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Abstract 

The role of the dorsal auditory stream in auditory-motor coordination 

Josephine Ferrandino, M.S.Kin 

The University of Texas at Austin, 2021 

Supervisor:  Lisa Griffin 

Rhythmic auditory stimulation is a salient cue used to guide coordinated movement. 

The cortical mechanism that is thought to facilitate auditory-motor coordination involves 

the functional and structural connections of the dorsal auditory stream. The right temporal 

parietal junction acts as a relay center within the dorsal auditory stream, connecting 

auditory and motor cortical areas. Two well studied auditory-motor coordination tasks, 

synchronization and syncopation are reviewed to better understand the role of the dorsal 

stream in motor coordination. Furthermore, the use of non-invasive brain stimulation is 

introduced as a possible method to modulate the flow of information through the auditory 

and motor cortical areas via the dorsal auditory stream. This report aims to set the stage for 

the investigation of the acute behavioral and cortical effects of non-invasive brain 

stimulation on auditory-motor coordination.  
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The role of the dorsal auditory stream in auditory-motor coordination 

Introduction 

For individuals with a movement disorder, rehabilitation interventions are an important 

tool to address the abnormal motor movements that limit functionality and independence 

(Wenning et al. 2005; Hatem et al., 2016). Movement disorders refer to abnormal movements 

that occur as a neurologic symptom of a disease (Hallett, 2018). The motor deficits of common 

movement disorders, such as Parkinson’s disease and Huntington’s disease, are, in part, due to 

the disruption of sensorimotor integration (Latorre et al., 2019). Sensorimotor integration is the 

process by which sensory information is integrated by the central nervous system to shape motor 

planning and execution (Dubbioso et al., 2019) and involves communication across distributed 

sensory and motor brain regions is (Machado et al., 2010; Wilson et al., 2017). Understanding 

the cortical process of sensorimotor integration and its role in facilitating movement will 

contribute to a general understanding of movement disorders and aid in the development of 

effective interventions to correct abnormal movement.  

One example of sensorimotor integration is the coordination of movement with rhythmic 

auditory stimulation (RAS), which is thought to rely upon the rich connections between auditory 

and motor regions of the brain (Chen et al., 2008; Kung et al., 2013; Patel & Iverson, 2014). First 

introduced by Thaut and colleagues (1999), RAS has been used to aid in the coordination of 

movement patterns in individuals with movement disorders. It is well established that there are 

functional and anatomical connections between auditory and motor areas of the brain that are 

thought to facilitate auditory-motor entrainment. Under the concept of entrainment, the rhythmic 

properties of sound perceived by the auditory processing brain areas entrain a synchronized 
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response in motor processing brain areas. However, the neural mechanism by which auditory and 

motor areas of the brain interact to facilitate auditory-motor entrainment is unknown.  

In this report, we provide the background of the use of RAS to improve movement and 

the current understanding of the neural interactions that facilitate auditory-motor entrainment, in 

particular, the flow of information from primary auditory processing areas to more frontal motor 

processing areas via the dorsal auditory stream. The role of the right temporal parietal junction 

(rTPJ) will also be introduced as a potential relay center within the dorsal auditory stream and as 

the conduit through which entrainment occurs through the auditory and motor areas of the dorsal 

auditory stream. The flow of information through the dorsal auditory stream is thought to have a 

favorable impact on rhythmic auditory-motor coordination, especially during tasks that are more 

unstable and that illicit increased engagement of frontal cortical areas. This concept will be 

introduced through the behavioral and neuronal differences identified in two common tapping 

tasks: syncopation (PAT) and synchronization (SYN). This report will also introduce the 

possible application of non-invasive brain stimulation (NIBS) to upregulate cortical activity 

associated with auditory-motor entrainment to enhance auditory-motor coordination. The use of 

NIBS to improve auditory-motor coordination through increased auditory-motor entrainment has 

implications for those undergoing rehabilitation for sensorimotor deficits due to neurological 

movement disorders (Machado et al., 2010; Oliveira et al., 2011; Patel et al., 2014; Wilson et al., 

2017). 
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Rhythmic auditory stimulation can be used to guide coordinated movement 

Tapping with a rhythmic auditory beat reduces variability of movement and is a superior 

cue for guiding coordinated movement compared to other sensory modalities such as vision 

