

Additive Partition: Additive partitioning calculates a beta diversity value in

the same units as alpha and gamma diversity. The average effective number

of species in a local site (alpha) and effective number of species of the meta-

community (gamma) can be used to back calculate the beta contribution.

D(β) = D(γ)−D(α) = (fij)
−1 − (fkk)

−1 (1.14)
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Pairwise Similarity: Similarity of two local communities i and j can be de-

scribed with the Morisita-Horn index of overlap (Horn, 1966).

MHij =
2fij

fii + fjj
(1.15)

1.4 Analyses and Results

The theory described in the previous section can be used to investi-

gate equilibrium diversity patterns generated by neutral processes in complex

habitat networks much more quickly than simulation methods for large area

of parameter space. In the rest of this paper we solve equation 3 under various

conditions to explore how the basic dimensions of the model, migration rate,

network topology, speciation rate, and network size, drive alpha, beta, and

gamma diversity patterns in spatially explicit metacommunities. We focus on

spatial structure on the scale of the metacommunity, or more specifically di-

visions that break the metacommunity into tens or hundreds of units, rather

than fine scale patchiness.

Both migration rate and network topology contribute to connectivity,

an important driver of dynamics in landscape (Brooks, 2003), metapopula-

tion (Hanski, 1999), and metacommunity ecology (Leibold et al., 2004). The

exchange rates among communities can have variable effects on community di-
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versity depending on the underlying model of community dynamics (Cadotte,

2006; Mouquet and Loreau, 2002, 2003).

Network connectivity can be a local property reflecting how connected

a given node is to other nodes, or a global statistic characterizing the structure

of a network. The former corresponds to the biogeographic concept of patch or

island isolation while the latter refers to a landscape or metacommunity level

property. In this paper we focus on the latter, network-level connectivity, and

how it determines diversity patterns as measured by standard alpha, beta, and

gamma diversity concepts.

1.4.1 Migration rate

In the spatially implicit model, the diversity of a panmictic metacom-

munity is controlled by the fundamental biodiversity parameter θ = 2vNm ,

while the diversity of a local community is controlled by θ, the local commu-

nity size, and the migration rate into the local community (Etienne, 2005a). A

basic question about the spatially explicit model is how structuring the meta-

community by restricting dispersal affects overall metacommunity gamma di-

versity. In addition, we seek to establish what determines the partitioning of

that gamma diversity into within alpha and between beta community compo-

nents. For the purposes of this analysis, we use additive partitioning methods

(equations 10, 12, 14).

We consider the effect of restricting migration rates (mathematically

represented by edge weights -values of the M matrix) on diversity patterns in
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two test networks representing topological extremes: a linear chain of com-

munities (Fig. 1.1a), and a network where every node is connected to every

other node. The latter network corresponds to the island model of population

genetics, and we refer to it as the island graph (Fig. 1.1b).

Equilibrium diversity levels were calculated for networks of 20 local

communities with a local community size of 20,000 individuals and a range of

m values (1x10−7– 1x10−2). All edges mij in the network were set to equal

weight. Figure 1.2 plots the results for a range of theta values on the two

networks. The diversities are additively partitioned and presented in terms of

effective number of species (equations 10,12, 14).

We find gamma diversity always decreases monotonically with increas-

ing migration rate (edge weight). The relative magnitude of the decrease is also

a function of the diversity parameter θ, with the spatial effect having a greater

relative impact on metacommunities with substantial dispersal limitation (low

mij values). This can be understood straightforwardly by examining the math-

ematics of diversity in a well-mixed metacommunity. The Simpsons index of a

well mixed metacommunity is, to a very good approximation (Kimura, 1983;

Hubbell, 2001; He, 2005),

γ =
θ

θ + 1
(1.16)

Which can be converted to an effective number of species,

D(γ) = θ + 1 = 2Nmv + 1 (1.17)
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Now consider if this metacommunity were split into a set of n smaller

communities, each with size Nm

n
and no migration among them. The effective

number of species of such a system would be

D(γ) = n

(
2
Nm

n
v + 1

)
(1.18)

Subtracting equation 17 from equation 18, we find the difference in

gamma diversity in the limit of no migration is n-1 effective species. As migra-

tion is increased and the metacommunity becomes more and more panmictic,

this effect reduces to zero.

The implications are that for systems where the total expected effective

number of species is much higher than the number of patches (θ+1 >> n−1),

the degree of spatial isolation of those patches will have little relative -but a

similar absolute- effect on gamma diversity. If the effective number of species

in the metacommunity is small compared to the number of patches(θ + 1 <<

n− 1), then spatial division can have a relatively large effect.

Metacommunity gamma diversity can be additively partitioned into

within (alpha) and between (beta) community components, as is represented

in Figure 1.2. Intuitively, higher migration rates among communities increases

alpha diversity at the expense of beta diversity, which can result in a profound

increase in local diversity when migration is high. This is consistent with

previous results highlighting the role of immigration in local diversity main-

tenance (MacArthur and Wilson, 1967; Loreau and Mouquet, 1999; Hubbell,
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2001). In terms of coalescence, as migration probabilities become larger, the

distribution of coalescence times between individuals chosen from different

communities becomes more similar to the distribution of times chosen from

the same community.

1.4.2 Network topology

Even when the strengths and number of connections are held constant,

the geometry of connections can have a significant effect on the distance be-

tween nodes and the spread of information on a network (Watts and Strogatz,

2006; Albert and Barabasi, 2002). To investigate this effect on diversity pat-

terns, we hold migration rates and number of links constant while changing

the architecture of the network. We consider three graphs with markedly dif-

ferent topologies, a linear chain graph, a randomly assembled graph, and a star

graph (Fig. 1.1). The point of interest here is that for different topologies,

node pairs are on average more or less isolated from each other, even when

the total number and strengths of links are held constant. In other words,

more or fewer intermediate nodes/edges must be traversed in order to travel

between two randomly chosen nodes. Longer path length between two com-

munities implies longer coalescence times between lineages chosen from those

two communities, as lineages must move to the same patch before coalescing.

The chain and star graphs (Fig. 1.1) represent extremes in topological

connectivity, in that a chain has relatively long path lengths and a star graph

-where nodes are at most two links away no matter the network size- has short
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paths. As an intermediate case, we generate random graphs by haphazardly

connecting nodes, while constraining the network to have a given number of

edges (in this case n-1) and every node reachable by some path from every

other node. This generates graphs with tree-like structure (Fig. 1.1d).

We considered networks with 100 local communities of 20000 individ-

uals, and 99 edges total. Larger networks are used than in Fig. 1.1, as topo-

logical differences of small networks will have little variation in path lengths.

In general, we expect the larger the network, the more topological variation

will affect have consequences for diversity pattern. Fig. 1.3a demonstrates the

effect of different network topologies on diversity patterns in a metacommu-

nity. The plot is structurally similar to those in Fig. 1.2 but represents several

networks simultaneously. Alpha diversity (red) is highest for a given migra-

tion rate in the networks with shorter path lengths (star, random) and lowest

in the chain graph. For higher migration rates, the difference is pronounced.

The effect is not as dramatic as the migration parameter itself for networks

of this size- but it underscores the importance of metacommunity geometry

in diversity patterns, something impossible to capture in a spatially implicit

model.

These topological differences can be measured with network statistics

such as network diameter, which is variably defined in the literature as either

the minimum distance between the furthest nodes, or the average minimum

distance between two nodes, averaged over all node pairs (Albert and Barabasi,

2002; Amaral et al., 2000). We used the latter definition and calculated di-
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ameter for the networks considered in Fig. 1.3a, and find that networks with

longer diameters have a greater allocation of diversity into the beta component

(Fig. 1.3b). This appears a promising direction and further work is needed to

investigate the quantitative relationship between diameter and other network

statistics with diversity patterns across a broader range of network types. An

open question is the extent to which such statistics can substitute for direct

modeling of neutral dynamics.

1.4.3 Speciation rate

In the spatially implicit metacommunity, gamma diversity (in effective

numbers of species) scales approximately linearly with speciation rate due to

equation 17. We investigate whether that scaling holds for metacommuni-

ties with internal dispersal limitation. Considering a chain graph identical to

the one considered in Fig. 1.2, we held migration rates constant and varied

speciation rate to examine its scaling with overall gamma diversity. The rela-

tionship between speciation rate and gamma diversity is found to deviate from

the spatially implicit model (again by as many as n−1 effective species), with

a strong interaction effect with migration rate. Note we are using equation 4

and not equation 17, which is an approximation, to generate predictions for

the well-mixed model. Considering migration and speciation together in Fig.

1.4a, we find that the deviations vary between zero and n− 1 and are related

to the ratio of migration to speciation m/v. This result is qualitatively robust

to different network structures (island vs. chain, varying network size), but
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differ in quantitative details such as the actual values of m/v that lead to a

deviation of a certain magnitude.

Aside from the strong effect on gamma diversity, speciation rates have

consequences for the allocation of diversity into among (beta) and within (al-

pha) site components. Intuitively, higher speciation rates can be expected to

promote geographic differentiation, with migration as an opposing, homogeniz-

ing force. Fig. 1.2 demonstrates the control of migration rates on the tradeoff

between alpha and beta diversity, with local diversity making up increasing

fraction of the total metacommunity diversity as migration rates are elevated.

Comparing panels in Fig. 1.2, it is clear that the transition from beta to alpha

diversity occurs at a higher migration rate when speciation rates are higher.

The joint effect of migration and speciation rate on differentiation can

be considered on a chain graph (n = 20, local population sizes=20000), shown

in Fig. 1.4b. The isoclines for a metric geographic differentiation log(α/β),

are parallel and with a slope of 1. This implies the ratio m/v is the relevant

quantity with respect to the tradeoff between alpha and beta diversity, when

network size and topology are held constant. When m/v is large, alpha di-

versity dominates, and beta when m/v is small. Again, while m/v controls

log(α/β) for a given metacommunity structure (link structure and population

sizes), different networks with the same m/v may differ in their allocation of

diversity into α and β components.

Interestingly, we do not find the product of local population size and

migration rate (Nm) being greater or less than one to have a strong effect on
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geographic differentiation, per se, after holding m/v constant (Fig. 1.6). This

is in contrast to the commonly cited connection between Nm and FST taken

from analysis of the island model, although clearly the relationship is more

complex when idealized assumptions are violated (Wilkinson-Herbots, 1998;

Whitlock and McCauley, 1999). We do note that one of the assumptions from

the Nm result is that speciation (mutation) is weak compared to migration

rates. If Nm < 1, then Nv must be at least several orders of magnitude

below 1. As metacommunity diversity is generally controlled by theta, and θ =

2nNv,n must be in the hundreds or thousands to recover a theta on the order of

1. So for subcommunities that are a significant fraction of the metacommunity

(on the order of tens and hundreds), it is unlikely that a metacommunity would

support much diversity to differentiate if Nm < 1 and m >> v. We limit the

scope of our conclusions to the population structures and diversity statistics

explored here, and emphasize the need for further examination of the issue.

1.4.4 Metacommunity size Nm

The number of individuals in a metacommunity is expected to directly

control equilibrium diversity under neutrality. In the spatially implicit model,

this relationship is linear due to the equation 17. As we have demonstrated,

diversity in spatially explicit metacommunities has a more complex relation-

ship with migration and speciation rate than in the spatially implicit model.

This is apparently not the case for network size. We grow metacommunities

both by increasing the number of individuals in each subcommunity, and by
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increasing the number of nodes in the network, holding migration and speci-

ation rates constant. Figure 1.5a shows alpha, beta, and gamma diversity in

a chain graph of 20 nodes, as local community size is varied between a range

of 2000-60000 individuals. Alpha, beta, and gamma diversity all grow linearly

with metacommunity size.

Figure 1.5b shows how diversity scales as local communities are added

to a network. Interestingly, overall gamma diversity scales linearly while there

is a nonlinear tradeoff between alpha and beta diversity. This occurs as the

average distance between pairs of nodes in the network is increased.

1.5 Discussion

Our results highlight the importance of spatial structure and the biolog-

ical parameters of the neutral model in determining species diversity of a local

community, among spatially separated communities, and on the scale of the

entire metacommunity. As the results presented in the previous section are in

terms of a rather abstract parameter space, it is instructive to discuss how they

may relate to natural systems. We find spatially structured metacommunities

to have elevated gamma diversity compared to a well-mixed metacommunity

if connectivity is low (Fig. 1.2,1.3) relative to speciation rate (Fig. 1.4a). The

magnitude of this effect is, at most, n − 1 effective species in a network of

n patches and the relative effect on metacommunity diversity is determined

by the relative magnitude of the number of patches to the fundamental diver-

sity number, the latter a function of speciation rate and metacommunity size.
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For metacommunities with high diversity relative to the number of patches

(θ + 1 >> n − 1), because speciation rate is high or metacommunity size is

large (because, for example, the areas involved are large) or both, metacom-

munity structure has little effect on overall diversity even if migration is highly

restricted. An example of this situation would be a set of large but isolated

mountain ranges distributed on a continent. In these cases, α and β diversity,

but not γ diversity, would be highly dependent on the connectivity of such

patches.

If diversity is low compared to the number of patches (θ+ 1 << n−1),

the spatial effect can be of consequence to overall diversity. Hypothetical

examples of this situation would be an isolated network of many small oceanic

islands, or other numerous but isolated habitat types such as caves or mountain

peaks. The total size of the metacommunity (Nm) may be unable to support

much diversity if it were one well-mixed unit, but the isolation inhibits one or a

few species from numerically dominating and thus enables species persistence.

In this situation, the connectivity of the system has important consequences

for α, β, and γ diversity.

These results demonstrate that under certain conditions, fragmenta-

tion promotes gamma diversity as subcommunities maintain uniqueness. It

should be noted that the zero-sum assumption implies the indefinite persis-

tence of subcommunities. In highly fragmented metacommunities with many

small subcommunities, one might expect occasional extinction of those sub-

communities due to environmental stochasticity, which may depress overall
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metacommunity diversity. An interesting extension would be to examine neu-

tral community dynamics in a network with dynamic structure.

Topological differences in metacommunity structure reflect different

spatial arrangements of habitat. Some communities are arranged in long

chains, such as riverine or coastal systems. Other metacommunities may be hi-

erarchically clustered reflecting patchy habitat distributions on multiple scales,

or characterized by asymmetric flows due to wind or water currents. Given the

diversity of organisms in variables such as body size, life history, and habitat

affinities, and the complexity of landscapes and environmental gradients, the

structures of real metacommunities can be expected to be highly variable in

nature.

The transition from β to α dominated metacommunities as m/v in-

creases highlights the neutral hypothesis for global patterns of provincialism

(Hubbell, 2001; Rosenzweig, 1995). When migration is too weak to overcome

the differentiating effects of speciation, provinces with distinct biotas form in

the subcommunities. When migration is relatively strong, communities em-

bedded in large networks can have similar compositions. We have shown how

the geometry of such networks also contributes to this transition. The linear

scaling of gamma diversity with metacommunity size is consistent with the

linearity of interprovincial species-area curves (Rosenzweig, 1995), although it

remains to be seen if species number has the same behavior as the effective

richness predicted by our model.

The main strength of the neutral theory is testability. The models
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transparent parameters allow for empirical tests, and quantitative tools for fit-

ting the model to data have blossomed (Etienne, 2005b, 2007, 2005a). Aside

from several notable exceptions (Condit et al., 2002; Rosindell and Cornell,

2007), these efforts are based on fitting data to the spatially implicit model,

some going so far as to use a spatially implicit model to generate predictions for

community similarity (Dornelas et al., 2006). Given that spatial structure is

a pervasive feature of real metacommunities, and thus migration rates among

pairs of communities are often variable, neutral processes in nature could pro-

duce more complex diversity and similarity patterns than can be generated

with spatially implicit models.

The challenges are formidable: a spatially explicit metacommunity re-

quires more parameters to describe than a spatially implicit version, when

one considers the large number of mij and local community sizes. Increasing

the complexity of that structure increases the number of parameters to be

fit to data. However, simplifying assumptions can be made about relations

of distance with dispersal rates, and area with community size. From this

perspective, the model presented here is not significantly more complex than

metapopulation models (Hanski, 1999) which are commonly fit to data by

making such simplifying assumptions. An exploration of that potential is left

for future work.

Our analytic method permits the exploration of regions of parameter

space that are inaccessible to simulation due to computational limits. This is

because long transients are not an issue and speciation rates and numbers of
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individuals (but not number of subcommunities) can take on any finite values.

However, a disadvantage of our method is the focus on diversity indices as

opposed to species abundance curves, which contain information on richness

and all higher order diversity metrics. We expect this limitation will prove

to be temporary, as recursive techniques similar to the Malcot equation can

generate more detailed information about the coalescent process than is cap-

tured in probabilities of identity (Hudson, 1990; Nagylaki, 2000; Laporte and

Charlesworth, 2002; Etienne and Olff, 2004). In addition, our method fol-

lows many other neutral models by assuming point speciation, the frequency

of which in nature is uncertain. Under allopatric or other speciation mecha-

nisms, it is possible diversity patterns will have a different relationship with

spatial structure, and initial steps have been taken in this direction (Mouillot

and Gaston, 2007).

The questions addressed here mostly pertain to global properties of

the metacommunity, but there are many questions outstanding regarding how

the internal network structure of a metacommunity determines neutral pat-

tern. The position of a node in a network has consequences for both local

diversity and uniqueness, and similarity with other nodes at a given location

in the network (Economo & Keitt, unpublished results). A rich tradition of

quantitative methods developed to quantify the local and global structure of

networks (Albert and Barabasi, 2002) may prove useful for these ends.

