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In this paper, we present the theoretical and numerical studies of the

linear characteristics and nonlinear transport features of the instabilities driven

by the steep profile gradient and edge current in the pedestal region of the

tokamak. Two important instabilities, the peeling-ballooning (P-B) modes

(macro-instability) and the drift-Alfven modes (micro-instability), are studied

using the fluid analysis and the BOUT++ codes. In particular, the edge-

localized modes (ELMs), which appear to be the energy burst in the nonlinear

stage of the peeling-ballooning mode, are numerically studied and the results

are compared with the experimental measurement. In addition, the features

of the impurity transport in the edge region of the tokamak are theoretically

analyzed.

Firstly, we explore the fundamental characteristics of the P-B modes

and the ELM bursts numerically using the three-field reduced MHD model
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under the BOUT++ framework, in the shifted-circular geometry, i.e. the

limiter tokamak geometry. In the linear simulations, the growth rate and real

frequency and the mode structure versus the toroidal mode number (n) are

shown. The features of the ELM bursts are shown in the nonlinear simulations,

including the time evolution of the relative energy loss (ELM size) and the

pedestal profile.

Secondly, two original research projects related to the P-B modes and

the ELM burst are described. One is the study of the scaling law between

the relative energy loss of ELMs and the edge collisionality. We generate a

sequence of shifted-circular equilibria with different edge collisionality varying

over four orders of magnitude using EFIT. The simulation results are in good

agreement with the multi-tokamak experimental data. Another is the study of

the differences of the linear behaviors of the P-B modes between the standard

and snowflake divertor configurations. Using DIII-D H-mode ElMing equilib-

ria, we found that the differences are due to the local magnetic shear change at

the outboard midplane, which is the result of the realization of the snowflake

configuration.

Finally, the micro-instability, the drift-Alfven instability in the pedestal

region of the DIII-D tokamak is studied. A modified six-field Landau fluid

model under BOUT++ framework is used to study the linear characteris-

tics and transport features of the drift-Alfven modes. Based on the DIII-D

H-mode discharge, a sequence of divertor tokamak equilibria with different

pedestal height is generated by the ’VARYPED’ tool for our studies. Quali-
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tative agreement is obtained between theoretical analysis and the simulation

results in the linear regime. Moreover, the heat transport induced by the drift-

Alfven turbulence is explored and the convection level is estimated for both

ions and electrons.
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Chapter 1

Introduction

1.1 The peeling-ballooning modes and the Edge-localized
modes

The high performance mode (‘H-mode’) with edge pressure pedestal in

tokamak is currently considered the most promising scenario to achieve mag-

netic confinement fusion[74, 38]. While turbulent transport models of the core

confinement can be very sensitive to the height (Pped) and width (Lped) of

the edge pedestal[39], these two parameters have been found to be limited by

specific edge instabilities: Theories have shown that the height and width of

the pedestal are limited by peeling-ballooning (P-B) and kinetic ballooning

mode (KBM) respectively[64, 62]. Moreover, the coupled Peeling-Ballooning

(P-B) mode is commonly believed to trigger repetitive edge magnetohydro-

dynamics instability known as ‘Edge Localized Mode (ELM)’ in its nonlinear

stage[63, 7, 65], which appears to be impulsive heat bursts from the edge re-

gion to the scrape-off layer (SOL). ELM bursts cause the loss of a considerable

portion of the energy in the edge region, degrading core plasma confinement.

Thus, a thorough understanding of P-B modes and ELMs is of particular im-

portance to the performance of future fusion reactors.

Aside from their potential to reduce pedestal height and degrade core

1



confinement as a whole, ELMs also cause direct damage to Plasma Facing

Components (PFC) such as divertor plates. The heat load that strikes di-

vertor plates during ELM crash highly exceeds the threshold of PFC, leading

to materials erosion and impurities transportation back into the core plasma.

Considerable efforts have been devoted to ELMs mitigation and PFC improve-

ments in order to tackle this problem. For example, edge resonant magnetic

perturbations (RMPs) has been shown to be capable of suppressing ELMs

by introducing chaotic magnetic fields in the edge region[16]. Also, the high-

refractory material tungsten has been chosen for divertor materials of ITER

instead of the traditional Boron and Carbon[17].

In addition to these solutions, advanced divertor concepts have been

proposed in the past decade to reduce heat load by improving magnetic geom-

etry near the null point. These concepts include X-divertor[40], which spreads

flux by adding a second null point on divertor plate, super X-divertor[72],

which enhances X-divertor by expanding wetted area, and snowflake divertor[57,

59], which reduces the heat load by adding two more strike points in divertor

region. Moreover, the snowflake divertor is characterized by the formation of a

second order poloidal field null instead of a conventional first-order null, which

increases weak poloidal field area and enhances curvature driven convection

in divertor region[73]. These divertor configurations have been successfully

implemented in many fusion devices, such as NSTX[67], TCV[53] and DIII-

D[1], and their ability to dilate ELM heat pulses has been confirmed through

both experiments and simulations[58, 71], which provides practical techniques
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for next-step high-power fusion device. Nevertheless, the implementation of

advanced divertor configurations modifies the magnetic topology in the edge

region and is therefore expected to impact the edge plasma properties, espe-

cially coupled peeling-ballooning instabilities and the subsequent ELM crashes.

Evidence has already been shown in reference [53] and [1] that ELM size is dra-

matically altered after the formation of advanced divertor geometry in TCV

and DIII-D. To understand the physics under these nonlinear phenomena, lin-

ear behaviors of the P-B mode need to be characterized first. Although linear

stability boundaries of the P-B mode for various parameters in TCV with

snowflake divertor have been studied in [48], details such as growth rate and

mode structure, which is related to the ELM crash scenario, still have not been

fully investigated.

In chapter 5, the fundamental characteristics of the peeling-ballooning

modes and the ELM bursts are presented in the shifted-circle geometry (lim-

iter tokamak geometry). Then the recent progress on ELM studies is reviewed.

Finally, we take the snowflake (plus) divertor in DIII-D as an example to ex-

plore the changes in the linear behavior of the peeling-ballooning mode be-

tween different geometries. We summarize the results of linear simulations of

peeling-ballooning mode in the pedestal region in the DIII-D tokamak with

standard single-null (STD) and snowflake (SF) plus divertor configuration.

Through the comparisons we found that the different linear behaviors of the

ideal P-B mode are mainly governed by local magnetic shear on the outboard

midplane. These results are consistent with the theoretical prediction that
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finite magnetic shear has a stabilizing effect for localized ballooning modes.

1.2 The micro-instabilities in the pedestal region

Having shown the importance of the peeling-ballooning modes in the

pedestal region, we have to keep in mind that peeling-ballooning modes are not

the only instabilities in the pedestal region, nor are they the only instabilities

related to the ELM bursts. As an area with steep pressure profile and large

bootstrap current, the pedestal region provides a large source of free energy,

which can be held responsible for many micro-instabilities, such as the kinetic

ballooning modes (KBM), the trapped electron modes (TEM), the electron

temperature gradient modes (ETG) and so on. Type-I ELMs have proved

to be one of the greatest threat to ITER operations in the future and many

efforts have been devoted to the ELM mitigation studies. Unfortunately, no

single method has been tested to be consistently working in mitigating ELMs

and maintain high fusion performances. Understanding the physics beneath

these methods for ELM control is crucial for us to develop more efficient and

robust ones in the future.

However, the ELM cycle itself can not be fully understood in the scope

of the macro-scale instability. One argument that has gain more and more

supports from both experiments and simulations is that the pedestal micro-

turbulence has indispensable impacts on the ELM cycles. For example, the

time scale of the ELM burst is roughly Alfvénic, but the recovery period typ-

ically takes several tens of milliseconds[94]. During these recovery periods,
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electromagnetic fluctuations with frequency of roughly 300KHz have been ob-

served on C-mod[10], which lead to the saturation of the pedestal formation.

Similar high-frequency edge fluctuations have also been found in a Quiescent

H-Mode plasma on DIII-D[92]. Fluctuations in both studies have been iden-

tified to be driven by the kinetic-ballooning modes (KBM). A comprehensive

report about the pedestal fluctuations studies on DIII-D, NSTX and C-mod

can be found in [28]. Another example comes from the experimental results on

EAST Tokamak[78], which shows that small-amplitude, low-frequency oscilla-

tion appears in the quiescent phase of H-mode, when ELMs are suppressed by

lower hybrid current drive and lithium coating. Overall, the pedestal turbu-

lence needs careful investigations for the sake of better ELM control.

Depending on the driving mechanism, the pedestal turbulence can be

categorized into two types: the drift-like and the interchange-like turbulence[61].

The interchange-like turbulence is driven by the magnetic curvature and profile

gradient, which usually has the ballooning mode structure. One example is the

Alfvénic ion temperature gradient mode (AITG), an electromagnetic instabil-

ity driven by the ion temperature gradient. Many work has been done on the

AITG instability using different theoretical or numerical tools and the follow-

ing just summarizes part of them: Horton et al[35] used a fluid-kinetic hybrid

model to study the AITG theoretically; Hong et al[32] improved Horton’s

model and used the shooting method to calculate growth rate; Andersson et

al[2] first used fully toroidal fluid and obtained similar results as kinetic model;

Dong et al[12] used a one-dimensional kinetic integral equation. Particularly,
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Snyder[66] categorized the AITG as one type of the kinetic ballooning mode

(KBM) and studied the mode numerically using a flux-tube gyro-fluid code.

According to these studies, the AITG can exist below the ideal MHD thresh-

old if the background ηi = Ln/LT i exceeds certain critical value. Moreover,

in contrast to the electrostatic ion temperature gradient (ITG), the AITG be-

comes more unstable as the pedestal pressure(β) increases. The most recent

simulation work of the KBM in the pedestal region is Wan et al[75], which

used the gyro-kinetic code GEM.

The drift-like instabilities also draws free energy from background pro-

file, with a different energy feedback channel than the interchange-type insta-

bilities. The trapped-electron modes (TEM)[8] are one of the most common

toroidal drift-instabilities found in the pedestal region, which absorb free en-

ergy from background electron pressure gradient and are driven unstable by

the trapped electrons in the banana orbits in the bad-curvature (outboard

midplane). Recent numerical studies on DIII-D[23] and ASDEX-upgrade[31]

have identified that the TEM exists in the pedestal as an universal instability

and under certain circumstances, could be the dominant instability, instead of

the well-known KBM instability. The most interesting part of the TEM stud-

ies in the pedestal region is that the linear poloidal mode structure constantly

localizes at unconventional positions, i.e. at poloidal positions other than the

outboard midplane. For example, Fulton et al found that the collisionless

trapped electron modes(CTEM) localize at ±π/2 ballooning angle, i.e. at the

top and near the X-point of the DIII-D Tokamak, when the background profile
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gradients are steep enough. The similar poloidal mode structure is also found

in Wang et al[77] and Hatch et al[31]. Novakovskii et al[50] used the ballooning

analysis and theoretically predicted a new drift-resistive branch in the pedestal

region with peaks at ±π/2 ballooning angle. Xie et al[85] conducted a compre-

hensive numerical study using the GTC codes and concluded that the toroidal

drift-modes could have unconventional poloidal structure with multiple peaks

when the background profiles are steep enough.

In chapter 6, we present a new type of drift-modes in the pedestal

region of DIII-D tokamak, the drift-Alfven modes, which absorb free energy

also from the electron pressure profile and are driven unstable by the coupling

with shear Alfven waves. We found that the drift-Alfven modes also have

unconventional poloidal mode structure, like the TEMs. Furthermore, the

heat transport induced by the drift-Alfven turbulences is numerically studied

using BOUT++ nonlinear global simulations.

1.3 The impurity transport in the pedestal region

We mentioned previously that the type-I ELMs could be catastrophic

to the H-mode operations in the Tokamaks, as they release a huge amount of

pedestal energy to the scrap-off layer and degrade the performance as a whole.

One may assume that the fusion will be much easier if we can find a way to

prevent any sort of energy lost from the pedestal region. However, the results

may remain bad owing to a different problem: the impurities in the edge re-

gion. The plasma facing components (PFCs) in the first wall and the divertor
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plates are usually made by moderate-Z materials (carbon, boron, beryllium)

deposited on high-Z tungsten or stainless steal. As the particle (heat) flux

traverse through the edge, it may scrape off some of these molecules, which

are quickly ionized, for example, B+5. These moderate/high-Z ions are called

the ’impurities’. After some time, the impurities will accumulate and form a

natural gradient from the vessel wall to the core region. As the gradients of

the impurities are opposite to the gradients of the primary ions, the impuri-

ties can reach the core region through anomalous radial transport induced by

drift-wave turbulence, which will cause the degrade of the whole fusion per-

formance, or even disruption[80].

Therefore, the impurity exhaust mechanism is necessary at the edge region.

The ideal candidates are the type-II/type-III ELMs, which appear as high

frequency, low amplitude energy bursts[94]. Type-II/Type-III ELMs can still

maintain H-mode performance while preventing the accumulation of the im-

purities in the edge. Moreover, it is also found in experiments that by puffing

small amount of high-Z impurities to the edge region, we can effectively radi-

ate almost 90% of the outward heat flux and reach plasma detachment, while

maintaining H-mode[29]. Therefore, impurities as the inevitable results of

plasma-wall interactions, are closely related to the pedestal physics and thus,

the whole fusion performance. Understanding the transport characteristics of

the impurities is crucial to ITER performance in the future.

In chapter 4, we will focus on the linear characteristics of the impurity density

driven drift-waves. The theoretical study is closely related to the experimen-
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tal observations of the impurity anomalous transport features, for example,

Alcator C-mod[21, 55], TEXT[34] and MST[43]. Besides, the transport of

impurities in the stellarator is also studied.

1.4 The BOUT++ framework

Generally speaking, the BOUT++ codes1[15] are the framework of solv-

ing coupled partial differential equations in complicated geometry with flex-

ibility in the boundary conditions. Written in C++ with objected-oriented

structure, BOUT++ codes inherent many merits from its predecessor, the

BOUT code[86] (name from Boundary plasma Turbulence) written in For-

tran, for example, the technique to deal with the X-point in real tokamak

geometry, but provides more convenience for computational physicist. For ex-

ample, for most of the time, only the physics module need to be modified in

order to tackle a new problem, while the other modules, such as the mesh and

the solver, need little change. These conveniences make BOUT++ codes very

easy to be adopted, especially by physicists who want to focus on the physics

aspects instead of the coding techniques.

Technically speaking, BOUT++ is a three-dimensional finite-difference grid

code used to model collisional edge plasmas in a toroidal geometry. Time

evolution is primarily through the implicit New Krylov method. A range

of finite difference schemes are used, including central difference, upwinding

1For more informations, check the websites: https://bout.llnl.gov/ and
https://github.com/boutproject/BOUT-2.0
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and WENO. Several different algorithms are implemented for Laplacian in-

version, such as tridiagonal solver, a band-solver and the parallel diagonal

dominant (PDD) algorithm. BOUT++ codes are highly parallelized in x− y

two-dimensional plane, while there is no parallelization in the z direction (pe-

riodic direction). The computing efficiency is well scaled with the number of

processors[49].

BOUT++ codes have shown excellent agreement with the experiment and

other MHD codes in P-B modes and ELM burst simulation regime. Now,

many fluid models are developed to expand the capability of BOUT++ codes.

For example, the six-field model[84] is used to calculate the heat flux in H-

mode discharge; the gyro-landau fluid[91] is developed to simulate the micro-

instabilities, such as the kinetic ballooning mode (KBM); the neutral transport

model[79] is used to study the SMBI injections.
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Chapter 2

BOUT++ codes Verification: Diffusion

equations

2.1 2-D diffusion equation in planar geometry

The first straightforward setup for the verification of BOUT++ codes is

diffusion equation in two-dimensional planar geometry. The diffusion equation

is:

∂T

∂t
= χ∇2T = χ

(
∂2T

∂x2
+
∂2T

∂y2

)
(2.1)

where T could be temperature, density or pressure, χ is the diffusivity. This

equation can be solved analytically by separating the variables. With the

Neumann boundary condition (∂T
∂x
|x=0 = ∂T

∂x
|x=L = 0, ∂T

∂y
|y=0 = ∂T

∂y
|y=L = 0),

the analytical solution is:

T (x, y, t) = A0,0+
∞∑
m=1

∞∑
n=1

Am,n cos
(nπ
L
x
)

cos
(mπ
L
y
)

exp

(
−χπ

2(m2 + n2)

L2
t

)
(2.2)

where L is the length of the square domain and A∗,∗ could be any real numbers.

The equilibrium for BOUT++ simulation is generated with Python script.

The resolution for both directions is 64 and the length L = 64∗0.05 = 3.2. As

in figure (2.1). The initial condition is T (x, y, 0) = 1 + cos(πx/L) cos(2πy/L)
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for single mode verification. Besides, the boundary conditions are Neumann

and the diffusivity (χ) is set to be unity.
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Figure 2.1: Contour plot of the initial condition for the single mode verifi-
cation of the 2-D diffusion equation in planar geometry. T (r, θ, t = 0) =
1 + cos(πx/L) cos(2πy/L), nx = ny = 64.

The verification results are shown in figure (2.2), where the analyti-

cal solution and BOUT++ simulation results are compared at four different

positions. We can see that excellent agreements are obtained for this case.
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Figure 2.2: The comparison between the analytical solution (Eq. 2.2) of 2-D
diffusion equation in planar geometry and the linear simulation results from
BOUT++ codes at four different positions.

2.2 2-D diffusion equation in cylindrical geometry

In two-dimensional cylindrical geometry (r, θ), the diffusion equation

is:

∂T

∂t
= χ

(
∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂θ2

)
(2.3)

like the previous analysis, with Neumann boundary condition (∂T
∂r
|r=r0 = 0),

the analytical solution is:

T (r, θ, t) =
∞∑
m=0

∞∑
k=1

Am,kJm

(
Bm,k

r0

r

)
cos(mθ) exp

(
−χ

B2
m,k

r2
0

t

)
+ C (2.4)

where C is arbitrary constant and Bm,k is the kth zero of the function J ′m(r).

The cylindrical equilibrium for BOUT++ simulation is generated with radial

13



resolution nr = 32 and poloidal resolution nθ = 256. The radial boundary is

fixed at r0 = 1.8, where the Neumann boundary condition is applied. Due

to the singularity at the center of the circle, a hole with radius r = 0.05 is

removed from the center of the simulation domain. As the size of the hole

is much smaller than the whole radial domain, we expect that the analytical

solution of the diffusion equation should still be the same as equation (2.4).