(Essens & Povel, 1985; Jäncke et al., 2000; Chen et al., 2002; Patel et al., 2005; Getchell et al., 

2010; Rohenkohl et al., 2012). Rhythmic auditory stimulation (RAS), presented as a regularly 

occurring beat, has been used in therapeutic settings to facilitate motor coordination (Thaut & 

Abiru, 2010; Bella et al., 2015; Leow et al., 2015). Gait velocity and stride length have been 

shown to improve when RAS was coupled with gait training for a 3-week intervention in patients 

with Parkinson’s disease (Thaut et al., 1996). In another example, when RAS was paired with a 

coordinated walking/clapping task, coordination performance improved (Getchell et al., 2010). 

Similar improvements to coordinated movement occur when RAS training is applied to 

individuals following a stroke (Thaut et al., 2007) and individuals with developmental disorders 

(Getchell et al., 2010; Srinivasan et al., 2015). As an intervention technique, RAS has been used 

to improve motor coordination. 

The success of RAS based interventions on movement is attributed to the relationship 

between auditory and motor areas of the brain and how these regions are functionally and 

structurally connected (Buchsbaum et al., 2005; Friederici, 2009; Thaut, 2013; Patel & Iversen, 

2014; Thaut et al., 2015). The structure of the brain areas involved in auditory processing will be 

introduced, followed by evidence of functional communication. Sound is perceived through the 

auditory system which transforms sound waves into neural activity at the auditory cortex located 

in the superior temporal gyrus (STG). From the primary auditory processing areas in the STG 

region, there is a division in which two separate pathways, which specialize in different aspects 

of auditory processing, terminate in the frontal cortex. The ventral pathway is often referred to as 
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a “what” pathway in which specific features are processed for identification of the auditory 

stimulus, often in context of speech based communication (Zatorre et al., 2004). The ventral 

stream links the STG with the inferior frontal gyrus (IFG) through the inferior fronto-occipital 

fasciculus (Martino et al., 2010), and is involved in identifying features of speech, speech 

comprehension, and the identification of the source and meaning of sound (Rauschecker & Tian, 

2000; Alho et al., 2014). The dorsal pathway is referred to as the “where” pathway and is 

associated with sound localization (Tata & Ward, 2005; Brunetti et al., 2005) or the motion of 

sound in space (Belin & Zatorre, 2000; Arnott et al., 2004), but is also involved in speech and 

language (Hickok & Poeppel, 2000, 2007). The dorsal stream is involved with the organization 

of the temporal aspects of sound involved in auditory-motor integration (Zatorre et al., 2007; 

Hickok et al., 2011; Kornysheva & Schubotz, 2011; Sammler et al., 2015; Yang & Li, 2019). 

The dorsal stream initiates from the posterior STG then to the interior parietal lobule (IPL), then 

continues to the supplementary motor area (SMA), and premotor cortex (PMC) through the 

arcuate fasciculus (Catani et al., 2005; López-Barroso & Diego-Balaguer, 2017). 

While the ventral and the dorsal stream both stem from the STG and terminate in the 

frontal cortex, the dorsal stream in particular creates a connection from the primary auditory 

processing cortical area to motor processing areas such as the SMA and PMC (Blakemore et al., 

1998; Rauschecker & Scott, 2009). The SMA contributes to the organization of the temporal 

properties of actions (Mayvill et al., 2002; Shima & Tanji, 2000) and the motor planning and 

preparation of movements (Gerloff et al., 1997; Schubotz et al., 1999; Macar et al., 1999; 

Schubotz et al., 2000; Jäncke et al., 2000; Macar et al., 2006). Lesions to the SMA disrupt the 

coordination of movement (Stephen et al., 1999). The PMC has a role in action planning and 

control based on external stimuli (Hoshi & Tanji, 2006) and therefore is an important for the 
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integration of auditory information (Chen et al., 2006). The SMA and PMC contribute to the 

planning and preparation of movement guided by the temporal aspects of external stimuli.  