The possibility that relatively simple stochastic ecological and evolu-

tionary processes may underlie biodiversity patterns is an idea that traces back
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at least to MacArthur-Wilson island biogeography (MacArthur and Wilson,

1967). Neutral theory shows us again that spatial pattern can arise in the

absence of environmental species sorting, niche partitioning, complex interac-

tions, and historical contingencies. As complexity continues to be added to

the theory highlighting different biological and geographical realities, we will

eventually gain the ability to produce ever more specific and discriminating

predictions. The future is promising for a rigorous assessment of the impor-

tance of stochastic processes in biodiversity dynamics in space and time, and

across the tree of life.
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a)  Chain b) Island

c) Star d) Random

Figure 1.1: Network topologies appearing in this paper, a) chain graph,
b) island graph, c) star graph, d) randomly assembled network. The networks
used in the analyses have more nodes than those shown here, but have the
same basic structure. The random graph is generated by arbitrarily connecting
nodes but limiting the number of edges in the network.
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Figure 1.2: γ diversity (black line), partitioned additively into α
diversity (red) and β diversity (blue) in a network of 20 nodes plotted
as a function of migration rate. The plots represent the equilibrium solution
calculated using equations 10,12, and 14, over a range of migration values
(2x10−7 − 5x10−2) and theta (8, 80, 800). Individual node sizes were set to
20000 individuals and not varied, theta was tuned by varying speciation rate
(v). Notice gamma diversity converges to θ + 1 as migration increases. Each
edge in the network was set to the same migration value for a given calculation.
The top row is for a network with chain structure, and the bottom row island
structure (see Fig. 1).
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Figure 1.3: The effect of network topology on diversity patterns is
demonstrated by examining the diversity levels on networks with
otherwise similar parameter values (100 nodes, 99 links, v = 1x10−5,
local pop. sizes= 20000). a) α diversity (red) and γ diversity (black) in
metacommunities with star, chain, or random topologies, are plotted for a
range of migration rates. Values for the random network line are averages of
ten different networks, and the pink/grey shading reflects standard deviations.
The difference between the black and red lines is β diversity using an additive
definition. b) log (α/β), an index of geographic differentiation, plotted as a
function of network diameter (average minimum path length between all pairs
of nodes) for the networks and parameter values considered in figure 3a, with
log(migration) set to -2.5. The curve is a quadratic fitted for visualization
purposes.
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Figure 1.4: Contour plots showing diversity calculated in a range of
migration and speciation rates on a chain graph with 20 nodes, and local
population sizes set to 20000. a) the deviation of the equilibrium γ diversity
in a spatially explicit metacommunity from a well mixed metacommunity of
the same size. The units are effective number of species, isoclines depicted
in increments of 2. The maximum is expected to be 19 (n − 1, see text).
b) log(α/β), an index of the allocation of diversity into within and between
components, isoclines are in increments of 0.35. Both plots have parallel, linear
isoclines, indicating the ratio of m/v is the important driver of these patterns.
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Figure 1.5: Diversity as a function of metacommunity size. a) diver-
sity of a chain graph of length 20, (m = 1x10−3) as local community sizes
are increased such that total metacommunity size varies between (40000-1.2
million). b) Diversity in a chain graph as nodes are added, so length varies
between 1-30 local communities of 40000 individuals each.

32



log(Nm)

log(α/β)

random

star

chain

-2 -1 0 1 2

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 1.6: The effect of variable Nm, holding m/v constant. Three
different networks were examined with the same number of nodes and edges,
the chain graph, the star graph, and randomly constructed graphs (Fig. 1). As
the number of edges connected to each node (node degree) is variable within
these networks, for our value of m, we use the sum of all the edge weights

entering each node
∑
j 6=i

mij , averaged over all nodes. Local community sizes

were set to 20000, and migration rates m were varied to produce variation in
Nm. Speciation rate was varied with m, keeping their ratio constant m/v =
100. Note that as Nm gets smaller, alpha diversity actually goes up slightly,
this may be in large part because we are concurrently downgrading v, and
overall diversity gets extremely small. Note that in the limit of no speciation
and nonzero migration, γ = α = 1, and β = 0, using the additive definition.
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Chapter 2

Network isolation and local diversity in

neutral metacommunities

2.1 Abstract

Biologists seek an understanding of the biological and environmental

factors determining local community diversity. Recent advances in metacom-

munity ecology, and neutral theory in particular, highlight the importance of

dispersal processes interacting with the spatial structure of a landscape for

generating spatial patterns and maintaining biodiversity. The relative spatial

isolation of a community is traditionally thought to have a large influence

on local diversity. However, isolation remains an elusive concept to quantify,

particularly in metacommunities with complex spatial structure. We repre-

sent the metacommunity as a network of local communities, and use network

centrality measures to quantify the isolation of a local community. Using spa-

tially explicit neutral theory, we examine how node position predicts variation

in alpha diversity across a metacommunity. We find that diversity increases

with node centrality in the network, but only when centrality is measured on

a given scale in the network that widens with increasing dispersal rates and

narrows with increasing evolutionary rates. More generally, complex biodiver-

sity patterns form only when the underlying geography has structure on this
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critical scale. This provides a framework for understanding the influence of

spatial geographic structure on global biodiversity patterns.

2.2 Introduction

A fundamental task of basic and applied ecology is to understand what

determines local community diversity (Brown, 1995; Ricklefs, 1987; Rosen-

zweig, 1995). Ecological theory increasingly suggests that local diversity de-

pends on spatial dynamics occurring on larger scales. Many ecological com-

munities are embedded in a metacommunity, a network of local communities

linked through dispersal. Recent theory has established the importance of

these connections for changing and propagating ecological dynamics (Ama-

rasekare, 2003; Holt, 2002; Hubbell, 2001; Leibold et al., 2004; Levin, 1992).

A key variable in most spatial biological theory, including metapop-

ulation (Hanski, 1999), biogeographic (MacArthur and Wilson, 1967), and

metacommunity theory (Hubbell, 2001; Leibold et al., 2004) is isolation of a

patch or community. However, isolation is a scale dependent concept (Keitt

et al., 1997), and the relevant scale for determining local diversity is often

unclear. Communities may be isolated relative to their local landscapes, in

a regional network of patches, or relative to the rest of their entire biogeo-

graphic province. Which scales of isolation control local diversity? And what

biological parameters set those scales?

Ecological neutral theory (Chave, 2004; Hubbell, 2001) provides a quan-

titative, mechanistic framework for understanding biodiversity patterns in
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metacommunities in terms of a minimal set of stochastic biological processes.

It resides at one extreme in a continuum of metacommunity models that vary

in their emphasis on the importance of niche differences, species interactions,

and stochastic spatial effects on shaping ecological communities (Alonso et al.,

2006; Leibold et al., 2004; Leibold and McPeek, 2006). Despite its limitations,

in certain cases it has proven surprisingly capable at predicting community

patterns found in nature (Hubbell, 2001; Muneepeerakul et al., 2008; McGill

et al., 2006).

Neutral theory highlights spatial effects due to the central role of dis-

persal limitation in determining community structure. However, as many of

the neutral models explored in the literature are either spatially implicit (e.g.

(Etienne, 2005b; Hubbell, 2001)) or constructed with two dimensional land-

scapes (Bell, 2000a; Chave et al., 2002; Condit et al., 2002; Durrett and Levin,

1996b; Rosindell and Cornell, 2007; Hubbell, 2001), the consequences of spatial

complexity for neutral pattern are still largely unknown.

Recent work (Economo and Keitt, 2008; Muneepeerakul et al., 2007,

2008) has sought to address this limitation by representing neutral metacom-

munities as networks, with local communities (nodes) linked by the capacity

for dispersal (edges). Networks are ideally suited for representing a set of

units with complex connections among them, and their utility across disci-

plines (Strogatz, 2001) has led to the wide application of a common set of

quantitative tools (Newman, 2003). In ecology, spatially complex landscapes

can be represented as a graph (Economo and Keitt, 2008; Urban and Keitt,

36



2001; Urban et al., 2009). The structure of the graph could reflect, for exam-

ple, the arrangements of islands in an archipelago or mountains in a range. An

advantage of the network framework is a sophisticated set of quantitative tools

available for characterization of network structure (Newman, 2003; Urban and

Keitt, 2001). We seek to identify which concepts and tools may be useful to

spatially explicit metacommunity theory.

In the spatially implicit neutral model, differences in diversity among

local community are primarily driven by migration rates from the metacom-

munity and the local community size (Etienne, 2005b; Hubbell, 2001; Etienne,

2007). Migration rate is commonly measured by m, or the probability an

individual originated outside the local community. This general idea can be

traced back to classical island biogeography theory, which emphasized the im-

portance of island isolation on alpha-diversity (MacArthur and Wilson, 1967).

In the network model (Economo and Keitt, 2008), the migration rate (m)

corresponds to node degree, the number of links a community has with other

communities (or the sum of their weights). This places an emphasis on the

immediate neighborhood of a node on determining alpha-diversity.

However, in a network of communities, diversity may not simply be a

function of connectivity with neighboring patches as those patches may serve

as stepping stones to other regions of the metacommunity. If diversity cascades

through the patch network in this manner, local diversity would be driven by

metacommunity structure at broader scales than the local neighborhood. This

requires a more sophisticated implementation of the concept of isolation.
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Here we consider equilibrium alpha diversity at different rates of migra-

tion (edge weights) and speciation, in two model networks with different types

of complex structure. These are a dendritic graph with a tree-like branch-

ing topology, and a modular graph with connected clusters of nodes. The

dendritic graph allows for relatively easy visualization of node position in the

network, and increases variation in topological distance compared to more

complex topologies. The modular graph is intended to echo the complexity

arising from hierarchically patchy landscapes. To further focus the problem,

we only consider symmetric networks, where migration is equal in both direc-

tions between two communities.

We use network centrality measures to quantify the position of a node

in a metacommunity (Newman, 2003). These statistics are used across dis-

ciplines to quantify network topology. We use them as different quantitative

implementations of the concept of patch isolation in spatial ecology and bio-

geography. Centrality measures vary in their emphasis on short range or long

range connections and how paths between nodes are interpreted. Establishing

which of these predict neutral diversity, and under what biological conditions,

reveals fundamental properties of how spatial structure drives neutral diversity

pattern in complex metacommunities. It also represents the first implemen-

tation of network isolation concepts for metacommunities that are applicable

well beyond neutral theory.
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2.3 Methods

2.3.1 A Network Concept of Isolation in a Metacommunity

We used a variety network centrality measures to quantify the position

of a node in a metacommunity with network structure. Node isolation is

the inverse of node centrality. Each measure highlights a different aspect

of network topology. (i): Degree centrality is simply the number of links

a node has with other nodes or the sum of their weights. In a landscape,

this corresponds to the flux of dispersal directly entering a node from other

nodes. (ii): The geodesic closeness centrality is the average shortest path

length between a node and all other nodes in the network. This measures

the position of a node in the broader landscape, literally how close a node is

to all other nodes. Note that a node with high closeness can have very low

degree, and vice versa. (iii): The resistance closeness centrality is identical to

geodesic closeness except the resistance distance (McRae, 2006) takes the place

of geodesic distance. The resistance distance, which is derived from circuit

theory, shortens when there are multiple paths between nodes while geodesic

distance is solely determined by the shortest path. (iv): Eigenvector centrality

scores nodes based not only by the number of connections with neighbors, but

also by the importance of their neighbors. The metrics thus far all have a

particular spatial scope, with degree centrality a function of local structure

and the rest a function of structure of the entire network. As a final metric,

it is desirable to have a statistic that can be tuned to reflect structure on

intermediate scales. (v): We thus introduce the k-neighborhood- the number
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of other nodes that are within a geodesic distance k from the focal node. The

degree centrality is the size of the k-neighborhood when k = 1.

As measures of global position of a node in the network, we favored mea-

sures of closeness centrality over betweenness centrality (Scott, 2000; Wasser-

man and Faust, 1994). Betweenness centrality considers how often a node

is traversed on either shortest paths or random walks between other nodes,

which are important in cases where one may need to identify key connecters

in networks of information flow. To understand why we would favor closeness

centrality, consider a node that is near the geographical center of the network

but is on a cul-de-sac. Such a node would have short path lengths to many

other nodes -a high closeness centrality- but would never be intermediate on

paths between another pair of nodes. Thus the node would have the lowest

possible betweenness score, the same betweenness as a truly peripheral node

in the most isolated regions of the network. This makes it a non-ideal measure

of the topological position only with regards to the processes of interest in this

paper. Here we seek to understand how the global position in the network,

which should differ between a cul-de-sac near the center of the network and a

cul-de-sac in a peripheral region, affects diversity.

The centrality measures were calculated on the adjacency matrix. De-

gree centrality is simply the number of edges connected to a node. Closeness

centrality is generally a measure of the position of a node relative to the rest

of the network, usually calculated as the average distance between a node and

all other nodes. We calculate two variants of closeness centrality based on
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two measures of network distance (Scott, 2000; Wasserman and Faust, 1994).

Geodesic closeness centrality is based on geodesic distance, which is simply the

shortest path length between any two nodes. Resistance closeness centrality

uses resistance distance in the place of geodesic distance. Resistance distance is

a measure based on circuit theory, which accounts for multiple paths between

any two nodes (McRae, 2006; McRae et al., 2008). The difference between

the two is that geodesic distance is only determined by the shortest path,

while resistance distance is shortened when there are multiple paths between

two nodes. Resistance distance and geodesic distance are equivalent for tree-

like graphs, such as the dendritic network used in the is paper. We found

geodesic distance (shortest path) between the node and all other nodes, us-

ing Dijkstras algorithm, and resistance distance with the method described

by Mcrae (McRae, 2006). The closeness measure for node i was then simply

the inverse of the mean distance between i and all j, using either distance

metric. Eigenvector centrality is the eigenvector associated with the largest

eigenvalue of the adjacency matrix, and essentially ranks nodes not only by

their immediate connections but the degree of those connections. The size of

the k-neighborhood of node i is the number of nodes within a geodesic distance

k of the focal node.

2.3.2 Network Construction

We built two networks with complex spatial structure, one with a tree

like, dendritic topology (figure 2.1) and one with modular structure (figure
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2.2). As the focus of our paper is how the position of a node in a metacom-

munity affects diversity, we avoided networks that had overly symmetric or

entirely random topologies, as in both of those cases, node position tends to

be similar across the network. The dendritic network was assembled by ran-

domly connecting nodes, but with the constraints that the 200 node network

should have 199 bidirectional edges, and it should be one connected com-

ponent. The modular network was created by generating subnetworks with

random topologies, then haphazardly connecting those. The property we call

modular is sometimes called community structure (Girvan and Newman, 2002)

in the network literature, but to avoid confusion with the concept of biological

community structure, we use the “modular” label.

2.3.3 Neutral Diversity Theory:

The neutral model we examine here is a simple neutral model that

assumes a constant metacommunity and local community size. In each gen-

eration, an individual is drawn randomly from a parent the same community

with probability mii, from another node j with probability mij, and is a new

species with probability v. We refer to v as the speciation rate, but it also

could represent immigration from a large source pool. The set of all mij, is the

migration matrix M, and describes the structure of the metacommunity. For

the purposes of this paper, all migration rates (edges) in the metacommunity

are set to the same value and all community sizes Ni are equal.

We used the quantitative method developed in a previous paper (Economo
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and Keitt, 2008), for calculating expected neutral diversity in a network of

communities under these assumptions. The method adapts equations orig-

inally developed from neutral population genetics theory. The quantity we

wish to calculate is the probability of identity fij of two individuals chosen

from communities i and j. This probability can then be converted to diversity

statistics such as Simpsons index of diversity 1− fii (Simpson, 1949). In this

paper, our measure of alpha-diversity is the Simpson concentration (fii) con-

verted to an effective species richness, f−1
ii that does not converge as diversity

becomes large (this is also sometimes called Simpson’s index or Simpson’s re-

ciprocal index) (Hill, 1973). Probability of identity can be calculated with the

following recursive equation (Economo and Keitt, 2008),

fij = (1− v)2

[ ∑
k,l,k 6=l

mikmjlfkl +
∑
k

mikmjk(1−
1

Nk

)(fkk) +
∑
k

mikmjk(
1

Nk

)

]

Two sampled individuals are the same type if neither has speciated

since the previous generation (the first term), and i) they were from parents

of the same type from different patches (the first summation) or ii) they were

from different parents of the same type located in the same patch (second

summation), or iii) they had the same parent (coalesced) in the previous gen-

eration (third summation). For a network of n nodes, there are n2 (i,j) pairs,

and thus n2 linear equations in this form describe the system at equilibrium.

Since there are n2 unknowns in n2 equations, the system can be solved for the

vector ~f of all fij. For the analyses in this paper, we coded the left side of
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equation 4 as a n2 × n2 matrix X, and the right side as a vector ~q of length

n2, where:

X(ij),(kl) = (1− v)−2δ(ij),(kl) −mikmjl + δk,lmikmjk(
1

Nk

)

and

q(ij) =
∑
k

mikmjk(
1

Nk

).

The formula X ~f = ~q can then be solved for the vector ~f of probability of

identities.

Results

Figure 2.1a-b represents the degree and geodesic closeness centrality

on the dendritic network, and Figure 2.2 plots resistance closeness centrality

and degree centrality on the modular network. Notice that degree centrality

is dependent on the local neighborhood of a node, while geodesic closeness

integrates the position of the node in the entire metacommunity. Similar plots

for both networks and all centrality statistics are presented in Supplemental

Figure 2.1.

Figure 2.1b-d plots alpha diversity of each node at different rates of

migration. As migration rate increases, alpha diversity increases for all nodes

at the expense of beta diversity, as was demonstrated in a previous analysis

(Economo and Keitt, 2008). In each panel, color variation was normalized to
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the most diverse community. This allows us to visually examine the variation

in diversity across the network and across parameter values, which are pre-

sented in both Figure 2.1c-f and Supplemental Figure 2.2. When dispersal is

low, (Figure 2.1c), it is apparent that node diversity (color) is only a func-

tion of the local connectivity, nodes near the center of the network, but only

connected to one other node, have a similar diversity to a node that has one

connection but is on the periphery of the node. The diversity pattern closely

resembles the pattern created by degree centrality (figure 2.1a). As migration

is increased by an order of magnitude (figure 2.1d), the most diverse nodes are

now not simply those with high degree, but those occurring at a confluence of

branches, making them within a few steps of a larger number of nodes than

those near the periphery. As migration is increased further (figure 2.1e), the

most diverse nodes are those that connect large branches, or major divisions

in the spatial structure of the metacommunity. Finally, when migration is

highest, the most diverse nodes are those most central to the entire metacom-

munity.