The initial condition for the linear simulation is T (r, θ, t = 0) = cos(2θ),

as shown in figure(2.4). In order to calculate the 2-D temperature profile at

any given time (t > 0) analytically, we first need to decompose the initial

temperature profile into harmonics Am,kJm

(
Bm,k
r0
r
)

cos(mθ). It is straightfor-

ward to find that the only sinusoidal mode number is m = 2. Therefore, we

only need to compute the coefficients A2,k for each k. Although it is poten-

tially a infinite series, the harmonics become less important as k increases.

The coefficients A2,k for k = 1 ∼ 20 are shown in table 2.1. The calcula-

tion is based on the orthogonality of Bessel functions Jm

(
Bm,k

r
r0

)
(Appendix

A: Bessel Function) in region [0, r0]. The sum of the first 20 Bessel func-

k 1 2 3 4 5 6 7 8 9 10
A2,k 2.51 1.02 0.64 0.49 0.39 0.32 0.28 0.24 0.22 0.20

k 11 12 13 14 15 16 17 18 19 20
A2,k 0.18 0.16 0.15 0.14 0.13 0.12 0.12 0.11 0.10 0.10

Table 2.1: The first 20 coefficients A2,k for equation 1 =
∞∑
k=1

A2,kJ2

(
B2,k

r0
r
)

,

where J2 denotes Bessel function of the first kind (Jm) with m = 2 and B2,k

is the kth zeros of J ′2.
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tions f(r) =
20∑
k=1

A2,kJ2

(
B2,k

r
r0

)
is shown in figure (2.3). We can see that

the agreement between f(r) and constant function g(r) = 1 is quite good for

0 < r < 1.8, with a maximum error ∼ 10%. Therefore, the analytical solution

with this particular initial condition is:

T (r, θ, t) =
20∑
k=1

A2,kJ2

(
B2,k

r

r0

)
exp

(
−
B2

2,k

r2
0

t

)
(2.5)

The verification results from linear BOUT++ simulation are shown in figure

r
0.5 1.0 1.5 2.0 2.5 3.0

0.6

0.7

0.8

0.9

1.0

1.1

f(x)

r=1.8

Figure 2.3: The comparison between the sum of the first 20 Bessel functions

f(r) =
20∑
k=1

A2,kJ2

(
B2,k

r
r0

)
and the constant function g(r) = 1 in region 0 <

r < 1.8.

(2.5). The time evolution of the temperature at four positions with different

radial and poloidal coordinates are compared with the analytical solution (Eq.
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2.5). We can see that the numerical and analytical results are highly consistent.

Besides, the time evolution of the total energy in simulation domain (0.05 <

r < 1.8, 0 < θ < 2π) is shown in figure (2.6). As the Neumann boundary

condition in the radial direction implies that the total energy will conserve

theoretically, the total energy is supposed to be zero at any time. Figure (2.6)

demonstrates that the error of the total energy is only about 1 × 10−7. This

study shows the accuracy of the BOUT++ framework in non-Cartesian grids

with self-defined metric tensor.
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Figure 2.4: Contour plot of the initial condition for the single mode verifica-
tion of the 2-D diffusion equation in cylindrical geometry. T (r, θ, t = 0) =
cos(2θ), nr = 32, nθ = 256.
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Figure 2.5: The comparison between the analytical solution (Eq. 2.5) of the
2-D diffusion equation in cylindrical geometry and the linear simulation results
from BOUT++ codes at four different positions.
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Chapter 3

Firehose Instability

3.1 Background and Motivation

Firehose instability get its name from the actual firehose used by the

firemen. When water is turned on, high parallel pressure from the fire hy-

drate will create an extreme pressure ratio (p‖ � p⊥)between parallel and

perpendicular direction inside firehose, which causes firehose to swing in per-

pendicular direction. The swing caused by firehose instability is so powerful

that it usually takes several firemen to stabilize.

In ideal MHD regime, one of the most important assumptions is the

isotropy of the plasmas. This seems to be natural to our intuitive knowledge,

however, there are various cases where isotropy of plasma is significantly vi-

olated, especially when magnetic field is presented. For example, in fusion

device such as Tokamak, particles are often heated by Electron/Ion Cyclotron

Resonance Heating (ECRH/ICRH), which increases kinetic energy of parti-

cles mainly in perpendicular direction of magnetic field. Although kinetic

energy could be distributed to parellel direction gradually through collisions,

in short time scale this will cause p⊥ � p‖, which eventually could induce
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”Mirror Instability”[33]. Besides fusion reactors, this type of instability is

also very common in planetary and cometary magnetosheaths and other high

beta environments[68]. One typical example is the electrons in solar flare.

In contrast to ECRH/ICRH, particle acceleration mechanisms in solar flares

exhibit a preference of energizing particles in parallel direction of magnetic

field[52]. Therefore, anisotropy is expected during the impulsive phase of a

flare, and ”Firehose Instability” will be induced when anisotropy exceed cer-

tain level[37, 82]. Another example of firehose instability in anisotropic mag-

netized plasma is the hose-pipe instability of thin or elongated galaxies. When

the long-to-short axis ratio is very large (10 : 1), instabilities occur and greatly

reduce the ratio. This instability is probable reponsible for the fact that el-

liptical galaxies never have axis ratios more extreme than about 3 : 1. The

difference between this instability and firehose instability is that firehose insta-

bility is driven by magnetic tension and pressure force, which this instability

is driven by gravity and centrifugal force.

The following sections of this chapter will be focused on the analytical

studies of the firehose instability. A double-adiabatic MHD formulary based

on the modifications of the ideal MHD equations is first derived and the linear

behaviors are studied analytically. Then, a more realistic model based on

anisotropic kinetic theory is constructed and the linear dispersion relation

of firehose instability is compared with the first model. Besides, BOUT++

linear simulations are conducted using the double-adiabatic MHD model and
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excellent agreements are achieved between numerical and theoretical results.

3.2 Double Adiabatic MHD

Magnetohydrodynamics(MHD) describes fluctuations in plasma which

changes slowly, comparing to the ion cyclotron frequency (ωci)[33]. The classic

set of fluid equations for ideal MHD are:

∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+

1

µ0

(∇×B)×B (3.2)

∂p

∂t
+ γp(∇ · v) +∇p · v = 0 (3.3)

∂B

∂t
= ∇× (v ×B) (3.4)

There are several assumptions that need to be made in order to make these

equations applicable:

• No resistivity, η → 0.

• Quasi-neutrality, δne = δni.

• Relative velocity between electron and ion is small, |vi − ve| � |vi|.

• Adiabatic condition, pρ−γ = Const.

• Isotropic plasma, ←→p = p
←→
I .
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3.2.1 Anisotropic plasma

When the anisotropy of the plasma is taken into consideration, the

original set of the MHD equations need to be modified. The straightforward

thought is to change isotropic pressure tensor ←→p = p
←→
I to the anisotropic

form [42]:

←→p = p‖bb+ p⊥(
←→
I − bb) (3.5)

where b is the unit vector along the magnetic field. If one let b = ez, then the

pressure tensor can be written in Cartesian coordinates as:

←→p =

 p⊥ 0 0
0 p⊥ 0
0 0 p‖

 .

With this anisotropic pressure tensor, the divergence of the pressure tensor

used in the momentum equation can be expressed as:

(∇ ·←→p )j =
∂

∂xi
pij =

∂

∂xi
(p‖bibj + p⊥(δij − bibj)) (3.6)

= (
∂

∂xi
(p‖ − p⊥))bibj + (p‖ − p⊥)(

∂bi
∂xi

)bj (3.7)

+(p‖ − p⊥)bi(
∂bj
∂xi

) +
∂p⊥
∂xi

δij (3.8)

Hence, In vector form

∇·←→p = (b ·∇)(p‖− p⊥)b+ (p‖− p⊥)(∇·b)b+ (p‖− p⊥)(b ·∇b) +∇p⊥ (3.9)

Assume that anisotropic plasma is adiabatic in both parallel and perpendic-

ular direction, which is called the ‘double adiabatic condition’. With this
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assumption, the pressure equation can be rewritten in the similar form1 in the

parallel and perpendicular direction:

dp‖
dt

+ p‖(∇ · v) + 2p‖b · (b · ∇)v = 0 (3.10)

dp⊥
dt

+ 2p⊥(∇ · v)− p⊥b · (b · ∇)v = 0 (3.11)

in which,

d

dt
=

∂

∂t
+ v · ∇

The continuity equation the and magnetic field equation will not be changed:

∂ρ

∂t
+∇ · (ρv) = 0 (3.12)

∂B

∂t
= ∇× (v ×B) (3.13)

The momentum equation, as mentioned before, will be in a similar form, but

with a much more complicated term for pressure divergence.

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇ ·←→p +

1

µ0

(∇×B)×B (3.14)

in which,

∇ ·←→p = (b · ∇)(p‖ − p⊥)b+ (p‖ − p⊥)(∇ · b)b+ (p‖ − p⊥)(b · ∇b) +∇p⊥

Equations (3.10), (3.11), (3.12), (3.13) and (3.14) compose the complete set of

the double-adiabatic MHD model. To be noticed, the number of the variables

increases to 9 (B,v, n, p‖, p⊥).

1See Appendix for detailed derivations
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3.2.2 Equilibrium and Linearization

To study the instabilities linearly, we need to first find the equilibrium

of the system and then linearize the equations. The equilibrium could be

obtained by setting all the time derivatives to be zeros (∂/∂t = 0). Because

equilirium of this set of equations is not our primary interest, we can just

choose the trivial solution, which implies that all the equilibium values are

constant in space:

{ρ,v,B, p‖, p⊥}Equilibrium = {ρ0,0,B0, p‖0, p⊥0} (3.15)

Then, each variable can be expressed as the equilibrium value plus the per-

turbed value:

ρ = ρ0 + ρ1,v = v1,B = B0 +B1, p⊥ = p⊥0 + p⊥1, p‖ = p‖0 + p‖1 (3.16)

New parameters are introduced for the simplification:

b0 = B0/B0, b1 = B1/B0, ξ =

∫ t

v1dt, vA = B0/
√
µ0ρ0 (3.17)

We linearize the equations (3.10) to (3.14) and only keep the first order terms,

then the continuity equation becomes:

ρ1 = −ρ0(∇ · ξ) (3.18)

the magnetic field equation:

b1 = (b0 · ∇)ξ − b0(∇ · ξ) (3.19)
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the perpendicular pressure equation:

p⊥1 = −2p⊥0(∇ · ξ) + p⊥0b0 · (b0 · ∇)ξ (3.20)

the parallel pressure equation:

p‖1 = −p‖0(∇ · ξ)− 2p‖0b0 · (b0 · ∇)ξ (3.21)

and the momentum equation:

∂2ξ

∂t2
= − 1

ρ0

∇ ·←→p1 + v2
A((b0 · ∇)b1 − (∇b1) · b0) (3.22)

where,

∇ ·←→p1 = −2p⊥0∇(∇ · ξ) + p⊥0(∇(b0 · ∇)ξ) · b0 + (p‖0 − p⊥0)(b0 · ∇)2ξ

+(p⊥0 − 4p‖0)(b0 · (b0 · ∇)2ξ)b0 + p⊥0((b0 · ∇)(∇ · ξ))b0

We assume that the perturbed parts are of the form exp(ik · r − iωt), then

derivatives can be replaced by:

∂

∂t
→ −iω,∇ → ik, b0 · ∇ → ik‖ (3.23)

Applying these relations to equation (3.18) through (3.22), after some compli-

cated algebra2, we can get the dispersion relation:

ω4 − Aω2 −B = 0 (3.24)

in which,

A =

(
2p⊥0

ρ0

+ v2
A

)
k2 +

1

ρ0

(2p‖0 − p⊥0)k2
‖

B =

(
p2
⊥0

ρ2
0

− 3
p‖0
ρ0

(
2
p⊥0

ρ0

+ v2
A

))
k2k2

‖ +
1

ρ2
0

(3p2
‖0 + p⊥0(3p‖0 − p⊥0))k4

‖

2see Appendix for detail
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3.2.3 Dispersion relation of the firehose instability

Equation (3.24) describes the dispersion relation of waves that can

propagate along arbitrary directions. Without the loss of generality, we as-

sume that the waves only propagate along the magnetic field, i.e. k = k‖b0.

Then the dispersion relation becomes:

ω4 −
(
p⊥0

ρ0

+
2p‖0
ρ0

+ v2
A

)
k2
‖ω

2 − 3p‖0
ρ0

(
p‖0
ρ0

− v2
A −

p⊥0

ρ0

)
k4
‖ = 0 (3.25)

This is a quadratic equation for ω2, and it is quite straightforward to verify3

that ∆ = A2 + 4B ≥ 0. Therefore, the roots (ω2) are always real. Then there

are two possible cases:

• ω2 > 0⇒ ω ∈ R⇒ perturbed parts ∝ exp(−iωt)

• ω2 < 0⇒ ω = ±iγ ∈ I⇒ perturbed parts ∝ exp(±γt)

In the first case, we will just get a purely oscillating mode. However, in the

second case, the wave evolves as a superposition of a decaying mode and a

growing mode. The decaying mode will soon disappear, but growing mode

will make wave amplitude larger and larger, and eventually cause nonlinear

structure. Then the criteria of this type of instabilities is ω2 < 0. Plug into

equation (3.25), we find:
p‖0
ρ0

− p⊥0

ρ0

> v2
A (3.26)

3see Appendix for proof
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Figure 3.1: The contour plot of the real frequency and growth rate of the
firehose instability in the parallel and perpendicular wave number plane. The
parallel and perpendicular normalized pressure are β‖ = 3.0 and β⊥ = 0.4.
The label on the contour lines represent the normalized growth rate and real
frequency.

This means that in the anisotropic plasma, when parallel pressure exceeds

perpendicular pressure by certain level, wave propagating along magnetic field

will become unstable and this is what is called ”Firehose Instability”. This

criteria can also be expressed as following:

β‖ − β⊥ > 2 (3.27)

,in which β‖ =
2µ0p‖0
B2

0

, β⊥ =
2µ0p⊥0

B2
0

are ratios between plasma pressure and

magnetic pressure in parallel and perpendicular directions. If the perpendic-

ular wave number is not zero, the results become a little complicated. Figure

(3.1) shows the contour of the real frequency and growth rate in wavenumber

space. Although the background pressure ratio exceeds the firehose criteria

(β‖ − β⊥ > 2.0) and the mode should exponentially decay if (k⊥=0), the real

frequency appears if (k⊥ > 2.0). Also, if the perpendicular wavenumber is sig-
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nificantly larger than the parallel wavenumber (k⊥/k‖ > 2), the growth rate

becomes zero and the mode becomes stable.

3.2.4 BOUT++ linear simulation results

The analytical results, including the dispersion relation (3.25) and fire-

hose instability criteria (3.26), are compared with the linear simulation using

BOUT++ codes in this section. The planar grid is used with the resolution

nx = 32, ny = 128, nz = 3, dx = dy = 0.05, where background magnetic field

is in y-direction. The equations used are (3.18) to (3.22) with normalization:

t̃ = t
vA
a
, x̃ = x/a, p̃⊥ = p⊥/p⊥0, p̃‖ = p‖/p⊥0, ρ̃ = ρ/ρ0, B̃ = B/B0 (3.28)

Without the loss of generality, we fix the background perpendicular pressure

that β⊥ = 2.0. Under such normalization, background values are

ρ̃0 = 1.0, ˜p⊥0 = 1.0, B̃0 = 1.0, ṽ0 = 0 (3.29)

and the initial pertubation is set to be δB(r) = 0.01ex sin(2πmy/Ly) (Fig-

ure 3.2), which implies that k⊥ = 0. Background values p‖0 and mode number

m can be adjusted to simulate different situations. The initial condition and

the typical exponential growing mode are shown in figure (3.2). Two different

set of parameters are used to compared with the analytical results of both the

purely oscillating mode (β‖ − β⊥ = 1.0) and the exponentially growing mode

(β‖− β⊥ = 4.0). First, we assume that β‖− β⊥ = 4.0, and vary mode number

m from 6.0 to 12.0. Then change the beta value to β‖ − β⊥ = 1.0. Compari-

son with theoretical results for both cases yield good agreement (Figure 3.3).
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Figure 3.2: The left figure shows the contour plot of the initial condition and
the right figure shows an example of exponential growing mode under certain
circumstances.

Original data for growth rate in Figure 3.3 (β‖ − β⊥ = 4.0):

m 6 7 8 9 10 11 12
k‖ 5.89 6.87 7.85 8.84 9.82 10.80 11.78
γ 5.91 6.85 7.78 9.20 9.88 10.82 11.70

Original data for frequency in Figure 3.3 (β‖ − β⊥ = 1.0):

m 6 7 8 9 10 11 12

k‖/
√

2 4.17 4.86 5.55 6.25 6.94 7.64 8.33
ω 4.16 4.84 5.52 6.15 6.90 7.60 8.16

Another verfication fixed mode number m = 8.0 and varied difference

of beta values (β‖−β⊥)from 3.0 to 8.0 (Figure 3.4), which also indicates good

agreement.

Original data of Figure 3.4 is (m = 8, k‖ = 7.85):
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Figure 3.3: Figure on the left shows comparison of firehose growth rate, the analyt-
ical function of blue line is γ = k‖ = 2πm/Ly; Figure on the right shwos comparison

of frequency, the analytical function is ω = k‖/
√

2 =
√

2πm/Ly

β‖ − β⊥ 3 4 5 6 7 8
γthe 5.55 7.85 9.62 11.11 12.42 13.60
γsim 5.64 7.78 9.69 11.18 12.49 13.68

3.3 Kinetic Theory

Although double adiabatic MHD equations give a complete and com-

prehensive analysis on firehose instability induced by extreme anisotropy be-

tween parallel and perpendicular direction of magnetic field, those equations

have yet a limited valid area. On the one hand, because of the quasi-neutrality
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assumption made by original ideal MHD, double adiabatic MHD equations

only work for slow fluctuations in plasmas. In other regions, where the fluc-

tuation is so fast that electrons and ions have complete different behaviors

for their large mass difference, we have to treat these species separately. For

example, during impulsive solar flare, electrons are magnetized and can be

accelerated along magnetic field by reconnections[13], while ions are too heavy

to respond in short time scale that they need to be treated unmagnetized4.

On the other hand, some kinetic effects, which didn’t appear in MHD fluid

4Actually, solar flare is a quite complicated and not fully understood topic. Whether
ions are accelerated during impulsive solar flare is questionable, but we will only consider
electron fluctuations in the following.
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bility in only linear stage. At initial moment, the perturbation is very small. Then
the pressure anisotropy excites this mode to increase its ampilitude
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equations, have a significant influences on waves in plasma, such as Landau

Damping. To explore how these effects instabilities in plasmas, we have to go

back to vlasov equations and study kinetic theory.

