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Real-time incident detection on freeways plays an important part in any modern 

traffic management operation by maximizing road system performance. The US 

Department of Transportation (US-DOT) estimates that over half of all congestion events 

are caused by highway incidents rather than by rush-hour traffic in big cities. An 

effective incident detection and management operation cannot prevent incidents, 

however, it can diminish the impacts of non-recurring congestion problems. The main 

purpose of real-time incident detection is to reduce delay and the number of secondary 

accidents, and to improve safety and travel information during unusual traffic conditions. 

The majority of automatic incident detection algorithms are focused on identifying traffic 

incident patterns but do not adequately investigate possible similarities in patterns 

observed under incident-free conditions. When traffic demand exceeds road capacity, 

density exceeds critical values and traffic speed decreases,  the traffic flow process  

enters a highly unstable regime, often referred to as “stop-and-go” conditions. The most 

challenging part of real-time incident detection is the recognition of traffic pattern 

changes when incidents happen during stop-and-go conditions.  

Recently, short-term freeway congestion detection algorithms have been proposed 

as solutions to real-time incident detection, using procedures known as dynamic time 

warping (DTW) and the support vector machine (SVM). Some studies have shown these 

procedures to produce higher detection rates than Artificial Intelligence (AI) algorithms 

with lower false alarm rates. These proposed methods combine data mining and time 
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series classification techniques.   Such methods comprise interdisciplinary efforts, with 

the confluence of a set of disciplines, including statistics, machine learning, Artificial 

Intelligence, and information science. A literature review of the methodology and 

application of these two models will be presented in the following chapters. SVM, Naïve 

Bayes (NB), and Random Forest classifier models incorporating temporal data and an 

ensemble technique, when compared with the original SVM model, achieve improved 

detection rates by optimizing the parameter thresholds.  The main purpose of this 

dissertation is to examine the most robust algorithms (DTW, SVM, Naïve Bayes, 

Decision Tree, SVM Ensemble) and to develop a generalized automatic incident 

detection algorithm characterized by high detection rates and low false alarm rates during 

peak hours. In this dissertation, the transferability of the developed incident detection 

model was tested using the Dallas and Miami field datasets. 

Even though the primary service of urban traffic control centers includes detecting 

incidents and facilitating incident clearance, estimating freeway incident durations 

remains a significant incident management challenge for traffic operations centers. As a 

next step this study examines the effect of V/C (volume/capacity) ratio, level of service 

(LOS), weather condition, detection mode, number of involved lanes, and incident type 

on the time duration of traffic incidents. Results of this effort can benefit traffic control 

centers improving the accuracy of estimated incident duration, thereby improving the 

authenticity of traveler guidance information. 
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Chapter 1: Introduction 

 

The US Department of Transportation (US-DOT) estimates that over half of all 

congestion events are caused by highway incidents rather than by rush-hour traffic in big 

cities [1]. Incidents cause traffic congestion and lead to the loss of human and economic 

capital. This gives high priority to Traffic Incident Management (TIM) strategies in 

FHWA planning systems. Unlike traffic demand management (TDM) policies which try 

to change travelers long term behavior [79,80], Incident Management mainly focuses on 

optimizing the real-time traffic operation by reducing duration and impacts of incidents. 

Under medium to heavy traffic conditions, the promptness of response after an incident is 

a direct function of the detection time. Accurate and fast incident detection is essential for 

subsequent management plans that aim to reduce incident based congestion.  

BACKGROUND 

  Incident detection processes are closely tied to the sensing systems that provide 

real time traffic data. With respect to sensing systems, incident detection models can be 

grouped as spatial measurement-based models (video image processing) and point/link-

based models (automatic incident detection (AID)) [12]. Some video processing 

techniques have been adapted to incident detection, but the accuracy of the models is 

sensitive to environmental factors, such as shadows, snow, rain, fog. [7] Point-based data 

collection, such as inductive loop detectors (ILD) and microwave radar, are common 

types of existing sensor technologies whereas link-based data collection systems use 

individual vehicles as probes. AID algorithms can be categorized as either macroscopic 

or microscopic. Most AID algorithms are macroscopic, and are designed to use point 

traffic quantities (speed and occupancy). Common AID algorithms include: [1] 

comparative or pattern recognition based (e.g. California  #2 algorithm) [2], Bayesian 

algorithm [3], catastrophe theory and patterns based (e.g. McMaster algorithm) [4], time-

series models based [5], and AI based. The most widely deployed AID algorithms are 

traditional “pattern recognition” based methods that compare the detector outputs of 
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different parameters to a threshold value. Tuning the thresholds to properly detect 

incidents requires substantial effort and expert traffic engineering judgment [66]. 

 To improve incident detection data, it is reasonable to expect that using multiple 

data sources, e.g., fixed detectors (collecting point data) and probe vehicles (collecting 

spatial data), could enhance the input data reliability and completeness, hence improving 

the performance of an incident detection system. Building a microscopic model to mimic 

driving behavior is extremely difficult, since drivers consider the current movement of 

the traffic stream ahead, not just one vehicle in front of them. To make microscopic 

modeling possible, vehicle trajectory data, that are not generally available, are required. 

 The trajectory data generated by vehicles in a vehicle-infrastructure integration 

(VII) [12] network have shown the potential to provide faster traffic condition detection 

and lower false alarm rates. Existing infrastructure-based incident detection systems that 

typically use inductive loop detectors, magnetometers and magnetic detectors, microwave 

radar, infrared, ultrasonic, acoustics and video image processing systems do not always 

detect traffic conditions quickly or correctly. Since 2003, the Federal Highway 

Administration (FHWA) has sponsored a variety of efforts to reduce the number of 

incidents that have led to the national development of the VII Architecture and 

Functional Requirements, which improves communication between vehicles and surface 

transportation infrastructure [13]. Two large states, California [14] and Michigan 

(MDOT, 2005) are also testing various methods for implementing these programs and 

have shown excellent results [15]. VII can improve incident detection models by 

communicating data faster than before, but currently it is not widely available. An 

important consideration for any incident detection process is the feasibility of its 

application in typical existing traffic control centers.   

Once the sensing system is in place, the choice among incident detection 

algorithms is the next appropriate step which depends upon the type and reliability of the 

sensed data. Most incident detection algorithms are simple in theory and practical in 

operation. However, during peak hour stop-and-go conditions they often fail to deliver 

both high detection rates and low false alarm rates.  Improving incident detection data 



3 
 

using multiple data sources, e.g., fixed detectors (collecting point data) and probe 

vehicles (collecting spatial data), could enhance the input data reliability and 

completeness, hence improving the performance of any incident detection system.  

Most traditional automated incident detection algorithms use ILD-based spot or 

point speed data because they are most readily available [8,9,10,11]. These types of 

sensing systems produce reliable spot speeds and reliable flow values. However, during 

highly variable stop-and-go traffic conditions, only use of spot speeds to estimate reliable 

space mean speeds is not sufficient. During incident occurrence, occupancy increases 

upstream and decreases downstream while speed and volume decrease upstream. These 

differences between up and downstream traffic volume measurements have been the 

basis of pattern recognition based freeway automated incident detection (AID) algorithms 

such as the widely-used California and the Minnesota [6] methods. The California 

algorithm only utilizes current time occupancy information of upstream, which may 

produce high false alarm rates (FAR) because of dynamic traffic fluctuations. To 

decrease the high FAR, the Minnesota algorithm employs a cumulative sum of 

differences between up and downstream conditions. Both of these models have not yet 

been able to successfully detect incidents during peak hour “stop and go” traffic.  

Several algorithms have been described as having high detection rates but they 

had either high false alarm rates or long detection rates (ex. ARIMA) [43]. Earlier time-

series algorithms such as ARIMA lost their favor because they tend to underestimate the 

variation of the traffic measurements, which causes high false alarm rates [43]. Later, Hi-

ri-o-toppa (2012) used an advanced time-series classifier dynamic time warping (DTW) 

technique, for the first time, in incident detection. This study showed a 90% detection 

rate with a 5 minute and 40 second mean time to detection (MTTD). However, DTW has 

a unacceptably high likelihood of overfitting because of the small rate of incidents in 

their sample size (16 incidents over the course of six months). 

 The classical incident detection methods (comparative and statistical algorithms) 

apply current understanding of statistical methods to deal with data by following a series 

of rules that do not consider the non-linear nature of the data. These classical algorithms 
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are simple in theory and easy to implement, but usually fail to deliver high detection rates 

and low rates of false alarm. On the other hand, the more powerful artificial intelligence 

(AI) algorithms can solve more complex problems through trial and error to improve 

detection performance over time.  

The most commonly applied AI algorithms, Artificial Neural Network (ANN) 

models, have not been as successful as the newer Support Vector Machine AI 

counterparts. Support Vector Machine (SVM) models have greater learning and 

prediction potentials in comparison to ANN because they can provide faster results and 

more customization options for the modeler. In addition, SVM requires less 

computational cost, which is vital for real time incident detection and avoids the over-

fitting problems of ANN [48]. Recently, Liu et al. (2014) conducted an incident detection 

study with a multiple Naïve Bayes classifier model. The Naïve Bayes classifier ensemble 

removes the burden of choosing the optimal threshold for the observed parameters. Their 

experiment on a Singapore freeway using the I-880 California data as the training data 

showed significantly better and more stable results than the standard Naïve Bayes (NB) 

experimental results. These advanced algorithms are more successful because they 

consider incident detection as a pattern recognition problem of incident versus non-

incident conditions [16,17,18].  

MOTIVATION 

The Institute of Physics (2005) research shows that even tiny fluctuations in 

vehicle-road density can cause a chain reaction leading to a traffic jam. It is practically 

impossible to obtain coherent predictions from a macroscopic traffic flow model due to 

high occurrence of many small transient shockwaves under these conditions that can 

mistakenly be detected as an incident occurrence. Therefore, traditional incident detection 

efforts are not applicable under such conditions. This research focuses on developing a 

transferable incident detection algorithm that will not only detect incidents in a quick and 

effective manner, but will do so during peak hours with stop-and-go traffic flow. To meet 

this objective, understanding of stop-and-go traffic mechanisms is essential. 
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Recently, incident detection algorithms have been proposed using pattern 

classification models and advanced time series dynamic time warping (DTW) to mitigate 

this challenging issue of incident detection during all conditions, including stop-and-go 

traffic. It has been widely used in other disciplines (speech detection), and was recently 

introduced into transportation engineering. However, DTW requires a larger data set that 

could be very time consuming to develop for proper training. One of the most robust 

pattern classification models is known as the support vector machine (SVM), the 

foundations of which were developed in 1995 by Cortes and Vapnik [19,20,21]. Some 

studies suggest SVM has a higher detection rate than Artificial Intelligence (AI) 

algorithms with a lower false alarm rate. The proposed method has an interdisciplinary 

perspective, combining a set of disciplines, including statistics, machine learning, AI, and 

information science. In complicated real-world cases, such as traffic incident detection, 

data is not linearly separable. SVM has the power of solving non-linear classification 

problems by using the kernel method to transform the original input space into a higher 

dimensional feature space and constructing an optimal linear separating hyper-plane. 

Naïve Bayes and Random Forests are also gaining attention in the field of Transportation.   

CONTRIBUTION 

This study uses field traffic pattern data to provide a solution for incident detection 

during peak hours. The test data was first collected by the Dallas Texas Traffic Control 

Center and includes upstream and downstream speed, volume, and occupancy from two 

freeways: US-75 and I-635. The data from Miami was obtained to test the transferability 

of the model. 

Frequently, field data are subject to bias and noise from different sources and the 

incident detection model must take these factors into consideration. The majority of 

previous real-time incident detection models often work well in a laboratory simulation 

setting, but do not perform well during actual deployment using real incident data [8]. 

The issue with the majority of these models is that they have not been field-tested. 

Another alternative is to use the 1993 I-880 California dataset, which may possibly not 

reflect current driving behavior. Few recent studies focused on developing their incident 
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detection model use recent field data [71,73,74]. This study takes heed of the design of 

the evaluation procedure to avoid bias and old training data. However, previous research 

indicates that DTW and SVM methods can provide an automated incident detection 

model.  

This study develops a generalized incident detection model that can be used in 

any traffic control center. Initially, as discussed in the next chapter, two groups of 

experiments were performed to evaluate the most promising incident detection 

algorithms: DTW and SVM. The data used in this study was collected by the Dallas 

Traffic Control center and includes speed, volume, and occupancy. A small sample of 

five selected incident locations was prepared for this section. After our experiment, the 

SVM model was found to be most robust and a better fit for the type of data available. 

Subsequently, additional cases were extracted from the dataset and SVM was chosen for 

the more extensive generalized incident detection model experimentation. A variety of 

different scenarios were defined to examine the SVM model such as utilizing different 

training datasets and kernel functions. In this dissertation, we examined the transferability 

of the developed SVM model using field data from different freeways in the Dallas, 

Texas area. As a next step, this study was expanded by gathering more incident cases 

from I-95 Miami to validate the utility of a generalized SVM model and provide 

guidelines for the future work in this field. Incident management is closely tied to 

incident detection, however, post-incident activities were considered outside the scope of 

this study. 

Incidents are not only influenced by special factors (i.e., upstream/downstream 

speed), but also are affected by time. To include other effects into the model, this study 

incorporated temporal data and a multi-kernel SVM model. SVM, Naïve Bayes (NB), 

and Random Forest classifier models incorporating temporal data and the ensemble 

technique were compared with the original SVM model to improve the detection rate by 

optimizing the parameter thresholds.  A literature review, methodology, and application 

of these models will be presented in the following sections.   
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 A significant incident management challenge for traffic operations centers is 

estimating freeway incident durations. This study examined the effect of traffic related 

factors (V/C (volume/capacity) ratio, level of service (LOS)), weather condition, 

detection mode, number of involved lanes, and incident type on the time duration of 

traffic incidents. Results of this effort can benefit traffic control centers in improving the 

authenticity of traveler guidance information. 
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Chapter 2: The Support Vector Machine Concept 

INTRODUCTION 

The first incident detection algorithms were developed in the early 1970s and the 

development process continues today.  Incident detection algorithms are typically 

categorized into five major groups depending on the type of operations data used.  These 

include: 

 Comparative algorithms; 

 Statistical algorithms; 

 Time-series and filtering based algorithms; 

 Traffic theory based algorithms; and 

 Advanced algorithms. 

Comparative algorithms compare the value of measured traffic parameters (i.e., 

volume, occupancy or speed) to a pre-defined threshold value. When the measured traffic 

parameter exceeds the threshold an incident alarm is indicated. The California algorithm 

is the most well-known and frequently used model of this group in traffic control centers 

[22], but needs improved peak-hour detection. 

The statistical algorithms apply regular statistical methods to determine whether 

observed detector data deviate in a statistically significant manner from estimated or 

predicted traffic characteristics [23]. This is another classic approach, and usually has 

better results that the comparative algorithm in terms of false alarm rates and incident 

detection. 

Time series algorithms predict normal traffic conditions and detect incidents when 

detector measurements differ significantly from model outputs. This is under the 

assumption that traffic normally follows a predictable pattern over time, however driver 

choices and reactions to the driving environment evolve and change [24,25]. Including all 

of these factors is not any easy task and requires that the “normal” pattern be updated 

periodically. This approach is newer and not as frequently used most likely because of 

data limitations. 
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Traffic-theory based modeling approaches apply traffic flow theory to describe 

and predict traffic behavior under incident conditions. This type of model uses trajectory 

data and is based on the comparison between observed traffic parameters and parameter 

values estimated by the models [26]. These types of models would have a lot of potential 

if vehicle trajectory data were widely available.  

Advanced algorithms have been developed with sophisticated mathematical 

techniques that incorporate uncertainty into complex decision-making and data-analysis 

processes. Machine learning or artificial intelligence (AI) techniques are typically 

included in this category [27]. 

Most incident detection algorithms tend to perform well until peak hour stop-and-

go conditions occur. When stop-and-go conditions prevail, such algorithms most often 

fail to deliver high detection rates and low rates of false alarm. Based on their learning 

capabilities, AI algorithms allow the model to improve detection performance over time 

by adapting to changes in traffic conditions. Most recently, support vector machine 

(SVM) models have been successfully used to improve incident detection algorithm 

reliability. SVM is a type of supervised machine learning model that has been 

successfully applied for real-time incident detection because of its capability to produce a 

computationally efficient nonlinear classifier with maximum generality. The SVM 

eliminates bias by including unrelated parameters to the predicted variable in the 

modeling process. Such parameters may be weakly informative individually, but produce 

strong predictors when used in concert with other parameters [66]. Previous evaluation 

studies have focused on advancing incident detection models by either using traffic 

simulation software or a 1993 data set collected from I-880, but those studies generally 

did not fully validate the models by testing them on different freeways. The purpose of 

this study is to fully validate an SVM incident detection model on different freeways. 

This study uses field traffic pattern data to overcome the problem of incident detection 

during peak hours.  

http://en.wikipedia.org/wiki/Supervised_learning
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BACKGROUND OF SVM IN TRANSPORTATION 

SVM has had limited applications in the transportation field. Previous studies 

describe use of SVM for travel time, speed and flow predictions, and limited incident 

detection applications [20]. Yuon and Cheu first applied SVM in traffic engineering to 

detect incidents on freeways [28]. They used the I-880 freeway data set and simulated 

incident data to test their model performance. They obtained better performance (a higher 

detection rate and a lower false alarm rate) than with a traditional neural network 

algorithm [28]. Chowdhury et al. and Bhavsar et al. also applied SVM to real-time traffic 

management and found that SVM was suitable for hierarchical intelligence applications 

and generally required low memory and processing requirements [29,30].   

Chen et al. (2009) indicated that SVM was a robust method, but was highly 

sensitive to the kernel function choice and parameter specifications. They presented an 

SVM ensemble algorithm consisting of several independently trained SVMs and a voting 

process to deal with sensitivities to the kernel function for incident detection. They found 

that the SVM ensemble improved the comprehensive performance of SVM in most cases 

[31,32].  The drawbacks of the SVM ensemble were possible negative effects of the 

ensemble approach, including an increased computational burden and the possibility of 

drawing individual training samples that could bias the ensemble voting process [33,34].  

One of the solutions to address this problem is the multiple kernel support vector machine 

(MKL-SVM) proposed by Xiao et al. (2012) to detect incidents. MKL-SVM produced 

robust performance that avoided the burden of choosing the kernel function and its 

parameters [33]. To further improve the performance of MKL-SVM, Xiao et al. (2012) 

proposed an MKL-SVM ensemble [35]. Lessons learned from the aforementioned 

research were applied to the real-time incident detection model presented in the following 

sections to address the problem of high false alarm rates during the peak hours.   

Using field data to improve model comprehensiveness has been neglected in the 

incident detection process development. Most previous incident detection application 

studies have relied on simulation data or the I-880 database. Ma et al. (2010) used SVM 



11 
 

with vehicle-infrastructure integration (VII) to predict travel time and incident detection 

using incidents generated by simulation software. They found that only 15% of vehicles 

needed to be VII enabled to have a 100% incident detection rate (36). Qu et al. (2013) 

used standard SVM to predict sideswipe crashes using recent sideswipe crash data from 

Milwaukee. The results from this study show that SVM achieved better crash 

identification at lower false alarm rates than other commonly applied neural network 

models. The developed model by Qu et al. has limited application for a specific type of 

incident (sideswipe) [37]. Motamed and Machemehl (2014) developed a real-time 

incident detection model using SVM with actual incident data from Dallas, however, this 

model still requires testing on other freeways [38]. A transferable real-time incident 

detection model is still needed; this is the purpose of this study.  

SVM METHODOLOGY  

SVM is a relatively new machine learning pattern classifier model that uses a 

sample of “training data” to define an optimal boundary between classes.  Training 

vectors are chosen to lie closest to the class boundary and are called support vectors. 

Given a training set of instance-label pairs (xi; yi); i = 1, …, ι, yi is either -1 for a non-

incident and 1 for an incident and indicates the class to which the point xi belongs. 

 

Figure 2- 1 Pattern classification concept 
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The general mathematical form of the linear SVM is f(x) = w • x + b, where w • x 

corresponds to the dot product, w is the normal vector of the hyperplane, and b is a 

variable (Figure 2-1). The linear SVM function finds the two closest points in each data 

set and creates a hyperplane between them to separate the two data sets. The problem 

becomes more complicated when the data are not linearly separable. SVM achieves non-

linear classification by mapping the input vectors into a higher-dimensional feature space 

through the kernel function ϕ until the data becomes linear, as shown in Figure 2-2.  

Because the kernel mapping only depends on the inner product of the input data vectors, 

the computational cost remains low.  

 

Figure 2- 2 Nonlinear classification created by applying a kernel function that reflects the 

data into higher dimensions until linear separation is possible 

If a hyperplane to separate the two classes cannot be found, a Soft Margin method 

can be introduced to split the classes as cleanly as possible.  The method introduces non-

negative slack variables, 𝜉𝑖 and C (error penalty), which measure the degree of 

misclassification of the data.  The optimization becomes a trade-off between a large 

margin and a small error penalty. The prediction function objective can be achieved by 

solving the following optimization problem (34): 

                𝑚𝑖𝑛 
𝑤,𝑏,𝜉

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1 , 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜       𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , and     𝜉𝑖 ≥ 0, 

where C is a penalty parameter for the error term, 𝜉𝑖 that is the measure of the 

degree of misclassification of instance i, xi is the training/testing vector (input pattern), yi 

indicates the class to which the point xi belongs,  
1

||𝑤||
 is the distance from closest point to 

the hyperplane, and ϕ is a projection function from lower-dimension space into higher-

dimension space. This is an optimization problem with a convex quadratic objective 

function and linear constraints, which can be solved using Quadratic Programming (QP). 

To make the model work efficiently in very high dimensional space, Lagrange duality has 

been implemented. The dual form typically improves the optimization problem. By 

applying Lagrange multipliers, this problem can be transformed into dual optimization 

problem: 

0 ≤ 𝛼𝑖  ≤ 𝐶 max ∑ 𝛼𝑖 −𝑁
𝑖=1

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝜙(𝑥𝑖)  ∙  𝜙(𝑥𝑖))𝑁

𝑖,𝑗=1 , 

where    ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1 = 0.  

