
Copyright

by

Cassidy Morgan Elliott

2020

The Thesis Committee for Cassidy Morgan Elliott

Certifies that this is the approved version of the following thesis:

Compliance-based Affordance Templates for Remote Mobile

Manipulation

APPROVED BY

SUPERVISING COMMITTEE:

Mitch Pryor, Supervisor

Eric van Oort, Co-Supervisor

Compliance-based Affordance Templates for Remote Mobile

Manipulation

by

Cassidy Morgan Elliott

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2020

Dedication

To my friends and family, whose support means the world to me.

Acknowledgments

First and foremost, I would like to thank my parents and my loving boyfriend,

without whose support I would not be where I am today. I would like to thank Dr.

Mitch Pryor for his advice and technical guidance throughout my graduate school

career. I would also like to thank Dr. Eric van Oort and the RAPID Consortium

for their excellent technical feedback on this work. Finally, I would like to thank all

of my collaborators at UT, Woodside, NASA, and TRACLabs for their help in this

project, with a special shout out to Anthony Biviano and Phil Strawser for making

Perth feel like home.

This work was financially supported by Woodside Energy, the University of

Texas at Austin, and UT’s generous fellowship donors. Additional thanks to NASA

and TRACLabs for granting me access to their software packages.

v

Abstract

Compliance-based Affordance Templates for Remote Mobile

Manipulation

Cassidy Morgan Elliott, M.S.E.

The University of Texas at Austin, 2020

Supervisor: Mitch Pryor
Co-Supervisor: Eric van Oort

This thesis details the implementation of Affordance Templates with a compli-

ance controller to pseudo-autonomously perform complex contact tasks in industrial

environments. Multiple action planning methods were evaluated, and ATs were cho-

sen as the best option for industry use due to their intuitive user interface. Two

Affordance Template packages were implemented and evaluated to determine the

package best suited for use by novice operators. That package was then implemented

in conjunction with a compliance controller in the form of a remote demonstration to

showcase reduction in operator cognitive burden by automatically managing contact

forces and significant command latency (approx 250 ms) during task performance.

The results showed that ATs greatly reduced task execution time and number of er-

rors compared to manual control, with added compliance reducing AT set up time.

Finally, this thesis introduces Affordance Primitives, which were created to increase

vi

the flexibility of Affordance Templates and present a path for future development in

the field of automated task planning.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

Acronyms xiv

Chapter 1. Introduction 1

1.1 The Woodside Project . 2

1.1.1 Common LNG Maintenance Tasks 3

1.2 User Control Modalities . 6

1.3 Affordance Templates . 7

1.4 Compliant Control . 10

1.5 Summary of Objectives . 11

1.6 Organization . 13

Chapter 2. Literature Review 14

2.1 Task Definition Approaches . 14

2.2 Action Planners . 16

2.3 Affordance Templates . 17

2.3.1 The Theory of Affordances . 18

2.3.2 Development . 19

2.3.3 Implementation . 22

2.3.4 Related Work . 26

2.4 Jogging . 27

2.5 Compliance . 30

2.6 Summary . 32

viii

Chapter 3. Affordance Template Package Comparison 34

3.1 The Ideal Affordance Template Software 34

3.2 History . 36

3.3 Craftsman . 38

3.3.1 Using Craftsman . 40

3.3.2 Features and Limitations . 47

3.4 UseIt . 49

3.4.1 Using UseIt . 50

3.4.2 Features and Limitations . 57

3.5 Comparative Summary . 59

3.6 Concluding Remarks . 59

Chapter 4. Affordance Template & Compliant Controller Integration 62

4.1 Affordance Template and Compliant Controller Integration 63

4.2 Implementation Details . 64

4.2.1 Hardware . 64

4.3 Additional Software . 67

4.4 User Interface . 69

4.5 The Task . 70

4.5.1 Task Description . 71

4.5.2 Challenges . 74

4.6 Results . 75

4.6.1 Jogging Without Compliance 76

4.6.2 Jogging with Compliance . 77

4.6.3 Affordance Templates without Compliance 79

4.6.4 Affordance Templates with Compliance 79

4.6.5 Populating a Template Remotely 82

4.7 Summary . 83

ix

Chapter 5. Affordance Primitives 86

5.1 Motivation . 86

5.2 Parameters . 89

5.3 Demonstration . 90

5.4 Applications/Future Work . 96

5.5 Summary . 99

Chapter 6. Conclusions 100

6.1 Research Summary . 100

6.2 Future Work . 104

6.3 Final Remarks . 108

Appendix A. Lessons Learned 109

A.1 Advice for Implementation/Integration of New Software 109

Bibliography 111

Vita 118

x

List of Tables

3.1 Software Comparison Overview . 59

4.1 Vaultbot’s Hardware Components . 66

4.2 Partial Affordance Template for the DBB Task 80

4.3 Remote Demonstration Results . 84

5.1 AP Parameters Shared with Grasp and Turn 92

5.2 AP Parameters for Valve Grasp . 92

5.3 AP Parameters for Valve Turn . 93

5.4 Testing Result Averages . 93

xi

List of Figures

1.1 Woodside employees perform surveillance tasks on their Pluto facility
using their robot Ripley. 4

1.2 Diagram of a Double Block and Bleed Procedure 5

1.3 Valkyrie using an Affordance Template to turn a wheel [13] 8

2.1 A Wheel Template Created for the Valkyrie Robot [13] 20

2.2 The general structure for an Affordance Template [13] 24

3.1 RvizCraftsmanPanel . 39

3.3 CRAFTSMAN’s Wheel Template . 41

3.2 CRAFTSMAN Navigation . 41

3.4 Trajectory Options for CRAFTSMAN’s Wheel Template 43

3.5 Manipulation with CRAFTSMAN’s AT Package 44

3.6 Template Display Controls . 45

3.7 Adding a Template Waypoint . 46

3.8 The UseIt GUI . 50

3.9 Stepping Through a Template . 52

3.10 Named Pose State Options . 55

3.11 Populate Pose from Robot . 56

4.1 The twin robots . 63

4.2 Vaultbot’s 360-degree Sphere in Rviz 65

4.3 Dual RealSense Camera Feeds . 67

4.4 Button mappings for the VR hand controllers used with TeMoto . . . 68

4.5 Button mappings for the Spacenav Pro controller used with TeMoto . 69

4.6 The Temporary Compliance GUI . 70

4.7 The Situational Awareness Overlays 71

4.8 Woodside’s DBB test apparatus with AR marker 72

xii

5.1 Left, without compliance the user must trace the arc, shown in yellow,
whist also controlling the rate of rotation, shown in blue, to close the
valve. Right, with compliance enabled in the roll dimension the user
needs only move the controller laterally, shown in yellow, and does not
need to worry abouot rotation when closing the valve. 87

5.2 Utilizing Affordance Primitives reduced the time to complete and dif-
ficulty of the valve turn task (n=8). 94

5.3 In (a), the user has located gripper around the valve with significant
offset and rotational errors. In (b), the gripper has started to close and
makes contact with the valve with one finger before (c) the affordance
compliance parameters assure the controller continues to grasp the
handle while compliantly correcting the operator’s positioning errors [30]. 95

5.4 Left, the user simply moves (a swipe gesture) the controller to the left,
while (middle, right) the developed controller utilizes compliance to
assure the gripper correctly tracks the rotation and elevation in the
grasp point as the valve is closed [30]. 96

xiii

Acronyms

ADL Action Description Language. 8, 16, 17, 25

AP Affordance Primitive. vi, 86, 88–90, 92, 93, 96–99, 104, 106, 108

AR augmented reality. 73

AT Affordance Template. vi, vii, xi, 7, 9–13, 16–23, 25–27, 32–39, 42, 49, 50, 58–63,

66, 67, 71, 73, 75, 78–91, 95–99, 101–108

CRAFTSMAN CaRtesian-based AFfordance Template Suite for MANipulation. 9,

11, 12, 19, 34, 36–40, 42, 43, 47–51, 59–61, 102, 108–110

DARPA Defense Advanced Research Projects Agency. 19

DBB double block and bleed. xi, xii, 4, 6, 61, 62, 64, 71–74, 77–84, 103

DRC DARPA Robotics Challenge. 19–22, 36, 47

EEF end effector. 6, 7, 9–11, 17, 23, 26–33, 45–47, 49, 57, 64, 66, 67, 69, 75, 76,

79–83, 85, 87, 90, 93, 97, 98, 100–102, 106

F/T force torque. 10, 31, 32, 64–66

GUI graphical user interface. xii, 17, 22, 32, 35, 37, 38, 48–53, 57, 60, 68, 70, 73,

82, 101

xiv

IK inverse kinematics. 47, 59

JSC Johnson Space Center. 2, 19, 37

KDL Orocos Kinematics and Dynamics Library. 47

LNG Liquid Natural Gas. 3, 4, 12, 49, 61, 62, 71

NASA National Aeronautics and Space Administration. v, 2, 9, 19, 20, 22, 36, 37,

109

NRG Nuclear and Applied Robotics Group. 2, 62, 67

OAC Object-Action Complex. 26

ROS Robot Operating System. 8, 18, 20, 23, 27, 36, 37, 42, 53, 57, 107, 109, 110

Rviz ROS Visualizer. 8, 37, 38, 40, 42, 46–51, 73–75, 82

xv

Chapter 1

Introduction

As robot manipulation capabilities improve, industries are seeking to incorpo-

rate robots into their workforce. Robots have the potential to perform a wide variety

of manipulation tasks currently completed by human employees. These tasks range

from potentially dangerous, including handling high-voltage equipment, to tasks that

are simply tedious for dedicated human operators, such as repeated actuation of a

switch or valve. Such tasks are commonly referred to as the “3 D’s”: Dirty, Danger-

ous, or Dull [36].

Despite advancements in manipulation, robots still struggle to autonomously

perform tasks that require precision or must manage forces that vary throughout the

task. Examples of such contact tasks include turning a doorknob, flipping a switch,

rotating a valve, etc. These tasks require some level of precision and for the robot to

apply a force whose direction and magnitude changes during the task. If the robot

is to complete the task autonomously, then it must also account for uncertainty in

task location due to sensor noise or biases. Failure to complete the task correctly

can damage the manipulated object, the robot, or both, which can be dangerous and

expensive depending on the scenario.

While manipulation tasks can be completed via manual teleoperation, this

1

implementation is extremely tedious for the operator as all motions must be defined

each time the task is performed. To appropriately manage the forces, the operator

must count on experience or more complicated haptic feedback, which is not always

available. Thus, the only employees currently capable of completing complex manip-

ulation tasks via teleoperation are those with expertise in robotics, and these are not

the employees utilizing the robots on the front lines.

The aim of this research is to develop and refine more intelligent tools to allow

human operators to complete complex manipulation tasks more quickly and with

less difficulty than with pure teleoperation. With improved situational awareness

and more intuitive control options, we enable more users to successfully complete

complex manipulation tasks remotely. Without the barrier to entry of dedicated

robotics experts permanently stationed on site, it will be easier and more attractive

for industries to use robots to perform identified “3 D tasks” using remote systems.

1.1 The Woodside Project

This thesis was motivated by a collaborative project involving the University

of Texas at Austin’s Nuclear and Applied Robotics Group (NRG), NASA’s Johnson

Space Center (NASA-JSC), and Woodside Energy (Australia’s largest natural gas

producer). The energy industry, in particular, is interested in increasing automation

in their facilities. Oil and Natural Gas (O&NG) plants are potentially dangerous

places to work with numerous stored superheated, pressurized liquids and/or gasses.

Routine maintenance tasks must be performed by employees to prevent potential

catastrophe. The combination of a hazardous workplace with repeatable, menial

2

tasks is the perfect environment to implement robotic or remote solutions that can

complete the work autonomously or with a greater degree of autonomy than direct

teleoperation.

Woodside’s Intelligent and Autonomous Systems group’s mission is to auto-

mate certain surveillance, maintenance, and emergency response tasks on their liquid

natural gas (LNG) facilities in an effort to reduce the number of personnel that rou-

tinely face occupational hazards.

To deploy robots to remote assets in order to perform these tasks in place

of human employees, Woodside must be confident that their robotic systems can

successfully perform a variety of complex tasks while supervised and/or controlled

remotely. Additionally, any robots that are deployed must not become a liability or

require unscheduled human intervention, or else they are potentially creating more

hazards around the plant than they are alleviating. Finally, the proposed solution

must be more economically attractive than the current implementation; the robots

need to be used routinely and make current workers more efficient for companies to

want to invest in them as long-term solutions.

1.1.1 Common LNG Maintenance Tasks

In this context, a task refers to a series of actions required to complete a

goal. Tasks can be categorized as surveillance, navigation, or manipulation/contact

tasks. Currently, surveillance and navigation tasks are the most sophisticated, while

manipulation tasks - particularly contact tasks - still frustrate experienced operators.

Common tasks that a robot at an LNG plant could complete include perform-

3

Figure 1.1: Woodside employees perform surveillance tasks on their Pluto facility
using their robot Ripley.

ing pipe maintenance, monitoring plant emissions, testing for the presence of currents

in wires, etc. These tasks primarily consist of contact tasks, which are the most com-

plex, difficult tasks to perform remotely as there is a greater dependence on sensor

feedback than with surveillance and navigation tasks.

An example of a common LNG contact task is a double isolation and bleed or

“double block and bleed” (DBB) procedure. This procedure is performed to isolate

specific downstream equipment so that maintenance can be performed without shut-

ting down the plant or process. To perform the isolation, three valves must be turned

in a specific order. First the two block valves are closed to isolate the downstream

equipment, then the bleed or vent valve between the block valves is opened to vent

the fluid to a safe location. To warrant the use of the double isolation procedure,

4

Figure 1.2: Diagram of a Double Block and Bleed Procedure

the fluid being vented is often pressurized, superheated, or toxic, making this task an

ideal one to automate.

From a robotic standpoint, this is a difficult task for the user to perform.

First, the user must ensure that the robot is close enough such that all three valves

are reachable and visible to the onboard sensors. Additionally, the valves may not be

co-planar or turn in the same direction making the task more difficult for the operator

to conceptualize and potentially reducing the operator’s situational awareness during

task performance. The user must ensure the manipulator exerts enough force to turn

the valves without exerting too much force, which would cause the low-level controllers

to safety stop the robot. Finally, the hardware used in DBB is not frequently used.

Thus its operational state is often not understood due to a lack of experience and

data related to the specified valves.

When performing a manipulation task, the Operator’s cognitive burden in-

creases sharply with each additional action added to the task sequence. Thus, in-

5

dustries aim to introduce as much automation as possible when completing complex

tasks such as a DBB.

1.2 User Control Modalities

When teleoperating a robot, there are two primary direct control methods

that the user may be utilizing, point-to-point planning and jogging, both of which

come with unique challenges. It is important to note that for both cases the EEF

position and orientation are the only aspects of the manipulator that the user has any

control over. The individual joint angles and overall configuration are determined by

the inverse kinematics algorithm.

First, the operator may be planning via a point-to-point method. In this

method, the operator picks a desired pose and orientation for the End-Effector (EEF)

to reach, and a motion planner solves for a trajectory between the starting point and

the desired end point. For point-to-point planning, known obstacles in the environ-

ment can be accounted for so that collisions are prevented, but unknown obstacles

become even more difficult to handle because the user has limited control over the

generated trajectory. Depending on the solver, that trajectory might or might not be

the most efficient, and could lead the arm to twist in an unexpected way, potentially

colliding with temporary obstacles in the environment. Dealing with temporary ob-

stacles requires the operator to either change their starting position, add the obstacle

to their list of known permanent obstacles, or plan in increments, all of which are

inconvenient.

The second user control option is jogging, or real-time control. In this method,

6

the user commands the position or velocity of the manipulator continuously using an

input device such as a joystick, 3D mouse, or motion tracker. Thus, the user has

complete control over the path the EEF takes, but this also means that the user’s

cognitive burden for performing the task is much greater as they must continuously

control the manipulator. While the operator has greater control over the trajectory,

jogging does not allow for the same collision-avoidance safety measures as point-to-

point planning. Additionally, if the operator is jogging the manipulator, they have to

guide the arm along the desired trajectory (which could be anything from a straight

line to an arc or circle) while also ensuring the arm does not twist itself into a poor

configuration (one that puts the arm in collision with itself or any obstacles in the

environment), on top of managing the forces at the point of contact.

As mentioned above, contact tasks place a greater burden on operators than

the other two task types due to the need to monitor forces and ensure safe operation

[9]. To make robots more attractive to potential industry partners, the goal is to

shift from direct user control to supervisory control, which reduces operator burden

significantly. By getting rid of the repetitive aspect of task setup/performance, actions

and tasks can be performed repeatedly with ease.

1.3 Affordance Templates

Affordance Templates ATs are constructs that allow for the quick implemen-

tation of multi-step manipulation tasks. Coined by TRACLabs as a “task represen-

tation and execution framework” [37], Affordance Templates consist of a 3D model

of an object and a predefined action sequence performed after an operator aligns the

7

Figure 1.3: Valkyrie using an Affordance Template to turn a wheel [13]

model with the object’s sensor-based 3D point cloud [14, 33]. Once aligned, the task

can be autonomously completed by executing a sequence of sub tasks, defined using

Action Description Language (ADL), which is described in Chapter 2, or some other

construct. The template is defined once for each task for a given object, and used ad

infinitum when the task needs to be performed again. This ensures task repeatability,

minimizes the impact of sensor uncertainty, and reduces the cognitive burden on the

user.

