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ProGENitor : An Application to Guide Your Career

Erich Jurg Hauptli, M.S.E.

The University of Texas at Austin, 2014

Supervisor: Adnan Aziz

This report introduces ProGENitor; a system to empower individuals with

career advice based on vast amounts of data. Specifically, it develops a machine

learning algorithm that shows users how to efficiently reached specific career

goals based upon the histories of other users. A reference implementation of

this algorithm is presented, along with experimental results that show that it

provides quality actionable intelligence to users.
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Chapter 1

Introduction

1.1 Motivation

Navigating a career can be a difficult endeavor. Individuals and corpo-

rations not only have to keep up with a daily demands, but they also have to

look to the future to advance, grow, and prepare for unseen demands. Knowing

how to prepare directly impacts how successful an individual or corporation is

in the future. Focusing on the wrong preparation and training wastes time, ef-

fort, and can impact motivation. This costs companies and individuals money,

lost time, and missed opportunities. ProGENitor was designed to empower

users with information about where they could take their careers and how to

actually reach their career goals. It does this by processing vast amounts of

data from a career database. This data is then turned into a career path graph

that shows users how to reach a job and provides insights into the paths that

are most likely to achieve the end goal. This vast amount of data exists today

within social sites such as LinkedIN, but the data is not used in a fashion that

empowers end users to make career decisions. ProGENitor fills this gap and

can be used to assist individuals and companies in targeting efforts towards

the most effective actions to achieving a career goal or advancement.
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1.2 Project Overview

ProGENitor is built on the vision of providing end users with actionable

data to make career decisions through the analysis of vast amounts of career

data. It does this by consuming data from career databases, processing it

using the algorithms presented within this paper and through an open source

tool called Weka. The Weka tool set analyzes the data that is passed to it

and draws complex associations between the data using predefined algorithms.

The actual implementation of the algorithms used by ProGENitor will be

demonstrated through a proof of concept project. A benchmarking study

will be presented to further analyze the results. This paper will show that

ProGENitor can present a user with a complete career path graph based off

of a simple query. Additionally, it will show that the user will be able to dig

deeper into the graph to obtain further insights into which actions within the

graph have the most significant impact to reaching a career goal. Additionally,

using the Weka tool, it will also be demonstrated that a combination of actions

may also be required to achieve the user targeted career goal.

1.3 Sample Applications

ProGENitor is an application that can be setup to parse through a vast

amount of data to provide insights into an individuals career. It can easily

be integrated into large scale social platform such as LinkedIN or a smaller

scale corporate database. This provides it with two core applications, which

are discussed in detail in Sections 1.3.1 and 1.3.2.
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1.3.1 Individual Career Planning

ProGENitor is an excellent tool to assist an individual in their own

career planning. Implemented in a social networking framework, ProGENitor

can use the vast amount of data in the site to provide individuals with guidance

towards meeting a specific goal.

For example, consider Tom the engineer. Tom wishes to some day be

the lead engineer on his own project. Using ProGENitor, he could pass a job

title such as Chief Engineer into ProGENitor. He would then be presented

with a graph showing how other users within the social network achieved this

goal. The most common paths would be stand out in the graph and the

significant details about each job or education vertex could be displayed upon

request. Finally, through Weka analytics, certain combinations of decisions

would also be presented if they had a significant impact in achieving Tom’s

goal of becoming a Chief Engineer. Tom could then use this information to

make an educated decision about what actions might get him to his career

goals fastest.

1.3.2 Skill Identification

A corporation could use ProGENitor to ensure that talent was always

available to fill the jobs that were needed by the company. The company could

add performance review data into the database and then start identifying

traits about successful employees. This information could then be used to

make hiring decisions. Additionally, managers could use the feedback from

3



ProGENitor to help guide their employees into gaining experience to aid them

in moving into key roles.

For example, Carole, a manager at a large technology firm, has to

counsel employees in their careers and fill an already existing job vacancy.

ProGENitor would improve her hiring decisions by identifying what skills and

traits make employees successful in her team and company. When she is

preparing to help guide employees on their career paths, ProGENitor would

help her provide concrete suggestions of actions the employee could take to

achieve career goals. The ProGENitor results would benefit Carole’s company

by helping create better trained and more satisfied employees.

1.3.3 Financial Benefits

ProGENitor would financially benefit companies by increasing the total

data they obtained from the user base. Data has become another form of

currency in the digital age and there are many ways companies profit from it.

If users see a direct advantage to adding to their profiles and updating data

about themselves they will likely do so. This means companies and social

networks will increase the amount of data collected and then be able to use

it for other applications beyond ProGENitor. For instance, LinkedIN collects

a vast amount of data about its users, but would likely benefit from having

even more information, as they could then better target their services and

advertisements towards their users.
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1.4 Contributions

This paper provides four key contributions. First, it details the vision of

ProGENitor, an application to empower users to make career decisions based

on large data sets. Second, it provides the algorithms to generate the data

used make these decisions. Third, it shows the results of these algorithms

and discusses the presentation to the user. Lastly, the performance of the

application is presented through a benchmarking study.

1.5 Report Organization

This report will be broken into five chapters, including this chapter. In

Chapter 2, the project architecture will be further discussed, as well as the

choices behind the technology stacks used. In Chapter 3, the algorithms and

implementation will be stepped through in detail. Chapter 4 will present the

results and present some software engineering metrics regarding the overall

project. Finally, Chapter 5 will discuss the project as a whole, other related

work, and future work.
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Chapter 2

Architecture

2.1 High Level Architecture

ProGENitor is broken into several different pieces of code. To place

a call to ProGENitor, the user must send a query and a query type when

starting the application. This query is typically a job title that the user wishes

to reach. The query is then passed to the database block which will fetch data

from the database. The data in the database is loaded with synthetic data

for testing purposes, but could easily be replaced with an actual database.

The fetched data would then be passed to a block of code, that processes

the data to produce a career path graph and then extracts the significant

information about the graph points. Additional information is also extracted

by a tool called Weka, which is a collection of machine learning algorithms for

data mining tasks. Weka is used to provide more complex insights into the

combinations of data points that may be relevant to reaching the queried goal.

This data is then returned to the user in a data object that can be rendered

by a user interface. See Figure 2.1 for a representation of this sequence.
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Figure 2.1: High Level Architecture

2.1.1 Overall Technology Stack

All of the code for ProGENitor is written in Java except for the syn-

thetic data generation code which is written in Perl. Java was selected because

the code needed to interface well with web applications and pages. Java is eas-

ily run through web interfaces and can easily pass data by passing JSON [3]

Objects. Additionally, Java interfaces well with databases. As this project

does a lot of database scraping this was very important.

2.2 Database Architecture

MySQL Interface Data Collection-

User Interface

Figure 2.2: Database Block Diagram

As depicted above in Figure 2.2, the ProGENitor database code is

designed around a MySQL database. The code is modular, so that any alter-

nate database type can be inserted to allow for a quick transition to another

7



database architecture. Currently the database is broken into four different

tables, but more can easily be added if necessary. These databases contain in-

formation on each individual user, user job history, user education history, and

a listing of all of the headers for each database. The database SQL code allows

for reading from, writing to, and creating the databases. The user wrapper

creates a single point for the SQL interface that would need to be modified

to support a change in the database architecture. Additionally, the wrapper

provides some basic query commands to pull data from the database, based

on a search field. It can also extract Meta data about the databases. The

database is then pulled through a data collection package, which pulls data

based on either a similar query field, vertex, or user id.