This yields a maximization problem with 𝛼𝑖 parameters. The 𝛼𝑖’s will be zero 

except for the 𝛼𝑖’s belonging to support vectors. Therefore only the inner product of 𝑥 

and the support vectors is required in order to make prediction. The kernel function can 

be used to avoid (𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑖)).  Kernel functions are the mathematical transformation 

engines upon which the SVM process is built.  Many kernel functions are available. The 

two most commonly functions used, the radial basis (RBF) and sigmoid, are shown 

below:  

Radial basis function:  𝐾(𝑥𝑖, 𝑥𝑗) = (𝜙(𝑥𝑖)  ∙  𝜙(𝑥𝑖)) = 𝑒𝑥𝑝(−𝛾|𝑥𝑖 − 𝑥𝑗|)2, 

Sigmoid function: 𝐾(𝑥𝑖, 𝑥𝑗) = (𝜙(𝑥𝑖)  ∙  𝜙(𝑥𝑖)) =  tanh(𝛾(𝑥𝑖 . 𝑥𝑗) +  𝛿), 

where γ and δ are kernel parameters. 

In general, the RBF kernel can be applied to non-linearly separable data as well as 

linear data because the linear kernel is a special case of RBF [39]. The RBF kernel has 
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fewer numerical difficulties because of the number of hyperparameters that influence the 

complexity of model selection. For more information about SVM, see Jin et al. [40]. Both 

RBF and sigmoid kernel functions were used in the incident detection model described in 

the following sections.  

APPLYING MODIFICATIONS TO THE SVM MODEL  

SVM classification reliability can be improved by normalizing the data before 

calibrating the SVM model. Hsu [34] recommends normalizing data in the datasets to a 

range of [-1,1] or [0,1]. Normalizing the data assists the model by reducing numerical 

difficulties during calculation and prevents the effects of one variable from dominating 

the other variables. The same normalization method should be applied for both training 

and testing data sets.  

After the dataset was normalized, two important tasks needed to be addressed. 

First, the optimal kernel function parameters (C, 𝛾) must be determined, and second, the 

model validation method must be selected. Because of the significant effect of the (C, 𝛾) 

model parameters on model accuracy, two methods were selected to select optimal 

parameter values: a grid search and a pattern search. A grid search finds the parameter 

value across the defined search range while a pattern search starts at the center and makes 

steps using trial and error to improve the model fit. Grid search is computationally more 

expensive than pattern search when there are a large number of parameters. The speed of 

the search is highly dependent upon the range of C and number of parameters. After 

creating the model, the next important task is to test and validate it. In this study, two 

different methods were applied and compared.  The model was cross-validated with 

different numbers of folds and by holding aside a random percentage of the training 

dataset, validating the fold, and repeating the processes “n times” (n: number of folds). A 

sensitivity analysis was performed to find the optimal number of folds since the number 

of folds for cross-validation depends highly on the size of the dataset (this dataset was 

larger than previous studies). The cross-validation procedure can prevent over-fitting by 

indicating when further training will not achieve better generalization [41,42]. 
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PERFORMANCE MEASURES 

Incident conditions are rare in comparison to incident-free conditions. Due to the 

low ratio of incident to non-incident cases, the overall classification accuracy does not 

adequately represent model performance. The overall accuracy of all cases being properly 

predicted as non-incident reaches 85 percent. Unfortunately, an accuracy of 100 percent 

is useless if the time for detection is unreasonably slow. Therefore, other performance 

measures are necessary to fully evaluate the detection model.  

To evaluate existing an incident detection algorithm’s detection rates, false alarm 

rates and detection time have traditionally been used. Even though other algorithms 

(ARIMA, Bayesian and SSID) have reported cases of detection rates reaching 100 

percent, they typically possess either a high false alarm rate or take too long to detect an 

incident [43]. To address the problem, a single performance measure for each metric is 

used to compare the different models that are studied. 

The incident detection model performance is evaluated using the following 

metrics: 

 

Detection rate (𝐷𝑅) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑐𝑎𝑠𝑒𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑥𝑑𝑒𝑛𝑡 𝑐𝑎𝑠𝑒𝑠
∗ 100, 

False alarm rate (𝐹𝐴𝑅) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑐𝑎𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑓𝑟𝑒𝑒 𝑐𝑎𝑠𝑒𝑠
∗ 100, 

Classification rate (𝐶𝑅) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑎𝑠𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
∗ 100, 

Mean time to detection (𝑀𝑇𝑇𝐷) =
∑ 𝑡𝑖

𝑚
1

𝑚
, 

 

where    

𝑚  is the number of incident cases detected, 

𝑡𝑖 is the length of time to detect the ith incident. 

 

An efficient incident detection model should have high DR, low FAR, and short 

MTTD.  These measures are interdependent. This makes it difficult to find an optimal 

incident detection model. To comprehensively evaluate classifier performance, all of the 



16 
 

above metrics were combined to create a new performance index (PI) proposed by Chen 

et al. [31]. The PI can be computed as follows: 

𝑃𝐼 = 𝑤𝐷𝑅. (1 − 𝐷𝑅) + 𝑤𝐹𝐴𝑅 . 𝐹𝐴𝑅 + 𝑤𝑀𝑇𝑇𝐷 .
𝑀𝑇𝑇𝐷

𝑇𝐻𝐷𝑀𝑇𝑇𝐷
+ 𝑤𝐶𝑅 . (1 − 𝐶𝑅), 

where 𝑤𝐷𝑅, 𝑤𝐹𝐴𝑅, 𝑤𝑀𝑇𝑇𝐷, 𝑤𝐶𝑅 are normalized weights for corresponding measures, and 

𝑇𝐻𝐷𝑀𝑇𝑇𝐷 is the threshold of MTTD. For simplicity, the Chen et al. model weighted DR, 

FAR, and MTTD equally.  𝑇𝐻𝐷𝑀𝑇𝑇𝐷 can be any positive value bounded above by the 

maximum possible value of MTTD. Since it is recommended for unbalanced data, CR 

weight value can be set to zero to take the effect of high detection out of the PI [31]. 

SUMMARY 

The relatively new machine learning pattern classifier SVM model can solve a 

non-linear classification problem by mapping the input vectors into higher-dimensional 

feature spaces through the kernel function ϕ. The SVM benefits from low computational 

cost because the kernel mapping only depends on the inner product of the input data 

vectors. The Soft Margin method can be applied to split the classes for a non-separable 

data set. The soft margin allows data to be misclassified, but assigns a penalty cost prior 

to executions of the optimization objective function. To compare different models, a 

single performance measure is used across all methodologies. 
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Chapter 3: Data Collection 

 

Technology advancements have made traffic data collection more convenient and 

efficient. Consequently, the number of studies assessing real-time incident detection has 

increased recently. As previously mentioned, incident detection processes are closely tied 

to the sensing systems providing real time traffic data. If the sensing system is in place, 

then the best incident detection algorithm is dependent upon the type and reliability of the 

sensed data. 

One reason why previous model developments could not reliably detect incidents 

during peak hour conditions was because adequate before-and-after incident data was not 

incorporated into the models. These models rely on a single point measure of 

effectiveness, either downstream data or upstream data. If both patterns of up and 

downstream speeds are considered, then accurate detection of incidents during the peak 

hour increases [20,44]. Generally, vehicle speeds are expected to drop upstream of an 

incident and increase downstream of an incident. The pattern from the change in speeds 

can improve incident detection during peak hour stop-and-go conditions. This section 

presents the incident detection framework used in this study.  

The best way to identify traffic patterns is by observing vehicle trajectories. 

However, trajectory data is not available everywhere. The next best option is traffic 

information from a series of point detectors. Currently traffic control centers across the 

world primarily depend on single point detector data.  Therefore in this research, speed 

and volume information from point detectors provides the input data. 

STUDY SITE, INCIDENT DATA, AND TRAFFIC DATA 

For this study, data was collected from traffic control centers in Dallas and Miami 

(Figure 3-1). Dallas provided the training data from four segments on two directions of 

two different freeways.  
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Figure 3- 1 Study sites 

Data from four Dallas freeway sections were collected on US 75 North-South and 

I-635 East-West (Table 3-1). These sections are long so sometimes they vary from 2-lane 

to 4-lanes within the same section. The Dallas traffic control center, DalTrans, gathers 

real-time information from electronic sensors in the pavement, freeway call boxes, video 

cameras, 911 calls, officers on patrol, highway crews, motorist cellular calls, and 

commercial traffic reports 24-hours a day, seven days a week. The traffic data were 

collected by the Dallas, Texas Traffic Control Center and include upstream and 

downstream speed, volume, and occupancy from US-75 and I-635. The data were 

collected from July to September of 2012. The resolution of traffic information (speed, 

volume, and occupancy) is every 5 minutes on a per lane basis. Both directions of US-75 

and I-635 were studied to build the model (see Figure 3-1). 
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The collected incident information (Figure 3-2) included incident location, 

affected lane(s), time of incident detection, time cleared, and type of incident from 106 

incidents in Dallas. For each Dallas (training) incident, the research team observed two 

hours both before and after the incident occurrence for incident detection.  

The Dallas detection model was then applied to the Miami incident data retrieved 

from the FDOT D6 SunGuide for testing. The data was collected from May 2012 to June 

2012 with the same traffic information and resolution as Dallas. The Miami incident 

information included location, start time, and end time. The Miami (testing) data were 

observed two hours before the incident. Traffic data were collected from a 4.5 mile 

segment of I-95 North in Miami by the Regional Integrated Transportation Information 

System (RITIS) to test the model.  

Table 3- 1 Study sites and incident data 

Freeway Direction Length(ml) No. of Detectors No. of Incidents 

Dallas - US 75 Northbound  10 20 19 

Dallas - US 75 Southbound 10 20 63 

Dallas – I 635 Eastbound 7 13 12 

Dallas – I 635 Westbound 7 13 12 

Miami – I 95 Northbound 4.5 14 20 

 

The two nearest detector stations (one downstream and one upstream) to the 

location of each incident were identified using a Google Earth. The traffic data were 

extracted two hours before the incident start to two hours after incident clearance for each 

incident.  



20 
 

 

Figure 3- 2 Sample of the raw dataset 
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Chapter 4: Examining DTW and SVM 

 

Incident detection can be viewed as a pattern classification problem. Therefore, 

any good classifier can serve as a potential tool to the incident detection problem. The 

recent research showed the dynamic time warping algorithm [51] and the support vector 

machine concept [31,51] are one the most successful solutions for pattern classification. 

These two solutions are examined in this chapter. 

DYNAMIC TIME WARPING (DTW) 

DTW algorithms were proposed around 1970 in the context of speech recognition 

to account for differences in speaking rates between speakers and utterances. For 

example, DTW can find a low distance score between the sound signals corresponding to 

utterances “look” and “loook” without being sensitive to the prolonged duration of the ‘o’ 

sound. Other applications of DTW have been found in genetics for gene sequencing and 

detection. DTW has also been applied for clustering and classification of Electro-

cardiogram analysis [52,53]. 

Chandrasekaran et al. (2011) brought the concept of DTW to the transportation 

field for the first time to track vehicular speed variation [55]. Subsequently, there have 

been a few more studies in this field: 

 “Tracking vehicular speed variations by warping mobile phone signal strengths” 

[55] 

 “Traffic Event Automatic Detection Based on the OGS-DTW Algorithm” [56] 

 “Traffic incident detection system using a series of point detectors” [50] 

Some studies show that the procedure may produce higher detection rates than 

artificial intelligence algorithms with lower false alarm rates. For example, Hi-ri-o-toppa 

(2012) used upstream and downstream speed changes to develop a DTW incident 

detection algorithm, which achieved a 94% detection rate and a low false alarm rate. The 
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method proposed in this research uses data mining and time series classification and is 

the confluence of a set of disciplines, including statistics, machine learning, artificial 

intelligence, and information science.  

DTW Methodology  

In the first step, we started with two inputs the observed test query, X, and the 

reference series, Y. To compare the two datasets, we measured similarity or likeness 

between X and Y and locally stretched or compressed portions of the series to get the 

smallest distance between the two. The series are hypothetical sequences of X and Y, 

with the x-axis showing the time index and the y-axis showing outcome measure. 

Although the series may possess different lengths, measurements were taken at 

equidistant time points. 

An optimal warping path between X and Y is a warping path, p*, which has 

minimum total cost among all possible warping paths. The total cost Cp(X,Y) of a 

warping path, p, between X and Y with respect to the local cost measure is: 

𝑐𝑝(𝑋, 𝑌) ≔ ∑ 𝑐(𝑥𝑛𝑙
, 𝑦𝑚𝑙

)𝐿
𝑙=1   

The DTW distance DTW(X, Y) between X and Y is then defined as the total cost of p*: 

𝐷𝑇𝑊(𝑋, 𝑌) ≔ 𝑐𝑝∗(𝑋, 𝑌) 

= min {𝑐𝑝
(𝑋, 𝑌)| 𝑝 𝑖𝑠 𝑎𝑛 (𝑁, 𝑀) − 𝑤𝑎𝑟𝑝𝑖𝑛𝑔 𝑝𝑎𝑡ℎ} 

The optimal warping path between X and Y is represented graphically in Figure 

4-1 below as Time Series A and Time Series B.   The orange "diagonal" (the slanted band 

window) goes from one corner to the other of the possibly rectangular cost matrix, 

therefore having a slope of M/N. The computation is approximate: points having multiple 

correspondences are averaged, and points without a match are interpolated.  This average 

between Time Series A and B is graphically represented by large red dots in Figure 4-1 

and interpolated points without a map are represented by blue dots and a red directional 

arrow. The area is not normalized by path length.   
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Figure 4- 1 Sequences of warping map matrix to find optimal warping path. Source: 

http://homepages.inf.ed.ac.uk/group/sli_archive/slip0809_c/s0562005/theory.html 

Modifications and constraints for DTW  

Additional constraints can be applied to the model to produce specific results, 

such as introducing an additional weight vector to favor the vertical, horizontal, or 

diagonal direction (𝑤𝑑, 𝑤ℎ, 𝑤𝑦) in the alignment. To constrain the slope of the admissible 

warping paths, the step size condition can be modified. However, while putting 

constraints on search windows can make the model faster, it can potentially prevent the 

model from finding a feasible solution. 

DTW Model Development and Results 

In this algorithm, first the freeway incident data trains the DTW model. In the 

training process, the proposed system captures patterns associated with incidents in the 

training dataset. The patterns captured have common trends that can be described by 

categorizing each type of indicator (such as speed).  
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Five sequential locations were chosen in the incident data to detect patterns (the 

same five locations shown in Figure 4-2). In all cases, incidents happened Northbound on 

Lane 1 during different times of day. To have a basis for comparing incident with non-

incident situations, we chose to characterize the non-incident situation as having no 

incident within 5 miles before and after the specific incident.  

 

Road 

Name 

Road 

Direction 

CrossStreet 

Name 
DetectedTime ClearedTime AffectedLanes Type 

US 75 North Monticello Ave 8/10/12 17:06 8/10/12 17:34 Lane1 Disabled Vehicle 

US 75 North McCommas Blvd 8/31/12 23:23 9/1/12 1:47 Lane1 Accident 

US 75 North Mockingbird Ln 9/25/12 22:36 9/25/12 23:15 Lane1, Lane2 Accident 

US 75 North Caruth Haven Ln 9/14/12 17:20 9/14/12 17:57 Lane1, Lane2 Accident 

US 75 North Walnut Hill Ln 7/5/12 7:15 7/5/12 7:25 Lane1 Debris 

 

Figure 4- 2 Locations, time, and impact of incidents on US 75 

First we tried to identify the speed pattern for each location. Then, smoothing 

technique was implemented to remove some noise. Speed patterns for five locations 

during typical, non-incident flow, and during an incident were extracted. The speed 

pattern was different at each of the locations. 

To develop DTW algorithm, “R” programing language was used.  The first classic 

DTW models were developed with typical day speed data to describe what should be 

expected during non-incident cases. Two random incident-free days were considered 

within several miles radius of the test location. During a non-incident case, the two time 

series are compatible, so the cost matrix is expected to show green color (low cost) and a 
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diagonal path. The cost model shows lowest cost or the best compatible match of two 

time series. If something unusual happens, the optimal path would deviate from the 

diagonal and the color will be more orange. Figure 4-3 shows the output of the DTW 

model using incident data showing incidents at various locations. The blue line is the 

shortest path found by the model. Deviation from the diagonal trend indicates higher cost 

to the user. The incidents patterns in Figure 7 show that the two time series are not well 

matched, so the cost matrices show more orange and yellow colors. 
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Figure 4- 3 DTW Cost Matrixes for Incident Detection 

 

Figure 4-4 provides a better visual expression of the time warping concept.  The 

red and gray lines represent traffic speed during non-incident and incident conditions 
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respectively for the same location. The models are warped to show how one data point 

maps to the other time series. Time warping does not necessarily show that an incident 

happened, but it shows the pattern between the two time series. These patterns are saved 

in a library to be referenced in future tests. Therefore applying a classifier is necessary to 

identify new patterns as either an incident or a non-incident. To obtain a reliable estimate 

of the classifier accuracy a common classifier applied for DTW is the k-fold cross-

validation technique, which will be used here. 
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Figure 4- 4 Time Warping view of DTW output for incident 
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The DTW algorithm processes each test set and a classifier compares the 

similarity between normal or incident conditions and the new pattern. Because running 

DTW requires extensive computing resources, a threshold obtained from cross validation 

alerts the data collection program to start scanning for an incident. The threshold was 

calculated from the k-mean and is represented by red lines in the graphs in Figure 4-5. A 

higher speed threshold can be selected as the trigger to start collecting data. As speed 

decreases and meets the second threshold, the software starts scanning and collecting data 

points backwards from the current speed toward the free flow speed. It also starts 

collecting forward until it meets the second threshold. The second threshold is a trigger to 

stop collecting data and start the DTW algorithm. 

Using dynamic thresholds based on historical traffic data, thereby accounting for 

typical variations of traffic throughout the day, can increase the accuracy of the 

algorithm. Therefore, this approach could recognize recurrent congestion and thereby 

reduce the incidence of false alarms.  
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Figure 4- 5 K-means thresholds (1. First threshold speed, 2. Second threshold speed) 
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SUPPORT VECTOR MACHINE (SVM)  

THE SVM CONCEPT HAS BEEN PRESENTED IN DETAIL IN CHAPTER 2. HERE WE 

FOCUS ON INITIAL MODEL DEVELOPMENT. 

Model Development and results 

This section presents the implications of SVM for incident detection using field 

data. The same database used in the DTW model has been used for this section. The first 

step is generating the cases required for developing and evaluating the SVM incident 

detection model. The idea of incident detection is based on the concept that when an 

incident happens, the kinetics of passing vehicles would be affected: the speed drops 

upstream and increases downstream, lane changing increases, and involved vehicles 

demonstrate large acceleration and deceleration rates.  This part of study identified the 

speed profile and volume over a selected time step 𝑡𝑠 (5 min for Dallas data) to recognize 

the patterns that indicate incident occurrence. An array of five values for each time slice 

has been chosen as the input file for the model (Table 4-1). 

Table 4- 1 SVM sample input data and result 

Time 

Instant 

Kinetics Decision 

 Downstream 

Real-time 

Speed or 

DSpeed (mph) 

Upstream 

Real-time 

Speed or 

USpeed 

(mph) 

Upstream 

Typical 

Speed 

UTSpeed 

(mph) 

Downstream 

Real-time 

Volume 

DVolume 

(vehicle/hr) 

Upstream 

Real-time 

Volume 

UVolume 

(vehicle/hr) 

yi  

t 55 49 55 118 145 -1 

t + ts 67 14 53 112 91 +1 

 

The decision variable 𝑦𝑖 can only have values of +1 representing an incident, or -1 

representing a non-incident condition. The objective of SVM training is to find the 

prediction function: 

𝑓(𝑥𝑖) = 𝑤 ∗ 𝑥𝑖 +  𝑏, 
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where 
1

||𝑤||
 is the distance from closest point to the hyperplane, 𝑥𝑖 is the training/testing 

vector (input pattern), and b is the offset from the origin. 

This objective function optimizes the minimum distance between the 

classification hyper-plane and any sample of training data. Considering the complexity of 

traffic behavior, non-separable data must be allowed for training. As mentioned earlier 

scaling is important for the success of AI models such as ANN and SVM [34]. Before 

training, all the data were linearly scaled to a range of [0, 1].  

Here v-fold cross-validation was used to maximize the use of training data and 

search for optimal parameters (C, 𝛾). First, the data was divided into v subsets of equal 

size. Sequentially, one subset was tested using the classifier trained on the remaining (v -

1) subsets. Thus, each instance of the whole training set was predicted once so the cross-

validation accuracy equals the percentage of data that are correctly classified. Different 

numbers of v-folds were tried to determine the sensitivity of data to the number of folds, 

and 5 and 6 groups produced the best results. 

The optimal parameters were identified through grid searching of many 

combinations in the range of [C, 𝛾] = [2-5: 22: 26, 2-15: 22: 24]. The experiment was 

performed by increasing parameters in exponential order, i.e. 2n, in the range of -5 to 6 

for C and -15 to 4 for 𝛾 within two steps. The identified optimal parameters were then 

used for the entire training set to generate a trained SVM algorithm.  

This study used LIBSVM [41], an open source implementation routine for SVM 

to train and test the SVM model. The training time of the SVM model was less than five 

seconds in all the training cycles. The prediction time was quite short as well, which is a 

vital element for real-time application. 

The Radial Basis Function (RBF) has been used as the SVM kernel function. The 

optimum values found for parameters using a grid search to minimize total error in the 

objective function are (C, 𝛾)  = (0.3125, 8).  The overall accuracy of training and 
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validation is presented in Table 4-2. The results prove the robustness of the model to 

predict incidents during peak hours.  