3.3.1 Linear derivation of firehose instaility dispersion

Starting from the famous Vlasov equation for electrons:

∂f

∂t
+ v · ∇f + q

E + v ×B
m

· ∇vf = 0 (3.30)

In order to compare the final results, here we use the same equilibrium as

(3.15), for linear part:

B = B0 + δB, E = δE, f(x,v, t) = F (v) + δf(x,v, t). (3.31)

where F (v) is equilibrium distribution function, which later is assumed as

binormal function. Apply this relation to equation (3.30) and only keep the

first order term, we get linearized vlasov equation:(
∂

∂t
+ v · ∇+

q

m
v ×B0 ·

∂

∂v

)
δf(x,v, t) = − q

m
(δE + v × δB) · ∂F (v)

∂v

(3.32)

To study firehose instability, we let the fluctuating fields wary as exp(ik‖z
′ −

iωt′), using green theorem:

δf(x, v, t) = − q

mω
δE ·

∫ t

−∞
dt′ exp(ik‖z

′ − iωt′) [I(ω − v′ · k) + v′k] · ∂F (v′)

∂v′

= − q

mω

∫ t

−∞
dt′ exp(ik‖z

′ − iωt′)
[
(ω − v′zk‖)δE ·

∂F (v′)

∂v′
+ (v′ · δE)k‖

∂F (v′)

∂v′z

]
.

33



Assume that δE ⊥ z, we can simplify equation using identity
∂

∂v′x
=
v′x
v⊥

∂

∂v⊥
:

(ω − v′zk‖)δE ·
∂F (v′)

∂v′
+ (v′ · δE)k‖

∂F (v′)

∂v′z

= (ω − v′zk‖)(δEx
∂F

∂v′x
+ δEy

∂F

∂v′y
) + (v′xδEx + V ′yδEy)k‖

∂F

∂v′z

= (δExv
′
x + δEyv

′
y)

[
(ω − v′zk‖)

1

v⊥

∂F

∂v⊥
+ k‖

∂F

∂v′z

]
= (δExv

′
x + δEyv

′
y)

1

v⊥
D̂kF (3.33)

The unperturbed gyro-orbits identities we need are:

τ = t− t′ (3.34)

vx = v⊥ cosφ (3.35)

vy = v⊥ sinφ (3.36)

v′x = v⊥ cos(φ+ Ωτ) (3.37)

v′y = v⊥ sin(φ+ Ωτ) (3.38)

v′z = v‖ (3.39)

z′ = z − v‖τ. (3.40)

According to (3.34), k‖z
′−ωt′ = k‖z−ωt+ (ω−k‖vz)τ , therefore, we get final

expression for δf(x, v, t):

δf(x, v, t) = − q

mω

∫ +∞

0

dτei(ω−k‖vz)τ (δExv
′
x + δEyv

′
y)

1

v⊥
D̂kF (3.41)
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Now, we need to calculate the fluctuating plasma current (δjx, δjy)perpendicular

to magnetic field. For the simplicity, we assume that ions are cold and immo-

bile (v‖ = vz)

δjx = q

∫
d3vvxδf(x, v, t)

= − q2

mω

∫ +∞

0

∫ +∞

−∞

∫ 2π

0

v⊥dv⊥dv‖dφ

∫ +∞

0

dτei(ω−k‖v‖)τv⊥ cosφ

×D̂kF [δEx cos(φ+ Ωτ) + δEy sin(φ+ Ωτ)] (3.42)

Recall the identities: cosφ cos(φ + Ωτ) =
1

2
cos(2φ + Ωτ) +

1

2
cos Ωτ and

cosφ sin(φ+ Ωτ) =
1

2
sin(2φ+ Ωτ) +

1

2
sin Ωτ , we can first solve the integrals

of dφ and dτ :∫ +∞

0

∫ 2π

0

dφdτei(ω−k‖v‖)τ [δEx cosφ cos(φ+ Ωτ) + δEy cosφ sin(φ+ Ωτ)]

=
π

2

∫ +∞

0

dτei(ω−k‖v‖)τ
[
δEx(e

iΩτ + e−iΩτ )− iδEy(eiΩτ − e−iΩτ )
]

(3.43)

One important integral identity we need to know about this question is:∫ +∞

0

eikxdx =
i

k
, if =[k] > 0. Assume that all the fluctuations go unsta-

ble, we get the expression of δjx:

δjx = − q2

mω

π

2

∫ +∞

0

∫ +∞

−∞
v2
⊥dv⊥dv‖

∑
n=±1

D̂kF

ω − k‖v‖ + nΩ
(iδEx +nδEy) (3.44)

By similar calculation:

δjy = − q2

mω

π

2

∫ +∞

0

∫ +∞

−∞
v2
⊥dv⊥dv‖

∑
n=±1

D̂kF

ω − k‖v‖ + nΩ
(−nδEx + iδEy)

(3.45)
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Ohm’s Law shows that j = Σ ·E, from δjx and δjy we calculated above, the

electric conductivity:

Σ = − q2

mω

π

2

∫ +∞

0

∫ +∞

−∞
v2
⊥dv⊥dv‖

∑
n=±1

D̂kF

ω − k‖v‖ + nΩ

×

 i n

−n i

 . (3.46)

Notice that the sum over n = ±1 means that parallel propagating electromag-

netic waves can be separated into right-hand (n = 1) and left-hand (n = −1)

circularly polarized waves. We will only focus on right-hand circularly polar-

ized wave in this question. According to section 11.2, the requirements for

self-consistent fields are:[(
k2 − ω2

c2

)
I − kk − iωµ0Σ

]
·E = 0 (3.47)

Plug in electric conductivity Σ above, we get the expression for dispersion

relation:

D(k, ω) = det

 k‖
2 − ω2

c2
− iωµ0Σxx −iωµ0Σxy

−iωµ0Σyx k‖
2 − ω2

c2
− iωµ0Σyy

 = 0 (3.48)

Now, in order to calculate dispersion relation explicitly, we need to work on Σ

part. As Σxx = Σyy = iΣxy = −iΣyx, we only need to solve for one component

of Σ. Given the distribution function of anisotropic plasma: F
(
v⊥, v‖

)
=

1

2π
3
2

1

vT‖

1

v2
T⊥

exp

(
− v2

⊥
2v2

T⊥

)
exp

(
−

v2
‖

2v2
T‖

)
, in which vT‖ =

√
T‖/m and vT⊥ =√

T⊥/m. we can get expression for D̂kF :

D̂kF = kzv⊥
∂F

∂vz
+ (ω − kzvz)

∂F

∂v⊥
(3.49)
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∂F

∂vz
=

1

2π
3
2

1

vT‖

1

v2
T⊥

−vz
v2
T‖

exp

(
− v2

⊥
2v2

T⊥

)
exp

(
−

v2
‖

2v2
T‖

)
(3.50)

∂F

∂v⊥
=

1

2π
3
2

1

vT‖

1

v2
T⊥

−v⊥
v2
T⊥

exp

(
− v2

⊥
2v2

T⊥

)
exp

(
−

v2
‖

2v2
T‖

)
. (3.51)

Recall the plasma dispersion function:Z(ζ) =
1√
π

∫ +∞

−∞

dt exp(−t2)

t− ζ , the inte-

gration over all parallel velocities of the response function gives

(
α = (ω + Ω)/k‖

√
2T‖
m

)

1√
2π

∫
dv‖

k‖v‖
ω − k‖v‖ + nΩ

1

vT‖

1

v2
T‖

exp−
v2
‖

2v2
T‖

= − 1

v2
T‖

(1 + αZ(α)) (3.52)

1√
2π

∫
dv‖

ω − k‖v‖
ω − k‖v‖ + nΩ

1

vT‖
exp−

v2
‖

2v2
T‖

= 1 +
nΩ√

2k‖vT‖
Z(α) (3.53)

Now, we can calculated the component of electric conductivity Σxy

Σxy = − q2

mω

π

2

∫ +∞

0

∫ +∞

−∞
v2
⊥dv⊥dv‖

D̂kF

ω − k‖v‖ + Ω

= − q2

2mω

v2
T⊥
v2
T‖

(1 + αZ(α)) +
q2

2mω
(1 +

Ω

k‖
√

2T‖
m

Z(α))

=
q2

2mω

(1− T⊥
T‖

)
(1 + αZ(α))− ω

k‖

√
2T‖
m

Z(α)

 (3.54)

Finally, according to (3.48), we get the dispersion relation for right-hand cir-

cularly polarized electromagnetic waves along magnetic field in anisotropic
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plasma

k2
‖c

2

ω2
= 1− 2c2µ0Σxy

ω

= 1− ω2
pe

ω2

(1− T⊥
T‖

)
(1 + αZ(α))− ω

k‖

√
2T‖
m

Z(α)

 (3.55)

, in which α = (ω + Ω)/k‖

√
2T‖
m

3.3.2 Analysis and comparison

Lots of works has been done in analyzing dispersion relation (3.55)[82]

in detail. Here crude calculation will be used to show reasonable results. We

assume that electron temperature is relatively low, so that α � 1. We can

also assume that the frequency of fluctuation is not so high that ω � Ω. Z(α)

can be expanded as:

Z(α) ≈ − 1

α
− 1

2α3
(3.56)

Apply this to dispersion equation:

ω2 = k2
‖c

2 − ω2
pe

2α2

(
1− T⊥

T‖

)
(3.57)

Through the similar calculation as we did before, the criterion for firehose

instability is ω2 < 0, that is

T‖ − T⊥ >
2α2k2

‖c
2

ω2
pe

T‖ (3.58)

which is consistent with the one we got from MHD (
p‖0
ρ0

− p⊥0

ρ0

> v2
A).
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Chapter 4

Impurity Transport

The transport of the impurities induced by the gradient driven drift-

wave turbulences has been started as early as 1970s, where when Cohen

et al compared the experimental and numerical results of the transport of

Aluminum[6]. Later, the experiment observations in many fusion devices con-

firmed that the impurities at the core region are harmful to the confinement[55,

34, 43, 93, 22]. The earlier investigations show that these inward impurity

flux can not be fully understood in the neoclassic regime, for the diffusiv-

ity predicted by the neoclassic analysis are at least one order of magnitude

smaller than the experimental measurements[21]. Therefore, more and more

efforts have been devoted to the anomalous transport induced by the turbu-

lence, especially the drift-wave turbulence, such as ITG and TEM. Numer-

ous studies have been conducted on many fusion devices using various phys-

ical models, for example, the gyrokinetic analysis[43, 44, 81, 3] and the fluid

analysis[14, 26, 25, 24].

In this chapter, we present the linear theoretical studies of the density gradi-

ent driven drift-waves (Hasegawa-Wakatani model) with the presence of active

impurities. The convective diffusivity is calculated for tokamak, reversed-field

pinch (Madison Symmetric Torus) and stellarator (Large Helical Device) and
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the results are compared with the gyrokinetic studies in reference[44].

4.1 Hasegawa-Wakatani drift model with impurities

Core Edge

Main Ions

Density
Impurities

Figure 4.1: Density gradient direction of main ions and impurities in fusion reactor
are opposite in most cases. As impurities are scraped off from vessel, their density
gradient are larger than main ion’s.

As main ions in fusion reactor usually localize at core while impurities

concentrate near the edge, their density gradient are opposite. Drift waves

driven by impurity and ion gradient will result in turbulent transport (E×B).

We use Hasegawa-Wakatani drift model, and consider impurities as the second

ion with charge Z and mass A. Parameters of ion, impurity and electron are

represented by subscript i, z,and e. In order to simplify the calculation, some

approximations without loss of generality are made. First, Quasi-neutrality

is satisfied by ion, impurity and electrons. This statement includes both the

equilibrium background, where
ni0
Lni

+ Z
nz0
Lnz

=
ne0
Lne

, and the fluctuation part,

Zδnz + δni = δne. Secondly, ion temperature gradient effects will not be
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considered in this calculation, they will be treated as seperate work in the

future. Therefore, Ti, Te, Tz are constants. Finally, Quasi-linear approach is

used in calculation. From ion momentum equation, we get

∂δni
∂t

+∇⊥ · (ni(vE + vdi + vπi + vpi)) = 0 (4.1)

where,

vE =
b×∇φ
B

(4.2)

vdi =
b×∇Pi
eniB

(4.3)

vπi =
b×∇ · πi
eniB

(4.4)

vpi =
mi

eB
b× dvi

dt
(4.5)

Pressure tensor πi need to be treated with extra care. Commonly we

assume that it includes three parts,

πi = πFLR + πshear + πcomp (4.6)

where the first term represents Finite Larmor Radius (FLR) effects, which is

collisionless term. The famous FLR cancellation shows that mini
dvdi
dt

+ ∇ ·

πFLR = ∇χ. The second term represents shear force, and can be easily written

as πshear = −ηi∇v, ηi =
3niTi

10ω2
ciτi

. The last term is usually ignored in isotropic

plasma. Similar treatment is applied to impurity equations. However, for

electrons, parallel motion need to be taken into account.

0 ≈ −∇‖Pe + ene∇‖φ−meneνeiv‖ (4.7)
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and electron continuity equation is:

∂δne
∂t

+∇⊥ · (ne(vE + vdi)) +∇‖(nev‖) = 0 (4.8)

Normalization parameters are:

t̃ = tωci, l̃ = l/ρs, ñs = δns/ns0, φ̃ = eφ/Te, ρs = cs/ωci, cs =
√
Te/mi (4.9)

4.1.1 Slab Geometry

First, simply slab geometry is considered. In slab geometry, b = ez,

no magnetic gradient and curvature effects are included. Density gradient is

along x direction. Then,

∇ · vE ≈ 0,∇ · (nivdi) ≈ 0 (4.10)

Then the quasi-linear fluid equations are (from now, ns represents fluctuation

part instead of δns):

∂ni
∂t

+
ρs
Lni

∂φ

∂y
+ [φ, ni]−

d

dt
∇2
⊥φ+ µi∇4

⊥φ = 0 (4.11)

∂nz
∂t

+
ρs
Lnz

∂φ

∂y
+ [φ, nz]−

A

Z

d

dt
∇2
⊥φ+

A

Z
µz∇4

⊥φ = 0 (4.12)

∂ne
∂t

+
ρs
Lne

∂φ

∂y
+ [φ, ne] +

mi

me

ωci
νei
∇2
‖(φ− ne) = 0 (4.13)

As ρs/Ln � 1 in drift order, another normalization need to be made to balance

equations.

t̄ = t̃
ρs
Lne

, {φ̄, n̄s ∇̄‖} = {φ̃, ñs, ∇̃‖}
Lne
ρs

(4.14)

With this new normalization, we can get the dispersion relation.(unfinished)
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4.1.2 Tokamak Geometry

Toroidal orthogonal coordinates and field-aligned coordinates are two

most commonly used coordinate systems to study Tokamak magnetic field.

Basically, field-aligned coordinates are more accurate and widely used in fluid

and gyro-kinetic simulations. However, as field-aligned coordinates are non-

orthogonal, it is very difficult to be used in linear analysis. We will use toroidal

orthogonal coordinates in this section.

Toroidal orthogonal coordinates treat poloidal cross section as a circle, which

is not the case in most Tokamak. However, when aspect ratio a/R � 1, the

shape of poloidal cross section is less important. The properties of toroidal

orthogonal coordinates (r, θ, ϕ)are (x, y, z are cartesian coordinates):

x = (R + r cos θ) cosϕ

y = −(R + r cos θ) sinϕ

z = r sin θ

in which, R and a are the major radius and minor radius. For orthogonal

coordinate system, we can calculate Lame coffecients,

hr = 1, hθ = r, hϕ = R + r cos θ (4.15)

The magnetic field can be written in this coordinate system as

B = Bteϕ +Bpeθ ≈
B0

1 + ε cos θ
eϕ +

B0ε

q
eθ (4.16)
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where B0 is magnititude of magnetic axis, ε = r/R, and q = rBt/RBp is safety

factor. Then the properties of magnetic field is:

B ≈ αB0, b =
1

α

(
eϕ +

ε

q
eθ

)
,∇×B = B0

2− αŝ
Rq

eϕ (4.17)

in which magnetic shear is defined as:

ŝ =
r

qα

dq

dr
, α =

√
1 +

r2

q2R2
(4.18)

Therefore, equations (4.10) under slab approximation are not vaild in Tokamak

geometry. Several terms in continuity equation (4.1) need to be modified

(y and z are arc length in poloidal and toroidal direction, dy = rdθ, dz =

(R + r cos θ)dϕ):

vE · ∇ni0 =

(
1

Bα

(
eϕ +

ε

q
eθ

)
×∇φ

)
· dni0
dr
er (4.19)

= − 1

Bα

dni0
dr

(
∂φ

∂y
+
ε

q

∂φ

∂z

)

∇ · vE = ∇
(

1

B2

)
· (B ×∇φ) +

1

B2
∇ · (B ×∇φ) (4.20)

= −2
∇B
B3
· (B ×∇φ) +

1

B2
∇φ · (∇×B)

= − 2

αB

dα

dr

(
−∂φ
∂y

+
ε

q

∂φ

∂z

)
+

1

B2

∂φ

∂z

B0

qR
(2− αŝ)

∇ · (nvdi) = −2
∇B
eB3
· (B ×∇Pi) +

1

eB2
∇Pi · (∇×B) (4.21)

= −2
TiB0

eB2

dα

dr

(
−∂ni
∂y

+
ε

q

∂ni
∂z

)
+

Ti
eB2

∂ni
∂z

B0

qR
(2− αŝ)
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in which, ideal gas assumption is made, Pi = niTi. Put these terms into ion

continuity equation (4.1), we get the normalized ((4.9) and (4.14), excluding

∇‖) linear equation

∂ni
∂t

+
Lei
α

(
∂φ

∂y
− ε

q

∂φ

∂z

)
− Lne
LB

2
∂φ

∂y
+Q

∂φ

∂z
(4.22)

− 2

τi

Lne
LB

∂ni
∂y

+
Q

τi

∂ni
∂z
− ∂

∂t
∇2
⊥φ+ µi∇4

⊥φ = 0

similarly, we can get linear equations for impurities and electrons

∂nz
∂t

+
Lez
α

(
∂φ

∂y
− ε

q

∂φ

∂z

)
− Lne
LB

2
∂φ

∂y
+Q

∂φ

∂z
(4.23)

− 2

Zτz

Lne
LB

∂nz
∂y

+
Q

Zτz

∂nz
∂z
− A

Z

∂

∂t
∇2
⊥φ+

A

Z
µz∇4

⊥φ = 0

∂ne
∂t

+
1

α

(
∂φ

∂y
− ε

q

∂φ

∂z

)
− Lne
LB

2
∂φ

∂y
+Q

∂φ

∂z
(4.24)

+2
Lne
LB

∂ne
∂y
−Q∂ne

∂z
+ ν∇2

‖(φ− ne) = 0

and the quasi-neutrality equation is

(1− fz)ni + fznz − ne = 0 (4.25)