At run time, the 3D model is loaded into the Robot Operating System (ROS)

visualizer (Rviz) containing the depth cloud data for onboard sensors. The operator

(or possibly another autonomous agent) then aligns the model with its real-world

counterpart with respect to the manipulator [13], as shown in Figure 1.3. Thus, the

only adjustments that need to be made to the template after its initial creation are

the size, location, and orientation of the model in Rviz [18]. This reduces the setup

time for the task from minutes to seconds and allows novice users to quickly and

routinely perform complex contact manipulation tasks.

8

ATs have several limitations. First, they rely on potentially noisy sensor data

to align the virtual model. Due to tight AT tolerances, even a slight misalignment

is likely to cause the EEF to exceed desired force/torque limits, causing the task to

fail. Another downside to using ATs is that they cannot be paused or resumed; if

a task fails at any point during the template’s execution, the robot and the object

must be completely reset before being reattempted. Finally, Affordance Templates

are computationally expensive and limited in their scope. This means that only one

manipulation object can be loaded into the virtual environment at a time, which

limits the current usefulness of Affordance Templates.

Another issue is that there are only two known implementations of ATs cur-

rently available: TRACLab’s CRAFTSMAN and NASA’s newer UseIt. While a pre-

vious version of CRAFTSMAN is publicly available, neither implementation is free

and open source. Both packages are being actively developed. Thus, their evaluation

by the community is limited. These and related efforts are discussed in more detail

in Chapters 2 and 3.

Yet another issue is one of scope, which refers to the duration and complexity

of tasks captured in a single template. For example, should an AT manage just a

door handle; or encompass the approach to the door, checking if it is locked, turning

the knob, opening the door, moving through the door, and then closing the door.

The answer likely lies in between these two extremes and the approach to scope will

impact the design of any AT generating/execution software packages.

Finally, ATs may prove difficult to scale if the number of tasks is large. They

were originally developed for NASA where the set of tasks in an environment such as

9

the space station are finite and known a priori, but this is not true if they are used

in more complex and ever-changing environments. Thus there is a need to either

rapidly develop ATs or provide the user with a way to define a quick equivalent for

one-off tasks or to record the completion of a task and - from that - define and save

the resulting template.

1.4 Compliant Control

To increase the flexibility of Affordance Templates and reduce the number

of failures due to misalignment, UT Austin has integrated ATs with a compliance

controller with the goal of increasing the positional tolerance of ATs when performing

a task while also automatically managing forces being applied by the EEF to the

object. The compliant controller utilizes an impedance model, which controls the

relationship between the force and velocity of the EEF [17]. Thus, the compliance

controller uses the feedback from the force torque (F/T) sensor mounted on the

manipulator to regulate the velocity of the arm to keep the force within desired

limits [42]. Impedance control is commonly used to make rigid manipulators “human-

friendly” or combined with series-elastic actuators for more strategic interactions.

When a force is sensed, the impedance can be set so that the arm moves to minimize

that force as prescribed by a set of spring and damping virtual parameters. Thus,

if a person is in the way of the arm, the arm will simply slow to a stop, but if the

person is pulling or pushing the arm, the velocity changes to move in the direction

of the force. The same principle applies for performing contact tasks, but the force

threshold is not zero. By setting this threshold higher than the force necessary to

10

perform the task but lower than the arm’s force limit, the controller manages the

forces on the manipulator, removing that burden from the operator.

The compliance controller used for this project is unique in that it allows for

the compliance parameters to be set separately for each degree of freedom and for the

compliance parameters to be changed at any time. This means that the manipulator

can be stiff in one dimension while being completely compliant in another, and this

can be changed during task execution to fit the needs of each step of the task. For

example, when turning a valve, the same compliance parameters may or may not be

optimal when initially grasping the valve as when turning the valve.

Without compliance, if the arm was moving such that it collided with a rigid

object in the environment, the arm would exert a force on that object that might be

large enough to pose a danger to the arm, object, or both. With compliance enabled,

the arm is prevented from exerting a force larger than is safe. Additionally, the align-

ment of a template to a task object without compliance must be extremely precise,

which might not be possible depending on the accuracy of the sensor. Compliance

allows for affordance templates to be more robust to uncertainty and eliminates the

need for the user to manage the EEF forces manually while performing the task.

1.5 Summary of Objectives

With this thesis, I aim to show that the implementation of Affordance Tem-

plates combined with a compliant Cartesian jogger reduces operator burden while

performing contact tasks. To do this, I will implement two existing AT software

packages, UseIt and CRAFTSMAN, and compare and contrast their features. I will

11

also implement the compliant Cartesian jogger with these Affordance Templates and

demonstrate the increased flexibility of ATs from this combined AT-compliant jogger

approach. While task-agnostic, the system(s) are evaluated completing a double-

block-and-bleed (DBB) contact task, which is representative of a variety of tasks

found in the nuclear, drilling, refining, LNG, and other industries.

Finally, I will introduce our concept of Affordance Primitives (APs) and detail

their improvements over the current Affordance Template approaches. APs have the

potential to address the scalability and creation issues described above for ATs.

In summary, the primary objectives of this thesis are as follows:

• Compare the features and limitations of CRAFTSMAN and UseIt

• Integrate the compliant Cartesian jogger with UseIt

• Evaluate the degree to which integrating compliance reduces the difficulty of

performing a complex task

• Introduce Affordance Primitives and how their usage relates to Affordance Tem-

plates

Below, we find that the combination of ATs/APs with the jogger alleviates

operator burden while performing contact tasks and make tasks less likely to result in

damage to the manipulator or manipulation object. Increased confidence in remote

operation of important LNG tasks will allow trained, but not expert operators in

the LNG and similar industries to deploy robots on their assets, reducing the risk of

occupational hazard for their employees.

12

1.6 Organization

Chapter 1 introduced the problems associated with completing remote complex

tasks, Affordance Templates, and how they can improve autonomy when completing

complex tasks. It also describes some of the outstanding issues with ATs including

how to addresses issues related to scope, contact, alignment errors, sensor noise, and

scalability. Chapter 2 is a review of the relevant literature on Affordance Templates,

and other task definition approaches related to ATs, as well as compliant controllers

and joggers. Chapter 3 reviews and compares the two developed AT software pack-

ages in terms of the issues identified above. Chapter 4 discusses the implementation

of these AT packages with the compliant Cartesian jogger. Chapter 5 introduces

Affordance Primitives and summarizes how they have the potential to address the

scalability issues discussed above. Chapter 6 summarizes the results and future work.

13

Chapter 2

Literature Review

Chapter 2 is a review of action planners, affordance templates, joggers, and

compliant control. In this chapter I will not discuss motion planners as we are using

MoveIt, the industry standard.

2.1 Task Definition Approaches

The first step in the process of task planning is to decide on a task repre-

sentation format. Multiple tasks representation formats, including ordered lists of

actions and AND/OR graphs, have been employed in robotic research. However, as

Rocha points out, tasks are generally represented as a series of symbolic, high-level

operations, which are then translated into motions [32]. Examples of such high-level

instructions would be “pick up the ball and place it on the table” or “drive from point

A to point B”. These operations can then be combined to create more complex tasks,

such as commanding a robot to drive to a specific location, pick up a ball, and then

drive to and place the ball at a secondary location.

Nof’s Robot Time and Motion (RTM) method [29] states that any robot op-

eration can be described as a combination of the following eleven steps: move, orient,

touch, grasp, release, reach, stop-on-error, stop-on-force, vision, process-time-delay,

14

and time-delay. The RTM method defines a large set of low level actions that can be

combined into higher-level operations to define complete tasks. The low-level actions

can be described in a directed graph, which define the relationship and order between

each action.

Initial robotic systems employed ordered lists of actions to define tasks, which

simply break down a task into a sequence of actions. Therefore, at their most basic

level, ordered lists are directed graphs with only a single outgoing arc from each

operation. The operations themselves typically consist of one of the eleven basic steps

defined by the RTM method. These graphs are often used to define manufacturing

plans [3,43]. Ordered lists of actions are relatively inflexible as they are incapable of

identifying more than a single series of actions that result in the completion of the

task. However, the simplicity of ordered lists allows them to be rapidly developed [5].

Task planners have also frequently utilized AND/OR graphs to both break

down complex tasks into simpler operations and to identify all feasible processes

that can be generated from a set of operations [31]. AND/OR graphs reduce a high

level, complex task, such as the transportation of an object, into a series of sub-

goals, such as gathering the object, moving from one location to another, and placing

the object at the final location. AND/OR graphs list all possible combinations and

orders of sub-goals that result in the completion of the primary objective. Finally,

once an AND/OR graph has been generated and all possible task execution methods

identified, a task implementation method can be selected. The selection of a single

task execution method generates a directed graph from the bottom AND/OR tree

node to the completion of the primary goal.

15

As this research focuses primarily on the execution of robotic tasks on an

LNG facility, at which the sequence of task steps is relatively rigidly defined due to

the dangerous workplace environment, directed graphs and ordered lists of actions are

employed to define tasks. Affordance templates writ large are based off of directed

graphs [13], which are not as expansive as AND/OR graphs, nor as limited as an

ordered list of actions.

2.2 Action Planners

To allow for a more streamlined, semi-autonomous approach to performing

contact tasks, a wide variety of action planners have been developed and imple-

mented. ADLs and Affordance Templates are some of the most common tools used

to define and execute autonomous tasks.

Action Description Languages are a subset of action languages, which are used

in the field of computer science to describe the effects of performing actions. ADLs,

specifically, relate to transition systems, and are commonly used in robotics. Many

ADLs exist, including the Stanford Research Institute Problem Solver (STRIPS), the

Planning Domain Definition Language (PDDL), ADL-A, ADL-B, ADL-C, and several

more variants.

All of these are hierarchical/conditional planning methods. They model the

world as a transition system, or a set of state variables that change as the result of

actions performed in the world. In STRIPS, for example, there is a set containing

all possible world models based on the consequences of a set of possible actions, or

“operators”. Thus, each operator transforms the current world model into another

16

model. The objective of the problem solver is to find the string of actions that will

take an initial world model and transform it into the desired final world model [7].

ADLs are mainly used for adaptive planning, plan optimization, and to re-

duce navigation time for performing tasks [23]. ADL-A, one of the older ADLs, was

designed to “represent and reason about actions and their effects” [25]. Since the

creation of the earliest Action Description Languages in 1993, there have been many

offshoots of the concept, which extend to cover concurrent actions, non-deterministic

effects, and indirect effects [7, 10, 23, 25]. Today, there are many niche options when

choosing an Action Description Language, all with unique advantages and drawbacks

for a diverse set of applications.

The development of ADLs has primarily focused on mathematical advance-

ment and software implementation, with limited focus on ease of use. The vast

majority of ADL planners, including STRIPS and PDDL, are text based, and do not

lend themselves well to graphical user interfaces (GUIs). Due to the text based nature

of ADL planners, significant background on ADL software syntax and terminology

is required for implementation. In contrast, affordance templates, employ a GUI for

alignment and task execution.

2.3 Affordance Templates

As discussed in Chapter 1, Affordance Templates are constructs that allow for

the rapid implementation of pseudo-autonomous manipulation tasks. They specify

EEF waypoints for a task with respect to the object to be manipulated. Then, a

motion planner such as MoveIt [28] generates the trajectories between the waypoints

17

to execute the task motions.

2.3.1 The Theory of Affordances

Affordance Templates get their name from a popular learning theory in the

field of psychology. Affordance Theory, invented by American psychologist James

Jerome Gibson in 1950, states that the environment is perceived in terms of possible

interactions with objects. Essentially, affordances specify the ways in which a human

interacts with objects in its environment [11].

Thus, an affordance is an inherent property of an object that details the ways

in which it can be used by humans or robots. Examples of affordances for everyday

objects include buttons, which have an affordance for depressing, as well as knobs

and handles, which have affordances for pulling, pushing, and turning. Hermans, et

al identified the following list of affordances: pushable, rollable, graspable, liftable,

dragable, carryable, and traversable [16].

While the concept of affordances is not new, it may be crucial to the way

we define robot behaviour moving forward. This theory of affordances [11] is the

basis for Affordance Templates, and it is a more intuitive way of thinking about

robot motion and task completion than current robot-centric approaches [34]. By

defining tasks in relation to the object(s) they act on, the problem of performing

these tasks is no longer robot-specific, but can instead be generalized to work with

any ROS-compatible robot. Additionally, since humans perceive the world in terms

of affordances, it makes ATs more user-intuitive than most other methods of task

planning.

18

2.3.2 Development

Current AT development is spearheaded by NASA and TRACLabs. Their

software packages, named UseIt and CRAFTSMAN (CaRtesian-based AFfordance

Template Suite for MANipulation) by NASA and TRACLabs, respectively, were de-

signed to help partially automate the execution of complex tasks.

Both packages trace their origins to the Affordance Template software package

developed by a team at NASA-JSC in 2013 [13,14]. This package was showcased in the

2013 DARPA Robotics Challenge (DRC), where it was used to supervise task behav-

iors for the NASA-JSC Valkyrie robot. For the DRC trials, the JSC team was using

Valkyrie to turn a wheel valve, as shown in Figure 2.1. The stated goal of the DRC

trials was to “develop human-supervised ground robots capable of executing complex

tasks in dangerous, degraded, human-engineered environments” [1]. To demonstrate

that the system met the desired goal of increased autonomy for difficult tasks, the

robot was required to perform the tasks with little to no operator intervention.

In 2015, the Affordance Template development team split, with some members

leaving NASA for TRACLabs. The group at TRACLabs then developed CRAFTS-

MAN, which utilizes a modified version of the original Affordance Templates package

for task planning. The developers who remained at NASA-JSC halted Affordance

Template development until 2018, where they began work on UseIt, which also builds

upon the original Affordance Template package. Chapter 3 is a detailed explanation

and comparison of these two software packages.

Among the precursors to UseIt and CRAFTSMAN are IHMC’s Coactive De-

19

Figure 2.1: A Wheel Template Created for the Valkyrie Robot [13]

sign and MIT’s Object Template Descriptive Format (OTDF) packages, both of which

were also showcased at the 2013 DRC trials. These packages are similar to NASA’s

Affordance Template package in their intended uses and capabilities, but the AT de-

velopers were concerned that they were limited in that they could only be used with

a certain few robots and they did not allow for much adjustment by users. ATs were

designed with these shortcomings in mind, and developers sought to ensure that they

could work with any ROS-compatible robot and would allow for a large amount of

user interaction to fit diverse environments.

The coactive design methodology was devised to reach a middle ground be-

tween full autonomy and direct teleoperation. IHMC wanted robots to be useful as

teammates that worked alongside humans to make them more productive and effi-

cient rather than simply being tools humans used to achieve their goals [19]. Johnson

20

places an emphasis on the robotic agent understanding the effects of its actions on the

environment before the agent can work as a teammate with human operators. This

method is built on and expands upon Fong’s Collaborative Control System Model [8]

in which the human acts in a supervisory role to “supplement the robot’s limited

perceptual and cognitive capacity” [19].

While the DRC highly encouraged participants to design autonomous solutions

to the tasks, IHMC used the coactive design methodology to create a “human-machine

team” to perform the desired tasks. Some portions of the task were autonomous,

such as when the robot was navigating the test area, but cognitive tasks such as

recognition/identification of objects were left to the human operator. The portion of

the task where the robot interacted with the environment was completed by the robot

or the human, with each scenario (human-driven or robot-driven) having advantages

and disadvantages. For this portion of the task, it was possible for either the operator

or the robot to successfully perform the operation, but each struggled when working

without the help of the other. The best performance here came when the operator was

able to provide feedback to the robot to refine its autonomously-generated plan [19].

Thus, the human and robot partnership eventually evolved into supervisory control,

similar to to ATs.

The Object Template Descriptive Format (OTDF) [6, 20] uses affordances as

the basis of their high-level interaction scheme. They specified their template objects

similarly to the AT package, whose implementation is discussed below. OTDF con-

tained algorithms that automatically performed object fitting using a LIDAR scanner,

but it also allowed for users to manually fit affordances to objects. This process reg-

21

istered the sensed objects to the known set of affordance objects in the affordance

database, and from there the set of actions corresponding to each affordance could be

performed, i.e. turning a valve or pushing a button. This differed from NASA’s ap-

proach, which required operators know the task a priori and then import the proper

model and align it manually.

Since the DRC trials in 2013, the MIT team has made several adjustments

to their OTDF package, including placing a greater emphasis on their user interface

component, which they named ’Director’ [26]. During the trials, the MIT team’s

GUI was intended mostly for user feedback and not user control. Director, however,

works much more like NASA’s Affordance Template software package [13,14], where

the GUI was intended for human operators to have greater control and customization

options. Based on the images of Director found in [26], the newer interface seems

to offer a great deal of customization options to the user, but at a level that might

overwhelm inexperienced operators and preclude them from being able to use the

software.

2.3.3 Implementation

Current Affordance Template implementations consist of a 3D model of an

object and a set of end-effector waypoints relative to that object. They are set up

to contain all of the spatial data required to perform a given task, with only minor

adjustments needed at run time to fit the specific environment. This makes the

template highly reusable, and requires far less effort from the operator to set up

and perform a task. Thus, ATs for common tasks can be set up in advance, and

22

merely need to be imported and aligned when it comes time to perform the task. By

streamlining this process, it allows for human operators to act in a more supervisory

role than directly controlling all robot motion.