Table 4- 2 Base model output 

 

As shown by Table 4-2, overall accuracy of both training and prediction 

(validation) is high. Besides accuracy, the result table provides a misclassification count 

and cost of misclassified cases. Each data point represents a five-minute time window. 

Although the model may not detect the incident in the first five-minute time window, it 

succeeds in the second time window. In this example, there are only 3 incident cases in 

which the model did not detect an incident in the first five minutes, but all 3 were 

detected in the second five minutes.  As expected, different penalty parameters are found 

for incident versus non-incident cases. There is a higher penalty (cost = 0.083) for 

misclassified incident cases. The findings show that the false alarm rate is low (around 

2%). There was only one case in which an incident occurred and the model did not detect 

it. There were three cases in which non-incidents were falsely detected as incidents. 

The next step was to define different scenarios and conduct sensitivity analyses to 

find the best-fit kernel function and associated parameter values.  Five different scenarios 

were defined (Table 4-3). The validation accuracy is the checkpoint to choose the best 
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model because achieving high validation accuracy from the unseen dataset more 

precisely reflects the prediction accuracy.  These results suggested that using the RBF 

kernel function was not only faster but also more accurate. Different combinations of 

variables were considered to evaluate the model sensitivity. Most notably, the typical 

speed variable, representing non-incident historical speeds, did not have a significant 

effect on the real-time incident detection model (scenario 3 vs. 4). A potential 

explanation for this involves the way model is structured. Upstream and downstream 

speeds under incident conditions tend to be very different, providing a clear classification 

border while typical speeds tend to have little value in delineating that border. The results 

corresponding to volume showed using volume improved prediction accuracy (Scenario 1 

vs. 3)  

Table 4- 3 Scenario details and results 

Scenario Model Variable Model Accuracy False Alarm 

1 Base-

RBF 
 Downstream real-time speed 

 Upstream real-time speed 

 Upstream typical speed 

 Downstream real-time 

volume 

 Upstream real-time volume 

 Training: 98.36% 

 Validation: 

97.95% 

 Training: 4 out of 244 

 Validation: 5 out of 

244 

2 Sigmoid  Downstream real-time speed 

 Upstream real-time speed 

 Upstream typical speed 

 Downstream real-time 

volume 

 Upstream real-time volume 

 Training: 97.54% 

 Validation: 

97.13% 

 Training: 6 out of 244 

 Validation: 7 out of 

244 

3 RBF  Downstream real-time speed 

 Upstream real-time speed 

 Upstream typical speed 

 Training: 97.54% 

 Validation: 

96.72% 

 Training: 6 out of 244 

 Validation: 8 out of 

244 

4 RBF  Downstream real-time speed 

 Upstream real-time speed 

 Training: 97.13% 

 Validation: 

97.13% 

 Training: 7 out of 244 

 Validation: 7 out of 

244 

 

The performance index (PI) of each scenario is reported in Table 4-4. The PI 

proposed by Chen was used here to compare different scenarios [14]. For simplicity, 
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equal weights for DR, FAR, and MTD were applied as Chen et al. and Xiao et al. suggest 

[14,15].  The detection time is highly dependent upon the time resolution of the dataset. 

In this case, data was collected every five minutes. Traffic management centers collect 

data with even finer time resolution than 5­minute intervals, therefore the resolution 

requirement for the model can be easily met. In the presented methodology, incidents 

missed during the first interval were predicted for the second time slice. There is a time 

lag between the actual incident occurrence and incident detection by the proposed model 

partially because of the time resolution of the analysis intervals. A finer time resolution 

could reduce the time lag between occurrence and detection. 

Table 4- 4 Evaluation of C-SVM for different scenarios 

Scenarios Brief details DR (%) FAR (%) CR (%) PI 

1 RBF-Base 91.67 0.96 97.95 0.615 

2 Sigmoid 91.67 1.92 97.13 0.935 

3 RBF-all speeds 86.11 1.44 96.72 0.860 

4 RBF-just real time speed 91.67 1.92 97.13 0.935 

 

 A lower PI represents better performance, so the base model has the best overall 

performance. If volume information is not available and speed is the only available 

variable, Scenario 3 provides the best results. However, these results are based upon 

application of equal weights to all PI terms. (Weight combinations that best suit the 

situation cold also be chosen.) These results suggest that real-time traffic volume 

improves the prediction accuracy compared to using only real-time speed data. They also 

suggest that historical typical speed data adds little value to the model. This part of study 

indicates that the technique is promising and should be further tested with more diverse 

and extensive data sets.   

CONCLUSIONS 

Two groups of experiments were performed to evaluate DTW and SVM. 

Evaluation revealed that both algorithms could successfully classify traffic conditions 

into two categories – incident and non-incident – during peak hours. Both model 
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predictions were fast, however, the size of data set was small. DTW is computationally 

more expensive than SVM. Models were trained on a network based on freeway segment 

in Dallas, TX. Comparing these two methods, application of DTW in the field of 

transportation is quite new. Because of time, available data, and the nature of DTW, we 

did not have enough data to validate our DTW model.  The advantage of using SVM is 

that it does not require a big dataset to train and validate the model. For the purpose 

having more accurate comparison, we recommend generating more data.  For this 

dissertation, based on the available data, we found SVM to be a better choice for our 

incident detection model development.  
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Chapter 5: Developing the SVM Incident Detection Model 

 

The majority of AID algorithms are focused on identifying traffic incident 

patterns, but do not adequately investigate possible similarities in patterns observed under 

incident-free conditions. When traffic demand exceeds freeway capacity, the operation 

enters a highly unstable regime often referred to as “stop-and-go” conditions, catagorized 

by the Highway Capacity Manual as Level of Service F. Under such conditions density, 

speed, and volume are highly variable – hence the descriptive name “stop-and-go”. The 

most challenging part of real-time incident detection is recognition of traffic pattern 

changes during incident versus stop-and-go conditions.  

PART 1 FIRST STAGE OF MODEL DEVELOPMENT  

The first step for model development was data preparation. According to recent 

studies [45,46] mean speed, standard deviation of speed, headway, and flow are the best 

indicators for incident prediction. Hi-ri-o-tappa (2011) conducted an evaluation of the 

best indicator based on a statistical comparison of two datasets. According to that study, 

mean speed and standard deviation of speed are the best indicators followed by 

occupancy and traffic flow rate [45]. Therefore for this part of study, these data items 

were extracted from Dallas incident database. The incidents occurred at different 

locations and different times of day along 10-miles of the US-75 freeway.  Nineteen 

incident cases along US-75 northbound were extracted from the Dallas incident database. 

For each incident, the research team observed two hours before and after the incident 

began. Each time window of five minutes is represented as one data point for the SVM 

model. Therefore, the training data, shown in Table 5-1, contained 620 instances with 

176 incident cases. 
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Table 5- 1 Input data counts 

 

For SVM to work well, the dataset must contain enough samples from each of the 

classes [31,34]. In classification, the data is imbalanced when one class, such as the 

incident class, is relatively rare compared to the other classes. A C-SVM model is 

recommended for unbalanced data [41,47] because it introduces penalty values for 

different classes. This part of study applied C-SVM and other modification methods, 

including normalizing and cross-validation, to improve model accuracy.  

The SVM model classifies traffic patterns into states of incident (+1) and non-

incident (-1). The data is a vector of real numbers with a time window size of 5 minutes. 

The speed profile and volume data are collected at locations up/downstream of each 

incident over the selected time step (5 minutes for Dallas data). The SVM model 

recognizes the speed profile and volume data patterns that indicate incident versus non-

incident conditions. In Figure 5-1, a schematic traffic pattern during an incident is 

presented. Speed and standard deviation of speed are expected to decrease upstream of 

the incident while remaining the same or increasing downstream of the incident. Volume 

will decrease upstream and downstream of the incident as well. Traffic flow changes 

upstream and downstream of the incident are not expected. Occupancy has an increasing 

pattern at the upstream detector and a constant pattern at the downstream detector as 

shown in the last line of Figure 5-1.  
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Figure 5- 1 Traffic Incident Patterns 

Therefore, information from point detectors about speed, volume, and occupancy 

are the input data (Table 5-2). 

Table 5- 2 SVM Sample Input Data and Model Decision Variable 

Time 

Instant 

Kinetics (input) Decisio

n 

  Downstream 

Speed (mph) 

Downstream 

Volume 

(vehicle/hr) 

Downstrea

m 

Occupancy 

(sec) 

Upstream 

Speed 

(mph) 

Upstream 

Volume 

(vehicle/hr

) 

Upstream 

Occupanc

y (sec) 

 yi 

t 47 137 9 23 59 60 1 

t + ts 51 127 7 55 137 13 -1 

 

Different times of the day were chosen to develop a comprehensive incident 

detection model because traffic patterns change across the times of the day. To consider 

the impact of freeway geometric features in the model, different sites were selected from 

a 15-mile section where incident occurrence did not influence the assumed non-incident 

traffic pattern. One day was selected to represent the speed pattern of upstream traffic to 
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be compared with the speed pattern belonging to the incident case. All incident cases 

were reviewed to guarantee that secondary accidents were not included. 

Model Result 

After preparing and normalizing the data for the SVM model, the next step 

identified methodological enhancements (kernel function selection, model parameter 

selection, and etc.) to find the optimal SVM model. It is necessary to point out that all 

parameters in both the training and testing datasets were normalized into the range of 

[0,1] to avoid possible bias caused by different scale.   

To validate the model, two different methods were applied (the random 

percentage method and the cross validation (CV) method). A sensitivity analysis was 

performed to find the optimal method. For the CV case, the training data was divided into 

an equal number of folds and (ν-1) were used for training and one subset was reserved to 

test the model in the search space of [C, γ] = [2-5: 22: 26, 2-15: 22: 24] as recommended by 

Lin et al. and Ma et al. [36,48].  For the random percentage method, a randomly selected 

percentage of data was held out from the model building process for model validation. 

Different percentiles were tried and the best results were chosen as shown in Table 3. 

Generally, CV is recommended unless it is not computationally feasible.  In the next step, 

different kernel functions were applied. As expected, the linear kernel function was 

computationally fast with a low validation rate. The polynomial kernel function was too 

slow requiring hours of runtime without reliably completing building the model. Since 

real-time incident detection requires a fast model, the polynomial kernel was not chosen. 

The RBF and sigmoid kernel functions were chosen for different scenarios. Since here 

there were only two parameters, the grid search could function very quickly. First, the 

grid search found the optimal region, and then a pattern search found the global optimum. 

To have the most accurate parameter selection, the search used CV to maximize use of 

training data. Many combinations of grid searches were implemented to identify the 

optimal parameter values and the values found to minimize the total error in the objective 

function for each model are presented in Table 3. As mentioned earlier, CV was applied 

to both the model training and validation. Different numbers of folds were used to find 
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the best fit. The algorithm was implemented using the open source LIBSVM code 

developed by Chang et al. [49]. Model training and execution times were dependent upon 

the type of kernel function. In the case of using the CV method for model validation, the 

number of folds affected modeling training and executions times. Different combinations 

of variables were considered to evaluate the model sensitivity. The findings showed 

including volume and occupancy into the model increased the accuracy. A potential 

explanation for this could be that this is an effect of the model structure. Moreover, 

upstream and downstream patterns under incident conditions tend to be very different and 

provide a clear classification border, which increases model accuracy. The results 

corresponding to the best four scenarios in terms of accuracy and runtime are presented in 

Table 5-3. All variables were included in all of these scenarios.  

Table 5- 3 Descriptions and Outputs of the Best Scenarios 

Scenari

o 

Model Characteristics Parameter Value No. of 

SV 

Model Accuracy 

(%) 

False Alarm 

1 C-SVM, RBF, CV  

Folds: 6-4 

e = 0.001 

C = 1.27967 

Gamma = 

37.7757 

356 Training: 97.74 

Validation: 92.9 

Training: 0.97%  

Validation: 

2.10% 

2 C-SVM, RBF, CV  

Folds: 6-6 

e = 0.001 

C = 1.7896 

Gamma = 

11.4065 

204 Training: 95.65 

Validation: 93.55 

Training: 1.61%  

Validation: 

2.58% 

3 C-SVM, Sigmoid, 

CV Folds: 6-6 

e = 0.001 

C =1.2599 

Gamma= 

0.00077 

Coef0 = 1.668  

352 Training: 88.71 

Validation: 89.03 

Training: 6.13%  

Validation: 

5.0% 

4 C-SVM, RBF,  

Random Sampling: 

30% 

e = 0.001 

C = 1.2597 

Gamma = 

12.6992 

89 Training: 95.45  

Validation: 90.27 

Training: 1.52% 

Validation: 

0.88% 

 

As shown by Table 5-3, overall accuracy of both training and validation for all 

scenarios is high. The findings suggests that RBF kernel function is a better choice for 
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providing not only more accuracy, but also lower false alarm rates and faster running 

time - typically a matter of seconds. Generally, the false alarm rate is low (around 2%) 

except for in Scenario 3 in which the sigmoid kernel function was used. One criteria of 

choosing the best model is validation accuracy because achieving high validation 

accuracy from the unseen dataset more precisely reflects the prediction accuracy. In this 

table under model characteristics, the first fold value indicates validation and the second 

is used to find model parameters. Most notably, all the RBF scenarios have higher than 

89% accuracy.  

Comparing models is a very complex task. To make it more understandable, 

different researchers have introduced different performance functions to compare 

different scenarios. In this study, the PI proposed by Chen was used to compare different 

scenarios [31]. For simplicity, equal weights for DR, FAR, and MTD were applied as 

Chen et al. and Xiao et al. suggest [31,33].  The detection time is highly dependent upon 

the time resolution of the dataset. In this case, data was collected every five minutes and 

the model was able to detect the incident on average in the first time slice (the 1 to 5 min 

slice). Traffic management centers collect data with even finer time resolution than 

5­minute intervals, which could improve detection time. In the presented methodology, 

incidents missed during the first interval were predicted during the second time slice. 

There is a time lag between the actual incident occurrence and incident detection by the 

proposed model partially because of the time resolution of the analysis intervals. 

Table 5- 4 Evaluation of C-SVM for different scenarios  

Scenarios Model Characteristics 

(Folds: search, 

validation) 

DR (%) FAR (%) MTTD (min) CR (%) PI 

1 C-SVM, RBF, CV  

Folds: 6, 4 

81.25 2.93 4 92.90 1.305 

2 C-SVM, RBF, CV  

Folds: 6, 6 

77.27 3.60 4 90.97 1.544 

3 C-SVM, Sigmoid, CV  

Folds: 6, 6 

78.98 6.98 5 89.03 2.731 

4 C-SVM, RBF 

Random Sampling: 30% 

71.43 1.28 4 90.27 0.789 
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Table 5-4 represents the results of the performance analysis for the same four 

scenarios. It should be pointed out that all the statistics were calculated from the 

validation data set, not the training data set, because earlier prediction accuracy is the key 

goal. The lower the PI, the better the model. Therefore, based on the applied performance 

function, Scenario 4 has the best overall performance. That could possibly mean that 

even though CV is highly recommended in large datasets it may not benefit the model as 

much as it could for smaller datasets. CV may cause over fitting of the model yielding a 

lower validation accuracy. However, these results are based upon application of equal 

weights to all PI terms, which can be chosen to best suit the situation in question.  

Conclusions 

The main goal of this research was using recent field data to evaluate the 

performance of SVM for real-time incident detection. Evaluation revealed that SVM can 

be applied successfully using real-time data during peak and off-peak hours. The model 

prediction meets the key requirements of real-time incident detection, high detection 

speed, and accuracy. Models were trained on data from a long freeway segment in Dallas, 

TX. The accuracy and speed of SVM is highly dependent upon the kernel function choice 

and empirically estimated parameter values. Applying the RBF kernel function yielded 

the best results in this study because it significantly improved the model speed and 

reliability. Using a random sampling technique to validate the model gives better 

prediction results compared to cross-validation. The results suggest that real time traffic 

volume and occupancy improves the prediction accuracy compared to using only real 

time speed data. The study described here yielded good results. However, the technique 

should be further tested with more diverse and extensive datasets. 
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PART 2 EXPANDING SVM INCIDENT DETECTION MODEL 

In this part of study, the main focus is developing a generalized incident detection 

model for traffic control centers. Based on this evaluation, the proposed SVM model 

provides reliable results. To achieve the goal, more data points were collected from both 

directions of US-75 and IH-635. Incident cases were extracted from the Dallas incident 

database, and for each incident the research team observed two hours before and after the 

incident occurrence. 

There are different possibilities for using this data set to build the model. As 

shown in Table 5-5, one way is to use three different freeways data sets (IH-635 East and 

West and US-75 Northbound) to train and validate the incident detection model, and then 

use the US-75 Southbound data set to detect incidents. In this case, the training data 

contains 1384 instances with 417 incident cases.  

Table 5- 5 Training SVM data using IH-635E/w and US-75N data 

 

Geometric features of freeways change from freeway to freeway, and those 

geometric features impact speed distributions, therefore these features are already present 

in the data in implicit ways. Other freeways with different geometric characteristics may 

have different distributions, however, since our approach includes available data from 

two different freeways, some freeway-to-freeway variability has been included. IH-635 is 

a typical loop freeway (East-West), while US-75 is typical radial freeway and a major 

connector of downtown Dallas to North Dallas.  

From a general perspective, these two classes of freeways bring the implicit 

impact of geometric features, driver behavior, and vehicle type into account in the model 
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validation. There is no evidence that these freeways are not typical of United States 

freeways. 

The other approach with the available data would be to use only one freeway 

dataset (US-75 Southbound, Table 5-6) to train and validate the models. After finding the 

best model, the trained model could be used to detect incidents in other freeways 

separately.  

Table 5- 6 Training SVM data using US75S 

 

The process of building the model and its future application is presented in Figure 5-2. 

 

Figure 5- 2 Incident Detection Framework 
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First Model Analysis 

After preparing and normalizing the data, the RBF kernel function was applied to 

build the model. A detailed description of how to build the model was presented in the 

previous section. RBF was selected as the kernel function, and different scenarios were 

tested to find the best-fit model. The search space was defined as [C, γ]= [2-5: 22: 26, 2-15: 

22: 24]. To find the optimal parameter, first a grid search was used to find the optimal 

region, and then, a pattern search was performed to find the global optimum. To 

maximize the use of training data, cross-validation was applied. The objective is to 

minimize the total error for each model. The best model developed by C-SVM was 

compared with the Nu-SVM model (Table 5-7).  

Table 5- 7 SVM different scenarios description and output 

Scenario Model  

Characteristics 

(Folds: search, 

validation) 

Parameter Value No. of 

Support 

Vector 

Model Accuracy 

(%) 

False Alarm Rate 

(FAR) 

1 C-SVM, RBF, 

CV 

Folds: 10, 4 

e: 0.001 

C = 8 

Gamma = 10.38998 

355 Training: 94.44 

Validation: 

92.12 

Training: 2.38 % 

Validation: 

3.18% 

2 C-SVM, RBF, 

CV 

Folds: 6, 4 

e: 0.001 

C = 8 

Gamma = 10.38998 

355 Training: 94.44 

Validation: 

91.91 

Training: 2.38% 

Validation: 

3.40% 

3 C-SVM, RBF, 

CV 

Folds: 6, 6 

e:.001 

C = 1.10717 

Gamma = 59.2693 

675 Training: 95.59 

Validation: 

92.05 

Training: 2.17% 

Validation: 

2.96% 

4 Nu-SVM, RBF, 

CV 

Folds: 6, 6 

e: 0.001 

Gamma = 28.79 

Nu = 0.2282 

488 Training: 94.8 

Validation: 

92.41 

Training: 2.46% 

Validation: 

3.03% 

 

Studying these models revealed that the execution times were dependent upon the 

number of cross-validation folds mostly for finding model parameters. Interestingly, the 

number of support vectors increases when the number of folds increases for a parameter 

search. Nu-SVM can reduce training and execution time by one third (Scenario 4 vs. 3). 
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For a better comparison measure, the performance index (PI) proposed by Chen et al. 

[31] was used as presented in Table 5-8. The lower the PI, the better the model performs.  

Table 5- 8 Performance Table 

Scenarios Model Characteristics  

(Folds: search, validation) 

DR (%) FAR (%) MTTD 

(min) 

CR (%) PI 

1 C-SVM, RBF, CV 

Folds: 10, 4 

84.41 4.55 5 92.12 1.735 

2 C-SVM, RBF, CV 

Folds: 6, 4 

84.41 4.86 6 91.91 1.872 

3 C-SVM, RBF, CV 

Folds: 6, 6 

83.45 4.24 5 92.05 1.635 

4 Nu-SVM, RBF, CV 

Folds: 6, 6 

84.89 4.34 5 92.41 1.665 

The performance table shows that six folds for both validation and parameter 

search produced the best performing models (Scenario 3 and 4). However, C-SVM 

performs slightly better than Nu-SVM, possibly because Nu-SVM parameters are more 

bounded (0<Nu<1 and C>0). In this performance measure, equal weight is used for all 

parameters. However, the parameters may be weighted differently depending on the type 

of application and its priority. For instance, in one case FAR might be the target to be 

minimized, and then, for that case, more weight should be assigned to FAR.  

First Model Test Result 

The best way to check the accuracy of a developed model is by using it on a new 

freeway (unseen dataset). For this part of the study, US-75 southbound was used as the 

unseen dataset. The incident data set is separated by collection date into two groups as 

shown by Table 5-9. Here we used  

Table 5- 9 Testing SVM model using unseen data (US75S)
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The third scenario (with e: 0.001, C=1.10717, Gamma=59.2693) was chosen as 

the best model and the results are presented in Table 5-10.  

Table 5- 10 SVM model evaluation results using unseen data 

Testing with unseen data, Parameters: e: 0.001, C=1.10717, Gamma=59.2693 

 Prediction accuracy (%) False Alarm (%) AUC 

US75S 1 98.15 0.75 0.9967 

US75S 2 99.25 0.25 0.9997 

The results show the accuracy of the model is very high. The false alarm rate is 

below 1%. The area under the (ROC) curve (AUC) is another way to assess the overall 

performance of a classifier. In Table 5-10, AUC is very close to 1, implying very good 

results. This good result was expected because data from three different freeways were 

used to build the model. The only concern could be that only one freeway was used for 

testing. Therefore, to examine the other extreme, only US-75 southbound was used to 

generate the model.  