The parameters used in these equations are

Ln = −n0/

(
dn0

dr

)
, LB = −B0/

(
dB0

dr

)
= −α/

(
dα

dr

)
(4.26)

Lne
LB

=
εn
εB
, εn =

Lne
R
, εB =

LB
R

Lei =
Lne
Lni

, Lez =
Lne
Lnz

, Lei =
1− fzLez

1− fz
, τi =

Te
Ti
, τz =

Te
Tz
, fz =

Znz0
ne0

Q =
2− αŝ
αq

εn +
2ε

q

Lne
LB

, ν =
mi

me

ωci
νei

Lne
ρs
, µi =

0.3

τi

Lneνii
cs

, µz =
0.3A

τz

Lneνzi
cs
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Assume that {ni, nz, ne, φ} ∝ exp−iωt+ ikθy + ikϕz, we can write equations

(4.23) to (4.25) in matrix form,

A ·Φ = 0,A = {aij},Φ = (ni, nz, ne, φ)T (4.27)

where the non-zero components aij are

a11 = −iω − 2

τi

εn
εB
ikθ +

Q

τi
ikϕ (4.28)

a14 =
Lei
α

(
ikθ −

ε

q
ikϕ

)
− 2

εn
εB
ikθ + iQkϕ − iωk2

⊥

a22 = −iω − 2

Zτz

εn
εB
ikθ +

Q

Zτz
ikϕ

a24 =
Lez
α

(
ikθ −

ε

q
ikϕ

)
− 2

εn
εB
ikθ + iQkϕ −

A

Z
iωk2

⊥

a33 = −iω + 2
εn
εB
ikθ − iQkϕ + νk2

‖

a34 =
1

α

(
ikθ −

ε

q
ikϕ

)
− 2

εn
εB
ikθ + iQkϕ − νk2

‖

a41 = 1− fz, a42 = fz, a43 = −1.0

where,

k‖ = k · b =
1

α

(
kϕ +

ε

q
kθ

)
, k2
⊥ =

1

α2

(
k2
θ +

(
ε

q

)2

k2
ϕ

)
(4.29)

Therefore, dispersion relation can be obtained by calculate det(A) = 0, let

ω = ωr + iγ. Here we take the Madison Symmetric Torus(MST), a reversed-

field pinch as an example to illustrate growth rate and frequency dependences

on different parameters. MST is a type of Tokamak with reversed toroidal

magnetic field close to the edge, therefore, safety factor q reverses its sign

along r direction[4, 9]. Also, in contrast to other Tokamaks, the magnitude
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of poloidal and toroidal magnetic field is comparable, which leads to q � 1

at core. Typical parameters[44] of the MST are q = 0.15, ŝ = −1.0, τi =

τz = 1.33, kθ = 0.447, ε = 0.2, εn = 0.15, εB = 0.6, fz = 0.1, Lez = −10,

unless otherwise stated. Impurity ions Li+3, B+5, C+6, O+8 and Ni+18 are

considered. First, Lez effects are explored. The growing mode decreases as Lez

increases from nergative value (Figure 4.2), which agrees with linear kinetic

model. However, two discrepancies have been shown in the plot. The first one

is that the growth rate calculated by fluid model is nearly one order larger than

kinetic theory, which is due to the lack of Landau damping. The second one

is that the growing mode is not stabilized until Lez > 0, while it is stabilized

at Lnz ≈ −3.5 in kinetic model. One possible reason is that in kinetic model,

all the toroidal mode number (kϕ) are taken into account, while only single

toroidal mode are considered in fluid model. If this single toroidal mode is not

close to the fastest growing mode, the result should be different.

From quasi-linear turbulent transport theory, particle flux in radial due

to drift waves is expressed as

Γi =< δnivEi >= <
[∑

k

ikyφk
B

δni

]
= −

∑
k

kyρscsni

∣∣∣∣eφkTe
∣∣∣∣2=[X1] (4.30)

Γz =< δnzvEz >= <
[∑

k

ikyφk
B

δnz

]
= −

∑
k

kyρscsnz

∣∣∣∣eφkTe
∣∣∣∣2=[X2] (4.31)

in which subscripts ‘i’ and ‘z’ represent ion and impurity flux respectively.

Also, in terms of equation (4.29)

X1 = (
δni
ni

)/(
eφ

Te
) = −a14/a11, X2 = (

δnz
ni

)/(
eφ

Te
) = −a24/a22 (4.32)
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Figure 4.2: This plot shows frequency and growth rate of three modes. Fully ionized
Boron B+5 is used as an example. A = 11, B = 5, ν = 1.0, kϕ = 0.0134, where A
and B represent the number of nuclei and lost electrons respectively.

Through some complicated yet straightforward algebra, we can get

=[X2] = =[−a24

a22

] = −

Lez
α
γ

(
kθ −

ε

q
kϕ

)
+

(
A

Z2τz
k2
⊥ − 1

)(
2
εn
εB
kθ −Qkϕ

)
γ2 + (ωr +

2εn
ZτzεB

kθ −
Q

Zτz
kϕ)2

(4.33)

where ω = ωr + iγ, ωr and γ are the growing branch solution in dispersion

relation (4.27). A phenomenological model for particle flux is usually expressed
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Figure 4.3: Growth rate and frequency of the growing mode, where fully ionized
lithium,boron,carbon,oxygen and nickel with 18 ion charge numbers are considerd
as impurity ions. Other parameters are the same as used in figure 4.2

as

Γz = −Dz
∂nz
∂x

+ Vznz (4.34)

or

Γz/nz = Dz/Lnz + Vz (4.35)

in which Dz and Vz are the cofficients of diffusive and convective term.nz is

the background impurity density. Solving Dz and Vz from experimental or

computational fluctuation results is considered as inverse problem and hand-
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ful of algorithm have been developed to tackle this problem. However, for

quasi-linear analysis in this paper, diffusive and convective term can be easily

separated by checking the inclusion of density scale length Lnz. Based on this

principle, the cofficients are

Dz =
∑
k

kyρscs

Lne
α
γ

(
kθ −

ε

q
kϕ

)
γ2 + (ωr +

2εn
ZτzεB

kθ −
Q

Zτz
kϕ)2

∣∣∣∣eφkTe
∣∣∣∣2 (4.36)

Vz =
∑
k

kyρscs

(
A

Z2τz
k2
⊥ − 1

)(
2
εn
εB
kθ −Qkϕ

)
γ2 + (ωr +

2εn
ZτzεB

kθ −
Q

Zτz
kϕ)2

∣∣∣∣eφkTe
∣∣∣∣2 (4.37)

Radial profile of Dz and Vz needs to be calculated and graphed.

4.1.3 Large Helical Device (Stellerator)

Different from the axisymmetric toroidal fusion device (Tokamak), the

stellerator(LHD, Japan and Wendelstein 7-X, Germany)[36] is another promis-

ing design to reach magnetic confinement fusion. The most distinctive charac-

teristic of the stellerator is that the nested magnetic surfaces inside separatrix

can be realized solely by external coils. In other words, plasma current is not

necessary as in Tokamak, which makes it possible to eliminate many types

of instabilities induced by the toroidal plasma current, such as the sawtooth

modes. However, the transport features of the impurities remain unclear. For

example, promising outward convections of the impurities induced by the ion

temperature gradient(ITG) turbulence are observed when the carbon impuri-

ties are injected to the core region[93]. The experimental measurements show
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that the core impurity density can be reduced to only 0.3% of the original den-

sity. This study again contradicts the neoclassic prediction in both transport

direction and the amplitude. The numerical studies have been conducted on

this topic on LHD and many important results have been obtained[81, 20].

As another side of the coin, the requirement that all the currents are

produced by external coils yields a complex helical configuration, which make

the theoretical study and simulations much more difficult than for Tokamaks,

by advancing from 2-D to 3-D. Because of the non-axisymmetric properties,

aspect ratio a/R varies in the toroidal direction and the analytical model

seems inaccurate. The strange shape of magnetic surfaces make it difficult

to implement field aligned coordinates theoretically. However, if aspect ratio

a/R � 1 globally, poloidal cross section can still be treated as circular and

crude orthogonal coordinates (φ, θ, ϕ) are appropriate to the first order of a/R.

As our main focus in this section, the aspect ratio of Large Helical De-

vice (LHD) is a/R = 0.11, which satisfies the a/R� 1 criteria. A theoretical

model for magnetic field in LHD is in [81]:

B = B0

{
1− ε00 − εt cos θ −

L+1∑
l=L−1

εl cos[(l −Mq0)θ −Mα]

}
(4.38)

in which

L = 2,M = 2, α = 0, q0 = 1.9, ε00 = 0, εt = 0.087 (4.39)

(εL−1, εL, εL+1) = εt(−0.28, 0.91, 0)

Other typical parameters for LHD are ŝ = −0.85, ηi = Lni/LT i = 3, R/Ln =

3.33, ε = a/R = 0.11, Ti/Te = 1.0. As safety factor q = rBt/RBp = 1.9, then
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the toroidal magnetic field is much larger than poloidal field Bt/Bp ≈ 20, then

the magnetic field in orthogonal coordinates are

B = Bpeθ +Bteϕ (4.40)

Bp ≈ 0 (4.41)

Bt = B0(1− εt cos θ)−B0(ε1 cos(1−Mq0)θ + ε2 cos(2−Mq0)θ)(4.42)

In spite of the slight difference between εt = 0.087 and aspect ratio ε = 0.11,

equation (4.42) can still be interpreted as the sum of first order approximation

of Tokamak and non-axisymmetric corrective term related to geometric pa-

rameters. Therefore, the influence of helical magnetic geometry on drift wave

will depend on the corrective term. In two-fluid drift wave model, curvature

terms ∇B and ∇×B will appear as we deal with terms like ∇ · vE and will

need careful calculation using the stellerator magnetic field geometry. The

gradient of magnetic field is

∇B = er
∂B

∂r
+ eθ

∂B

r∂θ
(4.43)

in which

∂B

∂r
= −B0

R
− B0

R
rM

dq

dr
[ε1θ sin(1−Mq)θ + ε2θ sin(2−Mq)θ] (4.44)

Besides the usual curvature term −B0/R, equation (4.44) contains terms vary-

ing fast with poloidal angle θ. As we are only intersted in turbulent transport

in radial direction, we can average quantities over poloidal direction and retain
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only total influence. Some useful formulas are

< sin(Aθ) >=< cos(Aθ) >= 0 (4.45)

< θ sin(Aθ) >= −1/A,< θ cos(Aθ) >= 1/A

in which, <> is the average operator and < f >= (1/2π)
∫ 2π

0
fdθ. Apply this

operator on equation (4.44), we get

<
∂B

∂r
>= −B0

R

(
1 + qMŝ

[
ε1

Mq − 1
+

ε2

Mq − 2

])
= −B0

R
(1 + λ) (4.46)

Plug in the value of these parameters and calculate λ ≈ −0.61. Using the

same strategy on other curvature terms, we can have

<
∂B

∂θ
>= 0 (4.47)

< ∇×B >=< − eθ
hrhϕ

∂

∂r
(hϕBϕ) >=

B0

R
λeθ (4.48)

Then the curvature terms in two-fluid equations are expressed as

∇ · vE =
1

RB
(−2− λ)

∂φ

∂y
(4.49)

∇ · (nvd) =
1

RB
(−2− λ)

T

qn

∂n

∂y
(4.50)

Taking advantage of these expressions and using the same normalization prin-

ciple, the set of linear two fluid equations including magnetic curvature effects

in stellerator is

∂ni
∂t

+

[
Lne
Lni
− Lne

R
(2 + λ)

]
∂φ

∂y
+
Ti
Te

Lne
R

(−2− λ)
∂ni
∂y
− ∂

∂t
∇2
⊥φ = 0 (4.51)

∂nz
∂t

+

[
Lne
Lnz
− Lne

R
(2 + λ)

]
∂φ

∂y
+

Tz
ZTe

Lne
R

(−2−λ)
∂nz
∂y
−A
Z

∂

∂t
∇2
⊥φ = 0 (4.52)
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∂ne
∂t

+

[
1− Lne

R
(2 + λ)

]
∂φ

∂y
− Lne

R
(−2− λ)

∂ne
∂y

+ ν∇2
‖(φ− ne) = 0 (4.53)

fznz + (1− fz)ni = ne (4.54)

where the definition of these parameters can be found in Eq.(4.27). Therefore,

according to equation (4.31), radial impurity flux is

Γz =
∑
k

kyρscsnz

γky

[
Lne
Lnz
− Lne

R
(2 + λ) +

A

Z

Tz
ZTe

Lne
R

(2 + λ)

]
γ2 +

[
ωr +

Tz
ZTe

Lne
R

(2 + λ)ky

]2

∣∣∣∣eφkTe
∣∣∣∣2
(4.55)
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Chapter 5

The macro-instabilities in the pedestal region:

The peeling-ballooning modes and the

Edge-Localized modes(ELMs)

In this chapter, we will first show the fundamental linear characteristics

of the peeling-ballooning(P-B) modes and the nonlinear features of the ELM

crashes using the shifted-circular geometry (or limiter tokamak). Then two

interesting studies related to P-B modes and ELM bursts will be presented.

One is the attempted explanations[90] of the famous scaling law between the

ELM size and the edge collisionality in Loarte et al[45] using the shifted-

circular geometry. Another is the studies of the linear P-B modes behaviors

between the standard and snowflake divertor geometry, using the DIII-D H-

mode discharge equilibrium profiles[47]. In addition, the three-field reduced

MHD model under the BOUT++ framework is described in the beginning of

this chapter.

5.1 Three-field reduced MHD model

We use a two-fluid three-field reduced MHD model to simulate the

coupled peeling-ballooning modes and the ELM crashes[88]. The three coupled
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fields that evolve with time are vorticity $̃, pressure p̃ and parallel vector

potential Ã‖. The set of equations (5.1) to (5.5) is derived by neglecting

electron inertia (me ≈ 0), ion acoustic waves (v‖ ≈ 0) and the Hall effect

(ve ≈ vi).

d$̃

dt
+

1

B0

[φ̃, $̃] = B0∇‖0J̃‖+B0b̃·∇J‖0+[J̃‖, Ã‖]+2b0×κ0·∇p̃+µi,‖∂2
‖0$̃+µi,⊥∇2

⊥$̃

(5.1)

dp̃

dt
+ VE1 · ∇P0 +

1

B0

[φ̃, p̃] = χ‖∂
2
‖0p̃ (5.2)

dÃ‖
dt

= −∇‖0φ̃− [φ̃, Ã‖] +
η

µ0

∇2
⊥Ã‖ −

ηH
µ0

∇4
⊥Ã‖ (5.3)

$ =
n0Mi

B0

(
∇2
⊥φ̃+

1

n0Zie
∇2
⊥p̃i

)
(5.4)

J‖ = J‖0 + J̃‖, J̃‖ = − 1

µ0

∇2
⊥Ã‖,VE1 =

1

B0

(b0 ×∇⊥φ̃) (5.5)

where d/dt = ∂/∂t + VE0 · ∇, VE0 = (b0 × ∇⊥Φ0)/B0, ∇‖F = B∂‖(F/B),

∂‖ = ∂‖0 + b̃ · ∇ and b̃ = B̃/B0 = ∇Ã‖ × b0/B. In addition, curvature

term κ0 = b0 · ∇b0 and pressure fluctuation p̃i = p̃e = p̃/2. The parameters

with subscript ‘0’ represent equilibrium parts while the ones with tilde on top

represent fluctuating parts. Nonlinear terms are expressed by Poisson brackets,

[f, g] = b0 · (∇f × ∇g). The transport coefficients, such as resistivity (η),
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hyper-resistivity (ηH), perpendicular viscosity (µi,⊥) and thermal diffusivity

(χ‖), are assumed zero unless specified, and their effects on the P-B modes are

described throughly in [88]. Ion parallel viscosity µi,‖ = 0.1ωAR
2 is retained

in all simulations for numerical convergence.

To investigate the effects of ion diamagnetic drift on the P-B mode, an extra

term is included in vorticity expression (5.4) as (1/n0Zie)∇2
⊥p̃i. Meanwhile,

background electric potential Φ0 was set correspondingly to keep the total

background flow zero. That is:

V0 = Vdi + VE =
1

eZini0

b0 ×∇Pi0
B

+
b0 ×∇Φ0

B
= 0 (5.6)

where Pi0 = P0/2. In other words, background electric potential is set Φ0 =

−Pi0/eZini0. In ideal P-B model, Φ0 = 0 and $̃ = (n0Mi/B0)∇2
⊥φ̃ are applied.

Equations (5.1)-(5.5) are solved using a non-orthogonal field-aligned co-

ordinate system with shifted radial derivatives, where (x, y, z) labels magnetic

surface, distance along magnetic field line and toroidal angle. In addition,

orthogonal coordinates (Ψ, θ, ζ) are also used in this paper to label radial,

poloidal and toroidal positions in some qualitative analysis. Sundials CVODE

package is used to solve time evolution matrices implicitly. Radial bound-

ary conditions are set as $̃ = 0,∇2
⊥Ã‖ = 0, ∂p̃/∂ψ = 0 and ∂φ̃/∂ψ = 0

on the inner radial boundary, and $̃ = 0,∇2
⊥Ã‖ = 0, p̃ = 0 and φ̃ = 0 on

outer radial boundary. The domain is periodic in the parallel coordinates y

with a twisted-shift condition to simulate the continuous field lines. Periodic

boundary condition is also applied in z (toroidal) direction and Fast-Fourier

57



Transformation (FFT) scheme is used in this direction. Moreover, we use in-

sulating divertor plate boundary conditions for tokamak geometries, i.e. we

set all fluctuating variables to zero on divertor plates.

5.2 Fundamental features of the P-B modes and ELM
crash

In this section, we will demonstrate some of the fundamental features

of the P-B modes and the ELM crash using reduced MHD model and shifted-

circular geometry. The shifted-circular toroidal equilibria, cbm18 dens8, is

generated by the TOQ equlibrium code[5] with an aspect ratio of 2.9. The

pressure and current profiles are shown in figure (5.1). This equilibrium is far

from the marginal P-B instability threshold with a pedestal pressure βtop =

1.941 × 10−2 and a normalized pedestal width Wped/a = 0.0486. We can see

that the peak pressure gradient radial position is about Ψnor = 0.85 and the

’separatrix’ of the limiter tokamak geometry is denoted by Ψnor = 1.0.
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Figure 5.1: The pressure (left) and current density (right) profiles of the
cbm18 dens8 equilibrium versus the normalized poloidal flux (Ψnor).
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5.2.1 Linear P-B modes

The linear spectrum of the P-B modes are shown in figure (5.2). In

ideal case, the real frequency of P-B modes are zeros and the growth rate

increases with toroidal mode number (n) and saturates at high n. With the

ion diamagnetic drifts, the modes get stabilized at high n (n > 30). In addi-

tion, the modes start to propagate to the ion diamagnetic direction and the

frequency is proportional to n. The radial and poloidal mode structure of the

P-B modes at n = 15 are shown in the left and right figure of figure (5.3). The

linear P-B modes radially localize around the peak pressure gradient local po-

sition and poloidally localize at the outboard midplane, i.e. the bad-curvature

region of the tokamak. These mode structure features are consistent with the

mode nature: the Rayleigh-Taylor instability driven by the pressure gradient

and fictiticous gravitational force (curvature).