We examined the correlations of network centrality measures with node

position, which should quantify the transition observed in the visual patterns

of Figure 2.1. In Figure 2.3, the alpha diversity of each node in the dendritic

and modular networks, is plotted as a function of three different measures of

node centrality and four different migration rates. For resistance closeness

centrality (Fig. 2.3a,d), which integrates the position of the node in the entire

network, correlations with alpha diversity are stronger when migration rates
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are high, and lower when migration rates are low. Degree centrality (Fig.

2.3b,d), a local measure, is strongly correlated at low migration rates but

increasingly becomes less correlated at higher migration rates. Eigenvector

centrality is relatively weakly correlated with diversity at any migration rate.

This appears to be because eigenvector centrality picks out the most highly

connected cluster and assigns nodes within it a higher score than even nodes

that have similar connectivity in another section of the network.

These correlations are presented in Figure 2.4, showing the tradeoffs of

local vs. network wide controls on alpha diversity. The centrality metrics are

not uncorrelated with each other, having a high degree also decreases distance

to other regions of the network (particularly in relatively small networks such

as these).

At extremes of low and high migration, which can be seen in supple-

mental figure 2.2, alpha diversity is nearly constant across the metacommunity.

This is because each node becomes an independent community (when migra-

tion is low) or the metacommunity is effectively panmictic (at high migration).

At high migration rates, the metacommunity approaches panmixia, and spa-

tial position of a node has little effect on diversity patterns- alpha diversity

is constant across the metacommunity. At the other extreme, when migra-

tion is very restricted, each individual node becomes a unique community, and

again alpha diversity is basically constant across the metacommunity. Varia-

tion in alpha diversity, a proxy for the complexity of spatial pattern, peaks at

intermediate migration (figures 2.4c,d).
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It is clear in figure 2.4c–d, that this variation peak shifts at different

speciation rates. This implies that, given a physical landscape structure, there

is a particular combination of migration and speciation rates that produces

complex spatial variation in alpha diversity. Or, put another way, for a given

taxonomic group with certain propensities for dispersal and evolution, they

will form complex biodiversity patterns and respond to geographic features

only when there is landscape structure on a particular spatial scale.

Degree and closeness centrality measure node position relative to the

local and global structure of the network, respectively, with each predicting

alpha diversity when migration is high or low. We use the size of the k-

neighborhood as a metric that measures spatial structure as scale is increased.

This metric is the number of unique nodes within k steps of the focal node (de-

gree centrality is k-neighborhood when k = 1. Figure 2.5 plots the correlation

of alpha diversity with the size of the k-neighborhood. When migration is low,

k = 1 has the most predictive power, while as migration increases, the value

of k, which is a surrogate for spatial scale, increases as migration increases.

2.4 Discussion

These results illustrate both the promise and challenges for a network

concept of isolation in metacommunities. The centrality measures capture

different aspects of network structure, all of which are likely relevant to meta-

community dynamics and should be useful for a wide range of studies. In

the neutral scenario considered here, the general idea that more isolated areas
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have depressed diversity in a neutral metacommunity is supported. However,

it is clear that no single quantitative definition of isolation universally predicts

this variation. Rather, isolation predicts diversity only when measured on a

critical scale in the network, which is scaled by the relative rates of dispersal

and evolution. When migration is more restricted, isolation depresses diver-

sity only when calculated locally. As migration increases relative to speciation,

isolation best predicts diversity when calculated at successively greater scales

in the network.

This implies that for a given taxonomic group with particular propen-

sities for dispersal and speciation, correlations between isolation and alpha

diversity should only be observed at certain spatial scales. This may explain

why the isolation component of the island biogeography effect, which is usu-

ally arbitrarily defined as a distance to another land mass, is only sometimes

observed. In general, more dispersive groups should show a correlation be-

tween isolation and alpha diversity on greater spatial scales. For example,

the fine scale arrangement of islands in an archipelago would have little ef-

fect on diversity variation in a highly dispersive group. For a more sedentary

group, diversity levels on an island would be more driven by the position of the

archipelago in a broader network of archipelagoes rather than isolation within

the archipelago. More generally, for complex biodiversity patterns to form in

a landscape due to neutral processes, the geography must have structure on

this critical scale.

These results have relevance to several other well-known biogeographic
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phenomena. Geometric effects on diversity patterns have been much discussed.

These include the peninsular effect, which proposes a decrease in diversity to-

wards the terminal end of peninsulas. This is commonly explained by reduced

colonization rates due to the geometry of the underlying spatial template.

Neutral theory also predicts a peninsular effect, but only if migration and

speciation rates are in the right balance to reflect that geographic feature.

Mid-domain effects (Colwell and Lees, 2000) predict diversity to peak in the

middle of a domain, a pattern that is sometimes -but not always exhibited,

and explanations have been offered by a number of mechanisms including

stochastic neutral effects (Rangel and Diniz-Filho, 2005). This can be gener-

alized to a network, where a network-wide most central node takes the place

of geographic center of a domain. Our results suggest that the mid-domain

effect does not always hold under neutrality in a spatially complex landscape,

as migration becomes more restricted, regional spatial structure overrides the

broader metacommunity geometry, so mid-domain effects may be more local-

ized or not present at all. However, the basic conclusion that neutral theory

can cause mid-domain effects in some regions of parameter space is supported,

and also is in accord with results from population genetics (Wilkins and Wake-

ley, 2002).

These results also highlight how neutral processes can produce elevated

diversity in nodes that connect different regions of the network. In a dendritic

network (Fig. 2.1), for certain migration values, the nodes that connected two

branches had elevated diversity. These offer a neutral hypothesis for biogeo-
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graphic mixing zones (Spector, 2002), instead of an overlap in environments,

certain transitional areas may occur due to geometric effects, those patches

that connect disparate portions of the network will receive a mix of species

from the two areas.

Our understanding of ecological neutral theory is overall still influenced

largely by the behavior of spatially implicit models, but this spatially explicit

model provides different answers to some basic properties of neutral diversity

patterns. The migration parameter m, defined as the fraction of individuals

in a local community that originated in another patch, along with the lo-

cal community size Nk, are often considered to be the two main parameters

setting local diversity. The spatially explicit model considered here clearly

demonstrates that in many cases local diversity is set not by the number of

individuals migrating into that patch, but by its position in a larger neighbor-

hood of patches, or if migration is strong enough, the entire metacommunity.

This spatial diversity cascade occurs at regions of higher migration, the local

m value is swamped by the flow of diversity through the metacommunity.

2.4.1 A reverse-time perspective

Neutral dynamics can be viewed from equally valid forward or reverse-

time (coalescent (Kingman, 1982; Rosindell et al., 2008)) perspectives. In

this case of our results, some understanding can be gained by considering

the latter. Our model predicts diversity in terms of probability of identities,

the probability that two individuals randomly chosen will be the same type.
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Conceptually, we are tracing ancestry of two individuals backwards in time

and ask if they coalesce before either lineage has speciated. For the case of

alpha diversity, we choose two individuals from the same spatial location. This

depends on how quickly the two lineages move -via random walks- away from

each other in backwards time, because once they become spatially separated

they must again enter the same locality before they coalesce. Individuals

sampled from nodes that have few connections to other nodes (low degree),

or in a region of the network that is not highly connected to the rest of the

network, such as a peninsular chain of nodes, will more likely be found in

the localized region of the network at more distant times in the past, thus

have more opportunity to coalesce before speciation. Increasing migration

rate increases the spatial scale that the lineages are likely be found at any

time in the past, reducing overall the probability of coalescence (and thus

increasing alpha diversity) before speciation, but also making that diversity

dependent on the structure of the network in that neighborhood. Thus, at

very low migration rates, two lineages are likely to either coalesce or speciate

before leaving the node, making spatial location of the node relative to the

metacommunity irrelevant. At intermediate migration, lineages may travel

some distance before speciation, but will not reach distant portions of the

network, so the probability of coalescence is dependent on the structure of the

limited local neighborhood of the network. At high migration, the lineages

are more likely to explore distant regions of the networks before speciation or

coalescence, and so its position in the broader network becomes important.

51



Finally, when migration is very high relative to speciation, the time scale is so

long that the initial spatial position of the individuals becomes irrelevant for

the long term probability that the two will coalesce, and diversity is constant

across nodes.

2.4.2 Caveats and future directions

The speciation model used here assumes new species arise as a single

individual, with equal probability across all individuals. Thus diversity is con-

stantly being added to the metacommunity at all points equally, the patterns

are generated by the subsequent flow of that diversity. Note that aside from

speciation, this introduction of novelty could be interpreted as migration from

a distant, large, source pool. As a model of speciation, there are undoubt-

edly cases where this is reasonable, such as such as speciation by polyploidy

in plants. However, there are probably many cases where spatial structure

is important to the process of speciation itself. This implies an additional

complexity- speciation rates, not only migration, may depend on spatial loca-

tion. Future work, building upon recent neutral models (Etienne et al., 2007b;

Hubbell, 2005; Mouillot and Gaston, 2007), is needed to explore this issue and

will likely require a different mathematical approach.

The current analytical methods is limited to relatively small networks

(on the order of 200 nodes for sparse networks, much less for highly connected

networks on a normal personal computer). One reason for considering network

statistics, which can generally be computed easily on much larger networks, is
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that they may serve as a surrogate for predicting neutral diversity patterns.

We find that they do, but that their performance depends on the parameters of

the neutral model. It would be interesting if network statistics were developed

that could be used to roughly predict diversity patterns from topology, with

migration and speciation rates as parameters, without resorting to the full

analytical method.

Our results show that network structure is a strong determinant of

local diversity, and that network tools predict that relationship. This is an

important step towards a rigorous understanding of the connection between

isolation and biodiversity patterns in complex metacommunities. This study

also raises important questions about how metacommunity topology affects

diversity processes under different models of ecological dynamics than the one

considered here. Incorporating spatially explicit model structures into models,

which are more realistic depictions of natural landscapes, is likely to change

the outcomes of a wide range of metacommunity dynamics. The question is

not a trivial one as understanding the processes driving biodiversity pattern

is critical for designing effective strategies to maintain it.
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Figure 2.1: Visualization of centrality and diversity patterns in a
metacommunity with network structure. node degree (a) and closeness
centrality (b), and equilibrium alpha diversity at various migration rates (c-f),
across the dendritic network. For the latter, v = 10−5 and Nk = 200000.
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Figure 2.2: The modular network used in this paper with nodes
colored by degree centrality and resistance closeness centrality.
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Figure 2.3: Alpha diversity of local communities (nodes) plotted
as a function of three centrality metrics for the dendritic and mod-
ular networks, at different rates of migration. As migration rates increase,
network-scale centrality measures (resistance closeness) better predict diver-
sity, while smaller scale metrics (degree centrality) predicts diversity variation
better under restricted migration. Eigenvector centrality only weakly predicts
alpha diversity. Speciation rate and local community size were held constant,
v = 10−5, Nk = 200000.
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Figure 2.4: Performance of different centrality statistics across pa-
rameter values. Spearman rank correlation coefficients of node alpha di-
versity and network centrality metrics are plotted for the a) dendritic and b)
modular network. Variation in alpha diversity across the network, as mea-
sured by coefficient of variation, is presented in c-d. For a given speciation
rate, variation peaks at an intermediate migration rate. The black line reflects
a speciation rate of v = 10−5 corresponding to the correlations in a-b, the grey
dashed line is v = 10−6, and grey dotted line is v = 10−4. Thus, for a given
topology, variation in alpha diversity depends strongly on the relative rate of
speciation and migration.
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Figure 2.5: Performance of scale-specific centrality Spearman rank cor-
relation coefficient of alpha diversity and the size of the k−neighborhood at dif-
ferent migration rates and values of k. Larger k reflect structure on larger spa-
tial scales, and better predict diversity at higher migration rates. Speciation
rate and local community sizes were held constant, v = 0.00001, Nk = 200000.
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Chapter 3

Conservation strategies are ineffective when

dispersal drives biodiversity patterns

3.1 Abstract

Modern conservation strategies typically favor habitat units with unique

ecological communities, such as those with many endemics, over patches with

high similarity to other areas (Margules and Sarkar, 2007; Myers et al., 2000;

Possingham et al., 2000; Sarkar et al., 2006; Wilson et al., 2006, 2007). This

biodiversity pattern-based approach considers the local community in a given

patch and asks what would be lost from regional or global biodiversity if it

were degraded. Such methods generally do not account for possible secondary

biodiversity losses across the remaining habitat due to loss of the patch. I use

spatially explicit neutral theory (Economo and Keitt, 2008; Hubbell, 2001) to

investigate the connection between biodiversity patterns such as complemen-

tarity and similarity, and both primary and secondary diversity changes due

to habitat loss in metacommunities with complex network structure. Surpris-

ingly, losing different habitat units results in a near equivalent long-term loss of

biodiversity despite variation in perceived conservation value (complementar-

ity). This is because high connectivity nodes develop high similarity to other

communities and appear redundant, but are most important for maintaining
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diversity levels in other nodes. More generally, initial biodiversity representa-

tion in reserve networks overestimates their long-term diversity capacities due

to secondary loss. These results suggest that when spatial biodiversity pat-

terns are driven by dispersal limitation and not environmental heterogeneity,

a wide range of conservation concepts and applications are ineffective.

3.2 Introduction

Habitat loss is a widespread consequence of human activities and a

global threat to biodiversity (Dirzo and Raven, 2003; Pimm et al., 1995;

Rosenzweig, 1995, 2001; Vitousek et al., 1997; Whittaker et al., 2005). A

basic premise of conservation biology is that not all habitat units have equal

biological value; some are more important than others for maintaining total

biodiversity and thus more deserving of protection. Conservation planning tra-

ditionally uses biodiversity patterns to prioritize patches for protection, gener-

ally favoring patches that harbor biological uniqueness (high complementarity)

over those with high community similarity to other areas (Margules and Sarkar,

2007; Margules and Pressey, 2000; Myers et al., 2000; Possingham et al., 2000;

Wilson et al., 2007, 2006). With systematic reserve design, large proportions

of total biodiversity can often be represented small subsets of total area. This

approach often leads to a focus on small areas with many endemics and patch

sets with high complementarity at the expense of redundant communities in

larger, more homogeneous areas. In part for this reason, diverse areas with

low beta-diversity such as the Amazon basin are not considered conservation
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hotspots despite ongoing habitat contraction (Myers et al., 2000).

These biodiversity pattern-based approaches evaluate what biotic ele-

ments would be lost from the landscape if a given habitat unit is degraded,

but implicitly assume that biodiversity patterns across the remaining areas

persist at the initial state. However, removing a patch can cause a dynamic

response in the rest of the metacommunity and a secondary loss of biodiver-

sity (Cabeza, 2003; Hanski, 1999; Hubbell et al., 2008; Tilman et al., 1994;

Bierregaard et al., 1992). These possible effects on biodiversity persistence are

increasingly recognized in the conservation literature (Cowling et al., 2003;

Margules and Pressey, 2000; Sarkar et al., 2006; Cowling et al., 1999), but

their potential conflicts with pattern-based conservation strategies are poorly

understood.

Metacommunity theory suggests that spatial patterns of community

similarity and differentiation can arise due to environmental heterogeneity or

due to the structure of dispersal (connectivity) across the metacommunity

(Leibold et al., 2004; Economo and Keitt, 2008; Loreau and Mouquet, 1999).

When only properties of the local environment control local community struc-

ture, removing a patch should only result in the loss of biotic elements unique

to that patch, consistent with the assumptions of conservation planning. When

dispersal drives biodiversity patterns, however, removing a patch is more likely

to have cascading secondary effects on biodiversity persistence in the metacom-

munity. From a conservation perspective, a significant problem arises when

biodiversity patterns are unstable after habitat loss and in particular when
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these secondary effects are correlated with the metrics used for prioritization,

such as similarity and complementarity. Because variation in the connectivity

of a patch drives both variation in community structure and the contribution

of dispersal to other patches, there is reason to suspect that they are.

Here I use spatially explicit ecological neutral theory (Chave, 2004;

Condit et al., 2002; Economo and Keitt, 2008; Hubbell, 2001) to investigate

the efficacy of the pattern-based paradigm when spatial biodiversity patterns

are generated solely by the spatial structure of dispersal across a metacommu-

nity. Real metacommunities are likely to vary in the importance of dispersal

versus environmental sorting in driving pattern, but neutral theory serves an

important role in highlighting one extreme in the continuum (Alonso et al.,

2006; Leibold et al., 2004; Leibold and McPeek, 2006).

Following recent work (Muneepeerakul et al., 2007; Economo and Keitt,

2008; Muneepeerakul et al., 2008), local communities are represented as nodes

in a network (the metacommunity), connected by edges reflecting dispersal

of individuals. I use this process-based framework to evaluate biodiversity

loss in a metacommunity as habitat patches (nodes) are removed and the

system dynamically responds to a new equilibrium. The goal is to evaluate

the connections between the the structure of a local community and its long-

term value for maintaining biodiversity.

62



3.2.1 Diversity Loss in a Metacommunity

Consider the the initial gamma diversity of a metacommunity at neutral

equilibrium γ0, the initial gamma diversity of all patches except node i, γi, and

the gamma diversity of the metacommunity after i is removed and the rest of

the metacommunity relaxes to equilibrium γ′i (figure 3.1).