The Affordance Template ROS package was designed to be layered on top

of the pre-existing ROS packages for motion planning, perception, and navigation.

As described in [13], the template structure is “a directed acyclic graph of display

objects and ordered sequences of end effector waypoints” expressed in the frame

of the task object. This structure can be seen in Figure 2.2. For the purposes

of the DBB demonstration presented in Chapter 5, these ATs can essentially be

simplified as ordered lists. The valve template used for the DBB contains a single

valve object that includes a list of potential actions/trajectories to perform (i.e turn

clockwise or counterclockwise). Each trajectory, though, is simply a single ordered list

of waypoints. There is no branching within each trajectory; the different trajectories

are each their own “branch” of the main template, but each trajectory is an ordered

list without variation.

At run time, the template can be adjusted in terms of its position, orientation,

and size. Additionally, while the template contains only one object, that object can

be associated with many actions that the user might want to perform. For example,

if the template object is a wheel valve, the user would likely have trajectories for

turning left and right to varying degrees. In that scenario, the template might be

populated with 6 trajectories for common desired actions: turn 30◦ clockwise, turn 60◦

clockwise, turn 90◦ clockwise, turn 30◦ counterclockwise, turn 60◦ counterclockwise,

and turn 90◦ counterclockwise. This makes the template broad enough to perform

23

Figure 2.2: The general structure for an Affordance Template [13]

24

several common tasks while also limiting the solution space to avoid overwhelming

the user.

Finally, waypoints may be added or removed from existing template trajec-

tories at any time, although it is probably unwise to do so unless the template was

inherently flawed. If the user desires to delete waypoints at run time due to environ-

mental conditions or obstacles, it would be advisable to create a new, temporary AT

tailored to the specific run without altering the general AT for that object/task. If

the user finds that they want to delete waypoints, it is likely that the template was

too large in scope and thus not generalized for wide use. As briefly mentioned in 1, in

the context of ATs scope refers to the template’s complexity. To prevent this problem,

templates should contain the minimum amount of motions necessary to complete a

task. Issues of scope associated with ATs are further addressed in Chapter 3.

For this project, ATs better fit the challenges of performing tasks in an LNG

plant than ADLs due to the desire to reduce cognitive burden on operators and

lower the skill level required to be able to perform complex tasks. Affordance Tem-

plates, with their emphasis on user-friendly implementations are much better suited

to novice users than ADLs, and allow for much more user interaction. Additionally,

with such a large and fluid environment as an LNG facility, it would be extremely

computationally-expensive if not infeasible to set up the world model necessary for

ADL implementation. By comparison, ATs are very quick to implement, and require

next to no knowledge of the environment to set up.

25

2.3.4 Related Work

Some work has been done with affordance wayfields, which represent affor-

dances as gradient wayfields as opposed to discrete waypoints. The wayfields are

composed of “critical regions” that the EEF has to traverse to perform the desired

action or actions. Constraints on motion are implemented by giving undesired regions

a high cost value. Another potential advantage to using wayfields is that the desired

end goal of the action can be set to a region as opposed to a particular EEF pose.

This work with wayfields is aimed at combating the most common limitations

associated with Affordance Templates by allowing for control of the robot through-

out the trajectory, rather than only at discrete waypoints [27]. McMahon criticized

that existing approaches were often “one-off systems restricted to laboratory environ-

ments” and not well-suited for general use. He asserted that combating the limitations

of existing approaches is “increasingly critical as we face the complexity of common

human environments filled with uncertainty” [27].

Another interesting framework in the same vein as ATs is Object-Action Com-

plexes (OACs) [22]. This framework works to “link robot actions to the visual and

haptic perception of objects” [21]. Similarly to affordance templates, OACs are based

on the belief that objects and actions are linked. This framework differs from ATs in

that it relies heavily on the system learning behaviors from the environment, whereas

ATs are environment-agnostic. Additionally, OACs rely on a visual perception algo-

rithm to detect features of objects to discern their associated actions. ATs were not

designed for the automatic detection of objects.

26

However, there is some work with affordances in the field of computer vision

to automatically classify and register affordances to sensed objects [44]. Ideally, this

work would be extensible to allow for the automatic generation of affordance templates

for common tasks associated with an affordance, i.e. if a doorknob is sensed with the

associated affordance for turning, a template can be automatically generated and

populated with waypoints that will turn the knob. This would be an improvement

over current affordance registration, which relies on human operators to manually

register a template or on visual aids such as AR markers to facilitate alignment.

2.4 Jogging

While ATs are extremely useful for performing task motions, the user also

needs a way to control the system manually. One option is to use point-to-point

planning, but the user is still at the mercy of the motion planner. The method that

gives the user the most control and is the most user-intuitive is jogging the robot

using a joystick, motion controller, or 3D mouse.

Jogging refers to real-time control of a robot. Before joggers, motion planners

only supported point-to-point control, in which the operator specifies the beginning

and ending EEF positions and orientations, but the trajectory the manipulator takes

between these points is determined by the motion planner. This lack of user control

can lead to undesirable plans, whose only remedy is to continuously re-plan until

a better trajectory is generated. To remedy this and enable the easier completion

of manipulation tasks, developers sought to design a method of real-time (or nearly

real-time) EEF position/velocity control that was based in ROS.

27

The jogger implemented in this project was first developed by Dr. Andy

Zelenak, but has since become a part of MoveIt [45]. This jogger relies on velocity-

based control; it receives an input of an EEF velocity and can output either joint

velocities or positions:

δqnominal = J †δx = J †Kδû (2.1)

Where qnominal is the vector of joint angles, J † is the pseudoinverse (discussed further

below), x is the Cartesian twist, K is a diagonal matrix of positive scaling factors,

and û is the concatenated, normalized twist command.

This jogger handles singularities and allows for easy integration with an admit-

tance or impedance controller, which sets it apart from previous real-time controllers

and makes it ideal for use performing contact tasks. When a kinematic singularity is

being approached, the jogger slows down and sends a warning to the user that they

are approaching an undesirable configuration. This implementation uses the singular

value decomposition of the Jacobian to calculate the pseudoinverse1:

J † = V S−1UT (2.2)

Equation 2.1 is then differentiated to generate the velocity command:

q̇ = J †ẋ = J †K ˙̂u (2.3)

1Note that the Moore-Penrose pseudoinverse would traditionally be used in this calculation as it
optimizes the manipulator’s power consumption, but in this case the singular value decomposition
pseudoinverse is used because it is more stable near singularities.

28

When approaching a singularity, the jogger reduces the EEF velocity as the

condition number increases:

q̇ =


q̇nominal, κ(J) ≤ κl

q̇nominal ∗
(

1− κ(J)−κl
κu−κl

)
, κl < κ(J) < κu

0, κ(J) ≥ κu

(2.4)

Where κ(J) is the condition number, and κu and κl are the upper and lower condition

number thresholds, respectively.

The condition number was calculated using the Eigen C++ linear algebra

library:

κ(J) ≈
∥∥J †∥∥

F
‖J‖F ≈

σmax(J)

σmin(J)
(2.5)

This method of slowing when approaching singularities and not allowing users

to drive the manipulator into poor configurations was designed in part to aid non-

expert users. As the robot is not allowed to get too close to the singularity, the user

is always able to jog the arm back into a more desirable configuration. Additionally,

while the user might not understand what a singularity is or why it is undesirable,

they intuitively know that the arm should not be slowing down, so they likely realize

that the near-singular configuration is poor [45].

As a final safety feature, the jogger runs a collision check thread that ensures

that the manipulator does not collide with itself. The features detailed above make

this jogger safe and friendly for users at all levels of experience. Further details on

this jogger can be found in [45].

29

2.5 Compliance

As discussed in Chapter 1, compliance refers to the flexibility introduced to a

system via either passive or active measures. The advantages of increased compliance

of robotic systems made it a popular research area beginning in the 80s [17, 24,35].

Passive compliance comes from hardware elements such as series elastic actu-

ators, which contain springs that lower mechanical impedance and friction. Prime

examples of a compliant or “soft” robot are the HEBI robotics systems [15]. Unfortu-

nately, compliant robots sacrifice both precision and power to increase their elasticity

over traditional stiff, industrial manipulators. This makes them less attractive for

use in commercial industries. Ideally, industries want to implement systems that can

maximize safety by finding a balance between precision and compliance.

Active compliance is primarily used for stiff manipulators (though it can be

used with passively compliant manipulators as well). This type of compliance relies

on the controller to set a virtual impedance that acts much in the same way as the

spring an a series elastic actuator. This method was originally proposed by Neville

Hogan in 1984, who suggested that impedance control would simplify manipulator

control [17].

Generally, active compliance works by introducing a virtual impedance be-

tween the robot and the environment. For the implementation described in Chapter

4, the compliance controller is calculating the impedance joint velocities due to contact

forces on the EEF at the same time that the jogger is calculating the joint velocities

for the desired EEF movement. An impedance control law is used to calculate the

30

complaint EEF velocity ẋcomp:

ẋcomp = K−1 (ξ − ξapply)−B−1ξ̇ (2.6)

Where K and B are diagonal matrices for stiffness and damping, ξ is the external

applied wrench, and ξapply is the desired wrench applied to the environment.

The compliance and the jogging command are combined to produce the resul-

tant joint velocities:

q̇total = J† diag(ν)ẋjog + J† diag(µ)ẋcomp (2.7)

Where ẋcomp is the compliance calculated in 2.6 and ẋjog is the user input, or the

jogging command.

An advantage of active compliance over passive compliance is that the stiffness

of the system can be changed. Whereas the mechanical impedance of a passively

compliant robot is set, since the controller handles impedance it can be changed

at any point during operation to fit changing environmental conditions or varying

needs throughout a task. This allows for stiff manipulators to become compliant, but

requires precise sensor data for forces and torques experienced by the EEF.

The compliance controller used in this project was also developed in our lab for

use with our stiff manipulators. It was primarily developed using UR robots which,

in the absence of an external force torque sensor, must calculate the EEF forces and

torques based on the current draw at each joint. This proved to be very noisy data,

and the first iteration of the compliance controller was thus prone to error. With

31

the addition of a force torque sensor installed at the EEF, the compliance controller

performs much more reliably.

Several improvements have also been made to the controller that allow for

compliance to be further specified to meet the user’s needs:

• The user can choose to activate compliance for only certain dimensions

• The user may set a different stiffness for each compliant dimension

• The user man change compliance parameters mid-task

• A GUI was created to allow the user to control and keep track of compliant

dimensions

By allowing rigid manipulators to act like passively complaint systems, a com-

pliant controller like the one described above will automatically manage contact forces.

This will allow for more novice user to perform contact tasks without the fear of ex-

ceeding safety limits. Additionally, the customization afforded by the improvements

listed above allow for compliance to be as dynamic as the tasks being performed. The

ability to change the compliance parameters mid-task increases the versatility of the

system to be able to handle even more difficult or complex tasks than was previously

possible.

2.6 Summary

While there are several options when it comes to task planning, Affordance

Templates present the best option for use in hazardous industrial environments. Older

32

approaches such as Coactive Design and the Object Template Descriptive Format

were similar in structure to ATs, but did not allow for users to make necessary

adjustments to their templates. The more recent development of affordance wayfields

provides users with much greater control over task motions, but this level of control

is likely far too detailed for novice users. ATs strike the perfect balance. Their level

of adjustability is such that a single template can be employed in a wide variety

of situations and environmental conditions, but not so complex that they require

dedicated roboticists to build and use them.

Most of the robots that are precise enough or capable of applying sufficient

force in industrial and/or field applications are rigid manipulators, and thus not

intrinsically compliant when in contact with their environment. Without the aid of

a compliant controller, the operator must closely monitor the force with which the

EEF is contacting objects in the environment so as not to damage the manipulator or

the task object. When a compliant controller is implemented, the controller removes

this burden from the operator.

Layering the compliant controller on top of affordance templates has the po-

tential to allow the operator more leeway when aligning the template to the task

object. Additionally, compliance parameters can be changed during the task to best

fit the needs of each motion being performed. Together, affordance templates with

compliance should alleviate the cognitive burden on the user and reduce the risk of

task failure due to misalignment from human error or noisy sensor data. The reduc-

tion in task difficulty then enables more novice users to run capable robotic systems

and perform tasks remotely.

33

Chapter 3

Affordance Template Package Comparison

A portion of this research project is focused on evaluating the performance of

two Affordance Template packages, CRAFTSMAN and UseIt, and comparing their

AT capabilities. The ideal Affordance Template package will balance usability, power,

and flexibility for use in numerous real-world applications. This analysis serves as a

starting point for research groups and corporations to identify the optimal package for

AT usage in their industry or field. Additionally, the Affordance Template execution

procedure for each software is defined, providing novice users with a starting point

for initial testing in UseIt or CRAFTSMAN.

3.1 The Ideal Affordance Template Software

Before introducing the two Affordance Template packages evaluated in this

research, it is important to discuss the desirable attributes of a general AT software

package. The primary goal of implementing Affordance Templates is to improve

the automation of complex tasks and eliminate the need for remote manual control.

This has several benefits including reducing operator burden, making the task more

repeatable, and freeing up employees to multitask.

To achieve their intended purpose, ATs must be able to perform a wide variety

34

of tasks, from simple navigation and surveillance tasks to more complex manipulation

tasks. The breakdown of tasks will vary depending on the industry and company

utilizing the robots, but the ideal AT package would have the capability to perform

most common contact tasks, including picking up and moving small objects, pressing

buttons, turning valves and wheels, and opening doors. In more complex scenarios,

they may be used to interact with non-rigid objects such as unzipping and inspecting

a bag after it is removed from a vehicle.

Additionally, ATs need to cater to operators with wide levels of experience. If

the AT is too difficult for the average employee to use, it is less desirable for industries

to implement robots in their operations because it would come with the added cost

of having dedicated, highly-trained AT operators on hand to use them. It is much

better if any employee can use the robot or robots to complete tasks with minimal

training. With ATs, the operator should have to do little more than supervise the

task completion, which is much less demanding of the employee’s time and attention.

It is extremely important that a general Affordance Template package balances

advanced capabilities with a user-intuitive interface. This is critical because it is easy

for a user interface to become overwhelming if it is built to be used by someone with

expertise in the field. A GUI designed with expert operators in mind would allow for

more powerful and precise control, but would exclude any non-experts from using the

product unless the GUI properly displays only highly important options in the main

section, while restricting more advanced options in separate menus.

Finally, the ideal AT package must use industry standard, open-source pack-

ages for planning and inverse kinematics. In this case, that means that the ATs

35

should be built upon motion planners and kinematics solvers that are trusted and

widely-used. This helps for several reasons: these packages are often easier to install,

have a great deal of documentation for solving common issues, and have a significant

user base that decreases the likelihood of glitches or errors in the program.

With these metrics in mind, CRAFTSMAN and UseIt are evaluated and a

recommendation given on the use cases for both software packages.

3.2 History

As mentioned in Chapter 2, CRAFTSMAN and UseIt trace their origins back

to the same package, NASA’s Affordance Template ROS package. However, not long

after the 2013 DARPA Robotics Challenge the developers of the original software

package parted ways and began independent development on the two separate pack-

ages described in this chapter. As such, the packages are very similar in their core

structure, but have followed different development paths, leading to different capa-

bilities and focusing on different user bases/use cases.

Of the two packages, CRAFTSMAN has seen a greater development effort

and is the more mature product. CRAFTSMAN was created by TRACLabs to rem-

edy the lack of an industry standard open-source application for robust, user-friendly

task and motion planning. While applications for motion and task planning already

existed, these packages were either proprietary, limited to specific hardware, too com-

plex for non-expert users, or tailored to a specific lab environment [38]. TRACLabs

wanted CRAFTSMAN to be versatile and robust enough to be useful for real world

applications.

36

CRAFTSMAN is much larger than just its Affordance Template package. In

addition to ATs, the CRAFTSMAN software suite also contains libraries for inverse

kinematics, Cartesian motion planning, graphical teleoperation, and finite state ma-

chine design [37]. To ensure user-friendliness, the GUIs for these packages are all

built as Rviz plugins. Having all of these packages in a single software suite allows for

the easy integration of all of the components necessary to perform a complex contact

task and also provides a consistent and intuitive user interface.

UseIt is the newer AT package that is being developed by the Robonaut 2 team

at NASA’s Johnson Space Center in Houston, Texas. Unlike CRAFTSMAN, UseIt is

a stand-alone Affordance Template package, and not part of a larger software suite.

UseIt was born when the team resurrected the original Affordance Template ROS

package after a gap of several years as a portion of their collaborations with Woodside.

They have since added several new capabilities and re-branded the package as UseIt,

but the underlying structure remains similar to the original Affordance Template

package. Recently, UseIt has received more concentrated development, and UseIt 2.0

is on the way.

UseIt 2.0 will feature several quality-of-life improvements over UseIt 1.0. First,

the world will be able to contain multiple models and sub-models, allowing for tem-

plates to better fit more complex, multi-object tasks. Additionally, the new model

structure will incorporate key-frames, which are frames set at any interest point in the

template (e.g. the desired contact point on a task object). Models will also be given

“state” information, such as a valve or door being open or closed, or some degree

between the two. Finally, UseIt 2.0 will replace the terms “Robot” and “Trajectory”

37

with “Agent” and “Action Path” to better fit the wide variety of autonomous or

semi-autonomous systems capable of performing tasks. Combined, these changes will

allow make UseIt 2.0 a more powerful tool for task automation.