5.2.2 ELM crash

Having shown the linear characteristics of the P-B modes, we now

present the simulation results of the ELM crashes. The mechanism of the

ELM crash in the nonlinear stage of the P-B modes is described in Xu el

al[87] as the formation of the stochastic field lines in the pedestal region due

to the magnetic reconnections. The stochastic field lines serve as the chan-

nel for the energy and particle transport during the ELM crashes. Therefore,

the resistivity and hyper-resistivity is needed for the reconnection. In ELM

study, we use the nonlinear reduced MHD model with the normalized resis-
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Figure 5.2: The linear growth rate and real frequency of the P-B modes as a
function of the toroidal mode number. The red line represent the growth rate
of the P-B modes in ideal case, while the blue lines represent the growth rate
and real frequency with ion diamagnetic drifts. Resistivity is set to zero.
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Figure 5.3: The linear radial (left) and poloidal (right) structure of the P-B
mode at n = 15.
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tivity η/ωAR
2µ0 = 1 × 10−8 and hyper-resistivity (ηH/ωAR

2µ0 = 1 × 10−13),

where ωA and R are Alfven frequency and major radius. The equlibrium is

still the cbm18 dens8.

Figure (5.4) shows the time evolution of the root-mean-square(rms) amplitude

of the pressure perturbation (left) and the change of the pedestal pressure pro-

files. From the left figure, we can see clearly that the ELM crash occurs at

t = 80tA when the exponential linear growing stops and the initial crash hap-

pens. After the initial crash, the amplitude decreases by a certain amount

and saturates at a lower level. The decrease of the amplitude implies that

there are energy bursts from the pedestal to the scrape-off layer, i.e. the ELM

bursts. The crash process of the pedestal is shown in the right figure, where

we can see a void appears inside the peak pressure gradient radial position

and a blob appears outside. The blob represents the energy comes out of

the edge during the ELM crash. After the initial crash, the size of the blob

almost keeps the same with very small increase, which means that the ma-

jority of the energy bursts occur at the very short initial crash phase and

very little energy bursts after that, i.e. the spreading phase[46]. It is more

straightforward to see the initial crash and spreading phase during an ELM

crash in figure (5.5), where the time evolution of the ELM size is shown. The

ELM size is defined as s = ∆Wped/Wped and represents the ratio of the ELM

energy loss ∆Wped =
∫ Rout
Rin

dR
∫
dθ(P0 − 〈P 〉ζ) to the pedestal stored energy

Wped =
∫ Rout
Rin

dR
∫
dθP0. After the initial crash at t = 80tA, the spreading

phase start at t = 100tA and the ELM size saturates at approximately 2%.

61



0 20 40 60 80 100 120 140

t/ tA

0.000

0.001

0.002

0.003

0.004

0.005

0.006
<
p
>
rm
s(
)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Ψnor

0.000

0.005

0.010

0.015

0.020

P
re

ss
u
re

 p
ro

fi
le

 (
β
)

t=0

t=80tA

t=110tA

t=135tA

Figure 5.4: Left figure: the time evolution of the pressure perturbation ampli-
tude through an ELM crash process. Right figure: the change of the pedestal
pressure profile during the ELM crash process. The dashed lines in the left
figure corresponds to the time denoted in the right figure with the same color.

During the ELM crash phase, the inverse cascade occurs and the energy trans-

0 50 100 150
0.0

0.5

1.0

1.5

2.0

2.5

E
L
M

 s
iz

e
 (

%
)

t

Figure 5.5: The time evolution of the ELM size during the ELM crash process.

fers to the low-n modes. As shown in figure (5.6), the different harmonics have

randomly different amplitude at the initial moment and n = 20 toroidal mode

becomes the dominant mode in the linear phase. After the ELM crash occurs,
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the inverse cascade appears and the energy transfers to the toroidal mode with

lower n (n = 10), which is the dominant mode during the spreading phase.

A qualitative picture of the inverse cascade is shown in figure (5.7) using the

poloidal cross-section plot of the pressure perturbation.
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Figure 5.6: The toroidal spectrum of the P-B instability during the ELM crash
process.
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t=80 At t=110 At t=135tA

Figure 5.7: The poloidal cross-section view of the pressure perturbation (δp)
at different time during ELM crash. The red color represents positive value
while the blue represents the negative value.

5.3 The scaling law between ELM size and the edge
collisionality

As type-I ELMs have been the crucial factor to the H-mode confine-

ment, it is worthwhile to understand their direct dependences in the pedestal

region from the machine perspective, in addition to the studies on the na-

ture. Loarte et al[45] gave one of the most important scaling law: the inverse

correlation between ELM size and the edge collisionality, which includes exper-

imental data from almost all the major Tokamaks in the world and extrapolate

to ITER H-mode scenario. However, the physics beneath the beautiful scaling

law remain unclear. As the computing capabilities grow exponentially in the

past decade, simulations may be a viable way to dig into the deep darkness,

and the very first step is to exactly reproduce the scaling law.
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5.3.1 The equilibria

The edge collisionality generally depends on the density and tempera-

ture profile:

ν =

4π
∑
i

niZie
4lnΛ

(4πε0)2m2
ev

3
Te

(5.7)

Therefore, the collisionality is proportional to n/T 3/2. In order to generate a

sequence of equilibria with different edge collisionality while not changing the

P-B stability itself, we keep the pressure profile the same and alter the density

and temperature profile at the same time as in figure (5.8). The density and

temperature profiles in the seven cases follow the equation:

n0(Ψ) = N0

(
P0(Ψ)

P0(0)

)0.3

, T0(Ψ) = P0(Ψ)/(2n0(Ψ)) (5.8)

where N0 = 1, 3, 5, 7, 9, 12, 15, 20 × 1019m−3. P0(0) is the pressure at the top

of the pedestal. Table 5.1 shows the edge collisionality at the peak pressure

gradient radial position for different cases. These eight equilibria are gener-

ated based on the shifted-circular equilibria, cbm18 dens6, which is similar

to cbm18 dens8, but is closer to the marginal P-B instability threshold with

β = 1.45 × 10−2 and Wped/a = 0.0518. In order to make all the profiles

consistent in one equilibrium, we run EFIT code every time we alter the den-

sity profile. Therefore, the current density profiles, which is calculated using

Sauter bootstrap current model[60], show a decreasing trend as the density

and collisionality increases.
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N0(1019m−3) 1.0 3.0 5.0 7.0 9.0 12.0 15.0 20.0
ν 1.91× 10−3 4.03× 10−2 0.159 0.381 0.72 1.606 2.908 6.197

Table 5.1: The edge collisionality calculated by Eq. 5.7 at the peak pressure
gradient radial position for eight cases with different density profiles.
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Figure 5.8: Left figure: The pressure and current density profiles for different
pedestal density cases. The pressure profile is the same as the shifted-circular
equilibrium cbm18 dens6. Right figures: The density profiles (top) and the
temperature profiles (bottom).
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5.3.2 The Linear growth rate of P-B modes

The linear growth rate of the P-B modes is shown in figure (5.9). Very

interestingly, we find that as the pedestal density increases, i.e. the edge

collisionality increases, the low-n modes get stabilized and the stabilization

effects on high-n modes disappear. The explanation lies in two aspects: the

ion diamagnetic effect and the bootstrap current. As the edge collisionality

increases, the edge current decreases and the peeling mode, which is driven

by the current, get stabilized. Meanwhile, the ion diamagnetic stabilization

effects, which is proportional to 1/n, become weaker as the density increases.

Hence, the stabilization on the high-n modes gets weaker and even nearly

disappears for N0 = 20× 1019m−3 case.

5.3.3 The scaling law between ELM size and edge collisionality

The time evolution of the relative ELM energy loss is shown in the left

figure of figure (5.10). There are two things that need to be noticed in the

figure. Firstly, as the fluid model (reduced MHD) we are using to simulate

ELM bursts lacks the necessary energy flow from the core region, which is

considered to be very important for the rebuild of the pedestal between ELM

cycles, the ELM size theoretically will keep increasing in the spreading phase,

until the perturbations reach the inner boundary. After that, the ELM size

will dramatically increase due to numerical mechanism, like the red and blue

lines in the figure. In order to make the correct measurements of the relative

ELM energy loss, we draw an imaginary line (the dashed lines) to extrapolate
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the ELM size as if the perturbations never reach the boundary. Another thing

is that we set t = 4300tA as the measurement time for ELM size, which is

represented by the vertical dashed line in the figure. The reason is that it is

the typical time interval for an entire ELM burst in the tokamak, for example,

DIII-D. The results are shown in the right figure as red dots, overlaid with

the multi-tokamak experimental data in Loarte et al[45]. The comparison

shows very good agreement with the scaling law. The continuing study on

the explanation of this scaling law using flux-driven model in BOUT++ is

currently underway and will be seen in the future publications.
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Figure 5.10: Left figure: The time evolution of the ELM size for N0 =
3, 5, 7, 9, 12 × 1019m−3 cases. The vertical black dashed line shows the time
when we take the ELM size measurements. Right figure: The relative ELM
energy loss scaling vs. collisionality with multi-tokamak experimental data[45]
overlaid with BOUT++ simulation results (red bullet).
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5.4 Linear simulations of P-B modes in STD and SF-
plus divertor geometry

In this section, we will show another important studies on the P-B

modes in the pedestal region: the impact of the snowflake configuration on

the linear behavior of the P-B modes.

5.4.1 Equilibrium

The standard (STD) lower single-null equilibrium is taken from exper-

imental measurements in DIII-D ELMing H-mode[18] (shot number 149394,

t = 2241 ms) and generated by the kinetic EFIT code[41]. The snowflake (SF)

plus equilibria are generated by reconstruction code CORSICA[69] based on

STD equilibria and match the EFIT plasma boundary except near the lower

null point. Reconstructing SF-plus geometry using CORSICA is described in

detail in [70]. The distance between two null points in SF-plus geometry is

25cm. A 2-D orthogonal (Ψ, θ) equilibrium grid for simulation is then gen-

erated by part of BOUT++ code. Figure 5.11(a) and (b) show the shape of

equilibrium grid in STD (a) and SF-plus (b) divertor geometry with a few grid

lines. Figure5.11(c) and (d) shows the enlarged part around the null point.

According to the theory[57], the flux around the null point is more expanded

in the SF-plus divertor configuration, which aims to redistribute streaming

particles to two additional legs, thereby reduce heat flux on divertor plates.

Through Figure 5.11, it is clear that this important geometric feature is re-

tained in this study, in spite of the fact that the second null point is not
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included in our simulation domain due to technical limitations. The major

radius of DIII-D is R ≈ 1.6m and the aspect ratio R/a is approximately 4.5.

The radial simulation domain extends from Ψnor = 0.9 to Ψnor = 1.1, where

Ψnor = (Ψ − Ψaxis)/(Ψsep − Ψaxis) is normalized flux coordinate. Ψnor = 1

represents the separatrix, while Ψnor < 1 and Ψnor > 1 represent edge region

and the scrape-off layer (SOL). One notable feature about the equilibrium grid

is that the private flux region is included in the simulation domain. Therefore,

poloidal indices start from the inner divertor plate and increase clockwise to

the outer divertor plate.

The pedestal pressure P0 and edge parallel current J‖0 are taken di-

rectly from experimental measurements. To investigate only the influence of

the divertor geometry on the P-B modes, P0 and J‖0 are set to be identical

for STD and SF-plus divertor cases. However, other equilibrium profiles such

as poloidal magnetic field (Bp) and safety factor (q) vary among these two

geometries. This is due to the different current density in poloidal field (PF)

and central solenoid (CS) coils, which need to be adjusted carefully to imple-

ment SF-plus divertor. Figure 5.12 (a) shows the uniform pressure profile and

different safety factor profile as a function of normalized magnetic flux. The

safety factor profiles are almost the same inside the separatrix and show dis-

crepancy for Ψnor ∼ 1.0. Figure 5.12 (b) shows the edge current density and

poloidal magnetic field profile at outer midplane. As the edge current density

in this discharge is quite large (J‖max ≈ 0.9MA/m2),the poloidal magnetic

field increases in radial direction in the pedestal region in STD and SF-plus
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Figure 5.11: Figure (a) and (b) shows the entire equlibrium grid for STD
and SF-plus geometry, while figure (c) and (d) shows enlarged area in dashed
rectangle. In all figures, red, black and blue lines represent magnetic surfaces
with Ψnor = 0.985, 1, 1.013.
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geometry. Moreover, the normalized pedestal height β0 = 2.3×10−2 and width

Lped/a = 0.046 exceeds the P-B instability threshold[64], as expected for H-

mode experimental equilibria. The peak pressure radial gradient dP0/dΨ is

located at Ψnor = 0.972. Without loss of generality, density profiles are held ra-

dially constant, ni0 = ne0 ≈ 2.5×1019m−3, where subscripts i and e stands for

ion and electron. Accordingly, the temperature profiles Ti0 = Te0 = (P0/n0)/2

are kept the same for ions and electrons. The pedestal temperature Tped de-

fined as the temperature at Ψnor = 0.90 is Ti,ped = Te,ped = 2.46KeV. The

toroidal magnetic field in the pedestal region is Bt0 = 1.5T and the poloidal

magnetic field is approximately 0.4T at outer midplane.
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Figure 5.12: Figure (a): Normalized pedestal pressure and safety factor in STD
(red) and SF-plus (blue) geometry. Radial position of separatrix is marked
by vertical black dashed line. Figure (b): Surface averaged edge current (<
J0 >sur= (

∫
J0dl/B)/(

∫
dl/B), where dl is infinitesimal segment along field

line) and poloidal magnetic field at outer midplane.
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5.4.2 Linear simulation results

In this section, the linear growth rate and mode structure of ideal P-B

modes are investigated in STD and SF-plus divertor geometry. The simula-

tions are conducted for different toroidal mode numbers from n = 1 to n = 45.

Diamagnetic effects and background E ×B drift are not included unless oth-

erwise stated. The number of grid points in each directions are nx = 132,

ny = 64 and nz = 17. The simulation domain in radial and poloidal direction

is 0.9 < Ψnor < 1.1 and 0 < θ < 2π. In toroidal direction, only 1/n torus is

simulated for each toroidal mode number n and the toroidal resolution nz = 17

represents a complete sinusoidal period in this piece of torus. In this way, the

high toroidal mode numbers could be treated correctly and efficiently.

5.4.2.1 Growth rate

Linear simulations of the P-B modes using BOUT++ have shown good

agreement in growth rate and mode structure with GATO and ELITE in

shifted circular geometry[88]. Therefore, it is reasonable to use it for simula-

tions in divertor tokamak geometry, but careful benchmarks are under way and

will be given in future publications. 5.13 shows growth rate of ideal P-B mode,

resistive P-B mode and P-B mode with ion diamagnetic effects, versus toroidal

mode number n and normalized wave vector kζρi = (n/R)(
√
TiMi/eB). The

growth rate is calculated using formula γ = (1/Prms)(dPrms/dt), where Prms is

the root-mean-square average of the pressure perturbation at outer midplane

and peak pressure gradient radial position (Ψnor = 0.972, ny = 38). Consistent
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with normalization used in equation (5.1) to (5.5), the growth rate γ is nor-

malized by the Alfven frequency ωA = (1/R)(B/
√
µ0Min0) ≈ 4.21 × 106s−1.

It is found that the growth rate of the ideal P-B mode in both configura-

tions increases for low n and almost stays constant for high n, which is due

to the shear Alfven stablization effects on high n ballooning modes. Ion dia-

magnetic effects stabilize P-B mode in a manner consistent with theoreti-

cal expectations[54]. Resistivity and hyper-resistivity destabilize P-B mode

for S = 108 and SH = 1012 and lead to resistive ballooning mode, where

S = ωAR
2µ0/η and SH = ωAR

2µ0/ηH . Most of all, SF-plus geometry destabi-

lizes P-B mode in both ideal (red lines) and more realistic cases (blue, green

lines). Besides, the destabilizing impact on P-B mode appears more evident

for moderate and high n, which will be explained in the following section.

In our linear simulations, the poloidal E × B drift is set to be equal to the

diamagnetic drift for simplicity when nonideal effects are included. However,

this might be different from the E × B profiles observed in many tokamak

experiments, especially at the separatrix, where transition from negative to

positive electric field usually appears[56] and a large shear flow is induced.

Reference [83] has analyzed the impact of the background E ×B shear flow

on the ballooning mode, demonstrating that the shear flow locally stabilizes

the high n mode and constraints the radial mode extents. In our case, as

shown later in 5.15, the mode structure mainly localizes inside the separatrix,

making the impact of large shear at the separatrix on the growth rate less

important.

75



A sensitivity study of parallel viscosity (µi,‖) and radial grid size is described

in 5.14. As stated earlier, a parallel viscosity term is added to vorticity equa-

tion for numerical purposes. From 5.14 (a), we found that µ‖ = 0.1 has less

than 10% influence on results yet yields much faster numerical convergence.

Besides, as the influence on simulation for both configurations is similar, this

will not affect this comparative study. 5.14 (b) shows that the resolution of

simulation grid we use (nx = 132, ny = 64) is high enough for both efficient

and accurate simulations.
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Figure 5.13: Growth rate of ideal P-B mode (red), resistive P-B mode (green)
and P-B mode with ion diamagnetic effects (blue) in STD (solid square) and
SF-plus (dash diamond) divertor geometry versus toroidal mode number n and
normalized toroidal wave vector (kζρi).
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Figure 5.14: Figure (a): Growth rate versus parallel viscosity µ‖ in STD (red)
and SF-plus (blue) divertor geometry. figure(b): Growth rate versus radial
grid size, nx = 68, 132, 260, 516. Poloidal grid size is ny = 64. Toroidal mode
number is fixed as n = 15 for both figures.

5.4.2.2 Mode structure

Pressure perturbations in tokamak geometry are generally expressed

as superpositions of the eigenfunctions p̃(Ψ, θ, ζ) =
∑

m,n pm,n(Ψ) exp(−imθ−

inζ), where θ and ζ are poloidal and toroidal angles. Given the fixed toroidal

mode number n, the linear mode structure depends on the composition of

poloidal harmonics. Each poloidal harmonic corresponds to a particular poloidal

mode number m and localizes at rational surface q = m/n in radial direction.