The initial, primary cost to gamma diversity of removing a patch i is

the complementarity, ci = γ0−γi. Complementarity measures the contribution

of one patch to metacommunity gamma diversity based on initial biodiversity

patterns. This quantity is the main focus of many biodiversity-based conser-

vation analyses as a measure of conservation value. After a patch is removed,

secondary biodiversity changes may occur in the remaining patches as the

metacommunity relaxes to a new equilibrium. These secondary losses, κi, can

be written as the difference between the pre- and post relaxation gamma di-

versity of the reduced metacommunity κi = γi − γ′i. The total, long-term

reduction in biodiversity Λi due to node removal is the sum of primary and

secondary effects Λi = ci + κi = γ0 − γ′i. The main concern of this paper is

the correlation of primary (ci) and secondary (ki) biodiversity loss and the

relationship between complementarity ci and total biodiversity loss Λi. If re-

moving nodes with a lower complementarity (ci) leads to greater secondary

loss (ki), such that ci becomes a poor predictor of ultimate diversity loss Λi,

then the logic of many conservation efforts is in question.
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3.3 Results

3.3.1 Single patch removals

A simple metacommunity network is depicted in figure 3.2a. The

metacommunity contains one large cluster of highly connected nodes and two

smaller, more isolated clusters. In this study, networks are constructed with

equal sized nodes for ease of comparison, but highly connected clusters of

nodes can be thought of as large habitat units. At initial equilibrium, com-

munities in the smaller clusters (nodes 1-4) have highest complementarity and

nodes in the large cluster are more redundant- they share many species with

other nearby nodes due to strong dispersal connections. In general, at neutral

equilibrium, more isolated nodes have reduced alpha diversity and increased

complementarity, while nodes that are highly connected to many others will

have high alpha diversity, but low complementarity, as the node is colonized

frequently but much of that diversity is shared across many other communities.
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Removing each node individually reveals a remarkable regularity- node

complementarity holds little information on the ultimate effect on diversity

after removal and relaxation (figure 3.2, b-c), in fact all node removals result

in a near-equivalent diversity loss. While removing nodes with high comple-

mentarity removes more uniqueness from that single patch than removing a

redundant node, removing the latter causes a greater reduction in alpha di-

versity across many other nodes (figure 3.2d). These effects compensate and

the diversity loss from node removal (Λi) is nearly constant.

To evaluate the generality of these results for larger and more com-

plex networks, and across parameter space, I examined the effects of node

removals in 49-node metacommunities with a variety of different network ge-

ometries (figure 3.3a-c) and rates of migration and speciation (figure 3.3d-l)

(see supplemental methods for more on network construction). These networks

all exhibit the same pattern, secondary effects compensate for complementar-

ity such that ultimate biodiversity loss is effectively constant across nodes.

The mismeasurement of biodiversity loss by biodiversity pattern is most pro-

nounced at higher migration rates, because nodes appear to be completely

redundant but in fact are not. Complementarity is not totally uncorrelated

with ultimate diversity loss, it often explains a difference of around 1-2 effec-

tive species, which could be important if the metacommunity diversity is very

low (see supplemental section). This magnitude of this effect, however, does

not scale with increasing diversity implying.
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3.3.2 Persistence in reserve networks

It may not be obvious how these secondary effects for single node re-

movals scale to situations involving many patches, which are typical for real-

world conservation problems. I thus consider how well initial diversity repre-

sentation predicts the long term diversity capacity of all 1022 subsets (indexed

by k) of the 10-node network (figure 3.2a), which serve as model reserves. The

secondary effects occur when the loss of habitat outside the reserve impacts

diversity persistence within the reserve. This time I calculate the diversity of

a subset γk when it is embedded within the initial metacommunity and then

after the rest of the metacommunity is removed and the communities in the

set relax to a new equilibrium γ′k . Subsets of nodes (of equal area) that have

a high complementarity will have a higher γk. Again, regardless of the initial

diversity in the reserve, the subset relaxes to an equilibrium diversity that is

only dependent on subset size (figure 3.3a-c). When migration is high, small

subsets of the metacommunity can represent nearly all of the gamma diversity

in the metacommunity, but subsets with disproportionately high representa-

tion simply have a greater secondary loss of diversity. Within reserves of a

given size, the connectivity of nodes may vary, and alpha and beta diversity

levels may vary, but long-term diversity capacity is essentially constant.

3.4 Discussion

In a neutral metacommunity, the secondary effects of habitat loss work

in direct opposition to the strategies of protecting unique communities and
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representing the most biodiversity in the smallest protected area. Communi-

ties with high connectivity to other patches develop high similarity and thus

appear to be redundant, but this apparent redundancy correlates with their

importance in maintaining diversity across other patches. More isolated nodes

have unique diversity within the patch, but removing them has a weaker ef-

fect on other nodes in the network. Small subsets of the metacommunity may

represent large proportions of total biodiversity, but those will have a greater

reduction of diversity after the rest of the habitat is lost. Thus, under these

conditions, the assumption that large areas with low beta-diversity can be

contracted with little cost to gamma diversity is flawed. This also implies that

the empirical form of the species area curve S ∝ Az (with typically z < 1)

(Rosenzweig, 1995) describing current diversity patterns is a dubious predic-

tor of biodiversity responses to area contraction, for example in future climate

change scenarios (Thomas et al., 2004). Instead, equilibrium gamma diversity

scales linearly with area S ∝ A1, a more rapid decrease of diversity with area.

The secondary loss of diversity may not occur quickly after habitat

fragmentation, with the relevant time scales depending on parameters such

as speciation rates and community sizes. This implies that there could be a

significant extinction debt (Tilman et al., 1994) looming in already fragmented

areas such as conservation hotspots (Myers et al., 2000), although diversity

reduces in this case because of increased extinction and a loss of speciation rate

(Rosenzweig, 2001). Likewise, if time scales of habitat change are faster than

the community can reach equilibrium, conservation strategies must consider
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transient dynamics in addition to equilibria.

These results challenge some of the most fundamental and widely used

concepts in conservation biology, but it certainly does not follow that comple-

mentarity based approaches should be abandoned or that neutral theory should

be used for conservation planning. If beta-diversity in a landscape is due to

environmental sorting and not dispersal limitation, ignoring complementarity

would be extremely misguided. However, if neutral theory reflects one ex-

treme in a continuum of possible metacommunity dynamics, many conserva-

tion analyses implicitly assume another extreme in which community structure

is determined entirely by intrinsic properties of a locality.

This analysis suggests that when dispersal processes drive spatial pat-

terns, biodiversity may be in much greater peril than is currently recognized.

An urgent task for ecological theory is to link observable biodiversity patterns

to the biological dynamics generating them, and use that light to reconcile our

conservation strategies with community processes.

3.5 Methods

Here I use an analytic network model of neutral metacommunity diver-

sity that was presented in a previous paper (Economo and Keitt, 2008) and

discussed in detail in the supplemental methods. It assumes i): Community

dynamics proceeds through zero-sum drift of ecologically equivalent species

with. ii) New species arise through point speciation with probability v, which

can also be interpreted as migration from a distant, large source pool. iii)
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The structure of migration across the metacommunity is set by a migration

matrix, and the network is symmetric (dispersal strength is equivalent in both

directions between a pair of communities, asymmetric migration is considered

in a supplemental section).

The basic procedure for the analyses was to set an initial metacom-

munity structure and let diversity patterns be predicted by the model. The

complementarity was calculated from this initial pattern (see text). Then, one

or more nodes were removed and the model was used to find a new equilibrium

diversity across the metacommunity. For the figures presented in this paper,

speciation rate (v=0.0001) and local community size (200000 individuals) were

held constant, although other parameter combinations were considered in the

supplemental sections.

The diversity values are presented in effective species numbers. Fur-

ther details on the model, diversity statistics, and network construction are

presented are presented in a supplemental methods section.
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Figure 3.1: Effects of habitat loss on biodiversity in a model meta-
community. a) A simple, 10-node metacommunity with three clusters, with
the smaller clusters having lower connectivity and higher complementarity. b)
Each node was removed and the initial diversity loss (complementarity (ci))
is plotted against long-term diversity loss (Λi) after reduction and relaxation
to a new equilibrium with biodiversity is in effective species numbers and
m=0.0001. Λi is nearly invariant because of a trade-off in its components-
primary ci and secondary ki biodiversity loss. This trade-off occurs because
removing nodes from the large clusters (low ci) results in a greater decrease in
alpha diversity across other nodes ki, which are depicted in c) with the color
reflecting the diversity change in the node numbered on the y-axis when the
node on the x axis is removed.
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Figure 3.2: Biodiversity impacts of node removals in complex net-
works with different topologies (a-c) and variable edge weights (see supple-
mental methods). Migration increases by factors of 10 from black to blue
to brown (points with different colors are from different metacommunities).
While there may be a good deal of variation in community complementarity,
there is very little variation in the effects of removing a community on long
term biodiversity loss. Similar plots with more parameter combinations are
presented in a supplemental section.
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Figure 3.3: Biodiversity representation and persistence in reserves
of different sizes. Initial diversity representation (gray dots) and diversity
capacity at the new equilibrium (black dots) of all 1022 possible subsets of
the 10 node metacommunities in figure 3.2a, measured in effective number
of species, plotted as a function of the number of nodes in the reserve with
migration rates increasing by an order of magnitude from a to b and from b to
c. Diversity capacity is only a function of reserve area and not initial diversity
representation- the black dots for a given area are superimposed on each other.
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Chapter 4

The role of connectivity in geographic

diversification

4.1 Abstract

The pace of speciation emerges from both the rate of genetic diver-

gence of subpopulations and the rate of formation of such subpopulations.

These rates are tied to the ecological processes of dispersal and colonization,

and the evolutionary processes of gene flow and differentiation, all of which are

a function of the flow of individuals across a landscape- the geographic connec-

tivity. Evolutionary divergence rates and colonization rates are hypothesized

to both be correlated with connectivity, but in opposite directions, implying

the kinetics of the colonization-speciation cycle are maximized at an interme-

diate connectivity. Connectivity is a function of both life history attributes

such as the vagility of a species, and the physical structure of the landscape-

the sizes and arrangement of habitat patches. We investigate how both species

vagility and landscape structure contribute to speciation rate in model island

networks. Speciation rate peaks where the vagility of the species and the phys-

ical isolation of patches results in islands being accessible to colonization, but

isolated enough to allow evolutionary divergence. This implies for groups with

different vagilities, these speciation hotspots will occur in different components
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of a landscape, or in different entire geographic regions. This mechanism sug-

gests a hypothesis for differences in macroevolutionary rates among clades and

areas, and why certain groups diversify rapidly in a geographic region while

remaining depauperate in others.

4.2 Introduction

Biodiversity is distributed unevenly in geographic space and across the

tree of life. These patterns are generated in part by variation in macroevo-

lutionary rates (Brown, 1995; Hubbell, 2001; Rosenzweig, 1995). The rate of

speciation has been connected to many factors from the body sizes of individ-

uals (Brown, 1995) to the strength of sexual selection (Panhuis et al., 2001), to

geographic factors such as range size (Jablonski and Roy, 2003; Rosenzweig,

1995, 2001; Vermeij, 1987) or latitude (Gillooly and Allen, 2007; Mittelbach

et al., 2007). When speciation has a spatial component, speciation rate is in

part a function of the population structure of a species across its range as

the development of genetically and geographically distinct subpopulations is a

common route to the evolution of reproductive incompatibilities (Coyne and

Orr, 2004; Mayr, 1942). Population structure emerges from the interaction of

organismal life histories, such as dispersal ability, with attributes of the phys-

ical landscape, the area and isolation of habitat patches. As life history and

geographic structure are highly variable among taxa and regions, there may

be poorly understood geographic and life history factors driving variation in

macroevolutionary rates.
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The interactions between the ecological processes of dispersal and colo-

nization, the spatial structure of geographic areas, and evolutionary processes

of divergence in determining speciation rate have not been well explored. Pre-

vious work has suggested that, at least for some groups, less vagile species have

higher rates of speciation as low rates of migration among subpopulations leads

to genetic differentiation and speciation (Jablonski and Lutz, 1983). However,

vagile species more readily jump barriers and colonize distant, isolated areas,

which can lead to speciation. With regards to the physical structure of a

landscape, regions with many isolated patches separated by distance or other

intervening barriers may promote genetic differentiation and speciation. On

the other hand, isolated geographic units may take long time intervals for a

species to colonize, which would depress the rate of speciation. These com-

plexities suggest a nuanced relationship between both vagility and geographic

structure with speciation rate.

Here we collect these ideas and refocus them around the concept of

connectivity, a theoretical keystone of landscape (Brooks, 2003; Taylor et al.,

1993), metapopulation (Hanski, 1999), and metacommunity ecology (Leibold

et al., 2004). Connectivity generally refers to the flux of individuals among

geographic units or across a landscape. It emerges as the properties of a

species, such as ecological densities, propensities for dispersal, and habitat

affinities, interact with the physical structure of a landscape- the size and

arrangement of habitat patches (Brooks, 2003). We ask how connectivity, and

its biological and physical components, affects the speciation rate of a clade
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in a structured landscape.

Most speciation theory considers the genetic, ecological, or geographic

factors that promote the evolution of reproductive isolation among subpop-

ulations (Coyne and Orr, 2004; Gavrilets, 1997, 2004; Schluter, 2000). For

example, those species undergoing strong sexual selection may be expected to

speciate faster than those that are not, all else equal (Panhuis et al., 2001).

Other studies have focused on the effects of different models of population

structure on the rate of speciation (Orr and Orr, 1996). It is important to

note that this rate refers to how fast subpopulations diverge in a given spatial

configuration. The true speciation rate depends on other hidden dynamics, the

spatial population processes generating the subpopulations in patches with a

given degree of isolation. How this second component, waiting for allopatry,

contributes to speciation rate is far less understood (Wiens, 2004).

This is especially relevant because after geographic speciation, the two

daughter species have more spatially restricted distributions than the origi-

nal parent species, and may need to form new subpopulations before another

speciation event. Dispersal across barriers into unoccupied geographic units

is one mechanism by which a species forms allopatric or near allopatric sub-

populations, a route to speciation (Mayr, 1942). Colonization rates correlate

with connectivity, a basic premise of island biogeography and metapopula-

tion theory (Hanski, 1999; MacArthur and Wilson, 1967; Hanski and Gilpin,

1998). Thus, while increased connectivity may promote gene flow and inhibit

the evolution of reproductive isolation among given subpopulations, connec-
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tivity also promotes the colonization of novel areas and the establishment of

subpopulations isolated enough for divergence to occur.

This suggests a tradeoff. Both colonization and evolutionary divergence

rates are correlated with connectivity, but in opposite directions. As we shall

see, elementary assumptions about the quantitative form of those relationships

lead to the conclusion that the colonization-speciation cycle, and the speciation

rate, is maximized at intermediate levels of connectivity. We investigate how

the biological (life history) and physical (geographic structure) components of

connectivity contribute to this rate.

Natural landscapes have a diverse array of physical structures. We fo-

cus our attention on archipelagoes of discrete habitat patches, where patches

are internally homogenous with respect to habitat type, an idealization com-

monly used in metapopulation theory. This provides a natural spatial scale

of speciation: the population of a single patch. We analyze speciation and

colonization dynamics with three spatial models, a deterministic model of a

simple landscape of two identical islands, a ring of islands with variable dis-

tances among them, and a complex network of islands.

4.3 Connectivity and Speciation Rate on Two Islands

A minimal structured landscape is an archipelago of two identical is-

lands. A species inhabiting this landscape can either be found in both islands

(BOTH), or in one island but not the other (ONE). Colonization (C) trans-

forms ranges from ONE to BOTH, and speciation (G) transforms one BOTH

77



into two ONE species. 2G is the speciation rate of a species occupying both

islands, but the true speciation rate (the focus of this paper) depends also on

how fast a species first becomes widespread. For clarity, we refer to the spe-

ciation rate of a given subpopulation as the evolutionary divergence rate, and

the overall speciation rate (integrating over all subpopulations) as speciation

rate. Extinction (E) both transforms one BOTH into one ONE, and removes

a localized ONE from the system entirely. The dynamics of species number in

the system can be represented by the pair of differential equations,

dSONE
dt

= −(C + E)SONE + (4G+ 2E)SBOTH (4.1)

dSBOTH
dt

= CSONE − (2G+ 2E)SBOTH (4.2)

which is a deterministic approximation to the stochastic system. E, G,

and C are per population rates.

Depending on the biology involved, one might expect several nonlin-

earities to arise in this situation. For example per capita extinction rates (E)

may increase with increasing species number if the new species interact neg-

atively, or may be constant if new species have diverged sufficiently to avoid

each other ecologically. Other nonlinearities have been proposed, such as a

positive association between divergence rate (G) and species number (Emer-

son and Kolm, 2005) or extinction rate and speciation rate (Allmon et al.,

2001), among others, but those will not be considered here. If E, C, and G

78



are constant per capita rates, the system is linear and it is this rate of expo-

nential increase or decrease of species number that is our primary concern. If

per species extinction rates increase with species number, then the system will

reach an equilibrium species richness. We focus here on the speciation rate of

an exponentially increasing clade, but the effects of connectivity are similar if

extinction is increasing, only for equilibrium diversity instead of rate of overall

species increase.

We are primarily concerned with the dynamic interaction of coloniza-

tion and speciation, and so for purposes of simplicity assume extinction is at

some constant and negligible level (E << C,G). In this case there is a positive

eigenvalue describing the rate of species increase.

λ =
−C − 2G+

√
16GC + (−2G+ C)2

2
(4.3)

We are now ready to evaluate the effects of connectivity on specia-

tion rate. Connectivity describes the rate in which individuals move among

the patches. Both colonization and divergence rate can be expected to be a

function of connectivity, but in opposite directions. Colonization, because the

higher the rate of individual dispersal into an empty patch, the greater the

likelihood a new viable population will be established. Evolutionary diver-

gence, because the greater the gene flow among two populations, the lesser

the likelihood reproductive isolation will evolve. In general, for species with

different life histories and different assumptions about the genetics of specia-

tion, these functions could take a variety of forms. Our inference only depends
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on speciation being an overall decreasing and colonization an increasing func-

tion of connectivity. Divergence rate should be near a maximum when patches

are completely isolated, and converge to zero as connectivity becomes high.