2.2.1 Database Technology Stack

The MySQL database was chosen as it is relatively easy to learn and

manage. The goal was to quickly setup a database with minimal effort, so that

the core of the project, career data analytics, could be focused on. In many

instances, databases containing career information, such as LinkedIN have

chosen to go the NoSQL route as these databases are better for unstructured

data. For instance, LinkedIN uses a database called Sensei [15], which is a

NoSQL based database. Many NoSQL databases are proprietary, where as

the MySQL database follows a standard that the entire database community

is familiar with. Thus, ProGENitor was built around a MySQL database, as

many of the interface commands are similar for both NoSQL and MySQL.
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Also MySQL is more widely known, standardized, and simpler to learn for

someone new to databases.

2.3 Synthetic Data Architecture

To test and run ProGENitor, a database with data must be present.

As there was not an existing one readily available, synthetic data needed to

be generated and populated into a database. The SQL code allows for a file

containing comma separated values to be loaded into the database. Thus, code

to generate this file with meaningful data was required.

A Perl program was written to generate an uploadable data file. Each

line in the data file first indicates the database the line should be loaded into

and then the user id the data is associated with. Each individual user is as-

sumed to have a distinct user id. The subsequent data in each row is built off

a random selection from an array of data for each column. For example, when

generating the university for a particular user’s education vertex, a text file

containing potential universities is loaded into an array and then the value is

randomly selected from the array. This is done for each piece of data loaded

into the database, such that the database looks like it contains real user data.

The randomness can be controlled and particular elements can be weighted

so they show up more frequently. Additionally, the paths and frequency users

traverse through vertices can also be adjusted through variables and the con-

tent within the text files. This process will be stepped through in detail in

Chapter 3.
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2.3.1 Mock Data Technology Stack

Perl was the language chosen for the data generation for multiple rea-

sons. The language excels at text manipulation. The regular expressions are

excellent, as are the array processing capabilities. As Perl is a scripting lan-

guage, it is not bound by the many rules surrounding an object orientated

language. Thus, there was no need to keep track of variable types and the

code required to do many things was much more concise. The language also

very easily manipulates files. For all of these reasons, creating the data set

to be loaded into the database could be done quickly and easily through Perl

scripting.

2.4 Career Path Architecture

Once the databases are established and loaded, the real work can begin.

ProGENitor takes in a request query and then using the career path modules,

graphs out the similar career paths taken by others who traversed through

the query point. ProGENitor uses basic graph theory [11] where it treats all

significant events as vertices and all of the transitions between these events as

edges. It also provides details about what was special about these individuals,

as they went through each vertex of their lives. Then, through Weka, the code

draws out the complex events that had the largest impact towards the the

users passing through the query point. One advantage to using graph theory

to present the results is that most of the end customers for ProGENitor will

be very familiar with this type of data. As many of these customers will be

10



social sites, which essentially operate off of graph theory as well [13], the end

users should be well accustom to the results and potentially may already have

a method to render the data.

As depicted in Figure 2.3, the code is broken into four pieces. One

piece gathers all of the vertices and defines the important edges between the

vertices. Another piece of the code looks at the many different edges and

attempts to order the vertices in a manner that they can be graphed from left

to right without a lot of confusing edge crossings. A third piece of code extracts

the data about each vertex and identifies the significant pieces of information

that separate the users that reached the queried goal from everyone else who

passed through the vertex but did not reach the goal. Finally, the last piece of

code, uses Weka to extract the complex action or actions that had the greatest

significance in causing the users to pass through the query point.

User Query - Data Collection
B
B
B
B
B
B
BN

HHHj

��
�*

�
�
�
�
�
�
��

Edges

Vertex Ordering

Vertex Details

Weka

J
J
J
J
J
J
Ĵ

HHHj

�
��*














�

Results

Figure 2.3: Career Path Block Diagram
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2.4.1 Career Path Technology Stack

As detailed in Chapter 1, the code is written in Java. As the code

for the graphing can only show users paths taken and important pieces of

data along the way, Weka code was added to also derive insights based on

combinations of data. Machine learning based on data can be very math

intensive and complex. There are many different ways of looking at data sets.

To simplify this, the Weka tool set was used in this project. The tool set

has many different algorithms that can be easily implemented and applied. In

the case of ProGENitor, Weka has only been applied to the education data;

however, it could easily be expanded to analyze additional data, such as the

data about jobs. Weka was chosen as it has a well designed Java API and

is open source. One good alternative that could have been used in place

of Weka is RapidMiner. Weka was chosen for the implementation as there is

significant documentation surrounding both tool sets and RapidMiner’s largest

advantage, the graphical interface, is not applicable.

12



Chapter 3

Implementation

As outlined in the Chapter 2, ProGENitor is made up of several differ-

ent sections. It contains a database framework to draw data for analysis. It

has a tool to generate synthetic data for testing. The core tool contains al-

gorithms to map out career paths and show important points along the path.

It also uses Weka to draw some insights about the data that the mapping

algorithms may fail to capture. ProGENitor would then return the results in

an object such that a user interface could render the information to an end

user.

3.1 Database

As ProGENitor needed a method to pull large amounts of data off the

back end server database, a method had to be implemented that interfaced

with the database. MySQL was chosen as it is open source, widely used,

and fairly easy to quickly learn. Once the MySQL interface was established

a wrapper was added such that another database method could be inserted

without a significant work effort in the rest of the code. Then, through this

wrapper, the many different function calls were implemented to collect the

13



data needed to generate the career path graph and derive any further insights

through Weka.

3.1.1 Database Interface

To greatly simplify this work, a predefined library was added to the

project. The library allows for easy access to a database for creating, reading

from, writing to, and querying the database. In the case of ProGENitor, once

the library was added, the code was very straight forward. Through a couple

commands, the code established the database connection, ran the specified

query or other command, and collected the returned data [6]. Using the li-

brary allowed the interface to quickly add in functions to create a database,

collect query matches from the database, upload lines and files to the database,

modify lines within the database, and even pull the entire database. With

these functions in place, ProGENitor easily and quickly can access any de-

fined database. In the case of ProGENitor, four tables were generated; one

for user profile data, one for education data, one for job data, and finally one

that contains the headers of the other tables. If, in the future, additional ta-

bles are needed, ProGENitor can easily add them. Additionally, as the SQL

commands are standard commands, the interface can easily be replaced with

another database interface or expanded upon by anyone familiar with a SQL

language.

14



3.1.2 User Wrapper

As previously stated, it was desired that ProGENitor be setup such that

it was easy to swap out the database interface with another interface. Thus,

the user interface wrapper was written to call the various SQL commands. If

in the future, the database needed to be changed, the work to do so would

reside in adding the database interface and changing the user interface wrapper

to point to the new database. The wrapper also adds in commands that

make interfacing with the code a bit more clear. Commands such as add

user, database setup, query matching users, and return headers all allow users

working through other portions of code to understand what the function calls

are actually doing and do not require the developer to necessarily understand

the database interface commands. Then using these commands, ProGENitor

can collect data that it passes along to be processed by the career path graphing

and Weka packages.

3.1.3 Data Collection

With the wrapper and SQL interface in place, ProGENitor then im-

plements a couple different calls to gather data to be analyzed. The first of

these calls code that polls the data base for all users that match the query field

value passed to the method. This method then returns the user IDs in a set

for all of the users that matched the query. The next data collection method

available does the same function, but instead returns all of the matching data

in a list. The final data collection method available returns a list containing

15



all of the data associated with the set of IDs passed to the method. These

methods are all very similar, but allow for easy data collection by the career

path graphing and Weka methods.

3.2 Synthetic Data

As most end user’s databases are not easily accessible and having con-

trol over the data in databases allows for better testing, generating synthetic

data that is then loaded into a local database was chosen for ProGENitor de-

velopment. ProGENitor is easily attached to any other databases, so this only

speeds up the development process. To generate this data, a script was written

that consumes various data files containing possible data values and then ran-

domly selects from these values to populate the database. The number of users

generated and other variables are also controllable within the script. Once the

script completes it outputs a file containing all of the user data, which can

then be uploaded to the database through the database architecture included

with ProGENitor.