These poloidal modes radially couple with each other due to toroidicity and

form the global radial mode structure. In our simulations, a gaussian func-

tion is used for the initial pressure perturbations in both radial and poloidal

directions. As time evolves, the mode structure gradually shifts to outer mid-

plane where the so called ‘bad curvature’ localizes it and give it a ballooning
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structure. Root-mean-square averaged pressure perturbation Prms(Ψ, θ, t) is

used to demonstrate the mode structure in STD and SF-plus divertor geom-

etry. The global radial mode structure is shown in 5.15(a). One obvious

conclusion is that the radial mode structure becomes narrower as the toroidal

mode number increases in both configurations, which is due to denser rational

surfaces around the position of peak pressure gradient. Moreover, the com-

parison between STD and SF-plus geometry indicates that the P-B modes in

SF-plus geometry has a larger radial spread for high toroidal mode number,

e.g. n = 35, but slight differences for low mode number. This is of partic-

ular interest, because the width of radial mode structure is commonly found

to be positively correlated with ELM size in the nonlinear stage. Although

careful nonlinear simulations are ongoing and will be presented in future pub-

lications, this still provides us original motivation to seek explanation even in

linear regime, which will be presented in this paper. One aspect that deserves

extra attention is that the amplitude of all poloidal harmonics outside sepa-

ratrix (Ψnor > 1) are zero, as there is no instability drive in the SOL in the

equilibrium model (dP0/dΨ = 0 and J‖0 = 0) in linear stage. Nevertheless,

in nonlinear stage pressure filaments propagate to SOL region and generate

ELM, as described in figure 12 of reference [88].

While the P-B mode structure is broader in radial direction, it is found

to be less extended in the poloidal direction as shown in 5.15(b). Before

getting into the results, it is necessary to explain the relation between poloidal

position and indices we use. As stated previously, the poloidal angle starts from
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Figure 5.15: Figure (a): The global radial mode structure is shown for n = 5
(red), n = 20 (green) and n = 35 (blue) in STD (solid square) and SF-plus
(dash diamond) divertor geometry. This mode structure is the envelope of
the mode structure of individual poloidal harmonics. Poloidal index is fixed
at outer midplane (ny = 38).Figure (b): Poloidal mode structure is shown
for n = 5 (red), n = 35 (blue) in STD (solid square) and SF-plus (dash
diamond) divertor geometry. Radial position is fixed at pressure peak gradient
position (Ψnor = 0.972). Position of X-point is marked. normalized pressure
perturbation ˜Prms = Prms/max(Prms) is used for both figures.
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inner divertor target and increases clockwise to the outer target in equilibrium.

Therefore, index ny = 0 and ny = 63 stands for poloidal position at inner and

outer divertor plates in our simulation. As we use four grid point on each

divertor leg, the indices ny = 4 and ny = 59 represent the same grid point

nearest to the null point on certain magnetic surface, as marked on 5.15(b). In

addition, index ny = 38 represents outer midplane. It is shown in 5.15(b) that

poloidal spread in SF-plus divertor geometry is larger for n = 5 and n = 35. In

particular, the P-B instability around the null point is found to be suppressed

by the SF-plus geometry, especially for high toroidal mode number (n = 35).

This is consistent with the results obtained from resistive ballooning mode in

reference [58]. The reason of this will be detailed in the next section. 5.16

gives a more straightforward picture of poloidal mode structure.
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1.0

(b)

SF-plus

Figure 5.16: Poloidal slice contour of normalized pressure rms perturbation
P̃rms in STD (a) and SF-plus (b) divertor geometry. The P-B mode localizes
at outer midplane in both geometries while extends further to divertor region
in STD configuration.
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5.4.3 Explanation and discussion

From linear simulation results, we find that the growth rate of peeling-

ballooning modes in SF-plus divertor configuration is larger than in STD.

The mode structure is more radially extended yet less poloidally extended

in SF-plus divertor geometry. More importantly, the different characteristics

of P-B modes in these two configurations are more evident for high n mode

than low n. Having shown these interesting results, we need to investigate the

reasons carefully. Considerable efforts have been dedicated to explaining linear

behavior of P-B mode and certain parameters have been held responsible, such

as pedestal height and gradient (βp, αp), edge current (J0), curvature (κ0),

magnetic shear (s) and so on. Given the identical pressure and current profile

in STD and SF-plus geometry, we can exclude these quantities. Magnetic shear

and curvature are very likely the reason for the different linear behavior, as

from 5.12(b), we can see that the poloidal magnetic field at the outer midplane

is different in the pedestal region. Although the direct difference is small,

operators such as inverse and derivative required to calculate the magnetic

shear and curvature may produce bigger discrepancies. After some analysis of

the equilibrium profiles, we found that the local magnetic shear is the dominant

factor.

The stabilization mechanism of magnetic shear on ballooning mode has

been explored rather throughly in the literature[7]. The conventional formula

for global magnetic shear is S = (r/q)(dq/dr), which is a manifest of poloidal

averaged separation between magnetic surfaces (showing in 5.17(d)). As useful
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Figure 5.17: (a): Pressure gradient profile dP/dΨ. (b): local magnetic shear
(s) in STD (red) and SF-plus (blue) divertor geometry in radial direction.
ny = 38. (c): local magnetic shear in poloidal direction. Ψnor = 0.972. (d):
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as it is in many circumstances, we found global magnetic shear is far from

adequate to explain the distinctive radial and global mode structures of P-

B mode in different divertor configurations. The reason is that it takes into

account the magnetic shear around the null point, which is theoretically much

larger than the magnetic shear at other poloidal positions and dominates the

global magnetic shear. However, as the P-B modes in our simulation are

localized at outer midplane, the magnetic shear around that particular position

should be more essential. Therefore, we instead define two-dimensional local

magnetic shear (s(Ψ, θ)):

s =
r

ν

∂ν

∂r
, ν =

rBt

RBp

(5.9)

where ν(Ψ, θ) is local pitch and its flux surface average yields safety factor

q(Ψ) =< ν >sur. The comparison of the local magnetic shear in STD and

SF-plus divertor geometry is shown in 5.17. 5.17 (b) indicates the difference

of local magnetic shear in radial direction at outer midplane. One observation

is that local magnetic shear in both geometries is negative in the pedestal

region (0.9 < Ψnor < 1.0). This is not surprising because the poloidal mag-

netic field has been shown to be increasing in the pedestal region in 5.12 (b)

due to the large edge current, and a magnetic shear reversal shall happen.

Nevertheless, based on the stabilization mechanism, only the absolute value

of magnetic shear matters. Therefore, ‘local magnetic shear’ means the abso-

lute value of the local magnetic shear in the following text, unless otherwise

stated. 5.17(a) shows the pedestal pressure gradient profile. Together with

5.17(b), it shows that the local magnetic shear in SF-plus divertor geometry
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is smaller than in STD in the region around pressure peak gradient position,

which is the region between two black dashed lines. As the ballooning modes

are driven by the pressure gradient, the mode structure is mainly localized

in this region. This can also be illustrated from poloidal direction as shown

in 5.17(c), where dashed rectangle roughly represents the outer midplane re-

gion. Combining these two figures, we find that in the two dimensional domain

(0.96 < Ψnor < 0.99, 30 < ny < 43) where the P-B mode is mainly localized,

the local magnetic shear in SF-plus geometry is smaller than that in STD. This

explains larger growth rate and broader radial structure of ideal P-B mode in

SF-plus configuration as in 5.13 and 5.15(a). More clearly, the difference of

local magnetic shear (|ssf |−|ssd|) in two dimensional view is shown in 5.18(a).

5.18(b) shows the ideal P-B mode structure in SF-plus divertor geometry for

reference.

In addition, area circled by dashed oval in 5.17(c) indicates that the

magnetic shear near the null point is indeed larger in SF-plus divertor geom-

etry. One of the most distinctive characteristic of the snowflake divertor is

that the poloidal magnetic field has a second-order null around the null point

instead of first-order as in standard single-null divertor. According to equation

5.17, we easily obtain the following scaling law:

STD divertor : Bp ∼ ∆r, s ∼ (∆r)−2 (5.10)

SF − plus divertor : Bp ∼ (∆r)2, s ∼ (∆r)−3 (5.11)

where ∆r is the distance from the null point. Although this scaling law is only
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rigorously correct for the perfect snowflake geometry, the comparative results

that it gives are still valid for snowflake-like geometries. If we assume that the

poloidal magnetic field close to the null-point is scaled as Bp ∼ (∆r)k, then

k = 1 represents the standard single-null case, in which distance (d) between

two null points is infinity, and k = 2 represents perfect snowflake case, in which

d = 0. Therefore, for a snowflake-like geometry where d is finite (d = 25cm

in our case), 1 < k < 2 and the local magnetic shear around the null point is

still larger than standard divertor geometry. This property of SF-plus divertor

explains why the P-B instability is suppressed in divertor region as in 5.15(b).

We have shown that local magnetic shear plays an important role in

governing the linear behavior of the P-B mode in our simulations. However, we

still need to solve the question of why the difference between STD and SF-plus

divertor becomes more obvious as the toroidal mode number is increased. It

is known that the peeling-ballooning mode has two drive mechanism, pedestal

pressure gradient (ballooning) and edge current (peeling), among which dom-

inate drive term may vary for different n. As the magnetic shear mainly sta-

blizes the pressure gradient drive mode, i.e. the ballooning mode, dominant

drive mechanism needs to be determined for different toroidal mode numbers.

In equation(5.1), pressure gradient drive and edge current-gradient drive terms

(also known as the kink term) are represented by 2b0×κ0 ·∇p̃ and B0b̃ ·∇J‖0
respectively. Without involving other complexities and focusing only on solv-

ing this problem, we simply turn off the kink term and compute growth rate
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in STD divertor geometry. The results are shown in 5.19. It is found that

current-gradient drive dominates low n mode, especially for n < 5, while bal-

looning mode become more and more pronounced for n > 25. This conclusion

appears to explain the evident difference of linear behavior of the P-B mode

between STD and SF-plus divertor configurations for higher toroidal mode

number. Besides, the ion diamagnetic effects have been shown to stabilize the

P-B mode for n > 5, but yield no differences for n < 5 in both geometries in

5.13. Because stabilization effects of ion diamagnetic drifts work mainly for

the ballooning mode, these two conclusions are consistent. Moreover, as ELM

bursts are often triggered by P-B mode at intermediate n (3 < n < 20), domi-

nant peeling mode at this range explains the large ELM size (72kJ) measured

in reference [18].

5.4.4 Conclusion

In this section, we have presented the linear simulation results of the

coupled peeling-ballooning mode in the pedestal region of standard single-

null and snowflake plus divertor configurations. A two-fluid, three-field MHD

model has been used in BOUT++ simulations. We have found that in an

SF-plus divertor configuration, the growth rate of the P-B modes are higher

and the radial mode structures are broader. Besides, the peeling-ballooning

instability is stabilized around the null point in the SF-plus divertor geometry.

Further studies have indicated that the distinctive linear behavior of the P-B

modes in these two configurations are primarily governed by the local mag-
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netic shear, instead of global magnetic shear. We have found that the larger

magnetic shear around the null point in SF-plus divertor suppresses the P-B

modes in divertor region, while the smaller magnetic shear at outer midplane

causes higher growth rate and broader radial mode structure. As the pressure

gradient drive dominates the P-B modes with high n, the difference of linear

behavior between these two geometries become more evident for high n.

Although our studies are conducted on a particular snowflake geometry,

the impact of the local magnetic shear that we found on the linear behavior of

the P-B modes provides some interesting and promising insights for the engi-

neering design of snowflake divertor and other advanced divertors. First of all,

we found that the snowflake geometry suppresses the P-B instability around

null point due to the large magnetic shear in the divertor region. Secondly, the

different linear growth rates and radial mode structures are due to the distinct

local magnetic shear at the outer midplane. Unlike the larger magnetic shear

around the null point, smaller magnetic shear at the outer midplane is not

the inevitable consequence of implementation of snowflake divertor geometry.

Instead, it is likely due to the constraints we set for PF and CS coils when

generating snowflake equilibrium using reconstruction algorithm. The differ-

ent current density in PF and CS coils may change magnetic shear by directly

altering magnetic field at the outer midplane, like in our case, or by affecting

geometric properties, such as triangularity, elongation and so on.

Nevertheless, multiple sets of PF and CS coils may exist for the similar

snowflake divertor configurations and their influences on the magnetic topology
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at the outer midplane of tokamak may be diverse. Therefore, one may ideally

assume that , with a particular constraint of PF and CS coils, the snowflake

divertor geometry can be implemented such that the stabilization of the P-B

modes and the scenario of the ELM bursts are not affected while the benefits of

reducing heat load on divertor plates are retained. We have made considerable

efforts to modify the PF and CS coils in our case, aiming to achieve this goal.

However, we found that it is difficult to eliminate the small changes of the local

magnetic shear around the outer midplane. Fortunately, in contrast to the case

in this paper, these changes could also be beneficial to the stabilization of the

P-B modes with specified constraints. Our studies choose a typical case to

demonstrate the sensitivity of the linear behaviors of P-B modes on the small

changes of the local magnetic shear at the outer midplane. This is of great

importance to the design of advanced divertors on the tokamak, for various

experiments have shown that ELM size increases on TCV, but decreases on

DIII-D after implementing advanced divertor geometry, which could imply the

opposite behaviors of the P-B modes in the linear stage. The local magnetic

shear can be used as a useful criteria to predict the linear behavior of P-B mode

and the following ELM bursts, even in standard singe-null divertor geometry.

90



Chapter 6

The micro-instabilities in the pedestal region:

The Drift-Alfven modes

6.1 Theoretical analysis of the Drift-Alfven instability

Pressure gradient driven drift waves with the presence of the inhomo-

geneous magnetic field have attracted attentions for decades. In this section,

We start from the density gradient driven electromagnetic drift-Alfven model

based on the famous Hasegawa-Wakatani model, and then extend to the pres-

sure gradient driven model with temperature variations. Theoretical disper-

sion relations are derived and the numerical results calculated by Mathematica.

The main purpose of this study is to find theoretical basis for the simulation

results using BOUT++ later and to make qualitative benchmark with these

results.

6.1.1 Density gradient driven drift-Alfven model

Having shown in Hasagawa-Wakatani model, the drift waves can be

driven unstable with the presence of the parallel electron dissipation (collision),

we now couple the electrostatic drift waves equations with the parallel vector

potential equations, switching to the electromagnetic model. The equation set
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is:

mini
B2

d

dt
∇2
⊥φ−∇‖J‖ = 0 (6.1)

∂n

∂t
+
b×∇φ
B

· ∇n− ∇‖J‖
e

= 0 (6.2)

∂A‖
∂t

+∇‖φ−
Te0
en
∇‖n+

meνe
e2n

J‖ = 0 (6.3)

in which, J‖ = −enve‖ and J‖ = −∇2
⊥A‖/µ0. The coulomb collision expression

is νe = 4πnZie
4lnΛ

(4πε0)2m2
ev

3
Te

Besides, the quasi-neutrality assumption is also retained in

this model. In this electromagnetic model, the magnetic perturbation has the

expression b̃ = (∇A‖ × b0)/B. Therefore, the equations can be written in

Hamiltonian format (Poisson Brackets).

∂

∂t
∇2
⊥φ+

[
φ,∇2

⊥φ
]
/B − B2

mini
[(b0 · ∇)J‖ + [J‖, A‖]/B] = 0 (6.4)

∂n

∂t
+ [φ, n]/B − [(b0 · ∇)J‖ + [J‖, A‖]/B]/e = 0 (6.5)

∂A‖
∂t

+ (b0 · ∇)φ+ [φ,A‖]/B −
Te0
en

((b0 · ∇)n+ [n,A‖]/B) +
meνe
e2n

J‖ = 0(6.6)

normalization:

t̃ = tωci, l̃ = l/ρs, ρs = cs/ωci, φ̃ = eφ/Te0, τe =
νeme

ωcimi

, Ln = −n0/(dn0/dx)

(6.7)

Linearize the equations

n = n0 + ñ, φ = φ̃, J‖ = J̃‖ = −∇2
⊥/µ0 (6.8)

assuming {ñ, φ̃, Ã‖} ∼ exp(−iωt− ik · r), we can get the dispersion relation

for the local modes:

c2
s

v2
A

ω3

k2
‖

+ iτe
k2
⊥
k2
‖
ω2 − (1 + k2

⊥)ω +
ky
Ln

= 0 (6.9)
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From the dispersion relation:

• if we only focus on the parallel motion and let k⊥ = 0, the dispersion

relation is thus degenerated to the famous shear Alfven wave dispersion

relation(SAW): ω2 = k2
‖v

2
A

• if the parallel collision is very small or even zero (τe << 1), the dispersion

relation becomes:

c2
s

v2
A

ω3

k2
‖
− (1 + k2

⊥)ω +
ky
Ln

= 0 (6.10)

where the drift waves are excited by the shear Alfven waves and are the

electromagnetic branch.

• if the parallel collision is very large (τe >> 1), then the cubic term

becomes less important and the dispersion relation becomes:

k2
⊥ω

2 + (i/τe)k
2
‖(ω(1 + k2

⊥)− ky
Ln

) = 0 (6.11)

which is the classic Hasegawa-Wakatani electrostatic drift wave disper-

sion relation.

• if the value of the parallel collision falls between the previous two cases,

then the dispersion relation will contain both the electrostatic and elec-

tromagnetic branches simultaneously.
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Without the loss of generality, we set the following parameters according to

the pedestal region of the Tokamak:

c2
s

v2
A

= 0.01, Ln ∼ ρs, k
2
⊥ ≈ 36k2

‖ (6.12)

First, we let τe = 0 and focus on the electromagnetic branch of the Drift-Alfven

waves. As shown in figure (6.1), there are three modes corresponding to the

cubic dispersion relation function. The first mode has no growth rate and the

real frequency is proportional to the wave number. Thus, the first mode is

the shear Alfven wave, propagating along magnetic field lines (parallel direc-

tion). The other two modes, have almost the same real frequency, which is

also proportional to the wave number, but the opposite growth rate. These

two modes are the electromagnetic branches of the Drift-Alfven modes. The

real frequency of these two modes is approximately half of the shear Alfven

frequency. Having shown the characteristics of the Drift-Alfven with the ab-

sence of parallel dissipation, we now retain the full dispersion relation equation

and vary the parallel collisionality (τe). The results with τe = 0.01, 0.1, 1.0 are

shown in figure (6.2). There are several important features that we can find

in this figure:

• When the parallel collisionality becomes finite but very small (τe = 0.01),

the SAW branch becomes decaying mode, with almost the same real fre-

quency as collisionless case. The other two drift wave branches also begin

to shift in both real frequency and growth rate.
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Figure 6.1: The dispersion relation of the electromagnetic branch of the Drift-

Alfven wave, c2s
v2A

= 0.01, Ln ∼ ρs, k
2
⊥ ≈ 36k2

‖
.
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• When the parallel collisionality becomes large enough (τe = 1.0), a

rapidly decaying branch with no real frequency appears, which is likely

the MHD mode. Besides, another two branches shows mirror-like char-

acteristics in both real frequency and growth rate. In addition, the real

frequency is proportional to the perpendicular wave numbers. These are

the main characteristics of the electrostatic drift waves. However, with

the impact of shear Alfven waves, the mode will saturate at very high

mode numbers (k⊥ρs ≈ 1.8)

• The branches show the transient features for the intermediate parallel

collisionality (τe = 0.1).