3.3 Craftsman

As the more mature product, CRAFTSMAN is evaluated first. CRAFTSMAN

defines spatial tasks in its AT library in one of two ways: the templates can be created

ahead of time and saved as .json files or they can be created and saved at run-time

using the RVizCraftsmanPanel, which is shown in figure 3.1 and explained in more

detail in the section below. The ability to create templates using the Rviz GUI allows

operators with less robotics experience to create and execute Affordance Templates

to complete difficult tasks.

38

Figure 3.1: RvizCraftsmanPanel

This section will detail how CRAFTSMAN’s ATs work, how to use CRAFTS-

MAN to create and execute ATs, and some of CRAFTSMAN’s notable features and

limitations.

39

3.3.1 Using Craftsman

To load a template into Rviz using CRAFTSMAN, the user must select the

desired template from the selection menu in the top of the RVizCraftsmanPanel and

click “Add”. After loading the template into Rviz, the user must first move the

template model to align it with its real-world counterpart. To move the model, the

operator must right-click on the model and select “Hide Controls” to deselect that

option and reveal the model’s interactive marker [12]. This marker allows the user

to drag or rotate the template about its three principal axes to align the template

appropriately. Figure 3.3b shows an example of a template with the interactive marker

visible.

If the task object is not already within reach of the manipulator(s), the user

will also need to add or adjust existing navigation waypoints to position the robot

close enough to the task object to comfortably reach throughout template execution.

Navigation waypoints are added by right-clicking on the blue cylinder at the origin

point of the mobile base and selecting “Add Waypoint After” under “Advanced”. Ex-

isting navigation waypoints can initially only be moved in the X-Y plane by dragging

the cylinder or rotated about the Z axis by dragging the blue ring at the base of the

cylinder. The interactive marker can be brought up by right-clicking the cylinder and

selecting “Toggle Full Control” under “Advanced”. As seen in Figures 3.2 and 3.3

below, CRAFTSMAN displays the waypoints for navigation as upright transparent

cylinders and the waypoints for manipulation as solid red spheres, with arrows to the

center of any rotation point.

40

(a) Without Interactive Marker (b) With Interactive Marker

Figure 3.3: CRAFTSMAN’s Wheel Template

Figure 3.2: CRAFTSMAN Navigation

41

Now that the template is aligned and the navigation waypoints are set, the

user may execute the template. To navigate, the user simply selects the goal cylinder

(there can be more than one navigation waypoint) and clicks “NavPlan” on the right

side of the RVizCraftsmanPanel under the control tab. The trajectory for navigation

is then displayed as a purple spline in Rviz and the phantom robot shows what the

execution of the plan will look like by following that path. If the plan is correct, the

user clicks “NavGo” to begin driving.

For manipulation, the user first selects one of the template trajectory options,

shown in Figure 3.4, which can be selected in the RvizCraftsmanPanel or can be

selected within the Rviz window by right-clicking on the template model. For the

wheel template, there are three options: turn the valve using the left arm, right

arm, or both arms. After selecting the desired trajectory, the user clicks “Plan” in

the RVizCraftsmanPanel and the trajectory for the arm/arms is displayed in green

in Rviz, as shown in Figure 3.5, and the phantom robot executes the plan. If the

plan is correct, the user clicks “Execute” to execute the trajectory in full, which is a

significant advancement over the original Affordance Template ROS package, where

the user had to plan between each waypoint and the next. CRAFTSMAN also allows

the user to select the “Plan & Execute” option if they wish to do the options in a

single step.

42

Figure 3.4: Trajectory Options for CRAFTSMAN’s Wheel Template

To create a template from scratch, CRAFTSMAN has implemented a helpful

template creation wizard to aid the user in generating a new template. This wizard is

launched when the user opens the “Build” tab at the top of the RvizCraftsmanPanel

and clicks “Start”.

The first page of the wizard asks the user to name the template and select the

folder in the file system where the template will be stored. Next, the user must add

at least one display object to the template. The wizard prompts the user to name

the object, choose the display type (primitive or mesh), and – if there are multiple

objects – select the parent object. If the user selects mesh, they must input the path

to the mesh file and set the scaling for the object.

If the user selects primitive, they must set the primitive type (box, cylinder,

43

(a) Frontal View

(b) Side View

Figure 3.5: Manipulation with CRAFTSMAN’s AT Package

44

or sphere), the size (x, y, and z), and the color (red, yellow, blue, green, or magenta).

They must also go through the added step of setting the display controls for the

primitive, as shown in Figure 3.6. This includes setting the pose and orientation (x,

y, z, roll, pitch, and yaw), the control dimensions, and the control scale.

Figure 3.6: Template Display Controls

Once the object is added, the user must set the trajectory name and select

which end effectors the trajectory will use. Finally, the user adds a waypoint, as

shown in Figure 3.7. Here, the user selects the EEF “pose” (open, closed, half-closed,

45

or mostly closed), template origin (x, y, z, roll, pitch, and yaw), control dimensions,

control scale, tool offset, tolerances, metric (minimum distance, manipulability prod-

uct, or manipulability ratio), and plan type (joint or Cartesian).

Figure 3.7: Adding a Template Waypoint

After adding the first waypoint, the wizard closes and the user finishes editing

the template in the Rviz window. To add more manipulation waypoints, the user

right-clicks on the first waypoint and selects either “Add Waypoint Before” or “Add

Waypoint After” and selects the desired EEF. The waypoint then appears in the

46

Rviz window as a red sphere with a visible interactive marker, and the user may drag

this waypoint to the appropriate location. Once placed, the user can right-click and

select “Hide Controls” to hide the interactive marker. The waypoint cannot be moved

(relative to the object model) while the controls are hidden, meaning there is no risk

of accidentally moving a waypoint when clicking in the Rviz window. Navigation

waypoints can also be added in the manner described at the beginning of this section.

3.3.2 Features and Limitations

One of CRAFTSMAN’s main features is its motion planning software. Instead

of using MoveIt’s default inverse kinematics (IK) solver Orocos Kinematics and Dy-

namics Library (KDL), CRAFTSMAN uses trac ik for motion planning. TRACLabs’

developers noticed that they faced a large number of solve errors when using KDL as

their IK solver in the 2013 DARPA Robotics Challenge [?]. They determined that

imposed joint limits were causing KDL to experience these errors [2,39]. TRACLabs

created trac ik as an alternative to KDL that performs better when used with joint-

limited robots. Results from testing IK solvers using a variety of kinematics chains

showed that trac ik had an average solve rate over 99% whereas KDL’s solve rate

varied from 45% to 93% with an average of 77% [2].

Along with the increased reliability of trac ik over KDL, CRAFTSMAN also

displays generated EEF trajectories as a green spline in Rviz. Normally, the trajec-

tory’s execution is only shown by a phantom robot, which can be played a single time

or on a loop. CRAFTSMAN displays the trajectory as a permanent spline in Rviz

that does not vanish unless the operator re-plans (in which case the new trajectory

47

is then displayed) or the operator executes the trajectory. This permanent trajectory

visualization makes it easier for the user to confirm that the plan will not violate

any constraints or collide with the environment as they can rotate the Rviz window

to view the trajectory from multiple angles without having to wait for the planning

animation to loop.

Additionally, CRAFTSMAN generates a comprehensive trajectory that plans

through all of the waypoints in one motion as opposed to generating a series of small

trajectories between each waypoint and the next. This means that the entire task

is performed in one smooth motion and the user only needs to press “Plan” and

“Execute”, or “Plan & Execute”, once to run the template in full. Combined with

the full trajectory being shown as a green spline in the Rviz window, this greatly

reduces the time to perform the task as the user does not have to repeatedly plan and

execute between each set of waypoints to check that each portion of the plan is valid.

The trajectory spline allows the user to simply plan once, verify that the planner has

generated a good plan, and then execute the full template. This reduces the template

execution to a single user command and saves time that would be wasted by repeated

planning.

Another feature of CRAFTSMAN is that once a template has been loaded

into Rviz, the user can perform most template actions by right-clicking in the Rviz

window. This allows the user to minimize the RvizCraftsmanPanel, whose multiple

tabs might be overwhelming to novice users, and enlarge the viewing area.

CRAFTSMAN’s primary limitation is that its GUI can be overwhelming with-

out any training. The advanced capabilities of this package mean that there are far

48

more options for the user to choose from, which results in initial work in CRAFTS-

MAN being significantly slowed by time spent searching for a specific option or ca-

pability. However, while the initial ramp-up time to become familiar with CRAFTS-

MAN can be significant, the CRAFTSMAN user interface with Rviz is well designed

with a series of effective features. For example, the operator can click on the end

effectors and drag them around, then they can then simply right-click the EEF and a

menu appears in the Rviz window to plan and execute to that location. It’s very sim-

ple, allows for more rapid planning, and avoids having to open an additional window.

Again, the primary drawback of this feature, and the CRAFTSMAN user interface

as a whole, is that the feature(s) can be difficult to identify due to the large amounts

of tabs on each GUI panel. To overcome this limitation in a corporate environment,

specialists would be required to spend additional time training and assisting novice

operators.

3.4 UseIt

UseIt is the newer Affordance Template package, originally designed for use

with Robonaut in space. Being partially funded by Woodside, whose goal is for

everyday employees to use robots to perform complex tasks on their LNG facilities,

a central goal of UseIt’s development was to ensure that minimal robotics knowledge

is necessary to use Affordance Templates. This emphasis on user-friendliness during

the early stages of development has led to different design decisions and prioritized

features.

49

3.4.1 Using UseIt

UseIt is a standalone Affordance Template package that takes advantage of

Rviz’s interactive markers in the same way that CRAFTSMAN does, but utilizes its

own separate GUI, shown in Figure 3.8, instead of integrating the GUI as an Rviz

plugin. Additionally, UseIt saves its templates in XML format as opposed to JSON,

and new templates are primarily created and saved using the UseIt GUI.

Figure 3.8: The UseIt GUI

50

UseIt’s GUI is more user-intuitive, with only three selection menus on the

initial screen as opposed to CRAFTSMAN’s seven tabs and two menus, with more

options within each of those tabs. In total, UseIt has 15 API capabilities CRAFTS-

MAN has 38.

The UseIt GUI is set up in such a way that the process of loading an existing

template is very straightforward. First, the user selects the robot from the “Robots”

selection menu, then they choose the template model they wish to use from the

“Objects” menu. Finally, they select the template trajectory or action that they wish

to perform on the task object from the “Trajs” menu.

The template is loaded into Rviz with the interactive marker visible, so the

user can choose to freely drag the template into the correct position, or they can drag

along a particular axis to move the model. Each waypoint also shows as a set of axes

with its own interactive marker, which can be toggled on or off by selecting the “hide

waypoints” box in the GUI. Using the point cloud data, the user aligns the template

model to the real-world object.

Once the model has been aligned, the user simply steps through the template

by pressing “Plan” and “Execute” for each individual waypoint in the trajectory

sequence. As shown in Figure 3.9, the waypoint name turns yellow while planning or

executing, green if the plan or execution succeeds, and red if the plan or execution

fails. In the future, users should be able to press a single button to execute the

template as a whole instead of stepping through by planning and executing to each

individual waypoint. To ensure that no wild plans are automatically executed once

this feature is added, the user will likely have to impose joint limits or other constraints

51

on the motion planner. If any of the generated plans between consecutive waypoints

fails, the template could be set to either try to re-plan a set number of times or until

success, or it could be set to exit the template altogether.

Figure 3.9: Stepping Through a Template

To build a new template, the user follows the same initial steps as loading an

existing template. First, they select the robot from the menu in the GUI. Next, they

52

can either select an existing object model from the selection menu, or they can add

their own by clicking the “+” to the right of the “Objects” selection menu. This

brings up a dialog box to add a new or existing object. The user selects the “New”

tab and then must enter the object name, the ROS package containing the mesh, the

path to the mesh file, and the scaling factors, and then clicks “Add”. The folder icons

to the far right of the “Objects” and “Trajs” menus allow the user to save the object

or trajectory they have created.

Next, the user will follow a similar step as above and click the “+” to the right

of the “Trajs” menu. This brings up a similar dialog box to adding a new object. The

user again selects the “New” tab and is asked to enter a name for the new trajectory.

Once the name is selected and the user clicks “Add”, they may begin populating the

new trajectory with waypoints. The user needs to remember to save their progress

frequently by clicking on the folder icon to the right of the “Trajs” menu.

To generate the waypoints, the user right-clicks in the waypoint list area – the

striped area that makes up the bottom two-thirds of the GUI. The following waypoint

options appear:

• Plan to Waypoint

• Execute to Waypoint

• Plan And Execute to Waypoint

• Insert Waypoint Before

• Insert Waypoint After

53

• Remove Waypoint

• Add State

Initially, the waypoint list is empty, and the user must select “Insert Waypoint

Before” (or “Insert Waypoint After”) to add the first waypoint. A dialog box will

appear where the user may enter the waypoint name. The user should enter a unique

name for each unique waypoint to avoid confusion. Once the name is entered, the

user must right click on the waypoint. The same waypoint options detailed above

will appear again. This time, the user should select “Add State”. Another dialog box

will appear, and the user should enter the state name, which should be the same as

the waypoint name. In addition to entering the name, the user must choose the state

type from the following list of options1:

• Cylinder Grasp Interaction

• Joint

• Named Pose State

• Pose

• Robotiq2F85 Gripper

1These waypoint options are specific to the robot that UseIt was developed on and the tasks the
project was developed for (namely, valve-turning and button-pushing). The three most common
options are explained in grater detail below. Additional state options may be added in the future
to fit a wider variety of tasks and grippers.

54

Of the state options listed above, “Named Pose State” is the simplest. It

populates the waypoint with pose data from any named pose in the robot’s SRDF.

Once this option is selected, the user must expand the waypoint and state information

by clicking on the arrow to the left of the waypoint and state names. Now the user can

see the Named Pose State options, as shown in Figure 3.10. The “component name”

selection menu contains all of the motion planning groups defined in the SRDF. The

user selects whichever planning group is associated with the desired named pose.

Though there are entry fields for several other options, the only other applicable field

for the Named Pose State is the bottom field, labeled “pose name”. Here the user

must type out the name of the desired pose, making sure to check that the spelling

and capitalization match the SRDF. This waypoint is now fully-functional, and the

user may plan and execute to the named pose.

Figure 3.10: Named Pose State Options

55

For the “Pose” state option, the operator follows the same procedure as with

the Named Pose State through the component selection step. After that, the user

has two options for populating the pose data: they can either manually enter the

calculated desired pose in to the available fields, or they can plan or jog the arm to

the desired position and populate the pose data from the current robot pose. (The

latter is done by right-clicking on the state - nested beneath the waypoint - and

selecting “Populate Pose From Robot”, as shown in Figure 3.11.)

Figure 3.11: Populate Pose from Robot

The “Robotiq2F85 Gripper” state option is specific to the hardware used.

UseIt was developed using a Universal Robots UR5 arm, with a Robotiq 2-Finger

85 Adaptive Robot Gripper. As with the options for the other state types, the

“Robotiq2F85 Gripper” state requires the user to select the component, set the axes

scale, set the gripper command (which controls the degree of open-ness), and set the

56

ROS topics for the gripper. While this state type is specific to the Robotiq gripper,

future gripper state types will need to include the same general information to be

able to close and open new grippers using UseIt.

As demonstrated in the section above, UseIt is easy to use whether simply

running an existing template or building one from scratch. Its GUI is straightfor-

ward and avoids overwhelming the user or over-complicating the template creation

or execution process. Users of any skill level will be able to use UseIt with a minimal

amount of training.

3.4.2 Features and Limitations

One of UseIt ’s newest features is the “Populate Pose From Robot” option

described above. The ability to set a template waypoint based on the current pose

and orientation of the end effector is convenient for manipulators with a free-drive

or “teach” mode where users can move the end effector of the arm by hand to the

desired position and orientation2. Thus, if the manipulator is posed in front of the

task object, the time to set up the template can be greatly reduced as the user can

quickly and precisely move the EEF to the desired waypoint locations. Additionally,

this simplifies the template generation process to the point where a novice user could

easily produce their own template in a few minutes. Being able to physically control

the manipulator additionally reduces the cognitive burden on the user, who does not

have to use a controller or worry about input commands. Of course, not all robots

2It is important to note that joint angles are not preserved in UseIt, only the end effector position
and orientation are saved from this action; the overall arm configuration is not captured.

57

have this teach capability, so the feature is hardware agnostic.

The largest limitation of UseIt is that it is not yet able to be used for nav-

igation tasks. This limits the ability of its Affordance Templates to manipulation

and surveillance tasks. For the sake of performing contact tasks this is not a large

problem, but it does leave the burden of positioning the robot within ample reach of

the task object to the operator. Due to remote driving experience provided to many

adults by RC cars and video games, navigation tasks are perhaps the least burden-

some on the operator of the three main task categories (manipulation, navigation,

and surveillance). However, this is time that the operator will have to devote their

full attention to this task that could otherwise be spent performing other duties while

merely supervising the AT.

58

3.5 Comparative Summary

To show a more direct comparison, Table 3.1 lists some important metrics of

CRAFTSMAN and UseIt.