3.2.1 Data Files

To allow for easily updatable synthetic data, separate data files were

implemented. This was done so that the values weren’t embedded deep within

the data generation code. There are two different types of data files. The

first type simply contains a list of all possible values. These values are then

simply loaded into an array by the data generation script. Then, the script

16



randomly selects from the array when it needs one of these values. The second

type contains a listing of possible values dependant on a previous value. For

example, in the line below, to get a Master’s Degree in Circuits or Computer

Systems, the user must first obtain a Bachelor’s Degree in Electrical.

Electrical:Circuits,Computer Systems

Thus, the code will search the second file type for the line that meets the

dependency. Once the line is found, it will load the possible values into an

array and then randomly select from one of these values.

3.2.2 Random Selection

There are two places the code must randomly select data. The first is

the data that is loaded for each vertex. This random selection simply places

the data from one of the data files into an array and uses a standard random

function to randomly select an array index value to pull the data from. This

data is then applied to the individual user’s vertex. When the vertex has

all necessary data generated, it is loaded into the data file to be loaded into

the database. In testing, to force a particular piece of data to occur more

frequently, simply placing it multiple times into the data files will increase the

frequency that it will show up in the user data.

The second place that code must randomly select data is when it is

determining if a user enters a vertex or not on each pass. There are four
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possible types of vertices that a user could enter during each loop. In each

pass of the loop, they could potentially enter up to all of the vertices. These

vertices are an undergraduate degree, a master’s degree, a PhD, and a job. For

each of these vertices, a chance value is assigned in the variables at the top

of the script. Then essentially a ten sided dice is rolled at each vertex, this is

done by loading values 1 through 10 into an array and applying the standard

random function to the array. If the dice roll is greater than the predefined

chance variable value, the vertex is entered and data is generated. When any

vertex is entered, all educational chance variable values are incremented by

1. This means it is much less likely someone will get an advanced degree as

their career progresses. Additionally, each educational degree level is currently

limited to one degree and requires the previous level have been completed. All

of these variables are adjustable in the code; so many different scenarios can

be generated.

3.2.3 Code Flow

Once the data files and random data selection is understood, the code

flow is relatively straight forward. The code steps through the data, section

by section, generating data for each user and then stores it in a data file that

can later be uploaded into the database. Figure 3.1 depicts this process.
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Initialize Tunable Vari-
ables, pull in data files

Increment ID

Generate User Profile Data

Calculate Years left in work-
force/higher education

If UG, generate ran-
dom bachelor’s degree

If MS, generate ran-
dom master’s degree

If PhD, generate ran-
dom PhD information

If Job, generate ran-
dom job information

Store User Informa-
tion to Data File

While time remaining
in workforce

Until User ID = # Users

Figure 3.1: High Level Data Generation
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3.3 Career Paths

The goal of the career paths module is to generate data, such that a

web user interface could generate a graph of the career paths taken to reach the

specified career goal. The vertex edge transitions along with the edge transition

frequencies are returned to the user interface as objects. Additionally, the

vertex ordering and information about each individual vertex is also returned

in an object. This information can then be used to generate a graph depicting

various ways of achieving a career goal.

An example of one of these graphs depicted in Figure 3.2, which shows

various interconnected vertices that eventually arrive at the goal vertex. The

vertices are arranged such that the user most likely travels from left to right,

but the occasional infrequently traveled transition may flow in the reverse

direction. In this example, the frequency that the edge is traveled is depicted

through line thickness. This is done so that a visual representation is available

to show approximately how many of the total returned users transition from

one vertex to another. A dotted line would be the least frequently traveled

edge, then a dashed line, a thin line, and finally the most frequently traveled

edge would be the thick line.

Each vertex would then be able to display the individual vertex infor-

mation upon user request; either through clicking on the vertex or through

some other user action. Note, that ProGENitor does not limit the method

in which the user interface is displayed; it simply passes back statistical in-

formation about the vertices, the transitions between each vertex, and the
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individual data about each vertex. It is up to the web user interface developer

to determine how the end product is rendered.

Bachelors

Masters

Draftsman

PhD

Architect

Lead
Architect

Partner

Figure 3.2: Career Path Graph

3.3.1 Graph Edges

The graph edges portion of code finds all of the vertices that users pass

through and the order at which they pass through them. It then tallies the

number of times all of the users pass along each transition path to allow for

the career path graph to depict not only the point to point connections, but

also how frequently that edge is traveled. The high level process to generate

this graph interconnection data is depicted in Figure 3.3.
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Pull all relevant data

IF
transition

is new, add
to storage

array

ELSE
increment
counter for
transition
in storage

array

Generate return
object and list

For each vertex transition

Figure 3.3: High Level Graph Edge Generation

The process flow in defining and counting these edges is listed in detail below:

Graph Edge Generation:

1. For each ID passed to edge generation module:

(a) Pull job data and add it to the vertices list.

(b) Pull education data and add it to the vertices list.

(c) Set Min equal to Max Integer and Max equal to MIN Integer.
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(d) For each element of the vertices list:

i. If date of data for element of vertices is less than Min and more

than Max, store the data and set Min equal to date of data.

ii. After all elements of vertices list considered, add stored data

to user list and set Max equal to Min.

(e) For each element of user list:

i. If A is NULL, set A equal to user element vertex name.

ii. Else set B equal to A and set A equal to user element vertex

name.

iii. If edges list is empty, add B,A,1 to edges list.

iv. Else check if B,A exists in the edges list:

A. If it exists, increment the counter of the row.

B. If it does not exist, add B,A,1 to the edges list.

2. Push edges list containing all graph transitions and transition counts to

an object containing an array.

3. Return both the list and the object.

3.3.2 Vertex Ordering

The vertex ordering portion of code sorts the vertices such that the

major transitions flow in order from start to finish. It does this so that the

flow of transitions can be graphed in a manner that is not overly confusing.
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Figure 3.4 shows the high level process that the code follows to generate the

vertex groupings. These groupings can then be fed to the end user interface

to order the vertices in a fashion that shows the typical flow of careers that

reach the destination goal.

Generate set
of all vertices

Find worst
input and

output
transitions

Store worst
transition edges

Identify start-
ing vertices

Group
vertices
based on
prior con-
nections

Store vertex
grouping in list

Return vertex
ordering as

object and list

For Each Vertex

For Remaining Vertices

Figure 3.4: High Level Vertex Order Generation
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The process flow in defining the vertex ordering for the vertices is listed in

detail below:

Vertex Ordering Generation:

1. Generate set of all vertices

2. For each vertex in set:

(a) Initialize transitional weight to 0.

(b) For each element of the graph edge list:

i. Check if vertex matches the input vertex.

ii. Check if the number of transitions to the vertex is greater than

the transitional weight.

iii. If both checks are true; set the transitional weight to the current

list line’s number of transitions.

iv. Also, if both checks are true; store this list line.

(c) After the worst input transition is found for the vertex, store it in

the heavy edges set.

(d) Repeat this entire step for the output vertices.

3. For each heavy edge element, search the graph edge list for input vertices

that are also destination vertices.

(a) Any vertices not found are set as start vertices.
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(b) Repeat this step for output vertices that are also starting vertices.

Any vertices not found are set as ending vertices.

4. Add all the starting vertices to vertex 0 and add them to the vertex store

set.

5. Add all vertices that are not starting vertices to the remaining vertices

set.

6. Increment the group number to 1.

7. Until the remaining vertices set is empty, loop through the following

steps.

(a) For each vertex in vertex store, store all destination vertices in a

set that vertex in vertex store transitions to.

(b) For each destination vertex stored in the previous step, find all

possible next destination vertices and check if they are contained

within the set generated in the previous step.

i. If one is contained within the previously generated set, remove

the vertex from the set.

(c) Add remaining vertices to next vertex grouping. Also remove re-

maining vertices from remaining vertices set.