Second Model Analysis 

For this part of study, a different scenario is tested to improve the best model. The 

C-SVM model and RBF kernel function are present in all scenarios. Using training data 

from only one freeway, the number of folds for cross validation, cross validation versus 

random-holdback rows, and optimization of the number of misclassifications (MC) were 

examined.  

Utilizing random-holdback rows is one way to examine model validation. A 

randomly selected percentage of data was held out from the model building process for 

model validation. Different percentages were examined, and the percentage with the best 

fit is presented in Table 5-11 (scenario 3).  
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Table 5- 11 SVM scenario descriptions and output for US75S data set 

SVM US75S                All 

variable 

       

Scenari

o 

Model 

characteristics 

Parameter Value No. of 

Support 

Vectors 

Model 

Accuracy (%) 

False Alarm 

1 C-SVM, RBF, CV 

folds: 10, MC: 

Equal 

e:.001,C=19.1355

, Gamma=2.7604 

285 Training: 95.6, 

Validation: 

94.79 

Training: 1.85%, 

Validation: 

2.15% 

2 C-SVM, RBF, CV 

folds: 6, MC: Equal 

e:.001, 

C=0.03125, 

Gamma=60.722 

986 Training:   

96.10, 

Validation: 

93.49 

Training: 1.25%, 

Validation:  1.8 

% 

3 C-SVM, RBF, 

Random Sampling 

(20%), MC: Equal 

e:.001, 

C=109.115, 

Gamma=1.3195 

231 Training: 

95.24, 

Validation: 

95.00 

Training:   2.07%, 

Validation: 

3.00% 

4 C-SVM, RBF, CV 

folds: 6, MC: 

minimize total error 

e:0.001, 

C=388.0234, 

Gamma=1.3195 

267 Training:   

96.25, 

Validation: 

94.84 

Training: 2.1%, 

Validation: 

2.95% 

When there is a large difference between the number of data rows in two 

categories, model training is more strongly effected by the category with more rows. The 

incident category with fewer training rows has a higher level of misclassification error. In 

previous models, misclassification cost was applied equally to both categories. The 

probability threshold that minimizes the total misclassification error is considered as one 

scenario (scenario 4).   

The results show that model accuracies for all scenarios are similar; the distinct 

difference is false alarm rate and number of support vectors. Decreasing the number of 

folds on cross validation increases the number of support vectors and decreases the false 

alarm rate, as shown by Table 5-12 (scenario 1 versus 2). On the other hand, applying a 

threshold probability to minimize total misclassification error reduces the number of 

support vectors and increases the false alarm rate (scenario 2 versus 4).  
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Table 5- 12 Evaluation of different scenarios 

Scenario

s 

Brief details DR(%) FAR(%) MTTD 

(min) 

CR(%) PI 

1 C-SVM, RBF, CV folds: 10, MC: Equal 84.11 2.66 -1 94.79 1.108 

2 C-SVM, RBF, CV folds: 6, MC: Equal 75.52 2.23 -1 93.49 1.025 

3 C-SVM, RBF, Random Sampling: 20%, 

MC: Equal 

89.61 3.72 -1 95.00 1.440 

4 C-SVM, RBF, CV folds: 6, MC: 

Minimize total error 

88.54 3.66 -1 94.84 1.423 

Based upon the performance index (PI) proposed by Chen et al. [31], the second 

scenario with equal misclassification is the best-fit model. The reason that scenario four 

does not perform better is minimizing the total error in this case means giving more 

priority to incident cases (minority), which increases the detection rate, but would 

increase the false alarm rate, as well. However, these results are based upon application 

of equal weights to all PI terms, so one can chose a weight combination that best suits 

one’s situation. 

Second Model Test Result  

The data set to test the model developed by US-75 south bound is presented in 

Table 5-13, and the results are presented on Table 5-14. 

Table 5- 13 Testing SVM model using unseen dataset 

 

 

 



51 
 

Table 5- 14 SVM model evaluation results using unseen data 

Testing with unseen data   

e:.001, C=0.03125, Gamma=60.722   

 Prediction accuracy (%) False Alarm (%) AUC 

US75S part2 98.91  0.67 0.9981 

I635E 94.32 1.55 0.9891 

I635W 95.49 1.06 0.9887 

US75N 92.2 2.82 0.9665 

 

First the model was examined by applying a different data set from the same 

freeway (US-75 SB). As was expected, it has the highest prediction accuracy and lowest 

false alarm rate. This result confirms the desirability of model examination on multiple 

freeways instead of only one. 

The accuracy level for all chosen models is above 90% with a low false alarm 

rate. The Area Under the (ROC) Curve (AUC) is used to assess the overall classifier 

performance. The closer AUC is to one, the better the classifier. As shown in the Table 5-

14, the AUC values averaged 0.9856, which is considered “very good.” The question we 

needed to answer in this study was “Can the developed model be used for any freeway?” 

The answer to the question seems to be that there is no evidence to indicate it is not 

transferable. Because 3 months of traffic data and incident cases across different times at 

different locations on different freeways were used to develop the model, one can claim 

that this model is generalized and could be transferable.   

CONCLUSION 

During the course of this research study, SVM models were developed and 

applied to the freeway incident detection problem. Evaluation of the SVM algorithm 

revealed that SVM can successfully classify traffic conditions into incident and non-

incident categories during peak hours and off peak hours. In the context of real-time 

incident detection, this model prediction is faster than the previously utilized models. 
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These models were trained and developed based on data from a freeway segment in 

Dallas, TX. More diverse and extensive data sets were tested for this study, as compared 

to the previous study, and the results show that the SVM incident detection technique 

presented here is promising.   
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PART 3 GENERALIZED REAL-TIME INCIDENT DETECTION MODEL USING SVM 

The benefits of implementing automated incident detection (AID) are broadly 

accepted. However, the transferability of the model remains in question. In this part of 

study, we extend evaluation to additional test sites to strengthen confidence in the 

performance of the generalized incident detection model. Many thanks are given to Prof. 

Mohammed Hadi and Research Assistants Tao Wang and Aidin Massahi (Florida 

International University, USA) for providing the Miami dataset from FDOT, which 

allowed us to achieve the goal for this part of study. Data collected on two Dallas, Texas 

freeways (US-75 and I-635) and one Miami, Florida freeway (I-95 north bound) are used 

to test the algorithm. The new model was developed using loop and radar detectors (a 

summary of the salient characteristics of the study site is presented in Table 5-15). The 

complete detail of dataset is presented at chapter 3. The following table shows the 

summary of incident cases have been used for this part.  

Table 5- 15 Study sites and incident data 

Freeway Direction Length (mi) No. of 

Detectors 

No. of 

Incidents 

Total No. of Data 

point for the Model 

Dallas - US 75 Northbound  10 20 19 622 

Dallas - US 75 Southbound 10 20 63 1811 

Dallas – I 635 Eastbound 7 13 12 387 

Dallas – I 635 Westbound 7 13 12 377 

Miami – I 95 Northbound 4.5 14 20 706 

Total  38.5 80 126 3903 

 

Model Analysis and Testing 

The model was trained using the Dallas dataset. In this SVM model, each data 

point corresponds to 5 minutes. After preparing and normalizing the data, the RBF kernel 

function was applied to build the model (for a detailed description of how to build the 

model, please see Model Development section in Chapter 4). To find the optimal 

parameter values for the model, a grid search and cross-validation were applied in the 
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search space recommended by Lin et al. and Ma et al. (36,48) with the objective of 

minimizing the total error. 

PREDICTION PERFORMANCE AND COMPARISON 

Different scenarios were considered to examine the sensitivity of incident 

detection model development with regard to different study sites. For the purpose of 

examining transferability of the models, commonly used random separation of testing 

from training was not employed here. Since the data is collected from multiple freeways, 

cases from one specific freeway were completely removed from training data and were 

held for testing purposes. The first scenario does not include data from a different city. 

However, in all scenarios, the dataset includes cases from multiple freeways. In this case, 

cases from US75-S were held out for testing. The second scenario is using the same 

training data as first scenario but the testing data is from different city or state. The 

comparison of these two scenarios shows how the same model response to different 

texting data, aside from the transferability of the model. The third, training and validating 

the model with the Dallas data, was applied directly to another freeway in Miami to test 

the transferability of the model. This scenario shows the sensitivity of the model to the 

size of training data. In this scenario, all the cases from Dallas were implemented to build 

the model and the cases from Miami were used for testing the reliability of the incident 

detection model. The results of these scenarios are summarized in Table 5-16. 

Table 5- 16 Generalized SVM incident detection model testing 

Scenario Training Dataset Testing Dataset DR FAR CR MTTD 

1 US75-N, I635-E, I635-

W (Dallas) 

US75-S (Dallas) 85.3% 22.9% 78.6% -1min 

2 US75-N, I635-E, I635-

W (Dallas) 

I95-N (Miami)  84% 19% 81.5% -1 min 

3 US75-N, I635-E, I635-

W, US75-S (Dallas) 

I95-N (Miami) 88.9% 6.8% 90.2% -1.11 min 

Comparing the results from scenario 1 and 2, the same training dataset 

implemented on different study sites, illustrates consistent results. The detection rate 

(DR) and the false alarm rate (FAR) in both scenarios are quite similar. In scenario 3, the 
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FAR is markedly less than in the other models. Another observation from the models 

’comparison is that the developed model is more sensitive to the size of the training 

dataset (Scenario 2 vs. Scenario 3). The CR is also enhanced by increasing the size of 

training dataset. 

The results from these scenarios indicate that the SVM incident detection model is 

stable and capable of maintaining good detection performance across different test sites.  

SENSITIVITY ANALYSIS OF THE SVM MODEL 

In machine learning, sensitivity analysis is commonly applied to evaluate the 

relationship between features and output. The trained SVM model was used to test the 

sensitivity of traffic state (incident/non-incident) to the changes in one input at the time. 

For each feature, the changes of traffic state were observed by varying the value of that 

feature while all other features were unchanged. The sensitivity value, bounded between 

0% and 100%, is more significant as the value approaches 100%.  The results of 

sensitivity analysis for scenario 3 are illustrated in Table 5-17 where the most significant 

factor affected by incident is upstream speed. 

Table 5- 17 Importance of features based on sensitivity analysis 

 Importance of features 

                        % 

Upstream Speed 100.00 

Upstream Occupancy 64.71 

Upstream Volume 60.30 

Downstream Volume 44.35 

Downstream Occupancy 27.64 

Downstream Speed 0.00 

Further, features related to upstream have more significant impact on detection 

incidents. A possible explanation is that during an incident more changes happen on 

traffic features upstream than downstream.  
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DISCUSSION AND CONCLUSION 

Part of the challenge in developing an incident detection model using only traffic 

characteristics includes having to leave out potentially important environmental and 

vehicle factors. This can partially account for unexplained parts of the incident detection 

models. However, trying to account for environment and vehicle factors can conflict with 

the more important objective of model transferability for traffic control centers.  

This study’s goal was to utilize traffic characteristics to develop a transferable 

model that overcomes the problem of incident detection during peak hours and stop-and-

go traffic. Data were collected from five freeway sections from two different states: 

Texas, Florida. The Dallas data trained the model and its transferability was tested by 

applying the model to Miami. The best performing SVM model developed with Dallas 

data can predict 68% of incidents on I-90 North in Miami with a 4.8% false alarm rate. 

Overall, the SVM incident detection technique presented shows promising results.    
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Chapter 6: An Ensemble Model with Temporal Data Development and 

Comparison to Other Models 

INTRODUCTION 

Research discussed in this chapter was conducted in two parts. First, the incident 

detection model was developed using temporal data. This part of the study investigates 

the impact of temporal data on the incident detection model and examines the importance 

of significant factors associated with incident state. The major contribution of the 

proposed incident detection method here is incorporating both spatial and temporal 

information in the detection model. Most incident detection models elaborate on either 

special information from road detectors over the course of one time interval (i.e. AI 

incident detection models) whereas incident state can be induced by disturbance of traffic 

flow. Multiple time interval time series traffic data were adapted to address this issue. 

Second, incident detection models were developed using competing techniques –e.g. 

Naïve Bayes, Random Forest, and SVM Ensemble – with and without temporal data. 

TEMPORAL DATA STRUCTURE 

Temporal data with multi-time-interval traffic data was used to capture the time 

influence on the model. Moreover, random variables that represent the incident state are 

in time sequence. Since the time intervals could be important influencing factors, finding 

the optimal influencing period of time before incident start needed to be determined. To 

answer this question, several time intervals before the incident start were applied in the 

incident prediction model. Table 6-1 presents the structure of using time interval t, which 

is the interval in question (0-5 minutes prior to t), time interval t-1 (5-10 minutes prior to 

t), and time interval t-2 (10-15 mins prior to t). 
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Table 6- 1 Data structure for temporal model 

Time Step 

Downstream Upstream Traffic 

State 

Speed Volume Occupancy Speed Volume Occupancy  

t (0-5 min interval in 

question) 

S11 V11 O11 S21 V21 O21 yi 

t-1 (5-10 min prior) S12 V12 O12 S22 V22 O22 ---- 

t-2 (10-15 min prior) S13 V13 O13 S23 V23 O23 ---- 

In Table 6-1, Sij is speed at location i in time step j (1 represents downstream and 

2 upstream in time step j), Vij is volume at location i in time step j, and Oij is occupancy 

at location i in time step j. 

SVM WITH TEMPORAL DATA 

This part of the research attempted to find the effect of adding several time 

intervals to the SVM detection model. The proposed approach includes spatial-temporal 

data mining using the SVM algorithm. It should be noted that the reference base model is 

the currently presented SVM model using data collected in time interval t.  

Prediction Performance and Comparison 

Three scenarios were defined to examine the usefulness of including temporal 

data in the SVM incident detection model. For all scenarios, the training dataset and 

testing dataset were the same. The scenarios’ differ in how the input data points were 

structured. The first scenario is the base model proposed in the last part of the Chapter 5. 

This model was built using the Dallas dataset and tested on the Miami dataset. The 

associated test results are presented in Figure 6-1. The second scenario was built using 

time step t and t-1 (interval in question and prior interval, respectively). Finally, the third 

scenario was built using t, t-1, and t-2. The bar charts provide a more intuitive 

understanding of the various results. The base scenario is the single SVM model without 

temporal data. 
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Figure 6-1 Performance of SVM models with/without temporal data 

Figure 6-1 shows that detection rate (DR) and mean time to detect (MTTD) 

slightly changed across the three models. However, the false positive (FAR) vary 

significantly across the models. The base SVM model tends to detect incidents on 

average 1.11 minutes before incident occurrence. 

 As mentioned earlier, each data point (here traffic information resolution was 

every 5 minutes) was classified. Sometimes incident detection models are able to predict 

incidents earlier/later than actual time, which is the reason why MTTD was considered as 

a performance measure. However early/later detection times are related to higher 

FAR/False Negative percentages. For example, if we decrease the MTTD, then the trade-

off is FAR increases, because when an incident alarm goes off and the incident occurs in 

the next time interval, it is considered a false alarm. To further investigate this problem, 

time to detect distribution is presented in Figure 6-2. 
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Figure 6-2 SVM Time Performance: Time to Detect Distribution 

To comparatively evaluate models against each other, all are presented in same 

graph. Figure 6-2 clearly shows the advantage of using prior information. The goal is to 

have the model detect the incident at the exact time the incident occurs (i.e., MTTD=0). 

The SVM model with 5, 10 min temporal data is the model most centered on the exact 

incident occurrence interval, which implies that including more temporal data can 

increase the reliability of the model.   

Sensitivity analysis of the SVM models 

Sensitivity analysis was implemented to evaluate the relationship between the 

predictors and dependent variable. According to the sensitivity analysis (Table 6-2), 

upstream speed (i=2) at time step t (time interval in question), was the most important 

factor affecting incident detection across all models. Another insight from Table 6-2 is 

that for the temporal models, the upstream speed (i=2) at other time slices (j=2,3) is the 

second most important variable. A possible explanation is that speed variation happens 
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quickly upstream of an incident, therefore observance speed over the time provides the 

best information to the incident detection model.  

After speed upstream of incident location, occupancy and volume at the upstream 

location were the next important variables (65-60 % range).  

Table 6- 2 Importance of predictors from sensitivity analysis 

SVM 

Importance (%) 

SVM with 5 min temporal 

       Importance (%) 

SVM with 5,10 min temporal 

          Importance (%) 

S21 100 S21 100 S21 100 

O21 64.71 S22 65.95 S23 74.45 

V21 60.3 O21 62.73 S22 67.47 

V11 44.35 V21 6218 O21 64.7 

O11 27.64 O22 48.78 V21 61.24 

S11 0 V11 42.88 O22 49.1 

  V22 35.18 O23 48.94 

  O11 25.56 V23 48.74 

  V12 23.78 V11 45.87 

  S12 6.65 V13 39.24 

  O12 5.05 V22 37.81 

  S11 0 O11 28.87 

    V12 27.53 

    O13 23.31 

    S12 9.2 

    O12 8.39 

    S11 0.26 

    S13 0 
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NAÏVE BAYES CLASSIFIER WITH TEMPORAL DATA 5, 10 MINUTES 

In machine learning, Naïve Bayes (NB) classifiers are simple and powerful 

probabilistic classifiers. NB assumes features are independent, which simplifies the 

model drastically. (This assumption is often not valid.) It became popular because of its 

simplicity, good results, and low computational cost (fast). However, this simplification 

can cost accuracy reduction.  

Naïve Bayes Classifier Methodology 

NB can handle both continuous and categorical variables. Assume 𝑋 =

[𝑥1, 𝑥2, … , 𝑥𝑛] are independent variables and 𝑐1, 𝑐2 are possible outcomes (incident and 

non-incident). Given the variables 𝑥1, 𝑥2, … , 𝑥𝑛, we want to predict the posterior 

probability 𝑝(𝐶𝑗|𝑥1, 𝑥2, … , 𝑥𝑛) of outcome 𝑐1, 𝑐2. Based on Bayes rule:  

𝑝(𝐶𝑗|𝑥1, 𝑥2, … , 𝑥𝑛) ∝  𝑝(𝑥1, 𝑥2, … , 𝑥𝑛| 𝐶𝑗) ∗ 𝑝(𝐶𝑗), 

where 𝑝(𝐶𝑗) is the prior probability of each outcome, which can be estimated from a 

training dataset. The likelihood of 𝑥 to have a particular outcome 𝑐1 / 𝑐2, or 𝑝(𝑋| 𝐶𝑗) ,    

must be multiplied by the prior probability in order to get the posterior probability, 

𝑝(𝐶𝑗|𝑥1, 𝑥2, … , 𝑥𝑛). The robustness of the classification is highly tied to the accuracy of 

𝑝(𝑋| 𝐶𝑗) estimation, which is not straightforward when there is correlation between the 

variables. However, the naïve Bayes variables independency assumption simplifies the 

complexity to some extent by allowing us to decompose the likelihood of the product 

terms to 

𝑝(𝑋| 𝐶𝑗) ∝  ∏ 𝑃(𝑥𝑖 | 𝐶𝑗)𝑛
𝑖=1 . 

This requires estimation of conditional probability for each feature in each class, 

thus eliminating joint probability calculations. The naïve Bayes employs these two 

estimates to predict the label. 

𝑝(𝐶𝑗  | 𝑋) ∝  𝑝(𝐶𝑗) ∗ ∏ 𝑃(𝑥𝑖 | 𝑥𝑗)

𝑛

𝑖=1
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  Using this equation, Naïve Bayes will calculate the posterior probabilities so that 

a new case 𝑥 will be assigned to the class 𝐶𝑗 with the highest posterior probability.  

Naive Bayes can be modeled in several different ways including normal 

(Gaussian), lognormal, gamma, and Poisson density functions. An “R” package for 

modeling Naïve Bayes has been used, which implemented a Gaussian function for 

modeling.  

Prediction Performance and Comparison 

The same training dataset (Dallas dataset) was used to build the NB model as a 

baseline case for this part of study. Two more scenarios were considered to evaluate the 

effect of temporal data on the accuracy of the incident detection model. The results are 

presented in Figure 6-3.  

 

Figure 6- 3 Performances of NB models with/without temporal data 
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Use of temporal data showed significant increase in detection rate (DR) for Naïve 

Bayes. Observing the false negative rates also indicates improvement on model accuracy. 

Lower detection time is expected with the use of 5 and 10-minute time steps. However, 

models with temporal data were expected to have slightly higher false alarm rates.  

The results perceived from time to detect distribution (TTDD) in the previous section 

motivated its addition as part of model performance measurement (Figure 6-4). The time 

to detect distribution graph illustrated that the Naïve Bayes model tends to detect 

incidents 10 min after the actual incident start time. Using temporal data shifts the 

detection time toward the exact time that the incident starts. As for SVM models with 

temporal data, using 5 and 10 minute temporal data helped center the model detection 

time on the exact time of incident. 

 

Figure 6-4 NB Time Performance: Time to Detect Distribution 
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Sensitivity analysis of the NB models 

The results from sensitivity analysis for the importance of the variables are 

presented in Table 6-3. The results from this analysis were consistent with SVM 

sensitivity analysis. In all the models upstream speed at the current time step was the 

most significant variable.  