Table 3.1: Software Comparison Overview

CRAFTSMAN UseIt

IK Solver trac ik KDL3

Navigation Y N

Active Development Y Y

Dual-Arm Plans Y N4

Number of Exposed API Capabilities 38 15

Number of Primitive Shapes 3 N/A5

Ease of Use (1-5) 3 2

Learning Curve (1-5) 4 1

3.6 Concluding Remarks

Affordance Templates are a task execution framework that aims to increase

automation of a wide variety of tasks. This chapter described the ideal AT package

and introduced two existing packages, CRAFTSMAN and UseIt. Both packages

were implemented in simulation in the same version of Ubuntu with the same robot.

The processes of executing existing templates and generating new templates were

described for each package. Finally, the notable features and limitations for each

3UseIt uses whichever solver the client selects when setting up their robot with MoveIt.
4UseIt is not set up to plan with both arms unless it is using the Named Pose State option.
5UseIt requires the use of mesh objects.

59

package were discussed and a recommendation was given for the best use-case for

each package.

Additionally, this chapter discussed the scope of affordance templates, which

is an important aspect that has yet to be strictly defined. Does a template for open-

ing a door contain just the information to turn the knob or does it contain all of the

information to perform the task, including positioning the robot in front of the door,

turning the knob, pushing the door open, and driving through? Based on the eval-

uation of both software packages detailed above, the scope of the UseIt Affordance

Templates is currently limited to encompass only small actions, i.e. turning a knob.

However, CRAFTSMAN, being the more mature product and having already incor-

porated navigation into its template capabilities, shows the potential for the scope of

its ATs to be more all-encompassing. Therefore, CRAFTSMAN is optimal for more

complex tasks, while UseIt, with a simpler graphical user interface and more limited

command options, allows novice users to more easily complete tasks using Affordance

Templates.

As briefly mentioned in Chapter 1, an aspect of Affordance Templates that

needs to be refined moving forward is their scope. In their original form, Affordance

Templates were extremely limited in scope so as to make them as generalized as

possible. For example, a valve would have two “actions”, turn clockwise and turn

counterclockwise. These templates would be as sparsely populated with waypoints

as was possible to still allow for successful task completion. As the scope of an AT

grows, it becomes tailored to a specific task configuration and is no longer as versatile.

This is a disadvantage because it means that the user needs to create more templates,

60

which somewhat defeats their intention.

Using CRAFTSMAN, ATs can encompass an entire task from start to finish.

CRAFTSMAN’s enhanced scope over other Affordance Templates makes it an ideal

candidate to perform complex LNG processes. The ability to add navigation way-

points to ATs further eliminates responsibilities that traditionally fall on the operator.

Conversely, it can be desirable to leave affordance templates as small in scope

as possible to perform a basic task. Then, complex tasks are essentially “macro-

templates” built from the combination of several small templates run in quick suc-

cession. For example, for a double block and bleed procedure the operator could add

three separate templates in to the planning scene, one for each valve. If the valves are

all of the same type, the same template would be used for all three of the valves, just

loaded in separately. Then, the macro-template would specify which action to take

for each template instance as well as the order in which to execute the actions. By

keeping the templates small in scope, their reusability is preserved without making

the task difficult for the operator to set up.

61

Chapter 4

Affordance Template & Compliant Controller

Integration

Chapter 4 discusses the integration of Affordance Templates with the compli-

ant controller. The results are demonstrated completing a double block and bleed

valve turning task in Perth, Western Australia from a remote computer in Austin,

Texas. Controlling the robot from such a great distance introduces additional burden

on the operator in the form of latency between sending commands and receiving up-

dated sensor data. The addition of compliance to ATs helps offset that burden and

reduce the risk of task failure caused by an improperly aligned template.

This project began in 2017 when a representative from Woodside visited the

NRG lab in Austin and decided to purchase a nearly-identical copy of our dual-arm

mobile manipulator, Vaultbot. Woodside purchased this system for use on their LNG

facilities in Western Australia and employed the Nuclear and Applied Robotics Group

to help develop manipulation capabilities for this system. Vaultbot’s sister robot in

Perth was named “Ripley”, and these two robots, shown in figure 4.1, were used as

the main development and testing platforms for this research.

62

(a) UT Austin’s “Vaultbot” (b) Woodside’s “Ripley”

Figure 4.1: The twin robots

4.1 Affordance Template and Compliant Controller Integra-
tion

The first step in performing any complex contact task using compliant affor-

dance templates is to ensure the arm is correctly set up to run whichever motion

planning package the AT uses to plan between its waypoints. At the minimum, the

motion planning software should support point-to-point planning with collision check-

ing, but jogging is also a useful feature. Point-to-point planning is used during tem-

plate execution to plan between the waypoints, and either jogging or point-to-point

planning can be used when generating the template depending on user preference.

The AT software must also work with the gripper to send open and close commands.

From a hardware perspective, the robot must be outfitted with the proper

sensor suite to facilitate the use of ATs and compliance. ATs require the robot to be

equipped with some sort of LiDAR or depth camera to align the virtual template to

63

its real-world location. The compliant controller requires the manipulator to have a

force torque sensor. Some manipulators may have F/T sensing capabilities built into

them, but many require an external F/T sensor to be added on.

Next, the template must be generated in advance by an experienced user. It is

not necessary to have a copy of the task object(s) on hand when creating the template,

but it does help to be able to test the template locally and verify its accuracy during

template setup. During this process, the operator may use either jogging or point-to-

point planning to move to the desired waypoint locations relative to the task object

and record the end effector pose and orientation.

Finally, the optimal compliance parameters and dimensions for the task must

be identified. This process can be more difficult as the parameters are highly specific

to both the task and the manipulator. These parameters may be identified through

extensive user testing in which the user performs the task via jogging with compliance.

The general procedure detailed in this section was employed for the DBB

demonstration described in the remainder of this chapter.

4.2 Implementation Details

4.2.1 Hardware

Vaulbot, whose configuration was developed at UT Austin in 2012, is a Clearpath

Robotics Husky mobile base with two Universal Robots UR5 manipulators. Vault-

bot’s base is also outfitted with a SICK LMS511-20100 LiDAR and two Kodak PixPro

SP360 panoramic cameras. The dual manipulators allow for a broader range of mo-

tion and a greater reach than a single manipulator. The mobile base with attached

64

LiDAR is ideal for navigating in near-flat environments and identifying obstacles.

Finally, the camera feeds from the panoramic cameras are stitched together in RViz

to create a video sphere, shown in Figure 4.2, that provides the operator with a full

360 degrees of vision while performing navigation tasks1.

Figure 4.2: Vaultbot’s 360-degree Sphere in Rviz

For this particular project, one of Vaultbot’s UR5 arms was equipped with a

Robotiq 2-Finger 140 Adaptive Robot Gripper, an ATI Gamma force torque sensor,

and an Intel RealSense D435 depth camera. These additions to the UR5 allow for

enhanced user awareness and for the integration of a compliant controller, which relies

on the feedback from the F/T sensor. While Vaultbot only had compliance active for

one of its UR5 arms during this demonstration, it is possible to enable compliance on

multiple arms if each is equipped with a gripper and F/T sensor. A full description

of Vaultbot’s hardware can be found in Table 4.1.

Vaulbot was used for the development of manipulation capabilities at UT,

1The Rviz plugin for the video sphere can be found on the NRG’s public github page, at
https://github.com/UTNuclearRoboticsPublic/rviz textured sphere

65

Table 4.1: Vaultbot’s Hardware Components

Component Manufacturer Model

Mobile Base Clearpath Robotics Husky

Arms Universal Robots UR5

Depth Cameras Intel RealSense D435

Panoramic Cameras Kodak PixPro SP360

F/T Sensor ATI Gamma

Grippers Robotiq 2-Finger 140

Lidar SICK LMS511-20100

and Woodside’s Ripley was used to demonstrate the software by performing a remote

demonstration at Woodside’s robotics lab in Perth. Similar to Chen and Trivedi per-

forming testing in multiple locations to ensure their system architecture was “flexible,

general, and robust” [4], this effort took advantage of the existence of the twin robots

on opposite sides of the globe to test the compliant affordance template structure

remotely. The demonstration proved the effectiveness of the compliant AT approach

and the robustness of the software to work on multiple systems with different hard-

ware.

For the final demonstration, Ripley had several minor hardware differences

from Vaultbot. First, Ripley was outfitted with two Robotiq 85 grippers, one on each

EEF, whereas Vaulbot had only one, larger gripper. Additionally, each of Ripley’s

grippers had a Robotiq F/T sensor attached to it, allowing for compliant manipulation

using both arms instead of just one. Finally, both arms were equipped with RealSense

depth cameras, allowing for even greater situational awareness as one arm could act

as a dynamic/mobile camera while the other was used for manipulation. Figure 4.3

66

shows a screenshot of the RealSense camera feeds being used in the manner described

above. These changes combined to make Ripley an excellent system for executing

complex manipulation tasks.

Figure 4.3: Dual RealSense Camera Feeds

4.3 Additional Software

For the remote teleoperation demonstration, UseIt was the AT package being

used. Since UseIt does not yet support navigation tasks, the navigation portion of

the task had to be performed using either point-to-point control or jogging. Similarly,

the final portion of the demonstration called for the user to generate a new AT on

the fly, which also required the user to manually control the EEF into the correct

waypoint positions. For these reasons, we employed TeMoto [40, 41] for the portions

of the task where ATs alone could not be used.

TeMoto - Japanese for “at hand” - is a software package for intuitive teleop-

eration. Developed by the NRG, TeMoto was designed to manage commands from a

67

variety of user-friendly input devices, from controllers to human speech. Figures 4.4

and 4.5 show the commands for two of the many input devices TeMoto supports, a

3Dconnexion SpaceMouse and an HTC Vive hand-controller2. TeMoto interfaces with

MoveIt! and thus supports both point-to-point planning as well as jogging, depend-

ing on the user’s preferred control input method or combination of methods. Finally,

TeMoto is also used to send gripper open/close messages to the manipulator and to

bias, enable, or disable compliance. TeMoto is structured around using a controller

in conjunction with Rviz’ interactive markers, so it does not have its own GUI.

Figure 4.4: Button mappings for the VR hand controllers used with TeMoto

2VR hand controllers can be used for jogging, but do not lend themselves well to point-to-point
control as they have very few buttons to map commands to.

68

Figure 4.5: Button mappings for the Spacenav Pro controller used with TeMoto

4.4 User Interface

For this demonstration, comprehensive situational awareness aids were neces-

sary to compensate for the large lag from Perth to Austin. These overlays, shown in

Figure 4.7, were used to provide the operator with enough “real time” information

to compensate for this lag. Figure 4.7a shows the distance marker overlaid on the

ground in front of the robot. Figure 4.7b shows the rotation of the EEF, the input

lag and strength of the input command, and the forces on the EEF.

Without these overlays, it was often unclear if the user’s input command had

been received by the remote system. With the addition of the overlays, the strength

and duration of the commands being received by the robot were clearly visible to the

operator.

69

In addition to the command overlays, the user was equipped with a simple

GUI, shown in 4.6, for compliance and directional control. This GUI was fairly crude

and intended only as a stopgap measure until a more thoughtful design can be im-

plemented. Before the creation of this GUI, the only method of enabling directional

control or directional compliance was by sending commands via the command line.

Implementing the compliance GUI simplified the process of sending compliance com-

mands to the robot.

Figure 4.6: The Temporary Compliance GUI

4.5 The Task

As mentioned in Chapter 1, the aim of this research is to simplify the execution

of contact tasks to make robotic systems a more viable solution for a wide variety

70

(a) Distance marker overlay (b) Rotation, velocity, and force overlay

Figure 4.7: The Situational Awareness Overlays

of industries. This project, specifically, is funded by Woodside to enable the use of

mobile manipulators on their LNG facilities. These robots will be used primarily for

“3D” contact tasks - those deemed dull, dirty, or dangerous - as well as for emergency

response.

4.5.1 Task Description

The representative task chosen here to test this compliant AT implementa-

tion is the double block and bleed procedure. The DBB apparatus used for this

demonstration is shown in Figure 4.8. The DBB is an excellent representative task

to demonstrate this research as it is a fairly common task performed in the oil and

gas industry and it requires the manipulator to execute relatively complex motions

that, if not done precisely, are likely to exceed safe force limits. Employing ATs with

compliance should greatly reduce the completion time over the traditional teleop-

eration approach of jogging. In addition to saving time, the compliance controller

71

should eliminate the risk of exceeding force/torque limits and causing a safety fault,

where the low-level arm controller shuts off the arm once the force limit is exceeded

to prevent the arm from causing damage to itself or the environment.

Figure 4.8: Woodside’s DBB test apparatus with AR marker

The remote demonstration was performed with members of the Woodside team

supervising and controlling the emergency stop, but they were not allowed to provide

the remote operator with any feedback during task execution. Woodside also had a

professional camera crew on hand to record the demonstration. This video is not yet

public record.

This demonstration was designed to showcase a wide range of Ripley’s capa-

72

bilities, focusing on but not limited to UseIt and compliance. The operator was to

utilize both planning and jogging for navigation and manipulation portions of the

demo. Thus, the steps for the remote demonstration were as follows:

• Using an input device of their choice, the operator must drive the robot to the

task location and position the robot within reach of the three valves

• Using the jogger without compliance, the operator must press the process shutoff

button and subsequently turn a valve

• Using the jogger with compliance, the operator must press the process shutoff

button and subsequently turn a valve

• Using Rviz, the operator must localize the valve apparatus based on an AR

(augmented reality) marker

• The operator must use a pre-made Affordance Template to perform a double

block and bleed procedure using both arms without compliance

• The operator must use a pre-made Affordance Template to perform a double

block and bleed procedure using both arms with compliance

• Using the UseIt GUI and MoveIt, the operator must create, and then run, a

simple AT to press the button and turn a single valve with compliance

• The operator must stow the arms and drive the robot back to its charge station

73

4.5.2 Challenges

The primary challenges associated with this demonstration include latency and

data volume, which led to poor situational awareness for the user. These challenges

are not unique to the DBB, but rather must be addressed for any complex contact

tasks performed remotely in uncertain environments.

During initial remote testing, the 250 millisecond latency3 posed a problem for

connecting to the move group action severs, preventing commands from being sent

to the robot. There was a timeout parameter that had to be adjusted to allow for a

greater number of connection attempts over a longer period of time. After adjusting

the MoveIt timeout parameter, it was possible to connect to the move group action

servers and send commands to Ripley, but the amount of time it took to launch Rviz

and TeMoto was still inconveniently large. In total, it took nearly ten minutes to

launch all of the necessary programs.

To remedy the slow start-up time, the Woodside team implemented a mul-

timaster setup, which reduces bandwidth by selectively subscribing to a subset of

topics. After implementing this multimaster setup, the launch time was reduced

from ten minutes to less than one minute. A multimaster approach was also imple-

mented at UT to minimize the camera lag4, which was present when running locally

over Ethernet as well as when running remotely over wi-fi, though to a lesser extent.

Another advantage to the multimaster setup is that one computer and its associated

3250 ms was the nominal ping during testing, with occasional spikes up to 350 ms.
4The multimaster implementation at UT caused some issues with the ability to run and/or

connect to a VPN, but Woodside did not run into the same roadblock.

74

processes maybe restarted without affecting the other computer and its processes.

While operating Ripley, there was a significant amount of data passed from

Ripley to the control computer in Austin. This data was necessary for situational

awareness purposes, but the bandwidth was large enough to cause significant delay

to the data streams, also causing them to lose their synchronization. These data

streams included four video streams: the two panospheric Kodak cameras, which

were stitched into a sphere in Rviz to aid the operator while driving, and the two

RealSense cameras, which were mounted on the end of each manipulator to show the

viewpoint of the end effectors.

Latency for the camera feeds was several seconds, and the feeds did not update

simultaneously, which made it difficult to determine when the robot had stopped its

motion. This latency did slow the execution of the task slightly, but the situational

awareness aids employed helped combat this issue.

4.6 Results

The results of the demonstration are discussed separately for each of the four

trial cases: jogging without compliance, jogging with compliance, affordance tem-

plates without compliance, and affordance with compliance. Each of these trials was

evaluated based on the success of the task, time to complete the task, and the number

of safety fault events. Finally, a template was generated from the remote computer

and executed as a proof of concept for remote template generation.

This demonstration is intended to showcase the effectiveness of ATs in combi-

75

nation with a compliant controller to reduce manipulation task difficulty. Each trial

run was performed only once with the same individual operator performing all four

iterations of the task. It is understood that these results do not represent a statisti-

cally significant user study, but rather a successful case of software prototyping, with

additional testing necessary.

4.6.1 Jogging Without Compliance

The first iteration of the remote demonstration required the operator to suc-

cessfully perform a button press and a subsequent valve turn via jogging without

compliance enabled. Without compliance active, it was difficult (even for someone

who is quite experienced performing the valve turn with TeMoto) to turn the valve.

With the large latency in the video feeds and the limited angles with which to view

the valve, it was nearly impossible to determine the speed or force of the EEF in the

environment. To enhance user situational awareness and make the task a bit easier,

the left arm was first jogged to point the camera at the first valve to be turned. Then,

the operator was able to jog the right arm to turn the valve. Having an isotropic view

of the valve allowed the operator to better comprehend how close they were to the

valve when it came time to grasp it.