(d) Add the vertex group to the vertex return list.

(e) Increment the group number.
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(f) Replace the vertices in the starting vertices set with the vertices

that were just added to a group.

8. Generate an object containing an array of the vertex groupings from the

vertex return list.

9. Return both the object and the vertex return list.

3.3.3 Vertex Details

Presenting all of the potential information would overwhelm any user

interface, so instead many of the details are buried within each vertex and can

be queried by the end user, by selecting the vertex of interest. As each vertex

contains additional details such as the place of employment or education, time

spent at the school or job, or any other vertex relevant pieces of information;

the data must be either gathered upon user request or each vertex must be

pulled concurrently, as to not slow down the overall graph generation. Once

the request is made, the data about the individuals who reached the goal vertex

and the data about all of the users who did not, but still passed through a

particular vertex are pulled. This is done because both the users who reached

the goal and the users who did not need to be considered to determine what

relevant pieces of data contributed to a user reaching the end goal. This data

is then broken down into a statistic for both cases and compared against each

other to determine if something occurred more frequently for the users who

reached the goal vertex versus those who had not. This way any significant

differences could be raised to the end user’s attention as potentially important
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steps to reaching the final goal. The high level process to generating this data

is depicted in Figure 3.5.

Pull relevant and
all vertex data

Count occurrences of
each data instance

Calculate percent-
age of occurrence
for each instance

Compare each
relevant data oc-
currence to each

all data occurance

IF relevant
is more than
five percent

greater than all

Flag relevant data oc-
currence as significant

Return object and list
containing relative

percentage vertex data

For each data column

For each data occurrence

Figure 3.5: High Level Vertex Detail Generation
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The process flow in defining the details and significant details for each vertex

is listed in detail below:

Vertex Detail Generation:

1. Pull in profile list, tag each element as a profile, and then add the element

to the complete list.

2. Repeat this for the jobs list and the education list.

3. Check each element of the complete list.

(a) If the element contains the vertex that details are being pulled on,

add the element to the relevant list.

4. Pull the headers associated with the vertex that details are being pulled

from.

5. Pull all the data in the database for that vertex and store in the all

vertex data list.

6. For each element of the complete list:

(a) Split the element into columns and step through each column.

i. Check if the column element is a start or end year and instead

calculate the years spent at the vertex.

A. If the end year is set to current, find the current year and

then calculate the total years spent at the vertex.
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ii. Add the column value to a set to obtain all possible values for

the column.

iii. Step through the column counting each value instance to obtain

a count for each different value.

iv. Calculate the percentage for each value in the column by diving

the count by the total number of elements.

v. Push these values into the relevant list.

7. Repeat for each element of the all vertex data list

8. Compare the percentages for each element of the relevant list to the

percentages from the all vertex data list.

(a) Flag the column value for any instance where the relevant value’s

percentage exceeds the percentage for all the data by 5%.

(b) Return this value as relevant so that it can be identified to the user

as significant to the vertex.

9. Return the relevant list and an object containing an array of the same

data.
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3.4 Weka

One of the most popular ways of drawing insights from data through

machine learning is by using a predefined library. This is because the library

takes much of the technical effort out of the development. All of the math

behind the machine learning is hidden behind the library and often there

are nice user interfaces or APIs associated with the library. Typically, there

are many different methods that can be called to comb through the data to

extract insights and relationships about the data. In the case of ProGENitor

the Weka library was chosen as it has an excellent API and access to many

different methods. Choosing the method to extract information from the data

requires some knowledge about the data itself. In this case, clustering was

chosen as the data is mostly non-numerical data and the goal is to define some

grouping that leads to the end goal. To extract the data, first ProGENitor

must generate a data file to feed into Weka. Then Weka has to evaluate it

with the chosen classification, which in ProGENitor’s case is clustering.

3.4.1 Weka Data File Creation

Weka uses the .arff file format to feed data into the Weka tool set. The

arff file contains two major sections. These sections are the header section and

the data section [14]. The header contains the name of the relation, a list of

attributes, and their types. The data section contains the data that will be
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used for machine learning. A sample .arff file would look like the following:

@relation education

@attribute degree {PhD,Bachelors,Masters}

@attribute specialization {Electrical,Circuits,Analog,Computer

Architecture,Digital}

@attribute goal {true,false}

@data

Bachelors,Electrical,false

Masters,Circuits,false

Bachelors,Electrical,true

Masters,Circuits,true

PhD,MSU,Digital,true

ProGENitor currently generates the .arff file containing just the edu-

cational vertices. One of the keys to getting quality insights out of Weka is

controlling the data being fed into the tools. In this case, only the educational

data is fed into the tool. This process could easily be replicated for additional

insights. ProGENitor contains a method that follows the procedure detailed

in Figure 3.6 to generate the data file that is later used by Weka.
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Setup file header
and write it to
Weka data file

Pull in database
headers

Establish list
of attributes

based on headers

Collect all
possible values
from user data

Write at-
tribute values

to Weka data file

Extract data
associated with
each attribute
from database

Write extracted
data line to

Weka data file

For each attribute

For each line of user data

Figure 3.6: Weka Data File Generation
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3.4.2 Clustering

One major advantage to using the Weka library is it takes complex

code and makes it relatively simple. As seen in Figure 3.7, the process that is

followed to analyze the data in the Weka data file is very simple and straight

forward. Once the Weka library is imported into the project, the code is very

quick to implement, as good documentation is available for the API [7]. The

complex portion of work is then ensuring that the appropriate classification is

applied and the data is parsed in a useful fashion.

Read in Data File

Analyze Data in
Data File, Cluster
Data Using Weka

Parse and
Return Results

Figure 3.7: High Level Data Clustering

The Weka data analysis can take many different forms as there are

many different classifications that can be applied. In the case of ProGENi-

tor, EM (expectation maximization) clustering was chosen as it automatically

determines the number of clusters required through cross validation. The al-

gorithm that EM follows is shown in Figure 3.8 [2]. EM differs from other

clustering algorithms in that it uses probability of cluster membership instead
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of a distance method used by other clustering methods such as k-mean cluster-

ing [9]. EM starts with one cluster, then cross validates the data and applies

the probability of cluster membership classification. It then calculates the log-

likelihood for the set and if it increases, creates a new cluster and starts over.

It repeats this process until the log likelihood no longer increases. The left

over clusters will then be returned as the results.

Set # of
Clusters to 1

Split Training
Set into 10
Equal Sets

Cross Validate,
Using 1 Set for
Testing and 9
Sets for Data

EM Assigns
Probability

Distribution to
Each Instance

Log Likelihood
Averaged Over

All 10 Runs

IF Log
Likelihood

Has
Increased,
Increment
Clusters

by 1

Change Set used for Testing.
Repeat Until All Sets Used for Testing.

Figure 3.8: EM Clustering Algorithm
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3.5 Fuzzy Matching

One of the challenges with processing the data of a database such as

LinkedIN is that the data is free form. Although ProGENitor makes no at-

tempt of matching similar jobs or other data points, it does attempt to ac-

count for minor spelling differences. Thus, if the users misspell a word or use

a slightly different spelling, the similarities will still be captured. This fuzzy

matching is done by using the Levenshtein distance algorithm [12] outlined in

Table 3.1.

Step Description

1 Set n to be the length of s.
Set m to be the length of t.
If n = 0, return m and exit.
If m = 0, return n and exit.
Construct a matrix containing m+1 rows and n+1
columns.

2 Initialize the first row, s[0], to column number (starting
with 0) .
Initialize the first column, t[0], to row number (starting
with 0).

3 Examine each character of s (i from 1 to n).
4 Examine each character of t (j from 1 to m).
5 If s[i] equals t[j], the cost is 0.