From the SMA and PMC, information is sent to the primary motor cortex (M1) which 

generates the neural signals to control the execution of movement through the activation of 

skeletal muscle (Natali et al., 2020). Fibers of the corticospinal tract originate from the M1, SMA 

and PMC. This tract is the direct pathway from the cortex to the spine and the main pathway for 

the control of voluntary movement. Subcortical areas are also involved in coordinating sensory 

and motor neurons and in generating signals that correspond to movement by interacting with 

motor planning and execution areas of the cortex (Leaver et al., 2009). The cerebellum and basal 

ganglia, along with the thalamus, are involved the timing aspect of motor control (Mayville et 

al., 2002). The basal ganglia organizes the structure of motor tasks. The basal ganglia receives 

input signals from the cerebral cortex. The signals are processed, and an output signal is 

projected to motor neurons of the frontal lobe via the thalamus or to the motor neurons of the 

brainstem. The projected signal contributes to the planning and execution of movement. The 

cerebellum modulates movement and aids in coordination and balance. It receives input from the 

cerebral cortex and the spinal cord. The cerebellar output projections to motor planning and 

execution areas of the cortex via the thalamus. The basal ganglia and cerebellum are active 

during auditory-motor coordination and involved in temporal processing (Mayville et al., 2002). 

These components of the dorsal auditory stream are thought to communicate through the 

entrainment of low frequency cortical oscillations across auditory and motor areas (Kandylaki et 

al., 2016). Cortical oscillations are related to the excitability of populations of neurons across the 

cortex (Sanchez-Vives & McCormick, 2000; Lakatos et al., 2005) and neuronal excitability 

entrained to stimulus onset indicates that sensorimotor neural resources are allocated towards 
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stimulus processing (Lakatos et al., 2008; Henry & Obleser, 2012). Sensorimotor rhythmic 

entrainment may aid in sensorimotor integration, or the process in which sensory input is 

integrated by the central nervous system for motor processing and execution, by enhancing the 

neural processes involved in sensory processing (Henry & Obleser, 2012; Sowinski & Dalla 

Bella, 2013; Tierney & Kraus, 2013; Dalla Bella & Sowinski, 2015; Tierney & Kraus, 2015; 

Colling et al., 2017).  

During RAS, cortical oscillatory activity is entrained with the onset of the stimulus 

through sensory and motor areas of the cortex (Schroeder & Lakatos, 2009; Cravo, Rohenkohl, 

Wyart, & Nobre, 2013). Synchronous event-related activity in the beta frequency band (15-

30Hz) occurs in the PMC and SMA as well as the sensorimotor cortex (SMC) and A1 (Pollok et 

al., 2005; Fujioka et al., 2009; Fujioka et al., 2012; Arnal et al., 2014). The SMC is part of the 

motor system in which movements are controlled through the integration of feedback signals 

from afferent sensory neurons and feedforward signals to descending motor neurons to the 

skeletal muscle (Eskandari et al., 2004). The SMA and PMC are frontal regions of the dorsal 

auditory stream, structurally linked to the A1 through the IPL. The entrainment of cortical 

oscillations across auditory and motor areas facilitates the coordination of movement with RAS 

(Kandylaki et al., 2016). 

The right temporal parietal junction acts as a relay center within the dorsal pathway 

The temporal and frontal regions of the dorsal auditory stream are linked via the inferior 

parietal regions, which is a multimodal integrative hub involved in multisensory processing 

(Hickok & Poeppel, 2000; Hickok et al., 2003; Buchsbaum et al., 2005). One inferior parietal 

region in particular, the right temporal parietal junction (rTPJ), has been identified as a relay 
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center between sensory and motor regions (Corbetta & Shulman, 2002; Jakobs et al., 2012; Hill 

et al., 2017).  

The manipulation of brain activity or altered brain activity due to damage at the rTPJ has 

allowed for inferences to be made of the role of this particular brain region. Individuals with 

lesions at the rTPJ exhibited increased attention to cues that were essentially distractor cues 

compared to individuals with no rTPJ damage (Pedrazzini & Ptak, 2019). Based on this finding, 

the rTPJ plays a role in prioritizing behaviorally relevant stimuli over distractor stimuli that may 

interfere with performance. In another study, NIBS was used to facilitate cortical excitability at 

the rTPJ, this increased the participant’s ability to identify if two rhythmic sequences were the 

same. These findings implicate the role of the rTPJ in processing auditory stimuli (Schaal et al., 

2017). Of interest, is the role of the rTPJ in facilitating the flow of information through the dorsal 

auditory stream. A1 and SMC are two key brain areas activated during RAS that are proposed to 

be connected through the rTPJ. Previous unpublished findings from our lab indicate the rTPJ is 

an intermediate site within the dorsal auditory stream recruited during RAS.  