On the first attempt at turning the valve, the operator had to settle for closing

the gripper and simply nudging the valve closed. Even with the simplified task

strategy, there were still multiple security fault events. While the this approach

might work for small ball valves with low internal friction, it is unlikely that this

shortcut would work in most scenarios.

76

In total, it took 28:15 or 1,695 seconds just to “turn” the first valve. For

this iteration of the task, the video feed latency exacerbated the lack of compliance,

causing the task to be nearly impossible to complete due to repeatedly safety faulting

the arm. Over the course of this run, the operator accumulated seven safety fault

events and was unable to progress past the first valve.

Thus, this run counted as a failure as only one of the three valves was turned.

Further attempts to turn the subsequent valves could have been made, but the length

of time required to complete the entire DBB was prohibitive. For comparison’s sake,

the results for the remaining three iterations will be directly compared to the results

of the first, incomplete iteration. Thus, the comparison will only include the data for

the run through the completion of the first valve turn. For the iterations the task was

completed in its entirety, data will additionally be provided for the run as a whole.

4.6.2 Jogging with Compliance

For the second iteration of the task, compliance was enabled while jogging in

an attempt to help mitigate the negative effects caused by the video feed latency.

The compliance parameters for this iteration were:

• Stiffness: [500, 500, 1000, 100, 100, 5] , with the first three elements in N/(m/s)

and the final three elements in N*m/(rad/s)

• Damping: [10000, 10000, 10000, 10000, 10000, 10000], with the first three ele-

ments in N/m and the final three elements in N*m/rad

• Max Force: 45 N

77

• Max Torque: 45 N*m

• Binary Default Compliant Dimensions: [1, 1, 0, 1, 1, 1], which represent [trans x,

trans y, trans z, rot x, rot y, rot z]

These parameters were kept the same for the compliant jogging and compliant AT

runs.

While jogging with compliance was undeniably more efficient than jogging

without compliance, the difficulty of the task was still pronounced. Due to the large

bandwidth of the sensor data that had to be relayed to the operator to provide

adequate situational awareness for manual control, there is a significant lag between

the operator’s commanded input and the sensor feedback. This makes it difficult for

inexperienced operators to gauge the “strength” of their commands. Furthermore, the

added compliance only marginally reduced the burden on the operator as they were

still employing manual control over the manipulator, which requires uninterrupted

focus.

For this iteration of the test, enabling compliance led to a reduction in the

completion time for the task as well as a reduction in the number of errors due to

exceeding force limits. The time to complete the button press and the first valve

turn was 10:14, or 614 seconds, and there were no errors during the run. This was

a reduction in both time and number of errors, showing that implementing the com-

pliance controller had a positive effect on the outcome of the task. Despite the aid

of compliance, the task was still prohibitively difficult to complete in its entirety, so

this iteration of the DBB task was also deemed a failure due to incompletion.

78

4.6.3 Affordance Templates without Compliance

For the third iteration of the task, the control method switched from jogging

to using an Affordance Template to perform the DBB, and compliance was disabled

again. Without compliance, the AT needed to be precisely aligned, or else the EEF

was likely to exceed the force limit set by the low-level controller and cause the arm

to safety fault5. Therefore, the operator must spend more time carefully aligning the

template to the sensor data to avoid losing even more time having to reset the robot.

Table 4.2 describes the AT used in this demonstration, from the beginning of

the DBB through the first valve turn.

For this trial, the switch from jogging to using an Affordance Template led

to a large reduction in the completion time for the task due to the template being

pre-programmed with the task motions. The time to complete the first valve turn

was 4:31, or 271 seconds, and there were zero errors during the run. This was a

reduction in both time and number of errors, showing that Affordance Templates are

a more efficient method of task execution than manual control. The setup time for

the template was 3:34 or 214 seconds, and the time to complete the full DBB task

was 13:40, or 820 seconds.

4.6.4 Affordance Templates with Compliance

For the fourth iteration of the task, the DBB template was performed using

an AT with compliance enabled. This time, the template was able to perform with no

5Note that while this means that the operator must reset the arm and the task to the beginning,
the low-level controller will stop before the task object is harmed.

79

Table 4.2: Partial Affordance Template for the DBB Task

AT Step Waypoint Name

1 Ready Pose

2 Close Left Gripper

3 Approach E-Stop

4 Press E-Stop

5 Leave E-Stop

6 Open Left Gripper

7 Ready Pose 2

8 Approach First Valve

9 Close Left Gripper

10 Half-Turn First Valve

11 Full-Turn First Valve

12 Open Left Gripper

13 Leave First Valve

14 Ready Pose 3

faults, despite intentional template misalignment by the operator. Proper compliance

parameters enabled the EEF to be moderately misaligned without causing the task

to fail.

In this run, the total time for the operator to perform the first valve turn was

05:29, or 329 seconds, with zero safety faults. Of that time, 2:26, or 146 seconds, was

spent re-planning because MoveIt was either failing to generate a plan or generating

bad plans that involved large arm motions that would have collided with the envi-

ronment. Had the template executed without any time wasted due to MoveIt plan

failures, the total time to complete the task would have been merely 03:03, or 183

80

seconds, which would have been similar to the time for the non-compliant AT run.

The time to complete the full DBB was 13:38 or 818 seconds, which is almost identical

to that of the non-compliant run, despite the 146 seconds of re-planning time.

The time to align the template for this run was only 44 seconds, a significant

reduction from the non-compliant run’s 214 seconds. The operator was comfortable

with a looser alignment because of the confidence in the compliant controller’s ability

to manage the forces on the EEF caused by the misalignment. Thus, the compliant

controller, when used with Affordance Templates saves time during task setup by

reducing the required alignment/set up time. It also saves time during task execution

by preventing safety faults, which waste time by requiring the operator to reset the

arm’s low-level controllers. In general, the time taken to execute each step of the

template should not vary unless the planner is producing bad plans.

While there was seemingly little change in the execution time or number of

security faults with compliance versus without compliance for the AT runs, that fails

to consider the intentional misalignment of the template. Without compliance, the

operator was careful when aligning the template in an effort to reduce the chance

of error. When compliance wan enabled, the opposite was true: the operator inten-

tionally misaligned the EEF (with respect to both rotation and translation) to show

the added robustness afforded by the compliance controller. Therefore, while the two

runs seem similar at first glance, the added compliance allows the operator to have

much greater confidence that the system can execute the task when conditions are

not perfect.

81

4.6.5 Populating a Template Remotely

In addition to the four iterations of the remote demonstration described above,

the user was tasked with generating an affordance template on the fly from their

remote computer. This template only required the robot to press the button and

turn a single valve, not to perform the entire DBB. Generating the template from

scratch from a remote computer was tedious. The entire process of template setup

took 37:14, or 2,234 seconds, and the operator caused one safety fault during that

time. Conversely, after it was set up the new template successfully completed the

task in 6:13, or 373 seconds, with zero safety faults.

Similar to the jogging methods listed above, the EEF that was not being

used for manipulation was pointed towards the task object to provide an isotropic

view. The operator then used their choice of either point-to-point planning or jogging

to move the EEF to desirable waypoints. At each waypoint, the UseIt GUI was

used to populate the waypoint from the current robot pose. In total, the generated

template contained 15 waypoints, six to press the button and nine to turn the valve.

Since MoveIt provides no control over the trajectory between waypoints, the operator

used a greater number of waypoints to avoid any large motions that might lead to

troublesome plans. If an undesirable plan is generated during the execution of the

AT, the user’s only options are to re-plan until MoveIt generates a different plan, or

to reset the task and slightly move the template in Rviz. With compliance enabled,

the slight realignment should not affect the ability of the template to run, but the

shift might cause the planner to find a new, better solution.

While remote template generation would be a niche use-case, there are in-

82

stances where it would be desirable to create a template for a remote application.

For example, if there were no expert roboticists located at a facility where a new

AT needs to be implemented rather quickly, it would make the most sense for an

expert operator to teleoperate the system and generate the template remotely. An-

other instance would be if the robot is sent into a hazardous environment to perform

a highly specialized task; it would be unlikely for the template to already exist and

the operator would not be able to command the robot locally as access to the area

would be restricted.

4.7 Summary

The test case detailed in this chapter with a user in Austin, Texas operating

a robot 10,000 miles away in Perth, Western Australia is an extreme scenario that

highlights the flaws inherent in high-latency teleoperation. Having the operator con-

trol the robot from such a great distance exaggerates the burden on the operator and

demonstrates the advantages of the compliant controller combined with affordance

templates even more clearly than in normal circumstances.

The full double block and bleed procedure was considered a failure when jog-

ging. While it was possible to complete the entire DBB procedure while jogging, it

is not feasible to complete the task in a reasonable amount of time for LNG facility

operations. Additionally, jogging for such long periods places a large cognitive strain

on the user. Despite the compliance controller managing the forces, the user must

still manually plan each EEF motion, both translations and compatible rotations,

and must rely on lagging visual feedback while doing so. This makes multi-step tasks

83

extremely tedious and inefficient.

The demonstration highlighted the benefits of Affordance Templates over tra-

ditional teleoperation (i.e. jogging) as well as the benefits of adding compliance to a

rigid system. The inclusion of Affordance Templates greatly reduced the DBB task

execution time, while the use of compliant control reduced the quantity of safety

faults that occurred during task execution and reduced setup time by allowing for

sloppier alignments. This illustrates how the combination of AT with compliance

ease operator burden, presenting a path for novice users to complete complex contact

tasks in dangerous industrial environments.

Although the scenario of an operator being stationed such a great distance from

the system they wish to operate is unlikely (except in the case of NASA’s Robonaut,

which resides on the ISS), it is beneficial to test our implementation in these harsher-

than-life conditions. If we can succeed in performing a task when conditions are

worse than they are ever expected to be in reality, we can ensure that our approach

is intuitive and easy to use in all reasonable circumstances.

Table 4.3: Remote Demonstration Results

Iteration Success Time (s) Errors

Case 1: Jogging without Compliance No (33%) 1695 7

Case 2: Jogging with Compliance N (33%) 614 0

Case 3: Affordance Templates without Compliance Yes 271 0

Case 4: Affordance Templates with Compliance Yes 329 0

Task 1: Remote Template Generation (1 valve only) Yes* 2,234 1

The results of the demonstration show that Affordance Templates and compli-

84

ance each individually work to lessen the difficulty of performing a contact task, with

an even greater effect when they are used together, as summarized in Table 4.3. The

time necessary to complete the task was reduced with each iteration, with jogging

sans compliance being the slowest method. While the ATs without compliance run

was slightly faster than the ATs with compliance run, the latter was faster and less

burdensome once task set-up time was taken into account. In addition to reducing

task execution time, the inclusion of compliance eliminated the risk of the EEFs ex-

ceeding safe force and torque limits, meaning that there were no safety faults during

task execution. Finally we include the time to generate a remote template, but this

primarily informational and not a case that can be compared to other tests.

In this implementation, compliance parameters were set independently of the

affordance template, but the task at hand greatly influenced parameter selection. To

make this implementation more smooth, compliance needs to become integrated with

the templates during creation and not left up to the operator at run-time. A template

with compliance built-in when it is produced has the potential to be used by a much

wider range of operators and implemented more quickly when it is time to perform a

task.

85

Chapter 5

Affordance Primitives

Chapter 5 introduces our concept of affordance primitives and details their

advantages over traditional Affordance Templates1. Affordance Primitives build upon

ATs and attempt to solve some of their shortcomings, while also creating a clear path

for future growth and development.

5.1 Motivation

Affordance templates are highly effective for the pseudo-automation of com-

plex contact tasks, as demonstrated in Chapter 4. However, the biggest shortcoming

of Affordance Templates is their inability to manage contact forces during contact

task execution. To remedy this shortcoming, the Nuclear and Applied Robotics

group has developed Affordance Primitives, which integrate Affordance Templates

and compliance into a single entity. By integrating compliance parameters within Af-

fordance Templates during their creation, Affordance Primitives can be simplified to

the minimum set of simple motions that will achieve a given task. Additionally, these

primitives allow us to instantiate Affordance Templates with compliance parameters

1Chapter 5 is partially based on a previous publication [30] in which Adam Pettinger contributed
the compliance control capability which is utilized by the Affordance Primitives that are the focus
of this effort.

86

for each task or sub- task, reducing the complexity of each portion of a task.

For example, we consider using the jogger to turn a valve or a handle. Without

compliance, the operator must jog the arm through a sweeping arc motion while also

commanding the rotation of the gripper at a compatible rate so that the EEF force

limit is not exceeded. If the user is not careful, it is easy to rotate the EEF faster or

slower than the rate of translation and this over- or under-rotation can cause a safety

fault. However, if the EEF is freely compliant in the roll dimension, the minimum

necessary user input can be simplified to a straight line tangent to the EEF in the

direction of turning. This motion is much simpler, and an operator can perform

it much more quickly and easily. Figure 5.1 shows an example of the input space

reduction enabled by the addition of compliance parameters to Affordance Templates.

Figure 5.1: Left, without compliance the user must trace the arc, shown in yellow,
whist also controlling the rate of rotation, shown in blue, to close the valve. Right,
with compliance enabled in the roll dimension the user needs only move the controller
laterally, shown in yellow, and does not need to worry abouot rotation when closing
the valve.

87

Once an Affordance Primitive has been created for one task, it should be easy

to modify the compliance parameters to work for all tasks of the same type, allowing

for differences in the rigidity of the environment. Ideally, the system would be used

exclusively in one facility and parameter archiving could be incorporated into the

primitives at specific locations within the facility. For example, if the robot was being

used in a facility with 6 valves of the same size and type, it would be useful to store

information for each valve in case some are easier to turn than others. The baseline

Affordance Primitive would remain the same, but the robot would use the location

data to modify the compliance parameters according to its memory of previously

completing the task at each location. This customization further automates the

process of cleanly performing tasks around a large facility, and further reduces the

level of human supervision necessary to perform contact tasks.

With industries moving towards digitized facilities, the implementation of Af-

fordance Primitives with associated parameter archiving make more sense than ever.

Plants have begun implementing a network of sensors across most pieces of equipment,

which can be used to update information about equipment in real time. If the sensor

data is available to the robot at the time the template is to be placed, the robot can

use that information to automatically register the template to the equipment. Simi-

larly, any abnormalities noted while turning the valve could be stored in the facility

records associated with that piece of equipment and used in future executions of the

task.

Eventually, as ATs become more advanced, the stored data could be used to

automatically modify the template based on the current state. For example, if the

88

valve was neither fully open nor closed and the user wanted the valve to be turned to

another position that was neither fully open nor closed, the sensor data could be used

to adapt the AT to achieve the new goal. For a simple task like turning a ball valve,

this would be relatively simple as the valve has a limited range of motion. Knowing

the physical characteristics of the valve along with the starting and desired final

positions of the lever, it is simple to mathematically calculate the proper waypoint

locations to achieve the turn. This opens the possibility of performing a much greater

range of tasks than is currently possible.

5.2 Parameters

Section 5.1 explains that Affordance Primitives are Affordance Templates with

integrated compliance parameters, but it does not explain what those parameters are,

nor their importance. This section breaks down the structure of an AP and explains

each parameter’s purpose.

Affordance Primitives’ compliance parameters are structured as tuples, which

are finite ordered lists. As described in [30], the AP compliance tuples consisting of

consisting of eleven parameters:

• k ∈ Rm: The impedance “stiffness” relating applied wrench to EEF velocity

and forming the diagonal matrix K from (2.6)

• β ∈ Rm: The impedance “damping” relating the time derivative of applied

wrench to EEF velocity and forming the diagonal matrix B from (2.6)

• ξapply ∈ Rm: The desired applied wrench in (2.6), given in N and N ·m

89

• ξmax ∈ Rm: The maximum allowable force/torque in each direction in N and

N ·m

• Fmax ∈ R1: The maximum combined force in N

• τmax ∈ R1: The maximum combined torque in N ·m

• ∆xmax ∈ Rm: The maximum allowable displacement from compliance

• ẋmax ∈ Rm: The maximum allowable EEF velocity

• q̇max ∈ Rn: The maximum allowable joint velocities in (2.7)

• ν ∈m2 : The jogging control dimensions allowed in (2.7)

• µ ∈m2 : The compliant dimensions in (2.7)

Where ν reduces the input space and µ reduces the compliance space.

The short-term goal of APs is not to modify ATs, but rather to add function-

ality on top of the existing AT structure. This added layer does not currently change

the way ATs work in terms of planning between waypoints, but in the long-term ATs

will need to be restructured if Affordance Primitives are going to be utilized to their

fullest potential.

5.3 Demonstration

To show the potential of our APs, we conducted a study of novice users turning

a single ball valve. This study was intended as a proof of concept that automated

compliance and input reduction would greatly reduce the difficulty of a complex task.

90

For the purposes of this demonstration, the valve turn task was decomposed

into two sub-tasks: the grasp and the turn. Users were tasked with turning the valve

as quickly as possible while attempting to avoid safety faulting the arm. If a safety

fault did occur (which happened for every user at least once), the user did not have

to restart the task, but they did lose time because the arm had to be reset.