 

Table 6-3 NB Importance of predictors from sensitivity analysis 

NB 

Importance (%) 

NB with 5 min temporal 

Importance (%) 

NB with 5,10 min temporal 

Importance (%) 

S21 100 S21 100 S21 100 

O21 63.58 S22 73.31 S23 75.49 

V21 59.39 O21 69.61 S22 69.48 

V11 42.03 V21 64.29 O21 66.61 

O11 24.42 O22 57.97 V21 60.242 

S11 0 V11 50.02 O22 52.61 

  V22 42.47 O23 50.86 

  O11 35.51 V23 46.36 

  V12 32.66 V11 44.68 

  S12 20.39 V13 36.25 

  S11 13.45 V22 35.24 

  O12 0 O11 29.31 

    V12 24.37 

    O13 21.41 

    O12 8.93 

    S12 7.95 

    S13 1.44 

    S11 0 
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RANDOM FOREST WITH TEMPORAL DATA 

Random Forest, another competitive technique in the field of incident detection, 

was performed and compared to the SVM model. Random Forest is an ensemble 

classification method that was first proposed by Breiman [68]. His goal was to find out 

whether the infinity theory applies to the practical issues of a finite dataset. He 

determined that Random Forest has a strong tie to the infinity behavior that gives the 

results one would expect from the infinity analysis. Random Forest constructs many 

decision trees made up of random subsets of the data. A trained forest can accept 

variables (speed, occupancy) and report a prediction (incident, non-incident). Liu et al. 

(2013) implemented Random Forest for incident detection and claims that Random 

Forest is a superior incident detection model and that it can improve incident detection 

performance [70]. 

 An advantage of Random Forest (RF) classification , an ensemble learning 

technique, is that it does not require parameter tuning to obtain unbiased error estimates. 

For every AI model, some optimization search is required to find optimal parameter 

values or thresholds which are resolved through the ensemble technique. The ensemble 

idea helps with finding better results by combining many models. Each tree in the forest 

depends on the value of random vector sampled independently. RF improves 

classification performance through a voting process. To classify a new object from an 

input vector, each tree gives a vote and the forest chooses the class with highest votes.  

Random Forest Methodology 

The simple Random Forest is a classifier consisting of multiple tree-structured 

classifiers {ℎ(𝑋, 𝛩𝑘), 𝑘 = 1, … } where the {𝛩𝑘} are independent identically distributed 

random vectors and each tree performs a vote for the most popular class at input x [69]. A 

small group of features split each node. To grow the tree, CART, a binary recursive 

partitioning methodology, is used in which each parent node only splits into two child 

nodes and the process repeats. The key elements of CART analysis are to set splitting, 

deciding, and assigning to class rules. The Gini rule would be applied to look for the best 
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split among all possible splits for all features in the model. For more information on Gini 

rule, refer to Berzal et. al, 2003 [72]. Then, we repeat the search until further splitting is 

not possible. In this method, the number of features included in the model is fixed and 

randomly selected [68]. 

The aim of the objective function is to maximize the margin. The larger the 

margin, the more confident is the classification from the forest. Given an ensemble of 

classifiers ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑘(𝑥), the margin function is [69]:  

𝑚𝑟(𝑋, 𝑌) = 𝑃𝛩(ℎ(𝑋, 𝛩) = 𝑌) − 𝑚𝑎𝑥𝑖≠𝑌𝑃𝛩(ℎ(𝑋, 𝛩) = 𝑗), 

where X and Y are random vector training data samples, and 𝑃𝛩 is the indicator function. 

If mr(X,Y) > 0, then the classifiers vote “correct”, and if mr(X,Y) < 0, then the set of 

classifiers vote “incorrect”.  

The margin measures the extent that the average number of votes at X,Y for the right 

class exceeds the average vote for any other class. The generalization error is given by 

[69]:   𝑃𝐸∗ = 𝑃𝑋,𝑌(𝑚𝑔(𝑋, 𝑌) < 0) 

where the subscripts X,Y indicate that the probability is over the X,Y space. 

Two class models can be simplified as [69]:  

𝑚𝑟(𝑋, 𝑌) = 2𝑃𝛩(ℎ(𝑋, 𝛩) = 𝑌) − 1 

and the strength (or accuracy) of the classifiers {ℎ(𝑋, 𝛩)} is [69]:  

𝑠 = 𝐸𝑋,𝑌 𝑚𝑟(𝑋, 𝑌). 

In order to find the optimum number of trees, different models with various tree 

numbers should be examined. The best model is the one with steadiest error rate for the 

lowest number of trees (69).  

Prediction Performance and Comparison 

In the interest of fair comparison, the data was prepared in the same way as it was 

for the SVM model. The variables were normalized by their mean and standard 

deviations. Grid searches were implemented to find the best number of trees and number 

of variables. First, the incident detection model was developed using only the time slice t 

in question. Then, 5 and 10 minute temporal data were added to the model. The results 
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from these models are illustrated in Figure 6-5. The result showed that the Random 

Forest incident detection model on average tends to detect incidents 6 mins after the 

incident happens. Even though temporal data did not make any changes on the detection 

rate and false negative rate (number of incidents not detected), better measures of FAR 

and MTTD were achieved.  These results suggest using temporal data improved the 

accuracy of the model by reducing false alarm rate and produced faster detection time.  

As in the previous technique evaluations, the distribution of time to detect was 

developed and is presented on Figure 6-6. The time to detect distribution showed that 

there is a time shift between the Random Forest model without temporal data and with 

temporal data. The use of temporal data on Random Forest helped the model detect 

incidents around the exact incident start time.  

 

Figure 6-5 Performances of RF models with/without temporal data 
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Figure 6-6 RF Time Performance: Time to Detect Distribution 

Sensitivity analysis of the RF models 

Like the previous technique, the importance of the observed variables was 

evaluated by implementing sensitivity analysis. The results showed that the upstream 

speed at the current time step is still the most correlated variable to describe incident 

occurrence.  Although, the order of the variables may be the same as the SVM or NB 

models with slight changes, but the percentage values were not the same, which could 

result from the nature of the Random Forest split rule.  
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Table 6-4 RF Importance of predictors from sensitivity analysis 

RF 

Importance (%) 

 

RF with 5,10 min temporal 

Importance (%) 

S21 100 S21 100 

O21 32.14 O21 31.55 

V21 25.76 S23 30.74 

V11 10.23 V21 24.46 

S11 7.82 S22 17.76 

O11 0 V11 12.97 

  S11 11.76 

  V23 8.21 

  O11 8.17 

  O23 7.85 

  O22 7.09 

  V13 6.87 

  S13 5.72 

  V22 5.2 

  O13 4.25 

  V12 4.04 

  S12 2.88 

  O12 0 
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COMPARISON OF SVM, NAÏVE BAYES, AND RANDOM FOREST INCIDENT DETECTION 

MODELS 

The result from SVM, Naïve Bayes, and Random Forest were separately 

discussed in previous sections. The same measures of performance (MTTD, false 

negative, FAR, and DR) were used to compare these incident detection models.   

The preliminary investigation of the mean time to detect incident (MTTD), indicated the 

SVM model was able to detect incidents on average 5 minutes before it actually 

happened, whereas both Naïve Bayes and Random Forest detected the incident after 

some delay.  

Often times the false negative percentage in incident detection is mistakenly 

calculated using the confusion matrix (Appendix A) from the result. Nevertheless that 

matrix contains all the early/ late detection false positive/negative cases. In order to 

address this, the predicted values must be compared to actual traffic conditions. The case 

study results showed that SVM has lower false positive/negative than the two other 

models.  
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Figure 6-7 Performances of SVM vs. NB/RF 

The distribution of time to detect incident represented in Figure 6-8 showed that 

none of them were centered around the exact time of incident, however SVM detected 

nearest to the exact time, but early rather than late.   
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Figure 6-8 SVM, NB, and RF Time Performance: Time to Detect Distribution 

 

ENSEMBLE MODEL  
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showed that using an ensemble method improved the performance of neural networks 

[76]. This technique has been successfully applied to a wide variety of fields since then. 
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applied the SVM ensemble technique to create an improved incident detection model. 

They were able to achieved high detection rates with low false alarm rates, 88.7 and 1.57 

respectively. However, they had only implemented the SVM ensemble technique on the 

I-880 dataset from 1993.  

Ensemble Methodology   

When creating an ensemble classifier, the training subsets must be selected. Each 

classifier requires a multi-subset in which each training subset should have the least 

possible common data points with the other subsets. There are quite a few methods to 

accomplish this goal, however, a resampling technique is often used. This study adopted 

bagging to obtain the training subsets. Bagging uses bootstrapping, which randomly 

draws a sample with replacement, to generate training subsets. If the training dataset is 

denoted by S and test dataset by D, then the training subset can be denoted as:  

{𝑆1, 𝑆2, … , 𝑆𝑛}, 

where 𝑆𝑖 is training subset and n is the number of subsets or individual classifiers.   

The output of the n individual SVM classifiers can be denoted as 

{𝑦1(𝑥), 𝑦2(𝑥), … , 𝑦𝑛(𝑥)}. To obtain the final decision of the ensemble model, this study 

applied an un-weighted voting method. If the 𝑦𝑓(𝑥) is the final decision of the ensemble 

model, then final output of the model will be:  

𝑦𝑓(𝑥) = 𝑠𝑔𝑛 (∑ 𝑦𝑖

𝑛

𝑖=1

(𝑥)) 

This function indicates the sum of the total vote, negative means there is no 

accident and positive means incident alarm. The same performance measures as previous 

sections were implemented here as well.  

Prediction Performance and Comparison 

Multiple scenarios with different combinations of kernel functions were defined 

and tested for this part of study. The three best scenarios based on observations are 

presented in Figure 6-9. Comparison among the scenarios indicates that the SVM 
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ensemble models tend to detect incidents around the exact time of incident. Evaluation of 

FAR indicated that the rate is highly sensitive to the type and number of kernel functions 

implemented.  However, the detection rate and false negative rate were steady. 

 

Figure 6-9 Performances of SVM Ensemble Models 
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The time to detect distribution of ensemble models indicates the fact that 

implementing an ensemble method does in fact improve the detection time. From Figure 

6-10, all scenarios were found to have almost the same distribution with the mean close to 

the exact time of incident and almost the same variance.   

 

Figure 6-10 SVM Ensemble Time Performance: Time to Detect Distribution 
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SVM, AND SVM ENSEMBLE INCIDENT DETECTION MODELS COMPARISON 

An intuitive description of the relationship between the single SVM model and 

SVM ensemble model is represented in graphically in Figures 6-11 and 6-12.  

  The results from Figure 6-11 indicate the ensemble model using only a linear 

kernel function was able to lower the FAR. However, note that the detection rate 

decreased. Another finding from this graph is the higher false negative, which means 

implementing the ensemble model increased the chances of an incident not being 

detected by the model.  

 

Figure 6-11 Performances of SVM ensemble models vs. single SVM model 
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as a better alternative to early detection, since detecting an incident that has not yet 

occurred falls into the false alarm category. If we alter our definition of a successful 

detection model being the one that detects the most incidents, then we come to a different 

conclusion. Adapting this definition leads to the conclusion that the simple SVM model 

(despite early detection resulting in a higher FAR) is the best model. 

 

Figure 6-12 SVM vs. SVM ensemble Time Performance: Time to Detect Distribution 
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COMPARISON OF MODELS DEVELOPED IN THIS STUDY  

A comparison of the relationship between the models is presented in graphical 

form in Figure 6-13 through Figure 6-17. Each graph depicts all models specific 

performance criteria. By examining these graphs, one can determine strengths and 

weaknesses of each type of model.  It can be seen, generally that Naïve Bayes took longer 

to detect an incident, where as the Ensemble SVM detection time was mostly closer to 

the exact time of the real incident. 

 

Figure 6-13 Mean time to detect  (MTTD) performance measure for all scenarios 

Figure 6-14 graphs results of FAR for all scenarios. The SVM ensemble model 

with the 100 linear kernel function had the lowest alarm rate. Random forest had the 

highest FAR, but was reduced by applying temporal data to the model. 

Looking at the detection rate (Figure 6-15) indicates Naïve Bayes with temporal 
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negative rates. One may chose the most practical model based on their preference to one 

or more specific performance measures.  

 

Figure 6-14 False alarm rate (FAR) performance measure for all scenarios

 

Figure 6-15 Detection rate (DR) performance measure for all scenarios 
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Figure 6-16 False Negative (percentage of incidents not detected) performance measure 

for all scenarios 

Figures 6-17, 6-18 were prepared to present a better image of all the developed 

models in this section. The Naïve Bayes model had the lowest performance measure, 

which was improved through adapting temporal data. Naïve Bayes with temporal data 

holds the lowest false negative rate (percentage of incidents not detected), however it 

tends to have longer mean time to detect. Random Forest had trustworthy performance 

and was also improved with the adaptation of temporal data. However, it does not fall 

into the best performing incident detection model group. The single SVM has reasonably 

good performance regardless of its sensitivity to the appropriate kernel function or 

parameters. The parameters for best performing single SVM model was achieved through 

trial and error.  

Overall, the time to detect distribution of each incident detection model added 

valuable insight as a performance measure. Figure 6-18 illustrates the wide range of 

distributions for the incident detection techniques that have been studied in this chapter. It 

is well shown that the SVM ensemble incident detection model has the best performance 

with respect to detection time, reaching over 61%.  
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Figure 6-17 Performance for all scenarios 
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Figure 6-18 All Scenarios Time Performance: Time to Detect Distributions 

 

10	min	
before	

5	min	
before	

Exact	
me	

5	min	
later	

10	min	
later	

15	min	
later	

20	min	
later	

30	min	
later	

Naïve	Bayes	 0.00	 5.56	 0.00	 16.67	 50.00	 0.00	 0.00	 5.56	

Naïve	Bayes-5min	temporal	data	 5.56	 5.56	 11.11	 38.89	 11.11	 0.00	 5.56	 16.67	

Naïve	Bayes-5,10min	temporal	data	 5.56	 11.11	 33.33	 27.78	 0.00	 5.56	 5.56	 5.56	

Random	Forest	 0.00	 0.00	 11.11	 22.22	 44.44	 0.00	 5.56	 0.00	

Random	Forest-5,10min	temporal	data	 5.56	 22.22	 44.44	 5.56	 0.00	 5.56	 0.00	 0.00	

Ensemble-100	linear	SVM	 0.00	 5.56	 55.56	 5.56	 0.00	 0.00	 5.56	 5.56	

Ensemble-10linear,100RBF	SVM	 0.00	 16.67	 61.11	 0.00	 5.56	 0.00	 0.00	 0.00	

Ensemble-100	linear,100RBF	SVM	 5.56	 16.67	 50.00	 0.00	 0.00	 0.00	 5.56	 0.00	

SVM	 0.00	 44.44	 27.78	 11.11	 5.56	 0.00	 0.00	 0.00	

SVM-5min	temporal	 0.00	 5.56	 27.78	 44.44	 5.56	 0.00	 0.00	 5.56	

SVM-5,10	min	temporal	data	 0.00	 16.67	 50.00	 0.00	 5.56	 5.56	 5.56	 0.00	

0.00	

10.00	

20.00	

30.00	

40.00	

50.00	

60.00	

70.00	

P
e
rc
e
n
ta
g
e
	o
f	
In
ci
d
e
n
t	
ca
se
s	

Time	to	Detect	Distribu on-SVM	



84 
 

COMPARISON OF MODELS DEVELOPED IN THIS STUDY TO PREVIOUS STUDIES 

To assess the competitiveness of the algorithms developed in this study, several 

advanced incident detection models were evaluated, including the SVM ensemble method, 

Dynamic Time Warping, Multi-Kernel SVM, Bayesian Network, Naïve Bayes, Decision 

Tree, and Dynamic Bayesian Network. One of main criteria in case collection comparison is 

whether the model was tested on real field data and not the simulation data because all the 

above advanced machine learning models are data driven and sensitive to field site 

characteristics.  

The literature review of the above mentioned models (listed in Table 6-5) indicated that a 

majority of recent studies were still testing models on the I-880 dataset from 1993. 

However, it is difficult to evaluate performance of two algorithms with different theoretical 

foundations on the same dataset.  It is critical to implement the model on new sites to find 

out the extent of applicability for these models. There were only a few studies that tested 

their models on sites other than I-880. Model 5, 6, and 10 (from Table 6-5) have higher 

FAR.  The resolution of the data is another possible factor on accuracy of the model as well. 

Considering the lack of field data available, there is no case study on the sensitivity of the 

data collection resolution on incident detection performance.  Nevertheless, the current 

sample of recent studies shows that longer duration data collection intervals lead to higher 

false alarm rates. Another criterion for incident detection performance is mean time to detect 

(MTTD). Table 6-5 shows that the incident detection models developed using 5-minute data 

resolution did not calculate the MTTD. Historically dynamic time warping holds the highest 

detection rate (DR), but also has the longest mean time to detect (MTTD). Table 6-5 

provides a good sense of what to expect from incident detection models described in the 

literature. However, the models developed in this study were tested on different sites from 

different states to evaluate the transferability of the models. Therefore, the performance 

measures might be less comparable to the results from the literature review. Another key 

element to be noticed, is these models were developed for normal traffic condition. 
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This study was mainly focused on resolving incident detection (high FAR/low 

DR) when the subject freeway carries high traffic volume (congested stop-and-go 

conditions). From Figure 6-17, the Naïve Bayes algorithm with temporal data produced the 

best detection rate (DR) 94% with an acceptable FAR of 9.3%. Table 6-5 shows that the 

second model with DTW has the same detection rate (94%) but longer detection time. In 

this study, the SVM ensemble model has the lowest FAR, 2.4%, with 78% DR and 2.7-

minute MTTD. On the other hand, from Table 6-5, as mentioned earlier, the models were 

only tested on I-880 therefore they exhibited lower FAR. If one is only looking at the 

models tested on freeways other than I-880, one finds that Model 7 has the lowest FAR of 

4.98% with 79% detection rate. However, in that study, the resolution of data collection was 

much higher in this case (30 sec) and the effort was not designed for incident detection for 

high volume traffic conditions.   
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Table 6-5 Recently developed incident detection models summary  

Model 

No 

Author Year Dataset Data 

resolution 

Technique MTTD FA

R 

DR CR 

1 Chen, S., 

Wang, W., 

Zuylen, Z. 

2009 I-880 Freeway 

1993 

30 sec SVM 

Ensemble 

(bagging-

boosting) 

3.94 1.6 88.7 - 

2 Hi-ri-o-

tappa, K. ; 

et. al. 

2011 Daokanong-

Suksawat 

freeway, 

Bangkok, 

Thailand 2010  

1 min Dynamic Time 

Warping 

5.67 5 94 - 

3 Jianli Xiao, 

Yuncai Liu 

2012 I-880 Freeway 

1993 

30 sec Proposed SVM 

Ensemble  

1.84 3.6 86.3 95.6 

4 Jianli Xiao 

and Yuncai 

Liu 

2012 I-880 Freeway 

1993,  PeMS 

Noisy Data Set 

1993   

30 sec MKL-SVM 0.61 14.3 63.6 81.6 

5 Moinul, H., 

Muromachi

, Y. 

2012 Shibuya 3 and 

Shinjuku 4 

expressways, 

Tokyo, Japan 

2008-2009 

5 min Bayesian 

Network 

- 13 58 82 

6 Qu, X., 

Wang, W., 

Wenfu 

Wang, Liu, 

P. 

2013 The Milwaukee 

area I-894, 9.3 

mile, 2011  

 

5min Sideswipe 

crash 

prediction, 

SVM (RB) 

- 15.4 88.5 86.5 

7 Liu, Q., Lu, 

J., Chen, S., 

Zhao, K. 

2014 I-880 Freeway 

1993, Ayer 

Rajah 

Expressway 

Singapore (5.8 

km) 

30 sec Naïve Bayes 1.46 4.98 79.6 87.8 

8 LU, J., 

LIU, Q., 

YUAN, L., 

CHEN, S. 

2014 I-880 Freeway 

1993 

30 sec Decision Tree 

formed by 

C4.5 

0.83 0.98 87.6

2 

98.5 

9 Xiao, J., 

Gao, X., 

Qing-Jie 

Kong, Liu, 

Y. 

2014 I-880 Freeway 

1993 

30 sec Multiple 

Kernel SVM 

Ensemble 

1.86 3.56 85.9

6 

95.5

7 

10 Jie Sun, 

Jian Sun 

2015 Yan-an 

expressway, 

North-South 

expressway, 

Shanghai, China 

2010 

5 min Dynamic 

Bayesian 

Network model 

- 23.7 76.4 76.3 
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One may notice the incident detection models developed implementing only I-880 

dataset (Model 1, 3, 8, and 9) has higher that 85% detection rate and very low FAR (less 

than 3.6%). There aere few models developed using field data other than I-880 dataset. 

However they did not address peak hour incident detection issue. If one look at the 

models developed implementing more recent field data (model 2, 5, 10), one can find that 

the either they suffer from long detection time (MTTD, model 2), low DR (model 5), or 

very high FAR (model 10). This could be because of the nature of the data.  

This section provides a good picture of what current incident detection model’s 

performances are. Comparing this with the results obtained form previous section shows 

the model developed in this study were able to increase the performance of incident 

detection over all.  

CONCLUDING REMARKS  

Different techniques were adopted to develop and test incident detection models 

on datasets from different sites. The temporary data concept was introduced and 

enhancements of the model performance were evaluated. Adoption of 5 and 10 minute 

temporal data improved the SVM algorithm time to detect, by orienting the detection toward 

exact incident time. However, the gain of more detection accuracy caused an increase in 

false positives and negatives. The effect of temporal data on improvement of Naïve Bayes 

(NB) and Random Forest (RF) was more significant. Comparison of single SVM with NB 

and RF demonstrated an expected better performance of the single SVM algorithm. But 

implementation of temporal data could improve the NB and RF. To be able to pick the right 

model for specific traffic control center, one might need to define the priority of the 

performance measures first and pick the better fit model based on their case.  

The ensemble models were also constructed and compared to the single SVM 

model. The performance measure comparison indicated that the ensemble model was able to 

shift the detection time toward the exact time of incident.   
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In the last part of this chapter, the competitiveness of this study with regard to 

several advanced models was assessed. The performance comparison between models 

developed in this study and other advanced freeway AID algorithms also showed the strong 

competitiveness of SVM algorithm. 
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Chapter 7: Effects of Traffic State on Freeway Incident Duration 

 

Estimating freeway incident duration is a significant incident management 

challenge for traffic operations centers. This part of the study examined the effect of V/C 

(volume/capacity) ratio and level of service (LOS) on the time duration of traffic 

incidents. The Dallas dataset was used for this part of the study because it had more detail 

available. Companion field incident data included incident location, affected lane(s), time 

of incident detection, time cleared, speed, number of vehicles involved, peak/off peak, 

and type of incident. This chapter used LOS, as described by the Highway Capacity 

Manual, as an alternative to using V/C ratio. Weather conditions before incident start and 

incident detection mode effects were also evaluated. The difference and possible 

advantage of using LOS is that LOS offers discrete classes of conditions as opposed to 

the continuous nature of the V/C ratio.  The discrete class variable tends to reduce 

random variability in the data, thus yielding a better fitting model. The results from this 

Chapter can benefit traffic control centers by providing techniques to improve the 

accuracy of estimated incident duration thereby providing more reliable traveler 

information guidance. 