If s[i] doesn’t equal t[j], the cost is 1.
6 Set cell d[i,j] of the matrix equal to the minimum of:

a. The cell immediately above plus 1: d[i-1,j] + 1.
b. The cell immediately to the left plus 1: d[i,j-1] + 1.
c. The cell diagonally above and to the left plus the cost:
d[i-1,j-1] + cost.

7 After the iteration steps (3, 4, 5, 6) are complete, the
distance is found in cell d[n,m].

Table 3.1: Levenshtein Distance Algorithm

36



Once the algorithm calculates the difference between two words, it then

checks to see if the difference is within the acceptable range. Currently this

range is set to less than or equal to two. If the difference is acceptable, Pro-

GENitor will consider the two words identical for matching purposes.
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Chapter 4

Results

Upon running ProGENitor, the user will be returned a large object

containing all of the data that is extracted from the database queries. This

object will contain an object for the career path results and the Weka results.

Each career path object will also contain three objects. These objects contain

the graph vertex ordering data, the graph edge data, and the details on each

vertex. Currently, all the data for each vertex is returned. In the future, to

improve performance, switching the vertex data extraction to be upon request

will speed up the overall career path graph results.

4.1 Career Path Results

Examples of the objects returned by the career path graph portion of

the ProGENitor code are shown below. Each example does not contain a

complete set of data as that would be too much to show in this report.

4.1.1 Vertex Edge Results

In the vertex edge object, an array of vertex edges is returned. Each

element of the array contains a starting vertex and an ending vertex for the
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transition. Additionally, the array element also contains a transition frequency.

The transition frequency indicates how often the transition occurs. To prevent

exposure of user data, these transitions are scaled to a value ranging from 0

and 10.

{"Vertex Connections":

{"vertex A":"Bachelors","vertex B":"Masters","transition frequency":6},

{"vertex A":"Masters","vertex B":"Circuit Designer","transition frequency":7},

{"vertex A":"Circuit Designer","vertex B":"Block Owner","transition frequency":8},

{"vertex A":"Block Owner","vertex B":"Design Owner","transition frequency":9},

...

{"vertex A":"Coder","vertex B":"Function Lead","transition frequency":0},

{"vertex A":"Function Lead","vertex B":"Masters","transition frequency":0}}

4.1.2 Vertex Ordering Results

In the vertex ordering object, an array containing the order which the

vertices should be display is returned. Each element of the array contains a

vertex name and the order number it should be displayed. Thus, the vertices

with an order of 1 should be the first vertices displayed in the career path graph,

then moving sequentially up, each vertex in the group should be displayed

until the final vertex group is displayed. This will allow the graph to flow with

minimum edges flowing in the reverse direction.
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{"Vertex Ordering":

{"vertex name":"Timing","order":"2"},

{"vertex name":"Signal Integrity","order":"2"},

{"vertex name":"Platform Chief Engineer","order":"7"},

{"vertex name":"PhD","order":"5"},

{"vertex name":"Entry Coder","order":"1"},

...

{"vertex name":"Block Owner","order":"6"},

{"vertex name":"Chiplet Designer","order":"1"}]}

4.1.3 Vertex Details Results

In the vertex detail object, an array containing all of the various vertices

will be returned. Each vertex will be a nested object containing an array of

data points. Examples of these data points are titles, companies, time spent at

the vertex, and any other points of interest within the database. Each of these

data points will be an object that also contains a nested array. This array will

then contain data about each data point, broken down into the percentage of

users who matched a specific piece of information for that data point. For

example, shown below is a data point for the companies that users worked for

when they worked at a Timing job. To protect user data, this is not shown

as number of users, but as the percentage of users who spent time working

for one company versus all users who spent time working at that particular
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job. To avoid returning millions of entries, a threshold is set such that only

statistically relevant data is returned and everything else is lumped into an

“other” group. This “other” group would then contain the total user data that

did not meet the threshold. Finally, an object containing any significant data

points is also returned.

ProGENitor compares the users who reached the goal against all users

who passed through the vertex to determine what was statistically different

from the users who reached the target goal. These differences are listed in

the significant data object. In the example below, the significant data point is

that 100% of the users who passed through this vertex and reached the goal

vertex worked for Verizon. This is significant because only 11% of the the

users who spent time in this vertex worked for Verizon. Thus, working for

Verizon in the Timing job is an important step to reaching the goal vertex.

Significance is flagged whenever the users who reached the goal, had a data

point occur 5% more than then everyone who passed through the vertex. This

value could easily be modified by the company deploying ProGENitor if a

greater difference was required for significance.
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{"Vertices Data":

{"Vertex Name":"Timing","Vertex Data":

{"Data Breakout":

{"name":"Other","value":"0.9174312%"}

{"name":"Timing all","value":"100.0%"},

"Data Point Name":"title"},

{"Data Breakout":

{"name":"Verizon","value":"100.0%"},

{"name":"Verizon all","value":"11.33721%"},

{"name":"Cisco Systems all","value":"12.790698%"},

{"name":"Boeing all","value":"7.5581393%"},

{"name":"Hewlett-Packard all","value":"8.139535%"},

{"name":"IBM all","value":"7.2674417%"},

{"name":"General Motors all","value":"8.72093%"},

{"name":"General Electric all","value":"7.2674417%"},

{"name":"Microsoft all","value":"8.72093%"},

{"name":"Intel all","value":"8.72093%"},

{"name":"Lockheed Martin all","value":"11.046512%"},

{"name":"AT&T all","value":"8.430233%"},

"Data Point Name":"company"},

...

{"Significant":Verizon}}
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4.1.4 Example Career Path 1

With the ProGENitor tool, several examples of functionality can easily

be demonstrated. In the first example, consider a user that is interested in

what it takes to become a partner in an architecture firm. The user would

submit the query on partner and the career graph shown in Figure 4.1 would

be returned.

Bachelors

Masters

Draftsman

PhD

Architect

Lead
Architect

Partner

Figure 4.1: Career Path Graph

This graph quickly shows the user that a bachelor’s degree is required.

Next the users can see that a master’s degree could help them immediately

move into an architect role versus starting out as a draftsman. In either case,

both options can eventually lead to the desired partner position, with no major

indicator which one yielded a higher likelihood of achieving the goal. It also

shows that it is rare for someone to return for a master’s degree once they’ve

entered the workforce and doing so later in your career can actually set the

users back, if they’ve moved up past the architect position. Finally, very few

people who reached the partner status also obtained a PhD. Although this is

an uncommon path to reaching partner, it is an option that could be pursued.
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Next, the user could select one of the vertices to pull up additional

information about that vertex. The three pie charts below in Figure 4.2 show

the information that would be returned if the user were to select the lead

architect vertex. These charts show that there were five key employers for all

of the users who reached partner. They also show that most of the partners

were lead architects for less than five years, and it became increasingly rare

to reach partner after this time. The data also shows that no particular city

had lead architects getting promoted to partner more frequently. Thus, any

lead architects looking at this data would know to reach partner they need to

be focused on doing so within the five year window or they can expect their

chances of doing so to diminish over time. Also, they should know that where

and who they work for is not important, as long as they work for one of the

five companies shown.

Alternatively, the user could click on the master’s degree vertex, to see

more information about these users. In doing so, the data generated immedi-

ately shows everyone who got a Master’s degree did so in a single year with

a specialization in Infrastructure and the only variation being in the school

attended. In this case there were eight different schools attended, but none

were attended at a more significant frequency than the rest. Thus, the user

could immediately know if they wished to reach partner and do so by obtaining

their master’s degree, they need to get an Infrastructure degree within a year

by attending one of these eight schools.
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Figure 4.2: Lead Architect
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The proper functionality of the algorithms can be demonstrated trough

several modifications to the data fed into the synthetic data generation script.

With the following modifications, it will be shown that the results ProGENitor

produce align with the expected changes. First, a second specialization is

added to Civil Engineering but it is occurs a third of the time. This is done

by adding the following line to the Masters text file.