For this study, we had each user perform the valve turn with different levels of

compliance active. For the first iteration of the test, the operators were working with

compliance fully disabled. The second trial had compliance enabled, but there was no

reduction in the input space. Finally, the third trial was performed with compliance

enabled and with input space reduction. The compliance parameters ν are shown in

Table 5.1. Table 5.2 shows which compliance parameters and directions of motion µ

were enabled for the grasping sub-task and Table 5.3 shows the same information for

the turning sub-task.

At this point in time, we did not have access to the Affordance Template

software packages discussed in 3, so the participants were performing the task via

jogging. For jogging, users were given the choice between using a SpaceNav 3D

controller and/or VR hand controllers, with the option to switch between the two

devices at any time during their run. The controls for these devices are shown in

Figure 4.5 and Figure 4.4. As the users for this study were all novice, they were given

a few minutes before the first trial to become comfortable with the jogging controls

after the task was explained to them.

To measure the success of the task, candidates were evaluated on several met-

rics: task completion, time to complete, total number of safety faults during task

91

Table 5.1: AP Parameters Shared with Grasp and Turn

Parameter X Y Z Roll Pitch Yaw

k 8000 1000 1000 5 40 60

β 50000 10000 10000 300 600 600

ξapply 0 0 0 0 0 0

ξmax 80 80 80 60 60 60

∆xmax 0.15 0.15 0.05 π/2 π/16 π/16

Table 5.2: AP Parameters for Valve Grasp

Parameter X Y Z Roll Pitch Yaw

ν 1 1 1 1 1 1

µ 1 1 0 1 0 0

performance, and user opinion of difficulty (measured on a scale of 1 to 5 with 1 be-

ing the easiest and 5 being the hardest). We wanted primarily quantitative measures

to evaluate the degree to which our APs aided users, but we also wanted a qualitative

measure of perceived difficulty. The results of this user study are shown in Table 5.4

and Figure 5.2.

For the first iteration of the task – the “no compliance” iteration – most

users were able to complete the task, but one user gave up without finishing due to

frustration. All users incurred multiple safety faults regardless of completion status.

The average time to complete the task (not counting any incomplete attempts) was

168.6 seconds, the average number of safety faults was 4.9, and the average user

opinion of difficulty was 4/5.

During the second trial compliance was enabled, but there was not any re-

92

Table 5.3: AP Parameters for Valve Turn

Parameter X Y Z Roll Pitch Yaw

ν 0 1 0 1 0 0

µ 1 0 0 1 0 0

duction in the input space. This reduced the task difficulty by controlling the EEF

torques and forces, but it did not reduce the task to its simplest set of input com-

mands. With compliance added, there was still one user that failed to complete the

task (the same user from the first iteration), but the average completion time, number

of safety faults, and user opinion of difficulty were all reduced. In this iteration, the

average completion time fell to 135.6 seconds, the number of safety faults fell to 3.0

per user, and the perceived difficulty fell to 3.25/5.

The final iteration of the test had compliance fully enabled along with selective

motion to reduce the task input space. With the Affordance Primitive fully enabled,

all users were able to successfully complete the valve-turn task. Additionally, the

average task completion time was further reduced over the compliance-only trial down

to 81.8 seconds, the safety faults were reduced to 1.4 faults per person, and the

perceived difficulty was reduced to 2.25/5.

Table 5.4: Testing Result Averages

Trial Time (s) Safety Faults Difficulty (1-5)

Trial 1 168.6 4.9 4

Trial 2 135.6 3.0 3.25

Trial 3 81.8 1.4 2.25

93

Figure 5.2: Utilizing Affordance Primitives reduced the time to complete and difficulty
of the valve turn task (n=8).

Figure 5.2 and Table 5.4 summarize the results of the user study. The addition

of the compliance and directional control cut the completion time for the valve turn in

half and reduced safety faults to one-third compared to the trial without compliance.

As shown in Table 5.2 and Table 5.3, the grasp and turn sub-tasks had different

optimal compliance parameters. The compliance parameters for the grasp sub-task

were enabled for the X, Y, and Roll dimensions, which accounted for most minor mis-

alignments, as shown in Figure 5.3. If the gripper was slightly to the left or the right

of the valve before closing, the compliance in the Y dimension would drag the gripper

into place when closed. If the gripper was slightly rotated, the roll compliance auto-

94

matically caused the gripper to right itself upon closing. In both cases, misalignments

like these would normally cause safety faults during the grasp if the user did not take

the time to manually correct them. For the turning sub-task, compliance was only

enabled for the roll and X dimensions. Compliance in the X dimension prevented

the gripper from exerting large forces by pulling or pushing on the valve during the

turn, which is easy to do if the gripper is not perfectly orthogonal to the valve. The

roll compliance, in combination with the directional motion being limited to the Y

dimension (tangent to the valve axis in the direction of turning), made it such that

the user only needed to control movement in the Y direction and the arm would fol-

low the tangent arc with the gripper freely rotating as necessary. The reduced input

space described above is shown in Figure 5.4.

Figure 5.3: In (a), the user has located gripper around the valve with significant offset
and rotational errors. In (b), the gripper has started to close and makes contact with
the valve with one finger before (c) the affordance compliance parameters assure the
controller continues to grasp the handle while compliantly correcting the operator’s
positioning errors [30].

By incorporating these compliance parameters into the template during its

creation, a novice user will be able to execute the Affordance Template with compli-

95

Figure 5.4: Left, the user simply moves (a swipe gesture) the controller to the left,
while (middle, right) the developed controller utilizes compliance to assure the gripper
correctly tracks the rotation and elevation in the grasp point as the valve is closed [30].

ance active and optimized for each subset of the task. This serves to further reduce

the barrier to entry for non-experts to be able to utilize robots in their daily jobs. The

potential for any employee, regardless of technical experience, to be able to supervise

a robot performing a task makes it a much more attractive solution for industries to

pursue.

5.4 Applications/Future Work

One future application of Affordance Primitives is to automatically generate

Affordance Templates by “recording” the execution of an example task. More plainly,

these primitives will allow the operator to populate the compliance parameters of an

AP by manually performing the task. Recording new templates would be a far sim-

pler process than the current method of adding waypoints manually (using physical

measurements) or by adding the waypoints using the robot pose, which is more effi-

cient, but still requires the user to jog or plan to the waypoint locations and then add

96

the pose data. By recording and saving a sample run-through of the task, operators

would have a record of the EEF pose at every point during the task as well as a

list of the jog commands required for successful execution. This data would then be

converted into a complete Affordance Template for future use.

In nearly all cases, this recording capability would allow the operator to set

up the AP comfortably in a controlled environment like a research lab and then be

able to apply the template in the field. Speaking from firsthand experience, allowing

the operator to create the template in a local environment considerably diminishes

the time required to set up a template. Performing the task locally is much easier as

the operator does not need to rely on sensor data and situational awareness aids and

can simply jog the arm to the proper waypoint positions and use the current robot

pose to populate the template. Additionally, some time is saved because less time is

needed to reset the manipulation object between testing attempts.

Another application for APs is any task where the trajectory taken by the arm

needs to be extremely precise and consistent. One weakness of ATs is that they rely

on motion planners such as MoveIt to plan between their waypoints. As mentioned

earlier, MoveIt does not give the user control over the path between points and is not

guaranteed to find the best path or the same path every time when planning between

the same two points. If the contact task in question requires the manipulator to plan

through a tight space, the only current option is to add a large number of waypoints so

that the motion from each waypoint to the next is very small and unlikely to generate

a poor plan. Even so, it is impossible to guarantee that the planner never violates

the constraints of the task. Additionally, adding too many waypoints is impractical

97

both computationally and time-wise as a large number of waypoints would waste

a significant amount of time over other methods where the user does control the

trajectory, such as jogging. A possible solution to this issue is to modify the AT

packages to work using a series of jog commands as opposed to a series of waypoints.

While this would undoubtedly be complicated to implement, it would allow much

finer control over the trajectory of the EEF during task execution.

In their current form, Affordance Templates, due to their waypoint nature, are

not capable of utilizing Affordance Primitives to their fullest potential. Specifically,

the waypoint restriction of AT packages limits the effectiveness of the input reduction

capabilities provided by APs. Going back to the valve example mentioned earlier, the

AP input reduction allows the user to complete the valve turn simply by jogging in

one direction. This input command does not work with AT packages, which must be

adapted moving forward to allow for the use of jogging commands as an alternative

option to waypoints for motion planning. Additionally, altering AT packages to allow

for jogging will allow for easier population of ATs through the recording of jogged

motion.

ATs are open-loop solutions, which limits their usefulness for tasks that re-

quire feedback, i.e. pressing a gas pedal to reach and maintain a certain speed or

turning a valve to reach and maintain a certain pressure of the fluid inside. With the

current waypoint implementation tasks like this would be forever unattainable. If the

templates were reworked to use jog commands, templates would be able to close the

control loop with equipment sensors and perform a wider variety of contact tasks.

98

5.5 Summary

Affordance Primitives integrate compliance parameters into their template

structure to reduce the rate of template failure due to misalignment. These parame-

ters can be set independently at each waypoint so that each motion can be optimized

with respect to compliance. This compliance optimization allows industries to be

more confident that the robot can safely and successfully perform tasks with minimal

supervision.

Additionally, APs aim to expand the number of tasks that they can be used

to perform. Currently, templates can only be used for open-loop tasks. Any task

that requires regulating something via a feedback loop is impossible with existing AT

implementations. For example, if you wanted to reach a desired pressure in a pipe by

opening or closing a valve it would be impossible with the current waypoint structure.

To make a wider variety of tasks achievable, ATs will need to implement jogging.

Finally, future APs will be created by recording the successful execution of

a task using the jogger. Current affordance templates allow for the user to pull

waypoint coordinates from the current pose of the robot, but recording jog commands

would make affordance templates much smoother and more reliable. As mentioned

previously, MoveIt is currently used to plan between template waypoints, but it is

not guaranteed to give the same plan every time (sometimes plans are produced that

violate joint limits). By recording the exact jog commands necessary to perform the

task, it is guaranteed that the template will execute the same trajectory every time.

99

Chapter 6

Conclusions

6.1 Research Summary

Contact tasks are the next critical capability remote robotic systems must be

able to reliably and easily complete in industrial environments. The ability to have

robots perform manipulation tasks remotely will greatly improve employee safety in

hazardous industries, from Nuclear to Oil & Gas. In addition to enhanced safety, im-

proved autonomy will allow human operators to supervise multiple tasks/processes at

the same time, improving overall efficiency over the current method of teleoperation.

The difficulty of contact tasks lies in the need to closely monitor and manage

contact forces at the robot’s end effector, which is difficult without user experience,

haptic feedback, or manipulator compliance. User experience is often lacking as many

industrial facilities do not employ trained roboticists full time, meaning that robot

agents would only be used on occasion which would not justify their expense. Haptic

feedback requires significant fiscal investment to implement for all robots on a facility,

requires constant monitoring each time a task is completed, and still requires some

experience to accurately interpret. Thus, a compliant controller was implemented

to automatically manage end effector contact forces and make complex tasks less

burdensome for operators, enabling task completion by an employee with minimal

100

training. With the compliant controller running, the user is prevented from exceeding

the safe force limit set for the manipulator, reducing the chance of damage to the

manipulator, manipulated object, or the environment.

Ideally, tasks would be done purely autonomously with a remote human oper-

ator supervising several agents at once. Fully-autonomous manipulation agents would

require the development of high-level mission planning algorithms specific to the needs

of each industry and company. The first step to safely achieving full autonomy in haz-

ardous environments is to automate task planning, which removes significant burden

from the operator, but still grants them some control over the tasks performed.

In this research, a wide variety of action planners were evaluated, and ATs

were determined to be the best option for implementing pseudo-autonomous behavior

with novice users. With their focus on intuitive graphical user interfaces and the

capability to complete multi-step tasks, Affordance Templates present the best option

for employee-supervised semi-autonomous task completion.

Affordance Templates are 3D visualizations of task objects that contain EEF

waypoints to perform pre-defined task actions. They are typically created in advance

by experienced users, but they are infinitely re-usable and can be created and operated

by someone of any skill level. This is ideal for an industry such as the Oil & Gas

industry, where a limited number of employees work at production facilities and none

are trained robotics experts. Thus, an easy-to-use software package such as ATs is

pivotal in robots’ being used for routine, albeit dangerous tasks.

Overall, ATs provide a good balance between autonomy and user supervision in

101

hazardous environments, especially where delicate or sensitive equipment is involved.

Additionally, they do not require advanced knowledge of an environment to be used.

Operators can use existing templates, or create their own templates relatively quickly

to address new or evolving challenges.

Two Affordance Template software packages, CRAFTSMAN and UseIt, were

implemented and evaluated for use in hazardous environments. These packages both

allow for the rapid generation of templates to complete complex tasks. CRAFTS-

MAN is the more mature product, and supports more advanced capabilities, but is

more complicated in its use. UseIt, conversely, is exceptionally easy to use, with

little training required to run or generate templates, but has more limited capabili-

ties. Therefore, the author recommends CRAFTSMAN be used by more experienced

roboticists for more complex tasks, and UseIt be used by everyday employees for more

routine tasks1.

A significant issue with ATs is their low tolerance for misalignment, which can

be caused by user error or sensor bias. In conditions with low lighting or poor data

transmission, it is imperative that templates be as robust to misalignments as possible.

To achieve this, a compliance controller was implemented with ATs to allow for more

flexibility during contact with objects. This controller allowed operators to both

control the dimensions of compliance, optimizing task performance and decreasing

the likelihood of operator error resulting in the EEF impacting the environment, and

set the maximum EEF force, further minimizing the risk to the robot and facility

1UseIt 2.0, which is currently under development, will allow for the generation of more complex
templates. Thus, it will be more similar to CRAFTSMAN in terms of its sophistication.

102

hardware.

To combat this misalignment issue and increase the placement tolerance for

templates, a compliant controller was integrated with ATs. This took place in the

form of a remote demonstration from Austin, Texas to Perth, Western Australia. The

operator tested the affects of ATs vs manual control and compliance vs no compliance.

In the end, ATs proved to be faster and less error prone than manual control, and

enabling compliance further reduced errors and the set-up time for tasks as their

added flexibility helped forgive most minor misalignments.

At this point in time, ATs suffer from a scope problem. There is no standard

for how large or how limited the scope of a template should be. In different scenarios,

one might prefer a template with a very wide scope if it is the only task of its type

at that facility. For example, if a small facility contained eighteen ball valves, but

only one double block and bleed setup (three of the ball valves), it would make sense

to have two templates. First, they would want a minimalist template for the generic

ball valves since there are so many, but since there is only one double block and

bleed apparatus as opposed to several, they would probably also want a template

encompassing that task as a whole. By making a large template for the DBB, it

simplifies the task of the user, who only has to align the single template as opposed

to needing to align three and order them appropriately in terms of chronological

execution.

The scope problem is exacerbated by one of the largest limitations of ATs,

which is that they allow only one template to be loaded into the environment at a

time. This limitation lends itself to large, unrealistically-specific templates as opposed

103

to the more generalized, minimalist templates that are employable in a wide range

of environments. In the future, it is the author’s opinion that a priority should be

placed on allowing for multiple object models to be added to the virtual environment,

with some mechanism implemented to “schedule” the templates to complete in a

user-specified order. This would facilitate larger tasks being represented as “macro

templates” as opposed to a single, overly-complex template. Current AT development

is working to address this limitation.

Finally, Affordance Primitives were introduced, which integrate compliance

parameters directly into Affordance Templates. This integration makes rigid manip-

ulators flexible, allowing for some misalignment when using an AT to perform a task,

and thus reduce task set up time. Additionally, Affordance Primitives’ compliance

can reduce the input space of a task down to simpler motions. With compliance pa-

rameters optimized, a valve turn that would normally require an arc motion combined

with a synchronized rate of rotation could be simplified to single lateral input com-

mand. This reduced input space also lends itself well to jogging commands as opposed

to point-to-point commands that are currently used to plan between waypoints.

6.2 Future Work

As seen in Section 3, both options evaluated have some advantages over the

other and thus document incremental improvements that could occur in each pack-

age. In addition, standard improvements related to improved interfaces, increased

hardware agnosticism, improved documentation, computational efficiency, etc. are

possible in both cases. There are a also few unexplored avenues for future research

104

and development.

One major area for potential growth is the automatic registration of affor-

dances to environment objects. In the implementation described in Chapter 4, we

manually aligned the template using an AR marker. While the AR marker makes the

alignment task slightly easier, it would be far better to automate the process using

computer vision combined with localization of the robot on the facility. Beyond just

recognizing and registering a template to the pre-selected object, it would be very

useful for the robot to be able to analyze objects and discern the available affordances

for the object based on its shape. While this would be less useful in an industrial

setting, where each piece of equipment is cataloged and its uses known, it would be

very useful when operating in new or unknown environments. A particularly relevant

example is the robots inspecting the Fukushima site, where items were well-modeled

but catastrophically damaged.

Conversely, for human-in-the-loop control, another potential area of future

development is to integrate ATs in VR. If an operator was creating a new template

on the fly for a remote system, it would be very useful to have VR for increased

situational awareness. To be able to align the template model with its real-world

counterpart, the robot must already be equipped a 3D sensor such as a LiDAR or a

depth camera, which returns a 3D point cloud. This point cloud could be displayed in

the VR headset worn by the operator, which would allow that operator to more easily

align the template. A VR headset for template alignment would be most valuable to

industrial employees with limited computer experience.