IMPORTANCE OF INCIDENT DURATION ESTIMATION 

Traffic incidents including vehicle crashes, disabled vehicles, and lost cargo have 

become a typical part of urban freeway travel. As a result, traffic incident management 

has become an important component of urban freeway traffic management. Reliable 

incident duration prediction in real-time is vital for advanced traffic incident management 

(ATIM) so that travelers can have accurate and current travel-time forecasts. Under 

normal traffic conditions, road users choose routes based on their plan or experience 

whereas under incident conditions they hope to acquire accurate traffic information from 

a traffic control center or other traffic data source to avoid travel delays.  
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Despite the number of past studies in this field, predicting incident duration is still 

a challenge. Developing an accurate prediction model requires extensive amounts of 

detailed traffic data. While technology growth has improved traffic data collection 

techniques, not all of the specific traffic data is always available. Studies in this field 

have shown that the use of different incident data sources, related variables, and 

prediction techniques can have significant negative effects on prediction results. 

Therefore, using new robust data sources could lead to an improved prediction model.  

The objective of this study is to explore the use of a different perspective to solve 

the incident duration prediction problem. Instead of observing specific incident related 

parameters to predict the incident duration, we evaluate using observed traffic 

characteristics and representing them as volume to capacity (V/C) ratios and as levels of 

service (LOS). We also evaluate the effect of speed and location on incident duration 

prediction. 

HISTORY OF INCIDENT DURATION PREDICTION MODELS 

In the past decades, many studies have investigated incident duration prediction 

models.  Various regression and Bayesian classification models have been traditionally 

used. Usually, a Bayesian classifier has shown better prediction performance (64). More 

recently, classification and survival analysis has become more popular in the incident 

detection field (58,59,60). These models have high prediction accuracy for short duration 

incidents, but commonly have large errors in long duration incidents (<60 min).   

Most incident duration models relate incident duration to incident type and 

severity, lane closure(s), and vehicle type [57,58]. Incident duration is also affected by 

incident location, average speed at the time of incident, traffic flow condition, and level 

of service (LOS). Recent studies have applied generalized traffic conditions, such as peak 

hour and congestion presence as binary variables [59,62,63]. Kang et al. (2011) found 

that including a binary peak hour variable enhances incident duration prediction. Chang 

et al. (2013) applied a decision tree classification with twelve variables including a peak 

hour variable. They achieved overall accuracy of 75.1% and 96% for short duration 
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incidents (5-41 min) prediction [59]. Hojati et al. (2014) considered more traffic factors 

into the incident duration prediction model including average speed at the time of 

incident, and V/C before and after the time of incident. They found that all traffic 

measures included in their model had significant effects on incident duration prediction 

[61]. They also found morning peak period incident durations are 40% shorter than other 

times.  

MODEL BUILDING 

This section highlights the two most important considerations for creating a 

multiple regression model followed by a description of data preparation and model 

building. 

Let us assume there are n-1 predictor variables, therefore there are n beta coefficients 

(including the intercept).  The multinomial regression model is: 

𝑌𝑖 = 𝐵0 +  𝐵1𝑋𝑖1 + ⋯ + 𝐵𝑛−1𝑋𝑖,𝑛−1 +  𝜀𝑖, 

so that 

𝐸{𝑌} = 𝐵0 +  𝐵1𝑋𝑖1 + ⋯ + 𝐵𝑛−1𝑋𝑖,𝑛−1 

where the outcome variable is Yi, the covariate variables are X, and the random error is 

εi. E{Y} is a linear function of the covariate variables. 
 

The parameter βk indicates the change in E{Y} per unit increase in Xk 

(continuous) when all the other predictor variables are held constant. This model assumes 

there is no interaction among variables. That means the effect of any predictor variable 

on E{Y} is the same regardless of the levels of the other variables. One common mistake 

is to mix up the concept of interaction and correlation. Correlation happens when a 

predictor is redundant whereas interaction happens when the effect one variable depends 

on the value of another variable. Interaction between two predictor variables can be 

entered into a model as the cross-product of those two variables, as such 

.
 Yi = b0 +b1Xi1 +b2Xi2 +b3Xi1 *Xi2 +ei
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However, including interaction in the model requires a different interpretation of 

the beta coefficients. More details are provided in the result section.  

Another consideration for multiple regression models is multicollinearity which 

occurs when there are variables that overlap with other variables. In this case, redundant 

predictor variables must be removed from the model.  

To select a set of predictors, the forward stepwise procedure is most commonly 

used. Each step in the procedure adds or deletes an x variable. The criterion for adding or 

deleting an x variable can be stated in terms of error sums of squares reduction, 

coefficient of partial correlation, the t statistic, the F statistic, or the p-value. 

Data Structure 

          Data from Dallas, Texas is used for this investigation (the same data used for 

incident prediction).  For purposes of this effort, these two datasets were merged. First, 

the incident data was cleaned by removing highly unlikely values and missing data 

elements. Volume and speed data were extracted one hour before each incident started 

upstream of each incident location. Volume to capacity (V/C) ratios and levels of service 

(LOS) were calculated using Highway Capacity Manual procedures. Then, these 

variables were added to the incident dataset.  Traffic conditions were extracted for 107 

incident cases on 4 different freeways (Table 7-1). 

Table 7- 1 Part of the structured dataset for incident duration prediction 
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First Model Results 

The first model building effort used ordinary least squares regression as the 

estimation tool. Regression allows the analyst to easily compare the usefulness of 

predictor variables by assessing whether or not the predictor variables are responsible for 

the variability in the dependent variable. Regression is a simple estimation tool that has 

been widely used and is well understood. Using ordinary least squares regression brings 

transparency to the estimation process. There are several presumed data requirements for 

regression analysis. One of the primary assumptions is a normally distributed error pdf. Satisfying 

this assumption has been checked at each step. The VIF test were impelemened to measured how 

much the variance of an estimated regression coefficient is increased because of collinearity. 

Different scenarios were defined to explore the significance of candidate predictor 

variables for the incident duration model (Table 7-2). 

Table 7- 2 First Regression Model Scenarios (Dependent variable: Incident duration) 

Scenari

o 

Predictor Details R2 Adj. 

R2 

Sig. 

1 V/C ratio 0.003 -0.007 0.587 

2 LOS (A-F) 0.047 0 0.427 

3 V/C ratio, Volume, Status, No of 

Vehicle, Max Affected Lanes, Type 

0.222 0.15 0.003 

4 LOS, Volume, Status, No of Vehicle, 

Max Affected Lanes, Type 

0.338 0.154 0.024 

5 Volume, Status, No of Vehicle, Max 

Affected Lanes, Type 

0.22 0.156 0.002 

First Regression Model Discussion  

The results show that both the LOS and V/C ratio do not appear to be good 

predictors of incident duration. The R2 in scenarios 1 and 2 indicate that LOS is a better 

predictor than V/C ratio, but regardless neither suffices. The results could be telling us 

several different facts. One might be the LOS was almost the same across most incidents, 

in which case the predictor variable did not vary with the dependent variable. One might 

think that if the V/C ratio is high (i.e., close to one) it should cause longer incident 

duration, nevertheless the result from this dataset do not support this hypothesis. Based 
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on these results, one can claim there is no linear association between incident duration 

and V/C ratio or LOS. Besides LOS and V/C, volume per lane does not appear to be a 

significant predictor, possibly because of limited volume variation across the data. The 

nature of the data is slightly problematic because it does not cover a significant range for 

each parameter.  

As a next step we consider the fact that according to the empirically based speed-

volume relationship of the HCM, speeds are essentially constant as volumes change from 

LOS A through C or even D.  Therefore, we classify LOS A and B as condition one, LOS 

C and D as condition two, and LOS E and F as condition three.  

Second Model Results 

The overhead time duration is the time required for emergency service vehicles to 

reach a particular incident site. Overhead time duration is influenced by the physical 

characteristics of the freeway section, such as proximity to ramps or elevated or 

depressed vertical profiles.  Overhead time duration tends to have a huge effect on 

incident duration prediction. In order to account for these physical characteristics, 

variable Freeway_Loc was introduced to the incident duration prediction model (Table 7-

3). 

Table 7- 3 Descriptive Statistics 

Freeway_Loc Mean 

(min) 

Std. Deviation 

(min) 

n (incidents) 

1.00 17.7500 5.91031 12 

2.00 26.8333 2.40580 12 

3.00 36.6316 4.17945 19 

4.00 69.3281 25.29449 64 

Total 52.9720 28.54175 107 

 

In order to examine each potential predictor variable, a stepwise regression search 

algorithm in terms of the t statistic and its associated p-value was implemented. And for 

each scenario normal distribution of the error term and residual were examined. Weather 
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conditions before the incident were also considered as a possible influencing feature on 

incident duration. Weather data were collected separately from the Weather Channel and 

classified as wet or dry conditions. Table 7-4 summarizes the model scenarios identifying 

predictor variable(s) found to be insignificant.  

Table 7- 4 Second Model Scenario Summery 

Variables Significance Test Result 

V/C ratio Not significant 

LOS / Grouped LOS Not significant 

Speed Not significant 

Location/Freeway Not significant 

Traffic Status (peak/off-peak) Not significant 

Volume Not significant 

Number of involved vehicle Not significant 

Max affected main lane Significant 

Weather condition Significant 

Incident Type Not significant 

 

Second Regression Model Discussion 

The results showed the incident location is not a significant explanatory variable 

for incident duration.  Grouping LOS improved the predictor, but not enough to make it a 

significant predictor of incident duration. Similar to the first model, the procedure to find 

the “best” set of predictors is a sequence of regression models, at each step adding or 

deleting an X variable. The criterion for adding or deleting an X variable is partial 

correlation, the t statistic, normal distribution of the error term, and the p-value. If the 

corresponding p-value is less than the pre-determined level for entry, then the predictor is 

retained, otherwise it is deleted. 

Examination of speed showed that speed has a linear association with incident 

duration. However based on this specific sample, the models did not find speed a 

significant predictor of incident duration. The result from this part of study showed there 
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is no linear association between incident duration and V/C ratio, or number of involved 

vehicles. 

The interactions of different variables have been tested, however, no significant 

interaction effects were found among these variables. 

For model comparisons, R2 and adjusted R2 were used. Since R2 usually can be 

inflated by including more predictor variables, the adjusted R2 was used. It can be 

calculated as: 

 

 

Where p is the number of variables in the model. The result from best scenario chosen 

as the best-fit model is presented in Table 7-5. 

Table 7- 5 Best Scenario Parameter Estimates 

 

 

 

 

The results of Table 7-5 show as expected that there is a positive linear 

relationship (B coefficient) between incident duration and maximum number of affected 

lane. The more lanes involved in an incident, we expect to have heavier congestion that 

leads to longer incident durations. The weather condition during and before the incident 

happens shows that incident durations increase significantly when the weather condition 

is wet.   

To assess the goodness of fit of the model, we use the residuals defined by  

Parameter B Std. Error t Sig. 

Intercept 33.95 5.12 6.62 1.55E-09 

Max Affected Lane 12.05 3.049 3.953 0.000141 

weather.ID2 (wet) 29.68 13.43 2.209 0.029345 
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This shows that: 

Residual standard error: 25.93 on 104 degrees of freedom 

R-squared:  0.1903,  

Adjusted R-squared:  0.1748   

Third Model Results 

The evaluations were extended to include additional test sites to strengthen 

confidence in the performance of the generalized incident detection model. Here, we 

expand our evaluation to include an additional 1500 incident cases from Dallas dataset 

(US 75 North-South and I 635 East-West). This data includes every incident that lasts 

longer than five minutes from July 2012 to September 2012. The recorded features on 

this dataset are listed as:  

 Incident type (IT)  Incident location (IL) 

 Maximum number of affected lanes 

(MaxLane) 

 Number of involved vehicles 

(No.Veh) 

 Detection mode (i.e. camera) (DM)  

  Weather conditions before the incident were considered as a possible influencing 

feature on incident duration and were collected separately from the Weather Channel.  

To define the significance of these features, many scenarios were defined. The 

stepwise regression search algorithm in terms of the t statistic and its associated p-value 

was implemented. To find the correlation between nominal/ordinal variables, Pearson’s 

Chi-Squared test was used (Table 7-6). The Pearson Test showed strong correlation 

among several predictor variables, which suggests that they should not be included at the 

same time in the model. For example, number of involved vehicles is a function of road 

geometry (location) and weather conditions.  A correlation between weather type, 

number of involved vehicles, and type of incident can be expected.  The type of incident 

is highly correlated with number of involved vehicles and maximum number of affected 

lanes.  

1,1110
ˆ       whereˆ

 pipiiiii XbXbbyyye 
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Table 7- 6 Pearson Correlation Test 

 
RoadId Weather ID 

Number Of 

Involved Vehicles 

Max Number Of 

Affected Main Lanes Type 

RoadId Pearson Correlation 1 -.065* .008 .026 -.012 

Sig. (1-tailed)  .011 .381 .160 .326 

N 1508 1223 1508 1508 1508 

Weather ID Pearson Correlation -.065* 1 -.009 -.044 -.033 

Sig. (1-tailed) .011  .383 .064 .125 

N 1223 1223 1223 1223 1223 

Number Of 

Involved 

Vehicles 

Pearson Correlation .008 -.009 1 .037 -.161** 

Sig. (1-tailed) .381 .383  .075 .000 

N 1508 1223 1508 1508 1508 

Max Number 

Of Affected 

Main Lanes 

Pearson Correlation .026 -.044 .037 1 -.243** 

Sig. (1-tailed) .160 .064 .075  .000 

N 1508 1223 1508 1508 1508 

Type Pearson Correlation -.012 -.033 -.161** -.243** 1 

Sig. (1-tailed) .326 .125 .000 .000  
N 1508 1223 1508 1508 1508 

A simple linear regression model was developed for each of the 6 variables. Each 

variable separately was significant. Therefore, these variables are significant when they 

are the first added in the model, but given the other correlated variables, each variable is 

no longer significant (Table 7-10, Scenario 1 & 4).  This indicates that the predictors are 

correlated and there is multicollinearity. The simplest measure of multicollinearity is the 

correlation matrix of the predictor variables (Table 7-6). However, linear relationships 

between more than two predictor variables do not always lead to large bivariate 

correlations and so these are hard to detect from the correlation matrix. To select a set of 

predictor variables, the forward stepwise procedure was used. The F statistic, and the p-

value were used for adding or deleting an x variable. At each step, variables with smallest 

p-value were candidates for the next step.  

Some of these models are presented in Appendix B. A summary of selected 

scenarios is represented in Table 7-10. Based on our evaluation in the previous section, 

incident location was recognized as an important influencing feature.  Therefore, in this 

section with a new large dataset, the first scenario reevaluated the effect of incident 

location on incident duration prediction. The result showed that incident location is a 

significant feature, however in a large scale it is not able to describe the large variability 
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of incident duration. That could be as a result of volatility in the larger dataset. Scenario 2 

represents the fact that incident detection mode has a significant effect on incident 

duration. Table 7-7 shows all of the collected detection modes present in our dataset. 

According to the fact that detection by Camera and Courtesy Patrol had the highest rank, 

to reduce the prediction variability, we introduced a Modified detection mode (Table 7-

8). 

Table 7- 7 Incident detection mode 

Detection Mode n 

(incidents) 

 531 radio 27 

Camera 575 

Courtesy Patrol 718 

DART 18 

DPD 19 

Garland PD 3 

LBJ Express 5 

Media 47 

Mesquite PD 4 

Police 3 

Public 95 

The statistics in Table 7-8 show that detection by camera and public information 

requires more time than detection by Courtesy Patrol. The comparison between Scenario 

2 and 13 shows that using modified category versus original detection mode categories 

did not change the adjusted R2, however, it doubled the F-test value (Appendix B). 

Table 7- 8 Modified incident detection mode 

Descriptive Statistics 

Dependent Variable: TotalDuration 

Modified Detection Mode 

Mean 

(minutes) 

Std. Deviation 

(minutes) 

n 

(incidents) 

Camera 40.08 27.547 575 

Courtesy Patrol 19.18 15.619 718 

Other 47.98 28.540 120 

Public 30.05 20.288 95 

Total 30.12 24.806 1508 
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Observing the weather condition categories (Table 7-9), the two dominant groups 

are “Mostly Cloudy” and “Partly Cloudy”. The intuitive reason for considering weather 

conditions on incident duration prediction was that rain/heavy rain/ thunderstorms seem 

like they could be responsible for causing delays in clearing an incident.  Very little effect 

on incident duration is expected from “Clear Sky”, “Partly Cloudy”, or “Mostly Cloudy” 

conditions.  

Table 7- 9 Weather condition categories 

Weather n 

(incidents) 

 Clear 20 

Haze 1 

Heavy Rain 1 

Heavy Thunderstorms and Rain 1 

Light Rain 2 

Light Thunderstorms and Rain 3 

Mostly Cloudy 307 

Overcast 23 

Partly Cloudy 578 

Thunderstorm 3 

Therefore, modified weather conditions were introduced with two categories: 1) 

dry conditions and 2) wet conditions. 

When there is no interaction, the effect of any predictor variable on E{Y} is the 

same no matter the values/levels (numerical or categorical) of other variables.  Scenario 

11 showed that the modified weather condition is a significant predictor for incident 

duration prediction. However, it describes a small portion of incident duration variability 

(R2 = 0.073). Scenario 16 indicates that the modification did not remove the correlation 

between weather and number of vehicles involved in the incident. In Scenario 8, we 

introduce a lanes involved ratio (LaneInv.Ratio):  

LaneInv.Ratio = (MaxLane/Total No of lane) 
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The purpose behind this was to normalize the variable to take the effective 

number of lanes into account. This variable now represents the fraction of capacity lost 

on the freeway. The results showed that this variable itself could explain 21% of incident 

duration variability.   



102 
 

Table 7- 10 Summery of all incident duration scenarios 

Scenari

o 

Predictor Details R2 Adjusted 

R2 

Sig. Insignificant 

Variable(s) 

1 IL (US75N, 

US75S,I635E,I635W) 

0.02

2 

0.019 0 - 

2 DM 0.19

7 

0.194 0 - 

3 IT,DM, Interaction IT*DM 0.29

7 

0.28 0 - 

4 IL, IT, DM, Interaction 

IT*DM, Interaction IT*IL, 

Interaction DM*IL 

0.34

8 

0.296 0 IL, Interaction IT*IL 

5 MaxLane, DM 0.26

2 

0.26 0 - 

6 MaxLane, No.Veh, DM, IT, 

Interaction IT*DM 

0.32

3 

0.306 0 - 

7 MaxLane, No.Veh, DM, IT, 

Weather, Interaction 

DM*weather, Interaction 

IT*weather,  

0.36

2 

0.327 0 Interaction DM*weather, 

Interaction IT*weather  

8 LaneInv.Ratio 0.21

4 

0.214 0 - 

9 LaneInv.Ratio, DM, IT 0.30

7 

0.299 0 Interaction IT*DM 

10 LaneInv.Ratio, No. Veh, 

Weather, IT, DM, Interaction 

(Weather*DM, DM*IT, 

Weather*DM*IT) 

0.36

2 

0.327 0 Interaction 

(Weather*DM, DM*IT, 

Weather*DM*IT) 

11 Modified weather 0.07

3 

0.072 0 - 

12 Modified weather, IL 0.10 0.095 0 IL,Interaction 

IL*weather 

13 Modified DM 0.19

5 

0.194 0 - 

14 LaneInv.Ratio, Modified DM 0.26

2 

0.262 0 - 

15 LaneInv.Ratio, Modified DM, 

IT, Interaction Modified 

DM*IT 

0.30

7 

0.299 0 Interaction Modified 

DM *IT 

16 LaneInv.Ratio, No.Veh, 

Modified weather, Modified 

DM, Interaction Modified 

DM*Modified weather 

0.26 0.255 0 Modified weather, 

Interaction Modified 

DM*Modified weather 

17 Modified weather, Modified 

DM, LaneInv.Ratio, IT 

0.28

1 

0.276 0 - 
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Both incident location (RoadId) and modified weather conditions before an 

incident are significant predictors, and only describe respectively 0.02 and 0.07 

variability on incident duration. The correlation table 7-6 shows strong correlation 

between location and weather in this dataset. They also tend to be highly correlated with 

other predictors (IT, No.Veh).  

Table 7-  11 Best Scenario Parameter Estimates  

The results of Table 7-11 show that the incident duration is expected to have 32 

minutes longer duration when the weather condition is wet. The base detection mode in 

this model is camera. The results show that if the detection mode is courtesy patrols one 

can expect 8 minutes less incident duration on average compared to the base detection 

mode. There is a positive linear relationship (B coefficient) between incident duration 

and maximum number of affected lanes. The more lanes involved in an incident, we 

expect to have heavier congestion that leads to a longer incident. The base incident type 

in this model is accident. The results show that less incident duration is expected if the 

incident type is disabled vehicle/ debris by 10.47/18.7 minutes. 

 

 

Parametes B Std. Error t Sig. 