Civil:Infrastructure,Energy,Infrastructure

Next, an additional vertex, junior partner is added prior to partner. This is

done by modify the titles text file. To make this change, the simple replacement

of one line with two new lines was needed.

Remove: Lead Architect:Partner

Add: Lead Architect:Junior Partner

Add: Junior Partner:Partner

Finally, the likelihood of someone obtaining a master’s degree was reduced by

incrementing a probability variable by 2 in the data generation script.
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Figure 4.3: Modified Career Path Graph

With these changes in place, the new career path graph for achieving

the partner position shows the expected changes. The new vertex step of junior

partner is present and it also shows the reduction of users obtain a master’s

degree. In the case of users transitioning from a bachelor’s to master’s degree,

it is not clear from the edges, but by looking at the data in the returned object,

the frequency did decrease by 10%. In the detailed data for the master’s degree

vertex, the Infrastructure degree makes up approximately 2/3rds of the total

degrees. This is shown in the object return for the masters vertex with the

following text:

Data Breakout"

{"name":"Infrastructure","value":"61.50794%"},

{"name":"Energy","value":"38.49206%"}

Additionally, both Infrastructure and Energy would be returned as significant

pieces of data, as they occurred much less frequently for the users who traveled

through this master’s degree vertex and did not reach the partner vertex.

47



4.1.5 Example Career Path 2

In the second example, consider another user who is interested in reach-

ing the system chief engineering role. They would input this query into the

tool and Figure 4.4 would be generated. From this graph, the user would

quickly be able to see that obtaining an advanced degree was unnecessary to

become a system chief engineer. They could then delve deeper into each vertex

if they wanted to learn more about users who did the various jobs that also

became system chief engineers.

Bachelors

Entry
Coder

Lab Tech

GSI Embedded GSI Lead
Integration
Manager

System
Chief

Engineer

Platform
Chief

Engineer

Figure 4.4: System Chief Engineer Graph

One thing that might also spark an interest in the user is the fact that

any jobs beyond the queried job that the matched users also completed would

be shown as well. In this case there was one of these such vertices, the platform

chief engineer. From the edges it is clear that not all system chief engineers

reached this job. If the user were interested then instead in the platform chief

engineering role, they could re-run the query. They would then be presented

with the career graph shown in Figure 4.5. This is obviously a much more

complex graph, but it still yields the same capability of quickly showing users
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complex career paths to a particular goal. In this case it shows that there are

essentially three paths to this job. The first path was detailed in the initial

query, the second path is through a design career path, and the third path is

through an advanced degree. What is most notable about these paths is if the

advanced degree path is taken, the initial jobs the users take don’t have much

impact, as long as it is within the career realm. The other notable thing is

the most common path taken to getting to the platform chief engineering job

is through the design path.
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Figure 4.5: Platform Chief Engineer Graph
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4.1.6 Career Path Performance

All of the work on this project has been done on a personal laptop

with an 8 core i7 2.70GHz processor, a 500GB 7200 RPM 32MB Cache SATA

6.0Gb/s hard drive, and 16GB of DDR3 Memory. As ProGENitor would

be run on a server instead of a personal laptop, it can be expected that the

performance for all workloads would be improved. Still, the overall application

run time would be impacted by both the number of users within the database

and the total access times to the database itself. As the database was on a

local drive, the access times were much less in these run times than they could

be with a remote database.

To estimate career path graph performance, 10 cases were run, as shown

below in Table 4.1. These 10 cases generate a range of matched users, total

users, and number of vertices returned. By doing this, a rough estimate as

to how long a query to ProGENitor might take can be ascertained. As seen

in Table 4.1, an average query would take about 6.9 seconds, but might take

much longer depending on the number of users in the database and the number

that match the query.
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Case Matched
Users

Total
Users

Data
Collection

Edge
Generation

Order
Generation

Total

Platform
Chief

109 5000 708.9ms 341.4ms 74.4ms 1.12s

Civil
Degree

2684 5000 11.0s 12.2s 8.1ms 23.2s

Architect 2330 5000 9.53s 9.67s 7.3ms 19.2s
Circuit
Designer

675 5000 2.97s 1.2s 76.9ms 4.3s

Worked
For IBM

260 5000 1.31s 457.5ms 85.6ms 1.85s

Fission
Degree

260 5000 1.31s 407.6ms 6.3ms 1.73s

Analog
Degree

24 5000 361.2ms 66.8ms 43.1ms 471.3ms

Embedded 55 5000 466.8ms 269.5ms 94.7ms 831.1ms
Floor-
planning

49 5000 441.5ms 106.5ms 103.3ms 651.5ms

Circuit
Designer

1401 10000 11.4s 4.2s 84.7ms 15.7s

Minimum 24 5000 361.2ms 66.8ms 6.3ms 471.3ms
Maximum 2684 10000 11.4s 12.2s 103.3ms 23.2s
Average 785 550 3.95s 2.9s 58.4ms 6.9s

Table 4.1: Career Path Generation Time

As seen in Table 4.1, more than half of the time that ProGENitor runs

is spent in querying the database and pulling in the data to be processed.

Then about 40% of the time is spent generating the vertex edges. Finally,

determining the order in which to display the vertices runs in about 1 to 2%

of the overall runtime. Thus, to improve or maintain performance most of the

focus needs to be on the database pull. This is not an uncommon problem and
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many people spend careers working on this problem. ProGENitor assumes that

whoever deploys the tool would either have a smaller database or a database

expert who could help refine the database accesses.

Case Matched
Users

Total
Users

Total
Vertices

All Ver-
tices

Average
Vertex

Platform
Chief

109 5000 23 4.7s 204.4ms

Civil
Degree

2684 5000 7 10.9s 1.55s

Architect 2330 5000 6 9.4s 1.57s
Circuit
Designer

675 5000 34 9.48s 278.7ms

Worked
For IBM

260 5000 40 6.8s 170.1ms

Fission
Degree

260 5000 6 1.72s 653.8ms

Analog
Degree

24 5000 12 3.94s 328.6ms

Embedded 55 5000 30 5.1s 170.1ms
Floor-
planning

49 5000 18 4.6s 155.2ms

Circuit
Designer

1401 10000 34 18.0s 529.1ms

Minimum 24 5000 6 1.72s 155.2ms
Maximum 2684 10000 40 18.0s 1.57s
Average 785 550 21 7.5s 561.0ms

Table 4.2: Vertex Detail Generation Time

In Table 4.2, the vertex detail generation performance is shown for the

same 10 cases run previously. The table shows that if all the data was returned

serially it could potentially add 18 seconds to the overall run time. This
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would be too slow and unnecessary for the end user. By making each vertex

call separate, the average return time on the vertex information would be

about half a second prior to rendering the data. This is broken out separately

because the assumption is that when ProGENitor runs it would either make

this data available upon user request for each vertex or it would have to run

each vertex call concurrently, such that all calls were completed prior to the

career graph function call completing. This would have to be done to protect

the user experience, as the total ProGENitor application call has to complete

as quickly as possible. The method chosen would depend upon how much

hardware would be deployed to support ProGENitor, as threads would need

to be available to process the concurrent function calls. In either case, a

method is available to allow for the vertex data retrieval without impacting

overall system performance.

4.2 Weka Results

Weka analysis is run upon user request for additional insights. This is

done due to the fact that it takes a significant amount of time to complete the

analysis. Section 4.2.2 details the overall performance and explains why the

Weka tool is not run automatically when the career path graph is generated.