Additionally, ATs would benefit from the option of using a string of jog com-

105

mands instead of planning between waypoints. As mentioned in Chapter 5, a future

application of Affordance Primitives is to record the successful execution of a task

and be able to save it as a new template or primitive. The integration of jog com-

mands would make this template/primitive recording process even simpler, as the

user would not need to halt execution mid-task to specify desired waypoints. Using

jog commands would also ensure the template’s repeatability as the jog commands

would be guaranteed to produce identical end effector motion each time the template

is executed, as opposed to point-to-point planning, which can generate several plans

between a set of two points, not all of which are ideal. Template scaling would po-

tentially be more complicated using jog commands, but not prohibitively so and the

benefits of jog commands greatly outweigh this potential downside.

Another avenue that AT development can explore is “mission planning”. This

would require the ability to load multiple templates into an environment and schedule

them in some manner. This schedule could be rigid - perform tasks A, B, C, and D

in that order - or could be more flexible - perform task A before task D, but other

tasks can be performed in any order. Stringing multiple ATs together to achieve an

extended task or set of tasks would be a step closer to full autonomy. The mission

plan would be set up at the beginning of the day - or if the tasks are performed daily

or weekly - set up to repeat on a cycle. Mission planning would primarily be used

for routine maintenance or surveillance tasks, and setting up mission plans would

eliminate the need for operators to send commands to the robot multiple times per

day. The more tasks the robot is responsible for performing, the more benefit there

is to mission planning. This would also require the AT template software to support

106

navigation.

To make mission planning even more comprehensive, ATs could be further

expanded to work with multiple robots or autonomous agents. This would require

running a multimaster system in ROS and only sending required messages between

each robot and the AT software. The AT packages discussed in this work currently

only support single or dual-arm planning, so planning with multiple agents would

require a significant increase in their complexity. Expanding ATs to employ multiple

robots would significantly increase both the quantity and complexity of tasks that

can be automated. For example, multiple agents could be deployed to perform emis-

sions testing in multiple locations simultaneously. Additionally, with multiple agents

available the operator could choose a particular agent to perform a task, or choose a

particular type of agent and allow factors such as distance from the task and battery

life to be the deciding factors as to which agent is chosen.

Finally, ATs need to close the loop in terms of their control framework. Their

current open-loop implementation prevents them from performing any task that re-

lies on sensor feedback. Enabling a closed-loop structure would allow ATs to perform

tasks like maintaining a certain speed while driving a car uphill or downhill by regulat-

ing the force being applied to the gas pedal. In the context of industrial automation,

this closed-loop framework could be used to maintain the pressure of a process fluid

in a pipe by opening or closing a valve. With industries blanketing their facilities in

sensor suites that provide real-time data, performing this type of task is only limited

by ATs open-loop structure.

107

6.3 Final Remarks

This work successfully completed all the objectives outlined in Chapter 1. In

Chapter 3, the Affordance Template packages CRAFTSMAN and UseIt were installed

and tested in simulation to evaluate their capabilities and ease of use. Addition-

ally, the compliant controller detailed in Chapter 2 was integrated and tested with

UseIt. This demonstration of UseIt with the compliant controller, discussed in Chap-

ter 4, confirmed that compliance reduced the difficulty of performing contact tasks

with Affordance Templates. Finally, Chapter 5 introduced our concept of Affordance

Primitives and described their advantages over current AT packages.

While there are still many advancements to be made in the automation of

remote contact tasks, this work provides a clear path to increased autonomy for

remote systems in industrial environments that can be implemented in the short

term.

108

Appendix A

Lessons Learned

A.1 Advice for Implementation/Integration of New Software

This project required a great deal of setting up software that was previously

only accessible to NASA and TRACLabs developers. This meant that I was a “guinea

pig” when it came to installing and building these software packages. Luckily, both

teams provided concise installation instructions tailored to my system, which reduced

the amount of configuration files than I needed to edit.

CRAFTSMAN’s packages can be downloaded as ROS debians, which the user

needs to be granted special access to download. Once that access has been granted,

installation is simple. The user uses the “apt-get install” command in the same

manner that all other ROS debians are installed. After installation, CRAFTSMAN

provides a useful set up wizard to help users make the necessary configuration file

edits to get their robot running with CRAFTSMAN. The process is very simple, with

little room for user error.

UseIt’s ROS packages are all stored on GitHub. Once granted access to the

proper NASA repository, the user can download the vcs text file, which lists the

necessary packages, the correct branch, and the link to the package. To install all of

the packages in one step, the user needs to “vcstool” and run “vcs import vcs.txt”,

109

which downloads all of the ROS packages on the correct branch. After installation, the

user has to make adjustments to the configuration files for the robot and the gripper

to match their hardware. UseIt’s installation process is slightly more involved than

that of CRAFTSMAN, but is still relatively simple.

When installing software packages such as these that require different pip and

python versions, it is advisable to start with two clean Ubuntu installs. This could

be on two separate computers, on different partitions on the same computer, or on

virtual machines. CRAFTSMAN and UseIt run different versions of pip, making them

incompatible on the same environment and meaning that fixing one build breaks the

other. Luckily, this was not a setback in this project, but it could cause issues for

someone who installs both on the same machine not knowing they are incompatible.

When installing and using any new software, keep a detailed log of daily

progress. Write out all installation commands, package versions, and any changes

made to the code or launch files. When something works properly take screenshots

or screen recordings to help you remember several months down the line and to doc-

ument it for future users. When using a screen recorder, make sure the pointer is

being captured and sound is being recorded as well. Sound can be edited out later if

necessary and is very useful to have access to when reviewing your old work. When it

comes to teaching or leaving documentation for the next person to learn how to use

your software, a list of instructions is great, but a video showing the process is even

easier to follow. Finally, keep track of any software updates you perform as they may

lead to something breaking, and you’ll want to know what changed so you can try to

revert the changes.

110

Bibliography

[1] Defense Advanced Research Projects Agency. Darpa robotics challenge (drc).

https://www.darpa.mil/program/darpa-robotics-challenge. Accessed: 2020-09-

22.

[2] Patrick Beeson and Barrett Ames. Trac-ik: An open-source library for improved

solving of generic inverse kinematics. In 2015 IEEE-RAS 15th International

Conference on Humanoid Robots (Humanoids), pages 928–935. IEEE, 2015.

[3] Denis Borenstein. A directed acyclic graph representation of routing manufac-

turing flexibility. European journal of operational research, 127(1):78–93, 2000.

[4] ChuXin Chen and Mohan M Trivedi. Task planning and action coordination

in integrated sensor-based robots. IEEE transactions on systems, man, and

cybernetics, 25(4):569–591, 1995.

[5] Luiz SH De Mello and Arthur C Sanderson. And/or graph representation of

assembly plans. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH

PA ROBOTICS INST, 1986.

[6] Maurice Fallon, Scott Kuindersma, Sisir Karumanchi, Matthew Antone, Toby

Schneider, Hongkai Dai, Claudia Pérez D’Arpino, Robin Deits, Matt DiCicco,

Dehann Fourie, et al. An architecture for online affordance-based perception

and whole-body planning. Journal of Field Robotics, 32(2):229–254, 2015.

111

[7] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application

of theorem proving to problem solving. Artificial intelligence, 2(3-4):189–208,

1971.

[8] Terrence Fong, Charles Thorpe, and Charles Baur. Collaborative control: A

robot-centric model for vehicle teleoperation, volume 1. Carnegie Mellon Univer-

sity, The Robotics Institute Pittsburgh, 2001.

[9] Lucas Eddie Gallegos III. A demonstration and comparative analysis of haptic

performance using a Gough-Stewart platform as a wearable haptic feedback device.

PhD thesis, 2019.

[10] Michael Gelfond and Vladimir Lifschitz. Representing action and change by

logic programs. The Journal of Logic Programming, 17(2-4):301–321, 1993.

[11] James J Gibson. The theory of affordances. Hilldale, USA, 1(2), 1977.

[12] David Gossow, Adam Leeper, Dave Hershberger, and Matei Ciocarlie. Interac-

tive markers: 3-d user interfaces for ros applications [ros topics]. IEEE Robotics

& Automation Magazine, 18(4):14–15, 2011.

[13] Stephen Hart, Paul Dinh, and Kimberly Hambuchen. The affordance template

ros package for robot task programming. In 2015 IEEE international conference

on robotics and automation (ICRA), pages 6227–6234. IEEE, 2015.

[14] Stephen Hart, Paul Dinh, and Kimberly A Hambuchen. Affordance templates

for shared robot control. In 2014 AAAI Fall Symposium Series, 2014.

112

[15] HEBI. X-series acuator. https://www.hebirobotics.com/x-series-smart-actuators.

Accessed: 2020-06-11.

[16] Tucker Hermans, James M Rehg, and Aaron Bobick. Affordance prediction via

learned object attributes. In IEEE International Conference on Robotics and

Automation (ICRA): Workshop on Semantic Perception, Mapping, and Explo-

ration, pages 181–184. Citeseer, 2011.

[17] Neville Hogan. Impedance control: An approach to manipulation. In 1984

American control conference, pages 304–313. IEEE, 1984.

[18] Joshua James, Yifan Weng, Stephen Hart, Patrick Beeson, and Robert Bur-

ridge. Prophetic goal-space planning for human-in-the-loop mobile manipula-

tion. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots

(Humanoids), pages 1185–1192. IEEE, 2015.

[19] Matthew Johnson, Jeffrey M Bradshaw, Paul J Feltovich, Catholijn M Jonker,

M Birna Van Riemsdijk, and Maarten Sierhuis. Coactive design: Designing sup-

port for interdependence in joint activity. Journal of Human-Robot Interaction,

3(1):43–69, 2014.

[20] Twan Koolen, Jesper Smith, Gray Thomas, Sylvain Bertrand, John Carff, Nathan

Mertins, Douglas Stephen, Peter Abeles, Johannes Englsberger, Stephen Mc-

crory, et al. Summary of team ihmc’s virtual robotics challenge entry. In 2013

13th IEEE-RAS International Conference on Humanoid Robots (Humanoids),

pages 307–314. IEEE, 2013.

113

[21] Dirk Kraft, Norbert Krüger, Florentin Wörgötter, Christopher Geib, Ron Pet-

rick, Mark Steedman, Renaud Detry, Justus Piater, Ales Ude, Tamim Asfour,

et al. Deliverable no.: D8. 1.5 title of the deliverable: Publication about multi-

level learning sys-tem.

[22] Norbert Krüger, Christopher Geib, Justus Piater, Ronald Petrick, Mark Steed-

man, Florentin Wörgötter, Aleš Ude, Tamim Asfour, Dirk Kraft, Damir Omrčen,

et al. Object–action complexes: Grounded abstractions of sensory–motor pro-

cesses. Robotics and Autonomous Systems, 59(10):740–757, 2011.

[23] Joohyung Lee, Vladimir Lifschitz, and Fangkai Yang. Action language bc: Pre-

liminary report. In IJCAI, pages 983–989. Citeseer, 2013.

[24] Frank L Lewis, Darren M Dawson, and Chaouki T Abdallah. Robot manipulator

control: theory and practice. CRC Press, 2003.

[25] Jorge Lobo, Gisela Mendez, and Stuart R Taylor. Knowledge and the action

description language a. arXiv preprint cs/0404051, 2004.

[26] Pat Marion, Maurice Fallon, Robin Deits, Andrés Valenzuela, Claudia Pérez D’Arpino,

Greg Izatt, Lucas Manuelli, Matt Antone, Hongkai Dai, Twan Koolen, et al. Di-

rector: A user interface designed for robot operation with shared autonomy.

Journal of Field Robotics, 34(2):262–280, 2017.

[27] Troy McMahon, Odest Chadwicke Jenkins, and Nancy Amato. Affordance way-

fields for task and motion planning. In 2018 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pages 2955–2962. IEEE, 2018.

114

[28] MoveIt. Moveit motion planning framework. https://moveit.ros.org/. Ac-

cessed: 2020-07-22.

[29] Shimon Y Nof. Handbook of industrial robotics. John Wiley & Sons, 1999.

[30] Adam Pettinger, Cassidy Elliott, Pete Fan, and Mitch Pryor. Reducing the

teleoperator’s cognitive burden for complex contact tasks using affordance prim-

itives. In Proceedings of the IEEE International Conference on Robots and

Systems. IEEE, 2020.

[31] J Rocha and C Ramos. Plan representation and generation for manufacturing

tasks. In Proceedings. IEEE International Symposium on Assembly and Task

Planning, pages 22–27. IEEE, 1995.

[32] Joao Rocha and Carlos Ramos. Representing and generating operation se-

quences for manufacturing tasks. In Proceedings of the 1997 IEEE International

Symposium on Assembly and Task Planning (ISATP’97)-Towards Flexible and

Agile Assembly and Manufacturing-, pages 134–139. IEEE, 1997.

[33] Alberto Romay, Stefan Kohlbrecher, David C Conner, Alexander Stumpf, and

Oskar von Stryk. Template-based manipulation in unstructured environments

for supervised semi-autonomous humanoid robots. In 2014 IEEE-RAS Interna-

tional Conference on Humanoid Robots, pages 979–986. IEEE, 2014.

[34] Erol Şahin, Maya Çakmak, Mehmet R Doğar, Emre Uğur, and Göktürk Üçoluk.

To afford or not to afford: A new formalization of affordances toward affordance-

based robot control. Adaptive Behavior, 15(4):447–472, 2007.

115

[35] Mark W Spong, Seth Hutchinson, Mathukumalli Vidyasagar, et al. Robot mod-

eling and control. 2006.

[36] Leila Takayama, Wendy Ju, and Clifford Nass. Beyond dirty, dangerous and

dull: what everyday people think robots should do. In 2008 3rd ACM/IEEE In-

ternational Conference on Human-Robot Interaction (HRI), pages 25–32. IEEE,

2008.

[37] TRACLabs. Craftsman. https://traclabs.com/projects/craftsman/. Accessed:

2020-09-14.

[38] TRACLabs. Craftsman documentation. https://traclabs.bitbucket.io/. Ac-

cessed: 2020-09-15.

[39] TRACLabs. trac ik documentation. https://bitbucket.org/traclabs/trac ik/src/master/.

Accessed: 2020-010-11.

[40] Robert Valner, Karl Kruusamäe, and Mitch Pryor. Temoto: intuitive multi-

range telerobotic system with natural gestural and verbal instruction interface.

Robotics, 7(1):9, 2018.

[41] Robert Valner, Veiko Vunder, Andy Zelenak, Mitch Pryor, Alvo Aabloo, and

Karl Kruusamäe. Intuitive “human-on-the-loop” interface for tele-operating

remote mobile manipulator robots, 2018.

[42] Rusty Alexander von Sternberg. GCCF: A Generalized Contact Control Frame-

work. Master’s thesis, The University of Texas at Austin, 2016.

116

[43] Joshua Murry Williams. Automated conceptual design of manufacturing work-

cells in radioactive environments. 2013.

[44] Natsuki Yamanobe, Weiwei Wan, Ixchel G Ramirez-Alpizar, Damien Petit, Tokuo

Tsuji, Shuichi Akizuki, Manabu Hashimoto, Kazuyuki Nagata, and Kensuke

Harada. A brief review of affordance in robotic manipulation research. Ad-

vanced Robotics, 31(19-20):1086–1101, 2017.

[45] Andy Zelenak, Robert G Reid, Adam Pettinger, and Mitch Pryor. Reactive

motion control for real-time teleoperation and semi-autonomous contact tasks.

117

Vita

Cassidy Morgan Elliott was born in Huntsville, Alabama. She graduated

summa cum laude with her Bachelor’s degree in mechanical engineering from the

University of Alabama in 2018. In the fall of that year she joined the Nuclear and

Applied Robotics Group at the University of Texas at Austin and was awarded the

Provost’s Excellence Fellowship and the Thrust 2000 - H. R. Crawford Endowed

Graduate Fellowship in Engineering.

Email address: cmelliott2@utexas.edu

This thesis was typeset with LATEX† by Cassidy Morgan Elliott.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

118

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Acronyms
	Chapter 1. Introduction
	The Woodside Project
	Common LNG Maintenance Tasks

	User Control Modalities
	Affordance Templates
	Compliant Control
	Summary of Objectives
	Organization
	Chapter 2. Literature Review
	Task Definition Approaches
	Action Planners
	Affordance Templates
	The Theory of Affordances
	Development
	Implementation
	Related Work

	Jogging
	Compliance
	Summary

	Chapter 3. Affordance Template Package Comparison
	The Ideal Affordance Template Software
	History
	Craftsman
	Using Craftsman
	Features and Limitations

	UseIt
	Using UseIt
	Features and Limitations

	Comparative Summary
	Concluding Remarks

	Chapter 4. Affordance Template & Compliant Controller Integration
	Affordance Template and Compliant Controller Integration
	Implementation Details
	Hardware

	Additional Software
	User Interface
	The Task
	Task Description
	Challenges

	Results
	Jogging Without Compliance
	Jogging with Compliance
	Affordance Templates without Compliance
	Affordance Templates with Compliance
	Populating a Template Remotely

	Summary

	Chapter 5. Affordance Primitives
	Motivation
	Parameters
	Demonstration
	Applications/Future Work
	Summary

	Chapter 6. Conclusions
	Research Summary
	Future Work
	Final Remarks

	Appendix A. Lessons Learned
	Advice for Implementation/Integration of New Software
	Bibliography

	Vita