Intercept 36.859 2.113 17.44 0.00 

Weather.ID2 - wet      32.807 6.59 4.97 7.72E-07 

ModifiedDetectionMode-Courtesy Patrol -8.102 1.66 -4.88 1.23E-06 

ModifiedDetectionMode-Other 4.158 2.045 2.034 0.04224 

Lane Involvement Ratio  20.347 4.37 4.647 3.80E-06 

Incident Type 2 (Disabled Vehicle) -10.476 2.179 -

4.808 

1.75E-06 

Incident Type 3 (Debris) -18.705 4.77 -

3.915 

9.63E-05 

Incident Type 4 (Others) 10.95 3.353 3.266 0.00113 
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The summary of the best model is: 

Residual standard error: 19.67 on 1041 degrees of freedom 

R-squared:  0.281,      Adjusted R-squared:  0.2762 

CONCLUSION  

Incident duration has certain randomness, and apart from recorded variables, is 

influenced by unrecorded factors such as response time, weather conditions, and the 

approach used by incident management personnel.  Different methods of incident 

management for similar incident types can cause large model prediction errors. We 

investigated LOS and V/C ratio rather extensively, but both were poor predictors of 

incident duration. These data seem to indicate the traffic conditions before incidents were 

pretty similar across most incident occurrences.  

By grouping LOS and the number of affected lanes, a lot of data scatter was 

removed and LOS change was not large enough to make it significant.  

After including a location variable to the model we were able to improve the 

model significantly, indicating that incident duration is influenced by the physical 

characteristic of the freeway.  We also found that speed and number of affected lanes has 

a linear relationship with incident duration. 
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Chapter 8: Conclusions 

 

Most AID algorithms fail to deliver high detection rates during heavy traffic 

conditions. When the problem is too complex, data driven techniques appear to be more 

successful in finding a pattern. A majority of recent advanced studies have proven the 

success of these data driven techniques in the field of AID (Table 6-5). However because 

of the low performance during heavy traffic conditions of the currently available incident 

detection methods, traffic control centers around the nation do not implement AID in 

practice. The objective of this dissertation was to enhance the current capabilities of AID 

techniques for heavy traffic conditions. Additionally, this dissertation evaluated the 

transferability of the developed model. The second part of this dissertation focused on 

developing an incident duration prediction model by introducing and evaluating new 

predictors. 

SUMMARY OF COMPARISON TECHNIQUES 

Relatively diverse and recent field datasets (in comparison to previous studies) 

were extensively tested for this study. The first stage of study used a Dallas dataset 

(containing 2 directions of 2 different freeways) to develop a real-time incident detection 

model with a focus on high volume traffic conditions. All data used in this proposed 

model are readily available to traffic control centers across the country. The results from 

the first stage indicated that the SVM incident detection technique complies with the 

transferability requisite, however the model needed to be tested further with even more 

diverse and extensive datasets. Although transferability was the driving motivation 

behind testing in a new site, validating the model was another important motive because 

of the data driven nature of the algorithm. The data driven algorithms are highly sensitive 

to the configuration of data. The more diverse the data is for training, the more one can 

rely on transferability of the model. Therefore in the second stage of study, data from 

several different states (Florida, Georgia, and Maryland) was requested to further test 

model transferability. Testing the model on new datasets could suggest possible 
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modifications that could improve the general incident detection model. Florida DOT was 

kind enough to share their data for our model evaluation. With their help, the model 

developed with Dallas data and previously tested with Miami data was again tested with 

Florida data. Although it is very common to receive high false alarm rates when testing 

the model on a new site, the developed model was able to achieve very satisfying results 

with the Florida data (DR: 88.9, FAR: 6.8). Next, the SVM algorithm was evaluated 

against other competing techniques such as Naïve Bayes (NB), Random Forest (RF), and 

SVM ensemble for building and testing incident detection models. Furthermore, this 

study introduced the new concept of adding temporal data to improve incident detection. 

A summary of the results was presented in Figure 6-17 and 6-18. The results show that 

SVM is more robust than NB and RF in tackling the incident detection problem. Further, 

implementation of temporal data added more accuracy to NB and RF models, but it did 

not improve the SVM model, which could be because of the different theoretical 

foundations of these techniques. To choose the best model, between SVM and the NB 

and RF with temporal data, the traffic control centers must prioritize the incident 

detection performance measure and make their decision based on that, because each 

model could have its own advantages. Incident detection time is a critical criterion for 

practical implementation; mean time to detect (MTTD) is commonly used as a 

performance measure for AID algorithms. However this performance measure is not 

sufficiently intuitive. This study introduced time to detect distribution (TTDD), which 

provided a very intuitive understanding of the performance of each algorithm in regards 

to detection time. Generally, NB and RF tend to detect incidents a few minutes after the 

incident occurs. The ensemble model and the addition of temporal data were able to shift 

the detection time toward the exact time of event.   

Incident duration prediction which is a key element of any incident management 

plan was the second part of this study. Many studies have tried to improve the duration 

prediction accuracy, but have not yet produced very satisfying results. This could be 

because the random nature of incident duration makes improving duration prediction 

difficult. Studying the literature revealed that a few variables- LOS, v/c ratio, and weather 
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condition- have not been tested for incident duration prediction. Despite the expectation, 

no significant relation between LOS or v/c ratio on incident duration was found. 

However, this could also be as a result of the sample dataset for this study. The traffic 

data before incident were similar across most incident cases because we focused on 

detection during heavy traffic conditions. This study established the significance of speed 

and involved number of lanes in describing incident duration variability. This study was 

also able to show the significant effect of weather conditions, incident type, and detection 

mode on incident duration prediction. 

CONCLUDING RECOMMENDATIONS 

The models developed in this study have the potential to be effectively 

implemented in traffic control centers. However, one might need to consider that field 

data are often subject to collection bias. While working with field data, it was apparent 

that incidents are logged with delay. In other words, the start time of incidents are 

recorded later than they occur. Singliar and Hauskrecht (2010) used dynamic bayesian 

network (DBN) to address this problem. However, DBN requires information on actual 

time of incident for training the model. Unfortunately, this information was not 

collected/provided. If concerned with the validity of this model, the model can be tested 

on new data. The technique is data-driven, therefore a more diverse dataset can enhance 

the performance of the incident detection model. 

While the incident has influence on traffic flow fluctuation upstream and 

downstream of incident; it is necessary to note this influence is a function of the distance 

of the data collection points from the incident location. The first issue to address is the 

distance between detectors. Additional detectors may be needed to cover the area fully, 

depending on the distance. The model cannot currently resolve the issue of having 

enough detectors by itself. However, including the distance between detectors in the 

model might improve it to some extent.  

Incident duration has certain randomness apart from the examined recorded 

variables. It is likely influenced by unrecorded factors. For example, the geometry of the 
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freeway, response time, weather conditions, the distance from previous entrance to the 

incident location, and management plans are all key varying variables that have not been 

addressed in the modeling. Detection mode and incident type appear to be a surrogate for 

and explain some proportion of the unrecorded factors. A significant amount of the 

incident duration variation appears to be explained by the incident detection mode 

variable. Thus suggesting that the incident detection mode and also the number of 

involved lanes influence the incident management plan.  Evaluation of weather 

conditions showed the significance of this variable on incident duration. However, 

because our dataset was limited to the summer in Texas, this variable was not able to 

explain a large fraction of incident duration variability. We suggest further investigation 

into duration variability with a broader dataset.  
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APPENDIX A 

SVM MODEL RESULTS: 

Confusion Matrix and Statistics 

 

          Reference 

Prediction   Non  Yes 

        Non  538   45 

        Yes    38    84 

                                           

Accuracy : 0.8823 

95% CI : (0.8562, 0.9051) 

No Information Rate : 0.817 

P-Value [Acc > NIR] : 1.548e-06 

 

Kappa : 0.5978 

Mcnemar's Test P-Value : 0.5102 

 

Sensitivity : 0.9340 

Specificity : 0.6512 

Pos Pred Value : 0.9228 

Neg Pred Value : 0.6885 

Prevalence : 0.8170 

Detection Rate : 0.7631 

Detection Prevalence : 0.8270 

Balanced Accuracy : 0.7926 

ROC curve variable importance 
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SVM MODEL RESULTS WITH TEMPORAL DATA: 5 MIN 

Confusion Matrix and Statistics 

 

            Reference 

Prediction  Non  Yes 

       Non  470    42 

       Yes   104    87 

                                           

Accuracy : 0.7923 

95% CI : (0.7604, 0.8217) 

No Information Rate : 0.8165 

P-Value [Acc > NIR] : 0.9542 

 

Kappa : 0.4158 

Mcnemar's Test P-Value : 4.455e-07 

 

Sensitivity : 0.8188 

Specificity : 0.6744 

Pos Pred Value : 0.9180 

Neg Pred Value : 0.4555 

Prevalence : 0.8165 

Detection Rate : 0.6686 

Detection Prevalence : 0.7283 

Balanced Accuracy : 0.7466 

ROC curve variable importance 
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SVM MODEL RESULTS WITH TEMPORAL DATA: 5,10 MIN 

Confusion Matrix and Statistics 

 

            Reference 

Prediction  Non  Yes 

       Non  488   44 

       Yes    86    85 

                                           

Accuracy : 0.8151 

95% CI : (0.7844, 0.8431) 

No Information Rate : 0.8165 

P-Value [Acc > NIR] : 0.5620608 

 

Kappa : 0.452 

Mcnemar's Test P-Value : 0.0003232 

 

Sensitivity : 0.8502 

Specificity : 0.6589 

Pos Pred Value : 0.9173 

Neg Pred Value : 0.4971 

Prevalence : 0.8165 

Detection Rate : 0.6942 

Detection Prevalence : 0.7568 

Balanced Accuracy : 0.7545 
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NAÏVE BAYES MODEL RESULTS WITHOUT TEMPORAL DATA 

Confusion Matrix and Statistics 

 

            Reference 

Prediction  Non  Yes 

       Non  533   61 

       Yes   41    68 

                                           

Accuracy : 0.8549 

95% CI : (0.8267, 0.8801) 

No Information Rate : 0.8165 

P-Value [Acc > NIR] : 0.004059 

 

Kappa : 0.4848 

Mcnemar's Test P-Value : 0.059934 

 

Sensitivity : 0.9286 

Specificity : 0.5271 

Pos Pred Value : 0.8973 

Neg Pred Value : 0.6239 

Prevalence : 0.8165 

Detection Rate : 0.7582 

Detection Prevalence : 0.8450 

Balanced Accuracy : 0.7279 

ROC curve variable importance 
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NAÏVE BAYES CLASSIFIER WITH TEMPORAL DATA 5MIN 

Confusion Matrix and Statistics 

 

            Reference 

Prediction  Non  Yes 

       Non  536   53 

       Yes    38     76 

                                           

Accuracy : 0.8706 

95% CI : (0.8435, 0.8945) 

No Information Rate : 0.8165 

P-Value [Acc > NIR] : 7.169e-05 

 

Kappa : 0.5476 

Mcnemar's Test P-Value : 0.1422 

 

Sensitivity : 0.9338 

Specificity : 0.5891 

Pos Pred Value : 0.9100 

Neg Pred Value : 0.6667 

Prevalence : 0.8165 

Detection Rate : 0.7624 

Detection Prevalence : 0.8378 

Balanced Accuracy : 0.7615 
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NAÏVE BAYES CLASSIFIER WITH TEMPORAL DATA: 5MIN, 10MIN 

 

Confusion Matrix and Statistics 

 

            Reference 

Prediction  Non  Yes 

       Non   492   31 

       Yes      82   98 

                                         

Accuracy : 0.8393 

95% CI : (0.81, 0.8657) 

No Information Rate : 0.8165 

P-Value [Acc > NIR] : 0.06369 

 

Kappa : 0.5349 

Mcnemar's Test P-Value : 2.556e-06 

 

Sensitivity : 0.8571 

Specificity : 0.7597 

Pos Pred Value : 0.9407 

Neg Pred Value : 0.5444 

Prevalence : 0.8165 

Detection Rate : 0.6999 

Detection Prevalence : 0.7440 

Balanced Accuracy : 0.8084 
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RANDOM FOREST WITHOUT TEMPORAL DATA 

 

Confusion Matrix and Statistics 

 

            Reference 

Prediction  Non  Yes 

       Non  482   55 

       Yes   92    74 

                                           

Accuracy : 0.7909 

95% CI : (0.7589, 0.8204) 

No Information Rate : 0.8165 

P-Value [Acc > NIR] : 0.962559 

 

Kappa : 0.372 

Mcnemar's Test P-Value : 0.002985 

 

Sensitivity : 0.8397 

Specificity : 0.5736 

Pos Pred Value : 0.8976 

Neg Pred Value : 0.4458 

Prevalence : 0.8165 

Detection Rate : 0.6856 

Detection Prevalence : 0.7639 

Balanced Accuracy : 0.7067 
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RANDOM FOREST WITH TEMPORAL DATA: 5MIN, 10MIN 

Confusion Matrix and Statistics 

 

              Reference 

Prediction  Non  Yes 

       Non   514    36 

       Yes    60       93 

                                          

Accuracy : 0.8634 

95% CI : (0.8358, 0.888) 

No Information Rate : 0.8165 

P-Value [Acc > NIR] : 0.0005323 

 

Kappa : 0.5749 

Mcnemar's Test P-Value : 0.0189035 

 

Sensitivity : 0.8955 

Specificity : 0.7209 

Pos Pred Value : 0.9345 

Neg Pred Value : 0.6078 

Prevalence : 0.8165 

Detection Rate : 0.7312 

Detection Prevalence : 0.7824 

Balanced Accuracy : 0.8082 
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APPENDIX B 

 

Models for Chapter 7 

INCIDENT DURATION – ROAD ID 

 

 

Descriptive Statistics 

Dependent Variable:TotalDuration 

RoadId Mean Std. Deviation N 

7 24.43 20.277 142 

8 33.97 28.358 238 

9 33.17 26.639 280 

10 21.93 19.359 143 

13 31.23 24.135 375 

14 29.82 24.059 336 

Total 30.19 24.824 1514 

 

 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected 

Model 

20814.241a 5 4162.848 6.887 .000 .022 34.434 .999 

Intercept 1109889.421 1 1109889.421 1836.144 .000 .549 1836.144 1.000 

RoadId 20814.241 5 4162.848 6.887 .000 .022 34.434 .999 

Error 911536.975 1508 604.467      

Total 2312286.000 1514       

Corrected 

Total 

932351.215 1513 
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Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected 

Model 

20814.241a 5 4162.848 6.887 .000 .022 34.434 .999 

Intercept 1109889.421 1 1109889.421 1836.144 .000 .549 1836.144 1.000 

RoadId 20814.241 5 4162.848 6.887 .000 .022 34.434 .999 

Error 911536.975 1508 604.467      

Total 2312286.000 1514       

Corrected 

Total 

932351.215 1513 
      

a. R Squared = .022 (Adjusted R Squared = .019) 

b. Computed using alpha = .05 
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INCIDENT DURATION – ROAD ID, TYPE OF INCIDENT, DETECTION MODE 

 

Between-Subjects Factors 

 N 

Type Text Accident 414 

Debris 32 

Disabled Vehicle 994 

Other 74 

 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected Model 324502.403a 112 2897.343 6.678 .000 .348 747.929 1.000 

Intercept 133553.876 1 133553.876 307.822 .000 .180 307.822 1.000 

TypeText 14815.220 3 4938.407 11.382 .000 .024 34.147 .999 

DetectionMode 12657.769 10 1265.777 2.917 .001 .020 29.174 .980 

RoadId 1948.182 5 389.636 .898 .482 .003 4.490 .325 

TypeText * 

DetectionMode 

19973.134 19 1051.218 2.423 .001 .032 46.035 .997 

TypeText * RoadId 9792.411 15 652.827 1.505 .095 .016 22.570 .880 

DetectionMode * 

RoadId 

17796.728 27 659.138 1.519 .043 .028 41.019 .981 

TypeText * 

DetectionMode * 

RoadId 

24708.073 32 772.127 1.780 .005 .039 56.948 .998 

Error 607848.813 1401 433.868      

Total 2312286.000 1514       

Corrected Total 932351.215 1513       

a. R Squared = .348 (Adjusted R Squared = .296) 

b. Computed using alpha = .05 
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INCIDENT DURATION – TYPE OF INCIDENT, DETECTION MODE 

 

Between-Subjects Factors 

 N 

Detection 

Mode 

531 radio 27 

Camera 575 

Courtesy Patrol 718 

DART 18 

DPD 19 

Garland PD 3 

LBJ Express 5 

Media 47 

Mesquite PD 4 

Police 3 

Public 95 

 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected Model 276713.360a 33 8385.253 18.928 .000 .297 624.637 1.000 

Intercept 116329.302 1 116329.302 262.595 .000 .151 262.595 1.000 

TypeText 11190.829 3 3730.276 8.421 .000 .017 25.262 .994 

DetectionMode 15963.368 10 1596.337 3.603 .000 .024 36.035 .995 

TypeText * 

DetectionMode 

20769.365 20 1038.468 2.344 .001 .031 46.884 .997 

Error 655637.856 1480 442.999      

Total 2312286.000 1514       

Corrected Total 932351.215 1513       

a. R Squared = .297 (Adjusted R Squared = .281) 

b. Computed using alpha = .05 
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INCIDENT DURATION – MAX NO. OF AFFECTED LANE, NO. OF INVOLVED VEHICLE, 

TYPE OF INCIDENT, DETECTION MODE 

  

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observe

d Powerb 

Corrected Model 300717.397a 35 8591.926 20.105 .000 .323 703.668 1.000 

Intercept 67400.155 1 67400.155 157.714 .000 .096 157.714 1.000 

MaxNumberOfAffected

MainLanes 

19576.291 1 19576.291 45.808 .000 .030 45.808 1.000 

NumberOfInvolvedVeh

icles 

3839.863 1 3839.863 8.985 .003 .006 8.985 .850 

DetectionMode 10165.222 10 1016.522 2.379 .009 .016 23.786 .943 

TypeText 9403.072 3 3134.357 7.334 .000 .015 22.003 .985 

DetectionMode * 

TypeText 

16733.713 20 836.686 1.958 .007 .026 39.156 .987 

Error 631633.818 1478 427.357      

Total 2312286.000 1514       

Corrected Total 932351.215 1513       

a. R Squared = .323 (Adjusted R Squared = .306) 

b. Computed using alpha = .05 
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INCIDENT DURATION – LANE INVOLVEMENT RATIO 

 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected Model 198524.827a 1 198524.827 410.222 .000 .214 410.222 1.000 

Intercept 536269.215 1 536269.215 1108.119 .000 .424 1108.119 1.000 

LaneInvolvmentRatio 198524.827 1 198524.827 410.222 .000 .214 410.222 1.000 

Error 728821.736 1506 483.945      

Total 2295850.000 1508       

Corrected Total 927346.562 1507       

a. R Squared = .214 (Adjusted R Squared = .214) 

b. Computed using alpha = .05 
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INCIDENT DURATION – INCIDENT DETECTION MODE 

Descriptive Statistics 

Dependent Variable:TotalDuration 

DetectionMode Mean Std. Deviation N 

531 radio 43.93 29.226 27 

Camera 40.08 27.547 575 

Courtesy Patrol 19.18 15.619 718 

DART 48.00 25.864 18 

Media 52.57 30.501 47 

Police Department 44.14 26.320 28 

Public 30.05 20.288 95 

Total 30.12 24.806 1508 

 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected 

Model 

183105.555a 6 30517.592 61.548 .000 .197 369.291 1.000 

Intercept 473276.884 1 473276.884 954.514 .000 .389 954.514 1.000 

DetectionMode 183105.555 6 30517.592 61.548 .000 .197 369.291 1.000 

Error 744241.008 1501 495.830      

Total 2295850.000 1508       

Corrected 

Total 

927346.562 1507 
      

a. R Squared = .197 (Adjusted R Squared = .194) 

b. Computed using alpha = .05 
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INCIDENT DURATION – LANE INVOLVEMENT RATIO, NO. OF INVOLVED VEHICLE, 

WEATHER, TYPE OF INCIDENT, DETECTION MODE 

Between-Subjects Factors 

 

Weather 
N 

 
Clear 20 

Haze 1 

Heavy Rain 1 

Heavy Thunderstorms and Rain 1 

Light Rain 2 

Light Thunderstorms and Rain 3 

Mostly Cloudy 307 

Overcast 23 

Partly Cloudy 578 

Thunderstorm 3 

 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected Model 335418.108a 78 4300.232 10.381 .000 .362 809.747 1.000 

Intercept 62033.370 1 62033.370 149.757 .000 .095 149.757 1.000 

LaneInvolvmentRatio 24404.982 1 24404.982 58.917 .000 .040 58.917 1.000 

NumberOfInvolvedVehicles 4081.092 1 4081.092 9.852 .002 .007 9.852 .880 

Weather 10815.575 10 1081.558 2.611 .004 .018 26.110 .963 

DetectionMode 7208.785 6 1201.464 2.901 .008 .012 17.403 .898 

TypeText 7387.862 3 2462.621 5.945 .000 .012 17.835 .957 

Weather * DetectionMode 9812.950 20 490.648 1.184 .258 .016 23.690 .855 

Weather * TypeText 10801.279 10 1080.128 2.608 .004 .018 26.076 .963 

DetectionMode * TypeText 8002.512 15 533.501 1.288 .201 .013 19.319 .809 

Weather * DetectionMode * 

TypeText 

4762.419 11 432.947 1.045 .403 .008 11.497 .593 
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Error 591928.454 1429 414.226      

Total 2295850.000 1508       

Corrected Total 927346.562 1507       

a. R Squared = .362 (Adjusted R Squared = .327) 

b. Computed using alpha = .05 
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INCIDENT DURATION – DETECTION MODE 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected 

Model 

183105.555a 6 30517.592 61.548 .000 .197 369.291 1.000 

Intercept 473276.884 1 473276.884 954.514 .000 .389 954.514 1.000 

DetectionMode 183105.555 6 30517.592 61.548 .000 .197 369.291 1.000 

Error 744241.008 1501 495.830      

Total 2295850.000 1508       

Corrected 

Total 

927346.562 1507 
      

a. R Squared = .197 (Adjusted R Squared = .194) 

b. Computed using alpha = .05 
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INCIDENT DURATION – MODIFIED DETECTION MODE 

Descriptive Statistics 

Dependent Variable:TotalDuration 

ModifiedDetectionMode Mean Std. Deviation N 

Camera 40.08 27.547 575 

Courtesy Patrol 19.18 15.619 718 

Other 47.98 28.540 120 

Public 30.05 20.288 95 

Total 30.12 24.806 1508 

 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial 

Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected Model 181257.399a 3 60419.133 121.796 .000 .195 365.387 1.000 

Intercept 857030.566 1 857030.566 1727.641 .000 .535 1727.641 1.000 

ModifiedDetectionMode 181257.399 3 60419.133 121.796 .000 .195 365.387 1.000 

Error 746089.163 1504 496.070      

Total 2295850.000 1508       

Corrected Total 927346.562 1507       

a. R Squared = .195 (Adjusted R Squared = .194) 

b. Computed using alpha = .05 
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INCIDENT DURATION – LANE INVOLVEMENT RATIO, MODIFIED DETECTION MODE 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected Model 242946.538a 4 60736.635 133.383 .000 .262 533.531 1.000 

Intercept 411148.561 1 411148.561 902.917 .000 .375 902.917 1.000 

LaneInvolvmentRatio 61689.139 1 61689.139 135.475 .000 .083 135.475 1.000 

ModifiedDetectionMode 44421.712 3 14807.237 32.518 .000 .061 97.554 1.000 

Error 684400.024 1503 455.356      

Total 2295850.000 1508       

Corrected Total 927346.562 1507       

a. R Squared = .262 (Adjusted R Squared = .260) 

b. Computed using alpha = .05 
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INCIDENT DURATION – LANE INVOLVEMENT RATIO, TYPE OF INCIDENT, MODIFIED 

DETECTION MODE 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Powerb 

Corrected Model 284467.072a 16 17779.192 41.234 .000 .307 659.751 1.000 

Intercept 78668.323 1 78668.323 182.452 .000 .109 182.452 1.000 

LaneInvolvmentRatio 22923.959 1 22923.959 53.166 .000 .034 53.166 1.000 

TypeText 16636.672 3 5545.557 12.862 .000 .025 38.585 1.000 

ModifiedDetectionMode 5222.478 3 1740.826 4.037 .007 .008 12.112 .843 

TypeText * 

ModifiedDetectionMode 

6621.138 9 735.682 1.706 .083 .010 15.356 .788 

Error 642879.490 1491 431.173      

Total 2295850.000 1508       

Corrected Total 927346.562 1507       

a. R Squared = .307 (Adjusted R Squared = .299) 

b. Computed using alpha = .05 
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INCIDENT DURATION – MODIFIED WEATHER 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 67527.972a 1 67527.972 118.277 .000 .073 

Intercept 1181854.961 1 1181854.961 2070.057 .000 .579 

ModifiedWeather 67527.972 1 67527.972 118.277 .000 .073 

Error 859818.591 1506 570.929    

Total 2295850.000 1508     

Corrected Total 927346.562 1507     

a. R Squared = .073 (Adjusted R Squared = .072) 

 

 

Parameter Estimates 

Dependent Variable:TotalDuration 

Parameter B Std. Error t Sig. 