When running Weka, the results are not initially returned in an object. Weka

returns the data in the following way shown below. Then ProGENitor parses

the data and place the extracted insights into an object that can be returned

to the end user as part of the overall object.
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EM ==

Number of clusters selected by cross validation: 8

Cluster

Attribute 0 1 2 3 4 5 6 7

(0.23) (0.28) (0.06) (0) (0.13) (0.18) (0.07) (0.05)

degree

PhD 1.0 1.0029 1.04 1 1.0 1.0 1.03 478.9

Bachelors 1.0 2684 1.0 1 1.0015 1688 630 1.0

Masters 2164 1.0 589 1 1252 1.0 1.0 1.0

total 2166 2686 591 3 1254 1690 632 480.9

school

Duke 273 458 1.0 1 1.0 1.0 1.0 24

Stanford 1.0 1.0 164.3 1 163.7 231 239.9 48

USC 277 426 1.0 1 1.0 1.0 1.0 38

Berkeley 267 445 1.0 1 1.0 1.0 1.0 36

...

Texas 1.0 1.0 1.3 1 202.7 442 1.05 23

MSU 270.2 231.9 1.2 1 186.5 203 1.1 53

MIT 254 155.7 219.4 1 144.6 157 154 77

CalTech 1.0 1.0 206.4 1 166.6 206.9 238.1 40

total 2175 2694 599 11 262 1698 640 489

specialization

Fusion 1.2 1 211 1 1.5 1.0 1.0 1.0

RF 1.0 1.0 1.0 1 1.0 1.0 1.0 20

Magnetics 1.0 1.0 1.0 1 1.0 1.0 1.0 22

Circuits 1.9 1.0 17.9 1 658 1.0 1.0 1.0

Analog 1.0 1.0 1.0 1 1.0 1.0 1.0 25

...

Digital 1.0 1.0 1.0 1 1.0 1.0 1.0 26

total 2184.6 2704.4 609.2 21 1272 1708.2 650.4 498.9

goal

true 1.0 1.0 1.0 1 91 110 1.1 14

false 2164.6 2684.4 589 1 1162.2 1579.3 630.4 465.9

total 2165.6 2685.4 590.2 2 1253 1689.2 631.4 479.9
=== Clustering stats for training data ===

Clustered Instances
0 2163 ( 23%)

1 2684 ( 28%)

2 471 ( 5%)

4 1369 ( 14%)

5 1716 ( 18%)

6 600 ( 6%)

7 478 ( 5%)
Log likelihood: -4.016
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4.2.1 Explanation of Weka Results

In the example above, 212 user instances reached the end goal the query

was searching for. This can be determined by adding up all the data in the goal

equals yes row and subtracting the number of columns. Weka uses a minimum

value of 1 for each element in the columns, thus the total instances of a value

within a Weka data file would be the sum of the row minus the number of

columns. When it states that 212 instances reached the end goal, this does not

mean there were 212 users who reached the end goal, but instead there were

212 user educational instances. The Weka data file treats each educational

instance as a new input, thus, when all is said and done for this particular

data file there are 9481 educational instances with the database. This makes

sense if you add up all the rows for bachelor degrees, master degrees, and

PhDs. This math will also result in 9481 instances, assuming you subtract

one for each value. One other odd piece about the data is the fact that the

numbers are not integers. In the attempt to generate the various clusters,

Weka assigns a probability to each educational instance that it belongs in a

cluster. This means the math will get complex and not always place a value

perfectly in only one cluster. This causes the values to come close to integers,

but some times instances don’t neatly fit within one cluster.

Once how the data is populated in the results and is understood; it

can be used to draw some educated conclusions from the various clusters. As

the interest is in the users who reached the end goal is the focus of the work,

any clusters that are equal to 1 for a goal of yes can immediately be ignored.
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In this case, that leaves three clusters. Looking through cluster column 4 for

instance, shows a higher number of users who obtained a Master’s Degree in

Circuits and attended Stanford, Texas, MSU, MIT, or Caltech for this degree.

Cluster column 5 shows the same information, only instead the users

obtained a bachelor’s degree. The interesting thing of note between cluster

columns 4 and 5 is the slight drop in users who reached the goal who obtained

the master’s degree. The drop is not significant which implies getting the

master’s degree is still very important for a user who wishes to reach the

end goal. One other thing to note, in the above group of data, important

information is not displayed as the total master’s degrees does not match the

ones displayed. This data was simply shortened for the report, but would

normally be displayed in the Weka results. The same is true for the other

clusters.

In the third cluster, column 7, only a few users show up as reaching

the goal. This cluster shows students who obtained a PhD. The school from

which they obtained the degree did not stand out in the cluster, but the degrees

obtained did. The core degrees highlighted were RF, Magnetics, Analog, and

Digital. It is worth noting however, that the results don’t give us the ability

to determine which one of these degrees is important as all 4 instances have

more users than users who reached the goal while obtaining a PhD. In any

case, due to the significant drop in users who obtained a PhD, it is clear that

a PhD is helpful but not required in reaching the goal vertex.
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4.2.2 Weka Performance

For the Weka runs, the same 10 previous runs for the career path perfor-

mance testing were also used to estimate the Weka performance. In Table 4.3,

a couple things can be observed. First, generating the Weka data file takes

an insignificant time compared to the time it takes Weka to analyze the data.

Second, the time it takes Weka to analyze the data is far too long to be suitable

for an interactive request.

Case Matched
Users

Weka Data
Generation

Weka
Analysis

Total

Platform
Chief

109 159.3ms 280.5s 280.6s

Civil
Degree

2684 155.7ms 739.0s 739.1s

Architect 2330 210.5ms 97.7s 97.9s
Circuit
Designer

675 154.2ms 441.1s 441.3s

Worked
For IBM

260 154.1ms 617.0s 617.1s

Fission
Degree

260 186.1ms 383.7s 383.9s

Analog
Degree

24 187.7ms 206.8s 207.0s

Embedded 55 155.2ms 277.7s 277.8s
Floor-
planning

49 158.0ms 251.6s 251.7s

Circuit
Designer

1401 280.0ms 1211.1s 1211.4s

Minimum 24 154.1ms 97.7s 97.9s
Maximum 2684 280.0ms 1211.1s 1211.4s
Average 785 164.7ms 450.6s 450.7s

Table 4.3: Weka Insight Generation Time
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The data in Table 4.3 shows that the Weka request would have to be

an option that a user specifically requests in addition to what ProGENitor

typically runs. Wka would be one of the most likely pieces of ProGENitor to

be sped up by running on a server because it is strictly computational and

not limited by database accesses. That being said, the average run currently

takes about seven and a half minutes, which would be far too long to ever be

deployed to an end user. Thus, the server would have to significantly speed up

the run over the development laptop used in this project to ever considering

deploying Weka within the ProGENitor tool.

4.3 Engineering Metrics

When looking at preparing to write the code for this project it is good

to look at about how much time will be required, how much code is needed to

be written, and what challenges will be faced. This has been broken down by

each major piece of the code below.

4.3.1 Databases

Writing the code for creating and pulling from the databases took about

30 commits. The code work took about 2 weeks or approximately 4% of a man

year. The most difficult part of this code was simply learning and using the

SQL database calls. In total the code was approximately 1100 lines of code.
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4.3.2 Generating Synthetic Data

Writing the code for generating the synthetic data took about 13 com-

mits. The code work took about 1 weeks or approximately 2% of a man year.

The most difficult portion of this code was randomizing the data. In total the

code was about 375 lines of code.

4.3.3 Career Path Graph

Writing the code for the career path graphing took about 11 commits.

The code work took about 5 weeks or about 10% of a man year. This code has

several areas that were particular challenging. One piece that was challenging,

in the vertex edges code, was pulling only the worst case vertex transitions

from the database. Another challenging part of the code, in the vertex ordering

section, was ensuring that a vertex wasn’t placed in a group if the prior vertex

wasn’t already in a previous group. Finally, in the vertex details code, pulling

the significant data from the total pieces of data was also challenging. In total

the code was about 1050 lines of code.