Figure (6.3) shows the real frequency and growth rate of the Drift-Alfven

waves versus the parallel collisionality. When the background density gradient

is large enough (Ln = 1.0, unstable for νe = 0), we can find that both the real

frequency and the growth rate of the growing branch decreases monotonically

as the parallel collisonality increases. However, when the density gradient

is mild (Ln = 5.0, stable for νe = 0), the real frequency still monotonically

decreases but the growth rate first increases then decreases as the parallel

collisionality increases. The latter case is consistent with the electrostatic

Hasegawa-Wakatani model. Figure (6.4) shows that the growth rate of the

growing mode increases as the background density gradient increases, and the

critical scale length for this particular case is around Lnc = 1.6.
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Figure 6.2: The dispersion relation of the Drift-Alfven modes for different
parallel collisionality (τe), the other parameters are the same as in figure 6.1
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6.1.2 Pressure gradient driven drift-Alfven model

The previous model utilizes the minimum set of the equations to demon-

strate that the drift waves can be destabilized by the shear Alfven waves in

uniform background magnetic field. Therefore, we set electron temperature to

be constant and only focused on the density gradient effects. However, in the

pedestal region of a H-mode discharge, usually the scale length of the electron

temperature profile is one order of magnitude smaller than that of the electron

density profile. It is essential to add the temperature gradient terms in the

previous equations:

∂T̃e
∂t

+
b×∇φ̃
B0

· ∇Te0 −
2

3

Te0
en0

∇‖J̃‖ = 0 (6.13)

and the Ohm’s Law equation will be changed to:

∂Ã‖
∂t

+∇‖φ̃−
Te0
en0

∇‖ñ−
1

e
∇‖T̃e +

meνe
e2n0

J̃‖ = 0 (6.14)

The vorticity and electron density equations will be

min0

B2
0

∂

∂t
∇2
⊥φ̃−∇‖J̃‖ = 0 (6.15)

∂ñ

∂t
+
b×∇φ̃
B0

· ∇n0 −
∇‖J̃‖
e

= 0 (6.16)

The similar linear local analysis gives the dispersion relation:

c2
s

v2
A

ω3

k2
‖

+ iτe
k2
⊥
k2
‖
ω2 − (1 +

5

3
k2
⊥)ω + ky

(
1

Ln
+

1

LTe

)
= 0 (6.17)

as
1

Ln
+

1

LTe
=

1

LPe
, we can see that this dispersion relation equation differs

from equation 6.9 only by the coefficient of k2
⊥ in the third term and the scale
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length in the last term. Therefore, the drift-Alfven modes are driven by both

electron density and temperature gradient. One thing that need to be noticed

is that the ion temperature equation

∂T̃i
∂t

+
b×∇φ̃
B0

· ∇Ti0 = 0 (6.18)

will be passive to the four equations (6.13, 6.14, 6.15, 6.16) and the ion tem-

perature gradient will not have direct impact on the drift-Alfven modes.

6.2 The simulations of the Drift-Alfven modes in the
pedestal region of the Tokamak

In this section, the pressure scan equilibria generated by the ’VARYPED’

tool, which are used in BOUT++ simulations, are presented in details. Then

the linear peeling-ballooning threshold is calculated using the reduced-MHD

three-field model in BOUT++ as before. After that, the modified five-field

landau-fluid model are employed to study the linear characteristics of the drift-

Alfven modes and the qualitative comparisons to the theoretical results are

made. Finally, the heat transports induced by the drift-Alfven turbulence in

the pedestal are presented using BOUT++ nonlinear simulation results.

6.2.1 The pressure scan equilibria

The pressure scan equilibria we used in this paper are based on DIII-

D H-mode discharge 132016, which has plasma current of 1.5 MA, toroidal

field of 2.13 T and an average triangularity of 0.55. The experimental equi-

librium represents the 75-99% portion of the ELM cycle and is the state of
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the stable plasma with the marginal conditions of the ELM onset. Based on

this equilibrium, we vary the pedestal pressure from below to above the mea-

sured profile using the VARYPED tool, which allows for a series of EFITs to

be produced with variation in the pedestal characteristics. In this case, the

highest and lowest variation of the pressure profile are 250% and 50% of the

original one, corresponding to β = 2.5% and β = 0.5%. The cross-sectional

shape, total stored energy and the total plasma current are kept the same for

all the variations. In addition, the width of the pressure profiles stays the

same, while the height and offset varies. The definition of height, width and

offset of the profiles in the pedestal region comes from [27]. As a result, the

parameter ηi = Lni/LTi is the same for all equilibria (ηi = 2.68 at peak gra-

dient radial position). Figure (6.5) shows some of the radial pedestal profiles

(0.9 < Ψnor < 1.05) at the outboard midplane of the equilibria, including

pressure, edge current density, density, temperature, safety factor and colli-

sionality. As the differences between electron and ion temperature profiles are

small, without loss of generality, we set both to be equal to the electron tem-

perature for simplicity. The similar treatments are also done to the density

profiles. Also, although the edge current density at the outboard midplane

increases as the pedestal pressure gradient increases, the total edge current

density keeps the same for different equilibria. The peak pressure gradient

radial position is approximately at Ψnor = 0.962.
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Figure 6.5: The profiles of the ’Varyped’ global self-consistent equilibria: Pres-
sure (β = 2µ0P/B

2) profile at the top left; Edge current density profile at the
top right; Ion and electron density profiles at the middle left; Ion and electron
temperature profiles at the middle right; The safety factor profile at the bot-
tom left; The edge collisionality at the bottom right.The red line in all figures
represent the profiles from the original discharge.
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6.2.2 The peeling-ballooning threshold

Before going into the micro-instabilities analysis, we first use reduced-

MHD three-field[19] model to study the characteristics of the peeling-ballooning

modes in the ’VARYPED’ equilibria , which can be used as a reference later.

The radial boundary conditions are set as $̃ = 0,∇2
⊥Ã‖ = 0, ∂p̃/∂ψ = 0 and

∂φ̃/∂ψ = 0 on the inner radial boundary (Ψnor = 0.9), and $̃ = 0,∇2
⊥Ã‖ =

0, p̃ = 0 and φ̃ = 0 on outer radial boundary (Ψnor = 1.05). Besides, the

domain is periodic in the parallel coordinate y with a twisted-shift condition

to simulate the continuous field lines. As FFT is used in z direction, periodic

boundary condition is also applied on this direction. Moreover, we set Dirich-

let boundary condition for all variables on the divertor plates, i.e. we assume

no fluctuations there.

The linear simulation results of the peeling-ballooning modes are shown in fig-

ure (6.6). The left top figure shows the growth rate of the peeling-ballooning

modes with respect to the toroidal number n. We can see that there are no

unstable peeling-ballooning modes when the pedestal height β < 2.0%. This is

consistent with the experimental measurements that the original experimental

profile with β = 1.0% is measured right before the ELM crash, i.e., the stage

when the plasmas are stable. Besides, the growth rate roughly saturates at

n > 40. The left bottom figure shows the growth rate of the peeling-ballooning

modes at n = 100 versus the pedestal height. It is clear that the growth rate of

the peeling-ballooning modes increase while the pedestal height increases, un-

til the maximum growth rate is reached at β ≈ 2.1%. Then a decreasing trend
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of the growth rate appears as the pedestal height keep increasing. Therefore,

the threshold of the peeling-ballooning modes in this case is roughly β = 1.5%

for n = 100. Moreover, the sensitivity studies demonstrate that the current

resolution nx = 260 and ny = 64 is good enough for the linear analysis. These

results are consistent with the BALOO infinite-n ballooning modes calcula-

tions. The right figures shows the typical ballooning structure, with the mode

localized at the outboard midplane of the tokamak.

6.2.3 The linear behaviors of the Drift-Alfven modes

The linear simulations are mainly conducted on the Edison Cray X30

supercomputer at National Energy Research Scientific Center (NERSC). We

use a non-orthogonal field-aligned coordinate system with shifted radial deriva-

tives, where (x, y, z) labels magnetic surface, distance along magnetic field

line and toroidal angle. Some of the computing grids in our simulations

are shown in figure (6.7). For linear simulation, the computing domain is

0.9 < Ψnor < 1.05 in radial direction, 0 < θ < 2π in poloidal direction and

1/n the whole torus, where n is the toroidal mode number. The resolution in

this three directions are set as: nx = 132, ny = 64, nz = 17. Particularly, in

order to include the divertor region in the simulation, we add the private flux

region to the computing grid, the detail of which can be found in [89].

The spatial discretization schemes are finite differencing in x and y directions,

and Fast-Fourier Transformation (FFT) in the z direction. For the partial dif-

ferential equations, the fourth order central differencing method is adopted for
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Figure 6.6: The linear simulation results of the peeling-ballooning modes in the
pedestal region using ideal reduced-MHD model. The left two figures show the
spectrum of the peeling-ballooning modes versus toroidal mode number (left
top) and the pedestal height (left bottom). The right figure shows the poloidal
section plot of the peeling-ballooning mode with β = 2.0%, n = 20, t = 200tA.
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the first and second order derivatives, while the WENO method is used for the

convective terms. For the temporal evolution, a fully implicit Newton-Krylov

solver PVODE is used with the self-adaptive time-step.
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Figure 6.7: Some of the simulation grids are shown: Ψnor = 0.9 (Black),
Ψnor=0.96 (Green), Ψnor = 1.00 (Red) and Ψnor = 1.05 (Blue).

6.2.3.1 The six-fields Landau-fluid model

The six-field Landau-fluid model is based on the original six-fields two-

fluid model[84] and modified by adding a parallel Landau closure to the tem-

perature equations. The six fields that evolve with time are vorticity ($),
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ion density (ni), ion parallel velocity (V‖i), parallel vector potential (A‖), ion

temperature (Ti) and electron temperature (Te).

∂$

∂t
=−

(
b×∇⊥φ

B0

+ V‖ib

)
· ∇$ +B2∇‖

(
J‖
B

)
+ 2b× κ · ∇P

− 1

2Ωi

[
b×∇Pi

B
· ∇(∇2

⊥φ)− ZieBb×∇ni · ∇
(∇2

⊥φ

B

)2
]

+
1

2Ωi

[
b×∇φ
B

· ∇(∇2
⊥Pi)−∇2

⊥

(
b×∇φ
B

· ∇Pi
)]

+ µ‖i∇2
‖0$

(6.19)

∂ni
∂t

=−
(
b×∇⊥φ

B0

+ V‖ib

)
· ∇ni −

2nib× κ
B

· ∇φ− 2b× κ
ZieB

· ∇P

− niB∇‖
(
V‖i
B

)
(6.20)

∂V‖i
∂t

= −b×∇⊥φ
B0

· ∇ni −
b · ∇P
mini

(6.21)

∂A‖
∂t

= −∇‖φ+
∇‖Pe
ene

+
η

µ0

∇2
⊥A‖ −

ηH
µ0

∇4
⊥A‖ (6.22)

∂Ti
∂t

=− 2

3
Ti

[
2b× κ
B

·
(
∇φ+

∇Pi
Zieni

+
5kB∇Ti

2Zie

)
+B∇‖

(
V‖i
B

)]
−
(
b×∇⊥φ

B0

+ V‖ib

)
· ∇Ti −

2∇‖qi
3nikB

+
2meZi
miτe

(Te − Ti) (6.23)
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∂Te
∂t

=− 2

3
Te

[
2b× κ
B

·
(
∇φ+

∇Pe
Zieni

+
5kB∇Te

2Zie

)
+B∇‖

(
V‖e
B

)]
−
(
b×∇⊥φ

B0

+ V‖eb

)
· ∇Ti −

2∇‖qe
3nikB

+
2meZi
miτe

(Te − Ti)

+
2η‖J

2
‖

3nekB
(6.24)

The notations are quite similar to the reduced-MHD model, with the

exceptions below:

$ =
n0Mi

B0

(
∇2
⊥φ̃+

1

ni0
∇⊥φ · ∇⊥ni0 +

1

n0Zie
∇2
⊥p̃i

)
(6.25)

V‖e = V‖i +
1

µ0Zieni
∇2
⊥A‖ (6.26)

The parallel Landau closure enters the set of equations from ion and electron

heat flux in equations (6.23) and (6.24). We use the collisionless formula from

Ott and Sudan (1969)[51] and Hammett and Perkins (1990)[30].

q‖i = −n0

√
8

π
vT‖i

ik‖kBTi∣∣k‖∣∣ (6.27)

q‖e = −n0

√
8

π
vT‖e

ik‖kBTe∣∣k‖∣∣ (6.28)

One thing that needs to be noticed is that a new Non-Fourier algorithm has

been developed and implemented in BOUT++ framework[11]. The Non-

Fourier method keeps the accuracy and efficiency as the traditional Fourier

ones, but yields much stronger capability in handling the spatial non-uniformity.
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Besides the Landau closure, the lowest-order Finite Larmor Radius (FLR) ef-

fects are also retained in the vorticity equation (6.19) as ion diamagnetic drift

and gyro-viscosity. The electron toroidal resonance, which is also believed to

be an important kinetic effect besides the Landau damping and the FLR, is

currently not included in the equation set due to technical issues.

In the drift-Alfven mode simulations, the parallel ion velocity (V‖i) equation

(6.21) is turned off and the curvature terms (b × κ) are also turned off to

prevent the mixing of the curvature driven interchange-type modes. There-

fore, the model we use is actually the modified five-field Landau-fluid model,

evolving vorticity ($), ion density (ni), parallel vector potential (A‖), ion

temperature (Ti) and electron temperature (Te). We can see that after modi-

fications, the equations that we use for BOUT++ simulations are almost the

same as that we used for theoretical studies (Eqs 6.13, 6.14, 6.15, 6.16 and

6.18). Therefore, qualitative comparisons are possible for verification purposes.

6.2.3.2 The growth rate and real frequency

The growth rate and real frequency of the drift-Alfven modes for the

experimental profile (β = 1.0%) is shown in figure (6.8). We found that the

growth rate and real frequency increases with the toroidal mode number for

n < 50. The drift-Alfven modes propagate in the electron diamagnetic direc-

tion and the real frequency is approximately linearly scaled with the toroidal

mode number, which is consistent with the analytical results (figure 6.1) of

the drift-Alfven modes. Moreover, the drift-Alfven modes with larger resis-
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tivity (S = 1 × 106) have the smaller growth rate and real frequency. This

result can also be demonstrated directly in the resistivity scan study (figure

6.9), where the normalized resistivity is varied by five orders of magnitude

(from 1× 10−10 to 1× 10−5). A comprehensive sensitivity study of the radial

resolution is also conducted and the results are shown in figure (6.9). The

study includes both the equilibrium grid with (0.9 < Ψnor < 1.05) and with-

out (0.9 < Ψnor < 0.999) the separatrix, with the radial resolution variation

from nx = 128 to nx = 516. The right figure in figure (6.8) shows that the

maximum relative deviation between these cases is less than 10%.
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Figure 6.8: Left figure: The growth rate and real frequency versus the toroidal
mode number, with normalized lundquist number S = 1×106 and S = 1×108.
β = 1.0%; Right figure: The sensitivity scan of the radial grid resolution, the
poloidal resolution is ny = 64. n = 15.

The impact of the pedestal height on the drift-Alfven modes is shown in

figure (6.10). The growth rate strictly increases as the pedestal height increases

self-consistently, while the real frequency shows a small dip at β = 2.0%

along with the increasing trend. As both the ion and electron temperature
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Figure 6.9: The growth rate and real frequency versus the normalized resis-
tivity. β = 1.0%, n = 15.

gradient increases as the pedestal height increases, it is crucial to figure out the

primary free energy source of the drift-Alfven modes. In order to do that, we

decrease the ion and electron temperature gradient separately by multiplying

the original profiles by the gradient coefficient, which ranges from 0.1 to 1.0.

The results are shown in the right figure of figure (6.10). The growth rate

dramatically decreases as the electron temperature gradient is decreases and

drops to zero when the electron gradient becomes 40% of the original one. In

contrast, only 10% reduction appears when the ion temperature gradient is

decreased to 20%. Therefore, we can determine that the free energy for the

drift-Alfven instability comes from the electron temperature gradient in the
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pedestal region. As the previous analytical study shows that the drift-Alfven

instability is determined by the inverse of the electron pressure solely (figure

6.4, Eq 6.17), we have obtained qualitatively consistent results from theoretical

and numerical studies.
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Figure 6.10: Left figure: The growth rate and real frequency of the drift-Alfven
modes versus the pedestal height. Lindquist number: S = 1 × 106, toroidal
mode number: n = 15; Right figure: The growth rate of the drift-Alfven
modes versus the ion and electron temperature gradient variations. β = 2.0%,
n = 15.

6.2.3.3 The linear mode structure

Having shown the characteristics of the growth rate and real frequency

of the drift-Alfven modes, we will present the results of the linear mode struc-

ture in this section, which is very crucial for the nonlinear turbulence transport

study in the next step. The radial mode structure is shown in figure (6.11).

The bottom figure shows the electron temperature perturbation (δTe) con-

tour in the radial and toroidal plane at the outboard midplane, while the top

figure shows the inverse of the electron pressure scale length (1/Lpe). The
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pedestal height is β = 2.5% and the toroidal mode number is n = 15. As

we only simulate 1/n torus for given toroidal mode number n in the linear

simulation for resolution purposes, we can only see one wave period in this

region. Through the comparison, it is very clear that the radial peak position

of the perturbations coincides the peak of the inverse electron pressure scale

length profile in the linear stage. This is within the expectation, given the

primary free energy source from the electron pressure gradient. Besides, the

poloidal mode structure of the dirft-Alfven mode with β = 2.5% and n = 15 is

shown in figure (6.12). In contrast to the curvature-driven ballooning mode,

which localizes at the outboard midplane, the drift-Alfven modes have the

poloidal peak at the top and near the X-point in this case. This unique fea-

ture of the poloidal mode structure of the pedestal micro-instability was also

found in another DIII-D equilibrium with shot number 131997 using the GTC

codes[23]. Although this micro-instability is later identified as collisionless

trapped-electron mode (CTEM), it has various linear characteristics that are

similar to drift-Alfven modes in our work, including the dispersion relation and

the poloidal mode structure. Although many other numerical studies of the

pedestal micro-instability [76, 77, 31] have discovered the ‘unusual’ poloidal

mode structure, where the mode localizes somewhere else instead of the out-

board midplane, the reasons remain still unclear. Two theoretical attempts

have been made to explain this poloidal structure: Novakovskii et al.[50] used

ballooning analysis with drift resistive effects and found that a new branch

localizing at ±π/2 ballooning angle appears in addition to the conventional
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ballooning mode branch. Xie et al.[85] conducted a comprehensive numeri-

cal studies on the trapped-electron mode (TEM) in the pedestal region using

GTC codes and found that when the profile gradient is sharp enough, the most

unstable TEM will not be the ground state, which appears at the outboard

midplane, but rather be the higher states with nearly random poloidal struc-

ture or multi-peaks. In our study, the trapped electron effects are not included

in the simulation model. However, the parallel electron dissipations can still

serve as a simplified ‘trap’ mechanism.