Synchronized and syncopated movement with rhythmic auditory stimulation mediate 

different neural and behavioral outcomes 

Synchronized (SYN) and syncopated (PAT) tapping are two well defined RAS motor 

coordination tasks. These tasks are simple enough to be performed by most adults yet provide 

insight into how RAS informs and facilitates motor planning and coordinated motor execution 

(Repp et al., 2005). SYN requires the subject to move with a beat while PAT requires the subject 

to move between beats without switching to a SYN pattern. Based on prior evidence, PAT 

requires greater cognitive effort and resource demands compared to SYN (Scholz & Kelso, 1990; 

Mayville et al., 1999). It is not known how the rTPJ contributes to the increased demands of PAT 
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over SYN. However, there is evidence to suggest the dorsal auditory stream is more heavily 

recruited during PAT as discussed later in the section.  

PAT performance is a less stable than performance during SYN (Kelso et al., 1990; Kelso 

et al., 1992). The main measure of stability in SYN and PAT is the standard deviation of relative 

phase (Jantzen et al., 2009). In other words, how consistent the timing of movement is relative to 

the intended target time of movement (on the beat for SYN, off the beat for PAT). Furthermore, 

the kinematics of the finger flexion phase of tapping is more variable for PAT than SYN (Pabst 

& Balasubramaniam, 2018). PAT performance is also more susceptible to reorganization, or 

changing to a new tapping pattern, than SYN performance (Mayville et al., 2002; Repp, 2005; 

Repp & Su, 2013). SYN task performance can be maintained within a frequency range of 0.5-

4Hz, while PAT tasks become increasingly unstable and shift to a SYN pattern around 1.75 – 2.0 

Hz (Bove et al., 2007; Mayville et al., 2001).  

Decreased tapping stability is associated with increased activity in bilateral PMC and SMA 

(Debaere et al., 2004; Jantzen et al., 2009). Furthermore, connectivity between premotor and 

motor cortices increases as movement became more variable (Jantzen et al., 2002; Mayville et 

al., 2002; Jantzen et al., 2004; Jantzen et al., 2009). The cortical activity underlying PAT reflects 

increased planning and preparation demands due to the timing constraint of the off-beat pattern 

(Mayvill et al., 2002). Activity in the basal ganglia and cerebellum also increases for PAT 

compared to SYN (Mayville et al., 2002; Jantzen et al., 2005). When compared to SYN, the 

underlying cortical activity during PAT indicates increased motor planning and preparation 

demands via the recruitment of the frontal regions of the dorsal auditory steam (Jantzen, et al., 

2009; Oullier et al., 2006). A less stable task places a greater demand on the internal processes 
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that organize the temporal aspects of coordinated movement (Debaere et al., 2004; Jantzen et al., 

2009). 

In addition to the heavier recruitment of cortical and subcortical regions, a larger event 

related desynchronization (ERD) in the beta frequency bands occurs in auditory and motor 

regions during PAT compared to SYN (Mayville et al., 2001; Oullier, Jantzen, Steinberg & 

Kelso, 2005). The ERD is captured by the induced response which is time-locked to the event 

but may occur before or after the event, therefore is not phase-locked to the event. The ERD is 

associated with a decrease of synchronized populations of neurons firing in a given frequency 

band (Pfurtscheller & Silva, 1999). A comparatively more robust ERD is also associated with the 

recruitment of additional cortical resources (Jantzen et al., 2001; Pollok et al., 2014) and may 

perhaps relate to the enhanced recruitment of the dorsal auditory stream. These findings 

demonstrate the differences in cortical activation for SYN and PAT, indicating that SYN engages 

a subset of cortical resources engaged during PAT and that PAT is dependent upon the 

recruitment of additional frontal regions to coordinate sound with movement (Carson & Kelso, 

2004; Mayville et al., 2002).  