In certain models small amounts of migration have been shown to accelerate

speciation (Church et al., 2002) which implies divergence rate may peak at

a nonzero connectivity, but the overall tendency should still be a decrease to

zero as connectivity gets large. Colonization rate is zero when connectivity

is zero, and increases to a very high level when connectivity is high. Figure

4.1a-d plots a variety of possible functional forms describing the relationship

between divergence and colonization with connectivity, including exponential

(a,d), threshold (b), and linear (c). These functionals can be inserted into

equation 2 to extract the relationship between connectivity and overall speci-

ation rate (Fig. 4.1e-f), where the integrated speciation rate G is represented

by the eigenvalue (λ) controlling the rate of increase in species numbers.

When connectivity is high, colonization of empty patches occurs rapidly,

but divergence is hampered by gene flow, and the result is a widespread

cohesive population, and low speciation rates. When connectivity is low,

widespread (BOTH) species will speciate and faunas will differentiate among

the patches, but colonization is slow to form new isolates and continue the

cycle. At some intermediate connectivity, gene flow is weak enough to al-

low divergence, but after speciation the spatially restricted daughter species

can reinvade other patches, and the speciation rate is maximized. The detail

of the shapes and magnitudes of the curves, and other such features will be
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dependent on the assumed functional forms and the magnitudes of their pa-

rameters. Many biological processes contribute in uncertain ways to the forms

and magnitudes of the curves depicted in figure 4.1, and the curves are difficult

or impossible to measure directly. Thus, like much biogeographic theory, our

conclusions must follow from only very general assumptions about the mathe-

matical form of the curves. But constraining the functions to our assumptions,

there is always a peaked relationship with speciation rate and connectivity.

Spatial population processes, such as colonization and gene flow, emerge

from the interaction of the biological properties of a species, such as habitat

affinities, ecological densities, and propensity for dispersal, and the physi-

cal characteristics of a landscape, -areas and spatial arrangements of habitat

patches. Thus, connectivity is a function of both the physical structure of a

landscape and the vagility of the species (Brooks, 2003). A given level of con-

nectivity emerges at a particular combination of species vagility and landscape

structure. As connectivity drives the kinetics of the colonization-speciation cy-

cle, this implies the speciation rate of lineages varying in vagility will respond

differently to a landscape or component of a landscape. In the next section

we break connectivity into its physical and biological components and explore

how these dynamics emerge in more complicated landscapes.

4.4 Speciation in a Network of Islands

The dynamics among two patches can be extended to a landscape with

many islands. Connectivity can be modeled as a simple function of distance

81



and a parameter describing the dispersal flux of individuals. Many such models

could be applied given different biological and physical assumptions, but we

use a simple function for connectivity (K) between two patches i and j,

Kij = αAiAje
−dij/α (4.4)

In this model, areas are represented by Ai and Aj, but for simplicity

here we assume equal areas and set Ai = Aj = 1. In biological terms, Kij can

be thought of as the rate in which individuals of a given species move from

one patch to another. The distance between islands is given by d, while ? is

the biological parameter representing vagility. In this formulation, increasing ?

increases both the total rate of dispersal and the average distance of dispersal

(α). Connectivity of a given patch is simply the summation of contributions

of all other nodes

Ki =
∑
j 6=i

αAiAje
dij/α (4.5)

At any given time, there may not be a population in each patch, so

the summation is simply taken over all patches with a population of the focal

species, (6) where Pj = 1 if there is a population of the focal species in patch j

and 0 if there is not. dij can be variable in the landscape and ? can be tuned

as a biological parameter. This is overall quite similar to how connectivity

is quantitatively represented in metapopulation theory (Hanski and Gilpin,

1998). Both speciation rates and colonization rates will be a function of this

82



connectivity measure, and the function could take other forms not presented

here.

We model the processes of colonization and speciation in a patch net-

work by assuming those events occur as Poisson processes, the rates of which

are functions of connectivity. For each patch that does not have a population

of a given species, a colonization rate is calculated, repeated across all species.

For all the populations of each species, the divergence rates are also calcu-

lated. Here we use a converging exponential function of divergence rate with

connectivity (fig 4.1a),

Gj = Gmaxe
−γKi (4.6)

where Gmax is the divergence rate under total allopatry, and γ is a parameter.

Colonization rate is modeled as a linear function of connectivity (fig 4.1c),

Ci = φK (4.7)

where φ is a parameter. These Poisson processes can be modeled transparently

with stochastic simulation, see methods for implementation.

Using this approach we can both investigate the overall rate of specia-

tion of the clade in a landscape, and the rate at various specific points in the

landscape. As a first analysis, we choose a landscape with regular structure

and periodic boundary conditions, a ring. Each node is connected to two other

nodes, but distances among nodes vary regularly from a minimum to a maxi-

mum. In other words, there is a gradient in distances and thus connectivities

in the ring.
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With this model landscape, we can investigate the macroevolutionary

dynamics of clades with different dispersal rates on the same landscape by tun-

ing the vagility parameterα. It is important to note that per population diver-

gence rates (G) will always be highest in the least connected islands, because

connectivity is lowest, and divergence will be lowest in the most connected

nodes. But due of the influence of colonization, overall speciation rates may

be highest at any region of the landscape, dependent on the vagility parameter

α. Fig. 4.2 plots speciation rate for a variety of vagilities. Overall, speciation

rate in the landscape is dependent on vagility (Fig. 4.2c), and furthermore

the regions of the landscape where speciation proceeds most rapidly change

from the most to least connected areas as species become more dispersive (Fig

4.2b). Speciation happens most rapidly where there is an appropriate match

between life history and the landscape, where patches are accessible enough

to be colonized but not so connected that divergence is inhibited.

We can now examine how this emerges on a more realistic model of

landscape structure; an array of patches distributed irregularly in space. In

this case, each pair of islands is connected by dispersal, but distance determines

the strengths of those connections through equation 5. We randomly generate

a landscape (see methods), with patches distributed exponentially around a

density center. Certain patches that are close to many others will have higher

connectivity, and higher colonization and lower divergence rates.

As we increase species vagility, we again see the centers of speciation

moving from the high density to low density areas (Fig 4.3a). When vagility
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is very low, colonization events are rare and usually followed comparatively

quickly by a speciation event. Overall speciation rate of the clade is thus col-

onization limited and proceeds mostly in the most patch-dense areas of the

landscape (Fig. 4.3b). As vagility is increased, connectivity increases and ap-

proaches the optimal point in the tradeoff, where patches are connected enough

to be accessible to species in the network, but not so connected as to inhibit

the evolution of reproductive isolation once colonized. Eventually vagility in-

creases to the point where the central areas become too connected, and while

they accumulate most of the species in the system, connectivity is too high to

allow divergence and speciation. The speciation hotspots thus move succes-

sively towards the peripheral areas of the network, until connectivity is so high

that a species quickly colonizes the whole network but cannot diverge enough

to evolve reproductive isolation, and speciation rate is divergence limited.

4.5 Discussion

On the connectivity axis, the dynamics of all three models broke down

into three zones. At high connectivity, species quickly fill the landscape with

subpopulations, but divergence rates are low and limit speciation. In the simu-

lations, species moved relatively quickly through these more highly connected

areas of the patch network until reaching regions that were connected enough

to colonize but isolated enough to allow speciation, where speciation was con-

centrated. This diversification zone, at intermediate connectivity, maximized

the tradeoff between colonization of new patches and evolutionary divergence.
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At yet lower levels of connectivity, any species in multiple patches would spe-

ciate, but took long time intervals to subsequently colonize other patches and

thus speciation rate was colonization limited.

As connectivity has biological and physical components, this implies a

novel hypothesis for speciation rate. Speciation rate is maximized when there

is a match between species vagility and specific landscape features, resulting in

an intermediate, optimal connectivity, and a maximization of the speciation-

colonization cycle. This implies that certain geographic features -a few islands

of an archipelago or mountains of a range- may be speciation hotspots for

a given group. Likewise, whole regions where physical structure provides a

match with the vagility of a group will promote diversification, while others

remain depauperate. This provides insight into the enigmatic relationship

between dispersal and speciation rate, its not vagility per se that matters, but

how vagility interacts with the physical structure of a landscape.

These results are dependent on only minimal assumptions about the

form of the relationship between colonization, divergence, and connectivity,

but do not imply that this mode of speciation will be most important or

even important in any given clade-landscape. Even under ideal connectivities,

this speciation-colonization cycle may be slow enough -due to the forms and

magnitudes of the colonization and divergence curves- that underlying land-

scape changes (vicariant processes) are more important for creating allopatric

populations. Or, a landscape simply may not contain elements with suitable

connectivity for a given clade. For example, a group may freely move among
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habitat patches on a continent, but be unable to cross water barriers. In this

case, there are areas of very high connectivity (on the continent), and areas

of low connectivity (the continent with other geographic areas), but no in-

termediate connectivity and no speciation hotspots. Clearly many types of

speciation may be important to the branching of the tree of life, but modeling

speciation by dispersal gives a quantitative way to organize these processes

theoretically and understand when speciation by vicariance versus dispersal

will dominate.

The current theory took a minimalist approach in its treatment of the

process of geographic speciation. This was intentional in order to make a trans-

parent first analysis of the nexus of speciation, colonization, and connectivity.

A promising future direction would be to integrate mechanistic models of spe-

ciation based on more complicated genetic models (Gavrilets et al., 2000; Kon-

drashov and Morgan, 2003; Orr, 1995; Orr and Orr, 1996). Integrating dynam-

ics such as genetic snowball effects (Orr, 1995), phenotypic evolution and se-

lection (Garcia-Ramos and Kirkpatrick, 1997; Kirkpatrick and Barton, 1997),

metapopulation dynamics (Barton and Whitlock, 1997; Hanski and Gilpin,

1998; Hastings and Harrison, 1994), and the evolution of vagility(Dieckmann

et al., 1999; Johnson and Gaines, 1990) would all be relevant extensions of the

present model. Furthermore, combining spatially explicit speciation theory

with more sophisticated representations of spatial complexity, such as network

approaches (Economo and Keitt, 2008; Urban and Keitt, 2001), would be an

interesting synthesis.
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A basic concept of biogeography is that patch isolation depresses diver-

sity due to reduced colonization rates (Hubbell, 2001; MacArthur and Wilson,

1967). Our results suggest integrating the process of speciation into such mod-

els complicates this conclusion; some degree of isolation may promote specia-

tion and diversification. But speciation is only half of the macroevolutionary

equation. The diversity of clades and areas is driven by both speciation and

extinction rates. It is thus necessary to include extinction in any predictive

model of diversity patterns- even if species are generated mostly in one area,

they may accumulate fastest in another. Indeed, high connectivity areas, while

perhaps not conducive to speciation, are often the most resilient to extinction

(Hanski, 1999).

What is needed is an integrated theory of diversity dynamics in struc-

tured landscapes, including species generation, colonization, and extinction.

The present study, which explores the dynamic interaction of the first two

processes, is a step in that direction. The basic, paradigm-changing insight

of MacArthur-Wilson (MacArthur and Wilson, 1967) was that the structure

of geographic space has consequences for population processes, which in turn

have consequences for elementary biogeographic rates. The full potential of

this idea for building a quantitative, theoretical biogeography is still unreal-

ized.
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Figure 4.1: Divergence rates, in this case the speciation rate of a species
inhabiting both patches in a two patch landscape (BOTH), are hypothesized
to generally decrease with connectivity due to increased gene flow, a-b) show
exponential and threshold forms of this relationship. Colonization rates, trans-
forming a ONE species into a BOTH species, should generally increase c) lin-
early, or d) exponentially. The eigenvalue of equation 1 is a measure of overall
speciation rate, and has a unimodal relationship with connectivity, e) plots a
combination of a) and c), while f) plots b) and d).
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Figure 4.2: A ring landscape (a) is generated with a gradient in connec-
tivity. b) reflects the fraction of speciation events occurring in a given node
occurring while a clade diversifies to 300 species through stochastic simula-
tion, for a variety of different species vagilities. The speciation peak moves
from the most patch dense to more sparse regions of the landscape as vagility
increases. c) The overall speciation rate is depressed at low vagility, increases
as vagility matches the landscape elements resulting in optimal connectivity,
then decreases as vagility (and connectivity) become very high.
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Figure 4.3: a) An archipelago of islands with an exponential density dis-
tribution is generated and stochastic simulation is carried out on this model
landscape. As vagility is increased, speciation is concentrated in progressively
more isolated regions of the landscape, until at the highest vagilities most spe-
ciation occurs in the most isolated islands. b) Overall speciation rate peaks
at intermediate vagility, where the vagility matches landscape elements, as in
fig. 4.2.
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Chapter 5

The ants of the Fijian archipelago

5.1 Introduction

The study of biodiversity is entering an era of integration. Community

ecology is expanding its spatial and temporal scope to encompass processes

occurring on larger scales. Armed with new spatial and phylogenetic methods,

biogeographers are increasingly moving beyond descriptive historical studies

to ask process-oriented questions. The old boundaries between ecological and

evolutionary approaches to biodiversity science are dissolving (Rosenzweig,

1995; Brown, 1995; Hubbell, 2001). An important component of this effort

will be case studies that traverse spatiotemporal scales, biological paradigms,

and methodologies to understand the origins and maintenance of biodiversity.

Insular communities serve as a natural laboratory to inspire and test ideas

relating to evolutionary and ecological processes.

This study is intended to be the first steps in developing such a case

study, by revisiting one of the classical systems in biogeography. The ants of

Melanesia were primary inspirations of theories of taxon cycles (Wilson, 1961,

1959a), and equilibrial island biogeography theory (MacArthur and Wilson,

1967). The ant fauna of Fiji is a mixture of Indo-Australian lineages and
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introduced species from around the globe (Ward and Wetterer, 2006; Wheeler,

1935; Mann, 1921, 1919). Similar to other groups in the region, there are no

convincing cases of western migration from the neotropics into the Pacific

islands. The ants show a filtering effect westward from New Guinea, with

most dispersive taxa reaching far into the Pacific. Fiji is recognized as one

of MacArthur and Wilson’s (1967) “radiation zones”, islands that are close

enough to be colonized but not so close as to be overwhelmed by continental

lineages. The relatively sparse number of colonists to Fiji have diversified into

a number of endemic radiations, with over 131 of the 189 species being endemic

to the archipelago.

Although myrmecologists have visited Fiji intermittently over the years,

knowledge of the myrmecofauna is still dominated largely by the survey con-

ducted by William M. Mann in 1916. Mann’s monograph (Mann, 1921) is an

impressive piece of work even by modern standards and remains the primary

taxonomic reference. A recent compilation of myrmecological records from

Fiji suggested undersampling and revealed holes in distributional knowledge.

The species occurrences were disproportionately concentrated in Viti Levu,

which as the main population center and most accessible island, has received

the most attention from collectors (Ward and Wetterer, 2006). Many of the

smaller islands have never been visited by myrmecologists and some have never

been visited by biologists of any kind.

The primary goal of this project, and a necessary prelude to any so-

phisticated hypothesis testing, was to develop a reasonably complete picture
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of the myrmecofauna and the distributions of the species among the islands

and habitats. A massive sampling operation was required to meet this goal, as

even sampling the community in a single locality requires a substantial sam-

pling effort. Combining previous unprocessed samples and new collections, we

assembled the largest collection of Fijian ants in the world with over 10,000

pinned specimens, representing of over several hundred thousand sorted spec-

imens which remain preserved in alcohol.

As is discussed in the following sections, after initial sampling it soon

became apparent that there were many undescribed forms in Fiji. Further-

more, many of the existing species delineations were based on a few samples

and did not take into account complex spatial morphological variation. Several

“species” were simply forms chosen from disparate points in a morphological

continuum, the intermediate forms are now known.

An ideal approach to organizing the biodiversity would be to pursue full

taxonomic revisions for all the undescribed or poorly described species. This

would involve both a consideration of Fijian species and congeners from the

Indo-Pacific region. Eli Sarnat is pursuing such detailed taxonomic revisions,

so far producing monographs of the Fijian Lordomyrma (Sarnat, 2006) and

the Pheidole roosevelti (Sarnat, 2008) species complex (previously known as

subgenus Electropheidole). However, as there are over thirty genera known

from Fiji, each requiring separate treatment, it would take decades until all

genera were revised in order to complete our picture of the Fijian ant fauna

and communities across the archipelago.
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Thus, we decided to make an initial evaluation of every form found in

Fiji, providing diagnostic characters and in some cases unofficial descriptions

for morphospecies we feel are likely to be real undiscovered species. These were

assigned temporary codes (e.g. Cerapachys FJ01) instead of species names,

but treated as legitimate species in all analyses. This “geographic” revision

model is somewhat out of fashion, but is important for developing a timely

and useful synopsis of the fauna. Without it, a biologist encountering an ant

species in Fiji may have no idea the geographic range of that species, what

habitats it is likely to be found in, or even whether it is a native or introduced

species.

Our inventory establishes many of the general patterns of species distri-

butions across archipelago, and we feel provides a framework within sophisti-

cated ecological and evolutionary studies can proceed, armed with information

about each species in the community. An ecologist could now enter a habitat

in Fiji, and it is fairly unlikely they would encounter, without some effort, a

species that has not been included in our study. There are almost certainly

undescribed species in Fiji, and even more island occurrences that have not

been detected, but we submit that a researcher would have to work quite hard

to discover these, and almost certainly no ecologically dominant species are

undiscovered.

In the next three sections, I describe the biodiversity inventory methods

used to collect and curate the ants of Fiji. I then describe the numerical results

of our inventory- the results in terms of species and population numbers. In
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the fourth section, I describe initial analyses of community and biogeographic

patterns. Finally, I present a taxonomic synopsis of the entire ant fauna.