4.3.4 Weka Insights

Writing the code for the Weka insights took only 3 commits. The code

work was quick due to the ease of implementing the API. It took less than 1

week to implement or 1% of a man year. The code was not difficult to write

as the documentation gave clear examples on how to run Weka. The most

challenging part was learning the Weka API and then choosing the analysis
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method. In total the code was about 150 lines of code.

4.3.5 Total Code

Combining all this code, there was approximately 60 commits and

about 2700 lines of code. All this coding took about 17% of a man year

or about 2 solid months of coding. In reality, the project was worked on only

part time and stretched out to about three and a half months. The most

important decision in this project was focusing on the graph analysis of the

returned data and on ensuring that the results and conclusions drawn from

the results were valid. Extracting valid conclusions is extremely important,

which is difficult to do because you have to look at both the users who reached

a goal and those who did not.

4.3.6 Version Control

This project used GIT to manage the version control of the code. This

helped greatly with managing the many aspects of the code, maintaining a

change list, and reverting code back to functional states when something went

wrong. If ProGENitor became a multi-person project, GIT would become

increasingly more important as branching and merging would become very

important. Finally, with a customer or multi-customer deployment, release

trees would need to be implemented to avoid releasing development code or

customer directed code to all customers.
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Chapter 5

Conclusion

5.1 Summary

ProGENitor delivers upon the initial vision of this project by consum-

ing large data sets to produce a career path graph that shows a user how other

users have reached the queried goal. Additionally, it shows the user specific

relevant actions that could be taken to reach that goal in the most efficient

manner possible. As shown through this paper, the tool can take a very com-

plex data set and provide quick insights into an individual’s career aspirations

and provide actionable next steps through detailed vertex, graph, and Weka

analysis to help the user reach their goals. Using this tool can help an individ-

ual focus their career efforts and see the most efficient path to reaching their

target.

5.2 Future Work

Although ProGENitor is already to a point that it could quickly be de-

ployed, there are still a lot of improvements that could be made. For instance,

creating a web user interface to visually demonstrate ProGENitor’s capabil-

ities would go a long way to helping sell it to future customers. Another
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important work item would be to test and validate the software with several

different database types such as a NoSQL database and several live databases.

As ProGENitor has only been tested with synthetic data thus far, deploying

it on an actual database could present some challenges that should be worked

through. For example, LinkedIn’s Sensei database interface should have simi-

lar queries, but there may be some differences. Additionally, the data returned

may also take a bit of work to ensure it is in the proper format. Focusing on

code parallelization and on optimizing database pulls could greatly improve

performance. Further improvement could be gained by pulling the vertex de-

tailed data only upon user request versus the current implementation, which

pulls all vertex data at once.

Currently, ProGENitor only looks at the education data for Weka. Ad-

ditional insights could be gathered by generating more .arff files to be fed into

Weka. This could be expanded to also look at the job data or other aspects

of the user data depending on the area the user was interested in. To make

this feasible within a reasonable time window, Weka pulls would need to be

attached to an advanced insight request by the user. Weka performance is far

too slow to have it be part of the initial career mapping query.

The quality of the results could be improved by growing the user data

to include information beyond education and employment. The profiles could

be grown to include data about personality, work style, publications, or any

other number of useful pieces of information. Finally, focusing on security and

robustness by adding in some testing would also be valuable for a deployable
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product. Again, ProGENitor could be deployed now with some minimal effort,

but to deploy a quality well performing product additional work should be

implemented.

5.3 Related Work

A lot of career planning focuses around an individual forming a mind

map or taking quizzes to determine what they would like to do. Next, in-

dividuals are told to talk to people they know and look at existing jobs on

job boards. Although these are valuable things that job seekers should do,

it is not really a proactive method to ensure that the individual develops the

skills they need to reach a desired job or career. ProGENitor takes a different

approach in guiding users. By pulling all of the data in a career database,

such as LinkedIn, ProGENitor generates insights into the most efficient path

to reaching an individual’s career goals. This is a much more accurate method

than asking a friend or neighbor or searching job boards. Several companies

are starting to take similar approaches to ProGENitor, but at the moment

this is not a common method.

One example of a company doing something similar to ProGENitor is

TalentGuard [1]. TalentGuard has a product that maps out career paths in

a similar fashion to ProGENitor. First, the user feeds in a starting and end

point. Then the tool generates the data in between these points. This requires

the company to create the career paths and enter the data into the tool. It

does not generate this data from existing users as ProGENitor does, thus it
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requires some significant work on the company to deploy the tool.

Another example of a company doing something similar to ProGEN-

itor is Mozilla. They wrote a program called Discover [4], which uses their

existing OpenBadges [5] to generate career paths. Currently this product is

just a prototype, but offers an alternate approach with a very polished and

fun user interface. The tool expands upon what is looked at to include inter-

ests, experiences, education, and personality traits. It allows the user to view

other career paths, so that they can model a career path based on another

individual’s careers. Unlike ProGENitor, it does not provide an aggregate of

all of the users. This means the user either has to do a lot of comparison

shopping, or they could end up mimicking someone who took an inefficient of

rarely traveled path to the end goal. Additionally, it requires the user to use

the open badges, which limits the application to an online community that

uses the open badges tool.

A third example of a company that did something similar to ProGENi-

tor was LinkedIn. They had a service called Career Explorer [10] which allowed

students to explore different career paths. It gave the students the ability to

visualize career paths, identify people in their networks who could assist with a

career path, and provided other data from companies on the career path. One

weakness of the tool is it did not draw from the whole breadth of the LinkedIn

database. LinkedIn removed the tool when they went public as as they felt

at the time their resources could be better invested elsewhere. [8] ProGENitor

expands beyond students, draws from the full database to provide all profes-
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sionals with advice, and should be more profitable due to a larger customer

base.

All in all, though some tools do exist, there are not any that draw from

the vast amount of data collected today as ProGENitor does. Additionally,

though some of these tools offer some similar features to ProGENitor, all have

significant disadvantages to what ProGENitor can offer. ProGENitor offers a

scalable service that currently no other company has available.

5.4 Conclusions

If you are interested in doing a project similar to ProGENitor you

should focus on the data that you wish to present to the end user. Focusing

on relevant insights is key as you want the end user to draw valid conclusions.

This is difficult as you have draw from data about both the users who achieved

the career goal and those who did not. As the group that failed to reach a goal

is vast, you must think about how to limit the data pulled to provide a result

to the user within a reasonable time frame. In ProGENitor, the data set for

the users who failed to reach the goal vertex was limited to all the users who

entered a particular vertex of interest, thus conclusions could only be made

about activity within that vertex and about frequency of edges traveled by

those users who reached an end goal. This leads to one area of improvement

that could be made to the ProGENitor results. It would have been useful to

also know about the edges traveled for users who did not reach the goal, as it

would allow the end user to draw conclusions about career tracks that might

66



be more successful but less traversed.

Once you have the algorithms defined, the coding is relatively straight

basic. As a novice programmer, I was able to complete the project in about

3 months with no incoming knowledge about databases or Weka and a basic

knowledge of Java programming. Using synthetic data vastly sped up the

whole process and it gave me more control over testing my solution. If you wish

to go further on this project, enhancing performance should be the main focus

as that would allow for more insights to be batched and could also provide for

a better user experience. The core areas for these performance enhancements

would come from parallelization of the data analysis, optimization of the data

fetches, and running the workloads on better computing hardware. A second

key area of focus should be on adding a user interface. This would be required

for the tool to really be used by an end user, as without it, the data would be

too cumbersome for the user to consume.

All in all, ProGENitor delivered on the vision of providing users ac-

tionable data built off of large career data sets. Using the tool presents users

with insights into how others have achieved a particular goal and what some

of the key factors to achieving that goal were. Using this information the user

could focus their efforts on the most important factors to achieving their goal

and do so in the most efficient manner possible.
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