Based on the literature, PAT is associated with both the recruitment of additional cortical 

areas through the dorsal auditory stream compared to SYN. SYN does not have the same task 

demands and recruits fewer frontal resources compared to PAT and is regarded as a more 

automatic task that is not as dependent on frontal motor planning and execution regions. SYN 

and PAT may serve as proxies for more automatic and more effortful motor tasks in future 

investigation sensorimotor integration and its impact on sensorimotor coordination.   
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Theta burst stimulation has lasting cortical and behavioral effects  

Non-invasive brain stimulation (NIBS) is a tool that has been used to understand the 

impact of cortical areas on cortical functions and behaviors. This report aims to introduce NIBS 

as a potential tool to have an effect on auditory-motor entrainment and auditory-motor 

coordination. Particularly in those tasks that are more reliant on the frontal motor planning and 

execution areas connected to auditory processing areas through the dorsal auditory stream.  

Transcranial magnetic stimulation (TMS) is a common type of NIBS in which a magnetic 

field, directed at brain tissue, depolarizes nerve cells via induced electric currents. When applied 

repetitively (rTMS), it causes acute changes in the post-synaptic response to stimulation, 

resulting in long-term potentiation and depression like effects (LTP/LTD) (Siebner & Rothwell, 

2003; Teo et al., 2007; Huang et al., 2007; Wankerl et al., 2010; Cardenas-Morales et al., 2011). 

The after-effects of rTMS, to suppress or facilitate corticospinal excitability, is dependent on the 

location, frequency, duration, intensity, and pattern of pulses. (Chen et al., 1997; Chen & Seitz, 

2001; Quartarone et al., 2005; Rounis et al., 2005; Huerta & Volpe, 2009; Fitzgerald; 2006). 

Additionally, variability in baseline cortical and behavioral levels between subjects has been 

used to account for the after-effects of rTMS (Lopez-Alonso et al., 2014; Vallence et al., 2015).  

A well reported measure of the after-effects of rTMS is the motor -evoked potential 

(MEP), a measure of corticospinal excitability through the corticospinal tract which connects M1 

to a corresponding muscle. MEPs are a measurable twitch in the muscle due to descending 

volleys in corticospinal neurons (Burke et al., 1993). They are used as a peripheral indicator of 

corticospinal excitability.  A single TMS pulse is delivered to the corresponding M1connected 

upstream from the muscle of interest, creating a MEP which can be measured at the muscle using 

electromyography (EMG). An increase in MEP size indicates increased corticospinal excitability 
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and a facilitated response while a decrease indicates suppressed corticospinal excitability (Maeda 

et al., 2000; Peinemann et al., 2004). While, MEPs provide insight to cortical activity they are 

limited to M1 interpretation and can also be modulated by interneurons and corticospinal tract 

excitability. The MEP is limited in that it is a peripheral measure and can only be used to 

measure corticospinal at the muscle. The MEP not only reflects the neuromuscular synapses but 

also the synapses onto corticospinal neurons and the synapses onto motor neurons of the spinal 

cord. Measures of cortical activity across the cortex have also been used to address this limitation 

and provide a more direct measure of after-effects of rTMS on cortical activity (Chen et al., 

1997; Hallett, 2000; Maeda et al., 2000; Nyffeler et al., 2006; Lefaucheur et al., 2014). 

Furthermore, the data gathered from neuroimaging can be used to assess cortical excitability 

across the cortex as well as changes within a distributed cortical network (Esser et al., 2006; Yoo 

et al., 2008).  

Theta burst stimulation (TBS), a type of patterned rTMS, has been shown to maximize 

post-stimulus effects compared to other forms of rTMS. It can also be applied in a shorter 

amount of time while eliciting similar effects (Cárdenas-Morales et al., 2010; DiLazzaro et al., 

2011; Veniero et al., 2019). TBS is a sub-maximal (70-90% of resting or active motor threshold) 

is most commonly used (Suppa et al., 2016) intensity burst of 3 pulses at 50Hz repeated 5 times 

per second continuously (cTBS) or intermittently (iTBS). TBS is also well tolerated, with the 

most common reported side effect being a mild headache that dissipates soon after stimulation 

(Oberman et al., 2011). TBS induced changes have been reported at the behavioral level (He et 

al., 2013; Mancini et al., 2017), peripheral level (Zafar, Paulus & Sommer, 2008; Chung et al., 