5.2 Survey/Curation Methods

Recent inventory efforts focusing on Fijian arthropods accumulated a

large collection of unprocessed formicid specimens. These included (i) over a

674 2-week malaise trap samples from the NSF Terrestrial Arthropod Survey

(Evenhuis and Bickel, 2005), and (ii) 100 Winkler leaf-litter transects con-

ducted by Dave Olson and the Wildlife Conservation Society. In addition,

Hilda Waqa (University of South Pacific) made canopy fogging samples along

an elevational gradient on Viti Levu. To these, we added 559 hand collections,

and another 75 Winkler transects made across Fiji in numerous trips between

2003-2008. The sampling coverage across Fiji can be seen in figure 5.1. First

collections were made by the author on the islands of Moala, Beqa, Gau, and

in numerous unexplored localities within the larger islands. The sampling gen-

erally followed standard ant survey methods, such as the ALL protocol (Agosti

and Alonso, 2000). Our primary goal was to collect the most species from the

most localities and habitats, and develop as complete as possible a picture

of the ant fauna. Our main bias was toward remnants of pristine forest that

were likely to harbor native ants, but many collections were made in human

dominated ecosystems.

The ants in each sample were sorted to morphospecies in ethanol, and

between 1-4 representative specimens were pinned for each morphospecies.
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Representatives of all available castes were pinned. This occurred over several

years at UT, UC-Davis, and in Fiji from August 2007-March 2008 in a lab run

by the author. An approximate total of 10,000 ants were pinned, representing

several hundred thousand individual specimens that remain in ethanol. The

pinned ants were then sorted to genus and species. Taxonomic literature as

well as previous collections were consulted to make determinations.

5.3 Inventory Results

To asses the impact of our inventory on knowledge of the Fijian ants,

we use Ward and Wetterer’s 2006 checklist (hereafter, WW) (Ward and Wet-

terer, 2006) as a benchmark for comparison. WW reported the presence of 33

genera, we collected all of these except one, Romblonella, which remains elu-

sive (we have some doubts about these records, and have requested to examine

original material). To this list, we added several genera that have never been

recorded in Fiji, including Acropyga (2 species), Amblyopone, Discothyrea (3

species), and Metapone (2 species). All of these are rare, cryptic, leaf litter

ant species. One of the Acropyga species, A. lauta, was discovered tending

subterranean mealybugs, which is a mutualism common to this genus. The

other species, an undescribed Fijian endemic (S. Shattuck, personal commu-

nication), was not observed with mealybugs during the one collection that

was made. Amblyopone, the so-called “Dracula ant,” is exceedingly rare and

only known from two specimens. Metapone, a specialist inhabitant of termite

mounds, is widespread across higher elevation Fijian islands, but only known
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from sexual castes caught in malaise traps.

On the species level, WW reported 138 unique species names from

Fiji. We identified 183 unique species from our collections, with the additions

including many species new to science and several named species unknown to

Fiji. That number also accounts for several groups of named species that we

determined were actually one species, usually after an accumulation of more

specimens, and lumped together.

57 new records were made for Fiji: Amblyopone zwaluwenburgi, Pri-

onopelta kraepelini, Cerapachys FJ01, Cerapachys FJ04, Cerapachys FJ05,

Cerapachys FJ06, Cerapachys FJ07, Cerapachys FJ08, Cerapachys FJ10, Tampinoma

FJ01, Tapinoma FJ02, Acropyga lauta, Acropyga FJ01, Camponotus FJ04,

Camponotus FJ02, Camponotus FJ03, Eurhopalothrix FJ52, Lordomyrma cur-

vata, Lordomyrma desupra, Lordomyrma sukuna, Lordomyrma vanua, Lor-

domyrma vuda, Metapone FJ01, Monomorium FJ02, Myrmecina FJ01, Phei-

dole FJ05, Pheidole sexspinosa, Pheidole FJ05, Pheidole FJ09, Pheidole bula,

Pheidole furcata, Pheidole pegasus, Pheidole simplispinosa, Pheidole unca-

gena, Poecilomyrma FJ03, Poecilomyrma FJ05, Poecilomyrma FJ07, Poe-

cilomyrma FJ08, Pristomyrmex FJ02, Pyramica FJ02, Strumigenys FJ01,

Strumigenys FJ09, Strumigenys FJ13, Strumigenys FJ17, Strumigenys FJ18,

Strumigenys FJ19, Vollenhovia FJ01, Vollenhovia FJ03, Vollenhovia FJ04,

Vollenhovia FJ05, Hypoponera FJ16, Leptogenys FJ01, Ponera FJ02, Dis-

cothyrea FJ01, Discothyrea FJ02, Discothyrea FJ03, and Proceratium FJ01.

The population level saw the most dramatic change in our knowledge
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of the Fiji ants. WW reported 273 unique species-island occurrences. Our

survey has produced 777 such records. This is a result of both the survey of new

islands (Moala, Gau, Beqa, Koro) and significant increases in the species lists of

each previously collected island. Furthermore, within islands, the distributions

of many of these species are much better known, as many of the localities we

visited were unexplored for ants and some contained restricted endemic species.

Figure 5.2 summarizes changes to species richness across the islands from the

current survey.

Additions to the fauna in specific localities and for all of Fiji were the

greatest from Winkler leaf litter samples. These capture cryptic leaf-litter ants

that may be difficult to detect through other methods, particularly species of

the diverse genera Cerapachys, Strumigenys, Hypoponera, Pheidole, and many

less diverse genera.

Malaise samples primarily capture the worker castes of the arboreal ant

fauna, dominated by Camponotus, Tetramorium, and Pheidole, but few of even

the abundant leaf litter ant species. However, malaise samples were efficient at

capturing males and alate queens of both arboreal and leaf litter species, and

these samples increased the distributions of many of the species tremendously.

For example, Metapone is only known in Fiji from sexual castes in malaise

traps, and the exceptionally (locally) rare species, Myrmecina cacabau has

only been collected twice by hand, but the males show up in malaise traps

across the archipelago.

After these sampling efforts, what conclusions can be drawn about the
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state of knowledge of the Fijian Ant fauna? How many species are likely to

remain undiscovered? Biodiversity inventories can be quantified with statis-

tics that estimate the completeness of biodiversity sampling. These methods

fit saturating functions to species-accumulation curves and project the “true”

richness, with particular attention to how many singletons or doubletons exist

in the collections. As ants are social organisms, the concept of “abundance”

is somewhat problematic. Thus, multiple individuals collected in a given sam-

ple are treated as single individuals for the purposes of species accumulation

curves.

Although the theoretical justification of such analyses are somewhat

questionable, we used EstimateS (Colwell and Coddington, 1994) to calculate

species accumulation curves, and estimate the Chao-2 (Chao, 1984) index of

projected richness (figure 5.2). Overall, pooling all sampling methods, accu-

mulation curves are clearly not saturating for Fiji, there are still 19 species

that have only been collected once. Relying on the logic that in a well sam-

pled fauna, each species should have been collected multiple times, this implies

there are many more species that remain uncollected in Fiji. Breaking it down

further by collecting method, hand and Winkler collections are clearly the fur-

thest from saturating, while malaise samples are, if not saturated, closer to

capturing the entire arboreal fauna. We estimate Fiji has between 200-225 ant

species.

This makes some sense, hand collections are not a random sample of

the community, they are biased towards rare and novel taxa, and thus should
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not show a strong saturating effect. Winkler samples capture rare and cryptic

leaf litter samples, which are much more difficult to detect by collectors than

the arboreal fauna that is well collected by malaise samples. Further malaise

trapping would probably be less efficient for collecting new taxa, however if

more attention were paid to matching males to worker castes, could be very

efficient.

In conclusion, while the current inventory has resulted in a complete

overhaul in our knowledge of the Fijian ant fauna and distributions across

the archipelago, it is by no means complete. There are many rare and diffi-

cult to collect species and their spatial distributions are certainly incomplete.

This echoes previous work in the Pacific, and elsewhere, finding that while

many species are locally and or regionally common and easy to collect, certain

species are extremely rare and require intensive sampling to detect, even in

relatively species poor communities. In general, future work should focus on

hand collections and litter sifting to further uncover the ants of Fiji.

5.4 Community Patterns

5.4.1 Dominance

Although a detailed analysis of Fijian ant communities is beyond the

scope of this chapter, we offer a general discussion and a few cursory analyses

to characterize the fauna. The five most commonly encountered species are

Camponotus polynesicus (308 times, Fiji endemic), Odontomachus simillimus

(277, Pacific native), Paratrechina vaga (240, Pacific native), Tetramorium
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pacificum (202, Pacific native), Technomyrmex vitiensis (190, Pacific native).

In general, aside from Odontomachus simillimus, individual species of intro-

duced ants did not make up a large fraction of the communities surveyed in

pristine habitat. However, this ratio would likely change if our survey collected

more in disturbed habitats. The most abundant ants were, aside from the no-

table example of Camponotus polynesicus, widespread species found across the

Pacific, consistent with empirical and theoretical work finding a correlation be-

tween local abundance and geographic range. Introduced ants are present in

relatively undisturbed habitat, but generally do not reach high abundances.

This latter statement assumes that Paratrechina vaga, and Odontomachus

simillimus which are both ubiquitous and at a very high biomass abundance

in the litter, are native to Fiji.

Using number of collections as a rough proxy for relative abundance

across Fiji, we can calculate an estimate of the gamma diversity of the native

forest metacommunity. Simpson’s index for the entire archipelago is 20.43

effective species, compared with a richness of 189, indicative of a highly skewed

abundance distribution.

5.4.2 Species Area Curves

The Fiji islands exhibit a canonical species-area curve, with S = 12.9A0.26

(n = 10, r2 = 0.797, p < 0.0005, 95%CI: 0.155-0.371) for all species (Figure

5.4). This slope is commonly observed across taxa (Rosenzweig, 1995). It

remains to be seen how much of the variation around this line reflects real
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spatial pattern or sampling effects. Moala (ML), Koro (KR) and Gau (GA)

are generally more diverse for their size, and were subject to all three meth-

ods of collection. Ovalau (LA) had relatively sparse sampling and no malaise

traps, Lakemba (LK) was not hand collected, and Beqa (BQ) did not have

any malaise trapping.

Some insight can be gained by breaking down the species-area curve

into faunal components. Introduced species also show a species area curve

S = 2.3A0.24 (n = 10, r2 = 0.57, p < 0.012) with a similar form to line of all

species. However, there is much more noise in the exotic group of species than

any other. This likely reflects stochasticity in occupancy, due to the vagaries

of the invasion process, in addition to sampling effects. Certain exotics, such

as Paratrechina longicornis for example, are widespread but only occur in the

most artificial environments such as villages and homes, making them difficult

to detect with Winkler or Malaise samples. All native species show a curve

similar to the overall curve S = 10.98A0.27 (n = 10, , r2 = 0.816, p < 0.0003,

94%CI: 0.16-0.36).

Widespread Pacific natives S = 6.73A0.12, (n = 10, r2 = 0.82, p <

0.0003) show the most shallow curve, implying a much weaker area effect in

those species. Fijian endemic species show a slightly sharper increase in species

number with area (n = 10, S = 5.39A0.33, r2 = 0.74, p < .0012, 95%CI: 0.1726-

0.4799), while the sharpest slope is single island endemics , S = 0.12A0.55,

(n = 6, p < .016, r2 = 0.80, 95%CI: 0.16-0.93).

These patterns are consistent with patterns across different groups -
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single island endemics usually have a steeper species area curve than species

found on multiple islands. This overall likely reflects differences in connectivity

among islands in the different groups. The most connected islands have a

shallower species area curve, while the “interprovincial” curve is usually linear

(Rosenzweig, 1995).

5.4.3 Elevational patterns

On most Pacific islands, elevation is the dominant environmental gra-

dient. Myrmecologists working in the Pacific have long anecdotally recognized

elevation, along with human disturbance, as the main variables determining

community composition within an island (Wilson and Taylor, 1967). Conven-

tional wisdom is that lower elevations are dominated by exotic species and

widespread Pacific native ants. As elevation increases, the communities be-

come increasingly dominated by endemic species, until at high elevations the

fauna consists exclusively of endemic species. Diversity is thought to be re-

duced at low elevations, perhaps due to the influence of exotics and tramps,

peaking at intermediate elevations, and much reduced at high elevations.

However, these patterns have never been demonstrated quantitatively,

and our data allows for a preliminary assessment. We found the minimum

and maximum elevational range of each species, and made the assumption

that the species occur continuously at intermediate elevations between these

extremes. This adds the potential for some sampling effects, particularly at the

margins. Many species that have an elevation minimum near sea level probably
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do actually extend to the ocean, but perhaps collections were made slightly

inland, perhaps at 50m elevation (and the same for the higher boundaries).

Indeed this is almost certainly what to have caused the apparent precipitous

drop in richness near sea level. To mediate this effect, in a second plot we

also added a 100m buffer to the ends of each species range, reflecting the

assumption that our sampling was unlikely to have detected the exact end of

the range.

We plotted richness of different species groups, all (red), endemic (blue),

widespread native (black), and exotics (green) (figure 5.5). Fijian endemics

peak in richness at intermediate elevation, while widespread natives and exotics

both peak at sea level and slowly decline at higher elevations. The unimodal

pattern exhibits a “mid-domain effect” (Colwell and Lees, 2000). This is also

consistent, although not in any rigorous sense, with a model of high natural

connectivity of low elevation forests, and combined with more restricted species

forming more differentiated faunas at higher elevation. Also, an open question

pertains to how much of an impact introduced ants have had on the native

fauna at lower elevations. Future, more targeted work is needed to investigate

the mechanistic origins of these community patterns.

5.5 Taxonomic Summary of the Ants of Fiji

This section is a brief summary of a forthcoming monograph on the

Fijian ant fauna by E.M. Sarnat and the author.
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5.5.1 Amblyoponinae

AMBLYOPONE

Amblyopone zwaluwenburgi is the only species of this genus known from Fiji is

represented by a single specimen collected from leaf litter on the island of Gau.

It is known to exist in only one other locality in Hawaii (Wilson and Taylor,

1967). This is clearly an exceedingly rare and difficult to collect species that

is likely to be much more widespread than is currently known. It is unknown

whether this species is native to Fiji or introduced by human activities.

PRIONOPELTA

Prionopelta kraepelini is species is the most widely distributed species of the

genus, from Sumatra in the west to Samoa in the east (Shattuck, 2008). It

is only known from a handful of specimens in Fiji, but it likely to occur at

low abundance in many localities across the archipelago. It is known to occur

in marginal habitats, suggesting that it could be spread by human activities.

Little else is known about this species.

5.5.2 Cerapachyinae

CERAPACHYS

Cerapachys is one of the more interesting genera occurring in Fiji from a biogeo-

graphic and evolutionary perspective. From as few as two individual lineages

dispersing into Fiji (Wilson, 1959b), the group has radiated in situ to fifteen

species, seven of which were uncovered by our sampling efforts. Cerapachys
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is also an interesting case because, unlike the majority of Fijian genera, it

has wingless queens and is not thought to be a good disperser. This probably

contributes to the very complex patterns of spatial morphological variation ex-

hibited across the archipelago in the group. Many islands and localities have

endemic forms, and it is somewhat difficult to delineate species boundaries.

Furthermore, the lack of wingless queens raises the question of mechanism of

dispersal to Fiji. For all these reasons, Cerapachys would be an interesting

test case for further detailed phylogenetic and ecological study.

During the inventory, the group was most readily collected in leaf litter

samples, supplemented by few hand collections. The males were captured in

abundance in malaise traps, and in some cases can be matched to worker castes.

However, due to a lack of nest series, some morphospecies could not be matched

and would benefit from a molecular approach. The distributions of the males

were much more widespread than is evident in the workers, suggesting they

are a potentially fruitful source of data for future inventories.

Most Cerapachys species in Fiji can be assigned to two general group-

ings based on morphology. The Typhlus group, with 9-merous antennae, in-

cludes three species including C. cryptus, C.fuscior, and the undescribed C.

FJ06. Interestingly, FJ06 appears to be widespread and exists in marginal

habitats, unlike the other Fijian Cerapachys. A possible fourth species, C.

FJ52, is only known from males from several localities on Viti Levu.

The Melanesian Dohertyi group is represented in Fiji by five described

species C. lindrothi, C. majusculus, C. sculpturatus, C. vitiensis, C. zimmer-
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mani and a number of undescribed species, C. FJ01, C. FJ07, C. FJ05. The

latter emerge from two morphologically difficult species complexes, among the

most confusing in Fiji, and likely to be revised in the future with further

molecular work and new specimen series.

Three undescribed species, C. FJ04, Cerapachys FJ08, and C. FJ10,

the latter two closely allied, do not fit in any of the other groups in Fiji.

5.5.3 Dolichoderinae

IRIDOMYRMEX

Iridomyrmex ranges from South Asia to the Pacific and is often eco-

logically dominant. In Fiji, it is represented by two species that occur at

relatively low abundance. Although they have been collected very occasion-

ally in pristine habitat, they are most commonly collected in transitional to

human dominated habitats. The two species I. anceps, and I. ignobilis are not

very common ants, especially the latter which was only collected once during

our survey.

OCHETELLUS

Ochetellus, is represented in Fiji by a single species O. sororis. The

inventory has increased the known range of this species considerably, reveal-

ing that it widespread across the archipelago, but locally rare. It generally

can be found in low- to mid-elevation intact forest and there is no sign of

morphological variation across the archipelago.
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PHILIDRIS

Philidris is represented by one species in Fiji P. nagasau, although

Mann (Mann, 1921) described subspecies level variation between Vanua Levu

and Taveuni. Our much more intensive survey found a great deal of morpho-

logical variation, there were no clear discrete or spatial aspects to the variation,

and we coalesced these forms into one species. It is an example of a genus of

ants that has reached Fiji, formed an endemic, but not continued diversifica-

tion. Philidris is the only genus in Fiji that is known to occur only in the

smaller islands but not on the largest island, Viti Levu. This is a very odd

distribution as Viti Levu is by far the oldest island and the largest target for

migrants from the west. It is a dominant member of the mid to high elevation

arboreal fauna on Vanua Levu and Taveuni, but only one rogue specimen was

found from the coastal Solodamu forest on Kadavu. The nature of the Kadavu

population is rather mysterious, and the possibility of a labeling error should

not be ruled out until it is corroborated.