95% Confidence Interval Partial Eta 

Squared Lower Bound Upper Bound 

Intercept 43.666 1.389 31.441 .000 40.941 46.390 .396 

[ModifiedWeather=1.00] -16.848 1.549 -10.876 .000 -19.887 -13.809 .073 

[ModifiedWeather=2.00] 0a . . . . . . 

a. This parameter is set to zero because it is redundant. 
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INCIDENT DURATION – MODIFIED WEATHER, ROAD ID 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 92399.683a 7 13199.955 23.714 .000 .100 

Intercept 152647.927 1 152647.927 274.235 .000 .155 

ModifiedWeather 5970.039 1 5970.039 10.725 .001 .007 

Road ID 1004.230 3 334.743 .601 .614 .001 

ModifiedWeather * Road 

ID 

3756.203 3 1252.068 2.249 .081 .004 

Error 834946.879 1500 556.631    

Total 2295850.000 1508     

Corrected Total 927346.562 1507     

a. R Squared = .100 (Adjusted R Squared = .095) 
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INCIDENT DURATION – LANE INVOLVEMENT RATIO, NO. OF INVOLVED VEHICLE, 

MODIFIED WEATHER, MODIFIED DETECTION MODE 

Tests of Between-Subjects Effects 

Dependent Variable:TotalDuration 

Source 

Type III Sum 

of Squares df Mean Square F Sig. 

Partial Eta 

Squared 

Corrected Model 240955.369a 9 26772.819 58.430 .000 .260 

Intercept 241841.647 1 241841.647 527.802 .000 .261 

NumberOfInvolvedVehicles 8369.803 1 8369.803 18.267 .000 .012 

LaneInvolvmentRatio 39309.056 1 39309.056 85.789 .000 .054 

ModifiedWeather 27.077 1 27.077 .059 .808 .000 

ModifiedDetectionMode 19812.044 3 6604.015 14.413 .000 .028 

ModifiedWeather * 

ModifiedDetectionMode 

244.431 3 81.477 .178 .911 .000 

Error 686391.194 1498 458.205    

Total 2295850.000 1508     

Corrected Total 927346.562 1507     

a. R Squared = .260 (Adjusted R Squared = .255) 

 

 

 

 

 

 

 

  



133 
 

References 

1. Abuelela, Mahmoud, Stephan Olariu, and Gongjun Yan. "Enhancing automatic 

incident detection techniques through vehicle to infrastructure communication." 

In Intelligent Transportation Systems, 2008. ITSC 2008. 11th International IEEE 

Conference on, pp. 447-452. IEEE, 2008. 

2. Payne H, Tignor S. “Freeway incident-detection algorithms based on decision 

trees with states.” Transportation Research Record (682), 1978. 

3. Levin M, Krause G. “Incident detection: a Bayesian approach.” Transportation 

Research Record (682), 1978. 

4. Persaud B, Hall F. “Catastrophe theory and patterns in 30-second freeway traffic 

data-implications for incident detection.” Transportation Research Part A: 

General 1989, 23(2), pp. 103–113. 

5. Ahmed, S. A., and Cook, A. R. “Application of Time Series Analysis Techniques 

to Freeway Incident Detection.” Transportation Research Record 682, TRB, 

Washington, D.C., 1980, pp. 19-21. 

6. TAN Z., LU X., “A Combination Algorithm of Freeway Traffic Automatic Incident 

Detection,” ASCE First International Conference on Transportation Information and 

Safety (ICTIS), Volume I: Highway Transportation, pp. 1106-1112, 2011. 

7. Trivedi M, Mikic I, Kogut G. “Distributed video networks for incident detection 

and management.” Proceedings of Intelligent Transportation Systems. IEEE, 

2000, pp. 155–160. 

8. Parkany, E. and C. Xie, “A Complete Review of Incident Detection Algorithms 

and Their Deployment: What Works and What Doesn’t,” The New England 

Transportation Consortium, 2005. 

9. Karim, Asim, and Hojjat Adeli. "Incident detection algorithm using wavelet 

energy representation of traffic patterns." Journal of Transportation 

Engineering128, no. 3, 2002, pp. 232-242. 



134 
 

10. Persaud, Bhagwant N., and Fred L. Hall. "Catastrophe theory and patterns in 30-

second freeway traffic data—Implications for incident detection."Transportation 

Research Part A: General 23, no. 2, 1989, pp. 103-113. 

11. Cook, A. R., and Cleveland, D. E. ‘‘Detection of freeway capacity-reducing 

incidents by traffic stream measurements.’’ Transp. Research Record, 495, 

Transportation Research Board, Washington, D.C., 1974, pp. 1–11. 

12. Ma Y. “A Real-Time Traffic Condition Assessment and Prediction Framework Using 

Vehicle-Infrastructure Integration (Vii) with Computational Intelligence.” Ph.D. 

Dissertation, Clemson University, Clemson, SC, USA. Advisor(s) Mashrur A. 

Chowdhury, 2008. 

13. FHWA: ‘VII architecture and functional requirements version 1.1’. ITS Joint Program 

Office, US DOT, 2005. 

14. PATH: ‘VII California bay area test bed development plan’, 4 April 2006. 

15. ITS America: ‘Primer on VII’, http://www.itsa.org/itsa/files/pdf/VIIPrimer.pdf, accessed 

11 July 2007. 

16. Hi-ri-o-tappa, K., Likitkhajorn, C., Poolsawat, A., Thajchayapong, S., “Traffic 

incident detection system using series of point detectors”, Intelligent 

Transportation Systems (ITS),15th International IEEE Conference, 2012, pp. 182-

187. 

17. Xiao, Jianli, Xiang Gao, Qing-Jie Kong, and Yuncai Liu. "More robust and better: 

a multiple kernel support vector machine ensemble approach for traffic incident 

detection." Journal of Advanced Transportation, 2013, pp. 858-875. 

18. Samant A, Adeli H. “Feature extraction for traffic incident detection using 

wavelet transform and linear discriminant analysis.” Computer-Aided Civil and 

Infrastructure Engineering 2000, 15(4), pp. 241–250. 

19. Cristianini N. and J. Shawe-Taylor, An Introduction to Support Vector Machines 

and Other Kernel-Based Learning Methods. Cambridge, U.K.: Cambridge Univ. 

Press, 2000. 



135 
 

20. Yuan, Fang, and Ruey Long Cheu. "Incident detection using support vector 

machines." Transportation Research Part C: Emerging Technologies 11, no. 3, 

2003, pp. 309-328. 

21. Vapnik, Vladimir. "The support vector method of function estimation." 

InNonlinear Modeling, Springer US, 1998, pp. 55-85. 

22. Tigor, S.C. and Payne, H.J. (1977). “Improved freeway incident detection 

algorithms.” Public Roads, Vol. 41, No. 1, FHWA, pp. 32-40. 

23. Levin, M. and Krause, G.M. (1978). “Incident detection: a Bayesian approach.” 

Transportation Research Record, No. 682, TRB, National Research Council, pp. 

52-58.  

24. Ahmed, M.S. and Cook, A.R. (1980). “Time series models for freeway incident 

detection.” Journal of Transportation Engineering, Vol. 106, No. 6, ASCE, pp. 

731-745. 

25. Ahmed, M.S. and Cook, A.R. (1982). “Application of time-series analysis 

techniques to freeway incident detection.” Transportation Research Board, No. 

841, TRB, National Research Council, pp. 19-21. 

26. Hall, F.L., Shi, Y. and Atala, G. (1993). “On-line testing of the McMaster incident 

detection algorithm under recurrent congestion.” Transportation Research 

Record, No. 1394, TRB, National Research Council, pp. 1-7. 

27. Adeli, H. and Samant, A. (2000). “An adaptive conjugate gradient neural 

network-wavelet model for traffic incident detection.” Computer-Aided Civil and 

Infrastructure Engineering, Vol. 15, No. 4, pp. 251.260. 

28. Yuan, Fang, and Ruey Long Cheu. "Incident Detection Using Support Vector 

Machines." Transportation Research Part C: Emerging Technologies 11, no. 3, 

2003, pp. 309-328. 

29. Chowdhury, M., A. Sadek, Y. Ma, N. Kanhere and P. Bhavsar. “Applications of 

artificial intelligence paradigms to decision support to real-time traffic 

management.” Transportation Research Record, 1968, Transportation Research 

Board, Washington D.C., 2006, pp.  92-98 



136 
 

30. Bhavsar, P., Chowdhury, M. A., Sadek, A., Sarasua, W., and Ogle, J. “Decision 

support system for predicting traffic diversion impacts across transportation 

networks using support vector regression.” Transportation Research Board 

Annual Meeting (CD-ROM), Washington D.C., 2007. 

31. Chen, Shuyan, Wei Wang, and Henk Van Zuylen. "Construct support vector 

machine ensemble to detect traffic incident." Expert systems with applications36, 

no. 8, 2009, pp. 10976-10986. 

32. Li, Y., Cai, Y.-z., Yin, R.-p., & Xu, X.-m. “Fault diagnosis based on support 

vector machine ensemble.” In Proceedings of the fourth international conference 

on machine learning and cybernetics, Guangzhou, August , 2005, pp. 3309–3314. 

33. Xiao, Jianli, and Yuncai Liu. "Traffic Incident Detection Using Multiple-Kernel 

Support Vector Machine." Transportation Research Record: Journal of the 

Transportation Research Board 2324, no. 1, 2012, pp. 44-52. 

34. Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. "A practical guide to 

support vector classification." National Taiwan University, Taipei. (2010). 

Available at: 

https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf. 

Accessed 7/30/2014. 

35. Xiao, Jianli, and Yuncai Liu. "Traffic incident detection by multiple kernel 

support vector machine ensemble." In Intelligent Transportation Systems (ITSC), 

2012 15th International IEEE Conference, 2012, pp. 1669-1673. 

36. Ma, Yongchang, Mashrur Chowdhury, Mansoureh Jeihani, and Ryan Fries. 

"Accelerated incident detection across transportation networks using vehicle 

kinetics and support vector machine in cooperation with infrastructure 

agents."Intelligent Transport Systems, IET 4, no. 4, 2010, pp 328-337. 

37. Qu, Xu, Wei Wang, Wenfu Wang, and Pan Liu. "Real-time freeway sideswipe 

crash prediction by support vector machine." IET Intelligent Transport Systems7, 

2013, no. 4, pp. 445-453. 

https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf.%20Accessed%207/30/2014
https://www.cs.sfu.ca/people/Faculty/teaching/726/spring11/svmguide.pdf.%20Accessed%207/30/2014


137 
 

38. Motamed, M., Machemehl, R. B., “Freeway Real-time Incident Detection Using 

SVM During the Peak Hour", Submitted to Transportation Research Part C, 2014. 

39. Keerthi, S. Sathiya, and Chih-Jen Lin. "Asymptotic behaviors of support vector 

machines with Gaussian kernel." Neural computation 15, no. 7, 2003, pp. 1667-

1689. 

40. Jin, X., D. Srinivasan, and R.L. Cheu. ,  “Classification of freeway traffic patterns 

for incident detection using constructive probabilistic neural networks,” IEEE 

Transactions on Neural Networks, vol. 12, no. 5, 2001, pp. 1173–1187. 

Accessible at: http://www.hindawi.com/journals/mpe/2014/383671/ 

41. Chang, Chih-Chung, and Chih-Jen Lin. "LIBSVM: a library for support vector 

machines." ACM Transactions on Intelligent Systems and Technology (TIST)2, 

no. 3, 2011,pp. 1- 27.  

42. Singh A., “Practical Issues in Machine Learning Overfitting and Model selection 

and Model selection”, Carnegie Mellon, School of computer science, Feb 3, 2010. 

Available at: http://www.cs.cmu.edu/~epxing/Class/10701-

10s/Lecture/lecture8.pdf 

43. MARTIN P.T., PERRIN J., HANSEN B.: ‘Incident detection algorithm evaluation’, 

Prepared for Utah Department of Transportation, March 2001. 

44. Cheu, Ruey Long, Dipti Srinivasan, and Eng Tian Teh. "Support vector machine 

models for freeway incident detection." In Intelligent Transportation Systems 

Proceedings.IEEE, vol. 1,2003, pp. 238-243. 

45. Hi-ri-o-tappa, K., et.al, “A Novel Approach of Dynamic Time Warping for Short-Term 

Traffic Congestion Prediction,” Transportation Research Board of the National 

Academies, Washington, D.C., 2011. 

46. Oh, J.-S., C. Oh, S. G. Ritchie, and M. Chang, “Real-Time Estimation of Accident 

Likelihood for Safety Enhancement,” ASCE Journal of Transportation Engineering, pp. 

358–363, 2005. 

47. Vapnik, Vladimir. The nature of statistical learning theory. springer, Berlin, 1995. 

http://www.hindawi.com/journals/mpe/2014/383671/
http://www.cs.cmu.edu/~epxing/Class/10701-10s/Lecture/lecture8.pdf
http://www.cs.cmu.edu/~epxing/Class/10701-10s/Lecture/lecture8.pdf


138 
 

48. Lin, Chih Jen, C. W. Hsu, and C. C. Chang. "A practical guide to support vector 

classification." National Taiwan University, 2003. Accessible at: www. csie. ntu. 

edu. tw/cjlin/papers/guide/guide. pdf (2003). 

49. Chang, Chih-chung, and Chih-jen Lin. “LIBSVM: A library for support vector 

machines.”  2001. Software available at: http://www. csie. ntu. edu. tw/cjlin/libsvm.  

50. Hi-ri-o-tappa, K., C. Likitkhajorn, A. Poolsawat, and S. Thajchayapong. "Traffic incident 

detection system using series of point detectors." In Intelligent Transportation Systems 

(ITSC), 2012 15th International IEEE Conference on, pp. 182-187. IEEE, 2012. 

51. Ruey Long Cheu, Srinivasan, D. ; Eng Tian Teh, “Support vector machine models for 

freeway incident detection.” Intelligent Transportation Systems, Proceedings. 2003 

IEEE  (Volume:1 ), 2003, pp. 238-243. 

52. Huang B, Kinsner W. “ECG Frame Classification Using Dynamic Time Warping." In W 

Kinsner, A Sebak, K Ferens (eds.), Proceedings of the Canadian Conference on Electrical 

and Computer Engineering- IEEE CCECE 2002, volume 2, pp. 1105-1110, 2002. 

53. Syeda-Mahmood T, Beymer D, Wang F. “Shape-Based Matching of ECG Recordings." 

In A Dittmar, J Clark, E McAdams, N Lovell (eds.), Engineering in Medicine and 

Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 

pp. 2012-2018, 2007. 

54. Wei L, Keogh E, Xi X. “SAXually Explicit Images: Finding Unusual Shapes." In CW 

Clifton, N Zhong, J Liu, BW Wah, X Wu (eds.), Sixth International Conference on Data 

Mining 2006-ICDM '06, pp. 711-720. IEEE Computer Society, Los Alamitos, CA, USA 

2006. 

55. Chandrasekaran, Gayathri, Tam Vu, Alexander Varshavsky, Marco Gruteser, Richard P. 

Martin, Jie Yang, and Yingying Chen. "Tracking vehicular speed variations by warping 

mobile phone signal strengths." In Pervasive Computing and Communications (PerCom), 

2011 IEEE International Conference on, pp. 213-221. IEEE, 2011. 

56. Zhang, Ning, Yi Shi, and Wei Huang. "Traffic Event Automatic Detection Based on 

OGS-DTW Algorithm." Journal of Highway and Transportation Research and 

Development (English Edition) 6, no. 1 (2012): 54-60. 

57. Golob, T.F., Recker, L. (1986). “An analysis of the severity and incident duration of 

truck-involved freeway accident.” Institute of Transportation Studies, Univ. of California, 

Irvine. UCI-ITS-WP-86-9.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ruey%20Long%20Cheu.QT.&searchWithin=p_Author_Ids:37329566400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Srinivasan,%20D..QT.&searchWithin=p_Author_Ids:37280047000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Eng%20Tian%20Teh.QT.&searchWithin=p_Author_Ids:38197394700&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8866
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8866


139 
 

58. Wu, Wei-wei, Shu-yan Chen, and Chang-jiang Zheng. "Traffic incident duration 

prediction based on support vector regression." Proceedings of the ICCTP 2011 (2011): 

2412-2421. 

59. Chang, Hsin-Li, and Tse-Pin Chang. "Prediction of Freeway Incident Duration based on 

Classification Tree Analysis." Journal of the Eastern Asia Society for Transportation 

Studies 10 (2013): 1964-1977. 

60. Li, Ruimin, and Pan Shang. "Incident duration modeling using flexible parametric 

hazard-based models." Computational intelligence and neuroscience 2014 (2014): 

723427-723427. 

61. Hojati, Ahmad Tavassoli, Luis Ferreira, Simon Washington, Phil Charles, and Ameneh 

Shobeirinejad. "Modelling total duration of traffic incidents including incident detection 

and recovery time." Accident Analysis & Prevention 71 (2014): 296-305. 

62. Li, Ruimin, Francisco C. Pereira, and Moshe E. Ben-Akiva. "Competing risks mixture 

model for traffic incident duration prediction." Accident Analysis & Prevention 75 

(2015): 192-201. 

63. Kang, Guoxiang, and Shou-en Fang. "Applying survival analysis approach to traffic 

incident duration prediction." In Reston, VA: ASCEProceedings of the First International 

Conference on Transportation Information and Safety, June 30. July 2, 2011, Wuhan, 

China| d 20110000. American Society of Civil Engineers, 2011. 

64. Demiroluk, Sami, and Kaan Ozbay. "Structure learning for the estimation of non-

parametric incident duration prediction models." In Transportation Research Board 90th 

Annual Meeting, no. 11-3143. 2011. 

65. Zhang, Kun, and Michael AP Taylor. "Effective arterial road incident detection: a 

Bayesian network based algorithm." Transportation Research Part C: Emerging 

Technologies 14, no. 6 (2006): 403-417. 

66. Šingliar, Tomáš, and Miloš Hauskrecht. "Learning to detect incidents from noisily labeled 

data." Machine learning 79, no. 3 (2010): 335-354. 

67. Pande, A., C. Nuworsoo, and C. Shew. “Proactive Assessment of Accident Risk to 

Improve Safety on a System of Freeways.” California Polytechnic State University, San 

Luis Obispo, 2012. 

68. Breiman, Leo. “Some infinity theory for predictor ensembles." Technical Report 579, 

Statistics Dept. UCB, 2000. 



140 
 

69. Breiman, Leo. "Random forests." Machine learning 45, no. 1 (2001): 5-32. 

70. Liu, Qingchao, Jian Lu, and Shuyan Chen. "Traffic Incident Detection Using Random 

Forest." In Transportation Research Board 92nd Annual Meeting, no. 13-1610. 2013. 

71. Liu, Qingchao, Jian Lu, Shuyan Chen, and Kangjia Zhao. "Multiple Naïve Bayes 

Classifiers Ensemble for Traffic Incident Detection." Mathematical Problems in 

Engineering 2014 (2014). 

72. Berzal, Fernando, Juan-Carlos Cubero, Fernando Cuenca, and Marı́a J. Martıń-Bautista. 
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