2016), and cortical level (Marshall et al., 2015; Chung et al., 2017). We will discuss the 
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conception of TBS along with findings that contribute to the current understanding of its effect 

of brain and behavior.  

iTBS is a common type of TBS and consists of a 2s train of pulses followed by 8s of rest 

while cTBS is one long train of stimulation (Huang et al., 2005). TBS was designed to mimic the 

theta discharge pattern of hippocampal cells in exploring rats (Skaggs et al., 1996; Suppa et al., 

2016) and has been shown to lead to long-term potentiation (LTP), or a lasting increases in 

synaptic strength measured by electrical stimulation of pre-synaptic neurons, in the rodent 

hippocampus (Larson & Munkacsy, 2015) and motor cortex (Hess et al., 1996). A single TMS 

pulse activates both excitatory and inhibitory interneurons that synapse on corticospinal cells. An 

excitatory post-synaptic potential (EPSP) occurs due to the release of pre-synaptic glutamate 

which activates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and 

depolarizes the neuron. An inhibitory post-synaptic potential (IPSP) occurs due to the release of 

pre-synaptic gamma-aminobutyric acid (GABA) binding to the post-synaptic GABA-A receptors 

and hyperpolarizing the cell. As the theta pulses continue, the release of GABA is suppressed 

and IPSPs are reduced. This allows for the EPSPs to have a prolonged depolarizing effect, which 

induces an influx of Ca2+ through the post-synaptic NMDA receptor to the postsynaptic dendrite 

spine, leading to further depolarization and long-lasting changes in synaptic strength (Larson & 

Munkascy, 2015; Suppa et al., 2016). The summation of excitatory effects outweigh the 

inhibitory effects and are proposed to contribute to the LTP-like effects of iTBS (Larson & 

Munkascy, 2015). When theta burst pulses are applied in a continuous long train, as with cTBS, 

the inhibitory effects are thought to outweigh the excitatory effects leading to LTD-like synaptic 

suppression (Suppa et al., 2016). This is supported by stimulation of hippocampal slices in which 

the same number of theta burst pulses facilitated the synaptic response after iTBS but suppress 
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the synaptic response after cTBS (Larson & Munkascy, 2015). Additionally, when NMDA 

receptors and Ca2+ are blocked so too are the effects of TBS, indicating that TBS is involved in 

LTP/LTD (Teo et al., 2007; Huang et al., 2007; Wankerl et al., 2010). The post-synaptic 

response used to assess LTP and LTD is recorded on the cellular level between a presynaptic 

stimulation and a post-synaptic response.  

MEPs have been used to infer LTP and LTD like effects of TBS in humans (Suppa et al., 

2016). Huang and colleagues (2005) were the first to establish the effects of TBS in humans. 

CTBS was applied to the primary motor cortex (M1) for a continuous 40s while iTBS was 

applied for 2s every 10s for a total of 192s. Corticospinal excitability was assessed post-TBS by 

applying a TMS pulse to the stimulated M1 and measuring the motor evoked potential (MEP) via 

EMG amplitude in a small muscle of the hand. MEPs were suppressed after cTBS and facilitated 

after iTBS, indicating LTD and LTP-like effects respectively. Similar findings have been 

reported in adults and children (Teo et al., 2007; DiLazzaro et al., 2008; Suppa et al., 2008; 

DiLazzaro et al., 2011; Doeltgen & Ridding, 2011; Cardenas-Morales et al., 2011; Nettekoven et 

al., 2014; Chung et al., 2015; Pedapati et al., 2015). The generalization that iTBS elicits LTP-like 

effects by facilitating synaptic transmission, while cTBS generates LTD like effects by 

suppressing synaptic transmission is mainly supported by MEP responses after stimulation of the 

motor cortex (Suppa et al., 2008; Chung et al., 2016).  