One interesting aspect of the biology of Philidris is their affinity for

nesting in the Myrmecodia ant-plants (Shattuck and Barnett, 2000) that are

quite common in the islands. The epiphytic plants form an internal cavity

ideal for ant nesting, and in return absorb nutrients from materials brought

in by the ants. On Vanua Levu and Taveuni, the overwhelming majority of

ant-plants are inhabited by P. nagasau. On Viti Levu, where P. nagasau is

absent, the ant-plants are inhabited by a half dozen of other species, many

of which are invasive, and many of which can be found living together in the
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same plant. Little is known about the association of ants and ant-plants in

Fiji and it would be a fruitful area for further work.

TAPINOMA

Tapinoma is represented by four species in Fiji, T. melanocephalum,

T. minutum, T. FJ01, and T. FJ02. T. melanocephalum is one of the most

widespread exotic ant species in the world, reaching every tropical region. In

Fiji, it is found in high abundance in human dominated areas, and can be

readily found in nearly every home. We also collected it in pristine habitats,

but less frequently and at low abundances. T. FJ01 and T. FJ02 are of

different forms that join a host of Pacific Tapinoma of uncertain status.

TECHNOMYRMEX

Technomyrmex vitiensis, the only member of the genus occurring in

Fiji, is one of the most widespread and locally common species in Fiji. The

ultimate ecological generalist in Fiji, it thrives in both pristine and human-

dominated habitats and from the coast to the highest mountain peaks. Its

ability to survive at high abundance in human-dominated habitat is somewhat

unusual for a native ant. It is primarily an arboreal species and both workers

and males are commonly found in Malaise traps.

5.5.4 Ectatomminae

GNAMPTOGENYS
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Gnamptogenys aterrima, the only representative of the subfamily, is

endemic to Fiji. G. aterrima belongs to a papuan species group, representing

its easternmost extent into the Pacific. This species is widespread across Fiji

and commonly collected in litter sifting. It has reached even small isolated

islands, such as Moala.

5.5.5 Formicinae

ACROPYGA

Acropyga is one of several genera only recorded in Fiji by our most re-

cent inventory. represented by two species in Fiji, A. lauta and an undescribed

species A. FJ01. A. lauta, which has been collected only once in Fiji (Vanua

Levu), is also known from other areas of Melanesia. A. FJ01 is apparently a

Fijian endemic. This genus often forms mutualisms with mealybugs, and A.

FJ01 was collected with an associated mealybug species.

ANOPLOLEPIS

Anoplolepis gracilipes, also known as the Yellow Crazy Ant, is widespread

across the tropics and occurs across Fiji. In certain low elevation areas, even

in otherwise pristine forest, it can form a dominant presence in the leaf litter.

A. gracilipes can sometimes reach higher elevations (above 700m), but only

achieve very low abundances in those areas.
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CAMPONOTUS

Camponotus is the most diverse genera in the world (Bolton et al., 2006)

and also the most diverse genus in Fiji. It is the most dominant arboreal ant

group across the archipelago, both in species numbers, biomass, and ecological

extent. There have been at least three independent radiations of Campono-

tus, and possibly as many as five or six, depending on how many independent

lineages originally reached Fiji. Across the archipelago, patterns of occupancy

are complex and many species form complex patterns of morphological vari-

ation. For these reasons and more, Camponotus appears to one of the most

interesting groups in Fiji for future ecological and evolutionary study.

There are at least eleven species in the Colobopsis subgenus. One, C.

oceanicus, is only known from one queen collected by Mayr in 1870 and never

recollected. It is possible that this specimen, which has yet to be examined,

is part of the C. polynesicus group. The latter is an immensely complicated

species complex deserving of much more detailed study. We coalesced several

of Mann’s subsepecies into polynesicus, as our broader collections suggested

complex continua of morphological variation. At times, it seems multiple dis-

crete forms occur in the same locality, but in other nearby areas intermediate

forms exist. It is possible that this is one globally connected, but at times

locally disconnected, network of populations. C. vitiensis is one of the more

distinctive of the Fijian Camponotus, and we have increased its known range

from Viti Levu to all the major islands. Finally, C. FJ04 is a rare, undescribed

species of Camponotus collected from Kadavu, Taveuni, and Vanua Levu. The
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species is distinctive for its dense white pilosity covering the entire body.

The rest of the Fijian Colobopsis belong to a very distinctive Fijian ra-

diation, the Dentatus group (Wheeler, 1934). The individuals are distinct from

other Camponotus globally by their heavy armor, petiolar spines, and slow, de-

liberate foraging habits. They occur in small colonies at low abundances, but

at least one species is found on every surveyed island in the archipelago. The

most common species is C. dentatus, which can be observed in both native and

human-dominated habitat. It has a close relative, C. armus, which is found in

the western and northern areas of Viti Levu (while dentatus can be found in

the rest of Fiji).

The rest of the species of the broader dentatus group fall into what we

call the bryani complex. These include C. bryani, C. manni, C. umbratilis,

C. FJ02, C. FJ03. The latter two are undescribed species found during the

recent survey. This is another group that exhibits complex spatial patterns

across the archipelago, and would be interesting for further detailed study.

The subgenus Myrmogonia in Fiji can be separated into the Lamina-

tus and Schmeltzi groups. Each represents a complex of species, again with

complicated morphological and occupancy patterns. The Laminatus group in-

cludes C. laminatus, C. cristatus, C. levuanus, C. maafui, and C. sadinus. In

general, where they occur, these species are at relatively high abundance and

are quite conspicuous. Most are confined to intact forest but C. laminatus is

known to occur in marginal habitats.
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We currently have classified three species into the Schmeltzii group, C.

schmeltzii, C. kadi, and C. lauensis. C. kadi is a complex that varies morpho-

logically in space and could be several species. However, there is currently not

enough evidence to strongly support species boundaries and we are lumping

all into C. kadi. C. lauensis, interestingly, is the only endemic ant of the Lau

group.

PARATRECHINA

P. longicornis and P. bourbonica are widespread tropical invasive species

and are both present in Fiji. The former is primarily found in villages and

urban areas, while bourbonica can be found in both human-dominated habitat

and marginal/transitional forest. P. vaga is among the most abundant ants

in Fiji and is found in nearly every habitat in the archipelago. It is unclear

whether P. vaga is introduced by humans into Fiji, but most likely it is a

naturally occurring widespread Pacific species. P. oceanica and P. minutula

are most likely part of a broader species complex and many populations cur-

rently classified as P. minutula across the Australo-Pacific region are probably

multiple species. The group has thus far escaped the focused attention of tax-

onomists. Both are represented in Fiji, but significant morphological variation

suggests there may be other cryptic species in our Fijian samples. P. vitiensis

is the only known endemic Fijian Paratrechina, and is widespread and locally

common across the archipelago.
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PLAGIOLEPIS

P. allaudi is a very small ant which has been spread worldwide by

humans. It has been collected around the archipelago in human-dominated

and marginal habitats but does not reach high abundances.

5.5.6 Myrmicinae

ADELOMYRMEX

Adelomyrmex is represented by two species in Fiji, A. hirsutus and A.

samoensis. The two species are most easily collected with litter sifting, al-

though not particularly common. The occurrences of Adelomyrmex in the

Pacific are something of a paradox, as it is mainly a Neotropical group. West-

ward dispersal across the Pacific is very rare in many taxa and unknown (so

far) in ants. Adelomyrmex may be such a case.

CARDIOCONDYLA

Cardiocondyla are small, nondescript species often confused with other

small myrmicines. Two Cardiocondyla species occurring in Fiji, C. obscurior,

C. emeryi, are globally widespread tramps spread by humans. The three

other species in Fiji, C. minutior, C. kagutsuchi, and C. nuda, are all widely

distributed across the Pacific. There are no Fijian endemics or evidence of

speciation in Fiji.
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CAREBARA

Carebara is represented by one species in Fiji, C. atomus, which is also

distributed across the Pacific. Carebara atomus is quite possibly the smallest

ant species in Fiji, is widespread across the archipelago, and readily collected

in litter samples.

EURHOPALOTHRIX

Eurhopalothrix is a stunning yet cryptic Indo-Australian genus, occur-

ring mainly in high quality intact forest. Two previously described species E.

insidiatrix, and E. emeryi, were collected during the current survey by litter

sifting. Alate queens and males were readily found in malaise traps, reveal-

ing that Eurhopalothrix has a much broader distribution than was previously

known. In addition, the males of a relatively small Eurhopalothrix species E.

FJ52 were collected in malaise traps, but worker castes are unknown.

LORDOMYRMA

The genus Lordomyrma ranges across Japan, Southeast Asia, northern

Australia, and east to Fiji. In Fiji a significant endemic radiation has formed.

Intensive systematic, phylogenetic, and biogeographic studies on this group

are underway (Sarnat, 2006). Our recent inventory brought the total of known

species up to eleven, all of which are endemic to Fiji. Lordomyrma tends to

occur in intact forest, in the leaf litter and on rotting logs, and is readily

collected in litter sifting and hand collections (but not malaise). One species,
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L. tortuosa, is widespread and across the archipelago. The other species vary

in range from localized endemics to those that span several islands. Other

Fijian species in the group include L. curvata, L. desupra, L. striatella, L.

stoneri, L. sukuna, L. levifrons, L. polita, L. rugosa, L. vanua, and L. vuda.

Preliminary analyses support a hypothesis of monophyly for the Fijian taxa.

METAPONE

Metapone had not previously been collected in Fiji until recent inven-

tory efforts. The workers have never been collected, probably because they are

known specialize on and live primarily in termite colonies. Their distinctive

queens and males, however are represented in malaise traps from a number of

islands in Fiji. There seems to be some inter-island variation morphological

variation, but it is unclear if this reflects inter- or intraspecific variation. Thus,

our working hypothesis is that all specimens belong to one undescribed Fijian

Metapone species, M. FJ01.

MONOMORIUM

The Monomorium of Fiji are, with one exception, introduced by hu-

mans. M. floricola, M. sechellense, M. pharaonis and M. destructor are all

globally widespread invasive species and common in the disturbed and low-

land transitional areas of Fiji. One additional species, Monomorium FJ02,

was collected in the port of entry areas of Viti Levu and is almost certainly

exotic, although has not yet been identified. The lone endemic Fijian species,
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M. vitiense, is mostly confined to lower elevation forest and is quite rare.

MYRMECINA

Myrmecina is exceedingly rare in Fiji. The workers are difficult to de-

tect by hand (only once collected during recent inventory) or litter sifting (zero

times). However, males are readily collected in malaise traps, and have ex-

tended their known distribution from Viti Levu to all of the major islands.

From these males and limited hand collections, we determined there are at

least two species of Myrmecina in Fiji. One of these,M. cacabau, is previ-

ously described and occurs on Viti Levu. The other M. FJ01 appears to be

widespread across the other islands.

PHEIDOLE

Pheidole in Fiji, as in the rest of the world (Wilson, 2003), is a hyperdi-

verse genus. It is unknown how many introductions contributed to the fauna of

Fiji, but the majority of the species are endemic. There has certainly been at

least one major radiation in Fiji forming the distinctive the roosevelti group,

and possibly other speciation events producing the other endemics. More

detailed phylogenetic work is underway and the genus would be an excellent

candidate for future ecological studies. Pheidole workers readily collected with

hand and litter sifting techniques, and more rarely, in malaise traps. Males

and alate queens are common in malaise traps, but often impossible to match

to worker castes with morphological characters alone.
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Only one of the Pheidole species, megacephala, is unambiguously intro-

duced to Fiji by humans. This species has spread worldwide and is common

in human-dominated habitats in Fiji but does not achieve high abundances in

intact forests.

Another class of species, representing a large fraction of the Pheidole

biomass in Fiji, are found across the Pacific and are thought to be native

to Fiji. There of these, P. oceanica, P. fervens, and P. umbonata are quite

common in both disturbed and more pristine habitats. P. sexspinosa, while

distributed across the Pacific, is exceedingly rare in Fiji and only known from

one site on Viti Levu, although likely to occur in low abundance elsewhere in

Fiji.

Among the most challenging groups in Fiji, populations of P. knowlesi

form complex spatial pattern of morphological variation. While there seem

to be two distinct forms, with one centered in the Viti Levu highlands and

the other in lower elevations and the outer islands, there is no evidence of

sympatry of the two forms. Furthermore, there is a point of contact between

the two forms near Monasavu Dam on Viti Levu, where the two areas meet

and they blend into intermediate states. Thus, for the time being, we consider

P. knowlesi to be a single species.

P. caldwelli, P. vatu, P. wilsoni and P. onifera are Fijian endemics

that had been previously described. These three are all fairly common species,

although they do not all extend across the archipelago. P. FJ05 and P. FJ09

are undescribed species uncovered by the most recent survey. Determining the
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relations between these species and others in the regions remains an important

and interesting avenue for future work.

The roosevelti group, a radiation that has formed seven endemic species,

is one of the most distinctive Fijian groups. Intensive studis are currently un-

derway on the group. The roosevelti are characterized by large angulate or

bifurcated propodeal spines and a distinctive mesonotal process. The species

generally occur in intact native, forests, and are often confined to a single island

or mountain range. On many islands, two of these species exhibit a parap-

atric distribution sorting along elevation. Preliminary phylogenetic analysis

suggests that there appears to be significant interisland speciation occurring

in Fiji, with sister taxa occurring on different islands. The species of the roo-

sevelti group include P. bula, P. coalensis, P. furcata, P. pegasus, P. roosevelti,

P. simplispinosa, and P. uncagena.

POECILOMYRMA

Poecilomyrma, the only genus endemic to Fiji, was discovered by Mann

during his 1916 survey (Mann, 1921). Mann originally described one species

with two subspecies from Viti Levu. Our recent inventory revealed the genus

to be widespread across the archipelago. Poecilomyrma is most easily collected

by hand, although males are well represented in malaise traps (workers show up

in malaise only very occasionally). The genus exhibits complex morphological

variation across space, and it is difficult to assign species boundaries. The

original categories delineated by Mann do not appear to hold up after further
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scrutiny. A good case could be made for calling Poecilomyrma either one

species or as many as eight species. Due to the significant morphological

differences between forms, a lack of variation within a locality, and a lack

of intermediate forms, we tentatively sorted Poecilomyrma into seven distinct

species Poecilomyrma senirewae, P. myrmecodiae, P. FJ03, P. FJ05, P. FJ06,

P. FJ07, and P. FJ08. Future molecular work will likely be the only route to

definitive answers regarding the status of the Poecilomyrma of Fiji.

PRISTOMYRMEX

There are two species of this genus in Fiji, Pristomyrmex mandibularis,

and P. FJ02. The former exhibits some morphological variation that could

reflect species level variation, but at the present time there is not enough

evidence to separate any more species. Both species are widely distributed

across the archipelago, broadly sympatric, and collected primarily in litter

sifting.

PYRAMICA

Pyramica mebranifera is an introduced species that has been spread

worldwide by humans. P. trauma and P. FJ02 are, as far as we know, native

to Fiji. They both are widespread in Fiji, but locally rare and difficult to

collect.
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ROGERIA

Rogeria stigmatica is the only species of the genus found in Fiji and

Melanesia in general. The genus is primarily centered in the Neotropics. R.

stigmatica is often collected in relatively intact, lowland forest. The species

exhibits a strange behavior, secreting bubbles from its gaster while under

duress. The behavior was discovered by Mann and observed several times

during our survey.

ROMBLONELLA

Two species of the genus, Romblonella scrobiferum, and R. vitiensis

were collected by early surveys but eluded both Mann and our most recent

survey. Both are apparently endemic to Fiji, but it is unusual that they have

not been collected more frequently.

SOLENOPSIS

Solenopsis geminata, the tropical fire ant, has been introduced to Fiji

and is common in the drier, westward slopes of Fiji. S. papuana, a minute

but extremely common species, is widespread in Melanesia and in FIji. It is

readily collected in low to mid-elevation litter samples.

STRUMIGENYS

Aside from one well-known introduced species, S. rogeri, most of the

diverse Strumigenys fauna are considered to be native to Fiji. Strumigenys are
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generally small cryptic ants that are most efficiently collected with litter sam-

pling. From the great number of new forms revealed by the recent inventory,

it is clear that they have eluded capture by predominantly hand collections.

Two species S. maelli and S. godeffroyi are widespread Pacific natives.

The rest of the species S. basiliska. S. chernovi, S. daithma, S. ekasura, S.

frivola, S. jepsoni, S. nidifex, S. panaulax, S. praefecta, S. scelesta, S. sulcata,

S. tumida, S. FJ01, S. FJ09, S. FJ13, S. FJ17, S. FJ18, S. FJ19, are Fijian

endemics.

These species are part of several species complexes, and it is likely that

several independent lineages have radiated in Fiji to form the present, diverse

fauna. They represent yet another excellent choice for future detailed work.

TETRAMORIUM

Tetramorium is almost unique among the Fiji ants in that it is a quite

diverse genus, but most of the species are well known and described. They are

a significant arboreal presence in the forests of Fiji, and are often collected in

malaise, litter sifting, and hand collections.

The human-introduced species in Fiji include T. caldarium, T. insolens,

T. lanuguinosum, T. simillimum. They are common in marginal and human-

dominated areas. While T. pacificum and T. tonganum are widespread species

that have been spread by humans outside their native range, they are thought

to be native in Fiji. This assertion deserves further attention with molecular

methods.
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Fiji’s lone endemic member of the genus, T. manni, is widespread in the

intact forests of Fiji, and exhibits significant morphological variability across

the archipelago.