6.2.4 The nonlinear simulations of the drift-Alfven turbulence

As the linear characteristics of the drift-Alfven modes have been shown

in the previous section, now we begin to explore the features of the heat trans-

port induced by the drift-Alfven turbulence in the pedestal region, using non-

linear simulations. One of the advantages of the BOUT++ codes in studying

the heat transport in the pedestal region is the capability to extend the simu-

lation domain outside the separatrix, i.e. to the Scrape-off layer (SOL). As the

ELM-crash phenomena have been well elaborated using the three-field reduce

MHD model, we now study the heat transport induced by the micro-instability

using the modified five-field Landau fluid model.

6.2.4.1 The saturation of the linear perturbation

In the first example of the nonlinear simulations, the experimental equi-

libria with β = 1.0% are used. In order to retain more toroidal modes,
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Figure 6.11: Top figure: The inverse of the scale length of the electron pressure
profile ((dTe0/dr)/Te0). β = 2.5%; Bottom figure: The contour of the electron
temperature perturbation in the radial and toroidal plane. The poloidal posi-
tion is the outboard midplane. β = 2.5%, t = 110tA, n = 15, S = 1× 108.
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Figure 6.12: The poloidal cross-section contour of the linear drift-Alfven mode
structure for β = 2.0%, n = 15 and S = 1× 108.

the toroidal resolution is increased to nz = 64, which covers 1/5 the whole

torus. The initial condition is set to be the superposition of multiply toroidal

modes with random amplitude.The time evolution of the amplitude of the

electron temperature perturbation is shown in figure (6.13). It is clear that
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the linear stage where the perturbation grows exponentially and the nonlinear

stage where the perturbation almost saturates is divided at the transient mo-

ment, t ≈ 100tA. Recall that the background electron temperature is about

Te0 ≈ 1KeV, then the relative saturation level is at δTe/Te0 ≈ 12%.

The toroidal mode spectra of the electron temperature fluctuation at the
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Figure 6.13: The time evolution of the root-mean-square(rms) amplitude of
the electron temperature perturbation at the outboard midplane. β = 1.0%.

outboard midplane and peak pressure gradient radial position are shown in

figure (6.14) at t = 0, 50tA, 100tA, 150tA. In the linear phase (t < 100tA), the

drift-Alfven with higher toroidal mode numbers grow faster and the spectra
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peak at high toroidal mode number (n = 60). Then strong nonlinear coupling

saturates the high-n modes and produces inverse cascades after t > 100tA.

One thing that needs to be noticed is that the zonal flow components (n = 0)

are not included in the nonlinear simulations. This inverse cascades have some

analogy with the electron temperature gradient driven drift-modes([]) and the

edge-localized modes (ELMs), where the dominant mode in nonlinear stage

just before ELM crash is about (n = 1). The visualization of the drift-Alfven

turbulence in the poloidal cross-section view at different time is shown in figure

(6.15), where the electron temperature fluctuations (δTe) are used to qualita-

tively demonstrate the turbulence characteristics. Compared to the instability

in the linear phase (t = 10tA, top left), the drift-Alfven turbulence in the non-

linear stage (t = 150tA, top right; t = 200tA, bottom) shows some distinct

features. Firstly, it is clearly shown that the radial extent is much larger in

the nonlinear phase due to the anomalous radial transport. Secondly, the eddy

size becomes bigger due to the inverse cascade, especially at the outboard mid-

plane. Meanwhile, the small fine structures are also developed along with the

major eddies. This is consistent with existence of the high-n modes, despite

that the low-n modes dominate.

6.2.4.2 The heat transport induced by the drift-Alfven turbulence

Although we can qualitatively observe the radial heat transport in fig-

ure (6.15), it is very important to quantitatively study the characteristics of

the heat transport induced by the drift-Alfven turbulence. The most cru-
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Figure 6.14: The electron temperature fluctuation spectrum at outboard mid-
plane and peak pressure gradient radial position. The initial condition with
random multiple modes is shown in the left top figure. All the amplitudes at
different moment are normalized to the maximum values.
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Figure 6.15: The electron temperature fluctuation of Drift-Alfven turbulence
in poloidal cross-section view at t = 10tA (top left), t = 150tA (top right) and
t = 200tA (bottom). 120



cial physics phenomena in the edge region are the L-H and H-L (type-I ELM

bursts) transition, along with the periodic build and crash of the pedestal

itself, which largely depends on the transport level in the edge region. There-

fore, an accurate and complete understanding of the heat transport induced

by turbulences is the key to explain these phenomena. A few notations need

to be introduced before the simulation results are presented. The heat flux for

electrons and ions is defined as:

Γe,i =< δTe,ivE×B >ζ (6.29)

where the subscripts represent different spices and the pointy parentheses stand

for the average over toroidal angle. Besides, vE×B is the E×B drift velocity

and δT means the perturbed temperature. Therefore, the heat flux Γ is a

vector function of time (t), radial position (Ψnor) and poloidal angle (θ). To

avoid the confusion, we use the following notation for specific heat flux:

• ΓΨ
e,i: Radial heat flux for electron (ion).

• Γθe,i: Poloidal heat flux for electron (ion).

Similarly, the radial transport diffusivity for electron and ion can also be cal-

culated using:

χe,i = ΓΨ
e,i/∇ΨTe0,i0 (6.30)

Firstly, the radial transport diffusivities for electron and ion are calculated

and shown in figure (6.16). The radial heat flux is averaged over the poloidal

angle to take into account the cross-section shape. We can see that the radial
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transport diffusivity of the electrons is about 30% larger than that of the ions in

the nonlinear stage. This is the expected results, for the drift-Alfven instability

is driven by the electron pressure gradient. However, compared to the trapped

electron mode, where the difference between electron and ion radial heat flux

could be two to three times[8], the ion still plays an important role in the

drift-Alfven turbulence. Despite the fact that the poloidal averaged radial

heat flux gives a general picture of transport characteristics, we should also

study the radial heat flux at different poloidal angle, for the unconventional

linear mode structure localizes at the top and near the X-point. The results

are shown in figure (6.17) and the average values represented by the dashed

lines are listed below: There are two noticeable conclusions that can be made

ΓΨ(KeV*m/s) top X-point outboard midplane
electron 4.6 12.8 26.0

ion 2.6 7.5 29.8

Table 6.1: The average values of the electron and ion radial heat flux at
different poloidal positions.

from figure (6.17) and table 6.1. The first one is that although the difference

of the poloidal averaged radial heat flux between electron and ion is only 30%

as stated previously, this difference increases to almost 200% at the top and

X-point, where the linear drift-Alfven modes peak. The second one is that the

maximum radial heat flux for both ion and electron comes from the outboard

midplane, not the top and X-point where the linear modes peak. In order to

understand these results, we need to consider not only the anomalous radial

transport, but also the poloidal transport. In the top figure of figure (6.18), we
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Figure 6.16: top figure: The time evolution of the radial diffusivity of electron
(blue) and ion (red) at peak pressure gradient radial position (Ψnor = 0.962).
The dashed lines represent the average value in the nonlinear stage (140tA <
t < 200 < tA): χavee ≈ 0.555m2/s, χavei ≈ 0.424m2/s; bottom figure: The radial
profile of the radial diffusivity of electron and ion at t = 200tA.
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can see that there are two peaks of the radial heat flux around the outboard

midplane. Meanwhile, the poloidal heat flux at the top and X-point have the

opposite sign. In other words, the electron poloidal heat flux from both top

and X-point both head to the outboard midplane. Moreover, the bottom figure

shows that the poloidal heat flux at the outboard midplane is much smaller.

Therefore, a possible explanation for figure (6.17) is as followed: In addition to

the anomalous radial heat transport at the top and X-point, where drift-Alfven

modes peak in the linear stage, strong poloidal heat transport appears, which

transfer a large amount of energy to the outboard midplane. These energy

is then transferred through radial transport at the outboard midplane. This

results may inspire more further numerical and theoretical studies on the heat

transport features of the drift turbulences, which have unconventional poloidal

mode structures in the linear phase, like the trapped electron modes ([85]). As

more and more results have shown the drift-instabilities with unconventional

poloidal mode structure, our study could be a start of a comprehensive research

on the energy transport induced by the pedestal turbulences.
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Figure 6.17: Left figure: The time evolution of the electron radial heat flux at
top (blue), outboard midplane (black) and X-point (red). The dashed lines
represent the average values in nonlinear stage (140tA < t < 200tA); Right
figure: The same as left figure, ion radial heat flux.
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flux versus the poloidal index at t = 200tA. The indices that represent the
top, outboard midplane and X-point position are marked; Bottom figure: The
time evolution of the electron poloidal heat flux at the top, outboard midplane
and X-point position.
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Chapter 7

Summary

In this thesis, we explore the characteristics of the linear behaviors and

transport features of the macro- and micro-instability in the pedestal region of

the Tokamak, using theoretical and numerical tools. As the typical examples,

the peeling-ballooning mode and the drift-Alfven mode are studied in both

limiter and divertor tokamak geometry. In particular, the edge-localized modes

(ELMs), which appears to be repetitive energy burst in the edge region, are

studied and the results are compared with the experiment data. Moreover,

BOUT++ codes are used for the linear and nonlinear global simulations. The

transport features of the high-Z/intermediate-Z impurities are studied in both

tokamak and stellarator geometry using theoretical fluid analysis.

After an introduction and review of the previous studies on the related

topics, the primary numerical tool, the BOUT++ codes are verified using the

well-defined two-dimensional diffusion equation in both planar and cylindrical

geometry in chapter 2. In the first part of chapter 3, the BOUT++ codes are

verified with a complicated model, the double-adiabatic MHD model, which

is used to study the firehose and mirror instability. Excellent agreements are

obtained between the analytical and simulation results. Besides, the firehose
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instability is also studied using the kinetic theory with anisotropic Maxwellian

distribution equilibria in the second part of chapter 3.

In chapter 4, the impurity transport induced by the density gradient

driven drift-wave turbulence is studied theoretically and the transport dif-

fusivity is estimated for slab, tokamak and stellarator geometry. Based on

the famous Hasegawa-Wakatani drift-wave model, one more equation is added

for the dynamics of the impurity density. The linear results are qualitatively

consistent with the gyrokinetic results.

The fundamental characteristics of the peeling-ballooning modes and

the ELM burst are described using simulations results in chapter 5. Two

important topics are studied using BOUT++ codes. One is the scaling law

between the relative energy loss of ELMs and the edge collisionality, which

is first discovered by observing the multi-tokamak data. We use the shifted-

circular, i.e. limiter tokamak geometry, to reproduce the scaling property,

which is the first step of the comprehensive research to disclose the nature

of this scaling law. Another is the study of the difference linear behaviors of

the P-B modes in standard and snowflake divertor geometry. We found that

the change of the local magnetic shear at the outboard midplane due to the

modification of the poloidal coils when switching from standard to snowflake

geometry is the key to explain the difference. We found that the stability of

the P-B modes in the pedestal is very sensitive to the local magnetic topology

at the outboard midplane.

In chapter 6, we present the theoretical and numerical study results of
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one of the micro-instability in the pedestal region, the drift-Alfven instability.

The simulation of the drift-Alfven instability is conducted using a sequence of

equilibria with different pedestal height. These equilibria is generated by the

’VARYPED’ tool based on the DIII-D H-mode discharge. The linear dispersion

relation obtained from simulation results are qualitatively consistent with the

theoretical results. The transport induced by the drift-Alfven turbulence is

also studied using the global nonlinear model and the transport diffusivity is

estimated for both ions and elections.
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Appendix A

Bessel Function

Bessel functions are the canonical solution y(x) of the differential func-

tion:

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 (A.1)

Depending on the boundary conditions, the solution will be a combination of

Bessel function of the first kind (Jα(x))1 and Bessel function of the second

kind (Yα(x)). As the Bessel functions of the second kind have a singularity at

origin (x = 0), We will only focus on the Bessel functions of the first kind.

Bessel function of the first kind (Jα(x)) is the solution with finite value at

x = 0 and can be defined by Gamma function:

Jα(x) =
∞∑
m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

(A.2)

Bessel function of the first kind has the following property:∫ a

0

ρJα(kρ)Jα(k′ρ)dρ =
a[k′Jα(ka)J ′α(k′a)− kJα(k′a)J ′α(ka)]

k2 − k′2 (A.3)

This property indicates the orthogonality of the Bessel function of the first

kind. In fact, there are two sets of orthogonal functions based on Jα(x) in

region [0, ρ0]:

1Although α could be any positive numbers, we assume it to be only integers in the
following context.
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• Jα(Aα,k
ρ
ρ0

), k = 1, 2, 3, ..., where Aα,k is the kth zero of function Jα(ρ).

The normalization of this set of functions is:

IAα,k =

∫ ρ0

0

[ρJα(Aα,k
ρ

ρ0

)]2dρ =
ρ2

0

2
[Jα+1(Aα,k)]

2 (A.4)

Therefore, the coefficients can be calculated:

Cα,k =
1

IAα,k

∫ ρ0

0

f(ρ)Jα(Aα,k
ρ

ρ0

)ρdρ (A.5)

where f(ρ) is an arbitrary function in region [0, ρ0],

f(ρ) =
∞∑
k=1

Cα,kJα(Aα,k
ρ

ρ0

) (A.6)

• Jα(Bα,k
ρ
ρ0

), k = 1, 2, 3, ..., where Bα,k is the kth zero of the function

J ′α(ρ). The normalization of this set of function is:

IBα,k =

∫ ρ0

0

[ρJα(Bα,k
ρ

ρ0

)]2dρ = −ρ
2
0

2
Jα(Bα,k)J

′′
α(Bα,k) (A.7)

Therefore, the coefficients can be calculated:

Cα,k =
1

IBα,k

∫ ρ0

0

f(ρ)Jα(Bα,k
ρ

ρ0

)ρdρ (A.8)

where f(ρ) is an arbitrary function in region [0, ρ0],

f(ρ) =
∞∑
k=1

Cα,kJα(Bα,k
ρ

ρ0

) (A.9)
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Appendix B

Double-Adiabatic MHD

B.1 pressure equation derivation

Fluid equations can be derived Recall Vlasov equation, by assuming

maxwellian-like distribution and averaging over velocity space. Recall vlasov

equation:

∂f

∂t
+ v · ∇f + q

E + v ×B
m

· ∇vf = 0 (B.1)

, or in tensor form

∂f

∂t
+ vi

∂f

∂xi
+ q

Ei + εijkvjBk

m

∂f

∂vi
= 0 (B.2)

As macroscopic pressure is described as:

pmn = m

∫
wiwjfd

3v, wi = vi − ui (B.3)

where u(x, t) is macroscopic fluid velocity. Pressure equation in components

can be derived by multiplying equation (B.2) by wiwj and integrate over ve-

locity space.

dpmn
dt

+
∂

∂xj
Smnj + pmn

∂ui
∂xi

+ pnj
∂um
∂xj

+ pmj
∂un
∂xj
− qεmklpnkBl− qεnklpmkBl = 0

(B.4)
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where Smnj = m
∫
wmwnwjd

3v. For isotropic pressure tensor, pmn = pδmn,

dp

dt
+∇ · S +

5

3
p(∇ · u) = 0 (B.5)

S in this equation describes energy flux, and can be eliminated by adiabatic

assumption. Similarly, for anisotropic pressure tensor pmn = p‖bmbn+p⊥(δmn−

bmbn), if let m = n = 3, then pmn = p‖,this equation becomes:

dp‖
dt

+∇ · S‖ + p‖∇ · u+ 2p‖b · (b · ∇)u = 0 (B.6)

if let m = n = 1, then pmn = p⊥:

dp⊥
dt

+∇ · S⊥ + 2p⊥∇ · u− p⊥b · (b · ∇)u = 0 (B.7)

in which S‖ and S⊥ are energy flux in parallel and perpendicular direction.

Assumption of double adiabatic condition eliminates both terms, and gives

equation (3.10) and (3.11).

B.2 Dispersion relation

After we obtain linearized equations (3.18) to (3.22), several intermedi-

ate steps are required before getting to dispersion relation (3.24).First, conduct

dot product with b0 on both sides of equation (3.22):

b0 ·
∂2ξ

∂t2
= p⊥0(b0 · ∇)(∇ · ξ) + (3p‖0 − p⊥0)b0 · ((b0 · ∇)2ξ) (B.8)

Taking the divergence of both sides of equation (3.22), differentiating twice

with respect to time, expressing (b0 ·
∂2ξ

∂t2
by means of equation (B.8)), and
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apply relation ∇ · ξ = −ρ1/ρ0, we obtain

∂4ρ1

∂t4
−
(

2
p⊥0

ρ0

+ v2
A

)
∇2∂

2ρ1

∂t2
−
(

2
p‖0
ρ0

− p⊥0

ρ0

)
(b0 · ∇)2∂

2ρ1

∂t2

−
[
p2
⊥0

ρ2
0

− 3
p‖0
ρ0

(
2
p⊥0

ρ0

+ v2
A

)]
∇2(b0 · ∇)2ρ1

+

[
3
p2
‖0

ρ2
0

+
p⊥0

ρ0

(
3
p‖0
ρ0

− p⊥0

ρ0

)]
(b0 · ∇)4ρ1 = 0.

Finally, we obtain this linear partial differential equations of density fluctua-

tion ρ1. Assuming that ρ1(x, t) ∝ exp(ik · r − iωt), and taking advantage of

relations (3.23), we can get dispersion relation (3.24).

B.3 Quadratic equation

In quadratic equation (3.25), let:

p⊥0

ρ0

= a,
p‖0
ρ0

= b, v2
A = c (B.9)

then,

∆ = (a+ 2b+ c)2k4
‖ + 12b(b− c− a)k4

‖

= (a2 + 16b2 + c2 − 8bc− 8ab+ 2ac)k4
‖

= (a− 4b+ c)2k4
‖ ≥ 0
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