Neuroimaging tools allow for more direct measures of cortical activity at the site of 

stimulation and have been used to investigate the distributed effects of TBS. iTBS to the 

dorsolateral prefrontal cortex (DLPFC) increases evoked theta (4-8Hz) band power in the 

prefrontal region in response to a single TMS pulse, while theta power decreased in response to 

cTBS (Chung et al., 2017). iTBS to the DLPFC has also been shown to modulate theta band 
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power in frontal and parietal cortical areas paired with improved performance on a working 

memory n-back task (Hoy et al., 2016). iTBS over the motor cortex has been shown to enhance 

choice reaction time and decrease the cortical response in bilateral primary motor cortex (M1) 

and primary sensory cortex (S1) during the reaction time motor response (Cardenas-Morales et 

al., 2011). The results suggest that the transmission of neural activity from the motor cortex to 

the muscle was facilitated by iTBS modulation of neural activity as explained by the decrease 

cortical response. While these studies provide evidence that iTBS facilitates the transmission of 

information throughout cortical regions that may contribute to a task specific network, little is 

known about the potential to modulate network activity through the dorsal auditory stream. 

Furthermore, the application of iTBS results in different outcomes depending upon the 

stimulation parameters. The most common application of TBS is based on the methods put 

forward by Huang and colleagues (2005) – the intermittent or continuous theta burst pattern for a 

total of 600 pulses at 80% of active motor threshold (Oberman et al., 2012; Suppa et al., 2016). 

Increasing stimulation duration has had mixed results. Multiple doses of iTBS, applied in three 

blocks of 600 pulses each separated by 15 minutes, has been shown to have an additive effect on 

MEP amplitude (Nettekoven et al., 2014). In another study, increasing the total number of pulses 

from 600 to 1200 using a prolonged method with no separation reversed the effects on MEP after 

iTBS/cTBS to the M1 (Gamboa et al., 2010). However, the reversal of MEP effects after 1200 

pulses of iTBS/cTBS to the M1 did not occur in a study by Hsu and colleagues (2011). The 

differences may have been due to pre-TBS activities. In the first study isometric muscle 

contraction occurred for five minutes before the application TBS. Contraction immediately 

before (Iezzi et al., 2008) or after (Huang et al., 2008) TBS has been shown to reverse the 

expected effects of TBS to the M1 on MEP. This effect may be due to rapid polarity-reversing 
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meta-plasticity, in which changes in synaptic efficacy (LTP or LTD) occur (Genttner et a., 2008; 

Suppa et al., 2016).  

The other parameters of TBS that have been manipulated are the stimulation intensity and 

the frequency of stimulation. These parameters can be adjusted based on the individual. Not all 

individuals are considered “responders” to a given NIBS intervention. NIBS effects may be 

mediated by human factors such as menstrual cycle phase (Smith et al., 1999) or cortical 

thickness (Conde et al., 2012) which contribute to variability of results. In the case of TBS, there 

are reports of both inter and intra-variability responses to iTBS (Lopez-Alonso et al., 2014; 

Hinder et al., 2014; Vallence et al., 2015). It is common to have a standardization of stimulation 

intensity based on the individual’s active or resting motor threshold (Suppa et al., 2016). For 

iTBS, stimulation intensity has been shown to have an effect on outcome. iTBS applied over 

prefrontal cortex at 50, 75, and 100% of resting MT had the greatest effect on neurophysiological 

changes and changes to working memory at 75% resting MT (Chung et al., 2018). Inter-

participant variability has also been addressed by matching the frequency of stimulation to an 

individualized target frequency (Brownjohn et al., 2013).  

Concluding remarks  

The auditory dorsal stream facilitates the pairing of sensory and motor signals 

(Rauschecker, 2007; Rauschecker & Scott, 2009). RAS promotes sensorimotor integration 

processing and the coordination of motor responses by entraining neuronal excitability to the 

stimulus onset through functionally and structurally connected auditory and motor areas of the 

dorsal stream. Communication through the dorsal auditory stream may be a contributing factor in 

the coordination of movement with RAS. It is thought that the rTPJ is involved in relaying 

information from auditory to motor regions in the dorsal auditory stream. Further research is 
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needed on the involvement of the rTPJ in the communication between auditory and motor brain 

regions and the implication of such involvement on RAS-mediated changes on coordinated 

behavior. One possible avenue is the implementation of non-invasive brain stimulation, namely 

iTBS, to investigate faciliatory auditory-motor neural mechanisms with the added goal of 

upregulating auditory-motor activity associated with sensorimotor integration and the 

coordination of movement with RAS.  
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