VOLLENHOVIA

There is one previously described species, Vollenhovia denticulata, that

is also known from other areas of the Pacific. The other four species V. FJ01,

V. FJ03, V. FJ04, V. FJ05, appear to be undescribed and unknown outside

of Fiji. Some or all of them may well be endemics, however, Vollenhovia is

proving to be one of the more cryptic groups in the Pacific. Several of these

species are known from single specimens, indicating they are exceedingly rare.

With such rarity, it is difficult to make solid conclusions about distributions

of the species both in Fiji and the region. Other recent work (Clouse, 2007)

also suggests that Vollenhovia may be among the least known elements of the

Pacific islands fauna.

5.5.7 Ponerinae

ANOCHETUS

Anochetus graeffei is widespread in Fiji and the Pacific, although gen-

erally does not achieve very high abundances. It is regularly collected in litter

samples. Although it is considered native, it is unknown whether A. graeffei

was introduced to Fiji by humans or through natural means.
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HYPOPONERA

Hypoponera is one of the more commonly encountered genera in Fiji,

and a significant component of the leaf litter fauna. There are several Fi-

jian endemics which vary in abundance across the archipelago. H. eutrepta

is widespread, fairly common, and morphologically variable. H. monticola is

also quite common and widespread across the archipelago. Three other en-

demic species H. turaga, H. vitiensis, H. FJ16 are much more rarely collected,

although most are widespread across the islands.

H. gleadowi and H. punctatissima have likely been introduced to Fiji

by humans. H. opaciceps occurs has been distributed widely by humans and

is present, but not common, in Fiji.

LEPTOGENYS

There are eight known Leptogenys species in Fiji, all endemic to the

archipelago. All of the species in Fiji are quite rare, and apart from one

species L. letilae, are only known from one or two localities. The workers

are not a common presence in litter nor malaise samples. The males are

captured in abundance in the malaise samples across the archipelago, but it is

currently impossible to associate males with worker castes. Future molecular

work could tap into these data. The other Leptogenys species in Fiji include

L. foveopunctata, L. fugax, L. humiliata, L. navua, L. vitiensis, L. FJ01.
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ODONTOMACHUS

O. simillimus is one of the most common species in Fiji, nearly ubiq-

uitous in the leaf litter at all but the highest elevations. It is thought to be a

Pacific native, but has also been spread by humans out of its range.

O. angulatus is a Fijian endemic, mostly confined to the higher elevation

intact forests. Originally thought to only inhabit Viti Levu, it is now known

to have populations on most of the larger islands.

PACHYCONDYLA

Pachycondyla stigma, the only species of the genus in Fiji, is a globally

widespread invasive. It primarily inhabits forest habitats and, while workers

are not often observed out in the open, alate queens often are captured in

malaise traps.

PLATYTHYREA

Platythyrea parallela is an exotic species in Fiji. It has a fairly restricted

presence in Fiji, only known from a few collections on the south coast of Viti

Levu.

PONERA

Ponera is a relatively cryptic genus in Fiji, although they can be found

at low abundance in litter samples. There are two endemic species of this genus

in Fiji, Ponera manni and P. colaensis. One species, P. swezeyi, is widespread
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in the Pacific. The recent inventory uncovered one species, P. FJ02, that is

apparently undescribed.

5.5.8 Proceratiinae

DISCOTHYREA

Discothyrea was not known to occur in Fiji until the most recent in-

ventory. The genus is morphologically distinct and has an interesting ecology,

specializing on arachnid eggs (Shattuck, 2008). A handful of workers were col-

lected in litter sifting, and alate queens occasionally were captured in malaise

traps. Among these specimens, three species were delineated, D. FJ01, D.

FJ02, D. FJ03. Little is known about the distributions of these species as

they are locally extremely rare.

PROCERATIUM

At least three Proceratium species occur in Fiji, two of which have been

previously described. The workers occasionally can be found in litter samples,

but the males and alate queens are quite common in malaise traps. P. relictium

is known to occur in Vanua Levu and Taveuni, while P. oceanicum has been

collected on Taveuni and Viti Levu. A third, undescribed species, P. FJ01, is

known from Viti Levu, Kadavu, Taveuni, and Vanua Levu.

127



b)  Handa) Fogging

c) Malaise Traps d) Winkler Leaf Litter Sifting

VN

VL

TA
KR

ML

GA

KV

BQ

LK

LA

Figure 5.1: Collecting localities in Fiji by collecting method. The island
codes are VL: Viti Levu, KV: Kadavu, TA: Taveuni, VN: Vanua Levu, KR:
Koro, GA: Gau, ML: Moala, BQ: Beqa, LA: Ovalau.
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Figure 5.2: Prior knowledge of Fijian island species richness (blue bars)
compared with results of this study (red bars).
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Figure 5.3: Species accumulation curves for different collection methodologies
and all methodologies pooled. In addition, singletons, doubletons, and the
Chao-2 richness estimator are plotted. Fiji as a whole is not saturated, more
collecting is needed. Winkler and hand collections are the most likely to
discover further new species with additional sampling.
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Elevation (m)Elevation (m)

400 800 1200

40

80

120
all species

Fiji endemics

widespread Paci�c natives

exotics

120

80

40

400 800 1200

100m bu�er

Richness

Figure 5.5: Species richness at different elevations in Fiji, and for differ-
ent subsets of the fauna. In general species richness declines with elevation,
while endemics show a unimodal relationship with area, widespread and exotic
species show a decreasing richness with area.
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Appendix A

Chapter 3 Supplemental Information

A.1 Supplemental Methods

Model Assumptions and Implementation

The neutral model used in this paper makes the following assumptions

i) constant meta- and local community size in time ii) ecological equivalence of

species and iii) point speciation at a probability v per individual-generation.

Point speciation could also be interpreted as immigration from a distant (and

large) species pool. The model is equivalent to the infinite alleles model in

population genetics. The structure of the metacommunity is represented by

the migration matrix M , and a vector of local population sizes Nk. The entries

of the migration matrix, mij, are the probabilities that an individual sampled

from node i originated from a parent in node j, and
∑
j

mij = 1. In this paper,

to facilitate unambiguous node comparisons, all local community sizes were set

to be equal, although clusters of local communities are effectively large habitat

units. The above model was implemented in two ways, by solving a system of

linear equations and forward time stochastic simulation.
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Simulation Model

In each generation, the metacommunity was replaced with new indi-

viduals. These were, for an individual in community i, either a new species

with probability v, or an individual of the same species of a randomly chosen

individual from community j with probability (1−v)mij . The initial state was

each individual as a unique species, and the system was allowed run well past

relaxation to diversity steady state before any data on equilibrium diversity

were computed.

Analytical Model

For the analytical predictions, we use the method developed in a pre-

vious paper(Economo and Keitt, 2008) which can be consulted for further

information. The method uses analytical formulas for equilibrium probability

of identity f̂ij of two individuals chosen from nodes i and j. The equation

for equilibrium probability of identity, from Malécot(Malécot and Yermanos,

1970), is

f̂ij = (1−v)2

[ ∑
k,l,k 6=l

mikmjlf̂kl +
∑
k

mikmjk(1−
1

Nk

)(f̂kk) +
∑
k

mikmjk(
1

Nk

)

]
.

Two sampled individuals are the same type if neither has speciated

since the previous generation (the first term), and i) they were from parents

of the same type from different patches (the first summation) or ii) they were

from different parents of the same type located in the same patch (second sum-

mation), or iii) they had the same parent (coalesced) in the previous generation
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(third summation).

For a network of n nodes, there are n2 (i,j) pairs, and thus n2 linear

equations in this form describe the system at equilibrium. Since there are n2

unknowns in n2 equations, the system can be solved for the vector ~f of all fij.

For the analyses in this paper, we coded the left side of equation 4 as a n2×n2

matrix X, and the right side as a vector ~q of length n2, where:

X(ij),(kl) = (1− v)−2δ(ij),(kl) −mikmjl + δk,lmikmjk(
1

Nk

)

q(ij) =
∑
k

mikmjk(
1

Nk

).

The formula X ~f = ~q can then be solved for the vector ~f of probability of iden-

tities. In the following section we describe how to convert those probabilities

into diversity statistics.

Diversity Statistics

Diversity in a metacommunity can be measured with raw species num-

bers or aggregate diversity indices(Magurran, 2003). The analytical methods,

which predict probability of identity (fij), can be converted to a family of

diversity indices related to the Simpson concentration. We use the Simpson’s

index, or effective species numbers, which is the number of species in a com-

munity that would produce a given probability of identity if all abundances

were equal(Hill, 1973). So, the gamma diversity of the metacommunity (or

subset of the metacommunity) is the inverse of the mean probability of iden-

tity (fij)
−1, taken over all i and j that are in the set of nodes. So, for example,
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to calculate a given γh (gamma diversity of the metacommunity without node

h), we simply average of all fij, with i, j 6= h. Alpha diversity of node i is fii.

The pros and cons of using raw species numbers versus diversity statis-

tics for measuring diversity have been previously discussed(Magurran, 2003).

Diversity statistics de-emphasize rare species, which are often of interest to

conservation. At the same time, two communities may appear identical in

terms of presence absences but might have broad differences in abundances

reflecting important differences in ecosystem organization.

For our purposes, diversity indices have one big disadvantage- compar-

ing the gamma diversity of two metacommunities with different sizes can have

misleading behavior. For example, adding a community that has both low

uniqueness and low alpha diversity can actually reduce gamma diversity. In

other words, complementarity can be negative, when this is impossible with

species richness. While this may be consistent with a definition of gamma

diversity based on uncertainty, it is less than ideal as a quantity of interest to

conservation (adding individuals to a group should not reduce its conservation

value).

Conveniently, under the symmetric migration assumption, alpha diver-

sity and complementarity trade off and this problem does not occur, so we are

comfortable presenting complementarity as the difference between metacom-

munities of different sizes. Furthermore, the x and y values in figures 2 and 3

are both simply subtracted from a constant value (γ0), so this should not cause

a problem. In any case, none of our trials produced a negative complementar-
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ity. For cases of unequal migration, diversity and complementarity can vary

independently, and removing a node can cause an increase in diversity (before

relaxation). For clarity, in the supplemental section with unequal migration,

we simply present the diversity of a subset of the metacommunity (γi and γk)

and the diversity of the subset after relaxation (γ′i and γ′k).

Network Construction

The network in figure 2a was constructed with three clusters, within

which each node pair was connected with a weight m. All nodes in the two

smaller clusters were connected to the larger cluster, with each node pair

given a weight of .1m. The point of the networks in figure 3 was to repre-

sent as much diversity in network architecture as possible, both in topology

and patterns of edge weights. The grid network topology is simply a 7x7

lattice. The modular network was generated by randomly assembling sub-

networks, then haphazardly connecting them. The random graph is simply

an Erdos-Reyni graph (nodes are randomly connected with a probability p,

in this case p = 0.085). To add more complexity in the metacommunities

represented in figure 3, we also varied edge weights. This was accomplished

by randomly assigning nodes into three categories of isolation (I-isolated, M-

intermediate, and C-connected). If two nodes had an edge between them,

were then assigned values based on the categories of each node (I/I: 0.0001,

I/M: 0.0005, I/C:0.001,M/M:0.001,M/C:0.005, C/C:0.01). During the trials

varying migration rate (figure 3), these edge weights were all reduced or in-
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creased by a common coefficient, m. In figure 3, the black dots correspond

to a metacommunity where m = 0.01, blue m = 0.1, and brown m = 1.0.

Asymmetric networks were designed slightly differently, and are discussed in

the next section.

A.2 Supplemental Analyses and Figures

Comparison with Simulation

Because the analytical method returns diversity patterns in terms of

effective numbers of species, we want to make sure the results are not an arti-

fact of using those statistics. Indeed, many conservation analyses use species

numbers, such as number of endemics, to represent diversity patterns. We

implemented a stochastic, forward time simulation, to test the effects of node

removal on diversity in terms of richness, and compare it to the analytical

results. Unfortunately, stochastic simulations are only feasible for metacom-

munities that are relatively small, which then require a relatively high specia-

tion rate in order to produce much diversity in the metacommunity. Also, at

low diversities in small metacommunities, the equilibria are extremely noisy

and it is difficult to recover means that may not differ by a great magnitude.

We simulated neutral dynamics the 10-node network represented in figure 2a,

where Nk = 20000,v = 0.001, and calculated the analytical predictions of the

equivalent system. The results are depicted in supplemental figure 1. Diversity

based on effective numbers of species produces the same pattern as diversity

based on species richness, at least in this region of parameter space.
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Additional results and discussion of complex network node removals.

Due to space limitations, only figures representing limited parameter

space (figure 3) could be presented in the main text. In supplemental figure 3,

we present the relationship between biodiversity loss Λi and complementarity

ci for a broader range of speciation rates. Notice as speciation rate becomes

low, and diversity overall is low (SFig. 3, j-l), relative variation in the ef-

fect of node removal becomes higher, and complementarity explains relatively

more of that variation. This is due to the fact that nodes do vary to some

degree in their effect on biodiversity loss, due to connectivity effects. But

these variations usually account for a difference of a few effective species, and

that effect does not scale up when the system is more diverse overall, which

is why the relative effect becomes reduced in more diverse communities. This

is related to a previous result that found that under extremely restricted mi-

gration regimes gamma diversity could be inflated by n effective species for

an n node metacommunity versus a panmictic metacommunity(Economo and

Keitt, 2008), and the importance of that effect depends on the relative di-

versity of the metacommunity. Removing a node from the metacommunity

can reduce connectivity and increase diversity in this way. In conclusion, for

metacommunities that support a small number of species, as many systems

of conservation interest do, general rules such as maximizing area may break

down. However, also note that when diversities are small, neutral equilibria

are extremely noisy, implying that the mean values studied here may not be

very relevant to a typical realized spatial pattern.
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It is important to quantify the strength of secondary biodiversity loss

across a range of parameter values. To allow for a standardized comparison

when overall diversity levels are changing, we calculate the fraction of total bio-

diversity loss Λi represented by the initial diversity loss (or complementarity,

ci) after removing a single node, at different migration rates. When disper-

sal is at the lowest value, each node essentially becomes a unique community

with maximal complementarity, and the initial pattern correctly predicts the

diversity lost from removal (no secondary effects). As dispersal rate increases

and begin to move species around, spatial patterns form due to differences in

connectivity in different regions of the network. Finally when dispersal is at a

maximum, the metacommunity is essentially panmictic and all nodes appear

to have a diversity similar to the entire metacommunity (lowest complementar-

ity), dramatically underestimating the cost of removing a node. These results

highlight the fact that when dispersal is strong enough to overcome specia-

tion and cause similarity between communities, biodiversity patterns become

increasingly misleading in predicting biodiversity persistence.

Asymmetric Network Analyses

While the focus of this paper is on cases where dispersal between com-

munities is equal in both directions (symmetric networks), many real systems

have migration that is asymmetric, due to wind or water currents, for example.

Offering a full analysis of how asymmetric network structure affects diversity

would be beyond the scope of this paper. Here we simply check that our main
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result- that current diversity patterns across a metacommunity do not predict

well the biodiversity protected, is not sensitive to the assumption of symmetric

dispersal.

When migration is symmetric (often called conservative in the pop-

ulation genetics literature), every individual in the metacommunity has an

equal chance of contributing individuals to the next generation, although the

locations of the offspring individuals may be more uncertain for some nodes

versus others. When migration rate is not symmetric, some individuals con-

tribute a greater or smaller proportion of the individuals in the next gener-

ation. In other words, the effective metacommunity size (in analogy to the

effective population size from population genetics) is reduced. This depresses

metacommunity diversity overall. Individual nodes, through their effects on

migration patterns, can be responsible for lowering or increasing the effective

metacommunity size, so we can expect that removing them may have a more

variable effect on metacommunity diversity than nodes in a metacommunity

with symmetric migration.

I consider whether the current diversity of all patches except i in the

metacommunity (γi) predict long term diversity in that subset (γ′i), after i is

removed and the metacommunity relaxes to a new equilibrium. I generated

a random network with 20 nodes, and an average of 4 connections per node.

Each edge was assigned a weight at random, either 0.01, 0.005, or 0.0001. The

weight for each direction between two nodes were assigned independently. To

vary strength of dispersal, I multiplied all weights by a multiplier, m, which
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varies among the different trials.

In Supplemental Figure 2, we plot the effects of removing each node

in the network, at 9 different migration strengths. The first thing to notice is

that unlike the case of symmetric migration, there is a good deal of variation in

the effects of removing a node. Removing certain nodes cause a dramatic loss

in diversity, while removing others can actually raise effective metacommunity

size and promote diversity. For some parameter values, complementarity has

moderate predictive value of node removal impact (e.g., panel e), while for

others complementarity is wildly off (panels g − i).

In summary, overall current diversity patterns do not predict well the

effects of node removal. However, unlike the case of symmetric migration,

individual nodes can vary dramatically in their effects on metacommunity

diversity. The extent to which such variation can be predicted by network

structure or biodiversity patterns is unknown, and an important goal for future

work.
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Supplemental Figure A.1: A comparison of diversity in the network (a) in
figure 2 analyzed with b) analytical methods in effective species numbers and
c) through simulation in species numbers, with Nk = 20000,v = 0.001, and
m = 0.001. The means in c) are from 3000 time steps sampled regularly over
30000 generations at equilibrium, and the error bars reflect standard deviation.
Numbers in species richness are generally higher than effective species numbers
when abundances are unequal (as is always the case in neutral theory), which
is why the magnitude of diversity in c) is so much higher.
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Supplemental Figure A.2: A comparison of the diversity in metacommunity
without a single node at initial equilibrium, and then after the node is removed
and the subset relaxes to a new equilibrium. The network has 20 nodes and a
randomly assembled topology. In each network, migration rates among pairs
of nodes are variable, but all the weights are multiplied by a value m which
tunes the overall strength of migration in the network.
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